June 28, 2023 UMD Home FabLab AIMLab



The cover of the October 12, 2016 issue of ACS Applied Materials & Interfaces features the work of Prof. Jeremy Munday (ECE, IREAP, NanoCenter) , Prof. Marina Leite (MSE, IREAP, NanoCenter) and IREAP graduate students Dongheon Ha and Chen Gong.  

Abstract: To increase the power conversion efficiency of solar cells, improved antireflection coatings are needed to couple light into the cell with minimal parasitic loss. Here, we present measurements and simulations of an antireflection coating based on silicon dioxide (SiO2) nanospheres that improve solar cell absorption by coupling light from free space into the absorbing layer through excitation of modes within the nanospheres. The deposited monolayer of nanospheres leads to a significant increase in light absorption within an underlying semiconductor on the order of 15–20%. When the periodicity and spacing between the nanospheres are varied, whispering gallery-like modes can be excited and tuned throughout the visible spectrum. The coating was applied to a Si solar cell containing a Si3N4 antireflection layer, and an additional increase in the spectral current density of ∼5% was found. The fabrication process, involving Meyer rod rolling, is scalable and inexpensive and could enable large-scale manufacturability of microresonator-based photovoltaics.

Demonstration of Resonance Coupling in Scalable Dielectric Microresonator Coatings for Photovoltaics

Dongheon Ha, Chen Gong, Marina S. Leite, and Jeremy N. Munday

ACS Appl. Mater. Interfaces, 8 (37), 24536 (2016)

doi:10.1021/acsami.6b05734



October 19, 2016


«Previous Story  

 

 

Current Headlines

Selected Publications from NanoCenter's AIM Lab and FabLab

Connect with Maryland Engineering at the 2023 ASEE Annual Conference

Powering a Greener Future

Device That Harvests Water From Air Named Top UMD Invention of the Year

Maryland Engineering Graduate Programs: Top 10 Among Public Universities, Five Years in a Row

Electrified Plastic Recycling Toward A Sustainable Future

Crank Up the AC, Not Global Warming

Women’s History Month Spotlight

Safe Lithium Batteries Get a Boost

2023 Energy Seed Grants Provide Launchpad for Local Startups

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2023