

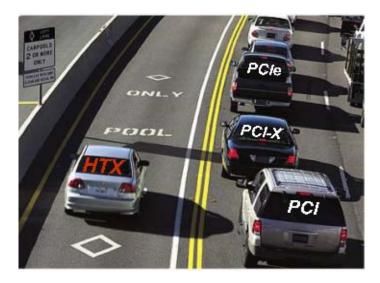
HTX[™] - PCI Express Compared

How and Why HyperTransport HTX Proves Best Choice for Compute-Intensive Applications

www.hypertransport.org

Copyright 2008 HyperTransport Consortium

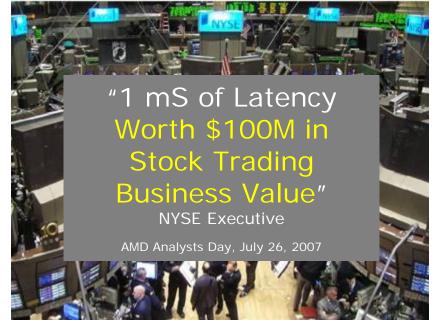
HTX[™] Delivers the Extra Performance that PCI-Class Interconnects Cannot Deliver


Compute-Intensive Applications Expect Best Architectural and Transactional Efficiency from Interconnect Technologies

HTX

Best-in-Class Slot Connector Interfaces such as HTX and HTX3 are Designed for Lowest Latency, Highest Bandwidth. They are Best Choice for Compute-Intensive Processing and Coprocessing Applications

General Purpose Slot Connector Interfaces such as PCI Express are Designed for Wide End-User Configurability and are Best Choice for Latency-Insensitive Peripheral and I/O Applications

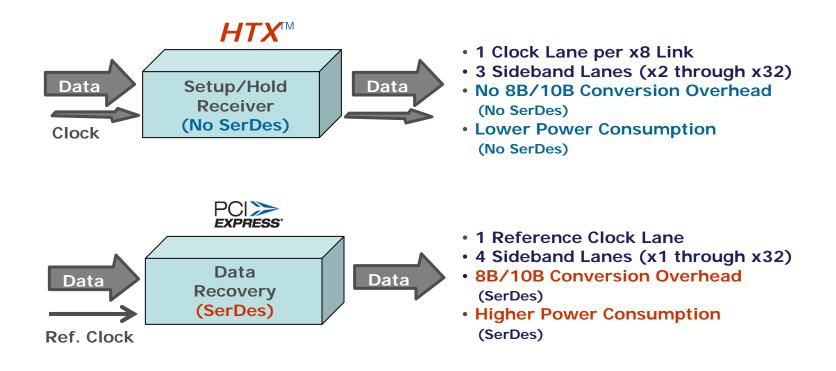


Latency is The HPC Market Driver

Peak computing power is no longer the metric to consider

Feeding processing units with data is the real concern, and flow control dependencies in applications make latency the key performance metric

Prof. Jose Duato Polytechnic Univ. of Valencia, Spain (*)

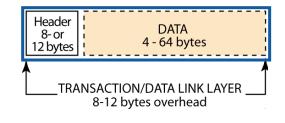


HTX Has Been and Continues to Be The Lowest Latency Slot Interface in Industry

(*) Jose Duato is Professor of Computer Science at the Polytechnic University of Valencia, Spain and a world authority in high performance computing (HPC). Prof. Duato has directly contributed to some of the computer industry's most advanced HPC product developments by companies like Compaq, Cray, IBM and Sun Microsystems. In 2006 Prof. Duato received Spain's most prestigious technology achievement award from Queen Sophia of Spain. Dr. Duato is an active contributor to Hypertransport technology and the HyperTransport Consortium.

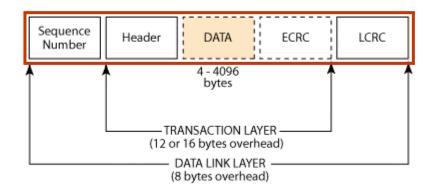
Multiple Latency Advantages Advantage 1: Physical Layer Efficiency

HTX Offers 20% Better Physical Layer Bandwith and Latency

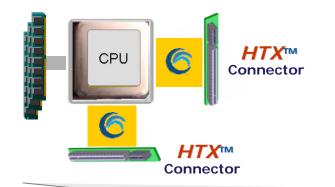


Multiple Latency Advantages Advantage 2: Leaner Protocol

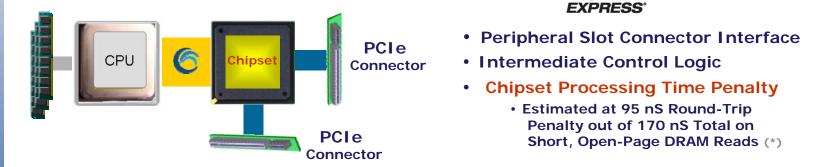
High-Performance Protocol


- Minimized Packet Overhead
 8/12 bytes (Min/Max)
- Ideal for HPC Applications

General Purpose Protocol


- Considerable Packet Overhead
 20/24 bytes (Min/Max)
- Non-Optimal for HPC Applications

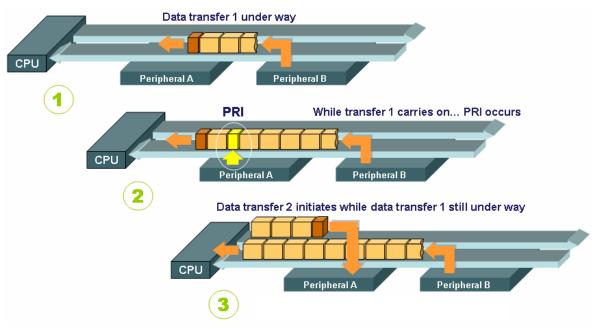
HTX's Vastly Leaner Packet Payload Yields Latency Advantage that Scales Linearly with Applications and Job Transactions



Multiple Latency Advantages Advantage 3: No Intermediate Logic Overhead

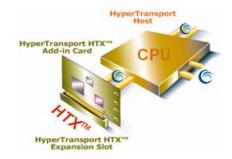
HTX

- Direct CPU-to-Subsystem Connection
- No Latency Penalty from Intermediate Control Logic


HTX Delivers 55% Lower Latency per Transaction Due to Absence of Intermediate Control Logic and Multiplexing

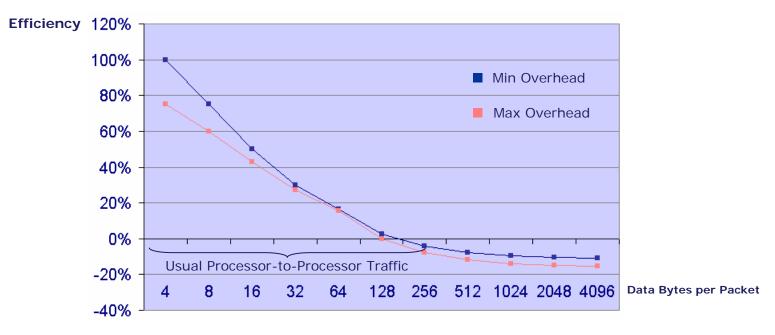
(*) PCIe Gen2

Multiple Latency Advantages Advantage 4: Peripheral Processing Efficiency


HyperTransport is the Only Interconnect that Can Dynamically Insert Peripheral Read Requests in the Middle of Data Packets (Priority Request Interleaving™)

- PRI's Delivers an Average of 20nS Less Per-Transaction Latency in Heavily Loaded Environments
- High Priority Packets Not Penalized by Low Priority Packets
- Lowest Peripheral Processing Latency

HTX[™] & PCI Express Bandwidth Comparison

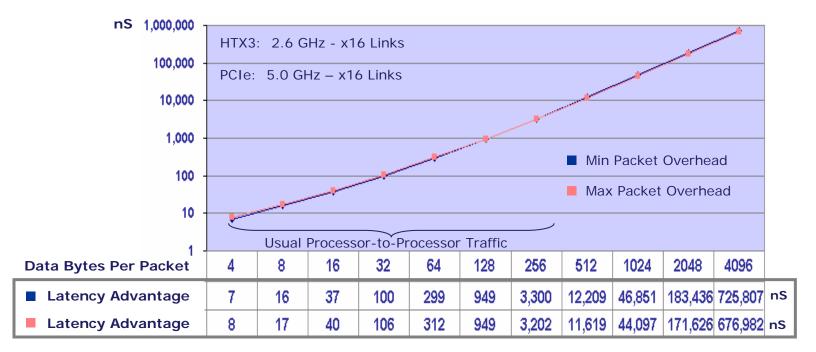

Feature	PCIe Gen1	PCI e Gen2	HTX	HTX3
Max Clock Rate	2.5 GHz	5.0 GHz	800 MHz	2.6 GHz
Double Data Rate	NO	NO	YES	YES
Max Bandwidth x Lane	2.5 Gbps	5.0 Gbps	1.6 GT/s (*)	5.2 GT/s (*)
8B/10B Penalty	-20%	-20%	No Penalty	No Penalty
Net Bandwidth x Lane	2.0 Gbps	4.0 Gbps	1.6 GT/s (*)	5.2 GT/s (*)
Net Bandwidth 16-Bit - Aggregate	8 Gbytes/s	16 Gbytes/s	6.4 GBytes/s	20.8 GBytes/s

(*) HyperTransport supports Double Data Rate (DDR), transferring data on both the leading and trailing edge of the clock. Therefore HyperTransport's bandwidth is more appropriately represented by the term "Transfers/second" than the term "Bits/second"

HTX[™] Packet Efficiency in Figures

HTX Delivers up to Twice the Packet Efficiency of PCIe with Proportional Latency Advantages

www.hypertransport.org


Copyright 2008 HyperTransport Consortium

9

*HTX*TM Per-Packet Latency Advantage

HTX3[™] Per-Packet Latency Advantage over PCIe Gen2

The results take into account PCIe's 20% clock recovery, packet payload and 55% chipset overhead penalties. HTX's Priority Request Interleaving, if applicable, will add to HTX's total latency advantage

HTX[™] Real World Time-to-Result Savings Combined Bandwidth, Pysical Layer and Protocol Latency Advantages

Compute-Intensive Tasks Require Hundreds of Thousand to Billions of Packet Transactions

Number of Packets Trasferred	100,000	1 Million	1 Billion
Bytes per Packet Transferred	Per Task	Per Task	Per Task
4	0.78 mS	7.8 mS	7.8 Sec
16	4 mS	40 mS	40 Sec
256	0.32 Sec	3.20 Sec	53 Min
512	1.16 Sec	11.62 Sec	3.23 Hrs

HTX3[™] Time-to-Result Saving vs. PCIe Gen2


The results take into account PCIe's 20% clock recovery, packet payload and 55% chipset overhead penalties. HTX's Priority Request Interleaving[™], if applicable, will add to HTX's total time-to-result latency advantage

HTX3[™] Link Splitting Capability

The 16-Bit HyperTransport Link in an HTX3 Connector Can Split into Two Independent 8-Bit Links

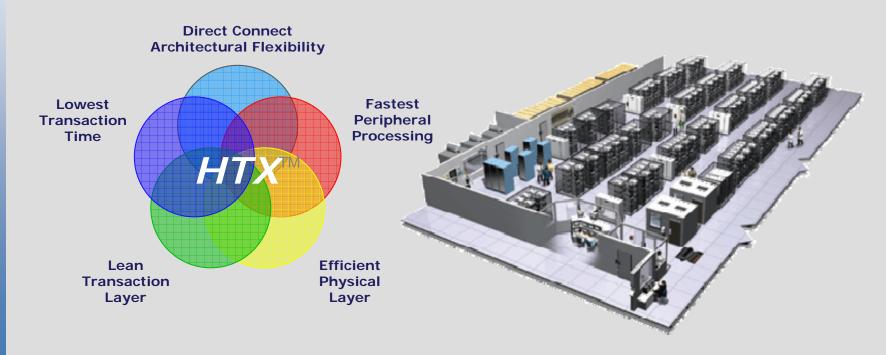
Allows HTX Subsystem to Connect Directly to 2 CPUs Supports New-Generation System Functionality

www.hypertransport.org

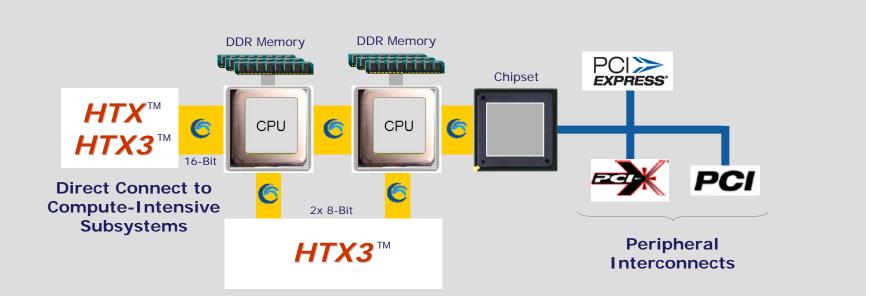
Copyright 2008 HyperTransport Consortium

HTX[™] in Summary

www.hypertransport.org

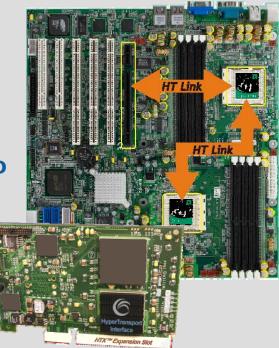

Copyright 2008 HyperTransport Consortium

13


Unique Technical Values

HTX[™] Provides Superior Performance and Architectural Capabilities In Line with HPC Market Expectations

HTX^M Complements PCI Express


With its Unique Architectural and Performance Edge over General Purpose Interconnects, HTX is an Ideal Complement to PCI-Class Slot Connector Interfaces

HTX[™] Business Values

HTX[™] is a Competitive Differentiator for High-Performance Total Solution Vendors

- Negligible BOM Cost
 - Leverages PCIe Economy of Scale
- System Flexibility
 - Single MB Serves Multiple Markets
- Growing HTX Subsystem Portfolio
 - Coprocessors, Accelerated 10GE, ccNUMA Cluster Controllers, Content Processors, Others Released Soon
- Up-Selling Enabler
 - Delivers Greater End-User Value

www.hypertransport.org

Copyright 2008 HyperTransport Consortium