

HyperTransport[™] *HTX*[™]

- Market Pull
- Technology Evolution
- Core Values
- Main Applications
- Products Ecosystem
- Development Support
- BIOS Support
- Why HTX

Market Pull

High-Performance Computing Has Overflowed Original Boundaries

Commodity Technology Drives HPC Expansion Minimizes End-User TCO

Strong Demand for Commodity-Based HPC Infrastructure

HyperTransport[™] Carries Highest Values in HPC by virtue of its

Low Latency, High Bandwidth, Direct Connect Architecture Server Farms Data Centers Supercomputers Gaming Platforms

Performance and Scalability are

Interconnect Technology is Crucial to HPC Product Success

The premium on SYSTEM design continues

- Power
- Reliability / Availability
- Interconnect _____
- Programmability
 - Debuggability
- Cost:
 - Efficiency vs cost
 - Not Efficiency vs Peak

NOTE: Single (or limited) function systems are different

IBM

Most Important Performance Factor in HPC

@ 2006 IBM Corporation

Interconnect Technology is Crucial to HPC Product Success (cont.)

Future Directions

- · Close collaboration on high end systems with partners.
 - Parallelism is available and being exploited. Less emphasis on single thread performance. (It is still very important)
 - Users are accustomed to leve
 - Detailed analysis based on real
- · Power reduction is achievable .

IBM Research

- Technology has been "over-le
- Power reduction MUST be
- · Node architecture must be acco
 - Latency promises to be the big
 Capability with increased para
 - latencies.

"Latency promises to be the biggest challenge for the future of networks"

- Successful direction likely to require hardware, compilers, middleware and programming model changes.
 - Some of these are likely to be discontinuous with respect to current practice.
- · Exploring the architectural space will be expensive.
 - The commitment of industry and government are necessary for progress.

Latency is The HPC Market Driver

Peak computing power is no longer the metric to consider

Feeding processing units with data is the real concern, and flow control dependencies in applications make latency the key performance metric

Prof. Jose Duato Polytechnic Univ. of Valencia, Spain (*)

HTX Has Been and Continues to Be The Lowest Latency Slot Interface in Industry

(*) Jose Duato is Professor of Computer Science at the Polytechnic University of Valencia, Spain and a world authority in high performance computing (HPC). Prof. Duato has directly contributed to some of the computer industry's most advanced HPC product developments by companies like Compaq, Cray, IBM and Sun Microsystems. In 2006 Prof. Duato received Spain's most prestigious technology achievement award from Queen Sophia of Spain. Dr. Duato is an active contributor to Hypertransport technology and the HyperTransport Consortium.

Technology Evolution

HyperTransport[™] Delivers Core Values to HPC Industry

Mature, Stable, Dependable Technology

HyperTransport[™] is the Solution of Choice for Demanding Markets Sectors

58 Million HT-Powered Products

Capture	Market	Yr/Yr Growth
8%	Defense Applications	17%
32%	Top500 Supercomputers	s 28%
11%	Core Routers	1.2%
22%	Edge Routers	34%
15%	SAN	11%
23%	Servers	38%

Source: InStat - 2007

Mission-Critical Reliability

HTX[™] Interface = Performance Edge That PCI-Class Interconnects Cannot Deliver

- Lowest Latency, Highest Bandwidth Direct
 Connect Between CPU and Compute-Intensive Subsystems
- Removes Performance Bottlenecks in HPC Data
 Processing and Coprocessing Functions
 - No Intermediate CPU-to-Subsystem Control Logic
- Reduces Overall Power Consumption
- Complements PCI-Class Interconnects
 - Typically Co-Exist with PCI-X and PCI Express Connectors in Same MB Design

Features

8-Bit and 16-Bit HyperTransport Link Support800 MHz Max Clock Rate6.4 GB/s Bandwidth (16-bit, Aggregate)

HTX[™] Leaps Forward to HTX3[™]

Introducing HyperTransport[™] *HTX3*[™]

- >3x Bandwidth of Standard HTX Specification
- Brings HT 3.0 Performance and Architectural Latitude to HTX Connector
- Triples HT Clock Rate While Preserving Signal Integrity
 - Leverages HT 3.0 Clock Recovery "Scrambling" and "Training" Features
- Adds Power Management Features
- Adds Link-Splitting Capability
 - Allows Subsystem Connection to 2 CPUs

HTX3[™] Features Summary

Feature	HTX	HTX3	Notes
Max Clock Rate	800 MHz	2.6 GHz	12" Trace length
Max Bandwidth x Lane	1.6 GT/s	5.2 GT/s	Bi-directional
Max Bandwidth Aggregate	6.4 GB/s	20.8 GB/s	Bi-directional 16-Bit HT link
HT3 Link Splitting Support	NO	YES	HT link can be 1x 16-Bit or 2x 8-Bit for mutli-CPU support
HT3 Extended Power Management	NO	YES	LDTREQ# Signal Added to participate in x86 power states
Extended FPGA Guidelines	NO	YES	Incorporated field-proven recommendations
Full Backward Compatibility		YES	Level shifters and signal allocation

Why HyperTransport[™] *HTX3*[™]?

- FPGAs Play Key Role in Compute-Intensive Designs
- HTX3 Well Aligns with Expected FPGA Technology Progress
- FPGA Cores Expected to Support HT3.0-Class Clock Rates
 - From Bandwidth Bottlenecks to Drivers
- Power Optimization Ranks High in HPC Agenda
- HT 3.0 Has Reached Maturity and Stability
 - Design Learning Curve
 - Product Implementations
 - Market Feedback
- HT 3.0 Capability Now Safely and Stably "Connectorized"

Core Values

HTX[™] and *HTX3*[™] Connector

- Uses popular PCI e Connector
 - High-volume part, Low cost
- HT-defined signals
- Reverse-Installed vs. PCIe Slots
 - Prevents Wrong Card Insertion

HTX[™] and *HTX3*[™] Connector Mounting

Vertical Mount

 Horizontal Mount via HTX Riser

Lowest Achievable Latency

No Control Logic Penalty

Control Logic Penalty

Lowest Achievable Latency (cont.)

No 8B/10B Overhead Penalty

20% 8B/10B Fixed Overhead Penalty

Lowest Achievable Latency (cont.)

Minimized Packet Overhead

12 Byte Overhead Penalty vs. HT

HTX[™] Delivers the Extra Performance that PCI-Class Interfaces Cannot Deliver

Complements PCIe and PCI-X

Cohexists within Same System

Main Applications

HTX[™] Applications

Compute-Intensive Board Level Subsystems Requiring:

- High Bandwidth + Low Latency
- Multi-CPU Connections (HTX3)
- Advanced Power Management (HTX3)

Targeting:

- Database Analytics
- Stock Trading Acceleration
- High-Traffic Web-Based Applications
- Transaction Servers
- Streaming Media Servers
- Storage Servers
- Server Clustering and SMP
- Financial Modeling
- Communications
- Content Processing
- Security Processing
- High-Perf Real World Rendering

Product Ecosystem

Expanding *HTX*TM Products Ecosystem

Tier-1 *HTX*[™]-Enabled Systems

ProLiant DL145-G3

ProLiant DL165-G5

								1
								F

Tier-1 HTX[™]-Enabled Systems (cont.)

Tier-1 HTX[™]-Enabled Systems (cont.)

Tier-2 *HTX*[™]-Enabled Systems

SUPERMICR[®]

AS104C-8R

H8QC8 H8QC8+ H8QCE H8QCE+

AS104C-8

HTX Used Conventionally and for 4-way to 8-way CPU Expandability

HTX[™] Subsystems

Celoxica Market Data Capture, Life Sciences Accelerator

Packet Capture Technology

"Celoxica focuses on addressing some of the most challenging problems facing the finance sector, such as the exponential development of electronic trading and growth of complex derivatives trading, where the company can deliver advantage measured in microseconds."

Accelerator Card by Celoxica

Industry standard server

Lowest Latency Interface

"The HyperTransport [*HTX*[™]] bus is the lowest-latency bus available for communications between peripheral devices and a server's CPU."

Celoxica Market Data Capture, Life Sciences Accelerator

Innovative Architecture

"Celoxica's Accelerator is the first market data handler to <u>directly</u> <u>connect a network interface to a</u> <u>co-processor</u>, eliminating one of the major contributors to latency in a hardware/software coprocessing system: the peripheral bus transactions between the coprocessor and the network device."

Consistent Low Latency Regardless of Packet Size and Network Load

"Once converted to a binary representation, the network data is transferred via the HyperTransport bus directly to the CPU's memory. This transfer starts as soon as the data arrives off the wire, rather than buffering a complete packet before starting the transfer."

Celoxica Market Data Capture, Life Sciences Accelerator

FPGA-Accelerated Protocol Handling

"The protocols that are handled in the FPGA include IP, UDP, TCP and the financial message format in use, which may be FAST, FIX or a proprietary format."

"Celoxica leverages the latest FPGA technology for the co-processing. The structure of FPGAs allows the sequential tasks of parsing several protocol layers to be executed in parallel, in what is known as a pipeline. A separate pipeline is run for each network port. This means that a complex protocol stack can reliably run at wire-speed without missing a single packet."

Celoxica Market Data Capture, Life Sciences Accelerator

Constant Ultra-Low Latency

"The performance-optimized Ethernet card demonstrates a linear growth in latency with the size of packets.

The Celoxica Accelerator Card delivers constant ultra-low-latency access to network data regardless of packet size."

Celoxica Market Data Capture, Life Sciences Accelerator

Load-Independent Latency

"The Ethernet card manage to give consistent latency for larger packets, but cannot keep up with bursts of smaller packets. The steep lines for 64, 128 and 256 bytes packets show that the latency increases rapidly as the system must buffer packets. The system rapidly starts dropping packets in these cases.

The Celoxica Accelerator Card is an important component for traders who need the lowest-latency access to market data, even during spikes in message volumes."

Vulcan Dual Port 10GbE Routing Processor for Multicore Systems

Commex Vulcan HTX Dual-Port 10 Gigabit Ethernet Server Adapter answers the ever-growing demand for application performance scalability, as it provides the application with only the network traffic it needs, when needed and delivered directly to the core that handles it. The result is better utilization of CPU resources and lower power consumption

Applications

- High-Traffic Web
- Telecom
- Automated Trading
- High-End AFEs & ADCs
- Data Center Applications Requiring High-Throughput, Fast Network Access

Vulcan Dual Port 10GbE Routing Processor for Multicore Systems

Equipped with Commex Thunder™ patent-pending hardwareimplemented classification and action engine, Vulcan is capable of consistent association between CPU cores and their data streams, resulting in efficient multicore system load balancing of network traffic processing

Utilizing classification mechanisms such as pattern match (PM), Receive-Side Scaling (RSS), Smart Routing, multiple DMA channels, queues, and priority scheme, results in dramatically higher performance and reduced power consumption

- <u>Action</u>: Incoming network data classified based on format/pattern and forwarded to specific core using RX DMA channel
- <u>Benefit</u>: Network traffic processing performance scales with number of cores

Vulcan Dual Port 10GbE Routing Processor for Multicore Systems

Vulcan Dual Port 10GbE Routing Processor for Multicore Systems

- Processor Processor MEM 2 MEM 1 1 2 Router Network
- <u>Action</u>: Incoming network data classified based on priority and forwarded to specific core via QoS queue & DMA channel configured for proper priority
- <u>Benefit</u>: Multiple QoS schemes e.g. simultaneous fixed low latency and high throughput

Vulcan Dual Port 10GbE Routing Processor for Multicore Systems

- <u>Action</u>: Incoming traffic classified based on traffic type/platform load and selected traffic is re-routed back to network (content-aware bypass)
- Benefits:
- Bypass traffic overload to another server
- Bypass/drop irrelevant or "hostile" traffic
- Continue processing relevant service traffic within server throughput capability

Vulcan Dual Port 10GbE Routing Processor for Multicore Systems

Proven ability to continue streaming VoD under high request traffic VoD receives higher priority over new requests

Commex classification engine survives nearly double the request peak load for same server at nearly half the price

*HTX*TM-Friendly Subsystems (cont.)

NLS1000 Content Processor

- Layer 7 Knowledge-Based Processor Family
- Optimized Inspection of Packets Traveling through Enterprise and Carrier-Class Networks
- Enables Real-Time Packet Processing Decisions
- 10 Gbps Line Rate Operation Across Multiple Packets

Specifications

Device	Description	Throughput	Interface(s)	Pacakage
NLS1000	NLS1000 Content Processor	10 Gbps	HyperTransport	1020 FCBGA
NLS1022	NLS1022 Payload Data Processor	10 Gbps	Proprietary	529 FPBGA

Antivirus Gateways Layer 7 Switches and Routers Intrusion Detection/Prevention Systems Unified Thread Management (UTM) Appliances

(*) HTX Proto/Evaluation Vehicle Available

*HTX*TM-Friendly Subsystems (cont.)

NETLO

NLS1000 Content Processor

- HyperTransport HTX Interface
- Device Drivers
- High Speed Signature Compiler

Layer 7 Content Processing Development Platform

HTX[™]-Friendly^(*) Subsystems (cont.)

XLR Content Processor Families

(*) HTX Proto/Evaluation Vehicle Available

*HTX*TM-Friendly Subsystems (cont.)

XLR Content Processor Families

- Arizona ATX-II XLR Processor Evaluation Board
- Supports Complete XLR Processor Families
- ATX Form Factor
- Key XLR Processor Interfaces
 - DDR1, DDR2 or RLDRAM Memory
 - TCAM/NSE
 - HyperTransport *HTX*[™] Connector
 - PCI-X Connector
 - Quad Gigabit Ethernet MACs
 - Dual 10Gbps Ethernet MACs
 - Firmware, OS and Debug Tools for Complete Test Environment

LSI

HTXTM-Friendly^(*) Subsystems (cont.)

Tarari T10 Content Processor

• 100 Mbps to 10 Gbps Real Time Performance

- Flow-Through Processing
- Multi-Stream Capability
- Efficient Multi-Threading
- Cross-Packet Inspection
- No Costly SRAM Required

Powerful Data Analysis Network Security Engine

(*) HTX Proto/Evaluation Vehicle Available

LSI

*HTX*TM-Friendly Subsystems (cont.)

Tarari T10 Content Processor

		T10 TECHNOLOGY FAMILY			1
		T101xx	T102xx	Т105хх	1. 71
RegEx	Performance	2.5 Gbps	5 Gbps	10 Gbps	LS1213
	Cross packet	Hardware	Hardware	Hardware	Time
	# Complex Rules	1M	1M	1M	TECHNOL TIO
XML/	Performance	2.5 Gbps	5 Gbps	10 Gbps	CLOGY
XIM	Cross Packet	Yes	Yes	Yes	
Crypto	Performance	2.5 Gbps - AES	5 Gbps - AES	10 Gbps - AES	
	Algorithms	AES, DES, 3DES, SHA1, RSA	AES, DES, 3DES, SHA1, RSA	AES, DES, 3DES, SHA1, RSA	XML Processor
Compression/	Performance	2 Gbps	2 Gbps	2 Gbps	
Decompression	Algorithms	GZIP, ZLIB, Deflate	GZIP, ZLIB, Deflate	GZIP, ZLIB, Deflate	
	DMA	T10 Flow- Through Processing	T10 Flow- Through Processing	T10 Flow- Through Processing	Switch Cryptography Content Processing Controller (CPC)
	Technology	T10	T10	T10	
	Bus	4-lane PCIe	- 16 bit Hyper- Transport - 8-lane PCle	- 16 bit Hyper- Transport - 8-lane PCle	-stream, Flow-Through Controller I-X/PCle Hyper Transport Controller
	Power	3 W	4 W	5 W	

*HTX*TM-Friendly Subsystems (cont.)

LSI ╬

Tarari T10 Content Processor

- Tarari T10 Content Processor-Based
- 1-10 Gbps PSIX and PCRE Throughput
- 1 Trillion + Matches per Second
- Advanced RegEx Features
- Advanced XTM/RAX/XML Features

High-Performance T10 Content Processing Development Kit

HTX[™]-Friendly^(*) Subsystems (cont.)

TL1550 Virtualization Processor

- From Servers to Expandable Servers
- Virtualizes CPUs, Memory and I/O

*HTX*TM-Friendly Subsystems (cont.)

 Cache Coherence Evolution from Bus to MicroNetwork

3 LEAFSYSTEMS

HTX[™]-Friendly Subsystems (cont.)

HTX[™]-Friendly Subsystems (cont.)

Development Support

HTX[™] Development Support

HyperTransport Center of Excellence Design Support and Services

Universal Board Reference Designs

HTX™

HTX3[™]

HT and cHT Cores

Design Support Product Validation

HTX[™] Development Support (cont.)

ATERA.

HTX ™ 10GE NIC Design Kit

- Validated and Tested 10 Gigabit Ethernet Solution
- Dowloadable Free-of-Charge from HTC Web Site

•2x 10GE Ports •Stratix II FPGA

Fast Time-to-Market

Lattice

*HTX***[™] Development Support** (cont.)

HTX TM FPGA Development Board

BIOS Support

HTX[™] BIOS Support

Consortium-Defined and Standardized *HTX*[™] BIOS Specifications

Cross-Compatibility

Fast Time-to-Market

Why HTX?

Unique Technical Values

HTX[™] Provides Superior Performance and Architectural Capabilities In Line with HPC Market Expectations

HTX^M Complements PCI Express

With its Unique Architectural and Performance Edge over General Purpose Interconnects, HTX is an Ideal Complement to PCI-Class Slot Connector Interfaces

HTX[™] Business Values

HTX[™] is a Competitive Differentiator for High-Performance Total Solution Vendors

- Negligible BOM Cost
 - Leverages PCIe Economy of Scale
- System Flexibility
 - Single MB Serves Multiple Markets

Growing HTX Subsystem Portfolio

- Coprocessors, Accelerated 10GE, ccNUMA Cluster Controllers, Content Processors, Others Released Soon
- Up-Selling Enabler
 - Delivers Greater End-User Value

Can Interconnect Technologies Meet the HPC Challenge?

HyperTransport[™] Can With Strong Core Values

- Architectural Simplicity
- Protocol Efficiency
- Full Scalability
- Low Design Cost
- Extensive Support
- Vast Product Ecosystem

With HyperTransport[™] The Technology Industry Wins

Tangibility

Chosen by Industry Leaders Massive Market Penetration 60M+ HT Systems Shipped

Investment Preservation

100% Specs Legacy Compatibility Smooth Product Migration Future-Ready