

Laboratory Exercise 9
A Simple Processor

Figure 1 shows a digital system that contains a number of 16-bit registers, a multiplexer,

an adder/subtracter unit, a counter, and a control unit. Data is input to this system via the 16-bit

DIN input. This data can be loaded through the 16-bit wide multiplexer into the various

registers, such as R0, . . . , R7 and A. The multiplexer also allows data to be transferred from

one register to another. The multiplexer’s output wires are called a bus in the figure because

this term is often used for wiring that allows data to be transferred from one location in a

system to another.

Addition or subtraction is performed by using the multiplexer to first place one 16-bit

number onto the bus wires and loading this number into register A. Once this is done, a

second 16-bit number is placed onto the bus, the adder/subtracter unit performs the required

operation, and the result is loaded into register G. The data in G can then be transferred to one

of the other registers as required.

Figure 1.A digital system.

1

The system can perform different operations in each clock cycle, as governed by the

control unit. This unit determines when particular data is placed onto the bus wires and it

controls which of the registers is to be loaded with this data. For example, if the control unit

asserts the signals R0 out and A in, then the multiplexer will place the contents of register R0

onto the bus and this data will be loaded by the next active clock edge into register A.

A system like this is often called a processor. It executes operations specified in the form

of instructions. Table 1 lists the instructions that the processor has to support for this exercise.

The left column shows the name of an instruction and its operand. The meaning of the syntax

RX ← [RY] is that the contents of register RY are loaded into register RX. The mv (move)

instruction allows data to be copied from one register to another. For the mvi (move immediate)

instruction the expression RX ← D indicates that the 16-bit constant D is loaded into register

RX.

Table 1.Instructions performed in the processor.

Each instruction can be encoded and stored in the IR register using the 9-bit format

IIIXXXYYY, where III represents the instruction, XXX gives the RX register, and YYY gives the

RY register. Although only two bits are needed to encode our four instructions, we are using

three bits because other instructions will be added to the processor in later parts of this

exercise. Hence IR has to be connected to nine bits of the 16-bit DIN input, as indicated in

Figure 1. For the mvi instruction the YYY field has no meaning, and the immediate data #D has

to be supplied on the 16-bit DIN input after the mvi instruction word is stored into IR.

Some instructions, such as an addition or subtraction, take more than one clock cycle to

complete, because multiple transfers have to be performed across the bus. The control unit

uses the two-bit counter shown in Figure 1 to enable it to “step through” such instructions. The

processor starts executing the instruction on the DIN input when the Run signal is asserted

and the processor asserts the Done output when the instruction is finished. Table 2 indicates

the control signals that can be asserted in each time step to implement the instructions in Table

1. Note that the only control signal asserted in time step 0 is IR in, so this time step is not

shown in the table.

2

Table 2.Control signals asserted in each instruction/time step.

Part I

Design and implement the processor shown in Figure 1 using Verilog code as follows:

1. Create a new Quartus II project for this exercise.

2. Generate the required Verilog file, include it in your project, and compile the circuit. A

suggested skeleton of the Verilog code is shown in Figure 2a, and some sub-circuit

modules that can be used in this code appear in Figure 2b.

3. Use functional simulation to verify that your code is correct. An example of the output

produced by a functional simulation for a correctly-designed circuit is given in Figure 3. It

shows the value (2000)16 being loaded into IR from DIN at time 30 ns. This pattern

represents the instruction mvi R0,#D, where the value D = 5 is loaded into R0 on the clock

edge at 50 ns. The simulation then shows the instruction mv R1,R0 at 90 ns, add R0,R1 at

110 ns, and sub R0,R0 at 190 ns. Note that the simulation output shows DIN as a 4-digit

hexadecimal number, and it shows the contents of IR as a 3-digit octal number.

4. Create a new Quartus II project which will be used for implementation of the circuit on the

Altera DE2-115 board. This project should consist of a top-level module that contains the

appropriate input and output ports for the Altera board. Instantiate your processor in this

top-level module. Use switches SW15−0 to drive the DIN input port of the processor and

use switch SW17 to drive the Run input. Also, use push button KEY 0 for Resetn and

KEY1 for Clock. Connect the processor bus wires to LEDR15−0 and connect the Done

signal to LEDR17.

5. Add to your project the necessary pin assignments for the DE2-115 board. Compile the

circuit and download it into the FPGA chip.

6. Test the functionality of your design by toggling the switches and observing the LEDs.

Since the processor’s clock input is controlled by a push button switch, it is easy to step

through the execution of instructions and observe the behavior of the circuit.

3

module proc (DIN, Resetn, Clock, Run, Done, BusWires);

input [15:0] DIN;

input Resetn, Clock, Run;

output Done;

output [15:0] BusWires;

. . . declare variables

wire Clear = . . .

upcount Tstep (Clear, Clock, Tstep_Q);

assign I = IR[1:3];

dec3to8 decX (IR[4:6], 1’b1, Xreg);

dec3to8 decY (IR[7:9], 1’b1, Yreg);

always @(Tstep_Q or I or Xreg or Yreg)

begin

. . . specify initial values

case (Tstep_Q)

2’b00: // store DIN in IR in time step 0

begin

IRin = 1’b1;

end

2’b01: //define signals in time step 1

case (I)

. . .

endcase

2’b10: //define signals in time step 2

case (I)

. . .

endcase

2’b11: //define signals in time step 3

case (I)

. . .

endcase

endcase

end

regn reg_0 (BusWires, Rin[0], Clock, R0);

. . . instantiate other registers and the adder/subtracter unit

. . . define the bus

endmodule

Figure 2a.Skeleton Verilog code for the processor.

4

module upcount(Clear, Clock, Q);

input Clear, Clock;

output [1:0] Q;

reg [1:0] Q;

always @(posedge Clock)

if (Clear)

Q <= 2’b0;

else

Q <= Q + 1’b1;

endmodule

module dec3to8(W, En, Y);

input [2:0] W;

input En;

output [0:7] Y;

reg [0:7] Y;

always @(W or En)

begin

if (En == 1)

case (W)

3’b000: Y = 8’b10000000;

3’b001: Y = 8’b01000000;

3’b010: Y = 8’b00100000;

3’b011: Y = 8’b00010000;

3’b100: Y = 8’b00001000;

3’b101: Y = 8’b00000100;

3’b110: Y = 8’b00000010;

3’b111: Y = 8’b00000001;

endcase

else

Y = 8’b00000000;

end

endmodule

module regn(R, Rin, Clock, Q);

parameter n = 16;

input [n-1:0] R;

input Rin, Clock;

output [n-1:0] Q;

reg [n-1:0] Q;

5

always @(posedge Clock)

if (Rin)

Q <= R;

endmodule

Figure 2b.Subcircuit modules for use in the processor.

Part II

In this part you are to design the circuit depicted in Figure 3, in which a memory module

and counter are connected to the processor from Part I. The counter is used to read the

contents of successive addresses in the memory, and this data is provided to the processor as

a stream of instructions. To simplify the design and testing of this circuit we have used

separate clock signals, PClock and MClock, for the processor and memory.

Figure 3.Connecting the processor to a memory and counter.

1. Create a new Quartus II project which will be used to test your circuit.

2. Generate a top-level Verilog file that instantiates the processor, memory, and counter. Use

the Quartus II MegaWizard Plug-In Manager tool to create the memory module from the

Altera library of parameterized modules (LPMs). The correct LPM is found under the

storage category and is called ALTSYNCRAM. Follow the instructions provided by the

wizard to create a memory that has one 16-bit wide read data port and is 32 words deep.

The first screen of the wizard is shown in Figure 4. Since this memory has only a read port,

and no write port, it is called a synchronous read-only memory (synchronous ROM). Note

that the memory includes a register for synchronously loading addresses. This register is

required due to the design of the memory resources on the Cyclone II FPGA; account for

the clocking of this address register in your design. To place processor instructions into the

memory, you need to specify initial values that should be stored in the memory once your

circuit has been programmed into the FPGA chip. This can be done by telling the wizard to

initialize the memory using the contents of a memory initialization file (MIF). The

6

appropriate screen of the MegaWizard Plug-In Manager tool is illustrated in Figure 5. We

have specified a file named inst_mem.mif, which then has to be created in the directory

that contains the Quartus II project. Use the Quartus II on-line Help to learn about the

format of the MIF file and create a file that has enough processor instructions to test your

circuit.

3. Use functional simulation to test the circuit. Ensure that data is read properly out of the

ROM and executed by the processor.

4. Make sure your project includes the necessary port names and pin location assignments

to implement the circuit on the DE2-115 board.

5. Use switch SW17 to drive the processor’s Run input, use KEY 0 for Resetn, use KEY1 for

MClock, and use KEY2 for PClock. Connect the processor bus wires to LEDR15−0

 and connect the Done signal to LEDR17.

6. Compile the circuit and download it into the FPGA chip.

7. Test the functionality of your design by toggling the switches and observing the LEDs.

Since the circuit’s clock inputs are controlled by push button switches, it is easy to step

through the execution of instructions and observe the behavior of the circuit.

7

.

Figure 4.ALTSYNCRAM configuration.

8

Figure 5.Specifying a memory initialization file (MIF).

9

Enhanced Processor

It is possible to enhance the capability of the processor so that the counter in Figure 3 is no

longer needed, and so that the processor has the ability to perform read and write operations

using memory or other devices. These enhancements involve adding new instructions to the

processor and the programs that the processor executes are therefore more complex. Since

these steps are beyond the scope of some logic design courses, they are described in a

subsequent lab exercise available from Altera.

Copyright ○c 2010 Altera Corporation.

10

