Laboratory Exercise 1
A Simple Computer System

The purpose of this exercise is to learn how tater@and use a simple computer system. The system
will consist of an Altera Nios Il processor and application program. We will use the Quartus Il and
SOPC Builder software to generate the hardwareqgoodf the system. We will use thdtera Monitor
Program software to compile, load and run the applicapoogram.

Part |

In this exercise, you will use the SOPC Buildecteate the system in Figure 1, which consists of a

Nios Il/e processor and a memory block. The Niges pkocessor processes data. The memory bloclsstore
instructions and data.

System Corterts | System Generation

Companent Library Target Clock Settings

Project | Device Family| Cyclone Iv E vl | Mame Source MHz
I New component... —_— clk Etorral 20,0

Library

B-dovalon Yerification Suite ‘
[-Bridges and Adapters

[#-Interface Protocols
#-Legacy Components Usze
[Memoaries and Memary Controller i

[F-Peripherals

Conn... Module Mame Description Clock Base End |

i
5 |nstruct|0n _master |Ava\0n Memory Mapped Master clk =Tl
"?'I"PLL data_master Avalon Memory Mapped Master IRQ 0 ‘
& Fracessor Rdditions L ftag_debug_moduls Avalon Memory Mapped Slave 0z00010800 |0z00010 — |
g Erocassars, =] onchlp _memory2 0 |[On-Chip Memary (RAM or ROM) |
515 i Avslon Memory Mapped Slave clk 0=00008000 |0z0000f ‘
o ——— = =]]‘tag uart 0 JTAG UART =
4] - avalon tan slave l2vsion Memary Manned Slave ok 0200011000 UxUUUl)l ":
ey, it [Add.. [Remove] [Edit... = — [v] [=] [Address Map...] [Fiters...] Fitter: Defautt

@ Info: Mo errors or warnings

4 Prav [Mext [] [Generate]

Figure 1. The Nios Il system in SOPC Builder.

Implement the system in Figure 1 as follows:

1. Create a new Quartus Il project. Select CycloheP4CE115F29C7 as the target chip, which is the
FPGA chip on the Altera DE2_115 board.

2. Use the SOPC Builder to create a system nanesd system, which includes the following
components:

« Nios ll/e processor with JTAG Debug Module Letel
* On-chip memory - RAM mode and 32 Kbytes in sizéhwidth of 32 bits

3. From theSystem menu, selecAuto-Assign Base Addresses. You should now have the system
shown in Figure 1.

4. Generate the system, exit the SOPC Builder et to the Quartus Il software.

5. Instantiate the generated Nios Il system wighiterilog/\VHDL module.

6. Assign the pin connections:

e clk -PIN_Y2 (This is a 50 MHz clock)
 reset n PIN M 23 (This is the pushbutton switch KEYO0)

7. Compile the Quartus Il project.

8. Program and configure the Cyclone IV FPGA onDE2_115 board to implement the generated
system. To use the system, we have to give theepsoc a program to execute, which we will do in
Part Il of this exercise.

Part 11

In a digital computer all data is represented dags of 1s and 0s. The Nios Il assembly-language
program in Figure 2 examines a word of data andrdetes the maximum number of consecutive 1s in
that word. For example, the word 0x937a (100100110010) has a maximum of 4 consecutive 1s. The
code in the figure calculates the number of consexds for the data 0x90abcedf.

Jdnclude “nios macros.s”

Aext
.equ TEST NUM. 0x90abedef /* The number to be tested */

.global start
gtart:

movia 17. TEST NUM /* Tnitialize 77 with the number to be tested */

mov 4 17 * Copy the number to 74 */
STRING COUNTER:
mov 12 10 {* Initialize the counter to zero */

STRING COUNTER LOOP: /* Loop until the number has no more ones */
beq r4. r0. END STRING COUNTER

srli 5. 4.1 /* Calculate the number for ones by shifting the */
and 4, 4. 15 /* number by 1 and anding the result with itself. */
addi 2. 121 /* Increment the counter. */

br STRING COUNTEER LOOP

END STRING COUNTER:

mov rl6, 12 * Store the result into r16 */
END:

br END /* Wait here once the program has completed */
.end

Figure 2. Assembly-language code that counts cotisemnes.

Assemble and execute the program in Figure 2 &safsi

1. Open the Altera Monitor Program and configurdoituse the system created in Part | and the
application program in Figure 2.

2. Compile and load the program.

3. Single step through the program. Watch how tigructions change the data in the processor’s
registers. Notice that when the end of the prognambeen reached, a result of 4 is in the regibéer

4. Set the Program Counter to 0x00000008. This alliiw us to execute the program again (in step 6
below), while skipping the first two instructions.

5. This time add a breakpoint at address 0x28habthe program will automatically stop executiig a
the end of the program.

6. Set register r7 to Oxabcdef90. How many consexdss are there in this number? Rerun the program
by pressing=3 (Continue) to see if you are correct.

Part 111

Instructions are also represented as strings ahiis0s, similar to data. In this part, we will exaen
how instructions are formed.
Perform the following:

1. Reload your program (by selecting Actions > Daademove the memory edits done in Part Il. Then,
execute the program once, stopping at the end.

2. Use the Nios Il Processor Reference Handboolchnil available on Altera’s website, to determine
the machine instruction representation of the Wilhg assembly language instructioasd r3, r7,
rl6 andsrar7,r7,r3.

3. Use the Altera Monitor Program’s memory-fill fitronality to place these two instructions at meynor
locations 0 and 4. We should note that you will s&@ these updated values in the disassembly view
of the Altera Monitor Program.

4. Set the Program Counter to 0x00000000. Whathaitipen this time? To verify your answer, single
step the instructions you placed at addresses Gl dtalsee their effect) and then execute theakest

the program.

5. Using the memory-fill feature change the lastnich instruction to point to the start of the peogr
instead of to itself. This will eliminate the netedmanually edit the Program Counter.

6. Rerun the program until the number of 1s andltdia being tested remain constant.

7. Now repeat steps 1 to 6, but use the instruaibm7, r7, r3 instead ofsrar7, r7, r3. What is the
difference?

Part 1V

In most application programs there are portionthefcode that will be executed multiple times from
various locations inside a program. Such portiohsoale can be realized in the form of subroutirfes.
subroutine can be run from anywhere in the progognusing a call instruction. The program execution
returns to the call location after the subroutire finished executing, if the subroutine ends ithet
instruction. We will now create a subroutine tocoddte the number of consecutive 1s, and use it to
calculate the number of consecutive 1s and the puwftconsecutive 0s in a given data word.

Start with the program for Part Il and edit it adws:

1. Take the code which calculates the number o$eutive 1s and make it into a subroutine. Have the
subroutine use register r4 to receive the inpud dat register r2 for outputting the result.

2. Call the newly created subroutine twice, oncedlculate the number of consecutive 1s and once to
calculate the number of consecutive 0s. To caleutz number of consecutive Os the input data must
be inverted before running the subroutine.

3. Write the number of consecutive 1s into regisi®r and the number of consecutive Os into register
ri7.

Part V

One might be interested in the longest string wfrahting 1s and 0s. For example, the binary number
101101010001 has a string of 6 alternating 1s asda® highlighted here: 1001010001. Use the
subroutine created in Part IV to count the numbezomsecutive bits of alternating 1s and 0s. Witite
result to register r18. Assume that the two ensl &din be part of the longest string. For examl&Dhas
4 consecutive bits of alternating 1s and 0s.

(Hint: What happens when the number is shiftedht right or left by 1 and XORed with the original
number.)

Part VI

Perform the previous parts of this exercise ushgy € programming language. Create a function
called count ones, which counts the number of canis® 1s. Search through the disassembled code to
find both the main and count ones subroutines.yDid write your assembly code in a similar way? What
registers did the compiler use and why?

Copyright © 2010 Altera Corporation.

