
 1

 

 

 

 

 

 

Laboratory Exercise 8 
Memory Blocks 

 

 

In computer systems it is necessary to provide a substantial amount of memory. If a 

system is implemented using FPGA technology it is possible to provide some amount of 

memory by using the memory resources that exist in the FPGA device. If additional memory is 

needed, it has to be implemented by connecting external memory chips to the FPGA. In this 

exercise we will examine the general issues involved in implementing such memory. 

A diagram of the random access memory (RAM) module that we will implement is shown 

in Figure 1a. It contains 32 eight-bit words (rows), which are accessed using a five-bit address 

port, an eight-bit data port, and a write control input. We will consider two different ways of 

implementing this memory: using dedicated memory blocks in an FPGA device, and using a 

separate memory chip. 

The Cyclone IV EP4CE115 FPGA that is included on the DE2-115 board provides 

dedicated memory resources called M9K blocks. Each M9K block contains 9216 memory bits, 

which can be configured to implement memories of various sizes. A common term used to 

specify the size of a memory is its aspect ratio, which gives the depth in words and the width in 

bits (depth x width). Some aspect ratios supported by the M9K block are 8K x 1, 4K x 2, 2K x 4, 

1K x 8, 1K x 9, 512 x 16, and 512 x 18. We will utilize the 1K x 8 mode in this exercise, using 

only the first 32 words in the memory. We should also mention that many other modes of 

operation are supported in an M9K block, but we will not discuss them here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2

 

 

Figure 1. A 32 x 16 RAM module. 

 

There are two important features of the M9K block that have to be mentioned. First, it 

includes registers that can be used to synchronize all of the input and output signals to a clock 

input. Second, the M9K block has separate ports for data being written to the memory and data 

being read from the memory. A requirement for using the M9K block is that either its input ports, 

output port, or both, have to be synchronized to a clock input. Given these requirements, we 

will implement the modified 32 x 16 RAM module shown in Figure 1b. It includes registers for 

the address, data input, and write ports, and uses a separate unregistered data output port. 

 

Part I 

 

Commonly used logic structures, such as adders, registers, counters and memories, can 

be implemented in an FPGA chip by using LPM modules from the Quartus II Library of 

Parameterized Modules. In this exercise you are  to use the RAM:1-PORT LPM to implement 

the memory module in Figure 1b. 

1. Create a new Quartus II project to implement the memory module. Select as the target 

chip the Cyclone IV EP4CE115F29C, which is the FPGA chip on the Altera DE2-115 

board. 

2. You can learn how the MegaWizard Plug-in Manager is used to generate a desired LPM 

module by reading the tutorial Using Library Modules in Verilog Designs. This tutorial is  



 3

 

provided in the University Program section of Altera’s web site. In the first screen of the  

MegaWizard Plug-in Manager choose the RAM:1-PORT LPM, which is found under the 

Memory Compiler category. As indicated in Figure 2, select Verilog HDL as the type of 

output file to create, and give the file the name ramlpm.v. On the next page of the 

Wizard specify a memory size of 32 eight-bit words, and select M9K as the type of RAM 

block. Advance to the subsequent page and accept the default settings to use a single 

clock for the RAM’s registers, and then advance again to the page shown in Figure 3. 

On this page deselect the setting called Read output port(s) under the category Which 

ports should be registered?. This setting creates a RAM module that matches the 

structure in Figure 1b, with registered input ports and unregistered output ports. Accept 

defaults for the rest of the settings in the Wizard, and then instantiate in your top-level 

Verilog file the module generated in ramlpm.v. Include appropriate input and output 

signals in your Verilog code for the memory ports given in Figure 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Choosing the RAM:1-PORT LPM. 

 

 

 

 

 

 



 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Configuring input and output ports on the RAM:1-PORT LPM. 

 

3. Compile the circuit. Observe in the Compilation Report that the Quartus II Compiler uses 

256 bits in one of the M9K memory blocks to implement the RAM circuit. 

4. Simulate the behavior of your circuit and ensure that you can read and write data in the 

memory. 

 

Part II 

 

Now, we want to realize the memory circuit in the FPGA on the DE2-115 board, and use 

toggle switches to load some data into the created memory. We also want to display the 

contents of the RAM on the 7-segment displays. 

1. Make a new Quartus II project which will be used to implement the desired circuit on the 

DE2-115 board. 

2. Create another Verilog file that instantiates the ramlpm module and that includes the 

required input and output pins on the DE2-115 board. Use toggle switches SW 7−0 to 

input a byte of data into the RAM location identified by a 5-bit address specified with 

toggle switches SW15−11. Use SW17 as the Write signal and use KEY0 as the Clock 

input. Display the value of the Write signal on LEDG 0. Show the address value on the 

7-segment displays HEX7 and HEX6, show the data being input to the memory on HEX5  

 



 5

 

and HEX4, and show the data read out of the memory on HEX1 and HEX0. 

3. Test your circuit and make sure that all 32 locations can be loaded properly. 

 

Part III 

 

Instead of directly instantiating the LPM module, we can implement the required memory 

by specifying its structure in the Verilog code. In a Verilog-specified design it is possible to 

define the memory as a multidimensional array. A 32 x 8 array, which has 32 words with 8 bits 

per word, can be declared by the statement reg [7:0] memory array [31:0]; 

In the Cyclone IV FPGA, such an array can be implemented either by using the flip-flops 

that each logic element contains or, more efficiently, by using the M9K blocks. There are two 

ways of ensuring that the M9K blocks will be used. One is to use an LPM module from the 

Library of Parameterized Modules, as we saw in Part I. The other is to define the memory 

requirement by using a suitable style of Verilog code from which the Quartus II compiler can 

infer that a memory block should be used. Quartus II Help shows how this may be done with 

examples of Verilog code (search in the Help for “Inferred memory”). 

Perform the following steps: 

1. Create a new project which will be used to implement the desired circuit on the DE2-115 

board. 

2. Write a Verilog file that provides the necessary functionality, including the ability to load 

the RAM and read its contents as done in Part II. 

3. Assign the pins on the FPGA to connect to the switches and the 7-segment displays. 

4. Compile the circuit and download it into the FPGA chip. 

5. Test the functionality of your design by applying some inputs and observing the output. 

Describe any differences you observe in comparison to the circuit from Part II. 

 

Part IV 

 

The DE2-115 board includes an SRAM chip, called IS61WV102416BLL-10, which is a 

static RAM having a capacity of 2M 16-bit words. The SRAM interface consists of an 20-bit 

address port, A 19−0, and a 16-bit bidirectional data port, I/O15−0. It also has several control 

inputs, CE, OE, W E, UB, and LB, which are described in Table 1. 

 

Name Purpose 

CE# Chip enable−asserted low during all SRAM operations 

OE# Output enable−can be asserted low during only read operations, or during all 

operations 

WE# Write enable−asserted low during a write operation 

UB# Upper byte−asserted low to read or write the upper byte of an address 

LB# Lower byte−asserted low to read or write the lower byte of an address 

Table 1. SRAM control inputs. 

 

 



 6

The operation of the IS61WV102416BLL chip is described in its data sheet, which can 

obtained from the DE2 -115 System CD that is included with the DE2-115 board, or by 

performing an Internet search. The data sheet describes a number of modes of operation of 

the memory and lists many timing parameters related to its use. For the purposes of this 

exercise a simple operating mode is to always assert (set to 0) the control inputs CE, OE, UB, 

and LB, and then to control reading and writing of the memory by using only the WE input. 

Simplified timing diagrams that correspond to this mode are given in Figure 4. Part (a) shows a 

read cycle, which begins when a valid address appears on A19−0 and the W E input is not 

asserted. The memory places valid data on the I/O15−0 port after the address access delay, 

tAA. When the read cycle ends because of a change in the address value, the output data 

remains valid for the output hold time, t OHA 

 
Figure 4. SRAM read and write cycles 

 

Figure 4b gives the timing for a write cycle. It begins when WE is set to 0, and it ends 

when W E is set back to 1. The address has to be valid for the address setup time, tAW, and 

the data to be written has to be valid for the data setup time, tSD, before the rising edge of W E. 

Table 2 lists the minimum and maximum values of all timing parameters shown in Figure 4. 

 

 



 7

Parameter Min Max 

tAA − 10 ns 

tOHA 2.5 ns − 

tAW 8 ns − 

tSD 6 ns − 

tHA 0 − 

tSA 0 − 

tHD 0 − 

 

Table 2. SRAM timing parameter values 

 

You are to realize the 32 x 8 memory in Figure 1a by using the SRAM chip. It is a good 

approach to include in your design the registers shown in Figure 1b, by implementing these 

registers in the FPGA chip. Be careful to implement properly the bidirectional data port that 

connects to the memory. 

1.Create a new Quartus II project for your circuit. Write a Verilog file that provides the 

necessary functionality, including the ability to load the memory and read its contents. 

Use the same switches, LEDs, and 7-segment displays on the DE2-115 board as in Parts 

II and III, and use the SRAM pin names shown in Table 3 to interface your circuit to the 

IS61WV102416BLL chip (the SRAM pin names are also given in the DE2-115 User 

Manual). Note that you will not use all of the address and data ports on the 

IS61WV102416BLL chip for your 32 x 8 memory; connect the unneeded ports to 0 in your 

Verilog module. 

SRAM port name DE2-115 pin name 

A19−0 SRAM ADDR19−0 

I/O15−0 SRAM DQ15−0 

CE# SRAM CE N 

OE# SRAM OE N 

WE# SRAM WE N 

UB# SRAM UB N 

LB# SRAM LB N 

Table 3. DE2-115 pin names for the SRAM chip. 

 

2. Compile the circuit and download it into the FPGA chip. 

3. Test the functionality of your design by reading and writing values to several different 

memory locations. 

 

Part V 

 

The SRAM block in Figure 1 has a single port that provides the address for both read and 

write operations. For this part you will create a different type of memory module, in which there 

is one port for supplying the address for a read operation, and a separate port that gives the 

address for a write operation. Perform the following steps. 

 



 8

 

1. Create a new Quartus II project for your circuit. To generate the desired memory module 

open the Mega-Wizard Plug-in Manager and select the RAM:2-PORT LPM in the 

Memory Compiler category. On Page 1 of the Wizard choose the setting With one read 

port and one write port in the category called How will you be using the dual port ram?. 

Advance through Pages 2 to 5 and make the same choices as in Part II. On Page 7 

choose the setting I don’t care in the category Mixed Port Read-During-Write for Single 

Input Clock RAM. This setting specifies that it does not matter whether the memory 

outputs the new data being written, or the old data previously stored, in the case that 

the write and read addresses are the same. 

Page 8 of the Wizard is displayed in Figure 5. It makes use of a feature that allows the 

memory module to be loaded with initial data when the circuit is programmed into the 

FPGA chip. As shown in the figure, choose the setting Yes, use this file for the memory 

content data, and specify the filename ramlpm.mif. 

To learn about the format of a memory initialization file (MIF), see the Quartus II Help. 

You will need to create this file and specify some data values to be stored in the 

memory. Finish the Wizard and then examine the generated memory module in the file 

ramlpm.v. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Specifying a memory initialization file(MIF). 

 

2. Write a Verilog file that instantiates your dual-port memory. To see the RAM contents, add 

to your design a capability to display the content of each byte (in hexadecimal format) on 

the 7-segment displays HEX1 and HEX0. Scroll through the memory locations by 

displaying each byte for about one second. As each byte is being displayed, show its  

 



 9

address (in hex format) on the 7-segment displays HEX3 and HEX2. Use the 50 MHz  

 

clock, OSC_50[0], on the DE2-115 board, and use KEY 0 as a reset input. For the write 

address and corresponding data use the same switches, LEDs, and 7-segment displays 

as in the previous parts of this exercise. Make sure that you properly synchronize the 

toggle switch inputs to the 50 MHz clock signal. 

3. Test your circuit and verify that the initial contents of the memory match your ramlpm.mif 

file. Make sure that you can independently write data to any address by using the toggle 

switches. 

 

Part VI 

 

The dual-port memory created in Part V allows simultaneous read and write operations to 

occur, because it has two address ports. In this part of the exercise you should create a similar 

capability, but using a single-port RAM. Since there will be only one address port you will need 

to use multiplexing to select either a read or write address at any specific time. Perform the 

following steps. 

 

1. Create a new Quartus II project for your circuit, and use the MegaWizard Plug-in 

Manager to again create a single-port version of the altsyncram LPM. For Pages 1 to 6 

of the Wizard use the same settings as in Part I. On Page 6, shown in Figure 6, specify 

the ramlpm.mif file as you did in Part V, but also make the setting Allow In-System 

Memory Content Editor to capture and update content independently of the system 

clock. This option allows you to use a feature of the Quartus II CAD system called the 

In-System Memory Content Editor to view and manipulate the contents of the created 

RAM module. When using this tool you can optionally specify a four-character ‘Instance 

ID’ that serves as a name for the memory; in Figure 7 we gave the RAM module the 

name 32x8. Complete the final steps in the Wizard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Configuring RAM:1-PORT for use with the In-System Memory Content Editor. 

 

2. Write a Verilog file that instantiates your memory module. Include in your design the 

ability to scroll through the memory locations as in Part V. Use the same switches, 

LEDs, and 7-segment displays as you did previously. 

3. Before you can use the In-System Memory Content Editor tool, one additional setting 

has to be made. In the Quartus II software select Assignments > Settings to open the 

window in Figure 7, and then open the item called Default Parameters under 

Analysis and Synthesis Settings. As shown in the figure, type the parameter name 

CYCLONEIV SAFE WRITE and assign the value RESTRUCTURE. This parameter 

allows the Quartus II synthesis tools to modify the single-port RAM as needed to 

allow reading and writing of the memory by the In-System Memory Content Editor 

tool. Click OK to exit from the Settings window. 

 

 

 

 

 

 

 

 

 

 

 



 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Setting the CYCLONEIV SAFE WRITE parameter. 

 

4. Compile your code and download the circuit onto the DE2-115 board. Test the circuit’s 

operation and ensure that read and write operations work properly. Describe any 

differences you observe from the behavior of the circuit in Part V. 

5. Select Tools > In-System Memory Content Editor, which opens the window in Figure 8. 

To specify the connection to your DE2-115 board click on the Setup button on the right 

side of the screen. In the window in Figure 9 select the USB-Blaster hardware, and then 

close the Hardware Setup dialog. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 12 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The In-System Memory Content Editor window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The Hardware Setup window. 

 

Instructions for using the In-System Memory Content Editor tool can be found in the 

Quartus II Help. A simple operation is to right-click on the 32x8 memory module, as indicated 

in Figure 10, and select Read Data from In-System Memory. This action causes the contents 

of the memory to be displayed in the bottom part of the window. You can then edit any of the 

displayed values by typing over them. To actually write the new value to the RAM, right click 

again on the 32x8 memory module and select Write All Modified Words to In-System Memory. 

Experiment by changing some memory values and observing that the data is properly 

displayed both on the 7-segment displays on the DE2-115 board and in the In-System Memory 

Content Editor window. 

 

 

 

 

 

 

 



 13 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Using the In-System Memory Content Editor tool. 

 

Part VII 

 

For this part you are to modify your circuit from Part VI (and Part IV) to use the 

IS61WV102416BLL SRAM chip instead of an M9K block. Create a Quartus II project for the 

new design, compile it, download it onto the DE2-115 boards, and test the circuit. In Part VI 

you used a memory initialization file to specify the initial contents of the 32 x 8 RAM block, and 

you used the In-System Memory Content Editor tool to read and modify this data. This 

approach can be used only for the memory resources inside the FPGA chip. To perform 

equivalent operations using the external SRAM chip you can use a special capability of the 

DE2-115 board called the DE2-115 Control Panel. Chapter 3 of the DE2-115 User Manual 

shows how to use this tool. The procedure involves programming the FPGA with a special 

circuit that communicates with the Control Panel software application, which is illustrated in 

Figure 11, and using this setup to load data into the SRAM chip. Subsequently, you can 

reprogram the FPGA with your own circuit, which will then have access to the data stored in 

the SRAM chip (reprogramming the FPGA has no effect on the external memory). Experiment 

with this capability and ensure that the results of read and write operations to the SRAM chip 

can be observed both in the your circuit and in the DE2-115 Control Panel software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The DE2-115 Control Panel software. 

 

 

 

 

Copyright ○c  2010 Altera Corporation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


