Introduction to the Altera SOPC Builder
Using VHDL Design

This tutorial presents an introduction to Altera’s SOPC Builder software, which is used to
implement a system that uses the Nios Il processor on an Altera FPGA device. The system
development flow is illustrated by giving step-by-step instructions for using the SOPC Builder
in conjunction with the Quartus Il 9.1 software to implement a simple system.

The last step in the development process involves configuring the designed circuit in an
actual FPGA device, and running an application program. To show how this is done, it is
assumed that the user has access to the Altera DE2-115 Development and Education board
connected to a computer that has Quartus Il and Nios Il software installed.

The screen captures in the tutorial were obtained using the Quartus Il version 9.1; if other
versions of the software are used, some of the images may be slightly different.

Contents:

Nios Il System

Altera’s SOPC Builder

Integration of the Nios Il System into a Quartus Il Project
Running the Application Program

Altera’s Nios Il is a soft processor, defined in a hardware description language, which can
be implemented in Altera’s FPGA devices by using the Quartus Il CAD system. To implement a
useful system it is necessary to add other functional units such as memories, input/output
interfaces, timers, and communications interfaces.

To facilitate the implementation of such systems. It is useful to have computer aided
design (CAD) software for implementing a system on a programmable chip (SOPC). Altera’s
SOPC Builder is the software needed for this task.

This tutorial provides a basic introduction to Altera’s SOPC Builder, which will allow the
reader to quickly implement a simple Nios Il system on the Altera DE2-115 board. For a fuller
treatment of the SOPC Builder, the reader can consult the Nios Il Hardware Development
Tutorial. A complete description of the SOPC Builder can be found in the Quartus Il Handbook
Volume 4: SOPC Builder. These documents are available on the Altera web site.

1 Nios Il System

A Nios Il system can be implemented on the DE2-115 board as shown in Figure 1.

Host computer

USB-Blaster
interface
e Chr Cyclone IV
= JTAG Debug A LS5 FPGA chi
Nios Il processor Madile interface sy
Avalon switch fabric
3 Flash y ol 1/
On-chip SRAM SORAN Parallel 1O Serial 'O
memory interface memor v
nterface mterface mterface interface
SRAM SDRAM Flash Parallel Serial
chi Chip x 2 ety Ve pent Vopan
P px< chip lines lines

Figure 1.A Nios Il system implemented on the DE2-115 board.

The Nios Il processor and the interfaces needed to connect to other chips on the DE2-115
board are implemented in the Cyclone IV FPGA chip. These components are interconnected
by means of the interconnection network called the Avalon Switch Fabric. The memory blocks
in the Cyclone IV device can be used to provide an on-chip memory for the Nios Il processor.
The SRAM, SDRAM and Flash memory chips on the DE2-115 board are accessed through the
appropriate interfaces. Parallel and serial input/output interfaces provide typical I/O ports used
in computer systems. A special JTAG UART interface is used to connect to the circuitry that
provides a Universal Serial Bus (USB) link to the host computer to which the DE2-115 board is
connected. This circuitry and the associated software is called the USB-Blaster. Another
module, called the JTAG Debug module, is provided to allow the host computer to control the
Nios Il system. It makes it possible to perform operations such as downloading programs into
memory, starting and stopping execution, setting breakpoints, and collecting real-time
execution trace data.

Since all parts of the Nios Il system implemented on the FPGA chip are defined by using a
hardware description language, a knowledgeable user could write such code to implement any
part of the system. This would be an onerous and time consuming task. Instead, one can use
the SOPC Builder to implement a desired system simply by choosing the required components
and specifying the parameters needed to make each component fit the overall requirements of
the system. In this tutorial, we will illustrate the capability of the SOPC Builder by designing a
very simple system. The same approach is used to design large systems.

Host computer

USB-Blaster
Reset_n Clock interface
: Cyclone IV
JTAG UART)
Mios Il processor ITAG i_)ebug ; FPGA chip
module interface
Avalon switch fabric
On-chip S\'.-["ttches -!._E.DS
memory parallel mput parallel output
mterface mterface
I e I ottt g
SW7T SWo LEDGT LEDGH

Figure 2.A simple example of a Nios Il system.

Our example system is given in Figure 2. The system realizes a trivial task. Eight toggle
switches on the DE2-115 board, S\, _,, are used to turn on or off the eight green LEDs,
LEDG,_,.The switches are connected to the Nios Il system by means of a parallel 1/0
interface configured to act as an input port. The LEDs are driven by the signals from another
parallel /O interface configured to act as an output port. To achieve the desired operation, the
eight-bit pattern corresponding to the state of the switches has to be sent to the output port to
activate the LEDs. This will be done by having the Nios Il processor execute a program stored
in the on-chip memory. Continuous operation is required, such that as the switches are toggled
the lights change accordingly.

We will use the SOPC Builder to design the hardware depicted in Figure 2. Next, we will
assign the Cyclone IV pins to realize the connections between the parallel interfaces and the
switches and LEDs which act as 1/0O devices. Then, we will configure the FPGA to implement
the designed system. Finally, we will use the software tool called
the Nios Il Debug Client to assemble, download and execute a Nios Il program that performs
the desired task.

Doing this tutorial, the reader will learn about:

® Using the SOPC Builder to design a Nios ll-based sy stem

® Integrating the designed Nios Il system into a Quar tus Il project

® Implementing the designed system on the DE2-115boa rd

® Running an application program on the Nios Il proce ssor

2 Altera’'s SOPC Builder
The SOPC Builder is a tool used in conjunction with the Quartus Il CAD software. It allows
the user to easily create a system based on the Nios Il processor, by simply selecting the
desired functional units and specifying their parameters. To implement the system in Figure 2,
we have to instantiate the following functional units:
® Nios Il processor, which is referred to as a Centra | Processing Unit (CPU)
® On-chip memory, which consists of the memory blocks in the Cyclone IV chip; we
will specify a 4-Kbyte memory arranged in 32-bitwo rds
® Two parallel I/O interfaces
® JTAG UART interface for communication with the host computer
To define the desired system, start the Quartus Il software and perform the following steps:

1. Create a new Quartus Il project for your system. As shown in Figure 3, we stored our
project in a directory called D:\ sopc_builder_tutorial, and we assigned the name lights to both
the project and its top-level design entity. You can choose a different directory or project name,
but be aware that the SOPC Builder software does not permit the use of spaces in file names.
For example, an attempt to use a directory name sopc builder tutorial would lead to an error. In
your project, choose the EPACE115F29C7 chip as the target device, because this is the FPGA
on the DE2-115 board.

2. Select Tools > SOPC Builder , which leads to the pop-up box in Figure 4. Enter
nios_system as the system name; this will be the name of the system that the SOPC Builder
will generate. Choose VHDL as the target HDL, in which the system module will be specified.
Click OK to reach the window in Figure 5.

New Project Wizard: Directory, Name, TopLewel Entity [pag... [5_(|

"What iz the working directory for thiz project?
|D:'\ gopc_builder_tutarial

"What iz the name of this project?

light]

"What iz the name of the top-level design entity for this project? This name iz caze sensitive and must
exactly match the entity name in the dezign file.

light]

Usze Existing Project Settings ...

< Back | Hext > | Finish Hi i

Figure 3.Create a new project.

™ Create New System E]

System N arne:| n iucs_s:rsten" |

Target HOL: () Verilog

(%) VHDL

| ok || cancel |

Figure 4.Create a new Nios Il system.
5

3. Figure 5 displays the System Contents tab of the SOPC Builder, which is used to add
components to the system and configure the selected components to meet the design
requirements. The available components are listed on the left side of the window. Before
choosing our components, examine the area in the figure labeled Target. A drop-down list is
provided that allows some available Altera boards to be selected. It is not necessary to select a
board, and since the DEZ2-115 board is not included in the list leave the selection as
Unspecified board. Next, check the setting for the Device Family and ensure that Cyclone 1V is
selected.

4. The Nios Il processor runs under the control of a clock. For this tutorial we will make
use of the 50-MHz clock that is provided on the DE2-115 board. As shown in Figure 5, it is
possible to specify the names and frequency of clock signals in the SOPC Builder display. If
not already included in this list, specify a clock named clk with the source designated as

External and the frequency set to 50.0 MHz.

™ Altera SOPC Builder — nios system. zopc (D:isopec builder tutorialinios system. sopc)

Fie Edit Module System View Tools Help

 System Cuntermsgi System Generation|

Clock Settings

Component Likrary Target

" i ity| | | Name Source MHz
Pfroject Device Family; Cyclone I E bt | I |

""" %3 New component... |cik_o External 50.0
Library

f-Avalon Verification Suite
ridges and Adapters
+-Interface Protocols
f#-Legacy Components Use C..| WoduleName Description Clock Base
H:J---Merrmries and Memory Controllers
[#-Peripherals
[#-Processor Additions
P:J---Prnoes&nrs
r.é,1...5|_3
F+ niversity Program
[#-Video and Image Processing

|

[

Edi W Remove | | Edi = a v . 4 Address Map...] ’ Filters...] Fitter: Default

@ Info: No errors or warnings.

Exit 4 Prev Next |] [Generate

Figure 5.The System Contents tab window.
5. Next, specify the processor as follows:
® On the left side of the window in Figure 5 select Avalon Components > Nios Il
Processor — Altera Corporation and click Add, which leads to the window in Figure
6.

™ Fios IT Processor — cpu_ 0

Nios II Processor

> Cachesand Memory Interfaces > Advanced Features

-Core Nios II

> MMU and MPU Settings

> ITAGDebug Module > Custom Instructions |

Select a Nios Il core:

o . " ~
I@Niﬂs lire ONios Ilfs ONios I/F =
N RISC RISC RISC
Nios Il 32-pit 32-5it 3201t
Selector Guide Instruction Cache Instruction Cache
Famiy: Cyclone v € Branch Prediction Branch Prediction
Hardware Multiply Harsware Muttiply
faystem: S0-0MHz Hardware Divide Hargware Divide
opuid: 0 Barrel Shifter
Data Cache:
Dynamic Branch Prediction
Performance at 50.0 MHz Up to 8 DMIPS. Up to 32 DMIPS Up to 57 DMIPS. .
Logic Usage 600-700 LEs 1200-1400 LEs 1400-1800 LEs =
Hardware Multiply:
Reset Vector: Memory: | w | offset:[ox0 |

Exception Vector: Memory: | ~ | offset: [nxo0

Only inchide the MMU when using an operating system that explictly supports an MMU
Fast TLB Miss Exception Vector: Memory:

Offset:
_

VWarning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

Figure 6.Create a Nios Il processor.

Choose Nios ll/e which is the simplest version of the processor. Click Finish to
return to the window in Figure 5, which now shows the Nios Il processor specified as
indicated in Figure 7. There may be some warnings or error messages displayed in
the SOPC Builder Messages window (at the bottom of the screen), because some
parameters have not yet been specified. Ignore these messages as we will provide
the necessary data later. Observe also that a new tab called Nios Il More “cpu_0”
Settings appears which allows further configuration of the processor - we will not use

it.

™ Altera SOPC Builder — miosz system zopcx (D:izopc builder tutorialinios system .. EI@'E'
Fie Edt Module System Wiew Took Niosl Help

System Contents | System Generatiuni

Component Library Target EkEese s
Project Device Family] Cyclone IV E vJ! Source MHz
4 New companent clk_0 External 50.0 7
Library Remove
El-Processors
Use = Conn.. Module Name Description Clock Bi
E cpu_0 Nios Il Processor
instruction_master Avalon Memory Mapped Master clk_0
data_master Avalon Memory Mapped Master
tag_debug_module Avalon Memory Mapped Slave
s X
= | < | >
(] x4 v = [amie] (M) o

= To Do cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to re=olve this izsue
2 ToDe: cpu_0: No exception vector has been specified for thiz CPU. Please parameterize the CPU to resolve this issue
', Warning: cpu_0: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

Lsay |

[Generate]

Figure 7.The defined processor.

7

6. To specify the on-chip memory perform the following:

® Select Avalon Components > Memory > On-Chip Memory (RAM or ROM) and
click Add

® In the On-Chip Memory Configuration Wizard window, shown in Figure 8, set the
memory width to 32 bits and the total memory size to 4 Kbytes

® Do not change the other default settings

® Click Finish , which returns to the System Contents tab as indicated in Figure 9

" On—Chip Nemory (RAN or RON) — onchip_memory2 0

“ On-Chip Memory
Mogocore .(RAM or ROM)

<
N

7 Memory initialization /

Memory type
() RAM (Writable) () ROM (Read-only)

[Duakport access

Read During Write Mode:

Block type: [Auto v

Initialize memory content

Memory will be initialized from onchip_memory2 0 hex

~Size:

Data width: i_3_2 Vi

Total memory size: |4 || KBytes |
~Read latency

Slave s1: E} Shave e

Cancel

Figure 8.Define the on-chip memory.

™ Altera SOPC Builder — nios system. sopc* (D:\sopc builder tutorialinios system... E|@|r§|
Fie Edit Module System WView Tools Niosll Help

System Contents | System Generation |

Component Library Target E0ch i
Project Device Famiy: Cyclone WVE | Name Source MHz
~ 44 New component .. clk_0 External 50.0 =
Library Pu—
Ei---h'l_emuries and Memory Controlk
=+0n-Chip
On-Chip FIFO Memi
=B Oni-Chip Memory (F Use @ Conn.. Module Name Description Clock B
B cpu_0 Wios Il Processor
nstruction_master Avalon Memory Mapped Master clk_0
data_master Avalon Memory Mapped Master
jtag_debug_module Avalon Memory Mapped Slave
B onchip_memory2_0 On-Chip Memory (RAM or ROM)
£ | > 81 Avalon Memory Mapped Slave clk_0
[;
on-chi
| | K P i | >
Ed Rem E = & v X [Address Map... l [Fitters... l Fitter; Def

J To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
' To Do: epu_0: No exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issuge

(s] [omeme |

Figure 9.The on-chip memory is included.

7. Specify the input parallel I/O interface as follows:

Select Avalon Components > Other > PIO

PIO Configuration Wizard in Figure 10

Input, as shown

in the figure

(Parallel I/0O) and click Add to reach the
Specify the width of the port to be 8 bits and choose the direction of the port to be

Click Finish to return to the System Contents tab as given in Figure 11

™ PI0 (Parallel I/0) — pio 0

~Width

Width (1-32 bis) : g

r Direction

() Bidirectional (tristate) poris

() Both input and output ports

() Output ports only

-Output Port Reset Value

Reset Value:

-Output Register

m

|3 Info: PIO inputs are not hardwired in test bench. Undefined values wil be read from PIO inputs du

Il | i3

[cancar] -

[mext »][Einisn |

Figure 10.Define a parallel input interface.

Altera SOPC Builder — mios system. sopcr (D:z
Fie Edit Module System View Tools HNiosl Help

gope_builder tutorialinios system.sopc)

System Contents | System Generation |
Conta Carary gt Clock Settings
Project Device Family] Cyclone IV E Hame Source Wz
] New component... clk_0 External 50.0 —
Library 4
- Peripherals
[=i-Microcontrolier Peripherals
Use Conn Module Name Description Clock Base End
E cpu_d Nios Il Processor
instruction_master Avalon Memory Mapped Master clk_0
data_master Avalon Memory Mapped Master IRR 9
jtag_debug_module Avalon Memory Mapped Slave
E onchip_memory2 0 On-Chip Memory (RAM or ROM}
=1 Avalon Memory Mapped Slave clk_0 ox £
Bl jtag_uart 0 ITAG UART
avalon_jtag_slave Avalon Memory Mapped Slave clk_0
B pio 0 PIO (Parallel VO)
81 Avalon Memory Mapped Slave clk_0 0x00000010 |0x0000001E
< [l | 3
- [pio X g | 2
Edi = a 5 7 k4 Address Map... Fitter: Default

=7 ToDo: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
= To Do: cpu_0: No fion vector has been

ified for this CPU. Please parameterize the CPU to resolve this issue

Figure 11.The parallel input interface is included.

10

8. In the same way, specify the output parallel I/O interface:
® Select Avalon Components > Other > PIO (Parallel 1/0) and click Add to reach the
P10 Configuration Wizard again
® Specify the width of the port to be 8 bits and choose the direction of the port to be
Output
® Click Finish to return to the System Contents tab
9. We wish to connect to a host computer and provide a means for communication between
the Nios Il system and the host computer. This can be accomplished by instantiating the JTAG
UART interface as follows:
® Select Avalon Components > Communication > JTAG UART and click Add to
reach the JTAG UART Configuration Wizard in Figure 12
® Do not change the default settings
® Click Finish to return to the System Contents tab

™ JTAG UART — jtag uart 0

“ JTAG UART

Magacors

| | Configuration

~Write FIFO (Data from Avalon to JTAG)

Buffer depth (bytes): |64 v | RQ threshold: [
|:| Construct using registers instead of memory blocks

Read FIFO (Data from JTAG to Avalon)

Buffer depth (bytes): | 64 | IRQ threshoid: |5

|:| Construct using registers instead of memory blocks

Figure 12.Define the JTAG UART interface.

10. The complete system is depicted in Figure 13. Note that the SOPC Builder automatically
chooses names for the various components. The names are not necessarily descriptive
enough to be easily associated with the target design, but they can be changed. In Figure 2,
we use the names Switches and LEDs for the parallel input and output interfaces, respectively.
These names can be used in the implemented system. Right-click on the pio_0 name and then
select Rename. Change the name to Switches. Similarly, change pio_1 to LEDs.

11. The base and end addresses of the various components in the designed system can be
assigned by the user, but they can also be assigned automatically by the SOPC Builder. We
will choose the latter possibility.

So, select the command (using the menus at the top of the SOPC Builder window)
System > Auto-Assign Base Addresses, which produces the assignment shown in Figure 14.

11

Builder — nios_system. sopc* {D:\sopc builder tuto

Fle Edit Module System View Tools Niosll Help
System Contents | System Generation|
t Library Target Clock Setfings
Project Device Family;| Cyclone V E w Name Source MHz
1 New component... clk_0 External 50.0
Library
&- ripherals
-Microcontroller Peripherals
Use Conn.. Module Name De=scription Clock Base End
= cpu_0 Mios Il Processor ~
instruction_master Avalon Memory Mapped Master clk_0 Ti
data_master Avalon Memory Mapped Master IER O
B Jtag_debug_module Avalon Memory Mapped Slave Ox00000800 [Jx00000
. E onchip_memory2 0 On-Chip Memory (RAM or ROM)
- =1 Avalon Memory Mapped Slave clk_0 0x00002000 |0x00002
Bl jtag_uart_0 ITAG UART T
avalon_jtag_slave Avalon Memory Mapped Slave clk_0 0x 00000000 |0x00000
B Switches PIO (Paraliel VO)
=1 Avalon Memory Mapped Slave clk_0 Ox 00000010 |0x00000
< | ¥ PIO {Paraliel VD)
2o ® ‘ s1 Avalon Memory Mapped Slave cik_0 0x00000020 [0x00000 %
F i | >
[Add] [Remave] [Edit.] v | =z [Mﬂressﬂap...] ’EHtets...] Filler: Defautt

7 To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
= To Do: cpu_0: No exception vector has been specified for thiz CPU. Please parameterize the CPU to resolve this izsue

dree [mexth | [Generate |

Figure 13.The complete system.

Builder — mios system. sopc* (D:%sopc builder tutorial = _system. sopc)

File Edit Module System Wiew Toole Niosl Help

System Contents |5ystem Gerreratiﬂnl

Component Library Target Clock-Srtins
Project Device Family{ Cycione W/ E Name Source MHz
3 New component... clk_0 External 50.0 =
Library 2
-Peripherals
9--Micrucuntrnﬂer Peripherals
Lo
Description Clock Base End
Nioz Il Processor ~
instruction_master Avalon Memory Mapped Master clk_0 i
data_master Avalon Memory Mapped Master 1FQ O
ftag_debug modue |Avalon Memory Mapped Slave 0x0000ZE00 (0x00002
Bl onchip memory2 0 |On-Chip Memory (RAM or ROM)
=1 Avalon Memory Mapped Slave clk_0 ! 0X0O001000 (000001
El jtag_uart_0 ITAG UART T
avalon_itag_slave Avalon Memory Mapped Slave clk_0 0x00003020 |0x00003
Bl Switches PIO (Paraliel O}
=1 Avalon Memory Mapped Slave clk_0 | 0x00002000 |0z00003
< i | & El LEDs PIO (Paraliel 1O} ES
|7| ® =1 Avalon Memory Mapped Slave clk_0 0x00003010 [0x00003 %
- |pio < | >

Edit [Am] [Ren_wve] [Edit...] = || a [Adumssmap.._] [Eﬂters...] Filter: Defautt

@ Info: No errors or warnings.

Figure 14.The final specification.
12

12. Double-click CPU_0, choose onchip_memory0 in the Reset Vector Memory tab and
onchip_memory0 in the Exception Vector Memory tab, then click Finish .

13. Having specified all components needed to implement the desired system, it can now
be generated. Select the System Generation tab, which leads to the window in Figure 15. Turn
off Simulation — Create simulator project files, because in this tutorial we will not deal with the
simulation of hardware. Click Generate on the bottom of the SOPC Builder window. The
generation process produces the messages displayed in the figure. When the message
“SUCCESS: SYSTEM GENERATION COMPLETED" appears, click Exit. This returns to the
main Quartus Il window.

™ Altera SOPC Builder — nios system. sopc (D:isopc builder tutorialinios sy..

File Edit Module System Wiew Tools Miesll Help

System Contents

Options
System module logic will be created in WVHDL.

|:| Simulation. Create project simulator files.

Nios I Tools

I Niog Il Software Build Tools for Eclipse

#2010.06.10 17:52:55 (*) Making arbitration and system (top) modules. 4\|
#2010.06.10 17:52:59 (*) Generating Quartus symbol for top level: nios_system
2010.06.10 17:52:59 {*) Generating Symbol D:fzopc_builder_tutorialinios_system.bsf
#2010.06.10 17:52:58 (*) Creating command-line system-generation script: D/zepc_buider_tutorialinios_system_generation_script
#2010.06.10 17,5259 (*} Running setup for HOL simulator: modelsim
#2010.06.10 17:52:59 (*) Completed generation for system: nios_system.
#2010.06.10 17:52:59 (*) THE FOLLOWING SYSTEM MEMS HAVE BEEN GENERATED:
SOPC Builder database : Di/sopc_buider_tutorialnios_system.ptf
System HOL Mode! : Diisopc_builder_tutorialinios_system. vhd
System Generation Script : Duf=opc_builder_tuterialinios_system_generation_script
2010.06.10 17:52:58 {*) SUCCESS: SYSTEM GENERATION COMPLETED.
!@ Info: System generation was successful. bl
£\ # |

@ info: Mo errors or warnings.

() O] [Gre] eor | [omeme]

Figure 15.Generation of the system.

Changes to the designed system are easily made at any time by reopening the SOPC
Builder tool. Any component in the System Contents tab of the SOPC Builder can be selected
and deleted, or a new component can be added and the system regenerated.

3 Integration of the Nios Il System into a Quartus Il Project
To complete the hardware design, we have to perform the following:
® Instantiate the module generated by the SOPC Builde r into the Quartus Il
project
® Assign the FPGA pins
13

® Compile the designed circuit

® Program and configure the Cyclone IV device on the DE2-115 board
3.1 Instantiation of the Module Generated by the SO PC Builder

The instantiation of the generated module depends on the design entry method chosen
for the overall Quartus Il project. We have chosen to use VHDL, but the approach is similar for
both Verilog and schematic entry methods. Normally, the Nios Il module is likely to be a part of
a larger design. However, in the case of our simple example there is no other circuitry needed.
All we need to do is instantiate the Nios Il system in our top-level VHDL file, and connect inputs
and outputs of the parallel I/O ports, as well as the clock and reset inputs, to the appropriate
pins on the Cyclone IV device. The VHDL entity generated by the SOPC Builder is in the file
nios_system.vhd in the directory of the project. Note that the name of the VHDL entity is the
same as the system name specified when first using the SOPC Builder.

The VHDL code is quite large. Figure 16 depicts the portion of the code that defines the
port signals for the entity nios_system. The 8-bit vector that is the input to the parallel port
Switches is called in_port_to_the Switches.

The 8-bit output vector is called out_port_from_the_LEDs. The clock and reset signals are
called clk and reset_n, respectively. Note that the reset signal is added automatically by the
SOPC Builder; it is called reset_n because it is active low.

‘ﬁ“ nios system. vhd B

: OUT STD LOGIC VECTOR (7 DOWNTO 0):

: IN STID LOGIC VECTOR (7 DOWNIC 0O)

cture eurcpa of nios system is

2 =l arbitrator is

IN S5ID LOGIC VECTOR (7 DOWNIC Q)

TOR (13 DOWHIOQ Q)3
OWNTO 0) 2

Figure 16.A part of the generated VHDL entity.

Figure 17 shows a top-level VHDL entity that instantiates the Nios Il system.

This entity is named lights, because this is the name we specified in Figure 3 for the
top-level design entity in our Quartus Il project. Note that the input and output ports of the
entity use the pin names for the 50-MHz clock, OSC_50, pushbutton switches, KEY, toggle
switches, SW, and green LEDs, LEDG, that are specified in the DE2-115 User Manual. Type
this code into a file called lights.vhd. Add this file and all the *.vhd files produced by the SOPC
Builder to your Quartus Il project. Also, add the necessary pin assignments on the DE2-115
board to your project.

14

The procedure for making pin assignments is described in the tutorial Quartus I
Introduction Using VHDL Design. Note that an easy way of making the pin assignments when
we use the same pin hames as in the DE2-115 User Manual is to import the assignments given
in the file called DE2-115_pin_assignments.csv in the directory DE2-115 tutorials\design_files,
which is included on the CD-ROM that accompanies the DE2-115 board and can also be found
on Altera’s DE2-115 web pages. Since the system we are designing needs to operate at a
50-MHz clock frequency, add the needed timing assignment in your Quartus Il project. The
tutorial Timing Considerations with VHDL-Based Designs shows how this is done.

—— Implements a simple Nios Il system for the DE2-115 board.

—— Inputs: SW7-0 are parallel port inputs to the Nios Il system

—— CLOCK_50 is the system clock

—— KEYO is the active-low system reset

—— Outputs: LEDG7-0 are parallel port outputs from the Nios Il system
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

ENTITY lights IS

PORT (

SW : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50:IN STD_LOGIC;

LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);

END lights;

ARCHITECTURE Structure OF lights IS

COMPONENT nios_system

PORT (

clk : IN STD_LOGIC;

reset n:IN STD_LOGIC;

out_port_from_the LEDs : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
in_port_to_the_Switches : IN STD_LOGIC_VECTOR (7 DOWNTO 0)

);

END COMPONENT;

BEGIN
—— Instantiate the Nios Il system entity generated by the SOPC Builder
—— Nios II: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW);
END Structure;
Figure 17.Instantiating the Nios Il system.
15

Having made the necessary settings compile the code. You may see some warning
messages associated with the Nios Il system, such as some signals being unused or having
wrong bit-lengths of vectors; these warnings can be ignored.

3.2 Programming and Configuration

Program and configure the Cyclone IV FPGA in the JTAG programming mode as follows:

1. Connect the DE2-115 board to the host computer by means of a USB cable plugged
into the USB-Blaster port.

Turn on the power to the DE2-115 board. Ensure that the RUN/PROG switch is in the
RUN position.

2. Select Tools > Programmer to reach the window in Figure 18.

3. If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster
is not chosen by default, press the Hardware Setup ... button and select the USB-Blaster in
the window that pops up.

4. The configuration file lights.sof should be listed in the window. If the file is not already
listed, then click Add File and select it.

5. Click the box under Program /Configure to select this action.

6. At this point the window settings should appear as indicated in Figure 18. Press Start to
configure the FPGA.

Wl Quartus II — D:/sopc_builder_tutorial/light — light — [light.cdf]

File Edit Processing Tools Window

éa Hardware Setup... UISE-Blaster [USE-0] Mode: [JTAG | Progress: 0%

™ Enable realtime ISP to allow background programming [for Mas 1] devices)

. . Program/
Wb Start | File: |Dewce Ctos

light, sof EP4CET15F29 O0S62CF4 FFFFFFFF O O O O O [}
ﬂh Auto Detect
(s Add File...
(2 Add Device...

For Help, press Fl Hm

. Securty
Examine Bit

| Eraze

Checksum |Usercoda Werify | E:,?:gk

Figure 18.The Programmer window.

4 Running the Application Program

Having configured the required hardware in the FPGA device, it is how necessary to
create and execute an application program that performs the desired operation. This can be
done by writing the required program either in the Nios Il assembly language or in a high-level
language such as C. We will illustrate both approaches. A parallel 1/O interface generated by
the SOPC Builder is accessible by means of registers in the interface.

16

Depending on how the PIO is configured, there may be as many as four registers. One of
these registers is called the Data register. In a PIO configured as an input interface, the data
read from the Data register is the data currently present on the PIO input lines. In a PIO
configured as an output interface, the data written (by the Nios Il processor) into the Data
register drives the PI1O output lines. If a PIO is configured as a bidirectional interface, then the
PIO inputs and outputs use the same physical lines. In this case there is a Data Direction
register included, which determines the direction of the input/output transfer. In our
unidirectional PIOs, it is only necessary to have the Data register. The addresses assigned by
the SOPC Builder are 0x00003000 for the Data register in the PIO called Switches and
0x00003010 for the Data register in the PIO called LEDs, as indicated in Figure 14. You can
find a full description of the PIO interface by opening the SOPC Builder window in Figure 14
and right-clicking on the module name of a PIO (either Switches or LEDSs). Then, in the pop-up
box select Datasheet to open the document PIO Core with Avalon Interface which gives a full
description of the interface. To use this facility you need to be connected to the Internet.

4.1 Using a Nios Il Assembly Language Program

Figure 19 gives a Nios Il assembly-language program that implements our trivial task. The
program loads the addresses of the Data registers in the two PIOs into processor registers r2
and r3. It then has an infinite loop that merely transfers the data from the input P1O, Switches,
to the output PIO, LEDs.

.include "nios_macros.s"

.equ Switches, 0x00001800
.equ LEDs, 0x00001810

.global _start

_start:

movia r2, Switches
movia r3, LEDs

loop: Idbio rd4, 0(r2)
stbio r4, 0(r3)

br loop

Figure 19.Assembly language code to control the lights.
Use the Altera Monitor Program, which is described in the tutorial Altera Monitor Program,

to assemble, download, and run this application program. If successful, the lights on the DE2
board will respond to the operation of the toggle switches.

17

Due to the clock skew problem mentioned above, the Nios Il processor may be unable to
properly access the SDRAM chip. A possible indication of this may be given by the Altera
Monitor Program, which may display the message depicted in Figure 20. To solve the problem,
it is necessary to modify the design as indicated in the next section.

Info &: Errors

Using cable "U3E-Elaster [USE-0]1", device 1, instance 0x00
Resetting and pausing target processor: OE

Initializing CPU cache (if present)

0K

- ®
-

Downloading 00800000 (O%) =
Dowmloaded 1EE in 0.0s

Werifying 00800000 (0O%)
Verify failed between address 0xS800000 and O0xS80001B
Leawing target processor paused

Possible causes for the 3REC werification failure:

1. Not enough memory in your Nios II systen to contain the SREC file.

2. The locations in your SREC file do not correspond to a memory device.

3. ¥ou may need s properly configured PLL to access the 3DRAM or Flash memory.

Figure 20.Error message in the Altera Monitor Program that may be due to the SDRAM clock
skew problem.

The program includes the assembler directive

.include "nios_macros.s"
which informs the Assembler to use the Nios Il macros that specify how the movia
pseudoinstructions can be assembled.

The directive
.global _start
indicates to the Assembler that the label _start is accessible outside the assembled object file.
This label is the default label we use to indicate to the Linker program the beginning of the
application program.
For a detailed explanation of the Nios Il assembly language instructions see the tutorial
Introduction to the Altera Nios Il Soft Processor.

Enter this code into a file lights.s and place the file into a working directory. We placed the
file into the directory sopc_builder_tutorialapp_software. The program has to be assembled
and converted into an S-Record file, lights. srec, suitable for downloading into the implemented
Nios Il system. Altera provides the monitor software, called Altera Monitor Program, for use
with the DE2-115 board. This software provides a simple means for compiling, assembling and
downloading of programs into a Nios Il system implemented on a DE2-115 board. It also
makes it possible for the user to perform debugging tasks. A description of this software is
available in the Altera Monitor Program tutorial.

Open the Altera Monitor Program, which leads to the window in Figure 21. This software
needs to know the characteristics of the designed Nios Il system, which are given in the ptf file
nios_system.ptf.

18

Click the File > New Project menu item to display the New Project Wizard window, shown in

Figure 22, and perform the following steps:

1.

10.

11.

Enter the sopc_builder_tutorial directory as the Project directory by typing it directly into
the Project directory field, or by browsing to it using the Browse... button.

Enter lights as the Project name and click Next >, leading to Figure 23.

From the Select a System drop down box, select <Custom System >.

Click Browse ...beside the System Description field to display a file selection window and
choose the nios_system.ptf file. Note that this file is in the design directory
sopc_builder_tutorial.

Specifying the .sof file in the Quartus Il Programming (SOF) File field allows the user to
download the programming file onto the board from the Altera Monitor Program. Note that
we need not specify this file as we have already downloaded the programming file onto the
board.

Click Next >.

Select Assembly Program as the program type from the drop down menu and click Next >,
leading to Figure 24.

Click Add ... to display a file selection window and choose the lights.s file and click Next >.
Note that this file is in the directory sopc_builder_tutorial\app_software.

Ensure that the Host Connection is set to the USB-Blaster, the Processor is set to cpu_0
and the Terminal Device is set to the JTAG UART, and click Next >

The Altera Monitor Program also needs to know where to load the application program. In
our case, this is the memory block in the FPGA device. The SOPC Builder assigned the
name onchip_memory2_0 to this block. As shown in Figure 25, the Monitor Program has
already selected the correct memory device.

Having provided the necessary information, click Finish to confirm the system
configuration.

Altera Monitor Program [Nios II] Q@@

File Settings Actions Windows Help

M E RSB 2y

Disassembly - X | Registers X

[1ide] |[Redlvalee

[«] [»]
Di bly | Breakpoints / Memory / Watches | Trace |

Terminal - X | Info & Errors -

Info &Errors | GDB Server /

Figure 21.The Altera Monitor Program window on startup.
19

+# New Project Wizard

Specify a project name and directory

Project directory:

|D:1snpc_builder_tutorial | I Browse. .. I

Project name:

|Iights |

I Mext > l I Cancel I

Figure 22.Specify the project directory and name.

New Project Wizard

Specify a system

Select a system

] <Custom System> '|

Specify a Mios II system by selecting a system description (PTF) file, and an optional Quartus II programming (SOF)
file.

System details
System description {PTF) file:

[D:Isopc_buiider_tutoriallnios_system,ptf] I Browse...]

Quartus IT programming (SOF) file {optional}:

[[I Browse. ..]

The SOF file represents the FPGA programming file For the Nios II system. If it is specified here, then the Monitor
| Program can be used to download this programming file onto the board. Otherwise, the system will need to be
| downloaded using some other method {for example, by using Quartus II).

l <§ack| [Mext > I | Cancel]

Figure 23.The System Specification window.
20

New Project Wizard

Specify program details

Source files
First source file is used to determine the name of the binary program file,

D:\sopc_builder_tutorial\app_softwarellights.s Add...

Remove

Down

Program options

Start symbol: | _start

| <§ack| | Mext > I [Finish I [Cancel I

Figure 24.Specify the binary file to use.

New Project Wizard @

Specify program memory settings

Processor's reset and exception vectors (read-only)
Reset vector address (hex): 1000
Exception vector address (hex): 1020

Memory options

Here you can specify the starting addresses of sections identified by .text and .data assembler directives. These
addresses can be in the same or in different memories {on-chip, SDRAM, ...). They can be used to ensure that the
.text and .data sections do not overlap with other sections, such as .reset and .exceptions, If .text and .data are
specified to have the same address, the .data section will be placed right after the .text section by the linker.

.text section
Memory device: lonchip_memoryz_o;‘sl (1000h - 1Fffh) vJ

Start offset in device (hex): J 0|

.data section

Memory device: lonchip_memoryz_ﬂjsl {1000h - 1fffh) v|
Start offset in device (hex): [0]
| < Back I | Finish] | Cancel |

Figure 25.The program memory settings window.

21

Next, to assemble and download the light.s program, click the Actions > Compile &
Load menu item. The Altera Monitor Program will invoke an assembler program, followed by a

linker program. The commands used to invoke these programs, and the output they produce,

can be viewed in the Info & Errors window of the Monitor Program window. After the program

has been downloaded onto the board, the program is displayed in the Disassembly window of
the Monitor Program as illustrated in Figure 26. Observe that movia is a pseudoinstruction
which is implemented as two separate instructions.

Click the Actions > Continue menu item to execute the program. With the program

running, you can now test the design by turning the switches, SW 7 to SW 0 on and off; the

LEDs should respond accordingly.

Altera Monitor Program [Nios II] - lights.ncf : lights.srec [Paused] Q@@
File Settings Actions ‘Windows Help
HME GeR @200k 0
Disassembly - X | Registers — 0
5 2 Reg value |
Goto lnstruct|on|Address hex) or symbol name: Go e
g I[:] pc 0x00001000 ||
.global _start |~/ [zexo 0x00000000
rl 0x00000000
_Start: r2 0x00000000
movia r2, Switches r3 0x00000000
_start: x4 0x00000000 |-
0x00001000 :) orhi 2, zero, 0x0 5 0x00000000] 38
0x00001004 10800014 ori £z, r2, 0x3000 ta £x00000000)
ks oxanooooo
0x00001008 00c00054 orhi r3, zero, 0x = (g 0%00000000
0x0000100c] 114 ori £3, £3; 0x3010 v 10 0x00000000 [
‘ o rll 0x00000000
loop: ldbio rd, 0(x2) 12 0x00000000
loop: rl3 0x00000000
0x00001010 L1 1dbio r4, 0(rz) rla 0x00000000
sthio r4, 0(r3) rls 0x00000000
0x00001014 25 sthio r4, 0(r3) I [z16 0x00000000
xNONN1018 N3FEANE hr ~(rer (MeONONTNLN: 1aoni =l [e17 0x00000000
d] leas 0x00000000 | |
Disassembly | Breakpoints | Memory | Watches | Trace / r19 000000000 |w
Terminal — X | Info & Errors = s
Verified OK
ITAG UART link established using cable "USE-Blaster verlieied Ok) =
& i . Connection established to GDE serwver at localhost:240!
[UsB-0]", device 1, instance 0x00
Symbols loaded.
Source code loaded.
INFO: Program Trace not enabled, because trace requir:E
-
4 I e | 1 ”
Info &Errors / GDB Server |

Figure 26.Display of the downloaded program.

The Monitor Program allows a number of useful functions to be performed in a simple manner.

They include:
® single stepping through the program
® examining the contents of processor registers
® examining the contents of the memory
® setting breakpoints for debugging purposes
® disassembling the downloaded program

A description of this software and all of its features is available in the Altera Monitor Program

tutorial.

22

4.2 Using a C-Language Program

An application program written in the C language can be handled in the same way as the
assembly-language program. A C program that implements our simple task is given in Figure
25. Enter this code into a file called lights.c.

#define Switches (volatile char *) 0x0003000
#define LEDs (char *) 0x0003010

void main()

{ while (1)
*LEDs = *Switches;
}

Figure 27.C language code to control the lights.

Perform the following steps to use this program:

1. Disconnect from the current debugging session by clicking the Actions > Disconnect menu
item.

2. Click the Settings > Program Settings ... menu item to launch the Project settings
window with the Program settings tab selected.

3. Select C Program as the Program Type in the drop-down list. The Monitor Program may
prompt you to clear any currently selected source files. Click Yes to proceed. Note that
lights.s has been removed from the list of source files.

4. Click Add... and choose the lights.c file.

5. Click Ok to confirm the new program configuration.

The steps to compile, load, and run the program are the same as for an assembly language

program.

23

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable
Solutions Company, the stylized Altera logo, specific device designations, and all other words
and logos that are identified as trademarks and/or service marks are, unless noted otherwise,
the trademarks and service marks of Altera Corporation in the U.S. and other countries. All
other product or service names are the property of their respective holders. Altera products are
protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services. This document is
being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including,
without limitation, warranties of merchantability, non-infringement, or fitness for a particular
purpose, are specifically disclaimed.

24

