Using Library Modules in Verilog Designs

This tutorial explains how Altera’s library modules can be included in Verilog-based designs,
which are implemented by using the Quartus Il 9.1 software.

Contents:

Example Circuit

Library of Parameterized Modules
Augmented Circuit with an LPM
Results for the Augmented Design

Practical designs often include commonly used circuit blocks such as adders, subtractors,
multipliers, decoders, counters, and shifters. Altera provides efficient implementations of such
blocks in the form of library modules that can be instantiated in Verilog designs. The compiler
may recognize that a standard function specified in Verilog code can be realized using a library
module, in which case it may automatically infer this module. However, many library modules
provide functionality that is too complex to be recognized automatically by the compiler. These
modules have to be instantiated in the design explicitly by the user. Quartus Il 9.1 software
includes a library of parameterized modules (LPM). The modules are general in structure and
they are tailored to a specific application by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:
® Library of parameterizes modules (LPMs)
® Configuring an LPM for use in a circuit
® Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained using the Quartus Il version 9.1, but other
versions of the software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add,
subtract, and accumulate n-bit numbers using the 2’s complement number representation. The
two primary inputs are numbers A = &, * & _,...8pand B =0, *D .10, and the
primary output is Z = Zn—l* Zn_2...ZO_ Another input is the AddSub control signal which
causes Z = A + B to be performed when AddSub = 0 and Z = A - B when AddSub = 1. A
second control input, Sel, is used to select the accumulator mode of operation. If Sel = 0, the
operation Z = A £ B is performed, but if Sel = 1, then B is added to or subtracted from the
current value of Z. If the addition or subtraction operations result in arithmetic overflow, an
output signal, Overflow, is asserted.

To make it easier to deal with asynchronous input signals, they are loaded into flip-flops
on a positive edge of the clock. Thus, inputs A and B will be loaded into registers Areg and
Breg, while Sel and AddSub will be loaded into flip-flops SelR and AddSubR, respectively. The
adder/subtractor circuit places the result into register Zreg.

b= ay Sel B=b,_, by AddSub

L L LI B)
n-bit register F/F n-bit register F/F
Areg= |areg, _, aregg Breg=| breg, _, bregy
—* - e A I AddSubR
n-bit 2-to-1 MUX s
SelR
I
(;:J‘gn__ P ;gn iy s hy
N
carryout n-bit adder carryin fea—
M= |m,_, M,
fl : L
[l n-bit register Freg
aver_flow Zreg = | zreg, zreg,
FF L
Chverflow Fo= Zory E=A}

Figure 1.The adder/subtractor circuit.

The required circuit is described by the Verilog code in Figure 2. For our example, we use a
16-bit circuit as specified by n = 16. Implement this circuit as follows:
® Create a project addersubtractor.
® Include a file addersubtractor.v, which corresponds to Figure 2, in the project. For
convenience, this file is provided in the directory DE2-115 tutorials\design_files,
which is included on the CD-ROM that accompanies the DE2-115 board and can
also be found on Altera’s DE2-115 web pages.
® Choose the Cyclone IV EP4CE115F29C7 device, which is the FPGA chip on Altera’s
DE2-115 board.
® Compile the design.
® Simulate the design by applying some typical inputs.

/[Top-level module

module addersubtractor (A, B, Clock, Reset, Sel, AddSub, Z, Overflow);
parameter n = 16;

input [n-1:0] A, B;

input Clock, Reset, Sel, AddSub;
output [n-1:0] Z;

output Overflow;

reg SelR, AddSubR, Overflow;

reg [n-1:0] Areg, Breg, Zreg;
wire[n-1:0] G, H, M, Z;
wirecarryout, over_flow;

/I Define combinational logic circuit

assign H = Breg " {n{AddSubR}};

mux2tol multiplexer (Areg, Z, SelR, G);

defparam multiplexer.k = n;

adderk nbit_adder (AddSubR, G, H, M, carryout);
defparam nbit_adder.k = n;

assign over_flow = carryout * G[n—1] * H[n-1] » M[n-1];
assign Z =Zreg;

/I Define flip-flops and registers
always @(posedge Reset or posedge Clock)
if (Reset==1)
begin
Areg <= 0;
Breg <= 0;
Zreg <=0;
SelR <= 0;
AddSubR <= 0;
Overflow <= 0;
end
else
begin
Areg <= A,
Breg <= B;
Zreg <= M;
SelR <= Sel;
AddSubR <= AddSub;
Overflow <= over_flow;
end
endmodule

/I k-bit 2-to-1 multiplexer

module mux2tol (V, W, Selm, F);
parameter k = 8;

input [k-1:0] V, W;

input Selm;

output [k-1:0] F;

reg [k-1:0] F;

always @(V or W or Selm)
if (Selm==0)F =V,
elseF =W,

endmodule

... continued in Part b

Figure 2.Verilog code for the circuit in Figure 1 (Part a).

/I k-bit adder

module adderk (carryin, X, Y, S, carryout);
parameter k = 8;

input [k-1:0] X, Y;

input carryin;

output [k-1:0] S;

output carryout;

reg [k-1:.0] S;

reg carryout;

always @(X or Y or carryin)
{carryout, S} = X + Y + carryin;

endmodule

Figure 2.Verilog code for the circuit in Figure 1 (Part b).

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are general in structure and they can
be configured to suit a specific application by specifying the values of various parameters.
Select Help > Megafunctions/LPM to see a listing of the available LPMs. One of them is an
adder/subtractor module called Ipm_add_sub megafunction. Select this module to see its
description. The module has a number of inputs and outputs, some of which may be omitted
in a given application. Several parameters can be defined to specify a particular mode of
operation.

For example, the number of bits in the operands is specified in the parameter
LPM_WIDTH. The LPM_REPRESENTATION parameter specifies whether the operands are
to be interpreted as signed or unsigned numbers, and so on. Templates on how an LPM can
be instantiated in a hardware description language are given in the description of the module.
Using these templates is somewhat cumbersome, so Quartus Il software provides a wizard
that makes the instantiation of LPMs easy.

We will use the Ipm_add_sub module to simplify our adder/subtractor circuit defined in
Figures 1 and 2.The augmented circuit is given in Figure 3. The Ipm_add_sub module,
instantiated under the name megaddsub, replaces the adder circuit as well as the XOR gates
that provide the input H to the adder. Since arithmetic overflow is one of the outputs that the
LPM provides, it is not necessary to generate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory named tutorial_Ipm, and
then create a project addersubtractor2. Choose the same Cyclone IV EP4CE115F29C7 device,
to allow a direct comparison of implemented designs.

ag Sel B= b, _, by AddSub

n-bit register F/F n-bit register F/F
[+]
Areg = | areg, _ | aregy Breg =| breg,_, breg,
} . ‘ - ..
n-bit 2-to-1 MUX L.
Sell
I I
o= * En_1| LR] l, 43
dataa datab
megaddsub module add_sub
overflow result ~AddSubR
M= |m,_, iy
aver_flow p—
F/F n-bit register Zreg
Zreg = | zreg, Ireg,
Overflow Z= 2, A

Figure 3.The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit specified as a Verilog module that will
be instantiated in the top-level Verilog design module. The Verilog module for the LPM
subcircuit is generated by using a wizard as follows:

1. Select Tools > MegaWizard Plug-in Manager, which leads to a sequence of seven
pop-up boxes in which the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indicate Create a new custom megafunction variation

and click Next.

Nega¥izard Plug—In Manager [page 1] ﬁ

The Megawizard Flug-In Manager helps you create or modify
design fileg that contain cuztom variations of megafunctions.

Which action do you want to perform?

{* Lreate a new custom megafunchion varatioré

" Edit an existing custom megafunction variation

" Copy an existing custam megafunction variation

Copyright [C] 1991-2010 Alkera Corparation

Cancel | ‘ Hewut » | |

Figure 4.Choose to define an LPM.

NegaWizard Plug—In Nanager [page 2al] §|
Which megafunction would pou like to custarnize? Wihich device Family will you be |Eyclune W E j
ing?
Select a megafunction from the list below Hsige
= Arithmetic 2 Which type of output file do pou want to create?
/] ALTACCUMULATE © AHDL
| ALTECC
2 i
| ALTFP_ARS EHPL
| ALTFP_ADD_SUB @ VerlogHDL
iﬂg?ggmﬁ?&% Wwhat name do you want for the output file? Browsze. .
ALTFP:DN E:ATutonialprtmegaddzub.y
ALTFP_ExP
ALTFP_IMY
ALTFP_IMNY_SORT
ALTFF_LOG [Return to thiz page for another create operation
] Maote: To compile a project successfully in the Quartus |1 software,
ALTFP_MULT your design files must be in the project directony, in the global user
.é«LTFP_SGFET libraries gpecified in the Option: dialog bow [Toole menu), or a user
- .t’-'«LTME_MMULT library specified in the User Libraries page of the Settings dialog
biow [Agzignments menu).
] ALTMULT_ACCURM [(MAC)
ALTMULT ADD Your current user library directonies are:
ALTMULT_COMPLEX
ALTSQRT
] LPM_&BS
LPM_ADD_SUEB
LPM_COMPARE
LPM_COUMNTER v

Cancel | < Back | Meut » ‘ ‘

Figure 5.Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs. Expand the “arithmetic” sublist and
select LPM_ADD_SUB. Choose Verilog HDL as the type of output file that should be created.
The output file must be given a name; choose the name megaddsub.v and indicate that the file
should be placed in the directory E:\Tutorial\lpm as shown in the figure. Press Next.

Megza¥izard Plug-In Nanager — LPE ADD SUB [page 3 of 8] E]“_ '

. - Currently selected device family:)
megaaddsub

add_sub 1 Match project/default

Haw wide should the 'dataa’ and 'datab’ input buses be? I 3\- bitz

‘Which operating mode do you want for the adder/subtractor?
" Addition only
) Subtraction only

{®) Create an 'add_sub' input port ta allow me to do both
(1 adds; 0 subtracts)

‘ Cancel ” < Back ” [ext > ” Einish |

Figure 6.Specify the size of data inputs.

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the
operating mode in which one of the ports allows performing both addition and subtraction of
the input operand, under the control of the add_sub input. A symbol for the resulting LPM is
shown in the top left corner. Note that if add_sub = 1 then result = A + B; otherwise, result = A -
B. This interpretation of the control input and the operation performed is different from our
original design in Figures 1 and 2, which we have to account for in the modified design.
Observe that we have included this change in the circuit in Figure 3. Click Next.

Nega¥izard Plug-Tn Nanager — LPN_ADD_SUB [page 4 of &1 FEx

) A

Is the: 'datas’ or 'datab’ input bus value 3 constant?

@ fio, bofh values vary

) Yes, dataa =
) Yes, datzb =

“s/hich type of addiion/sublraction do you want?
® Unsigned
) signed

2 ut

Figure 7.Further specification of inputs.

5. In the box in Figure 7, specify that the values of both inputs may vary and click Next.

Do you want any optional inpus or outputs?

add_sub

Input:
[Create a carry/borrow-out input

DOutpuls
[7] Creste & carry, i
1 £reate an overfion output

22 lut

| Cancel H < Back ” Mext = H Einish |

Figure 8.Specify the Overflow output.

6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be
specified. Since we need the overflow signal, make the Create an overflow output choice and

press Next.

Nega¥izard Plug—In Nanager — LPE_ADD_SUE [page 6 of 8]

LPM_ADD_SUB

R (oo | oromenatn |

Parameter

General General 2

megaaddsub
add_sub

Do you want to pipeline the function?
@ fig
1 Yes, T want an output latency of Clock cycles

32 lut

‘ Cancel ” < Back ” Next > ” Einish |

Figure 9.Refuse the pipelining option.

7. In the box in Figure 9 say No to the pipelining option and click Next.

10

8. Figure 10 gives a summary which shows the files that the wizard will create. Press Finish to
complete the process.

| Summary

Turn o the files you wish to generate, A gray checkmark indicates a file thatis
megaaddsub automatically generated, and a red checkmark indicates an optional file. Click
il s Finish to generate the selected files. The state of each checkbox is maintained in
bl subseguent MegaWizard Plug-In Manager sessions,

The Megaiizard Plug-In Manaper creates the selected files in the following
directory: E§

E: \wangli_design,

File: | Description]
[megaaddsub.v Yariation file
O megaaddsub.inc AHDL Include file
O megaaddsub.cmp WHOL component declaration file
O megaaddsub.bsf Quartus [symbol fle
O megaaddsub_inst.yv Instantiation template file
O megaaddsub_bb.w Yerilog HDL black-box file
[megaaddsub_waveforms. himl Sample wavefomes in summary
megaaddsub_wave® jpg Sample waveform file(z]
32 lut
‘ Cancel | < Back | | Firish |

Figure 10.Files created by the wizard.
3 Augmented Circuit with an LPM
We will use the file megaddsub.v in our modified design. Figure 11 depicts the Verilog code in
this file; note that we have not shown the comments in order to keep the figure small.

11

/I Adder/subtractor module created by the MegaWizard
module megaddsub (

add_sub,

dataa,

datab,

result,

overflow);

input add_sub;

input [15:0] dataa;

input [15:0] datab;

output [15:0] result;

output overflow;

wiresub_wire0;

wire[15:0] sub_wirel;
wireoverflow = sub_wire0;
wire[15:0] result = sub_wire1[15:0];

I[pm_add_sub Ipm_add_sub_component (

.dataa (dataa),

.add_sub (add_sub),

.datab (datab),

.overflow (sub_wire0),

.result (sub_wirel));

defparam

Ipm_add_sub_component.lpm_width = 16,
Ipm_add_sub_component.lpm_direction = "UNUSED",
Ipm_add_sub_component.lpm_type = "LPM_ADD_SUB",
Ipm_add_sub_component.lpm_hint = "ONE_INPUT_IS_CONSTANT=NO";
endmodule

Figure 11.Verilog code for the ADD_SUB LPM.

The modified Verilog code for the adder/subtractor design is given in Figure 12. Put this code
into a file tutorial_lpm\For convenience, the required file addersubtractor2.v is provided in the
directory DE2-115 tutorials\design_files, which is included on the CD-ROM that accompanies
the DE2-115 board and can also be found on Altera’s DE2-115 web pages. The differences
between this code and Figure 2 are:
® The assign statements that define the over_flow signal and the XOR gates (along
with the signal defined as wire H) are no longer needed.

12

® The adderk instance of the adder circuit is replaced by megaddsub. Note that the
dataa and datab inputs shown in Figure 6 are driven by the G and Breg vectors,
respectively. Also, the inverted version of the AddSubR signal is specified to conform
with the usage of this control signal in the LPM.

® The adderk module is deleted from the code.

/I Top-level module

module addersubtractor2 (A, B, Clock, Reset, Sel, AddSub, Z, Overflow);
parameter n = 16;

input [n-1:0] A, B;

input Clock, Reset, Sel, AddSub;
output [n-1:0] Z;

output Overflow;

reg SelR, AddSubR, Overflow;

reg [n-1:0] Areg, Breg, Zreg;
wire[n-1:0] G, M, Z;

wireover_flow;

/I Define combinational logic circuit

mux2tol multiplexer (Areg, Z, SelR, G);

defparam multiplexer.k = n;

megaddsub nbit_adder (~AddSubR, G, Breg, M, over_flow);
assign Z =Zreg;

/I Define flip-flops and registers
always @(posedge Reset or posedge Clock)

if (Reset==1)

begin
Areg <= 0; Breg <= 0; Zreg <= 0;
SelR <= 0; AddSubR <= 0; Overflow <= 0;
end
else
begin
Areg <= A, Breg <= B; Zreg <= M;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;

end
endmodule
/I k-bit 2-to-1 multiplexer
module mux2tol (V, W, Selm, F);
parameter k = 8;
input [k-1:0] V, W;
input Selm;
output [k-1:0] F;

13

reg [k-1:0] F;

always @(V or W or Selm)
if (Selm==0)F =V,
elseF =W,
endmodule

Figure 12.Verilog code for the circuit in Figure 3.

To include the megaddsub.v le in the project, select Project > Add/Remove Files in
Project to reach the window in Figure 13. The file addersubtractor2.v should already be listed
as being included in the project.

Browse for the other files by clicking the button File name: ... to reach the window in
Figure 14. Select the file megaddsub.v and click Open, which returns to the window in Figure
13. Click Add to include the file and then click OK. Now, the modified design can be compiled
and simulated in the usual way.

Settings — addersubtractor? .-

Categorny:
- Reneral -
- Files
- Libraries Select the design files you want to include in the project. Click Add All to add all design files in the
. Device project dirgctory o the project.

Operating Settings and Conditions

: Yaoltage File hame:
- Temperature

] C.ompilation Process Settings File: hame | Type | Library | Design entrpsy.. [HOL ve Add Al
- Early Timing E stimate addersubtractors v Wenlog HDIL .. <Mone:

- Incremental Compilation =

- Physical Synthesis Optimization

[=- ED& Tool Settings a5
. Design Entry/Synthesis
-~ Simulation L own
- Timing Analysis T
- Farmal Yerification il
- Physical Synthesis
- Board-Level
=1 Analysis & Spnthesis Settings
- WHOL Input
- Verilog HOL Input
' Default Parameters
- Fitter Settings
1=l Timing &nalysis Settings
- Timeluest Timing Analyzer
=1+ Clagsic Timing Analyzer Setting
“ Clagsic Timing &nalyzer Re
- Agzembler
- Design Assistant
- SignalTap |l Logic Analyzer
- Logic Analyzer Interface
Simulator Settings < | | i
- Simulation Yerification
“ Simulation Output Files

- ProwerPlay Power Analizer Setting
< | > ok | Cancel

Figure 13.Inclusion of the new file in the project.

14

Look in; I =3 lpm

db
[Chincremental_db

&.

My Recent wL|addersubtrackar?
Hlgstriceis (] addersubtractar v
F'I: Emegaddsub.v
Dezktop

etks

=

Py Clocu

<

by Cormpriter

My Metwork File name: | _li Epen

Places _J
IDesign Files [“.tdf;“.vhd;“.vhdl;“.v;“.vlg;“.verilng_ﬂ Cancel
'

Filzs of type:

Figure 14.Specify the megaddsub.v file.

4 Results for the Augmented Design

Compile the design and look at the summary, which is depicted in Figure 15. Observe that the
modified design is implemented in 52 logic elements, which is the same as when using the
code in Figure 2. In very small circuits which are the case with our example, it is unlikely that
using LPMs will result in a significant advantage.

Flow Status Successful - Wed Jul OT7 21:10:31 2010

Quartus IT ¥erzion 9.1 Build 350 03242010 SF 2 5T Full Versiom

Revision Name

Top—lewel Entity Hame
Family

Device

Timing Models

Met timing requirements
Total logiec elements

Total combinatienal functions

Dedicated logzic registers

Total registers
Total pins

Total wirtual pins
Total memory bits

Embedded Multiplier 9-bit elements

Total Fll=

Figure 15. Compilation Results for the Augmented Circuit.

adder=subtractor
adder=subtractor
Cyeclone IV E
EF4CE115F29CT
Preliminary

ik

SFJ 114,480 (<1 %)
51 F 114,480 (<1 %)
51 /114,480 (<1 %)
51

53 F 529 (10 %)

0

0,/ 3,981,312 (0 %)
0/532 (0%

0/ 4 00%)

15

Copyright ©2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions
Company, the stylized Altera logo, specific device designations, and all other words and logos
that are identified as trademarks and/or service marks are, unless noted otherwise, the
trademarks and service marks of Altera Corporation in the U.S. and other countries. All other
product or service names are the property of their respective holders. Altera products are
protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore
all warranties, representations or guarantees of any kind (whether express, implied or statutory)
including, without limitation, warranties of merchantability, non-infringement, or fithess for a
particular purpose, are specifically disclaimed.

16

