Laboratory Exercise 4

Polling and Interrupts

The purpose of this exercise is to learn how talsamd receive data to/from 1/O devices. There are
two methods used to indicate whether or not datebeasent or is ready to be received to/from |/@icebs.
The first method, polling, is where the procesamregs devices to see if they can receive datawe Hata
available. The second method, interrupts, is wherices indicate to the processor that they canvece
data or that they have data available, withouptioeessor explicitly requesting.

A simple and commonly used scheme for transferdiaign between a processor and an /O device is
known as the Universal Asynchronous Receiver Tratsn{UART). A UART interface (circuit) is placed
between the processor and the 1/O device. It hardi#a one 8-bit character at a time. The tramdgfdata
between the UART and the processor is done inlphfathion, where all bits of a character aredfamed
at the same time using separate wires. Howevetrdhefer of data between the UART and the 1/0 @vi
is done in bit-serial fashion, transferring theslmhe at a time.

Altera’s SOPC Builder can implement an interfacéhef UART type for use in Nios Il systems, which
is called the JTAG UART. This circuit can be usegtovide a connection between a Nios Il proceasdr
the host computer connected to Altera’s DE2_115dodgigure 1 shows a block diagram of the JTAG
UART circuit. On one side the JTAG UART connectshte Avalon switch fabric, while on the other sitle
connects the host computer via the USB-Blasterfate. The JTAG UART core contains two registers:
Data and Control, which are accessed by the processmemory locations. The address of the Control
register is 4 bytes higher than the address assignthe Data register. The core also containsRitR®s
that serve as storage buffers, one for queuinghapdaita to be transmitted to the host and the ddner
queuing up the data received from the host.

Figure 2 gives the format of the registers.

JTAG UART Core

' ' . Write
Registers FIFO
¢) JTAG Host
Avalon interface M computer
Switch Data
fabric
' Read
IRQ FIFO
Control

Figure 1. A block diagram of the JTAG UART circuit

1

31 16 15 7

RAVAIL RV DATA

(a) Data register
31 16 10 9 8 7 1.0

WSPACE AC|WI | RI WE | RE

(b) Control register

Figure 2. Registers in the JTAG UART

The fields in théData register are used as follows:

« b7-0 (DATA) is an 8-bit character to be placedittte Write FIFO when a Store operation is

performed by the processor, or it is a charact feom the Read FIFO when a Load operation is

performed.

* b15 (RVALID) indicates whether the DATA field cains a valid character that may be read by the
processor. This bit is set to 1 if the DATA fieklvalid; otherwise it is cleared to 0.

* b31-16 (RAVAIL) indicates the number of charastegmaining in the Read FIFO (after this read).
The fields in theControl register are used as follows:

* b0 (RE) enables the read interrupts when set to 1

* b1l (WE) enables the write interrupts when sdt.to

* b8 (RI) indicates that a read interrupt is pegdfrthe value is 1. Reading tiizata register clears
the bit to 0.

* b9 (WI) indicates that a write interrupt is pemglif the value is 1.

* b10 (AC) indicates that there has been JTAG igt{guch as the host computer polling the JTAG
UART to verify that a connection exists) since Hiewas cleared. Writing a 1 to AC clears it to

0.
* b31-16 (WSPACE) indicates the number of spacagadble in the Write FIFO.

More information on the JTAG UART may be found ihapter 5 of theAltera Embedded Peripherals

Handbook.

In this exercise, we will use the JTAG UART to star ASCIl-encoded characters between a Nios Il
processor implemented on the DE2_115 board anchdisé computer. We will also make use of an
“interval timer” circuit to provide fixed delays.

Part |

Use the SOPC Builder to create the system in Fi@unehich consists of a Nios ll/e processor, a
JTAG UART, a memory block and an Interval Timer.

Host Computer

USB-Blaster

ResIt_n C'ICK interface
JTAG Debug JTAG UART Cyclone |V E
NIOS Il Processor module interface FPGA chip
Avalon switch fabric
On-chip Interval
memory Timer

Figure 3. The desired Nios Il system

Implement the system as follows:

1. Create a new Quartus Il project. Select Cycl¥hE EP4CE115F29C7 as the target chip, which is the
FPGA chip on the Altera DE2_115 board.

2. Use the SOPC Builder to create a system namesl system, which includes the following
components:
* Nios ll/s processor with JTAG Debug Module Letel
* On-chip memory - RAM mode and 32 Kbytes in size
* JTAG UART - use the default settings
* Interval Timer - Located in the component sectiamed Other
— For the Hardware Options - Preset ConfiguratiormskSimple periodic interrupt
— For the Timeout Period choose a Fixed Period ofrb66c
as shown in Figure 4.

Interval Timer — timer

Interval Timer

rTimeout period

Period: 500

 Timer counter size
‘ Counter Size:[32 |~ | bits |
—Hardware options

Presets: | Custom b

rRegisters

Writable period
Readable snapshot

Start/Stop control bits

rOutput signals

[] Timeout pulse (1 clock wide)

[[] System reset on timeout (Watchdog)

Figure 4. Specification for the Interval Timer

3. From theSystemmenu, selechuto-Assign Base Addressesrou should now have the system shown
in Figure 5.

® iltera SOPC Builder — DE2_115_SOPC.sopes (D:\NIOS_TIA\DEZ 115 LAB_EXERCISESADE2 115_SOPC. sopc)
Fie Edit Module

System View Toole Niosll Help

System Contents | System Generation|
Fieney Target Clock Settings
Project Fi Device Family:| Cycione W E ~ Name S_Dume MHz
----- 3 New component. clk_S0 External 50.0 =
Library Remoy
E-Avalon Verification Suite
E-Bridges and Adapters
E-interface Protocols
&:] Legacy Components Use Conn... Module Name Description Clock Base End
(-Memories and Memory Contro. B cpu Nios Il Processor
r_:J"'P'.E'_iphemB instruction_master Avalon Memory Mapped Master clk_50
H Ef}--Debug and Performance data_master Avalon Memory Mapped Master IRQ O IRQ 31
[Display) f jtag_debug_module Avalon Memory Mapped Slave 0x00010800 (0x0D010EEE
E}FPG‘A Peripherals) B onchip_memory2 On-Chip Memory (RAM or ROM)
icrocentroller Peripheral b =1 Avalon Memory Mapped Slave clk_50 0x0000B000 |OxOOQOEEEE
Interval Timer B jtag_uvart ITAG UART
: PIO (Paraliel VO} avalon_jtag_slave Avalon Memory Mapped Slave clk_50 Ox00011020 |0x00011027
-Muttiprocessor Coordinati % - [T —
£ | | =1 Avalon Memory Mapped Slave clk_50 CuC0011000 Ox (001101
| I < i | >
Fat [ada] | [Remove | [Eat. | ¥ | = | AddessMap. | [Fiters. | Fiter: Deraut
@ Info: No errors or warnings.

oo [mwextp | [cenerae

Figure 5. The Nios Il system implemented by the S@Rilder.

4. Generate the system, exit the SOPC Builder andréd the Quartus |l software.

5. Instantiate the generated Nios Il system witherilog/VHDL module.

6. Assign the pin connections:
e clk - PIN Y2 (This is a 50 MHz clock)
e reset_n PIN M23 (This is the pushbutton swit¢¢EY0)

7. Compile the Quartus Il project.

8. Program and configure the Cyclone IV E EP4CE298F on the DE2_115 board to implement the
generated system.

Part Il

The JTAG UART can send ASCII characters to theraltdonitor Program, which will display these
characters in its terminal window. When the WSPA(HE in theControl register of the JTAG UART has
a non-zero value the JTAG UART can accept a newacher to be written to the Altera Monitor Program.
To write a character to the Debug Client, poll fowmously read) this register until space is avddaOnce
space is available the ASCII character can beewritito theData register of the JTAG UART.

Write a Nios Il assembly-language program to digptee letter Z approximately every 500 ms in the
terminal window of the Altera Monitor Program. Cieand execute the program as follows:

1. Using the Nios Il assembly language, write gpledhich reads thé&€ontrol register in the JTAG
UART and keeps looping until there is some writacgpavailable.

2. Write the letter Z to thBata register.
3. Using the Altera Monitor Program, compile andddhe assembly-language program.

4. Run this program using the single step featahg. df you run this program using the Continue rapd
the character will be sent to the terminal windewstér than the Altera Monitor Program can handle.

5. In the assembly-language code, create a detgydo that characters are only printed approximatel
every half second.

6. Recompile, load and run the program.
Part Il

The JTAG UART can receive ASCII characters fromtéreninal window, as well as write them. The
RVALID bit, b15, in theData register indicates whether or not a value in theTBAfield is a valid
received ASCII character. If more characters aitbvgaiting to be read, the RAVAIL field will hava
non-zero value.

Write a program that implements a “typewriter-lika’sk; that is, read each character that is redeive

by the JTAG UART from the host computer and thespliy this character in the terminal window of the
Debug Client. Use polling to determine if a newrelcéer is available from the JTAG UART. Note: the
cursor must be in the terminal window of the Delgligent to write characters to the JTAG UART's
receive port.

Part IV

Polling the JTAG UART is inefficient, due to theeshiead of reading its registers to determine the
UART's state. The overhead of determining if a nelmaracter is available significantly impacts the
performance of the program. Instead of pollings ipossible to use the interrupt mechanism, whilchwa
the processor to do useful work while it is waitfiog an 1/0 transfer to take place.

Create an interrupt-service routine to read characdteceived by the JTAG UART from the host
computer. Place the interrupt-service routine atiibx address 0x20, because this is the defaalidocfor
the exception handler as chosen by the SOPC Builder. The exception retddness in thea register must
be decremented by 4 for external interrupts. Figurgives a skeleton of the interrupt-service raaitin
written in the Nios Il assembly language.

.include “nios macros.s”

text

.org 0x20 /* Place the interrupt service routine */
/* at the appropriate address */

ISR:

rdctl et, ctl4 /* Check if an external */

beqet, r0, SKIP EA DEC /* interrupt has occurred */
subiea, ea, 4 /* If yes, decrement ea to execute */
/* interrupted instruction */

SKIP EA DEC:

... the interrupt-service routine

END ISR:

eret /* Return from exception */

.global start

start: /* Program start location */

Figure 6. Assembly language code skeleton forritegriupt-service routine.

Nios II's control registertl3, also referred to agnable, enables interrupts on an individual basis. Note
that when the system was created in Part |, the&UART was placed at interrupt level 0. This means
that bitO of the control registertl3 must be set to 1 to enable the JTAG UART's inteilsup

Perform the following:

1. Create an interrupt-service routine to readaaatter from the JTAG UART. Note that
* The interrupt service routine must be placedhatmemory address 0x20.
» To enable interrupts, appropriate values muswiien to theControl register of the JTAG UART,

and the Nios II's control registec0 andctl3.

2. In your interrupt service routine, use the pgjlapproach to display the characters received tham
host computer in the terminal window of the Altétanitor Program.

3. Compile, load and run your program.

If your program does not work at a first try, youlwave to debug it and fix the errors. One aid in
debugging is the single-step feature of the Altdaitor Program, which allows the user to obsehe t
flow of execution and the contents of Nios Il régis as each instruction is being executed. Howeélvisr
approach cannot be used when interrupts are ingphecause interrupts are automatically disableenwh
single stepping through a program. Therefore, usakpoints as a debugging aid.

Note also that interrupts are automatically disabidnen the execution of an interrupt-service ratin
begins and re-enabled upon exit from this routifl@s means that if some application required nested
interrupts, the interrupts would have to be re-édhlwithin the interrupt-service routine.

PartV

In this part we wish to write a program that usgerrupts to read characters received by the JTAG
UART from the host computer and displays the lasiracter received repeatedly every 500 milliseconds
In Part Il we used a delay loop to generate ancqopiate time interval of this length. Now, we wamuse
the Interval Timer circuit for this purpose. Thedrval Timer should interrupt the processor eveél§ Bs
at which point a character should be written toliebug Client’'s terminal window.

The Interval Timer has an internal counter whickeas to a specified value and then decremented in
each clock cycle. When the counter reaches Opsetiut” event is said to have occurred. At this ptie
Interval Timer can raise an interrupt request d&edcbunter can be reset to the specified valuelritbeval
Timer has a set of 16-bit registers that can bessad as memory locations, similar to the JTAG UART
Two of these register§atus andControl, are shown in Figure 7. The address ofStatus register is the
base address assigned to the Interval Timer, wgl@ddress of th€ontrol register is 4 bytes higher.

15 2 1 0

RUN | TO

(a) Status register
15 4 3 2 1 0

STOP |START |CONT | ITO

(b) Control register

Figure 7. Registers in the Interval Timer

The bits in theStatus register are used as follows:
* b0 (TO) is the timeout bit. It is set to 1 whée internal counter in the Interval Timer reachels O
remains
set until explicitly cleared by the processor wgtia O to it.

* b1 (RUN) is equal to 1 when the internal coumggunning; otherwise, it is equal to 0. This kihiot
changed by a write operation to ®eatus register.

The bits in theControl register are used as follows:
* b0 (ITO) enables the Interval Timer interruptsentset to 1.

* b1 (CONT) determines how the internal counterdyel when it reaches 0. If CONT = 1, the counter
runs
continuously by reloading the specified initial obwalue; otherwise, it stops when it reaches 0.

* b2 (START) causes the internal counter to starhing when set to 1 by a write operation.

* b3 (STOP) stops the internal counter when sitlip a write operation.
More information on the Interval Timer may be foundhapter 12 of thaltera Embedded
Peripherals Handbook.

To enable both interrupts, from the Interval Tirmad the JTAG UART for reading characters (from Part
IV),the bits b1l and b0 of the control regist#3 must both be set to 1. As seen in Figure 5, theGTA
UART is on interrupt line O (or b0) and the Intdr¥amer is on interrupt line 1 (or bl). The contrebister
ctl4, also referred to agpending, can be used to determine which interrupt hasroedulf an interrupt is
disabled using the control regis3, it will not cause the interrupt-service routimeeixecute, nor will it
show as being triggered in the control registt, even if the device is driving its interrupt-requéne to
Perform the following steps:

1. Modify the program from Part 1V, so that the marogram enables interrupts and then waits in an
infinite loop.

2. Modify the interrupt-service routine to handlettb the Interval Timer and the JTAG UART'’s read
interrupts.

3. To enable interrupts, appropriate values muswtigen to the Control register of the JTAG UART,
the Control register of the Interval Timer and Mies Il control registers ctlO and ctl3.

4. Compile, load and run your program.

Copyright© 2010 Altera Corporation.

