Using the SDRAM Memory on Altera’s DE2-115
Board with Verilog Design

This tutorial explains how the SDRAM chip on Altera’s DE2-115 Development and Education
board can be used with a Nios Il system implemented by using the Altera SOPC Builder. The
discussion is based on the assumption that the reader has access to a DE2-115 board and is
familiar with the material in the tutorial Introduction to the Altera SOPC Builder Using Verilog
Design.

The screen captures in the tutorial were obtained using the Quartus Il version 9.1; if other
versions of the software are used, some of the images may be slightly different.

Contents:

Example Nios Il System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios Il System
Integration of the Nios Il System into the Quartus Il Project

The introductory tutorial Introduction to the Altera SOPC Builder Using Verilog Design
explains how the memory in the Cyclone IV FPGA chip can be used in the context of a simple
Nios Il system. For practical applications it is necessary to have a much larger memory. The
Altera DE2-115 board contains an SDRAM chip that can store 32 Mbytes of data. This memory
is organized as 32M x16bits x 4 banks. The SDRAM chip requires careful timing control. To
provide access to the SDRAM chip, the SOPC Builder implements an SDRAM Controller
circuit. This circuit generates the signals needed to deal with the SDRAM chip.

1 Example Nios Il System

As an illustrative example, we will add the SDRAM to the Nios Il system described in the
Introduction to the Altera SOPC Builder Using Verilog Design tutorial. Figure 1 gives the block
diagram of our example system.

Host Computer

USB-Blaster
Reset_n Clock Interface
Cyclone IV FPGA chip
e T P JTAG Debug JTAG UART
module Interface
Avalon Switch fabric
On Chip SDRAM Switches LED Parallel
Memory Controler Parallel Input Output
Interface Interface
[X X J [X X J
SW7 SWO LEDG7 LEDGO

SDRAM SDRAM
Chip1 Chip2

Figure 1 Example Nios Il system implemented on the DE2-115 board.

The system realizes a trivial task. Eight toggle switches on the DE2-115 board, SW7-0,
are used to turn on or off the eight green LEDs, LEDG7-0. The switches are connected to the
Nios Il system by means of a parallel I/O interface configured to act as an input port.

The LEDs are driven by the signals from another parallel 1/O interface configured to act as
an output port. To achieve the desired operation, the eight-bit pattern corresponding to the
state of the switches has to be sent to the output port to activate the LEDs. This will be done by
having the Nios Il processor execute an application program. Continuous operation is required,
such that as the switches are toggled the lights change accordingly.

The introductory tutorial showed how we can use the SOPC Builder to design the hardware
needed to implement this task, assuming that the application program which reads the state of
the toggle switches and sets the green LEDs accordingly is loaded into a memory block in the
FPGA chip. In this tutorial, we will explain how the SDRAM chip on the DE2-115 board can be
included in the system in Figure 1, so that our application program can be run from the
SDRAM rather than from the on-chip memory. Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to include an SDRAM interf ace for a Nios ll-based

system
e Timing issues with respect to the SDRAM on the DE 2-115 board
e Using a phase-locked loop (PLL) to control the cIl ock timing

2 The SDRAM Interface

The SDRAM chip on the DE2-115 board has the capacity of 128 Mbytes. It is organized
as 32M x 32 bits x 4 banks. The signals needed to communicate with this chip are shown in
Figure 2. All of the signals, except the clock, can be provided by the SDRAM Controller that
can be generated by using the SOPC Builder. The clock signal is provided separately. It has to
meet the clock-skew requirements as explained in section 5. Note that some signals are active
low, which is denoted by the suffix N.

Clock

CLK
Clock Enable
»| CKE
Address » ADDR[12:0]
Bank Address 1
»| BA1
Bank Address 0 > BAO
SDRAM Ch|p Select SDRAM
controller » CS_N chip
Column Address Strobe
» CAS N
Row Address Strobe »| RAS_N
Write Enable »| WE N
< Data »| DQ[31:0]
SDRAM byte Data Mask »| DQM[3:0]

Figure 2 The SDRAM signals.

3 Using the SOPC Builder to Generate the Nios Il Sy stem

Our starting point will be the Nios Il system discussed in the Introduction to the Altera
SOPC Builder Using Verilog Design tutorial, which we implemented in a project called lights.
We specified the system shown in Figure 3.

™ fltara SOPC Builder - nios_system.sopc (D:yjohnnyisope builder_tutorialinios_system.sopc)
File Edit Module System “iew Toolz Mozl Help

System Corterts | System Generation

Componert Library Target flock ey
Project ~| | DeviceFamiy|cycloneivE % | | Name Source MHz
LU New component.. == T ok [External 150.0 t ;
Library .
[#-Avalon Yerification Suite
+-Bridges and Adapters
Interface Protocols R o — — — — —
Legscy Components Use Conn... Module Name Description Clack Baze End Tags
[#-hemories and Memory Contro & B cpu_d Mios Il Processar
: Pgripherals instruction_master Lvalon Memory Mapped Master clk_0
Debug and Perfarmance data_ master Avwalon Memory Mapped Master IRQ O IRQ 31
Display ftag_dsbug_maduls Awslon Memory Mapped Slave 0x00002800 [0x0000Z£F£
FRGA Peripherals ¥ E onchip_memory2 0 |On-Chip Memory (RAWM or ROM)
Microcontroler Peripheral: s1 Avalon Memary Mapped Slave clk_0 000001000 |0x00001fEf
@ Interval Timer El Switches PIO (Parallzl 0]
.o @ PIC (Parallel 110) =1 Awslon Memory Mapped Slave elic 0 0x00003000 |0x0000300f
Multiprocessor Coordinati] S LEDs FIc (Parallel 10}
E-PLL 51 Awalon Memory Mapped Slave clk_0 000003010 |0x0000301 £
Proces=zar Additions B jtag_uart_0 JTAG UART
[F-Processars | avalon_jtag_slave Avalon Memory Mapped Slave elk_0 0x00003020 |0x00002027
@ Mios Il Processor |
& |
1% | i

New. || Ei x| alfw|[= Address Map... Fiter: Defaut

Figure 3.The Nios Il system defined in the introductory tutorial.

If you saved the lights project, then open this project in the Quartus Il software and then
open the SOPC Builder. Otherwise, you need to create and implement the project, as
explained in the introductory tutorial, to obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 select Memories and Memory
Controllers > SDRAM > SDRAM Controller and click Add. A window depicted in Figure 4
appears. Set the Data Width parameter to 16 bits and leave the default values for the rest.
Since we will not simulate the system in this tutorial, do not select the option Include a
functional memory model in the system testbench. Click Finish. Now, in the window of Figure 3,
there will be an sdram_0 module added to the design. Since there is only one SDRAM on the
DEZ2-115 board, change the name of this module to simply SDRAM. Then, the expanded
system is defined as indicated in Figure 5.

Observe that the SOPC Builder assigned the base address 0x00800000 to the SDRAM.
Leave the addresses of all modules as assigned in the figure and regenerate the system.

= SDRAM Controller - sdram_0

SDRAM Controller

Memory Profi Timing

Presets: i Custom v

~Drata width
Bits: [32 v.|

FArchitecture

Chip select: 4 v| Banks: |4 v

“Address widths
Rowy: |13 Column: | 1| |

~Share ping via fristate hridge

|:| Controller shares doidgmifaddr 100 ping

Tristate bridge selection:

-Generic memaory model (simulation anly

Include & functional memory model in the system testbench

Memory size = 32 MBytes
385605 x 32
256 MEits

m

=ik

Figure 4.Add the SDRAM Controller.

Altera SOPC B ios_system.sopc™ (D:\johnny\sopc builder tutorialy ystem.sopc)
File Edit Module System “iew Toolz Mozl Help

System Corterts | System Generation |

Componert Library Target oG REds
Project -~ Device Family: r&yclune Mame Source WHz
U New companent... : leko [External 150.0
Library
[#-Avalon Yerification Suite
#-Bridges and Adapters
[#-Interface Protocols
#-Legscy Components : Use Conn... Module Name Description Clack Baze End Tags
[=-Memories and Memory Contro ™ E cpu_ hlios Il Proceszor
- @ QDR Il and GOR I+ SR instruction_master Avalon Memary Mapped Master clk_0
RLORAM I Cordroller * date_master Awalon Memary Mapped Master IRD O IRD 31
@ Traftic Generstor anc, f- ftag_debug_module Awalon Memory Mapped Slave 000001000 0x0000L7£f
B-DbA] . E onchip_memory2 0 On-Chip Memory (RAM or ROM)
F-Flash I =1 Awalon Memary Mapped Slave clk_0 0x00000000 |0x00000£FE
[#-0n-Chip B Switches PIC (Parallgl 110)
=hSDRAM =1 &valon Memory Mapped Slave clk_0 0x00001800 0x0000180f
@ DDR SDRAM Conl] E LEDs FIC) (Parallel 110
DDR SDRAM High =1 Avalon Memary Mapped Slave clk_0 000001810 [0x0000181 £
@ DDR2 SDRAM Coi Bl jtag_uart_0 JTAG UBRT
DDR2 SDRAM Hig avalon_jtag_siave Awalon Memory Mapped Slave el 0 000001820 0x00001827
| DDR3 SDRAM Hig v Py ;
£ | > | | =1 Awalon Memory Mapped Slave elk_o 0508000000 [0x0fEEfEE |
4 | | X g >
@ v || = Fiter: Defaut

@ Info: Switches: PIO inputs are not hardwired intest bench. Undefined values will be read from P12 inputs during simulstion

Figure 5.The expanded Nios Il system.

= Nios |l Processor - cpu_0

Nios II Processor

nced Features

rCore Mias |l

| Select a Hios Il core:

J | ONios Ilfs ONios I
N RISC RISC RISC
Nios Il 32-bit ‘320t 32-hit
Selectar Guide Instruction Cache Instruction Cache
Family: Cyclane Iv E Branch Prediction Branch Prediction
Hardware Multiphy Hardweare Muttiply
Toystem: 500 MHz 'Hardware Divide Harlvare Divide
. Barrel Shifter
cpuic: 0 Data Cache
Mymamic Branch Prediction
Performance at 500 hHx Lp to B EWPS Upto 32 DMIPS Lipto 57 DMIPS
Logic Usage BO0-700 LEs 1200-1400 LE= 1400-1500 LE=s
Memory Usage Tovo MK (or eguiv.) Twvo M8K= + cache Three M3K= + cache
Harcharare hultiphy: farcivware
Reset Yector: Memary: | sram 0 v IOffset |0x0 |Uxuguuuuuu
Exception Wectar: Memory: | Offset: gezn | ox0B000020

e

Only include the MMU when using an opersting system that explictly supports an MU
Fast TLE Miss Exception Vector: Memary: Offset: |

Figure 6. Set CPU Reset vector and Exception memory to sdram_0

The augmented Verilog module generated by the SOPC Builder is in the file

nios_system.v (nios_led.v) in the directory of the project. Figure 7 depicts the portion of the
code that defines the input and output signals for the module nios_system.

As in our initial system that we developed in the introductory tutorial, the 8-bit vector that
is the input to the parallel port Switches is called in_port_to_the Switches. The 8-bit output
vector is called out_port from_the LEDs. The clock and reset signals are called clk and
reset_n, respectively. A new module, called sdram, is included.

It involves the signals indicated in Figure 2. For example, the address lines are referred to
as the output vector zs_addr_from_the_sdram [12:0]. The data lines are referred to as the
inout vector zs_dq_to_and_from_the _sdram[31:0]. This is a vector of the inout type because
the data lines are bidirectional.

/F =
TF mos_system_ v

@ 3334 Emodule nios_system |
3335 A1) global signals:
ik 3336 clk O,
& 3337 reset_n,
¥ 3338
3339 /¢ the LED=s
L 3340 out_port from the LED=s,
= 3341
i= 3342 /¢ the Switches
g 3343 in port to_the Switches,
A || 3344
% 3345 /¢ the sdram 0
o 3346 z5_addr from the sdram 0,
A 3347 £5_ha from the sdram 0O,
/ﬁ‘ 3348 g5_cas_n from the sdram 0O,
3349 z5_cke from the sdram 0O,
@ 3350 £5_rcsS_n from the sdram 0O,
E‘E} 3351 g5_dg to_and from the sdram 0,
3352 25_dom from the sdram O,
I@ 3353 g5_ras_n from the sdram 0O,
3354 £5_we_n from the sdram 0O
2w || 3355 j
ah 3356 ;
3357
3358 output [7: 0] out_port from the LEDs:
— 3359 output [12: 0] =z5_addr from the sdram 0;
3360 output [1: 0] z25_ha from the sdram 0;
= 33el output g5_cas_n from the sdram 0
Lo 3362 output g5_cke from the sdram 0;
- 3363 output £5_csS_n from the sdram 0;
3364 inout [31: 0] =5 _dg to_and from the sdram 0;
33685 output [3: 0] =z5_don from the sdram 0;
33o6 output g5_ras_n from the sdram 0
3387 output zzg we n from the sdram 0O;
<

Figure 7.A part of the generated Verilog module.

4 Integration of the Nios Il System into the Quartu s Il Project

Now, we have to instantiate the expanded Nios Il system in the top-level Verilog module, as we
have done in the tutorial Introduction to the Altera SOPC Builder Using Verilog Design. The
module is named lights, because this is the name of the top-level design entity in our Quartus
Il project.

A first attempt at creating the new module is presented in Figure 8. The input and output
ports of the module use the pin names for the 50-MHz clock, CLOCK_50, pushbutton switches,
KEY, toggle switches, SW, and green LEDs, LEDG, as used in our original design. They also
use the pin names DRAM_CLK, DRAM_CKE, DRAM_ADDR,DRAM_BA,DRAM_CS_N,
DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N, DRAM_DQ, and DRAM_DQM, which
correspond to the SDRAM signals indicated in Figure 2.

All of these names are those specified in the DE2-115 User Manual which allows us to

make the pin assignments by importing them from the file called
DEZ2-115 pin_assignments.csv in the directory DE2-115 tutorials\design_files, which is
included on the CD-ROM that accompanies the DE2-115 board and can also be found on
Altera’s DE2-115 web pages.

Finally, note that we tried an obvious approach of using the 50-MHz system clock,
CLOCK_50, as the clock signal, DRAM_CLK, for the SDRAM chip. This is specified by the
assign statement in the code. This approach leads to a potential timing problem caused by the
clock skew on the DE2-115 board, which can be fixed as explained in section 5.

/I Implements the augmented Nios Il system for the DE2-115 board.

/I Inputs: SW7-0 are parallel port inputs to the Nios Il system.

/I CLOCK_50 is the system clock.

/I KEYO is the active-low system reset.

/I Outputs: LEDG7-0 are parallel port outputs from the Nios Il system.

/I SDRAM ports correspond to the signals in Figure 2; their names are those
/l used in the DE2-115 User Manual.

module lights (SW, KEY, CLOCK_50, LEDG, DRAM_CLK, DRAM_CKE,
DRAM_ADDR, DRAM_BA, DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N,
DRAM_WE_N, DRAM_DQ, DRAM_DQM);

input [7:0] SW;

input [0:0] KEY;

input CLOCK_50;

output [7:0] LEDG;

output [12:0] DRAM_ADDR;

output [1:0] DRAM_BA;

output DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;

output DRAM_CKE, DRAM_CS_N, DRAM_WE_N;

output [3:0] DRAM_DQM;

inout [31:0] DRAM_DQ;

/I Instantiate the Nios Il system module generated by the SOPC Builder
nios_system Niosll (
CLOCK_50,

KEY [0],

LEDG,

SwW,

DRAM_ADDR,
DRAM_BA,
DRAM_CAS_ N,
DRAM_CKE,
DRAM_CS_N,

10

DRAM_DQ,

DRAM_DQM,

DRAM_RAS N,

DRAM_WE_N);

assign DRAM_CLK = CLOCK_50;

endmodule

Figure 8.A first attempt at instantiating the expanded Nios Il system.

As an experiment, you can enter the code in Figure 8 into a file called lights.v. Add this file
and all the *.v files produced by the SOPC Builder to your Quartus Il project. Compile the code
and download the design into the Cyclone IV FPGA on the DE2-115 board. Use the application
program from the tutorial Introduction to the Altera SOPC Builder Using Verilog Design, which
is shown in Figure 9.

.include "nios_macros.s"
.equ Switches, 0x00001800
.equ LEDs, 0x00001810

.global _start

_start:

movia r2, Switches

movia r3, LEDs

loop: Idbio rd, 0(r2)
stbio r4, 0(r3)
br loop

Figure 9.Assembly language code to control the lights.

11

