Laboratory Exercise 9

A Simple Processor

Figure 1 shows a digital system that contains a number of 16-bit registers, a multiplexer,
an adder/subtracter unit, a counter, and a control unit. Data is input to this system via the 16-bit
DIN input. This data can be loaded through the 16-bit wide multiplexer into the various
registers, such as RO, . . ., R7 and A. The multiplexer also allows data to be transferred from
one register to another. The multiplexer’s output wires are called a bus in the figure because
this term is often used for wiring that allows data to be transferred from one location in a
system to another.

Addition or subtraction is performed by using the multiplexer to first place one 16-bit
number onto the bus wires and loading this number into register A. Once this is done, a
second 16-bit number is placed onto the bus, the adder/subtracter unit performs the required
operation, and the result is loaded into register G. The data in G can then be transferred to one
of the other registers as required.

- RO “ea . . R7 A
Clock
I

AddSub

Adedsub

DIN -
[1]

16

Bus

D 'r "‘.'Jh L

Control unit

- ‘ o
Counter

Figure 1.A digital system.

Run

Resetn

The system can perform different operations in each clock cycle, as governed by the
control unit. This unit determines when particular data is placed onto the bus wires and it
controls which of the registers is to be loaded with this data. For example, if the control unit
asserts the signals RO out and Ain, then the multiplexer will place the contents of register RO
onto the bus and this data will be loaded by the next active clock edge into register A.

A system like this is often called a processor. It executes operations specified in the form
of instructions. Table 1 lists the instructions that the processor has to support for this exercise.
The left column shows the name of an instruction and its operand. The meaning of the syntax
RX « [RY] is that the contents of register RY are loaded into register RX. The mv (move)
instruction allows data to be copied from one register to another. For the mvi (move immediate)
instruction the expression RX «— D indicates that the 16-bit constant D is loaded into register
RX.

Operation Function performed
mv Rz, Ry Rz — [Ry]
mvi Rz, #D Rx — D

add Rz, Ry | Rx — [Rz] + [Ry]
sub Rz. Ry | Rr — [Rx]| — [RyY]

Table 1.Instructions performed in the processor.

Each instruction can be encoded and stored in the IR register using the 9-bit format
HIXXXYYY, where Ill represents the instruction, XXX gives the RX register, and YYY gives the
RY register. Although only two bits are needed to encode our four instructions, we are using
three bits because other instructions will be added to the processor in later parts of this
exercise. Hence IR has to be connected to nine bits of the 16-bit DIN input, as indicated in
Figure 1. For the mvi instruction the YYY field has no meaning, and the immediate data #D has
to be supplied on the 16-bit DIN input after the mvi instruction word is stored into IR.

Some instructions, such as an addition or subtraction, take more than one clock cycle to
complete, because multiple transfers have to be performed across the bus. The control unit
uses the two-bit counter shown in Figure 1 to enable it to “step through” such instructions. The
processor starts executing the instruction on the DIN input when the Run signal is asserted
and the processor asserts the Done output when the instruction is finished. Table 2 indicates
the control signals that can be asserted in each time step to implement the instructions in Table
1. Note that the only control signal asserted in time step 0 is IRin, so this time step is not
shown in the table.

T]_ T: 2 'TS

(mv): Iy | RY,u:, RX;,,
Done
(mvi): I1 | DIN,us, RXin,
Done
(add): I» Rk g, A RY 1. Gin Gt BX 5
Done
(sub): I3 RX oty Ain RYs00. Gin, | Gove, BXw,
AddSub Done

Table 2.Control signals asserted in each instruction/time step.

Part |

Design and implement the processor shown in Figure 1 using VHDL code as follows:

1.
2.

Create a new Quartus Il project for this exercise.

Generate the required VHDL file, include it in your project, and compile the circuit. A
suggested skeleton of the VHDL code is shown in parts a and b of Figure 2, and some
sub-circuit entities that can be used in this code appear in parts ¢ and d.

Use functional simulation to verify that your code is correct. An example of the output
produced by a functional simulation for a correctly-designed circuit is given in Figure 3. It
shows the value (2000);6 being loaded into IR from DIN at time 30 ns. This pattern
represents the instruction mvi RO, #D, where the value D =5 is loaded into RO on the clock
edge at 50 ns. The simulation then shows the instruction mv R1,R0 at 90 ns, add RO,R1 at
110 ns, and sub RO,R0 at 190 ns. Note that the simulation output shows DIN as a 4-digit
hexadecimal number, and it shows the contents of IR as a 3-digit octal number.

Create a new Quartus Il project which will be used for implementation of the circuit on the
Altera DE2-115 board. This project should consist of a top-level entity that contains the
appropriate input and output ports for the Altera board. Instantiate your processor in this
top-level entity. Use switches SW15-0 to drive the DIN input port of the processor and use
switch SW17 to drive the Run input. Also, use push button KEY 0 for Resetn and KEY1 for
Clock. Connect the processor bus wires to LEDR15-0 and connect the Done signal to
LEDR17.

Add to your project the necessary pin assignments for the DE2-115 board. Compile the
circuit and download it into the FPGA chip.

Test the functionality of your design by toggling the switches and observing the LEDs.
Since the processor’s clock input is controlled by a push button switch, it is easy to step
through the execution of instructions and observe the behavior of the circuit.

LIBRARY ieee: USE ieee.std_logic_1164.all;

USE ieee.std logic_signed.all;

ENTITY proc IS

PORT (DIN : IN
Resetn, Clock, Run : IN
Done : BUFFER
BusWires : BUFFER
END proc:

ARCHITECTURE Behavior OF proc IS
... declare components
... declare signals
BEGIN
High <="1";
Clear <=. ..

STD LOGIC_VECTOR(15 DOWNTO 0):
STD LOGIC:

STD LOGIC:

STD LOGIC VECTOR(15 DOWNTO 0)):

Tstep: upcount PORT MAP (Clear, Clock, Tstep Q);

[<=IR(1 TO 3);

decX: dec3to8 PORT MAP (IR(4 TO 6), High, Xreg):
dec’: dec3to8 PORT MAP (IR(7 TO 9), High, Yreg);

Figure 2a.Skeleton VHDL code for the processor.

controlsignals: PROCESS (Tstep_Q, I, Xreg, Yreg)

BEGIN
... specify initial values
CASE Tstep QIS

WHEN "00" =2 -- store DIN in IR as long as Tstep Q=10

[Rin<="1":

WHEN "01" => -- define signals in time step T |

CASEILIS

END CASE:

WHEN "10" => -- define signals in time step T2

CASEIIS

END CASE;

WHEN "11" == -- define signals in time step T3

CASEIIS

END CASE;
END CASE,
END PROCESS:

reg_(: regn PORT MAP (BusWires, Rin(0), Clock, R0);
... instantiate other registers and the adder/subtracter unit

... define the bus
END Behavior;

Figure 2b.Skeleton VHDL code for the processor.

4

LIBRARY ieee;
USE ieee.std logic 1164.all;
USE ieee.std logic_signed.all;

ENTITY upcount IS
PORT (Clear, Clock : IN STD _LOGIC;
Q :OUT STD_LOGIC_VECTOR(1 DOWNTO 0));
END upcount;

ARCHITECTURE Behavior OF upcount IS
SIGNAL Count : STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
PROCESS (Clock)
BEGIN
IF (Clock’EVENT AND Clock="1") THEN
IF Clear="1"THEN
Count <="00";
ELSE
Count <= Count + 1;
END IF;
END IF;
END PROCESS;
() <= Count;
END Behavior;

Figure 2c.Subcircuit entities for use in the processor.

LIBRARY isce;
LSE ieeestd logic | 164all;

ENTITY decitef IS
PORT{ W 1IN STD_LOGIC_VECTOR(Z DOWNTO 0);
En :IN STD_LOGIC:
¥ 1 OUT STD_LOGIC VECTOR{DTO Tk
END dac3iok:

ARCHITECTURE Behaviar OF dec3tof [§

BEGIN
PROCESS (W, En)
BEGIN
IFEn="l"THEN
CASE WIS
WHEN "000" == ¥ =" | D00
WHEN "0 1" == ¥ <="01 0003000
WHEN "010" =2 ¥ <= "00 [000"
WHEN "0 1™ == ¥ <="000 | 3000
WHEN "100" == ¥ <= "0000 1 500"
WHEN 101" == ¥ «<="00000 100"
WHEN "110" == % <= "00000 10"
WHEN "111% == ¥ «<="00000001 "
ExD CASE:
ELSE
¥ = "D D000
ERD IF;
ExD PROCESS:
END Bzhaviar:
LIBR ARY ieee;

LSE ieeesid_logic_|1&dall;

ENTITY regn [S

GEMERIC {n : INTEGER = &)

PORT { R 1IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

Rin, Clack : 1IN ETD_LOGIC,
: BUFFER STD_LOGIC_WVECTOR(n-1 DOWNTO 0));

END regn;
ARCHITECTURE Behaviar OF regn I8
BEGIN

PROCESS (Clock)

BEGIN

F Clack"EVENT AND Clack="]" THEN
[F Rin ="1" THEN
o ==R;
END IF;
EWND [F;
ENDPROCESS:
END Behaviar;

Figure 2d.Subcircuit entities for use in the processor.

Part Il

In this part you are to design the circuit depicted in Figure 4, in which a memory module
and counter are connected to the processor from Part I. The counter is used to read the
contents of successive addresses in the memory, and this data is provided to the processor as
a stream of instructions. To simplify the design and testing of this circuit we have used
separate clock signals, PClock and MClock, for the processor and memory.

Processor
Memory
Counter
16
. 16 Bus fplm—— Bus
addr data DIN
Done Done
A -
A 5
MClock
PClock
Resetn
Run

Figure 3.Connecting the processor to a memory and counter.

1. Create a new Quartus Il project which will be used to test your circuit.

2. Generate a top-level VHDL file that instantiates the processor, memory, and counter. Use

the Quartus Il MegaWizard Plug-In Manager tool to create the memory module from the
Altera library of parameterized modules (LPMs). The correct LPM is found under the
storage category and is called ROM:1-PORT. Follow the instructions provided by the
wizard to create a memory that has one 16-bit wide read data port and is 32 words deep.
The first screen of the wizard is shown in Figure 4. Since this memory has only a read port,
and no write port, it is called a synchronous read-only memory (synchronous ROM). Note
that the memory includes a register for synchronously loading addresses. This register is
required due to the design of the memory resources on the Cyclone IV FPGA; account for
the clocking of this address register in your design.
To place processor instructions into the memory, you need to specify initial values that
should be stored in the memory once your circuit has been programmed into the FPGA
chip. This can be done by telling the wizard to initialize the memory using the contents of a
memory initialization file (MIF). The appropriate screen of the MegaWizard Plug-In
Manager tool is illustrated in Figure 5. We have specified a file named inst_mem.mif,
which then has to be created in the directory that contains the Quartus Il project. Use the
Quartus Il on-line Help to learn about the format of the MIF file and create a file that has
enough processor instructions to test your circuit.

3. Use functional simulation to test the circuit. Ensure that data is read properly out of the
ROM and executed by the processor.

4. Make sure your project includes the necessary port names and pin location assignments
to implement the circuit on the DE2-115 board. Use switch SW17 to drive the processor’s
Run input, use KEY 0 for Resetn, use KEY1 for MClock, and use KEY2 for PClock, Con-
nect the processor bus wires to LEDR15-0 and connect the Done signal to LEDR17.

5. Compile the circuit and download it into the FPGA chip.
6. Test the functionality of your design by toggling the switches and observing the LEDs.

Since the circuit’s clock inputs are controlled by push button switches, it is easy to step
through the execution of instructions and observe the behavior of the circuit.

NegaWizard Plug—In Manager — RON: 1-PORT [page I of 5]

Parameter

Settings

General >

Currently selected device family: E o

] Match project/default

How wide zhould the 'q' output bus be? |_;~!_5~: bitz

How many 16-bit words of memory? |32 bl words

—What ghould the memon block type be’?

) Auto ") MoK

Set the maximum block depth to :.-’-'l.uto

—What clocking method would vou like to uze?
@) Single dock
i Dual dock: use separate ‘imput’ and ‘output’ clocks

Resource Usage

1 MK [ondl | oo [t | Ensn |

Figure 4.ROM:1-PORT configuration.

NegaWizard Plug—In Nanager — RON: 1-PORI [page 3 of 5l

Documentation

- Dio you want to specify the initial content of the memary?

@ fes use this fle for the memary content dats
{You can use a Hexadecimal (Intel-format) File [hex] or a Memory

Initiglization File [mif])

File name: [inst_mem.mif |

[] Allow In-System Memary Content Editor to capture and update content
independently of the system dock

The 'Instance I of this ROM is:

Resource Uzage
1 NMEK

| Cancel || < Back ” MHext = ” Finiish |

Figure 5.Specifying a memory initialization file (MIF).

Enhanced Processor

It is possible to enhance the capability of the processor so that the counter in Figure 3 is no
longer needed, and so that the processor has the ability to perform read and write operations
using memory or other devices. These enhancements involve adding new instructions to the
processor and the programs that the processor executes are therefore more complex. Since
these steps are beyond the scope of some logic design courses, they are described in a
subsequent lab exercise available from Altera.

Copyright © 2010 Altera Corporation.

