

Laboratory Exercise 2
Numbers and Displays

This is an exercise in designing combinational circuits that can perform binary-to-decimal
number conversion and binary-coded-decimal (BCD) addition.

Part I

We wish to display on the 7-segment displays HEX3 to HEX0 the values set by the switches SW
15−0. Let the values denoted by SW15−12, SW11−8, SW7−4 and SW3−0 be displayed on HEX3,
HEX2, HEX1 and HEX0, respectively. Your circuit should be able to display the digits from 0 to 9,
and should treat the valuations 1010 to 1111 as don’t-cares.

1. Create a new project which will be used to implement the desired circuit on the Altera
DE2-115 board. The intent of this exercise is to manually derive the logic functions needed for
the 7-segment displays. You should use only simple Verilog assign statements in your code
and specify each logic function as a Boolean expression.
2. Write a Verilog file that provides the necessary functionality. Include this file in your project
and assign the pins on the FPGA to connect to the switches and 7-segment displays, as
indicated in the User Manual for the DE2-115 board. The procedure for making pin
assignments is described in the tutorial Quartus II Introduction using Verilog Design, which is
available on the DE2-115 System CD and in the University Program section of Altera’s web
site.
3. Compile the project and download the compiled circuit into the FPGA chip.
4. Test the functionality of your design by toggling the switches and observing the displays.

Part II

You are to design a circuit that converts a four-bit binary number V =v3v2v1v0 into its two-digit
decimal equivalent D = d1d0. Table 1 shows the required output values. A partial design of this
circuit is given in Figure 1. It includes a comparator that checks when the value of V is greater than
9, and uses the output of this comparator in the control of the 7-segment displays. You are to
complete the design of this circuit by creating a Verilog module which includes the comparator,
multiplexers, and circuit A (do not include circuit B or the 7-segment decoder at this point). Your
Verilog module should have the four-bit input V , the four-bit output M and the output z. The
intent of this exercise is to use simple Verilog assign statements to specify the required logic
functions using Boolean expressions. Your Verilog code should not include any if-else, case, or
similar statements.

1

Binary value Decimal digits
0000 0 0
0001 0 1
0010 0 2

… … …
1001 0 9
1010 1 0
1011 1 1
1100 1 2
1101 1 3
1110 1 4
1111 1 5

Table 1 Binary-to-decimal conversion values

Perform the following steps:

1. Make a Quartus II project for your Verilog module.
2. Compile the circuit and use functional simulation to verify the correct operation of your

comparator, multi-plexers, and circuit A.
3. Augment your Verilog code to include circuit B in Figure 1 as well as the 7-segment decoder.

Change the inputs and outputs of your code to use switches SW3−0 on the DE2-115
board to represent the binary number V, and the displays HEX1 and HEX0 to show the
values of decimal digits d1 and d0. Make sure to include in your project the required pin
assignments for the DE2-115 board.

4. Recompile the project, and then download the circuit into the FPGA chip.
5. Test your circuit by trying all possible values of V and observing the output displays.

0

1

0

1

v2

0

v3

Circuit B
7

0

1

2

3

4

5
6

7-segment 7

0

1

2

3

4

5
6

0

1

v1

0

1

v0

Circuit A

Comparator

decoder

d1

d0

m2

m3

m1

m0

z

 Figure 1. Partial design of the binary-to-decimal conversion circuit.

2

Part III

Figure 2a shows a circuit for a full adder, which has the inputs a, b, and c i, and produces the
outputs s and c o.
Parts b and c of the figure show a circuit symbol and truth table for the full adder, which produces
the two-bit binary sum cos = a + b + ci. Figure 2d shows how four instances of this full adder
module can be used to design a circuit that adds two four-bit numbers. This type of circuit is
usually called a ripple-carry adder, because of the way that the carry signals are passed from one
full adder to the next. Write Verilog code that implements this circuit, as described below.

FA

0

1

c
i

a) Full adder circuit

a

b

c
o

s c
i

a

b
c
o

s

b) Full adder symbol

FA

a0b0

s0

FA

c1
a1b1

s1

FA

c2
a2b2

s2

FA

c3
a3b3

s3cout

d) Four-bit ripple-carry adder circuit

cin

0
0

c) Full adder truth table

a c
i

b

0 0
0 1

0
0

1 0
1 1

1 0 0

1
1

0 1
1 0

1 1 1

0
0

sc
o

0
1

0
1

1
0

0 1

1
1

0
0

1 1

Figure 2. A ripple-carry adder circuit

1. Create a new Quartus II project for the adder circuit. Write a Verilog module for the full adder

subcircuit and write a top-level Verilog module that instantiates four instances of this full
adder.

2. Use switches SW7−4 and SW3−0 to represent the inputs A and B, respectively. Use SW8 for
the carry-in cin of the adder. Connect the SW switches to their corresponding red lights LEDR,
and connect the outputs of the adder, cout and S, to the green lights LEDG.

3. Include the necessary pin assignments for the DE2-115 board, compile the circuit, and
download it into the FPGA chip.

4. Test your circuit by trying different values for numbers A, B, and c in.

Part IV

In part II we discussed the conversion of binary numbers into decimal digits. It is sometimes useful
to build circuits that use this method of representing decimal numbers, in which each decimal digit
is represented using four bits. This scheme is known as the binary coded decimal (BCD)
representation. As an example, the decimal value 59 is encoded in BCD form as 0101 1001.You
are to design a circuit that adds two BCD digits. The inputs to the circuit are BCD numbers A and B,
plus a carry-in, cin. The output should be a two-digit BCD sum S 1S0. Note that the largest sum
that needs to be handled by this circuit is S1S0 = 9 + 9 + 1 = 19. Perform the steps given below.

3

1. Create a new Quartus II project for your BCD adder. You should use the four-bit adder circuit

from part III to produce a four-bit sum and carry-out for the operation A + B. A circuit that
converts this five-bit result, which has the maximum value 19, into two BCD digits S1S0 can
be designed in a very similar way as the binary-to-decimal converter from part II. Write your
Verilog code using simple assign statements to specify the required logic functions–do not
use other types of Verilog statements such as if-else or case statements for this part of the
exercise.

2. Use switches SW7−4 and SW3−0 for the inputs A and B, respectively, and use SW 8 for the
carry-in. Connect the SW switches to their corresponding red lights LEDR, and connect the
four-bit sum and carry-out produced by the operation A + B to the green lights LEDG. Display
the BCD values of A and B on the 7-segment displays HEX6 and HEX4, and display the
result S 1S0 on HEX1 and HEX0.

3. Since your circuit handles only BCD digits, check for the cases when the input A or B is
greater than nine. If this occurs, indicate an error by turning on the green light LEDG 8.

4. Include the necessary pin assignments for the DE2-115 board, compile the circuit, and
download it into the FPGA chip.

5. Test your circuit by trying different values for numbers A, B, and c in.

Part V

Design a circuit that can add two 2-digit BCD numbers, A1 A0 and B1B0 to produce the three-
digit BCD sum S2S1S0. Use two instances of your circuit from part IV to build this two-digit BCD
adder. Perform the steps below:

1. Use switches SW15−8 and SW7−0 to represent 2-digit BCD numbers A1A0 and B1B0,
respectively. The value of A1A0 should be displayed on the 7-segment displays HEX7 and
HEX6, while B 1B0 should be on HEX5 and HEX4. Display the BCD sum, S2S1S0, on the
7-segment displays HEX2, HEX1 and HEX0.

2. Make the necessary pin assignments and compile the circuit.
3. Download the circuit into the FPGA chip, and test its operation.

Part VI

In part V you created Verilog code for a two-digit BCD adder by using two instances of the Verilog
code for a one-digit BCD adder from part IV. A different approach for describing the two-digit BCD
adder in Verilog code is to specify an algorithm like the one represented by the following
pseudo-code:

1 T0= A0 + B0

2 if (T0> 9) then
3
4

Z0 = 10;

c1 = 1;
5 else
6
7

Z0 = 0;
c1 = 0;

4

8 end if
9 S0= T0 − Z0

10 T1= A1 + B1 + c1

11 if (T1> 9) then
12 Z1= 10;

13 c2= 1;
14 else
15 Z1= 0;

16 c2= 0;
17 end if
18 S1= T1 − Z1

19 S2= c2

It is reasonably straightforward to see what circuit could be used to implement this

pseudo-code. Lines 1, 9, 10, and 18 represent adders, lines 2-8 and 11-17 correspond to

multiplexers, and testing for the conditions T 0 > 9 and T1> 9 requires comparators. You are

to write Verilog code that corresponds to this pseudo-code. Note that you can perform addition

operations in your Verilog code instead of the subtractions shown in lines 9 and 18. The intent

of this part of the exercise is to examine the effects of relying more on the Verilog compiler to

design the circuit by using if-else statements along with the Verilog > and + operators. Perform

the following steps:

1. Create a new Quartus II project for your Verilog code. Use the same switches, lights,

and displays as in part V. Compile your circuit.

2. Use the Quartus II RTL Viewer tool to examine the circuit produced by compiling your

Verilog code. Compare the circuit to the one you designed in Part V.

3. Download your circuit onto the DE2-115 board and test it by trying different values for

numbers A 1A0 and B1B0.

Part VII

Design a combinational circuit that converts a 6-bit binary number into a 2-digit decimal

number represented in the BCD form. Use switches SW5−0 to input the binary number and

7-segment displays HEX1 and HEX0 to display the decimal number. Implement your circuit on

the DE2-115 board and demonstrate its functionality.

Copyright ○c 2010 Altera Corporation.

5

