Laboratory Exercise 2
Program-Controlled Input/Output

The purpose of this exercise is to investigateutte of devices that provide input and output cditialsi
for a processor, and are controlled by software villleexamine these program-controlled I/O openagiédrom
both the hardware and software points of view. W& make use of parallel interfaceB]Os in a Nios |l
system implemented on an Altera DE2_115 board.bEuo&kground knowledge needed to do this exercise can
be acquired from the tutorialBitroduction to the Altera Nios Il Soft Processordintroduction to the Altera
SOPC Builderwhich can be found in the University Program isecbf the Altera web site.

The PIO interface used in this exercise, which t®mponent that can be generated by using the SOPC
Builder, provides for data transfer in either inputoutput (or both) directions. The transfer iseldin parallel
and it may involve from 1 to 32 bits. The numbelbds, n, and the direction of transfer are speatibig the
user through Altera’s SOPC Builder. The PIO integfaan contain the four registers shown in Figure 1

Address offset (n-1) 0
(in bytes)

0 Input/Output data

(a) Data register

4 Direction control for each input/output line

(b) Direction register

8 Interrupt enable/disable control for each inpug ljn

(c) Interrupt-mask register

12 Edge detection for each input line

(d) Edge-capture register
Figure 1. The registers in the PIO interface.

Each register is n bits long. The registers hagddhowing purpose:

Data register holds the n bits of data that are tramsfiebetween the PIO interface and the Nios Il
processor. It can be implemented as an input, gubp@ bidirectional register by the SOPC Builder.

Direction register defines the direction of the transfer dach of the n data bits when a bidirectional
interface is generated.

Interrupt-maskregister is used to enable interrupts from thatitipes connected to the PIO.

Edge-captureegister indicates when a change of logic valugetgected in the signals on the input lines

connected to the PIO. Not all of these registeesganerated in a given PIO interface. For exantpke,
Direction register is included only when a bidirectionakifiace is specified.

Not all of these registers are generated in a gri€hinterface. For example, the Direction register
is included only when a bidirectional interfacespecified.

The PIO registers are accessible as if they weraangelocations. Any base address that has
the four least significant bits equal to 0 can ®gaed to a PIO (this may be done automatically
by the SOPC Builder). This becomes the addreshedData register. The addresses of the other
three registers have offsets of 4, 8, or 12 byte2(or 3 words). A full description of the PIO

module can be found in the docum&i© Core with Avalon Interfagavhich is available in the
literature section of Altera’s web site.

The application task in this exercise consistsdufirag together a set of signed 8-bit numbers

that are entered via the toggle switches on AlsebdE2 115 board. The resulting sum is displayed
on the LEDs and 7-segment displays.

Part |

Use 8 toggle switche§Wr-0, as inputs for entering numbers. Use the digbts, LEDG7-0, to display
the number defined by the toggle switches. Usd heed lights|. EDR15-0, to display the accumulated sum.
A Nios Il system, which includes three PIO intedsgis the hardware needed for our task. One RiGi
connected to the toggle switches, will provide itiut data that can be read by the processor. Tiver 10

circuits, connected to the green and red lightd, serve as the output interfaces to allow dispigythe
number selected by the switches and the accumutatadrespectively.

Realize the required hardware by implementing ssNigystem on the DE2_115 board, as follows:

1. Create a new Quartus Il project. Select Cycldah&P4A4CEL15F29C7 as the target chip, which is the
FPGA chip on the Altera DE2_115 board.

2. Use the SOPC Builder to generate the desirediticallednios_systemwhich comprises:

* Nios ll/s processor with JTAG Debug Module Letekelect the following options:
— Embedded Multipliers for Hardware Multiply
— Hardware Divide

¢ On-chip memory - RAM mode and 32 Kbytes in size

e An 8-bit PIO input circuit

« An 8-bit PIO output circuit

e A 16-bit PIO output circuit

The SOPC Builder will automatically assign the narsech agio 0 pio_1andpio_2to the three PIO
components. You can change these names to somdtidahgs more meaningful in the context of a
specific design. For example, we can choose the siaeve numbergreen_LEDsandred_LEDs

3. From theSystem menu, selectAuto-Assign Base AddressesThis will assign addresses to all

components in the designed system. The resultheila system such as the one shown in Figure 2.
Observe the assigned addresses.

4. Instantiate the generatedos_systemwithin a Verilog/VHDL file, which also defines thequired
connections to the switches and LEDs on the DE2 bbhsd.

5. Assign the pins needed to make the necessanectons, by importing the pin-assignment
file DE2_115 pimassignments.csv

6. Compile the Quartus Il project.

7. Program and configure the Cyclone IV FPGA oriB2_ 115 board to implement the generated system.

2 - [o)x]
Fie Edt Modulz System View Toolz Mozl Help
System Cortents | System Generation |
Comporient Library Target ek SR
Project »| Device Family. ‘Cyclune W E ~ | hame Source hHz | [s
o wew companent.. [ik ‘External 508 =
Library e
-Avalon Werification Sute
J-Bridges and Adapters
-Interface Protocols Il
J-Legacy Components: Use | Conm.. Module Name Description Clock Baze End
- Wemories and Memary Contro | ST U1t [PV MUY AR WLt C3 i
=-Petipherals clata_master iAva\on Memory Mapped Master IRQ 0] 1
- Debug and Performance = Jtag_debug_module (Awslon Memary Mapped Slave 0z00010800 (0z00010: |
L@l Dizplay | . = onchip_memory2_0 |On-Chip Memory (RAM or RO
;:' PGA, Peripherals | =1 |&valon Memary Mapped Slave clk 000008000 (0z0000F:
licrocontraller Peripherak B new_number PIC (Parallel 110)
o Interval Timer &1 [Auslan Memory Mapped Slave clk 0x00011000 (0z000111 — |
: 5 PIO tParallel 110 O green_LEDs PIC (Parallel 1)
[#-Multiprocessor Coordinsti ™| 51 |Avalon Memory Mapped Slave clk 0z00011010 (0z000110
I | IO (Parallel) | | |
T | | &1 {&salon Memory Mapped Slave etk |+ ozoooi1ozo |nzoo0iiny
x
=] A - ||

() Info: No ervors or warmings

Figure . The Nios Il system implemented by the S@®Rider.

Part Il

Implement the desired task using the Nios Il as$gtahguage, as follows:

1. Write a program that reads the contents of witclses, displays the corresponding value on tleemgr
LEDs, adds this number to a sum that is being aatated, and displays the sum on the red LEDs.

2. Use th&Altera Monitor Progransoftware to assemble and download your program.

3. Single-step through the program and verify @gectness by inputting several numbers. Notedimagie
stepping through the program will allow you charige input numbers without reading the same
number multiple times.

Part Il

In this part, we want to add the ability to run theplication program continuously and control the
reading of new numbers by including a pushbuttoitctvwhich is activated by the user when a new nermb
is ready to be read. The desired operation is tti@tuser provides the next number by setting tiggléo
switches accordingly and then pressing a pushbustidtch to indicate that the number is ready fadiag.

To accomplish this task it is necessary to implan@emechanism that monitors the status of the itircu
used to input the numbers. A commonly-used /O mehis to use atatus flagvhich is originally cleared to O.
This flag is then set to 1 as soon as the I/O dewviterface is ready for the next data transfer. [Jpo
transferring the data, the flag is again cleare@. tdhus, the processor caoll the status flag to determine
when an I/O data transfer can be made.

In our case, the I/O device is the user who manusats the toggle switches. The I/O interface @
circuit generated by the SOPC Builder. To providstadus flag, we will generate a special one-bit EirCuit

and use its edge-capture capability. This PIO iy gamilar to the regular PIO, and it conforms he register
map in Figure 1. It is defined in the direct@iyera_up_avalon_DE2_pjowvhich has to be included in your

project. The directory can be obtained from theerdtUniversity Program site
ftp://ftp.altera.com/up/pub/University Program_IPoi@s/DE2_pio.zip
Perform the following steps:
1. Create a new Quartus Il project and implememstime system as done in Part I.

2. Copy thealtera_up_avalon_DE2_pidlirectory into your project directory. Open the FBD Builder,
which shows the existing Nios Il subsystem. To miesltera_up_avalon_DE2_pidirectory visible
to the SOPC Builder, click in the File menu of ®@PC Builder on the item Refresh Component List.
The DE2_PIO component will be listed under Avalanonents > University Program DE2_board.

3. Generate a statutag PIO using th®E2_PIO component. Configure it to be an input port thatrie
bit wide. Also, in the Input Options tab select 8ynchronously capture feature activated by thinigal
edge.

4. Generate the new Nios Il subsystem.

5. Modify your Verilog/VHDL file that specifies th@mplete system. Use the pushbutton swiEtY0
as the input to the statdtag PIO (the pushbutton switches are active low).

6. Do the pin assignment and compile the project.

7. Modify your application program to accept a nawnber when the pushbutton switch is pressed. This
action will set the “status_flag” bit in thedge-capturaegister to 1. After adding the number to the
accumulated sum, your program has to clear thebffagriting a 0 into theedge-captureegister.

8. Download and run your program to demonstrateitiorks properly. The program should run cortinu
ously and a new number should be added each tiengushbutton switch is pressed.

Part IV

In the previous parts the accumulated sum wasadisgdl on the red LEDs. Now, augment your design to
display this sum as a hexadecimal number on thegifient displays HEX3-HEXO, in addition to the red
LEDs.

Part V

Augment your design and the application prograndiplay the accumulated sum on the 7-segment
displays as a decimal (rather than hexadecimal)beanThe application program should do the necgssar
number conversion.

Note: You can use the div instruction only if yqesified the Hardware Divide option in Part I.

Copyright © 2010 Altera Corporation.

