
 1

Using the SDRAM Memory on Altera’s DE2-115

Board with VHDL Design

This tutorial explains how the SDRAM chip on Altera’s DE2-115 Development and Education

board can be used with a Nios II system implemented by using the Altera SOPC Builder. The

discussion is based on the assumption that the reader has access to a DE2-115 board and is

familiar with the material in the tutorial Introduction to the Altera SOPC Builder Using VHDL

Design.

The screen captures in the tutorial were obtained using the QuartusR II version 9.1; if other

versions of the software are used, some of the images may be slightly different.

Contents:

Example Nios II System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios II System

Integration of the Nios II System into the Quartus II Project

The introductory tutorial Introduction to the Altera SOPC Builder Using VHDL Design

 2

explains how the memory in the Cyclone IV FPGA chip can be used in the context of a simple

Nios II system. For practical applications it is necessary to have a much larger memory. The

Altera DE2-115 board contains two SDRAM chip that can store 64Mbytes of data. This

memory is organized as 32M x 32 bits x 4 banks. The SDRAM chip requires careful timing

control. To provide access to the SDRAM chip, the SOPC Builder implements an SDRAM

Controller circuit. This circuit generates the signals needed to deal with the SDRAM chip.

1 Example Nios II System

As an illustrative example, we will add the SDRAM to the Nios II system described in the

Introduction to the Altera SOPC Builder Using VHDL Design tutorial. Figure 1 gives the block

diagram of our example system.

Figure 1.Example Nios II system implemented on the DE2-115 board.

 3

The system realizes a trivial task. Eight toggle switches on the DE2-115 board, SW 7−0,

are used to turn on or off the eight green LEDs, LEDG7 − 0. The switches are connected to the

Nios II system by means of a parallel I/O interface configured to act as an input port. The LEDs

are driven by the signals from another parallel I/O interface configured to act as an output port.

To achieve the desired operation, the eight-bit pattern corresponding to the state of the

switches has to be sent to the output port to activate the LEDs. This will be done by having the

Nios II processor execute an application program. Continuous operation is required, such that

as the switches are toggled the lights change accordingly.

The introductory tutorial showed how we can use the SOPC Builder to design the

hardware needed to implement this task, assuming that the application program which reads

the state of the toggle switches and sets the green LEDs accordingly is loaded into a memory

block in the FPGA chip. In this tutorial, we will explain how the SDRAM chip on the DE2-115

board can be included in the system in Figure 1, so that our application program can be run

from the SDRAM rather than from the on-chip memory. Doing this tutorial, the reader will learn

about:

• Using the SOPC Builder to include an SDRAM interf ace for a Nios II-based system

• Timing issues with respect to the SDRAM on the DE 2-115 board

• Using a phase-locked loop (PLL) to control the cl ock timing

2 The SDRAM Interface

The SDRAM chip on the DE2-115 board has the capacity of 128 Mbytes. It is organized

as 32M x 32 bits x 4 banks. The signals needed to communicate with this chip are shown in

Figure 2. All of the signals, except the clock, can be provided by the SDRAM Controller that

can be generated by using the SOPC Builder. The clock signal is provided separately. It has to

meet the clock-skew requirements as explained in section 5. Note that some signals are active

low, which is denoted by the suffix N.

 4

Figure 2.The SDRAM signals.

3 Using the SOPC Builder to Generate the Nios II Sy stem

Our starting point will be the Nios II system discussed in the Introduction to the Altera

SOPC Builder Using VHDL Design tutorial, which we implemented in a project called lights.

We specify the system shown in Figure 3.

 5

Figure 3.The Nios II system defined in the introductory tutorial.

If you saved the lights project, then open this project in the Quartus II software and then

open the SOPC Builder. Otherwise, you need to create and implement the project, as

explained in the introductory tutorial, to obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 select Memories and Memory

Controllers > SDRAM > SDRAM Controller and click Add. A window depicted in Figure 4

appears. Set the Data Width parameter to 16 bits and leave the default values for the rest.

Since we will not simulate the system in this tutorial, do not select the option Include a

functional memory model in the system testbench. Click Finish. Now, in the window of Figure 3,

there will be an sdram_0 module added to the design. Since there is only one SDRAM on the

DE2-115 board, change

the name of this module to simply sdram. Then, the expanded system is defined as indicated

in Figure 5. Observe that the SOPC Builder assigned the base address 0x00800000 to the

SDRAM. Leave the addresses of all modules as assigned in the figure and regenerate the

system.

 6

Figure 4.Add the SDRAM Controller.

 7

Figure 5. The expanded Nios II system.

Figure 6. Set CPU Reset vector and Exception memory to sdram_0

 8

The augmented VHDL entity generated by the SOPC Builder is in the file

nios_system.vhd in the directory of the project. Figure 7 depicts the portion of the code that

defines the port signals for the entity nios_system. As in our initial system that we developed in

the introductory tutorial, the 8-bit vector that is the input to the parallel port Switches is called

in_port_to_the_Switches. The 8-bit output vector is called out_port_from_the_LEDs.

The clock and reset signals are called clk and reset_n, respectively. A new entity, called

sdram, is included. It involves the signals indicated in Figure 2. For example, the address lines

are referred to as the OUT vector zs_addr_from_the_sdram[12:0]. The data lines are referred

to as the INOUT vector zs_dq_to_and_from_the_sdram[31:0]. This is a vector of the INOUT

type because the data lines are bidirectional.

Figure 7. A part of the generated VHDL entity.

4 Integration of the Nios II System into the Quartu s II Project

 9

Now, we have to instantiate the expanded Nios II system in the top-level VHDL entity, as

we have done in the tutorial Introduction to the Altera SOPC Builder Using VHDL Design. The

entity is named lights, because this is the name of the top-level design entity in our Quartus II

project. A first attempt at creating the new entity is presented in Figure 8. The input and output

ports of the entity use the pin names for the 50-MHz clock, CLOCK_50, pushbutton switches,

KEY, toggle switches, SW, and green LEDs, LEDG, as used in our original design. They also

use the pin names

DRAM_CLK, DRAM_CKE, DRAM_ADDR, DRAM_BA, DRAM_CS_N,

 DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N, DRAM_DQ and DRAM_DQM,

which correspond to the SDRAM signals indicated in Figure 2. All of these names are those

specified in the DE2-115 User Manual.

which allows us to make the pin assignments by importing them from the file called

DE2-115_pin_assignments.csv in the directory DE2-115_tutorials\design_files, which is

included on the CD-ROM that accompanies the DE2-115 board and can also be found on

Altera’s DE2-115 web pages.

Finally, note that we tried an obvious approach of using the 50-MHz system clock,

CLOCK_50, as the clock signal, DRAM_CLK, for the SDRAM chip. This is specified by the last

assignment statement in the code. This approach leads to a potential timing problem caused

by the clock skew on the DE2-115 board, which can be fixed as explained in section 5.

−− Inputs: SW7−0 are parallel port inputs to the Nios II system.

−− CLOCK_50 is the system clock.

−− KEY0 is the active-low system reset.

−− Outputs: LEDG7−0 are parallel port outputs from the Nios II system.

−− SDRAM ports correspond to the signals in Figure 2; their names are those

−− used in the DE2-115 User Manual.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

ENTITY lights IS

PORT (SW : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

CLOCK_50 : IN STD_LOGIC;

LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

DRAM_CLK, DRAM_CKE : OUT STD_LOGIC;

DRAM_ADDR : OUT STD_LOGIC_VECTOR(12 DOWNTO 0);

DRAM_BA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);

DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N : OUT STD_LOGIC;

 10

DRAM_DQ : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0);

DRAM_DQM : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

END lights;

ARCHITECTURE Structure OF lights IS

COMPONENT nios_system

PORT (clk : IN STD_LOGIC;

reset_n : IN STD_LOGIC;

out_port_from_the_LEDs : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

in_port_to_the_Switches : IN STD_LOGIC_VECTOR(7 DOWNTO 0)

zs_addr_from_the_sdram : OUT STD_LOGIC_VECTOR(12 DOWNTO 0);

zs_ba_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWNTO 0);

zs_cas_n_from_the_sdram : OUT STD_LOGIC;

zs_cke_from_the_sdram : OUT STD_LOGIC;

zs_cs_n_from_the_sdram : OUT STD_LOGIC;

zs_dq_to_and_from_the_sdram : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0);

zs_dqm_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWNTO 0);

zs_ras_n_from_the_sdram : OUT STD_LOGIC;

zs_we_n_from_the_sdram : OUT STD_LOGIC);

END COMPONENT;

SIGNAL BA : STD_LOGIC_VECTOR(1 DOWNTO 0);

SIGNAL DQM : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN

BA <= DRAM_BA;

DQM <= DRAM_DQM;

−− Instantiate the Nios II system entity generated by the SOPC Builder.

NiosII: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW,

DRAM_ADDR, BA, DRAM_CAS_N, DRAM_CKE, DRAM_CS_N,

DRAM_DQ, DQM, DRAM_RAS_N, DRAM_WE_N);

DRAM_CLK <= CLOCK_50;

END Structure;

Figure 8. A first attempt at instantiating the expanded Nios II system.

As an experiment, you can enter the code in Figure 8 into a file called lights.vhd. Add this

file and all the *.vhd files produced by the SOPC Builder to your Quartus II project. Compile the

code and download the design into the Cyclone IV FPGA on the DE2-115 board. Use the

application program from the tutorial Introduction to the Altera SOPC Builder Using VHDL

Design, which is shown in Figure 9.

.include "nios_macros.s"

.equ Switches, 0x00001800

.equ LEDs, 0x00001810

 11

.global _start

_start:

movia r2, Switches

movia r3, LEDs

loop: ldbio r4, 0(r2)

stbio r4, 0(r3)

br loop

Figure 9.Assembly language code to control the lights.

 12

Copyright○c 2010 Altera Corporation. All rights reserved. Altera, The Programmable
Solutions Company, the stylized Altera logo, specific device designations, and all other words
and logos that are identified as trademarks and/or service marks are, unless noted otherwise,
the trademarks and service marks of Altera Corporation in the U.S. and other countries. All
other product or service names are the property of their respective holders. Altera products are
protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services. This document is
being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including,
without limitation, warranties of merchantability, non-infringement, or fitness for a particular
purpose, are specifically disclaimed.

18

