Using the SDRAM Memory on Altera’s DE2-115
Board with VHDL Design

This tutorial explains how the SDRAM chip on Altera’s DE2-115 Development and Education
board can be used with a Nios Il system implemented by using the Altera SOPC Builder. The
discussion is based on the assumption that the reader has access to a DE2-115 board and is
familiar with the material in the tutorial Introduction to the Altera SOPC Builder Using VHDL
Design.

The screen captures in the tutorial were obtained using the Quartus” Il version 9.1; if other
versions of the software are used, some of the images may be slightly different.

Contents:

Example Nios Il System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios Il System
Integration of the Nios Il System into the Quartus Il Project

The introductory tutorial Introduction to the Altera SOPC Builder Using VHDL Design

explains how the memory in the Cyclone IV FPGA chip can be used in the context of a simple
Nios Il system. For practical applications it is necessary to have a much larger memory. The
Altera DE2-115 board contains two SDRAM chip that can store 64Mbytes of data. This
memory is organized as 32M x 32 bits x 4 banks. The SDRAM chip requires careful timing
control. To provide access to the SDRAM chip, the SOPC Builder implements an SDRAM
Controller circuit. This circuit generates the signals needed to deal with the SDRAM chip.

1 Example Nios Il System

As an illustrative example, we will add the SDRAM to the Nios Il system described in the
Introduction to the Altera SOPC Builder Using VHDL Design tutorial. Figure 1 gives the block
diagram of our example system.

Host Computer

USB-Blaster
Reset_n Clock Interface
Cyclone IV FPGA chip
Nios Il Processor JTAG Debug JTAG UART
module Interface
Avalon Switch fabric
On Chip SDRAM Switches LED Parallel
Memory Controler Parallel Input Output
Interface Interface
[X X J [X X J
SW7 SWO LEDG7 LEDGO

SDRAM SDRAM
Chip1 Chip2

Figure 1.Example Nios Il system implemented on the DE2-115 board.

The system realizes a trivial task. Eight toggle switches on the DE2-115 board, SW 7-0,
are used to turn on or off the eight green LEDs, LEDG7 - 0. The switches are connected to the
Nios Il system by means of a parallel I/O interface configured to act as an input port. The LEDs
are driven by the signals from another parallel I/O interface configured to act as an output port.
To achieve the desired operation, the eight-bit pattern corresponding to the state of the
switches has to be sent to the output port to activate the LEDs. This will be done by having the
Nios Il processor execute an application program. Continuous operation is required, such that
as the switches are toggled the lights change accordingly.

The introductory tutorial showed how we can use the SOPC Builder to design the
hardware needed to implement this task, assuming that the application program which reads
the state of the toggle switches and sets the green LEDs accordingly is loaded into a memory
block in the FPGA chip. In this tutorial, we will explain how the SDRAM chip on the DE2-115
board can be included in the system in Figure 1, so that our application program can be run
from the SDRAM rather than from the on-chip memory. Doing this tutorial, the reader will learn
about:

e Using the SOPC Builder to include an SDRAM interf ace for a Nios lI-based system
e Timing issues with respect to the SDRAM on the DE 2-115 board
e Using a phase-locked loop (PLL) to control the cl ock timing

2 The SDRAM Interface

The SDRAM chip on the DE2-115 board has the capacity of 128 Mbytes. It is organized
as 32M x 32 bits x 4 banks. The signals needed to communicate with this chip are shown in
Figure 2. All of the signals, except the clock, can be provided by the SDRAM Controller that
can be generated by using the SOPC Builder. The clock signal is provided separately. It has to
meet the clock-skew requirements as explained in section 5. Note that some signals are active
low, which is denoted by the suffix N.

Clock

CLK
Clock Enable
»| CKE
Address » ADDR[12:0]
Bank Address 1
»| BA1
Bank Address 0 > BAO
SDRAM Ch|p Select SDRAM
controller » CS_N chip
Column Address Strobe
» CAS N
Row Address Strobe »| RAS_N
Write Enable »| WE N
< Data »| DQ[31:0]
SDRAM byte Data Mask »| DQM[3:0]

Figure 2.The SDRAM signals.

3 Using the SOPC Builder to Generate the Nios Il Sy stem

Our starting point will be the Nios Il system discussed in the Introduction to the Altera
SOPC Builder Using VHDL Design tutorial, which we implemented in a project called lights.
We specify the system shown in Figure 3.

™ fltara SOPC Builder - nios_system.sopc (D:yjohnnyisope builder_tutorialinios_system.sopc)
File Edit Module System “iew Toolz Mozl Help

System Corterts | System Generation

Componert Library Target flock SEtinds :
Project ~| | DeviceFamiy|cycloneivE % | | Name Saurce MHz i
LU New component.. == T ok [External 150.0 t ;
Library c
[#-Avalon Yerification Suite
#-Bridges and Adapters
Interface Protocols S — — — — —— =
Legscy Components Use Conn... Module Name Description Clack Baze End Tags
#-Memories and Memory Contro & B cpu_d Mios Il Processor
[=-Peripherals instruction_master Awalon Memory Mapped Master clk_0
Debug and Performance data_master Avalon Memary Mapped Master IRQ O IRQ 31
Display ftag._debug_module Awalon Memaory Mapped Slave 0:200002800 0x0000ZEEE
FRGA Peripherals] E onchip_memory2 0 [On-Chip Memary (RAM or ROM)
Microcontroller Paripheral: =1 Awalon Memary Mapped Slave clk_0 000001000 [0x00001£££
@ Interval Timer B Switches PIO (Parallz! 110)
- @ PIC (Paralel 110) =1 Avalon Memory Mapped Slave elk. 0 0x00003000 |[0x0000200F
E-Multiprocessor Coordinstio E‘ S LEDs PIC (Parallel 110)
E-PLL =1 Awalon Memory Mapped Slave clk_0 0300003010 |0x0000301 £
H-Processor Additions M O jtag_uart_0 JTAG UART
F-Processors ‘ avalon_ftag_slave Avalon Memory Mapped Slave clk 0 0x00003020 |0x00003027
@ Mios Il Processor |
>‘. =
1% | 3

= a v = Address Map... Fitter: Defautt

Figure 3.The Nios Il system defined in the introductory tutorial.

If you saved the lights project, then open this project in the Quartus Il software and then
open the SOPC Builder. Otherwise, you need to create and implement the project, as
explained in the introductory tutorial, to obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 select Memories and Memory
Controllers > SDRAM > SDRAM Controller and click Add. A window depicted in Figure 4
appears. Set the Data Width parameter to 16 bits and leave the default values for the rest.
Since we will not simulate the system in this tutorial, do not select the option Include a
functional memory model in the system testbench. Click Finish. Now, in the window of Figure 3,
there will be an sdram_0 module added to the design. Since there is only one SDRAM on the
DEZ2-115 board, change
the name of this module to simply sdram. Then, the expanded system is defined as indicated
in Figure 5. Observe that the SOPC Builder assigned the base address 0x00800000 to the
SDRAM. Leave the addresses of all modules as assigned in the figure and regenerate the
system.

= SDRAM Controller - sdram_0

SDRAM Controller

Memory Profi Timing

Presets: i Custom v

~Drata width
Bits: [32 v.|

FArchitecture

Chip select: 4 v| Banks: |4 v

“Address widths

Rowy: |_13 Column: | 1| |

~Share ping via fristate hridge

|:| Controller shares doidgmifaddr 100 ping

Tristate bridge selection:

-Generic memaory model (simulation anly

Include & functional memory model in the system testbench

Memory size = 32 MBytes
385605 x 32
256 MEits

Figure 4.Add the SDRAM Controller.

Altera SOPC B ios_system.sopc™ (D:\johnny\sopc builder tutorialy ystem.sopc)
File Edit Module System “iew Toolz Mozl Help

System Corterts | System Generation |

Componert Library Target oG REds
Project -~ Device Family: L’C_yclune Mame Source WHz
U New companent... : lclk_0 [External 150.0
Library
[#-Avalon Yerification Suite
#-Bridges and Adapters
[#-Interface Protocols
#-Legscy Components : Use Conn... Module Name Description Clack Baze End Tags
[=-Memories and Memory Contro & E cpu_ Mios Il Proces=ar
@ QDR and GOR I+ SR instruction_master Awalon Memory Mapped Master clk_0
RLORAM I Cordroller * date_master Awalon Memary Mapped Master IRD O IRD 31
@ Traftic Generstor anc, f- ftag_debug_module Awalon Memory Mapped Slave 000001000 0x0000L7£f
B-DbA] . E onchip_memory2 0 On-Chip Memory (RAM or ROM)
&-Flash f- =1 Awalon Memary Mapped Slave clk_0 000000000 [0x00000£¢£
[#-0n-Chip B Switches PIC (Parallgl 110)
=hSDRAM =1 &valon Memory Mapped Slave clk_0 0x00001800 0x0000180f
@ DDR SDRAM Conl] E LEDs FIC) (Parallel 110
DDR SDRAM High =1 Avalon Memary Mapped Slave clk_0 000001810 [0x0000181 £
@ DDR2 SDRAM Coi Bl jtag_uart_0 JTAG UBRT
DDR2 SDRAM Hig avalon_jtag_siave Awalon Memory Mapped Slave el 0 000001820 0x00001827
| DOR3 SDRAM Hig v Py ;
£ | > | | =1 Awalon Memory Mapped Slave elk_o 0508000000 [0x0fEEfEE |
4 | | X g >
@ E] v || = Fiter: Defaut

@ Info: Switches: PIO inputs are not hardwired intest bench. Undefined values will be read from P12 inputs during simulstion

Figure 5. The expanded Nios Il system.

= Nios |l Processor - cpu_0

Nios II Processor

rCore Mias |l

Select a Hios Il core:

' ONios Ilfs ONios IIfFf
N RISC RISC RISC
Nios Il 32.bit. ‘320t 324t
Selectar Guide Instruction Cache Instruction Cache
Family: Cyclane Iv E _Hranch Prediction Branch Prediction
Hardware Multiphy Hardweare Muttiply
Toystem: 500 MHz 'Hardware Divide Harlvare Divide
. Barrel Shifter
epuic: 0 Data Cache
§ Mymamic Branch Prediction
Performance at 50.0 MHz BOMPS Upto 32 DMPS Upta 57 DMIPS
Logic Usage BO0-700 LEs 1200-1400 LE= 1400-1500 LE=s
hemory Usage Tovo MK (or eguiv.) Twva M3K= + cache Three M3Ks + cache

Harchavare bultiply:

Reset Wector: Memory: !sdramj a |Offset ;UXU |U><USUUDUDU
Exception Yector: Memory: ‘_ v iOffset loxz0 }DxDBDDDD?D
L R | Ll —————

Only include the MMU when using an opersting system that explictly supports an MU

Fast TLE Miss Exception Yectar: Memary: o o [—

Figure 6. Set CPU Reset vector and Exception memory to sdram_0

The augmented VHDL entity generated by the SOPC Builder is in the file
nios_system.vhd in the directory of the project. Figure 7 depicts the portion of the code that
defines the port signals for the entity nios_system. As in our initial system that we developed in
the introductory tutorial, the 8-bit vector that is the input to the parallel port Switches is called
in_port_to_the_Switches. The 8-bit output vector is called out_port_from_the LEDSs.

The clock and reset signals are called clk and reset_n, respectively. A new entity, called
sdram, is included. It involves the signals indicated in Figure 2. For example, the address lines
are referred to as the OUT vector zs_addr_from_the_sdram[12:0]. The data lines are referred
to as the INOUT vector zs_dq_to_and_from_the _sdram[31:0]. This is a vector of the INOUT
type because the data lines are bidirectional.

o
3 nios_system.vhd

@ 1 library ieee;
2 use ieee.std logic_llc4.all;
4 3 usze ieee.std logic_arith.all;
& 3 use ieee.std logic_unsigned.all;
6 Hentity nios_system is
i = port |
=] -—— 1) global signal
=] Zignal clk : IN STD LOGIC:
10 Zignal reset_n : IN 3TD_LOGIC:
11
12 -- the LEDs
13 Zignal out_port_from the LEDs : OUT 3TD_LOGIC VECTOR (7 DOWNTO O);
14
15 —— Switches
16 Zignal in port_to the 3witches : IN 3TD _LOGIC VECTOR (7 DOWNTO O);
17
15 —— the_ sdram
19 Zignal zs_addr from the sdream 0 : OUT 3TD_LOGIC VECTOR (12 DOWNTO O);
20 Zignal zs_ba from the sdram 0 : OUT 3TD_LOGIC VECTOR (1 DOWNTO O);
z1 signal zs_cas_n from the sdram 0 : OUT STD_LOGIC;
) 22 signal zs_cke from the sdram 0 : OUT STD_LOGIC:
b 23 Zignal zs_cs_n from the sdream 0 @ OUT 5TD_LOGIC:
24 Zignal zs_dg to_and from the sdram 0 : INOUT 3TD LOGIC WECTOR (31 DOWNTO O)
25 Zignal zs_domw_from the sdram 0 : OUT 3TD_LOGIC VECTOR (1 DOWNTO O)
— Z6 Zignal 22 _ras n from the sdram 0 : OUT 3TD LOGIC:
27 Zignal zs_we_n from the sdream 0 : OUT 5TD_LOGIC:
= 28):
. 29 end entity nios_system:
30

Figure 7. A part of the generated VHDL entity.

4 Integration of the Nios Il System into the Quartu s Il Project

Now, we have to instantiate the expanded Nios Il system in the top-level VHDL entity, as
we have done in the tutorial Introduction to the Altera SOPC Builder Using VHDL Design. The
entity is named lights, because this is the name of the top-level design entity in our Quartus Il
project. A first attempt at creating the new entity is presented in Figure 8. The input and output
ports of the entity use the pin names for the 50-MHz clock, CLOCK_50, pushbutton switches,
KEY, toggle switches, SW, and green LEDs, LEDG, as used in our original design. They also
use the pin names

DRAM_CLK, DRAM_CKE, DRAM_ADDR, DRAM_BA, DRAM_CS_N,

DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N, DRAM_DQ and DRAM_DQM,
which correspond to the SDRAM signals indicated in Figure 2. All of these names are those
specified in the DE2-115 User Manual.

which allows us to make the pin assignments by importing them from the file called
DEZ2-115 pin_assignments.csv in the directory DE2-115 tutorials\design_files, which is
included on the CD-ROM that accompanies the DE2-115 board and can also be found on
Altera’s DE2-115 web pages.

Finally, note that we tried an obvious approach of using the 50-MHz system clock,
CLOCK_50, as the clock signal, DRAM_CLK, for the SDRAM chip. This is specified by the last
assignment statement in the code. This approach leads to a potential timing problem caused
by the clock skew on the DE2-115 board, which can be fixed as explained in section 5.

—— Inputs: SW7-0 are parallel port inputs to the Nios Il system.

—— CLOCK_50 is the system clock.

—— KEYO is the active-low system reset.

—— Outputs: LEDG7-0 are parallel port outputs from the Nios Il system.

—— SDRAM ports correspond to the signals in Figure 2; their names are those
—— used in the DE2-115 User Manual.

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY lights IS

PORT (SW : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

CLOCK_50 : IN STD_LOGIC;

LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

DRAM_CLK, DRAM_CKE : OUT STD_LOGIC;

DRAM_ADDR : OUT STD_LOGIC_VECTOR(12 DOWNTO 0);

DRAM_BA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);

DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N : OUT STD_LOGIC;

DRAM_DQ : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0);
DRAM_DQM : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
END lights;

ARCHITECTURE Structure OF lights IS

COMPONENT nios_system

PORT (clk : IN STD_LOGIC;

reset n:IN STD_LOGIC;

out_port_from_the LEDs : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
in_port_to_the_Switches : IN STD_LOGIC_VECTOR(7 DOWNTO 0)
zs_addr_from_the_sdram : OUT STD_LOGIC_VECTOR(12 DOWNTO 0);
zs_ba_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWNTO 0);
zs_cas_n_from_the sdram : OUT STD_LOGIC;

zs_cke_from_the sdram : OUT STD_LOGIC;

zs_cs_n_from_the sdram : OUT STD_LOGIC;
zs_dqg_to_and_from_the_sdram : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0);
zs_dgm_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWNTO 0);
zs_ras_n_from_the sdram : OUT STD_LOGIC;

zs_we_n_from_the_sdram : OUT STD_LOGIC));

END COMPONENT;

SIGNAL BA: STD_LOGIC_VECTOR(1 DOWNTO 0);

SIGNAL DQM : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN

BA <= DRAM_BA;

DQM <= DRAM_DQM,;

—— Instantiate the Nios Il system entity generated by the SOPC Builder.
Niosll: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SWw,
DRAM_ADDR, BA, DRAM_CAS N, DRAM_CKE, DRAM_CS N,
DRAM_DQ, DQM, DRAM_RAS_N, DRAM_WE_N);

DRAM_CLK <= CLOCK 50;

END Structure;

Figure 8. Afirst attempt at instantiating the expanded Nios Il system.

As an experiment, you can enter the code in Figure 8 into a file called lights.vhd. Add this

file and all the *.vhd files produced by the SOPC Builder to your Quartus Il project. Compile the
code and download the design into the Cyclone IV FPGA on the DE2-115 board. Use the
application program from the tutorial Introduction to the Altera SOPC Builder Using VHDL

Design, which is shown in Figure 9.
.include "nios_macros.s"

.equ Switches, 0x00001800
.equ LEDs, 0x00001810

10

.global _start

_start:

movia r2, Switches

movia r3, LEDs

loop: Idbio r4, 0(r2)
stbio r4, 0(r3)
br loop

Figure 9.Assembly language code to control the lights.

11

Copyright () 2010 Altera Corporation. All rights reserved. Altera, The Programmable
Solutions Company, the stylized Altera logo, specific device designations, and all other words
and logos that are identified as trademarks and/or service marks are, unless noted otherwise,
the trademarks and service marks of Altera Corporation in the U.S. and other countries. All
other product or service names are the property of their respective holders. Altera products are
protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services. This document is
being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including,
without limitation, warranties of merchantability, non-infringement, or fitness for a particular
purpose, are specifically disclaimed.

18

12

