

Laboratory Exercise 7
Finite State Machines

This is an exercise in using finite state machines.

Part I

We wish to implement a finite state machine (FSM) that recognizes two specific

sequences of applied input symbols, namely four consecutive 1s or four consecutive 0s. There

is an input w and an output z. Whenever w = 1 or w = 0 for four consecutive clock pulses the

value of z has to be 1; otherwise, z = 0. Overlapping sequences are allowed, so that if w = 1 for

five consecutive clock pulses the output z will be equal to 1 after the fourth and fifth pulses.

Figure 1 illustrates the required relationship between w and z.

Figure 1.Required timing for the output z.

A state diagram for this FSM is shown in Figure 2. For this part you are to manually derive

an FSM circuit that implements this state diagram, including the logic expressions that feed

each of the state flip-flops. To implement the FSM use nine state flip-flops called 8 0,...,y y and

the one-hot state assignment given in Table 1.

1

Table 1.One-hot codes for the FSM.

Figure 2.A state diagram for the FSM.

Design and implement your circuit on the DE2-115 board as follows.

1. Create a new Quartus II project for the FSM circuit. Select as the target chip the Cyclone

IV EP4CE115F29C8, which is the FPGA chip on the Altera DE2-115 board.

2. Write a VHDL file that instantiates the nine flip-flops in the circuit and which specifies the

logic expressions that drive the flip-flop input ports. Use only simple assignment

statements in your VHDL code to specify the logic feeding the flip-flops. Note that the

one-hot code enables you to derive these expressions by inspection. Use the toggle

switch 0SW on the Altera DE2-115 board as an active-low synchronous reset input for the

FSM, use 1SW as the w input, and the pushbutton 0KEY as the clock input which is applied

manually. Use the green LED 0LEDG as the output z, and assign the state flip-flop outputs

to the red LEDs 8LEDR to 0LEDR .

2

3. Include the VHDL file in your project, and assign the pins on the FPGA to connect to the

switches and the LEDs, as indicated in the User Manual for the DE2-115 board. Compile

the circuit.

4. Simulate the behavior of your circuit.

5. Once you are confident that the circuit works properly as a result of your simulation,

download the circuit into the FPGA chip. Test the functionality of your design by applying

the input sequences and observing the output LEDs. Make sure that the FSM properly

transitions between states as displayed on the red LEDs, and that it produces the correct

output values on 0LEDG .

6. Finally, consider a modification of the one-hot code given in Table 1. When an FSM is

going to be implemented in an FPGA, the circuit can often be simplified if all flip-flop

outputs are 0 when the FSM is in the reset state. This approach is preferable because the

FPGA’s flip-flops usually include a clear input port, which can be conveniently used to

realize the reset state, but the flip-flops often do not include a set input port.

Table 2 shows a modified one-hot state assignment in which the reset state, A, uses all 0s.

This is accomplished by inverting the state variable 0y . Create a modified version of your

VHDL code that implements this state assignment. Hint: you should need to make very few

changes to the logic expressions in your circuit to implement the modified codes. Compile your

new circuit and test it both through simulation and by downloading it onto the DE2-115 board.

Table 2.Modified one-hot codes for the FSM.

3

Part II

For this part you are to write another style of VHDL code for the FSM in Figure 2. In this

version of the code you should not manually derive the logic expressions needed for each

state flip-flop. Instead, describe the state table for the FSM by using a VHDL CASE statement

in a PROCESS block, and use another PROCESS block to instantiate the state flip-flops. You

can use a third PROCESS block or simple assignment statements to specify the output z.

A suggested skeleton of the VHDL code is given in Figure 3. Observe that the present and

next state vectors for the FSM are defined as an enumerated type with possible values given

by the symbols A to I. The VHDL compiler determines how many state flip-flops to use for the

circuit, and it automatically chooses the state assignment.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY part2 IS

PORT (. . . define input and output ports

. . .);

END part2;

ARCHITECTURE Behavior OF part2 IS

. . . declare signals

TYPE State_type IS (A, B, C, D, E, F, G, H, I);

SIGNAL y_Q, Y_D : State_type; - - y_Q is present state, y_D is next state

BEGIN

. . .

PROCESS (w, y_Q) - - state table

BEGIN

case y_Q IS

WHEN A IF (w = ’0’) THEN Y_D <= B;

ELSE Y_D <= F;

END IF;

. . . other states

END CASE;

END PROCESS; - - state table

PROCESS (Clock) - - state flip-flops

BEGIN

. . .

END PROCESS;

4

. . . assignments for output z and the LEDs

END Behavior;

Figure 3.Skeleton VHDL code for the FSM.

Implement your circuit as follows.

1. Create a new project for the FSM.

2. Select as the target chip the Cyclone IV EP4CE115F29C8.

3. Include in the project your VHDL file that uses the style of code in Figure 3. Use the toggle

switch 0SW on the Altera DE2-115 board as an active-low synchronous reset input for

the FSM, use 1SW as the w input, and the pushbutton 0KEY as the clock input which is

applied manually. Use the green LED 0LEDG as the output z, and use nine red LEDs,

8LEDR to 0LEDR , to indicate the present state of the FSM. Assign the pins on the FPGA

to connect to the switches and the LEDs, as indicated in the User Manual for the DE2-115

board.

4. Before compiling your code it is possible to tell the Synthesis tool in Quartus II what style

of state assignment it should use. Choose Assignments > Settings in Quartus II, and then

click on the Analysis and Synthesis item on the left side of the window. As indicated in

Figure 4, change the parameter State Machine Processing to the setting Minimal Bits.

5. To examine the circuit produced by Quartus II open the RTL Viewer tool. Double-click on

the box shown in the circuit that represents the finite state machine, and determine

whether the state diagram that it shows properly corresponds to the one in Figure 2. To

see the state codes used for your FSM, open the Compilation Report, select the Analysis

and Synthesis section of the report, and click on State Machines.

6. Simulate the behavior of your circuit.

7. Once you are confident that the circuit works properly as a result of your simulation,

download the circuit into the FPGA chip. Test the functionality of your design by applying

the input sequences and observing the output LEDs. Make sure that the FSM properly

transitions between states as displayed on the red LEDs, and that it produces the correct

output values on 0LEDG .

8. In step 3 you instructed the Quartus II Synthesis tool to use the state assignment given in

your VHDL code. To see the result of changing this setting, open again the Quartus II

settings window by choosing Assignments > Settings, and click on the Analysis and

Synthesis item. And click on the More Setting Item. Change the setting for State Machine

Processing from Minimal Bits to One-Hot. Recompile the circuit and then open the report

file, select the Analysis and Synthesis section of the report, and click on State Machines.

Compare the state codes shown to those given in Table 2, and discuss any differences

that you observe.

5

Figure 4.Specifying the state assignment method in Quartus II.

Part III

For this part you are to implement the sequence-detector FSM by using shift registers,

instead of using the more formal approach described above. Create VHDL code that

instantiates two 4-bit shift registers; one is for recognizing a sequence of four 0s, and the other

for four 1s. Include the appropriate logic expressions in your design to produce the output z.

Make a Quartus II project for your design and implement the circuit on the DE2-115 board. Use

the switches and LEDs on the board in a similar way as you did for Parts I and II and observe

the behavior of your shift registers and the output z. Answer the following question: could you

use just one 4-bit shift register, rather than two? Explain your answer.

6

Part IV

We want to design a modulo-10 counter-like circuit that behaves as follows. It is reset to 0

by the Reset input. It has two inputs, 1w and 0w , which control its counting operation. If 1 0w w

= 00, the count remains the same. If 1 0w w = 01, the count is incremented by 1. If 1 0w w = 10,

the count is incremented by 2. If 1 0w w = 11, the count is decremented by 1. All changes take

place on the active edge of a Clock input. Use toggle switches 2SW and 1SW for inputs 1w

and 0w . Use toggle switch 0SW as an active-low synchronous reset, and use the pushbutton

0KEY as a manual clock. Display the decimal contents of the counter on the 7-segment

display 0HEX .

1. Create a new project which will be used to implement the circuit on the DE2-115 board.

2. Write a VHDL file that defines the circuit. Use the style of code indicated in Figure 3 for

your FSM.

3. Include the VHDL file in your project and compile the circuit.

4. Simulate the behavior of your circuit.

5. Assign the pins on the FPGA to connect to the switches and the 7-segment display.

6. Recompile the circuit and download it into the FPGA chip.

7. Test the functionality of your design by applying some inputs and observing the output

display.

Part V

For this part you are to design a circuit for the DE2-115 board that scrolls the word

"HELLO" in ticker-tape fashion on the eight 7-segment displays 7 0HEX − . The letters should

move from right to left each time you apply a manual clock pulse to the circuit. After the word

"HELLO" scrolls off the left side of the displays it then starts again on the right side.

Design your circuit by using eight 7-bit registers connected in a queue-like fashion, such

that the outputs of the first register feed the inputs of the second, the second feeds the third,

and so on. This type of connection between registers is often called a pipeline. Each register’s

outputs should directly drive the seven segments of one display.

You are to design a finite state machine that controls the pipeline in two ways:

1. For the first eight clock pulses after the system is reset, the FSM inserts the correct

characters (H,E,L,L,0, , ,) into the first of the 7-bit registers in the pipeline.

2. After step 1 is complete, the FSM configures the pipeline into a loop that connects the last

register back to the first one, so that the letters continue to scroll indefinitely.

Write VHDL code for the ticker-tape circuit and create a Quartus II project for your design.

Use 0KEY on the DE2-115 board to clock the FSM and pipeline registers and use 0SW as a

synchronous active-low reset input. Write VHDL code in the style shown in Figure 3 for your

finite state machine. Compile your VHDL code, download it onto the DE2-115 board and test

the circuit.

7

Part VI

For this part you are to modify your circuit from Part V so that it no longer requires

manually-applied clock pulses. Your circuit should scroll the word "HELLO" such that the

letters move from right to left in intervals of about one second. Scrolling should continue

indefinitely; after the word "HELLO" scrolls off the left side of the displays it should start again

on the right side. Write VHDL code for the ticker-tape circuit and create a Quartus II project for

your design. Use the 50-MHz clock signal, OSC_50[0], on the DE2-115 board to clock the FSM

and pipeline registers and use 0KEY as a synchronous active-low reset input. Write VHDL

code in the style shown in Figure 3 for your finite state machine, and ensure that all flip-flops in

your circuit are clocked directly by the OSC_50[0] input. Do not derive or use any other clock

signals in your circuit. Compile your VHDL code, download it onto the DE2-115 board and test

the circuit.

Part VII

Augment your design from Part VI so that under the control of pushbuttons 2KEY and

1KEY the rate at which the letters move from right to left can be changed. If 1KEY is pressed,

the letters should move twice as fast. If 2KEY is pressed, the rate has to be reduced by a factor

of 2. Note that the 2KEY and 1KEY switches are debounced and will produce exactly one low

pulse when pressed.

However, there is no way of knowing how long a switch may remain depressed, which

means that the pulse duration can be arbitrarily long. A good approach for designing this circuit

is to include a second FSM in your VHDL code that properly responds to the pressed keys.

The outputs of this FSM can change appropriately when a key is pressed, and the FSM can

wait for each key press to end before continuing. The outputs produced by this second FSM

can be used as part of the scheme for creating a variable time interval in your circuit. Note that

2KEY and 1KEY are asynchronous inputs to your circuit, so be sure to synchronize them to the

clock signal before using these signals as inputs to your finite state machine.

The ticker tape should operate as follows. When the circuit is reset, scrolling occurs at

about one second intervals. Pressing 1KEY repeatedly causes the scrolling speed to double to

a maximum of four letters per second. Pressing 2KEY repeatedly causes the scrolling speed to

slow down to a minimum of one letter every four seconds. Implement your circuit on the

DE2-115 board and demonstrate that it works properly.

Copyright ○c 2010 Altera Corporation.

8

