Introduction to the Altera SOPC Builder
Using Verilog Design

This tutorial presents an introduction to Altera’s SOPC Builder software, which is used to
implement a system that uses the Nios Il processor on an Altera FPGA device. The system
development flow is illustrated by giving step-by-step instructions for using the SOPC Builder
in conjunction with the Quartus Il 9.1 software to implement a simple system.

The last step in the development process involves configuring the designed circuit in an
actual FPGA device, and running an application program. To show how this is done, it is
assumed that the user has access to the Altera DE2-115 Development and Education board
connected to a computer that has Quartus Il and Nios Il software installed.

The screen captures in the tutorial were obtained using the Quartus Il version 9.1; if other
versions of the software are used, some of the images may be slightly different.

Contents:

Nios Il System

Altera’s SOPC Builder

Integration of the Nios Il System into a Quartus Il Project
Running the Application Program

Altera’s Nios Il is a soft processor, defined in a hardware description language, which can
be implemented in Altera’s FPGA devices by using the Quartus Il CAD system. To implement a
useful system it is necessary to add other functional units such as memories, input/output
interfaces, timers, and communications interfaces. To facilitate the implementation of such
systems, it is useful to have computer-aided-design (CAD) software for implementing a
system-on-a-programmable-chip (SOPC). Altera’s SOPC Builder is the software needed for
this task.

This tutorial provides a basic introduction to Altera’s SOPC Builder, which will allow the
reader to quickly implement a simple Nios Il system on the Altera DE2-115 board. For a fuller
treatment of the SOPC Builder, the reader can consult the Nios Il Hardware Development
Tutorial. A complete description of the SOPC Builder can be found in the Quartus Il Handbook
Volume 4: SOPC Builder. These documents are available on the Altera web site.

1 Nios Il System

A Nios Il system can be implemented on the DE2-115 board as shown in Figure 1.

Host computer

USB-Blaster
interface
e Cyclone IV E
Nios II processor ULLG DL .) FPGA chip
module interface
Avalon switch fabric
On-chip SRAM Flash Parallel /O Serial /O
. SDRAM
memory interface memory
interface interface interface interface
SRAM SDRAM Flash Parallel Serial
. oy memory /O port 1/0 port
chip Chip x2 S . .
chip lines lines

Figure 1.A Nios Il system implemented on the DE2-115 board.

The Nios Il processor and the interfaces needed to connect to other chips on the DE2-115
board are implemented in the Cyclone IV E FPGA chip. These components are interconnected
by means of the interconnection network called the Avalon Switch Fabric. The memory blocks
in the Cyclone IV E device can be used to provide an on-chip memory for the Nios Il processor.
The SRAM, SDRAM and Flash memory chips on the DE2-115 board are accessed through the
appropriate interfaces. Parallel and serial input/output interfaces provide typical I/O ports used
in computer systems. A special JTAG UART interface is used to connect to the circuitry that
provides a Universal Serial Bus (USB) link to the host computer to which the DE2-115 board is
connected. This circuitry and the associated software is called the USB-Blaster. Another
module, called the JTAG Debug module, is provided to allow the host computer to control the
Nios Il system. It makes it possible to perform operations such as downloading programs into
memory, starting and stopping execution, setting breakpoints, and collecting real-time
execution trace data.

Since all parts of the Nios Il system implemented on the FPGA chip are defined by using a
hardware description language, a knowledgeable user could write such code to implement any
part of the system. This would be an onnerous and time consuming task. Instead, one can use
the SOPC Builder to implement a desired system simply by choosing the required components
and specifying the parameters needed to make each component fit the overall requirements of
the system. In this tutorial, we will illustrate the capability of the SOPC Builder by designing a
very simple system. The same approach is used to design large systems.

Host computer
LS B-Blaster
mterface
e (e Cyclone IV E
L o JTAG Debug AELE 4 FPGA chi
blics 11 proutssar module mterface : R
Avalon switch fabrie
: Flash Parallel 10 Serial 1O
On-chip SRAM SDRAM BORNN LI rea
MEMOTY mterfice : memory
nterfiace mterface mterfice mterface
SRAM SDRAM Flash Fastllel i,
i P memory V'O port 1O port
chip Chipx2 i s A
chip lines lines

Figure 2 A simple example of a Nios Il system.
3

Our example system is given in Figure 2. The system realizes a trivial task. Eight toggle
switches on the DE2-115 board. S\,_,, are used to turn on or off the eight green
LEDs, LEDG,_, . The switches are connected to the Nios Il system by means of a parallel I/O
interface configured to act as an input port. The LEDs are driven by the signals from another
parallel /O interface configured to act as an output port. To achieve the desired operation, the
eight-bit pattern corresponding to the state of the switches has to be sent to the output port to
activate the LEDs. This will be done by having the Nios Il processor execute a program stored
in the on-chip memory. Continuous operation is required, such that as the switches are toggled
the lights change accordingly.

We will use the SOPC Builder to design the hardware depicted in Figure 2. Next, we will
assign the Cyclone IV E pins to realize the connections between the parallel interfaces and the
switches and LEDs which act as 1/0O devices. Then, we will configure the FPGA to implement
the designed system. Finally, we will use the software tool called the Nios Il Monitor Program
to assemble, download and execute a Nios Il program that performs the desired task.

Doing this tutorial, the reader will learn about:

® Using the SOPC Builder to design a Nios ll-based sy stem

® Integrating the designed Nios Il system into a Quar tus Il project

® Implementing the designed system on the DE2-115boa rd

® Running an application program on the Nios Il proce ssor

2 Altera’s SOPC Builder

The SOPC Builder is a tool used in conjunction with the Quartus Il CAD software. It allows
the user to easily create a system based on the Nios Il processor, by simply selecting the
desired functional units and specifying their parameters. To implement the system in Figure 2,
we have to instantiate the following functional units:

® Nios Il processor, which is referred to as a Centra | Processing Unit (CPU)

® On-chip memory, which consists of the memory blocks in the Cyclone IV E

chip; we will specify a 4-Kbyte memory arranged in 32-bit words

® Two parallel I/O interfaces

® JTAG UART interface for communication with the host computer
To define the desired system, start the Quartus Il software and perform the following steps:

1. Create a new Quartus Il project for your system. As shown in Figure 3, we stored our
project in a directory called sopc_builder_tutorial, and we assigned the name lights to both the
project and its top-level design entity. You can choose a different directory or project name, but
be aware that the SOPC Builder software does not permit the use of spaces in file names. For
example, an attempt to use a directory name sopc builder tutorial would lead to an error. In
your project, choose the EPACE115F29C7 chip as the target device, because this is the FPGA
on the DE2-115 board.

2. Select Tools > SOPC Builder , which leads to the pop-up box in Figure 4. Enter
nios_system as the system name; this will be the name of the system that the SOPC Builder
will generate. Choose Verilog as the target HDL, in which the system module will be specified.
Click OK to reach the window in Figure 5.

Name, 1o

p-Level Entity [page 1 of 5]

Mew Project Wizard: Directo

WWihat is the waorking directary for this project?

I D:\eope_builder_tutorial

Ywhat iz the name of thiz project?
flightd

Lk

Ywhat iz the name of the top-level design entity for thiz project? This name is caze zensitive and must
exactly match the entity name in the dezign file.

IIighls

|Jze Existing Project Settings ...

<Back [Wewt» | Eish | EH |

Figure 3.Create a new project.

System Mame: nios_system

Target HOL: (@ Verilog

%) VHDL

| ok || cancel |

Figure 4.Create a new Nios Il system.

3. Figure 5 displays the System Contents tab of the SOPC Builder, which is used to add
components to the system and configure the selected components to meet the design
requirements. The available components are listed on the left side of the window. Before
choosing our components, examine the area in the figure labeled Target. Check the setting for
the Device Family and ensure that Cyclone IV E is selected.

4. The Nios Il processor runs under the control of a clock. For this tutorial we will make
use of the 50-MHz clock that is provided on the DE2-115 board. As shown in Figure 5, it is
possible to specify the names and frequency of clock signals in the SOPC Builder display.

5

If not already included in this list, specify a clock named clk_0 with the source designated
as External and the frequency set to 50.0 MHz.

ORC BuTger T

File Edit Module System View Tools Help

System Contents ‘ System Gwraﬁnn‘

Component Library
PrOjEct

1 pew component.
Library
[-Avalon Verification Suite
[t} -Bridges and Adapters
[)-Interface Protocols
[#}-Legacy Components
[)-Memories and Memory Contro)
f
f
[
[

+|- Peripherals
£-PLL
|- Processor Additions
J-Processors

L
#-5LS
+|--University Program g
+}-Video and Image Processing ~
L . | b

4| | %

=] (=

m

Target Clock Settings.
Device Family; Cyclone I/ E - Name Source MHz Add
clk_0 External 50.0 Renioee
Use C Modulz Name Description Clock Base End Tags RQ
Remove | | Ed x|[allv][= Filler: Defaul

(& Info: No errors or warnings

Exit Help

" o Prev Hext b

Generate

Figure 5.The System Contents tab window.

5. Next, specify the processor as follows:
® On the left side of the window in Figure 5 select Processors > Nios Il Processor
and click Add, which leads to the window in Figure 6.

|- Nios Il Processor - cpu O

Nios II Processor

CoreNiosII| » Caches and Memory Interfaces ":') Advanced Features ‘ MMU and MPU Settings > JTAG Debug Module Custom Instructions)

~Core Nios lI-

Select a Nios Il core:

|@_Ni_.ns e ONios Ilfs O Nios IIf

. RISC RISC RISC
Nios Il 32-bit 32t 325t
Selector Guide Instruction Cache Instruction Cache
Famity: Cyclons IV E Branch Prediction Branch Prediction
Hardware Multiply Hardware Muftiply
fiys['zrr 50.0 MHz Hardware Divide Hardw are Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz up_m_é’nw's_} Up to 32 DMIPS. Up to 57 DMIPS

e Hname &nn 7nn 1 Ee 190014001 £ 140N 12001 Ea

cpuid: 0

Hardware Multiply: | Embedded Multipliers Hardw

Reset Vector: Memory: w | Offset |l

Exception Vector: Memury:. + | Offzet (20

Only include the MMU when using an eperating system that explicithy supports an MMU

Fast TLB Miss Exception Vector: Kemory: Offset: |(f)

Inchide MPU

‘Warning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

Figure 6.Create a Nios Il processor.

e« Choose Nios llfe which is the simplest version of the processor. Click Finish to
return to the window in Figure 5, which now shows the Nios Il processor specified as indicated
in Figure 7. There may be some warnings or error messages displayed in the SOPC Builder
Messages window (at the bottom of the screen), because some parameters have not yet been
specified. Ignore these messages as we will provide the necessary data later.

SN

File Edit Module System \iew Tools Niosll Help

System Contents | System Generation

Component Library Target Clock Settings

Project Device Fam'rry:f Cyclone IV E Mame Source
I New component . External
brary
t-Avalon Verification Suite
#-Bridges and Adapters
e|-Interface Protocols
i-Legacy Compenents Use Conn.. Module Name Description
tl--Memories and Memory Contro| @

Bt E cpu_0 Nios Il Processor
H- Peripherals instruction_master \Avalon Memory Mapped Master
£-PLL data_master \Avalon Memory Mapped Master

t-Processor Additions Jjiag_debug_module \Avalon Memory Mapped Slave
El-Processors

'
£-SLS
t-University Program

vl Afiden and Imane Procaceinn

| X I

Address Map.: I l Eikers....] Filter: Cefault

7 To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
= 7o no: cpu_0: No exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issue

4 Warning: cpu_0: Reset vector and Exception vector cannot be set until memory devices are connected to the Miog Il processor

Next [I I Generate

Figure 7.The defined processor.

6. To specify the on-chip memory perform the following:

® Select Memories and Memory Controllers > On-Chip > On-Chip Memory (RAM
or ROM) and click Add

® In the On-Chip Memory Configuration Wizard window, shown in Figure 8, set the
memory width to 32 bits and the total memory size to 4 Kbytes

® Do not change the other default settings

® Click Finish , which returns to the System Contents tab as indicated in Figure 9

LS On-C

“ On-Chip Memory
msew (RAM or ROM)

Parameter
Settings

General settings 2 Memary initialization

~Memory type
@) RAM (Writable)) ROM (Read-only)

[] Dual-port access

Read During Write Mode: | DONT_CARE - |

Block type: | Auto -

Initialize memory content

Memory will be initialized from onchip_memory2_0.hex

~Size

Data width:

Total memory size: ﬂ

[Minimize memory block usage (may impact fmax)

~Read latency

Slave 51: |1 - Slave s2: | | -

Gongel || < Bick | [Wexd » | [Finish

Figure 8.Define the on-chip memory.

File Edit Module System \iew Tools Niosll Help

System Contents | System Generation

Component Library Target Clock Settings

[-Flash Device Family: Cyclone IV E | Mame Source

-0n-Chip : . External
5 Avalon-ST Dual C
a Avalon-ST Multi-C
@ Avalon-5ST Round
& Avalon-ST Single
On-Chip FIFO MerI . Cann... Wodule Name Description

{On-Chip Memory @ E cpu_0 Nios Il Processor

15DEAM instruction_master \Avalon Memory Mapped Master
] @-:SHAM data_master \Avalon Memory Mapped Master
g-Feipnerals jtag_debug_module |Avalon Memory Mapped Slave
:PLL N [B onchip_memory2 ¢ |On-Chip Memory (RAM or ROM)
|-Processor Additions 21 \Avalon Memory Mapped Slave ;
tl-Processors
H-5LS

H.1Inivareihe Broaram
1

1]

Y T v 3 =) Address Map.: I l Eikers....] Filter: Crefault

7 To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue

2 To Do: cpu_0: Mo exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issue

Exit Help 4 Prev | Next [I I Generate

Figure 9.The on-chip memory is included.

7. Specify the input parallel I/O interface as follows:

® Select Peripherals > Microcontroller Peripherals > PIO (Parallel 1/0) and click
Add to reach the PIO Configuration Wizard in Figure 10

® Specify the width of the port to be 8 bits and choose the direction of the port to be
Input, as shown in the figure

® Click Finish to return to the System Contents tab as given in Figure 11

10

Input Op Simulation

Direction

() Bidirectional (tristate) ports

(7 Output ports only

~Output Port Reset Value
C

Dutput Register

Reset Value:

1 _: Enable individual bit setting/clearing

I{3) Info: PIO inputs are not hardwired in test bench. Undefined values wil be read from PIO inputs du

<

Figure 10.Define a parallel input interface.

File Edit Module System View Tools Mios Il Help

System Contents | System Generation)

T Clock Settings

Device Famiy, Cyclone IV E = Name Source WHz

Component Library

egacy Components .
Memories and Hemory Contro
-Peripherals

(4} Debug and Performance
[#-Display

(3} FPGA Peripherals

= Microcantraller Peripharal
& Interval Timer
FIG (Paraliel 10)

Module Name Clock Base

Description

Nios Il Processor

B cpu_0

instruction_master

Avalon Memory Mapped Master

;|- Multprocsssor Coorafiah 2 data_master |Avalon Wemory Wapped Master 0 IH 31 5
B-PLL : jfteg_debug_module |Avalon Memory Mapped Slave D0000BO0 (XOINEEE
& l © onchip_memory2 0 |On-Chip Memory (RAM or ROM)
' s1 \Avalon Memory Mapped Slave iclk_0 O DO002000 (OeOO2E£1
B pio_0 RIO (Parallel UO)
1 |Avalon Memory Mapped Slave lclk_0 (D0000000 (XONNO0F

Fitter: Default

=]+ ==

- To Do: epu_0: No reset vactor has besn specified for this CPU. Please paramsterize the CPU to resolve this issue

7 7o Do: opu_0: o exception vector has been specified for this CPU. Please paramsterize the CPU to resolve this issus
0 Info: pio_0: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

Figure 11.The parallel input interface is included.

11

0o

. In the same way, specify the output parallel I/O interface:
Select Peripherals > Microcontroller Peripherals > PIO (Parallel 1/0) and click
Add to reach the PIO Configuration Wizard again
® Specify the width of the port to be 8 bits and choose the direction of the port to be
Output
® Click Finish to return to the System Contents tab
9. We wish to connect to a host computer and provide a means for communication
between the Nios Il system and the host computer. This can be accomplished by instantiating
the JTAG UART interface as follows:
® Select Interface Protocols > Serial > JTAG UART and click Add to reach the JTAG
UART Configuration Wizard in Figure 12
® Do not change the default settings
® Click Finish to return to the System Contents tab

Parametear
Settings

Write FIFO (Data from Avalon to JTAG)

Buffer depth (bytes): |64 = IRQ threshold: |8

|:[Construct using registers instead of memory blocks

~Read FIFQ (Data from JTAG to Avalon)

Buffer depth (bytes): {54 = IRQ threshold; |8

[7] construct using registers instead of memory blocks

< Bock | | Hext » | | Eimish

Figure 12.Define the JTAG UART interface.

12

10. The complete system is depicted in Figure 13. Note that the SOPC Builder
automatically chooses names for the various components. The names are not necessarily
descriptive enough to be easily associated with the target design, but they can be changed. In
Figure 2, we use the names Switches and LEDs for the parallel input and output interfaces,
respectively. These names can be used in the implemented system. Right-click on the pio_0
name and then select Rename. Change the name to Switches. Similarly, change pio_1 to
LEDs.

11. The base and end addresses of the various components in the designed system can
be assigned by the user, but they can also be assigned automatically by the SOPC Builder. We
will choose the latter possibility. So, select the command (using the menus at the top of the
SOPC Builder window) System > Auto-Assign Base Addresses , which produces the
assignment shown in Figure 14.

|| File Edit Module System Wiew Tools Miosll Help

System Contents | System Generation

Target Clock Settings

Component Library
3l Device Family: Cyclone IV E 1 Name Source
clk_0 |External

Avalon-5T JTAG
Avalon-ST Serial Conn... Module Name Description
ITAG UART]|
SPI (3 Wire Serial| &
o @ UART (R3-232 S¢
--Legacy Compenents
[-Memories and Memory Controj
[#-Peripherals. !
B-PLL
rocessor Additions

B cpu_0 Nios Il Processor
instruction_master \Avalon Memery Mapped Master
data_master \Avalon Memory Mapped Master
jtag_debug_module Avalon Memory Mapped Slave

E onchip_memory2 0 On-Chip Memory (RAM or ROM)

\avalon Memory Mapped Slave clk_0

FI0 (Paraliel VO)

\Avalon Memory Mapped Slave clk_0

Fi0 (Parallel V)

\Avalon Memory Mapped Slave clk_0

1

AﬁdressMap.: | Ifi}ters... I Filter: Cefault

-~ To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
2 To Do: cpu_0: Mo exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issue

@ Info: pio_0: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

Next [I I Generate

Figure 13.The complete system.

13

File Edt Module System View Toolks Niosll Help

System Contents ‘ System Gmeraunn‘

Clock Sett
Component Library Target i i
Froect +| | Device Famiy{Cyclone VE = | | Name B Witz @
3 Wew component.. = |
Library
[Avalon Verification Sufte
1 Bridges and Adaplers
£ interface Protocols z
i Use Conn.. Module Name Description Clock Base End Tags RQ
(1 Ethernet 7
[#1 High Speed @] B cpu_0 Nios Il Processor
Pl instruction_master | Avalon Memory Mapped Master clk_0
£ Serial B data_master Avalon Hemary Mapped Master M 0 1m 31
& Avalon-5TITAG T fag_debug_medule |Avalon Memory Mapped Slave 0xDO002B00 |[n000026 S
“ Avalon-5T Serial £l i onchip_memory2_0 | On-Chip Memery (RAM or ROM) clk_0 . O«D0DOIO00 [(ODOLEfE
S TAG UART| v Switches PIO (Parallel 10} clk_0 0<00003000 (O0000E 1
= SPI(3 Wire Serial PID (Paraliel VO) =]
s UART Re-z3zsc~| | I jtag_uart_0 ITAG UART clk_0 00003020 |00003027 b
7) — 7 — »
4| | %

) () | (e (@EEE ot

- To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
=7 To Do: cpu_0: No sxception vector has been spacified for this CPU. Please parameterize the CPU to resolve this issue

Exit Help d Frev Next b Generate

Figure 14.The final specification.

12. The behaviors of the Nios Il processor when it is reset is defined by its reset vector. It
is the location in memory device the processor fetches the next instruction when it is reset.
Similarly, the exception vector is the memory address the processor goes to when an interrupt
is raised. To specify these two parameters, perform the following:

® Right-click on the cpu_0 and then select Edit to reach the window in Figure 15

® Select onchip_memory2 0 to be the memory device for both reset vector and

exception vector, as shown in the figure

® Do not change the default setting for offset

® Click Finish to return to the System Contents tab

14

Nios I Processar - cpu 0

Nios II Processor

> Caches and Memary Interfaces "') Advanced Features \‘ MMU and MPU Settings > JTAG Debug Module ;

rCore Nios -

Select a Nios Il core:

I@-_Ni_.ns e ONios Ilfs

ONios IIf

. RISC RISC

Nios Il 32-hit 32.bit
Selector Guide Instruction Cache
Famity: Cyclone VE Branch Prediction
Hardware Multiply

fsyslerr-.: 50.0 MHz Hardware Divide
cpuid: 0

Performance at 50.0 MHz UNDBDHPS Up to 32 DMIPS
| Amin lloama £nn TNl e A4NN-1400 | Fe

Hardware I'-'Iurliph.r:. Hardwars

Reset Vector: Memory: | onchip._memory2 0 w |Offset: | Ox

Exception Vector: Memory: .unchip_memuryz_ﬂ - | Dffset: |0x20
| Include MMU

Only include the MMU when using an operating system that explicity supports an MMU

RISC

32-bit

Instruction Cache

Branch Prediction

Hardware Multiphy

Hardware Divide

Barrel Shifter

Data Cache

Dynamic Branch Prediction
Up to 57 DMIPS

440N 480N | Ee

| 0x00001000

Ox00001020

Fast TLB Miss Exception Vector: Memory: | Offset: |0

Documentation

Custom Instructions >

Cancel || = Back | | Next = | | Finish

Figure 15.Define the reset vector and exception vector.

13. Having specified all components needed to implement the desired system, it can now
be generated. Select the System Generation tab, which leads to the window in Figure 16. Turn
off Simulation — Create simulator project files, because in this tutorial we will not deal with the
simulation of hardware. Click Generate on the bottom of the SOPC Builder window. The
generation process produces the messages displayed in the figure. When the message
“SUCCESS: SYSTEM GENERATION COMPLETED" appears, click Exit. This returns to the

main Quartus Il window.

15

Documentation

CoreNiosII| » Caches and Memory Interfaces » Advanced Features 2 MMU and MPU Settings } JTAG Debug Module » Custom Instructions)
-Core Nios -

Select a Nios Il core:

I@-_Ni_ns e O Nios Il/s ONios IIff

A RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiphy
fs‘,rslerr-: 50.0 MHz Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz Un!DBDMPS Up to 32 DMIPS Up to 57 DMIPS

Family. Cyclone W E

cpuid: 0

| nnin lleama £nn FnniEs AN A AN | Fe 440N 480N | Ee

Hardware I'-'Iurliph.r:. Hardwars

Reset Vector: Memory: | onchip._memory2 0 w |Offset: | Ox | 0x00001000

Exception Vector: Memory: | onchip_memory2_0 ~ Offget: | 0=20 0x00001020

Include |

Only include the MMU when using an operating system that explicity supports an MMU

Fast TLB Miss Exception Vector: Memory: | Offset: |0

Inclide MPU

Cancel || = Back | | Next = | | Finish

Figure 16.Generation of the system.

Changes to the designed system are easily made at any time by reopening the SOPC Builder
tool. Any component in the System Contents tab of the SOPC Builder can be selected and
deleted, or a new component can be added and the system regenerated.

3 Integration of the Nios Il System into a Quartus Il Project
To complete the hardware design, we have to perform the following:
. Instantiate the module generated by the SOPC Buil der into the Quartus Il
project
e Assign the FPGA pins
e Compile the designed circuit
e Program and configure the Cyclone IV E device on the DE2-115 board

3.1 Instantiation of the Module Generated by the SO PC Builder
The instantiation of the generated module depends on the design entry method chosen for the
overall Quartus Il project.

16

We have chosen to use Verilog HDL, but the approach is similar for both VHDL and
schematic entry methods. Normally, the Nios Il module is likely to be a part of a larger design.
However, in the case of our simple example there is no other circuitry needed. All we need to
do is instantiate the Nios Il system in our top-level Verilog file, and connect inputs and outputs
of the parallel 1/O ports, as well as the clock and reset inputs, to the appropriate pins on the
Cyclone IV E device.

The Verilog module generated by the SOPC Builder is in the file nios_system.v in the
directory of the project. Note that the name of the Verilog module is the same as the system
name specified when first using the SOPC Builder. The Verilog code is quite large. Figure 17
depicts the portion of the code that defines the input and output signals for the module
nios_system. The 8-bit vector that is the input to the parallel port Switches is called
in_port_to_the_Switches. The 8-bit output vector is called out_port_from_the_LEDs. The clock
and reset signals are called clk_0 and reset_n, respectively. Note that the reset signal is added
automatically by the SOPC Builder; it is called reset_n because it is active low.

e “"DS—M

2124 A~
2 Ehodule nios_system |(
¢4 40 | 2128 // 1) global signals:
2127 clk 0O,
2128 reset_n,
i= i= 2129
= 7| 2130 // the LEDs
4% | 2131 out port from the LEDs,
0, 2132
» % 2133 // the Switches
l“] ﬁ 2134 in_port_to_the Switches
2135)
L3 2136 :
o 2137
266 b 2138 output [7: 0] out_port_ from the LEDs:
| = || 2139 input ik 0k
2140 input [7: 0] in port to the Switches:
= ; = ===
= = 2141 input reset_n;
2142
2143 wire [1: O] LEDs_sl_address;
2144 wire LEDs_s1 _chipselect;
2145 wire [7: 0] LEDs_sl1 readdata;
2146 wire [7: 0] LEDSHB1__‘readciat,agfrom_sa:
2147 wire LEDs_sl_tEseb_n;
2148 wire LEDs_s1 write_n;
2149 wire [7¢ 0] LEDs_sl_writEdata; v
< ?

Figure 17.A part of the generated Verilog module.

Figure 18 shows a top-level Verilog module that instantiates the Nios Il system. This
module is named lights, because this is the hame we specified in Figure 3 for the top-level
design entity in our Quartus Il project. Note that the input and output ports of the module use
the pin names for the 50-MHz clock, CLOCK_50, pushbutton switches, KEY, toggle switches,
SW, and green LEDs, LEDG, that are specified in the DE2-115 User Manual. Type this code
into a file called lights.v. Add this file and all the *.v files produced by the SOPC Builder to your
Quartus Il project. Also, add the necessary pin assignments on the DE2-115 board to your
project. The procedure for making pin assignments is described in the tutorial Quartus I
Introduction Using Verilog Design.

17

Note that an easy way of making the pin assignments when we use the same pin names
as in the DE2-115 User Manual is to import the assignments given in the file called
DEZ2-115 pin_assignments.csv in the directory DE2-115 tutorials\design_files, which is
included on the CD-ROM that accompanies the DE2-115 board and can also be found on
Altera’s DE2-115 web pages. Since the system we are designing needs to operate at a
50-MHz clock frequency, add the needed timing assignment in your Quartus Il project. The
tutorial Timing Considerations with Verilog-Based Designs shows how this is done.

/I Implements a simple Nios Il system for the DE2-115 board.

/I Inputs: SW7-0 are parallel port inputs to the Nios Il system

/I CLOCK_50 is the system clock

/I KEYO is the active-low system reset

/[Outputs: LEDG7-0 are parallel port outputs from the Nios Il system
module lights (SW, KEY, CLOCK_50, LEDG);

input [7:0] SW;

input [0:0] KEY;

input CLOCK_50;

output [7:0] LEDG;

/I Instantiate the Nios Il system module generated by the SOPC Builder:
/[nios_system (clk_0, reset_n, out_port_from_the_ LEDs, in_port_to_the_Switches)
/I nios_system Nios Il (CLOCK_50, KEY[0], LEDG, SW);

endmodule

Figure 18.Instantiating the Nios Il system.

Having made the necessary settings compile the code. You may see some warning
messages associated with the Nios Il system, such as some signals being unused or having
wrong bit-lengths of vectors; these warnings can be ignored.

3.2 Programming and Configuration
Program and configure the Cyclone IV E FPGA in the JTAG programming mode as follows:

1. Connect the DE2-115 board to the host computer by means of a USB cable plugged
into the USB-Blaster port. Turn on the power to the DE2-115 board. Ensure that the
RUN/PROG switch is in the RUN position.

2. Select Tools > Programmer to reach the window in Figure 19.

3. If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster
is not chosen by default, press the Hardware Setup ... button and select the USB-Blaster in
the window that pops up.

4. The configuration file lights.sof should be listed in the window. If the file is not already
listed, then click Add File and select it.

18

5. Click the box under Program /Configure to select this action.
6. At this point the window settings should appear as indicated in Figure 19. Press Start to
configure the FPGA.

B quenstprogramper - (chant 5 . = e

| e ettt el =

| File Edit Options Processing Help |
M G A haode: JUTAG ~| Pragess: Dx |

[~ Enable realtime 15P ta allow backaround programming (for MaX 1| devices]

Program/
Configure

sof EPACETISFZS OOBGFEEZ FFFFFFFE [l

Checksum

U Stop

b Auto Detect
X Delete

s add File..
B8 Change File...

_E SaveFile |

Type]léessage

\Syeen 5

Ready

Figure 19.The Programmer window.

4 Running the Application Program

Having configured the required hardware in the FPGA device, it is how necessary to
create and execute an application program that performs the desired operation. This can be
done by writing the required program either in the Nios Il assembly language or in a high-level
language such as C. We will illustrate both approaches.

A parallel /0O interface generated by the SOPC Builder is accessible by means of
registers in the interface. Depending on how the PIO is configured, there may be as many as
four registers. One of these registers is called the Data register. In a PIO configured as an
input interface, the data read from the Data register is the data currently present on the PIO
input lines. In a PIO configured as an output interface, the data written (by the Nios I
processor) into the Data register drives the PIO output lines. If a PIO is configured as a
bidirectional interface, then the PIO inputs and outputs use the same physical lines. In this
case there is a Data Direction register included, which determines the direction of the
input/output transfer. In our unidirectional PIOs, it is only necessary to have the Data register.
The addresses assigned by the SOPC Builder are 0x00003000 for the Data register in the PIO
called Switches and 0x00003010 for the Data register in the P1O called LEDs, as indicated in
Figure 14.

4.1 Using a Nios Il Assembly Language Program
Figure 20 gives a Nios Il assembly-language program that implements our trivial task. The
program loads the addresses of the Data registers in the two PIOs into processor registers r2
and r3. It then has an infinite loop that merely transfers the data from the input P1O, Switches,
to the output PIO, LEDs.
The program includes the assembler directive .include
19

"nios_macros.s"

which informs the Assembler to use the Nios Il macros that specify how the movia pseudo
instructions can be assembled.

.include "nios_macros.s"

.equ Switches, 0x00003000
.equ LEDs, 0x00003010

.global _start

_start:

movia r2, Switches

movia r3, LEDs

loop: Idbio r4, 0(r2)
stbio r4, 0(r3)
br loop

Figure 20.Assembly language code to control the lights.

The directive
.global _start

indicates to the Assembler that the label _start is accessible outside the assembled object file.
This label is the default label we use to indicate to the Linker program the beginning of the
application program.

For a detailed explanation of the Nios Il assembly language instructions see the tutorial
Introduction to the Altera Nios Il Soft Processor.

Enter this code into a file lights.s and place the file into a working directory. We placed the file
into the directory sopc_builder_tutorial\app_software. The program has to be assembled and
converted into an S-Record file, lights.srec, suitable for downloading into the implemented
Nios Il system. Altera provides the monitor software, called Altera Monitor Program, for use
with the DE2-115 board. This software provides a simple means for compiling, assembling and
downloading of programs into a Nios Il system implemented on a DE2-115 board. It also
makes it possible for the user to perform debugging tasks. A description of this software is
available in the Altera Monitor Program tutorial. Open the Altera Monitor Program, which leads
to the window in Figure 21. This software needs to know the characteristics of the designed
Nios Il system, which are given in the ptf file nios_system.ptf. Click the File > New Project
menu item to display the New Project Wizard window, shown in Figure 22, and perform the
following steps:

20

1. Enter the sopc_builder_tutorial directory as the Project directory by typing it directly into
the Project directory field, or by browsing to it using the Browse ... button.

2. Enter lights as the Project name and click Next >, leading to Figure 23.

3. From the Select a System drop down box, select <Custom System >.

4. Click Browse ... beside the System Description field to display a file selection window
and choose the nios_system.ptf file. Note that this file is in the design directory
sopc_builder_tutorial.

5. Specifying the .sof file in the Quartus Il Programming (SOF) File field allows the user to
download the programming file onto the board from the Altera Monitor Program. Note that we
need not specify this file as we have already downloaded the programming file onto the board.

6. Click Next >.

7. Select Assembly Program as the program type from the drop down menu and click
Next >, leading to Figure 24.

8. Click Add ... to display a file selection window and choose the lights.s file and click Next
>. Note that this file is in the directory sopc_builder_tutorial\app_software.

9. Ensure that the Host Connection is set to the USB-Blaster, the Processor is set to
cpu_0 and the Terminal Device is set to the JTAG UART, and click Next >

10. The Altera Monitor Program also needs to know where to load the application
program. In our case, this is the memory block in the FPGA device. The SOPC Builder
assigned the name onchip_memory2 0 to this block. As shown in Figure 25, the Monitor
Program has already selected the correct memory device.

11. Having provided the necessary information, click Finish to confirm the system
configuration.

Altera Monitor Program [Nios II] Q@@

File Settings Actions ‘Windows Help

BE BRBSEB i

Disassembly

- X | Registers =

[ride] | [Reslelue

[«]

L4 [»]
Disassembly | Breakpoints / Memory [Watches | Trace [

Terminal - X | Info & Errors

Info &Errors | GDB Server |

Figure 21.The Altera Monitor Program window on startup.
21

+ New Project Wizard

Specify a project name and directory

Project directory:

|D:1sopc_builder_tutorial | [Browse. .. I

Project name:
|Iights |

Figure 22.Specify the project directory and name.

+ New Project Wizard

Specify a system

Select a system

] <Custom System: v|

Specify a Nios II system by selecting a system description {PTF) file, and an optional Quartus II programming (SOF)
file.

System details
System description (PTF) file:

{D:'gsopc_builder_tutorial‘gnios_systern,ptf] I Browse... l

Quartus II programming (SOF) file {optional):

] [IBrowse...]

The SOF file represents the FPGA programming file For the Nios IT system, If it is specified here, then the Monitor
Program can be used to download this programming file onto the board. Otherwise, the system will need to be
downloaded using some other method (for example, by using Quartus II).

l < §ack| I Mext = I | Cancel]

Figure 23.The System Specification window.

22

New Project Wizard

Specify program details

Source files
First source file is used to determine the name of the binary program file,

D:\sopc_builder_tutorial\app_softwarellights.s Add...

Remove

Down

Program options

Start symbol: | _start

| <§ack| | Mext > I [Finish I [Cancel I

Figure 24.Specify the binary file to use.

New Project Wizard @

Specify program memory settings

Processor's reset and exception vectors (read-only)
Reset vector address (hex): 1000
Exception vector address (hex): 1020

Memory options

Here you can specify the starting addresses of sections identified by .text and .data assembler directives. These
addresses can be in the same or in different memories {on-chip, SDRAM, ...). They can be used to ensure that the
.text and .data sections do not overlap with other sections, such as .reset and .exceptions, If .text and .data are
specified to have the same address, the .data section will be placed right after the .text section by the linker.

.text section
Memory device: lonchip_memoryz_o;‘sl (1000h - 1Fffh) vJ

Start offset in device (hex): J 0|

.data section

Memory device: lonchip_memoryz_ﬂjsl {1000h - 1fffh) v|
Start offset in device (hex): [0]
| < Back I | Finish] | Cancel |

Figure 25.The program memory settings window.

23

Next, to assemble and download the light.s program, click the Actions > Compile &
Load menu item. The Altera Monitor Program will invoke an assembler program, followed by a
linker program. The commands used to invoke these programs, and the output they produce,
can be viewed in the Info & Errors window of the Monitor Program window. After the program
has been downloaded onto the board, the program is displayed in the Disassembly window of
the Monitor Program as illustrated in Figure 26. Observe that movia is a pseudoinstruction
which is implemented as two separate instructions.

Click the Actions > Continue menu item to execute the program. With the program
running, you can now test the design by turning the switches, SW 7 to SW 0 on and off; the
LEDs should respond accordingly.

+ Altera Monitor Program [Nios II] - lights.ncf : lights.srec [Paused]

File Settings Actions Windows Help
HE B¢tE @200k MG
Disassembly - X | Registers - X
5 < ‘ Reg Value |
Goto instruction | Address (hex) or symbol name: Go Hide | || ———"—
[ey IE pe 0x00001000 |~ |
.global _start |~|| zexo 0x00000000
rl 0x00000000
starc: 2 0x00000000
movia r2, 3witches r3 0x00000000
SEREES rd 0x00000000 |
0x00001000 300034 orhi 12, zero, 0x0 Lo 0x00000000) 2
0x00001004 10500014 ori 2, rz, 0x3000 ‘f; g"gggggggg
: r X
wovia r3, LED |
2 5 A = — | [£8 Ox00000000
0x00001008 c00034 orhi x3, zero, Ox0 = e 0x00000000
0x0000100c 114 ori r§, ¥3; 0x3010 £10 0%00000000 [
))] rll 0x00000000
loop: ldbic rd, 0(r2) rlz 0x00000000
loop: rl3 0x00000000
0x00001010 11 ldbio x4, 0(r2) rld 0x00000000
sthio r4, 0(x3) rls 0x00000000
0x00001014 19000025 sthio x4, 0(r3) Ll [r16 0x00000000
OxA0001018 ££40 hr (e (0eNNONINT0. laon! N 17 0x00000000
e |l 0x00000000 | |
Disassembly _;' Breakpoints _‘,‘" Memory ' Watches | Trace / rlo 0x00000000 |+
Terminal - X | Info & Errors = -
Verified OK
JTAG UART link established using cable "USB-Blaster vexlided e _ E
- i . Connection established to GDE server at localhost:240
[USB-0]", dewice 1, instance 0x00
Syumbols loaded.
Source code loaded.
INFO: Program Trace not enabled, because trace requirz
-

o] [»]

Info &Errors | GDB Server |

Figure 26.Display of the downloaded program.

The Monitor Program allows a number of useful functions to be performed in a simple manner.
They include:

® single stepping through the program

® examining the contents of processor registers

® examining the contents of the memory

® setting breakpoints for debugging purposes

® disassembling the downloaded program
A description of this software and all of its features is available in the Altera Monitor Program
tutorial.

24

4.2 Using a C-Language Program

An application program written in the C language can be handled in the same way as the
assembly-language program. A C program that implements our simple task is given in Figure
25. Enter this code into a file called lights.c.

#define Switches (volatile char *) 0x0003000
#define LEDs (char *) 0x0003010

void main()

{ while (1)
*LEDs = *Switches;
}

Figure 27.C language code to control the lights.

Perform the following steps to use this program:

1. Disconnect from the current debugging session by clicking the Actions > Disconnect
menu item.

2. Click the Settings > Program Settings ... menu item to launch the Project settings
window with the Program settings tab selected.

3. Select C Program as the Program Type in the drop-down list. The Monitor Program
may prompt you to clear any currently selected source files. Click Yes to proceed. Note that
lights.s has been removed from the list of source files.

4. Click Add ... and choose the lights.c file.

5. Click Ok to confirm the new program configuration.

The steps to compile, load, and run the program are the same as for an assembly language
program.

25

Copyright () 2010 Altera Corporation. All rights reserved. Altera, The Programmable
Solutions Company, the stylized Altera logo, specific device designations, and all other words
and logos that are identified as trademarks and/or service marks are, unless noted otherwise,
the trademarks and service marks of Altera Corporation in the U.S. and other countries. All
other product or service names are the property of their respective holders. Altera products are
protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services. This document is
being provided on an “as-is” basis and as an accommodation and therefore all warranties,
representations or guarantees of any kind (whether express, implied or statutory) including,
without limitation, warranties of merchantability, non-infringement, or fitness for a particular
purpose, are specifically disclaimed.

26

