

Using Library Modules in VHDL Designs

This tutorial explains how Altera’s library modules can be included in VHDL-based designs,

which are implemented by using the Quartus
®

 II 9.1 software.

Contents:

Example Circuit

Library of Parameterized Modules

Augmented Circuit with an LPM

Results for the Augmented Design

1

Practical designs often include commonly used circuit blocks such as adders, subtractors,

multipliers, decoders, counters, and shifters. Altera provides efficient implementations of such

blocks in the form of library modules that can be instantiated in VHDL designs. The compiler

may recognize that a standard function specified in VHDL code can be realized using a library

module, in which case it may automatically infer this module. However, many library modules

provide functionality that is too complex to be recognized automatically by the compiler. These

modules have to be instantiated in the design explicitly by the user. Quartus
®

 II 9.1 software

includes a library of parameterized modules (LPM). The modules are general in structure and

they are tailored to a specific application by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:

� Library of parameterizes modules (LPMs)

� Configuring an LPM for use in a circuit

� Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained using the Quartus II version 9.1, but other

versions of the software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add, subtract,

and accumulate n-bit numbers using the 2’s complement number representation. The two

primary inputs are numbers A =
1 2 0* ...n na a a− − and B = 1 2 0* ...n nb b b− − , and the primary

output is Z = 1 2 0* ...n nz z z− − . Another input is the AddSub control signal which causes Z =

A + B to be performed when AddSub = 0 and Z = A − B when AddSub = 1. A second control

input, Sel, is used to select the accumulator mode of operation. If Sel = 0, the operation Z = A ±

B is performed, but if Sel = 1, then B is added to or subtracted from the current value of Z.

If the addition or subtraction operations result in arithmetic overflow, an output signal,

Overflow, is asserted. To make it easier to deal with asynchronous input signals, they are

loaded into flip-flops on a positive edge of the clock. Thus, inputs A and B will be loaded into

registers Areg and Breg, while Sel and AddSub will be loaded into flip-flops SelR and

AddSubR, respectively. The adder/subtractor circuit places the result into register Zreg.

2

Figure 1.The adder/subtractor circuit.

The required circuit is described by the VHDL code in Figure 2. For our example, we use a

16-bit circuit as specified by n = 16. Implement this circuit as follows:

� Create a project addersubtractor.

� Include a file addersubtractor.vhd, which corresponds to Figure 2, in the project. For

convenience, this file is provided in the directory DE2-115_tutorials\design_files,

which is included on the CD-ROM that accompanies the DE2-115 board and can

also be found on Altera’s DE2-115 web pages.

� Choose the Cyclone IV EP4CE115F29C7 device, which is the FPGA chip on Altera’s

DE2-115 board.

� Compile the design.

� Simulate the design by applying some typical inputs.

3

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

−− Top-level entity

ENTITY addersubtractor IS

GENERIC (n : INTEGER := 16) ;

PORT (A, B : IN STD_LOGIC_VECTOR (n−1 DOWNTO 0) ;

 Clock, Reset, Sel, AddSub : IN STD_LOGIC ;

 Z : BUFFER STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Overflow: OUT STD_LOGIC);

END addersubtractor;

ARCHITECTURE Behavior OF addersubtractor IS

SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR_n : STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;

SIGNAL SelR, AddSubR, carryout, over_flow : STD_LOGIC ;

COMPONENT mux2to1

GENERIC (k : INTEGER := 8) ;

PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;

F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END COMPONENT ;

COMPONENT adderk

GENERIC (k : INTEGER := 8) ;

PORT (carryin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

carryout : OUT STD_LOGIC) ;

END COMPONENT ;

BEGIN

PROCESS (Reset, Clock)

BEGIN

IF Reset = ’1’ THEN

Areg <= (OTHERS => ’0’); Breg <= (OTHERS => ’0’);

Zreg <= (OTHERS => ’0’); SelR <= ’0’; AddSubR <= ’0’; Overflow <= ’0’;

ELSIF Clock’EVENT AND Clock = ’1’ THEN

Areg <= A; Breg <= B; Zreg <= M;

SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;

END IF ;

END PROCESS ;

nbit_adder: adderk

GENERIC MAP (k => n)

PORT MAP (AddSubR, G, H, M, carryout) ;

4

multiplexer: mux2to1

GENERIC MAP (k => n)

PORT MAP (Areg, Z, SelR, G) ;

AddSubR_n <= (OTHERS => AddSubR) ;

H <= Breg XOR AddSubR_n ;

over_flow <= carryout XOR G(n−1) XOR H(n−1) XOR M(n−1) ;

Z <= Zreg ;

END Behavior;

. . . continued in Part b

Figure 2.VHDL code for the circuit in Figure 1 (Part a).

−− k-bit 2-to-1 multiplexer

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS

GENERIC (k : INTEGER := 8) ;

PORT (V, W : IN STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;

F: OUT STD_LOGIC_VECTOR(k−1 DOWNTO 0)) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS (V, W, Selm)

BEGIN

IF Selm = ’0’ THEN

F <= V ;

ELSE

F <= W ;

END IF ;

END PROCESS ;

END Behavior ;

−− k-bit adder

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_signed.all ;

ENTITY adderk IS

GENERIC (k : INTEGER := 8) ;

PORT (carryin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;

5

S: OUT STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;

carryout : OUT STD_LOGIC) ;

END adderk ;

ARCHITECTURE Behavior OF adderk IS

SIGNAL Sum : STD_LOGIC_VECTOR(k DOWNTO 0) ;

BEGIN

Sum <= (’0’ & X) + (’0’ & Y) + carryin ;

S <= Sum(k−1 DOWNTO 0) ;

carryout <= Sum(k) ;

END Behavior ;

Figure 2.VHDL code for the circuit in Figure 1 (Part b).

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are general in structure and they can

be configured to suit a specific application by specifying the values of various parameters.

Select Help > Megafunctions/LPM to see a listing of the available LPMs. One of them is an

adder/subtractor module called lpm_add_sub megafunction. Select this module to see its

description. The module has a number of inputs and outputs, some of which may be omitted in

a given application. Several parameters can be defined to specify a particular mode of

operation. For example, the number of bits in the operands is specified in the parameter

LPM_WIDTH. The LPM_REPRESENTATION parameter specifies whether the operands are

to be interpreted as signed or unsigned numbers, and so on. Templates on how an LPM can

be instantiated in a hardware description language are given in the description of the module.

Using these templates is somewhat cumbersome, so Quartus II software provides a wizard

that makes the instantiation of LPMs easy.

We will use the lpm_add_sub module to simplify our adder/subtractor circuit defined in

Figures 1 and 2.The augmented circuit is given in Figure 3. The lpm_add_sub module,

instantiated under the name megaddsub, replaces the adder circuit as well as the XOR gates

that provide the input H to the adder. Since arithmetic overflow is one of the outputs that the

LPM provides, it is not necessary to generate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory named tutorial_lpm, and

then create a project addersubtractor2. Choose the same Cyclone IV EP4CE115F29C7 device,

to allow a direct comparison of implemented designs.

6

Figure 3.The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit specified as a VHDL component that

will be instantiated in the top-level VHDL design entity. The VHDL component for the LPM

subcircuit is generated by using a wizard as follows:

1. Select Tools > MegaWizard Plug-in Manager, which leads to a sequence of seven

pop-up boxes in which the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indicate Create a new custom megafunction variation and

click Next.

7

Figure 4.Choose to define an LPM.

Figure 5. Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs. Expand the “arithmetic” sublist and

select LPM_ADD_SUB. Choose VHDL as the type of output file that should be created. The

output file must be given a name; choose the name megaddsub.vhd and indicate that the file

should be placed in the directory tutorial_lpm as shown in the figure. Press Next.

8

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the

operating mode in which one of the ports allows performing both addition and subtraction of

the input operand, under the control of the add_sub input. A symbol for the resulting LPM is

shown in the top left corner. Note that if add_sub = 1 then result = A + B; otherwise, result = A −

B. This interpretation of the control input and the operation performed is different from our

original design in Figures 1 and 2, which we have to account for in the modified design.

Observe that we have included this change in the circuit in Figure 3. Click Next.

Figure 6.Specify the size of data inputs.

5. In the box in Figure 7, specify that the values of both inputs may vary and click Next.

Figure 7.Further specification of inputs.

9

6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be

specified. Since we need the overflow signal, make the Create an overflow output choice and

press Next.

Figure 8.Specify the Overflow output.

7. In the box in Figure 9 say No to the pipelining option and click Next.

Figure 9.Refuse the pipelining option.

10

8. Figure 10 gives a summary which shows the files that the wizard will create. Press Finish to

complete the process.

Figure 10.Files created by the wizard.

3 Augmented Circuit with an LPM

We will use the file megaddsub.vhd in our modified design. Figure 11 depicts the VHDL code in

this file; note that we have not shown the comments in order to keep the figure small.

// Adder/subtractor module created by the MegaWizard

LIBRARY ieee;

USE ieee.std_logic_1164.all;

LIBRARY lpm;

USE lpm.lpm_components.all;

ENTITY megaddsub IS

PORT (add_sub : IN STD_LOGIC ;

 dataa: IN STD_LOGIC_VECTOR (15 DOWNTO 0);

datab: IN STD_LOGIC_VECTOR (15 DOWNTO 0);

result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);

overflow : OUT STD_LOGIC);

END megaddsub;

ARCHITECTURE SYN OF megaddsub IS

SIGNAL sub_wire0 : STD_LOGIC ;

SIGNAL sub_wire1 : STD_LOGIC_VECTOR (15 DOWNTO 0);

COMPONENT lpm_add_sub

GENERIC (lpm_width : NATURAL;

lpm_direction : STRING;

11

lpm_type : STRING;

lpm_hint : STRING);

PORT (dataa: IN STD_LOGIC_VECTOR (15 DOWNTO 0);

 add_sub : IN STD_LOGIC ;

datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

overflow : OUT STD_LOGIC ;

result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN

overflow <= sub_wire0;

result <= sub_wire1(15 DOWNTO 0);

lpm_add_sub_component : lpm_add_sub

GENERIC MAP (lpm_width => 16,

lpm_direction => "UNUSED",

lpm_type => "LPM_ADD_SUB",

lpm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")

PORT MAP (dataa => dataa,

add_sub => add_sub,

datab => datab,

overflow => sub_wire0,

result => sub_wire1);

END SYN;

Figure 11.VHDL code for the ADD_SUB LPM.

12

The modified VHDL code for the adder/subtractor design is given in Figure 12.

It incorporates the code in Figure 11 as a component. Put the code in Figure 12 into a file

tutorial_lpm\addersubtractor2.vhd. For convenience, the required file addersubtractor2.vhd is

provided in the directory DE2-115_tutorials\design_files, which is included on the CD-ROM

that accompanies the DE2-115 board and can also be found on Altera’s DE2-115 web pages.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

−− Top-level entity

ENTITY addersubtractor2 IS

GENERIC (n : INTEGER := 16) ;

PORT (A, B : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Clock, Reset, Sel, AddSub : IN STD_LOGIC ;

Z : BUFFER STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Overflow : OUT STD_LOGIC) ;

END addersubtractor2 ;

ARCHITECTURE Behavior OF addersubtractor2 IS

SIGNAL G, M, Areg, Breg, Zreg, : STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;

SIGNAL SelR, AddSubR, over_flow : STD_LOGIC ;

COMPONENT mux2to1

GENERIC (k : INTEGER := 8) ;

PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;

F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END COMPONENT ;

COMPONENT megaddsub

PORT (add_sub: IN STD_LOGIC ;

dataa, datab : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;

result: OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;

 overflow : OUT STD_LOGIC) ;

END COMPONENT ;

BEGIN

−− Define flip-flops and registers

PROCESS (Reset, Clock)

BEGIN

IF Reset = ’1’ THEN

Areg <= (OTHERS => ’0’); Breg <= (OTHERS => ’0’);

Zreg <= (OTHERS => ’0’); SelR <= ’0’; AddSubR <= ’0’; Overflow <= ’0’;

ELSIF Clock’EVENT AND Clock = ’1’ THEN

13

Areg <= A; Breg <= B; Zreg <= M;

SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;

END IF ;

END PROCESS ;

. . . continued in Part b

Figure 12.VHDL code for the circuit in Figure 3 (Part a).

−− Define combinational circuit

nbit_addsub: megaddsub

PORT MAP (AddSubR, G, Breg, M, over_flow) ;

multiplexer: mux2to1

GENERIC MAP (k => n)

PORT MAP (Areg, Z, SelR, G) ;

Z <= Zreg;

END Behavior;

−− k-bit 2-to-1 multiplexer

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS

GENERIC (k : INTEGER := 8) ;

PORT (V, W : IN STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;

F: OUT STD_LOGIC_VECTOR(k−1 DOWNTO 0)) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS (V, W, Selm)

BEGIN

IF Selm = ’0’ THEN

F <= V ;

ELSE

F <= W ;

END IF ;

END PROCESS ;

END Behavior ;

−− 16-bit adder/subtractor LPM created by the MegaWizard

LIBRARY ieee;

14

USE ieee.std_logic_1164.all;

LIBRARY lpm;

USE lpm.lpm_components.all;

ENTITY megaddsub IS

PORT (add_sub : IN STD_LOGIC ;

dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);

overflow : OUT STD_LOGIC);

END megaddsub;

ARCHITECTURE SYN OF megaddsub IS

SIGNAL sub_wire0 : STD_LOGIC ;

SIGNAL sub_wire1 : STD_LOGIC_VECTOR (15 DOWNTO 0);

. . . continued in Part c

Figure 12.VHDL code for the circuit in Figure 3 (Part b).

COMPONENT lpm_add_sub

GENERIC (lpm_width : NATURAL;

lpm_direction : STRING;

lpm_type : STRING;

lpm_hint : STRING);

PORT (dataa: IN STD_LOGIC_VECTOR (15 DOWNTO 0);

add_sub : IN STD_LOGIC ;

datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

overflow : OUT STD_LOGIC ;

result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN

overflow <= sub_wire0;

result <= sub_wire1(15 DOWNTO 0);

lpm_add_sub_component : lpm_add_sub

GENERIC MAP (lpm_width => 16,

lpm_direction => "UNUSED",

lpm_type => "LPM_ADD_SUB",

lpm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")

PORT MAP (dataa => dataa,

add_sub => add_sub,

datab => datab,

15

overflow => sub_wire0,

result => sub_wire1);

END SYN;

Figure 12.VHDL code for the circuit in Figure 3 (Part c).

The key differences between this code and Figure 2 are:

� The statements that define the over_flow signal and the XOR gates (along with the

signal H) are no longer needed.

� The adderk entity, which specifies the adder circuit, is replaced by megaddsub entity.

Note that the data and datab inputs shown in Figure 6 are driven by the G and Breg

vectors, respectively.

� AddSubR signal is specified to be the inverted version of the AddSub signal to

conform with the usage of this control signal in the LPM.

If you copied the file addersubtractor2.vhd from the qdesigns directory, you have to

include this file in the project. To do so, select Project > Add/Remove Files in Project to reach

the window in Figure 13. Browse for the available files by clicking the button File name: ... to

reach the window in Figure 14. Select the file addersubtractor2.vhd and click Open, which

returns to the window in Figure 13. Click Add to include the file and then click OK. Now, the

modified design can be compiled and simulated in the usual way.

Figure 13.Inclusion of the new file in the project.

16

Figure 14.Specify the addersubtractor.vhd file.

4 Results for the Augmented Design

Compile the design and look at the summary, which is depicted in Figure 15. Observe that

the modified design is implemented in 52 logic elements, which is the same as when using the

code in Figure 2. In very small circuits, which is the case with our example, it is unlikely that

using LPMs will result in a significant advantage.

However, in more complex designs the advantage of using LPMs is likely to be significant.

The reason is that the LPMs implement the required logic more efficiently than what the

compiler can do from simple VHDL code, such as the code in Figure 2. The user should

consider using an LPM whenever a suitable one exists.

17

Figure 15.Compilation Results for the Augmented Circuit.

Copyright ○c 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions

Company, the stylized Altera logo, specific device designations, and all other words and logos

that are identified as trademarks and/or service marks are, unless noted otherwise, the

trademarks and service marks of Altera Corporation in the U.S. and other countries. All other

product or service names are the property of their respective holders. Altera products are

protected under numerous U.S. and foreign patents and pending applications, mask work

rights, and copyrights. Altera warrants performance of its semiconductor products to current

specifications in accordance with Altera’s standard warranty, but reserves the right to make

changes to any products and services at any time without notice. Altera assumes no

responsibility or liability arising out of the application or use of any information, product, or

service described herein except as expressly agreed to in writing by Altera Corporation. Altera

customers are advised to obtain the latest version of device specifications before relying on

any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore

all warranties, representations or guarantees of any kind (whether express, implied or

statutory) including, without limitation, warranties of merchantability, non-infringement, or

fitness for a particular purpose, are specifically disclaimed.

18

