Using Library Modules in VHDL Designs

This tutorial explains how Altera’s library modules can be included in VHDL-based designs,
which are implemented by using the Quartus Il 9.1 software.

Contents:

Example Circuit

Library of Parameterized Modules
Augmented Circuit with an LPM
Results for the Augmented Design

Practical designs often include commonly used circuit blocks such as adders, subtractors,
multipliers, decoders, counters, and shifters. Altera provides efficient implementations of such
blocks in the form of library modules that can be instantiated in VHDL designs. The compiler
may recognize that a standard function specified in VHDL code can be realized using a library
module, in which case it may automatically infer this module. However, many library modules
provide functionality that is too complex to be recognized automatically by the compiler. These
modules have to be instantiated in the design explicitly by the user. Quartus Il 9.1 software
includes a library of parameterized modules (LPM). The modules are general in structure and
they are tailored to a specific application by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:
® Library of parameterizes modules (LPMs)
® Configuring an LPM for use in a circuit
® Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained using the Quartus Il version 9.1, but other
versions of the software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add, subtract,
and accumulate n-bit numbers using the 2's complement number representation. The two

primary inputs are numbers A= a__ *a .a, and B :bn_l* bn—2'"b01 and the primary

n-2+*
outputis Z = Z,_; * Z,_,...Z,. Another input is the AddSub control signal which causes Z =
A + B to be performed when AddSub = 0 and Z = A - B when AddSub = 1. A second control
input, Sel, is used to select the accumulator mode of operation. If Sel = 0, the operation Z=A +
B is performed, but if Sel = 1, then B is added to or subtracted from the current value of Z.

If the addition or subtraction operations result in arithmetic overflow, an output signal,
Overflow, is asserted. To make it easier to deal with asynchronous input signals, they are
loaded into flip-flops on a positive edge of the clock. Thus, inputs A and B will be loaded into
registers Areg and Breg, while Sel and AddSub will be loaded into flip-flops SelR and

AddSubR, respectively. The adder/subtractor circuit places the result into register Zreg.

A= g g Sel B=b,_, by AddSub

n-bit register F/F #i-bit register F/F

Areg = | areg, | aregy Breg=| breg, _, bregg

AddSubR

e e ‘.J "J

n-bit 2-to-1 MUX .
SelR

G=}g i +oe |2 H=lh,_| eee |k
carryout #-hit adder carryin fa—
M= |m,_, my
L
d "Tr.' =1
[l 1-bit register Zreg
over_flow Zreg = zreg, , zregy

F}_ L

verflow Z= Iz, _, 25

Figure 1.The adder/subtractor circuit.

The required circuit is described by the VHDL code in Figure 2. For our example, we use a
16-bit circuit as specified by n = 16. Implement this circuit as follows:

Create a project addersubtractor.

Include a file addersubtractor.vhd, which corresponds to Figure 2, in the project. For
convenience, this file is provided in the directory DE2-115 tutorials\design_files,
which is included on the CD-ROM that accompanies the DE2-115 board and can
also be found on Altera’s DE2-115 web pages.

Choose the Cyclone IV EP4CE115F29C7 device, which is the FPGA chip on Altera’s
DE2-115 board.

Compile the design.

Simulate the design by applying some typical inputs.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

—— Top-level entity
ENTITY addersubtractor IS
GENERIC (n: INTEGER :=16) ;

PORT (A, B :IN STD_LOGIC_VECTOR (n-1 DOWNTO 0) ;
Clock, Reset, Sel, AddSub : IN STD_LOGIC ;
Z : BUFFER STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
Overflow: OUT STD_LOGIC);
END addersubtractor;

ARCHITECTURE Behavior OF addersubtractor 1S
SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR_n: STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, carryout, over_flow : STD_LOGIC ;
COMPONENT mux2tol
GENERIC (k: INTEGER :=8);
PORT (V,W :IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;
END COMPONENT ;
COMPONENT adderk
GENERIC (k: INTEGER :=8) ;
PORT (carryin :INSTD_LOGIC;
X, Y :IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout :OUT STD_LOGIC);
END COMPONENT ;
BEGIN
PROCESS (Reset, Clock)
BEGIN
IF Reset ='1' THEN
Areg <= (OTHERS =>"0"); Breg <= (OTHERS =>"0");
Zreg <= (OTHERS =>"0"); SelR <="0"; AddSubR <="0’; Overflow <="0’;
ELSIF Clock’EVENT AND Clock ='1' THEN
Areg <=A; Breg <= B; Zreg <= M;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
END IF ;
END PROCESS ;
nbit_adder: adderk
GENERIC MAP (k=>n)
PORT MAP (AddSubR, G, H, M, carryout) ;
4

multiplexer: mux2tol
GENERIC MAP (k=>n)
PORT MAP (Areg, Z, SelR, G) ;
AddSubR_n <= (OTHERS => AddSubR) ;
H <= Breg XOR AddSubR_n ;
over_flow <= carryout XOR G(n-1) XOR H(n-1) XOR M(n-1) ;
Z<=Zreg;
END Behavior;
... continued in Part b

Figure 2.VHDL code for the circuit in Figure 1 (Part a).

—— k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC (k: INTEGER :=8) ;
PORT (V,W :IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
Selm : IN STD_LOGIC ;
F: OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;
END mux2tol ;
ARCHITECTURE Behavior OF mux2tol IS
BEGIN
PROCESS (V, W, Selm)
BEGIN
IF Selm ='0' THEN
F<=V;
ELSE
F<=W;
END IF ;
END PROCESS;
END Behavior ;

—— k-bit adder

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;

ENTITY adderk IS

GENERIC (k: INTEGER :=8) ;

PORT (carryin: IN STD_LOGIC ;

X, Y:INSTD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
5

S: OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout : OUT STD_LOGIC) ;
END adderk ;

ARCHITECTURE Behavior OF adderk IS

SIGNAL Sum : STD_LOGIC_VECTOR(k DOWNTO 0) ;
BEGIN

Sum <= ("0’ & X) + (0’ & Y) + carryin ;

S <= Sum(k-1 DOWNTO 0) ;

carryout <= Sum(k) ;

END Behavior ;

Figure 2.VHDL code for the circuit in Figure 1 (Part b).

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are general in structure and they can
be configured to suit a specific application by specifying the values of various parameters.
Select Help > Megafunctions/LPM to see a listing of the available LPMs. One of them is an
adder/subtractor module called Ipm_add_sub megafunction. Select this module to see its
description. The module has a number of inputs and outputs, some of which may be omitted in
a given application. Several parameters can be defined to specify a particular mode of
operation. For example, the number of bits in the operands is specified in the parameter
LPM_WIDTH. The LPM_REPRESENTATION parameter specifies whether the operands are
to be interpreted as signed or unsigned numbers, and so on. Templates on how an LPM can
be instantiated in a hardware description language are given in the description of the module.
Using these templates is somewhat cumbersome, so Quartus Il software provides a wizard
that makes the instantiation of LPMs easy.

We will use the Ipm_add_sub module to simplify our adder/subtractor circuit defined in
Figures 1 and 2.The augmented circuit is given in Figure 3. The Ipm_add_sub module,
instantiated under the name megaddsub, replaces the adder circuit as well as the XOR gates
that provide the input H to the adder. Since arithmetic overflow is one of the outputs that the
LPM provides, it is not necessary to generate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory named tutorial_Ipm, and
then create a project addersubtractor2. Choose the same Cyclone IV EP4CE115F29C7 device,
to allow a direct comparison of implemented designs.

The new design will include the desired LPM subcircuit specified as a VHDL component that
will be instantiated in the top-level VHDL design entity. The VHDL component for the LPM

Figure 3.The augmented adder/subtractor circuit.

subcircuit is generated by using a wizard as follows:

1. Select Tools > MegaWizard Plug-in Manager, which leads to a sequence of seven

pop-up boxes in which the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indicate Create a new custom megafunction variation and

click Next.

1= a,_ dy Se B=:F; by AddSub
l L) l - a8
n-bit register E/E n-bit register F/F
o]
Areg = | areg, areg, Breg =| breg, | hreg,
} - " - e w
n-bit 2-to-1 MUX 888
SelR
| I
G= ¢ = .o * n
dataa datab
megaddsub module add_sub
overflow result ~AddSubR
M= |m, _, iy,
over_flow e
F/F 1-bit register Zreg
Zreg = | zreg, regy
verflow Z= 2, 4 Zy

Nega¥izard Pluz—In Manager [page 11

The Megatwfizard Plug-ln Manager helps you create or modify
dezign files that contain custom wariations of megafunctions.

“Which action do you want to perform?

(% Create a new custom megafunction variationg

" Edit an existing custom megafunction variation

" Copy an existing custom megafunction variation

Copyright [C] 1997-2010 Altera Corporation

Py

Cancel ‘ ‘ Mest » | |

Figure 4.Choose to define an LPM.

Neza¥izard Plug—In Nanager [page 2al &l
Wwhich megafunction waould vou like to customize? W’_hicf; device family will you be Cyclone v E -
Select a megafunction from the list below ——

] ALTFP_COMWERT - YWwhich tupe of output file do pou want to create?
- ALTFP_DIV £~ AHDL
] ALTFP_ExP iy
< — * wHDL
A ALTFP_INY - -
1 ALTFP_INV_SORT Veriog HOL
= ALTFP_LOG What name do you want for the gutput file? Browse...

E:AT utorialhaddimegaddsub. vhd
#] ALTFP_MULT
~] ALTFP_SORT
] ALTMEMMULT
A ALTMULT_ACCUM [Mal)
ra
ra
ra

[Return ta this page for anather create operation
] ALTMULT_ADD

A ALTMULT_COMPLEX Maote: To compile & project succeszsfully in the Quartus |1 software,

9 ALTSART wour design files must be in the project direchary, in the global uzer
7 LPM_ARS Iiblaries spep_ifie;l inthe Dptiqns c!ialog bow [Tools me_nu], ar & user
7 LPM_ADD_SUEB library specified in the User Libraries page of the Settings dialog

bow [Azsignments meru).
~] LPM_COMPARE

1 LPM_COUMTER Your current uzer librany directories are:
~] LPM_DIVIDE

#] LPM_MULT

~] PAR&LLEL_ADD

+- & Communications

+- g DSP

+- g Gates b

Cancel | ¢ Back | Mest > | |

Figure 5. Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs. Expand the “arithmetic” sublist and
select LPM_ADD_SUB. Choose VHDL as the type of output file that should be created. The
output file must be given a name; choose the hame megaddsub.vhd and indicate that the file
should be placed in the directory tutorial_Ipm as shown in the figure. Press Next.

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the
operating mode in which one of the ports allows performing both addition and subtraction of
the input operand, under the control of the add_sub input. A symbol for the resulting LPM is
shown in the top left corner. Note that if add_sub = 1 then result = A + B; otherwise, result = A -
B. This interpretation of the control input and the operation performed is different from our
original design in Figures 1 and 2, which we have to account for in the modified design.
Observe that we have included this change in the circuit in Figure 3. Click Next.

Nega¥izard Plug-In Nanager — LPE_ADD_SUE [page 3 of 8l (EE]

Currently selected device family; Wl
) Match project/default

How wide should the ‘dataa’ and 'datab’ input buses be? |16 | ‘.‘_‘ bits

which aperating mode do you want for the adder jsubtractor?
< Addition only
7 Subfraction only

@ Create an ‘add_sub input part to allow me to do both
[1 adds: 0 subtracts)

32 lut

[cancel

< Back ” Next > ” fFinish |

Figure 6.Specify the size of data inputs.

5. In the box in Figure 7, specify that the values of both inputs may vary and click Next.

NegaWizard Plug-In Nanager — LPE_ADD SUB [page 4 of 8] (B

LPM_ADD_SUB

add_sub
s the 'datas’ or 'datab’ input bus valus a constant?

 fi, both valoes vand
) Yes, dataa = "
Ve, datab = 5|

Which type of addition/subtraction do you want?

*) Unsigned

Signed

32t

‘ Carcel H <gack || et > H Errish ‘

Figure 7.Further specification of inputs.

6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be
specified. Since we need the overflow signal, make the Create an overflow output choice and

press Next.

NegaWizard Plug—In Nanager — LPE_ADD_SUB [page 5 of 8]

a LPM_ADD_SUB

General 2

General

" bmegaatltlsut Do you want any optional inputs or outputs?
add_su

Input:
[] Create a carry/borrow-out input

Outputs:

Resource Usage

32 lut

| Cancel ” < Back ” Mext = H FEinish |

Figure 8.Specify the Overflow output.

7. In the box in Figure 9 say No to the pipelining option and click Next.

NegaWizard Plug—In Nanager — LPE_ADD _SUB [page 6 of 8]

dd_sub
2000 E Do you want to pipeine the function?
Looln @i
) Yes, I want an output latency of Clock cycles
overfiovs
32t
[Concel |[<Bock || bext= || Emsh |

Figure 9.Refuse the pipelining option.

10

8. Figure 10 gives a summary which shows the files that the wizard will create. Press Finish to
complete the process.

Turn on the files you wish to generate. A gray chedmark indicates 2 file thatis
automaticaliy generated, and & red checkmark indicates an optional file. Click
Finish to génerate the selected files: The state of each checkbox is maintained in
subsequent MegaiVizard Plug-In Manager sessions,

fizard Plug-In Manager creates the selected fies in the foloning

design'futitutorial4y

File | Description |
(=7 megaaddsub.vhd Yariation fie
O megaaddsub.inc AHDL Inchude fle

O megaaddsub.cmp WHDL component declaration fle
O megaaddsub.bif Quartus I symbol file
b_inst.vhed Instanial e fi

& megaaddsub_wavelorms himl Sample in summ
.. megaaddsub_wave*jpg Sample waveform fiefs)

\ Cancel ” < Back |

m
3

Figure 10.Files created by the wizard.

3 Augmented Circuit with an LPM

We will use the file megaddsub.vhd in our modified design. Figure 11 depicts the VHDL code in
this file; note that we have not shown the comments in order to keep the figure small.

/I Adder/subtractor module created by the MegaWizard
LIBRARY ieee;

USE ieee.std_logic_1164.all;

LIBRARY Ipm;

USE Ipm.lpm_components.all;

ENTITY megaddsub IS
PORT (add_sub : IN STD_LOGIC ;
dataa: IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab: IN STD_LOGIC_VECTOR (15 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC);
END megaddsub;
ARCHITECTURE SYN OF megaddsub IS
SIGNAL sub_wire0: STD_LOGIC ;
SIGNAL sub_wirel: STD_LOGIC_VECTOR (15 DOWNTO 0);

COMPONENT Ipm_add_sub
GENERIC (Ipm_width : NATURAL;
Ipm_direction : STRING;

11
Ipm_type : STRING;
Ipm_hint : STRING);

PORT (dataa: IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC;;

datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC;

result :OUT STD_LOGIC_VECTOR (15 DOWNTO 0));
END COMPONENT,

BEGIN
overflow <= sub_wire0;
result <=sub_wirel(15 DOWNTO 0);
Ipm_add_sub_component : Ipm_add_sub
GENERIC MAP (Ipm_width => 186,
Ipm_direction => "UNUSED",
Ipm_type => "LPM_ADD_SUB",
Ipm_hint=> "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")
PORT MAP (dataa => dataa,
add_sub => add_sub,
datab => datab,
overflow => sub_wireO,
result => sub_wirel);
END SYN;

Figure 11.VHDL code for the ADD_SUB LPM.

12

The modified VHDL code for the adder/subtractor design is given in Figure 12.

It incorporates the code in Figure 11 as a component. Put the code in Figure 12 into a file
tutorial_Ipm\addersubtractor2.vhd. For convenience, the required file addersubtractor2.vhd is
provided in the directory DE2-115_tutorials\design_files, which is included on the CD-ROM
that accompanies the DE2-115 board and can also be found on Altera’s DE2-115 web pages.

LIBRARY ieee ;
USE ieee.std_logic_1164.all;

—— Top-level entity
ENTITY addersubtractor2 IS
GENERIC (n: INTEGER :=16);

PORT (A, B :IN STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;

Clock, Reset, Sel, AddSub : IN STD_LOGIC ;

z : BUFFER STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
Overflow :OUT STD_LOGIC) ;

END addersubtractor? ;

ARCHITECTURE Behavior OF addersubtractor2 IS
SIGNAL G, M, Areg, Breg, Zreg, : STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, over_flow : STD_LOGIC ;
COMPONENT mux2tol
GENERIC (k : INTEGER :=8);
PORT (V,W:IN STD_LOGIC VECTOR(k-1 DOWNTO 0);
Selm :IN STD_LOGIC;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;
END COMPONENT ;
COMPONENT megaddsub

PORT (add_sub: IN STD_LOGIC;
dataa, datab : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
result: OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
overflow : OUT STD_LOGIC) ;
END COMPONENT ;
BEGIN
—— Define flip-flops and registers
PROCESS (Reset, Clock)
BEGIN
IF Reset ='1' THEN
Areg <= (OTHERS =>"0"); Breg <= (OTHERS =>"0");
Zreg <= (OTHERS =>"0"); SelR <="0"; AddSubR <="0’; Overflow <="0’;
ELSIF Clock’EVENT AND Clock ='1’' THEN

13

Areg <= A; Breg <= B; Zreg <= M;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
END IF;
END PROCESS;

... continued in Part b

Figure 12.VHDL code for the circuit in Figure 3 (Part a).

—— Define combinational circuit
nbit_addsub: megaddsub
PORT MAP (AddSubR, G, Breg, M, over_flow) ;
multiplexer: mux2tol
GENERIC MAP (k=>n)
PORT MAP (Areg, Z, SelR, G) ;
Z <=Zreg;
END Behavior;

—— k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC (k : INTEGER :=8);
PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
Selm : IN STD_LOGIC ;
F: OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN
PROCESS (V, W, Selm)
BEGIN
IF Selm ='0' THEN
F<=V;
ELSE
F<=W;
END IF ;
END PROCESS ;
END Behavior ;

—— 16-bit adder/subtractor LPM created by the MegaWizard
LIBRARY ieee;
14

USE ieee.std_logic_1164.all;
LIBRARY Ipm;
USE Ipm.lpm_components.all;

ENTITY megaddsub IS
PORT (add_sub : IN STD_LOGIC ;
dataa :IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab :IN STD_LOGIC_VECTOR (15 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow :OUT STD_LOGIC);
END megaddsub;
ARCHITECTURE SYN OF megaddsub IS
SIGNAL sub_wire0 : STD_LOGIC ;
SIGNAL sub_wirel: STD_LOGIC_VECTOR (15 DOWNTO 0);

... continued in Part c

Figure 12.VHDL code for the circuit in Figure 3 (Part b).

COMPONENT Ipm_add_sub

GENERIC (Ipm_width : NATURAL;
Ipm_direction : STRING;
Ipm_type : STRING;
Ipm_hint : STRING);

PORT (dataa: IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC ;
datab :IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC;
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN
overflow <= sub_wire0;
result <=sub_wirel(15 DOWNTO 0);

Ipm_add_sub_component : Ipm_add_sub
GENERIC MAP (Ipm_width => 16,

Ipm_direction => "UNUSED",

Ipm_type => "LPM_ADD_SUB",

Ipm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")
PORT MAP (dataa => dataa,

add sub => add_sub,

datab => datab,

15

overflow => sub_wire0,

result => sub_wirel);
END SYN;

Figure 12.VHDL code for the circuit in Figure 3 (Part c).

The key differences between this code and Figure 2 are:

If you copied the file addersubtractor2.vhd from the qdesigns directory, you have to
include this file in the project. To do so, select Project > Add/Remove Files in Project to reach
the window in Figure 13. Browse for the available files by clicking the button File name: ... to
reach the window in Figure 14. Select the file addersubtractor2.vhd and click Open, which
returns to the window in Figure 13. Click Add to include the file and then click OK. Now, the

The statements that define the over_flow signal and the XOR gates (along with the

signal H) are no longer needed.

The adderk entity, which specifies the adder circuit, is replaced by megaddsub entity.
Note that the data and datab inputs shown in Figure 6 are driven by the G and Breg
vectors, respectively.

AddSubR signal is specified to be the inverted version of the AddSub signal to

conform with the usage of this control signal in the LPM.

modified design can be compiled and simulated in the usual way.

Settings — addersubtractor

Categorny:

+ [[#

¥

General
Files
Libraries
Device
Operating Settings and Conditions
Woltage
Temperature
Compilation Process Settings
EDA Tool Settings
Analysiz & Sunthesis Settings
Fitter Settings
Timing Analpzis Settings
Timeluest Timing Analyzer
=I- Clazzic Timing Analyzer Settings
Clazsic Timing Analyzer Repal
Azzembler
Design Assiztant
SignalTap |l Logic Analyzer
Logic Analyzer Interface
Simulator Settings
PowerPlay Power Analyzer Settings
55N Analyzer

3

Select the design files you want to include in the project. Click Add All to add all design files in the:

project directory to the project.

File name: |addersubtractor2. whd
File name | Tupe | Library | Diesign entiy/ay... | HDL we
3 >

ok |

Add
Add Al

il

Cancel

Figure 13.Inclusion of the new file in the project.

16

Select File X]

Loaok in; |:{jlpm _:J L] |‘_"“|@E v
y [

l_;ﬁ incremental_db
My Recent wH|addersubtrackorz vhd
Documerts [addersubtractor, vhd

@ Emegaddsub.vhd

Dezktop

B

%

iy Documents

-

My Computer

My Metwork. File name: | —v—J Iﬂl
Flaces

Files of type: |Design Files [*.tdE;" whd:™ whdl™ ;" wlg:" verlog LJ Cancel

o

L

Figure 14.Specify the addersubtractor.vhd file.

4 Results for the Augmented Design

Compile the design and look at the summary, which is depicted in Figure 15. Observe that
the modified design is implemented in 52 logic elements, which is the same as when using the
code in Figure 2. In very small circuits, which is the case with our example, it is unlikely that
using LPMs will result in a significant advantage.

However, in more complex designs the advantage of using LPMs is likely to be significant.
The reason is that the LPMs implement the required logic more efficiently than what the
compiler can do from simple VHDL code, such as the code in Figure 2. The user should
consider using an LPM whenever a suitable one exists.

17

Flow Status Successful - Wed Jul 0T 21:15:40 2010

Quartus IT Verzion 9.1 Build 350 032472010 SF 2 5J Full Ver=ion

Bevizsion Name addersubtractaor

Top—lewel Entity Hame addersubtractor

Family Cyeclone IV E

Device EF4CE115F29CT

Timing Models Freliminary

Met timing requirements ik

Total logic elements 52 f 114,480 (<1 %)
Total combinational functions 51 F 114,480 © <1 %)
Dedicated logic registers 51 F 114,480 [<1 %)

Total registers 51

Total pins 53 5529 (10 %)

Total wirtual pins]

Total memory bits 0fF 3,951,312 (0%

Embedded Multiplier 9-hit elements 0O f 532 (0 %]

Total FIL= 0f400%)

Figure 15.Compilation Results for the Augmented Circuit.

Copyright ©2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions
Company, the stylized Altera logo, specific device designations, and all other words and logos
that are identified as trademarks and/or service marks are, unless noted otherwise, the
trademarks and service marks of Altera Corporation in the U.S. and other countries. All other
product or service hames are the property of their respective holders. Altera products are
protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore
all warranties, representations or guarantees of any kind (whether express, implied or
statutory) including, without limitation, warranties of merchantability, non-infringement, or
fithess for a particular purpose, are specifically disclaimed.

18

