//Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module timer_0 ( // inputs: address, chipselect, clk, reset_n, write_n, writedata, // outputs: irq, readdata ) ; output irq; output [ 15: 0] readdata; input [ 2: 0] address; input chipselect; input clk; input reset_n; input write_n; input [ 15: 0] writedata; wire clk_en; wire control_continuous; wire control_interrupt_enable; reg [ 3: 0] control_register; wire control_wr_strobe; reg counter_is_running; wire counter_is_zero; wire [ 31: 0] counter_load_value; reg [ 31: 0] counter_snapshot; reg delayed_unxcounter_is_zeroxx0; wire do_start_counter; wire do_stop_counter; reg force_reload; reg [ 31: 0] internal_counter; wire irq; reg [ 15: 0] period_h_register; wire period_h_wr_strobe; reg [ 15: 0] period_l_register; wire period_l_wr_strobe; wire [ 15: 0] read_mux_out; reg [ 15: 0] readdata; wire snap_h_wr_strobe; wire snap_l_wr_strobe; wire [ 31: 0] snap_read_value; wire snap_strobe; wire start_strobe; wire status_wr_strobe; wire stop_strobe; wire timeout_event; reg timeout_occurred; assign clk_en = 1; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) internal_counter <= 32'h1869F; else if (counter_is_running || force_reload) if (counter_is_zero || force_reload) internal_counter <= counter_load_value; else internal_counter <= internal_counter - 1; end assign counter_is_zero = internal_counter == 0; assign counter_load_value = {period_h_register, period_l_register}; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) force_reload <= 0; else if (clk_en) force_reload <= period_h_wr_strobe || period_l_wr_strobe; end assign do_start_counter = start_strobe; assign do_stop_counter = (stop_strobe ) || (force_reload ) || (counter_is_zero && ~control_continuous ); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) counter_is_running <= 1'b0; else if (clk_en) if (do_start_counter) counter_is_running <= -1; else if (do_stop_counter) counter_is_running <= 0; end //delayed_unxcounter_is_zeroxx0, which is an e_register always @(posedge clk or negedge reset_n) begin if (reset_n == 0) delayed_unxcounter_is_zeroxx0 <= 0; else if (clk_en) delayed_unxcounter_is_zeroxx0 <= counter_is_zero; end assign timeout_event = (counter_is_zero) & ~(delayed_unxcounter_is_zeroxx0); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) timeout_occurred <= 0; else if (clk_en) if (status_wr_strobe) timeout_occurred <= 0; else if (timeout_event) timeout_occurred <= -1; end assign irq = timeout_occurred && control_interrupt_enable; //s1, which is an e_avalon_slave assign read_mux_out = ({16 {(address == 2)}} & period_l_register) | ({16 {(address == 3)}} & period_h_register) | ({16 {(address == 4)}} & snap_read_value[15 : 0]) | ({16 {(address == 5)}} & snap_read_value[31 : 16]) | ({16 {(address == 1)}} & control_register) | ({16 {(address == 0)}} & {counter_is_running, timeout_occurred}); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) readdata <= 0; else if (clk_en) readdata <= read_mux_out; end assign period_l_wr_strobe = chipselect && ~write_n && (address == 2); assign period_h_wr_strobe = chipselect && ~write_n && (address == 3); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) period_l_register <= 34463; else if (period_l_wr_strobe) period_l_register <= writedata; end always @(posedge clk or negedge reset_n) begin if (reset_n == 0) period_h_register <= 1; else if (period_h_wr_strobe) period_h_register <= writedata; end assign snap_l_wr_strobe = chipselect && ~write_n && (address == 4); assign snap_h_wr_strobe = chipselect && ~write_n && (address == 5); assign snap_strobe = snap_l_wr_strobe || snap_h_wr_strobe; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) counter_snapshot <= 0; else if (snap_strobe) counter_snapshot <= internal_counter; end assign snap_read_value = counter_snapshot; assign control_wr_strobe = chipselect && ~write_n && (address == 1); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) control_register <= 0; else if (control_wr_strobe) control_register <= writedata[3 : 0]; end assign stop_strobe = writedata[3] && control_wr_strobe; assign start_strobe = writedata[2] && control_wr_strobe; assign control_continuous = control_register[1]; assign control_interrupt_enable = control_register; assign status_wr_strobe = chipselect && ~write_n && (address == 0); endmodule