//Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module switch_pio ( // inputs: address, clk, in_port, reset_n, // outputs: readdata ) ; output [ 17: 0] readdata; input [ 1: 0] address; input clk; input [ 17: 0] in_port; input reset_n; wire clk_en; wire [ 17: 0] data_in; wire [ 17: 0] read_mux_out; reg [ 17: 0] readdata; assign clk_en = 1; //s1, which is an e_avalon_slave assign read_mux_out = {18 {(address == 0)}} & data_in; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) readdata <= 0; else if (clk_en) readdata <= read_mux_out; end assign data_in = in_port; endmodule