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Moiré and Fringe Projection Techniques
K. Creath and J. C. Wyant

16.1. INTRODUCTION

The term “moiré” is not the name of a person; in fact, it is a French word
referring to “an irregular wavy finish usually produced on a fabric by pressing
between engraved rollers” (Webster's 1981). In optics it refers to a beat pattern
produced between two gratings of approximately equal spacing. It can be seen
in everyday things such as the overlapping of two window screens, the rescreen-
ing of a half-tone picture, or with a striped shirt seen on television. The use of
moiré for reduced sensitivity testing was introduced by Lord Rayleigh in 1874.
Lord Rayleigh looked at the moiré between two identical gratings to determine
their quality even though each individual grating could not be resolved under a
microscope.

Fringe projection entails projecting a fringe pattern or grating on an object
and viewing it from a different direction. The first use of fringe projection for
determining surface topography was presented by Rowe and Welford in 1967.
It is a convenient technique for contouring objects that are too coarse to be
measured with standard interferometry. Fringe projection is related to optical
triangulation using a single point of light and light sectioning where a single
line is projected onto an object and viewed in a different direction to determine
the surface contour (Case et al. 1987).

Moiré and fringe projection interferometry complement conventional holo-
graphic interferometry, especially for testing optics to be used at long wave-
lengths. Although two-wavelength holography (TWH) can be used to contour
surfaces at any longer-than-visible wavelength, visible interferometric environ-
mental conditions are required. Moiré and fringe projection interferometry can
contour surfaces at any wavelength longer than 10-100 um with reduced en-
vironmental requirements and no intermediate photographic recording setup.
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Moiré is also a useful technique for aiding in the understanding of interfer-
ometry.

This chapter explains what moiré is and how it relates to interferometry.
Contouring techniques utilizing fringe projection, projection and shadow moiré,
and two-angle holography are all described and compared. Each of these tech-
niques provides the same result and can be described by a single theory. The
relationship between these techniques and holographic and conventional inter-
ferometry will be shown. Errors caused by divergent geometries are described,
and applications of these techniques combined with phase measurement tech-
niques are presented. Further information on these techniques can be found in
the following books and book chapters: Varner (1974), Vest (1979), Hariharan
(1984), Gasvik (1987), and Chiang (1978, 1983).

16.2. WHAT IS MOIRE?

Moiré patterns are extremely useful to help understand basic interferometry and
interferometric test results. Figure 16.1 shows the moiré pattern (or beat pat-
tern) produced by two identical straight-line gratings rotated by a small angle
relative to each other. A dark fringe is produced where the dark lines are out
of step one-half period, and a bright fringe is produced where the dark lines for
one grating fall on top of the corresponding dark lines for the second grating.
If the angle between the two gratings is increased, the separation between the
bright and dark fringes decreases. [A simple explanation of moiré is given by
Oster and Nishijima (1963).]

If the gratings are not identical straight-line gratings, the moiré pattern (bright
and dark fringes) will not be straight equi-spaced fringes. The following anal-

af—— Destructive
(TEHITHTIOR Interference
ICIOINITIIE 1 — onsiuctive
T ] 1
(AT Tuz sina

Observation
Plane

(a) )
Figure 16.1. (a) Straight-line grating. (b) Moiré between two straight-line gratings of the same
pitch at an angle a with respect to one another.
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ysis shows how to calculate the moire pattern for arbitrary gratings. Let the
intensity transmission function for two gratings f;(x, y) and f,(x, y) be given by

[, ) = ay + 2 by, cos [y (x, ),

Fi, ) = @y + 2 by, c0s Imax, Y, (16.1)

where @ (X, y) is the function describing the basic shape of the grating lines. For
the fundamental frequency, @ (X, y) is equal to an integer times 2 Ttat the center
of each bright line and is equal to an integer plus one-half times 2 Ttat the center
of each dark line. The b coefficients determine the profile of the grating lines
(i.e., square wave, triangular, sinusoidal, etc.) For a sinusoidal line profile, b,
is the only nonzero term.

When these two gratings are superimposed, the resulting intensity transmis-
sion function is given by the product

[ ) fox, y) = @16y + a2 b, c0s [mg(x, y))

+ ay, 2 by, cos [n,(x, Y]
t

n=

™8

+ L A biybay cos [n(x, Y] cos [mgy(x, )]

(16.2)

m

The first three terms of Eq. (16.2) provide information that can be determined
by looking at the two patterns separately. The last term is the interesting one,
and can be rewritten as

Term 4 = %b“bz] cos [¢,(x, ¥) — ¢,(x, ¥)]

Ms

+4

. "gl blanm Ccos [n¢|(x, y) - m¢2(x, y)];

m

n and m both # 1

+3 L 2 bibs, cos [19,(x. y) + may(x, Y. (16.3)

m=1n=

This expression shows that by superimposing the two gratings, the sum and
difference between the two gratings is obtained. The first term of Eq. (16.3)
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represents the difference between the fundamental pattern masking up the two
gratings. It can be used to predict the moiré pattern shown in Fig. 16.1. As-
suming that two gratings are oriented with an angle 20 between them with the
y axis of the coordinate system bisecting this angle, the two grating functions
@ (x,y) and @ (X, y) can be written as

27 .
ox, y) = ~ (x cos a + y sin a)
1
and
27 )
dy(x, y) = — (x cos a — y sin «), (16.4)
2

where A; and A, are the line spacings of the two gratings. Equation (16.4) can
be rewritten as

2 4
616, Y) — baoX, ) = —— x cos a + —{1 y sin a, (16.5)

beat

where N is the average line spacing, and Abear 18 the beat wavelength between
the two gratings given by

Ay
Noeat = ————. 16.

e = 3 (16.6)
Note that this beat wavelength equation is the same as that obtained for two-
wavelength interferometry as shown in Chapter 15. Using Eq. (16.3), the moiré
or beat will be lines whose centers satisfy the equation

&1(x, ¥) — éo(x, y) = M2r. (16.7)

Three separate cases for moiré fringes can be considered. When A; = A, = A,
the first term of Eq. (16.5) is zero, and the fringe centers are given by

M\ = 2y sin q, (16.8)

where M is an integer corresponding to the fringe order. As was expected, Eq.
(16.8) is the equation of equi-spaced horizontal lines as seen in Fig. 16.1. The
other simple case occurs when the gratings are parallel to each other with o =
0. This makes the second term of Eq. (16.5) vanish. The moiré will then be
lines that satisfy

MN\pew, = . (16.9)
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Same Frequency Different Frequencies
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Figure 16.2. Moiré patterns caused by two straight-line gratings with (a) the same pitch tilted
with respect to one another, (b) different frequencies and no tilt, and (c) different frequencies tilted
with respect to one another.

These fringes are equally spaced, vertical lines parallel to the y axis. For the
more general case where the two gratings have different line spacings and the
angle between the gratings is nonzero, the equation for the moiré fringes will
now be

M\ =

x cos a + 2y sin a. (16.10)
)\beat

This is the equation of straight lines whose spacing and orientation is dependent
on the relative difference between the two grating spacings and the angle be-
tween the gratings. Figure 16.2 shows moiré patterns for these three cases.

The orientation and spacing of the moiré fringes for the general case can be
determined from the geometry shown in Fig. 16.3 (Chiang, 1983). The distance
AB can be written in terms of the two grating spacings;

AB M A, (16.11)
sin(@ — ) sin(@ + «)’ ‘
y
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Figure 16.3. Geometry used to determine spacing  Fringes /E \ ' Gratings
and angle of moiré fringes between two gratings of ) N \
different frequencies tilted with respect to one an- ! \\I \
other. ’
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where 0 is the angle the moiré fringes make with the y axis. After rearranging,
the fringe orientation angle 0 is given by

A+
tan § = tan « <)\—‘2_—)>‘\T-> (16.12)

When o = 0 and\; # \,, # = 0°and when A\; = A\, with a # 0, 8 = 90°
as expected. The fringe spacing perpendicular to the fringe lines can be found
by equating quantities for the distance DE;

sE_ M __C

= 16.1
sin 2 sin (§ + o)’ (16.13)

where C is the fringe spacing or contour interval. This can be rearranged to
yield

(16.14)

C o )\I[sin 6 + a)].

sin 2«

By substituting for the fringe orientation 6, the fringe spacing can be found in
terms of the grating spacings and angle between the gratings;

_ ANy
\/)\g sin? 2o + (A cos 2a — \)°

C (16.15)

In the limit that o = 0 and A, # A,, the fringe spacing equals A ., and in the
limit that A, = A, = A and a # 0, the fringe spacing equals A/(2 sin o). It is
possible to determine A, and o from the measured fringe spacing and orientation
as long as A; is known (Chiang 1983).

16.3. MOIRE AND INTERFEROGRAMS

Now that we have covered the basic mathematics of moiré patterns, let us see
how moiré patterns are related to interferometry. The single grating shown in
Fig. 16.1 can be thought of as a “snapshot” of a plane wave traveling to the
right, where the distance between the grating lines is equal to the wavelength
of light. The straight lines represent the intersection of a plane of constant phase
with the plane of the figure. Superimposing the two sets of grating lines in Fig.
16.1 can be thought of as superimposing two plane waves with an angle of 2a
between their directions of propagation. Where the two waves are in phase,
bright fringes result (constructive interference), and where they are out of phase,
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dark fringes result (destructive interference). For a plane wave, the “grating”
lines are really planes perpendicular to the plane of the figure and the dark and
bright fringes are also planes perpendicular to the plane of the figure. If the
plane waves are traveling to the right, these fringes would be observed by plac-
ing a screen perpendicular to the plane of the figure and to the right of the
grating lines as shown in Fig. 16.1. The spacing of the interference fringes on
the screen is given by Eqn. (16.8), where A is now the wavelength of light.
Thus, the moiré of two straight-line gratings correctly predicts the centers of
the interference fringes produced by interfering two plane waves. Since the
gratings used to produce the moiré pattern are binary gratings, the moiré does
not correctly predict the sinusoidal intensity profile of the interference fringes.
(If both gratings had sinusoidal intensity profiles, the resulting moiré would still
not have a sinusoidal intensity profile because of higher-order terms.)

More complicated gratings, such as circular gratings, can also be investi-
gated. Figure 16.4b shows the superposition of two circular line gratings. This
pattern indicates the fringe positions obtained by interfering two spherical
wavefronts. The centers of the two circular line gratings can be considered the
source locations for two spherical waves. Just as for two plane waves, the spac-
ing between the grating lines is equal to the wavelength of light. When the two
patterns are in phase, bright fringes are produced; and when the patterns are
completely out of phase, dark fringes result. For a point on a given fringe, the
difference in the distances from the two source points and the fringe point is a
constant. Hence, the fringes are hyperboloids. Due to symmetry, the fringes
seen on observation plane A of Fig. 16.4b must be circular. (Plane A is along
the top of Fig. 16.4b and perpendicular to the line connecting the two sources
as well as perpendicular to the page.) Figure 16.4c shows a binary representa-
tion of these interference fringes and represents the interference pattern obtained
by interfering a nontilted plane wave and a spherical wave. (A plane wave can
be thought of as a spherical wave with an infinite radius of curvature.) Figure
16.4d shows that the interference fringes in plane B are essentially straight equi-
spaced fringes. (These fringes are still hyperbolas, but in the limit of large
distances, they are essentially straight lines. Plane B is along the side of Fig.
16.4b and parallel to the line connecting the two sources as well as perpendic-
ular to the page.)

The lines of constant phase in plane B for a single spherical wave are shown
in Fig. 16.5a. (To first-order, the lines of constant phase in plane B are the
same shape as the interference fringes in plane A.) The pattern shown in Fig.
16.5a is commonly called a zone plate. Figure 16.5b shows the superposition
of two linearly displaced zone plates. The resulting moiré pattern of straight
equi-spaced fittings illustrates the interference fringes in plane B shown in Fig.
16.4b.

Superimposing two interferograms and looking at the moiré or beat produced
can be extremely useful. The moiré formed by superimposing two different
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Figure 16.4. Interference of two spherical waves. (a) Circular line grating representing a spher-
ical wavefront. (b) Moiré pattern obtained by superimposing two circular line patterns. (c) Fringes
observed in plane A. (d) Fringes observed in plane B.
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Figure 16.4. (Continued)

interferograms shows the difference in the aberrations of the two interfero-
grams. For example, Fig. 16.6 shows the moiré produced by superimposing
two computer-generated interferograms. One interferogram has 50 waves of tilt
across the radius (Fig. 16.6a), while the second interferogram has 50 waves of
tilt plus 4 waves of defocus (Fig. 16.6b). If the interferograms are aligned such
that the tilt direction is the same for both interferograms, the tilt will cancel and
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Figure 16.5. Moiré pattern produced by two zone plates. (a) Zone plate. (b) Straight-line fringes

resulting from superposition of two zone plates.

é1(x, y) = 27(50p cos ¢ + 4p?)

quite cancel. These results can be described mathematically by looking at the

ferograms are rotated slightly with respect to each other so that the tilt will not
two grating functions;

only the 4 waves of defocus remain (Fig. 16.6¢c). In Fig. 16.6d, the two ininter-
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Figure 16.7 shows similar results for interferograms containing third-order
aberrations. Spherical aberration with defocus and tilt is shown in Fig. 16.7d.
One interferogram has 50 waves of tilt (Fig. 16.6a), and the other has 55 waves
tilt, 6 waves third-order spherical aberration, and -3 waves defocus (Fig.
16.7a). Figure 16.7e shows the moiré between an interferogram having 50
waves of tilt (Fig. 16.6a) with an interferogram having 50 waves of tilt and 5
waves of coma (Fig. 16.7b) with a slight rotation between the two patterns.
The moiré between an interferogram having 50 waves of tilt (Fig. 16.6a) and
one having 50 waves of tilt, 7 waves third-order astigmatism, and -3.5 waves
defocus (Fig. 16.7c) is shown in Fig. 16.7f. Thus, it is possible to produce
simple fringe patterns using moiré. These patterns can be photocopied onto
transparencies and used as a learning aid to understand interferograms obtained
from third-order aberrations.

A computer-generated interferogram having 55 waves of tilt across the ra-
dius, 6 waves of spherical and -3 waves of defocus is shown in Fig. 16.7a.
Figure 16.8a shows two identical interferograms superimposed with a small
rotation between them. As expected, the moiré pattern consists of nearly straight
equi-spaced lines. When one of the two interferograms is slipped over, the
resultant moiré is shown in Fig. 16.8b. The fringe deviation from straightness
in one interferogram is to the right and, in the other, to the left. Thus the sign
of the defocus and spherical aberration for the two interferograms is opposite,
and the moiré pattern has twice the defocus and spherical of each of the indi-
vidual interferograms. When two identical interferograms given by Fig. 16.7a
are superimposed with a displacement from one another, a shearing interfero-
gram is obtained. Figure 16.9 shows vertical and horizontal displacements with
and without a rotation between the two interferograms. The rotations indicate
the addition of tilt to the interferograms. These types of moiré patterns are very
useful for understanding lateral shearing interferograms.

Moiré patterns are produced by multiplying two intensity-distribution func-
tions. Adding two intensity functions does not give the difference term obtained
in Eq. (16.3). A moiré pattern is not obtained if two intensity functions are
added. The only way to get a moiré pattern by adding two intensity functions
is to use a nonlinear detector. For the detection of an intensity distribution given
by I, + L, a nonlinear response can be written as

Response = a(l, + L) + b, + L)> + + - +. (16.18)

This produces terms proportional to the product of the two intensity distribu-
tions in the output signal. Hence, a moiré pattern is obtained if the two indi-
vidual intensity patterns are simultaneously observed by a nonlinear detector
(even if they are not multiplied before detection). If the detector produces an
output linearly proportional to the incoming intensity distribution, the two in-
tensity patterns must be multiplied to produce the moiré pattern. Since the eye
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Figure 16.8. Moire pattern by superimposing two identical interferograms (from Fig. 16.7a). (a)
Both patterns having the same orientation. (b) With one pattern flipped.

is a nonlinear detector, moiré can be seen whether the patterns are added or
multiplied. A good TV camera, on the other hand, will not see moiré unless
the patterns are multiplied.

16.4. HISTORICAL REVIEW

Since Lord Rayleigh first noticed the phenomena of moiré fringes, moiré tech-
niques have been used for a number of testing applications. Righi (1887) first
noticed that the relative displacement of two gratings could be determined by
observing the movement of the moiré fringes. The next significant advance in
the use of moiré was presented by Weller and Shepherd (1948). They used
moiré to measure the deformation of an object under applied stress by looking
at the differences in a grating pattern before and after the applied stress. They
were the first to use shadow moiré, where a grating is placed in front of a nonflat
surface to determine the shape of the object behind it by using the shape of the
moiré fringes. A rigorous theory of moiré fringes did not exist until the mid-
fifties when Ligtenberg (1955) and Guild (1956, 1960) explained moiré for
stress analysis by mapping slope contours and displacement measurement, re-
spectively. Excellent historical reviews of the early work in moiré have been
presented by Theocaris (1962, 1966). Books on this subject have been written
by Guild (1956, 1960), Theocaris (1969), and Durelli and Parks (1970). Pro-
jection moiré techniques were introduced by Brooks and Helfinger (1969) for
optical gauging and deformation measurement. Until 1970, advances in moiré
techniques were primarily in stress analysis. Some of the first uses of moiré to
measure surface topography were reported by Meadows et al. (1970), Takasaki
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Figure 16.9. Moiré patterns formed using two identical interferograms (from Fig. 16.7a) where
the two are sheared with respect to one another. (a) Vertical displacement. (b) Vertical displace-
ment with rotation showing tilt. (c) Horizontal displacement. (d) Horizontal displacement with
rotation showing tilt.

(1970), and Wasowski (1970). Moiré has also been used to compare an object
to a master and for vibration analysis (Der Hovanesian and Yung 1971; Gasvik
1987). A theoretical review and experimental comparison of moiré and projec-
tion techniques for contouring is given by Benoit et al. (1975). Automatic com-
puter fringe analysis of moiré patterns by finding fringe centers were reported
by Yatagai et al. (1982). Heterodyne interferometry was first used with moiré
fringes by Moore and Truax (1977), and phase measurement techniques were
further developed by Perrin and Thomas (1979), Shagam (1980), and Reid
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(1984b). Recent review papers on moiré techniques include Post (1982), Reid
(1984a), and Halioua and Liu (1989).

The projection of interference fringes for contouring objects was first pro-
posed by Rowe and Welford (1967). Their later work included a number of
applications for projected fringes (Welford 1969) and the use of projected fringes
with holography (Rowe 1971). In-depth mathematical treatments have been
provided by Benoit et al. (1975) and Gasvik (1987). The relationship between
projected fringe contouring and triangulation is given in a book chapter by Case
et al. (1987). Heterodyne phase measurement was first introduced with pro-
jected fringes by Indebetouw (1978), and phase measurement techniques were
further developed by Takeda et al. (1982), Takeda and Mutoh (1983), and Sri-
nivasan et al. (1984, 1985).

Haines and Hildebrand first proposed contouring objects in holography using
two sources (Haines and Hildebrand 1965; Hildebrand and Haines 1966, 1967).
The two holographic sources were produced by changing either the angle of the
illumination beam on the object or the angle of the reference beam. A small
angle difference between the beams used to produce a double-exposure holo-
gram creates a moiré in the final hologram which corresponds to topographic
contours of the test object. Further insight into two-angle holography has been
provided by Menzel(1974), Abramson (1976a, 1976b) and DeMattia and Fos-
sati-Bellani (1978). The technique has also been used in speckle interferometry
(Winther, 1983).

Since all of these techniques are so similar, it is sometimes hard to differ-
entiate developments in one technique versus another. MacGovem (1972) pro-
vided a theory that linked all of these techniques together. The next part of this
chapter will explain each of these techniques and then show the similarities
among all of these techniques and provide a comparison to conventional inter-
ferometry.

16.5. FRINGE PROJECTION

A simple approach for contouring is to project interference fringes or a grating
onto an object and then view from another direction. Figure 16.10 shows the

Project fringes
or grating

> d
Figure 16.10. Projection of fringes or grating onto object and

viewed at an angle 0. p is the grating pitch or fringe spacing View
and C is the contour interval. C
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optical setup for this measurement. Assuming a collimated illumination beam
and viewing the fringes with a telecentric optical system, straight equally spaced
fringes are incident on the object, producing equally spaced contour intervals.
The departure of a viewed fringe from a straight line shows the departure of the
surface from a plane reference surface. An object with fringes projected onto it
can be seen in Fig. 16.11. When the fringes are viewed at an angle O relative

Figure 16.11. Mask with fringes projected onto it. (a) Coarse fringe spacing. (b) Fine fringe
spacing. (c) Fine fringe spacing with an increase in the angle between illumination and viewing.
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to the projection direction, the spacing of the lines perpendicular to the viewing
direction will be

- P
Cos o

(16.19)

The contour interval C (the height between adjacent contour lines in the viewing
direction) is determined by the line or fringe spacing projected onto the surface
and the angle between the projection and viewing directions;

d
c=-L = . (16.20)
sin « tan «

These contour lines are planes of equal height, and the sensitivity of the mea-
surement is determined by o. The larger the angle a, the smaller the contour
interval. If o = 90°, then the contour interval is equal top, and the sensitivity
is a maximum. The reference plane will be parallel to the direction of the fringes
and perpendicular to the viewing direction as shown in Fig. 16.12. Even though
the maximum sensitivity can be obtained at 90°, this angle between the projec-
tion and viewing directions will produce a lot of unacceptable shadows on the
object. These shadows will lead to areas with missing data where the object
cannot be contoured. When o = 0, the contour interval is infinite, and the
measurement sensitivity is zero. To provide the best results, an angle no larger
than the largest slope on the surface should be chosen.

When interference fringes are projected onto a surface rather than using a
grating, the fringe spacing p is determined by the geometry shown in Fig. 16.13

Reference
Piane

Figure 16.12. Maximum sensitivity for fringe projection with
View  a 90° angle between projection and viewing.

2486

Figure 16.13. Fringes produced by two interfering beams.
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and is given by

A

= — 16.21
2 sin A9’ ( )

4

where A is the wavelength of illumination and 2A0 is the angle between the two
interfering beams. Substituting the expression for p into Eq. (16.20), the con-
tour interval becomes

C= —)\— (16.22)
2 (sin Af) sin «

If a simple interferometer such as a Twyman-Green is used to generate pro-
jected interference fringes, tilting one beam with respect to the other will change
the contour interval. The larger the angle between the two beams, the smaller
the contour interval will be. Figures 16.11a and 16.11b show a change in the
fringe spacing for interference fringes projected onto an object. The direction
of illumination has been moved away from the viewing direction between Figs.
16.11b and 16.11c. This increases the angle O and the test sensitivity while
reducing the contour interval. Projected fringe contouring has been covered in
detail by Gasvik (1987).

If the source and the viewer are not at infinity, the fringes or grating pro-
jected onto the object will not be composed of straight, equally spaced lines.
The height between contour planes will be a function of the distance from the
source and viewer to the object. There will be a distortion due to the viewing
of the fringes as well as due to the illumination. This means that the reference
surface will not be a plane. As long as the object does not have large height
changes compared to the illumination and viewing distances, a plane reference
surface placed in the plane of the object can be measured first and then sub-
tracted from subsequent measurements of the object. This enables the mapping
of a plane in object space to a surface that will serve as a reference surface. If
the object has large height variations, the plane reference surface may have to
be measured in a number of planes to map the measured object contours to real
heights. Finite illumination and viewing distances will be considered in more
detail with shadow moiré in the next section.

16.6 SHADOW MOIRE

A simple method of moiré interferometry for contouring objects uses a single
grating placed in front of the object as shown in Fig. 16.14. The grating in front
of the object produces a shadow on the object that is viewed from a different
direction through the grating. A low-frequency beat or moiré pattern is seen.
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This pattern is due to the interference between the grating shadows on the object
and the grating as viewed. Assuming that the illumination is collimated and that
the object is viewed at infinity or through a telecentric optical system, the height
7 between the grating and the object point can be determined from the geometry
shown in Fig. 16.14 (Meadows et al. 1970; Takasaki 1973; Chiang 1983). This
height is given by

_ Np
Z_tana+tan6’ (16.23)
where o is the illumination angle, B is the viewing angle, p is the spacing of
the grating lines, and N is the number of grating lines between the points A and
B (see Fig. 16.14). The contour interval in a direction perpendicular to the
grating will simply be given by

P
C=——"""—. 16. 24
tan a + tan B ( )

Again, the distance between the moiré fringes in the beat pattern depends on
the angle between the illumination and viewing directions. The larger the angle,
the smaller the contour interval. If the high frequencies due to the original grat-
ing are filtered out, then only the moiré interference term is seen. The reference
plane will be parallel to the grating. Note that this reference plane is tilted with
respect to the reference plane obtained when fringes are projected onto the sub-
ject. Essentially, the shadow moiré technique provides a way of removing the
“tilt” term and repositioning the reference plane. The contour interval for
shadow moiré is the same as that calculated for projected fringe contouring (Eq.
(16.20)) when one of the angles is zero with d = p. Figure 16.15 shows an
object that has a grating sitting in front of it. An illumination beam is projected
from one direction and viewed from another direction. Between Figs. 16.5a
and 16.5b, the angles o and [ have been increased. This has the effect of
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Figure 16.15. Mask with grating in front of it. (a) One viewing angle. (6) Larger viewing angle.

decreasing the contour interval, increasing the number of fringes, and rotating
the reference plane slightly away from the viewer.

Most of the time, it is difficult to illuminate an entire object with a collimated
beam. Therefore, it is important to consider the case of finite illumination and
viewing distances. It is possible to derive this for a very general case (Meadows
et al. 1970; Takasaki 1970; Bell 1985); however, for simplicity, only the case
where the illumination and viewing positions are the same distance from the
grating will be considered. Figure 16.16 shows a geometry where the distance
between the illumination source and the viewing camera is given by w, and the
distance between these and the grating is 1. The grating is assumed to be close
enough to the object surface so that diffraction effects are negligible. In this

T Source

Figure 16.16. Geometry for shadow moiré with
illumination and viewing at finite distances.

— Camera
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case the height between the object and the grating is given by

S S— (16.25)
2T Gna’ + tan g’ ’
where o' and ' are the illumination and viewing angles at the object surface.
These angles change for every point on the surface and are different from o and
B in Fig. 16.16, where o and [ are the illumination and viewing angles at the

grating (reference) surface. The surface height can also be written as (Meadows
et al. 1970; Takasaki 1973; Chiang 1983)

Np(l +2)  Npl
w — Np’

z = NC(z) = (16.26)

This equation indicates that the height is a complex function depending on the
position of each object point. Thus, the distance between contour intervals is
dependent on the height of the surface and the number of fringes between the
grating and the object. Individual contour lines will no longer be planes of equal
height. They are now surfaces of equal height. The expression for height can
be simplified by considering the case where the distance to the source and viewer
is large compared to the surface height variations, 1 >> z. Then the surface
height can be expressed as

Npl Np

2 =—=

w tan @ + tan 3’ (16.27)
Even though the angles a and (3 vary from point-to-point on the surface, the
sum of their tangents remains equal to w/l for all object points as long as 1
>> 7. The contour interval will be constant in this regime and will be the same
as that given by Eq. (16.24).

Because of the finite distances, there is also distortion due to the viewing
perspective. A point on the surface Q will appear to be at the location Q’ when
viewed through the grating. By similar triangles, the distances x and x’ from a
line perpendicular to the grating intersecting the camera location can be related
using

s "7 (16.28)

z+1 N
where x and x’ are defined in Fig. 16.16. Equation (16.28) can be rearranged

to yield the actual coordinate x in terms of the measured coordinate x’ and the
measurement geometry,
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x = x’<1 + %) (16.29)

Likewise, the y coordinate can be corrected using

y= y’<1 + ;) (16.30)

This enables the measured surface to be mapped to the actual surface to correct
for the viewing perspective. These same correction factors can be applied to
fringe projection.

16.7. PROJECTION MOIRE

Moiré interferometry can also be implemented by projecting interference fringes
or a grating onto an object and then viewing through a second grating in front
of the viewer (see Fig. 16.17) (Brooks and Helfinger 1969). The difference
between projection and shadow moiré is that two different gratings are used in
projection moiré. The orientation of the reference plane can be arbitrarily
changed by using different grating pitches to view the object. The contour in-
terval is again given by Eq. (16.24), where d is the period of the grating in the
y plane, as long as the grating pitches are matched to have the same value of
d. This implementation makes projection moiré the same as shadow moiré,
although projection moiré can be much more complicated than shadow moiré.
A good theoretical treatment of projection moiré is given by Benoit et al. (1975).

16.8. TWO-ANGLE HOLOGRAPHY

Projected fringe contouring can also be done using holography. First a holo-
gram of the object is made using the optical setup shown in Fig. 16.18. Then
the direction of the beam illuminating the object is changed slightly. When the
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lumination beam.

object is viewed through the hologram, interference fringes are seen that cor-
respond to the interference between the wavefront stored in the hologram and
the live wavefront with the tilted illumination. This process is depicted by Fig.
16.19. These fringes are exactly what would be seen if the object were illu-
minated with the two illumination beams simultaneously. The beams would be
tilted with respect to one another by the same amount that the illumination beam
was tilted after making the hologram. These fringes will look the same as those
produced by projected fringe contouring and shown in Fig. 16.11. To produce
straight, equally spaced fringes, the object illumination should be collimated.
When collimated illumination is used, the surface contour is measured relative
to a surface that is a plane. The theory of projected fringe contouring can be
applied to two-angle holographic contouring yielding a contour interval given
by Eq. (16.22), where 2A8 is the change in the angle of the object illumination.
More detail on two-angle holographic contouring can be found in Haines and
Hildebrand (1965), Hildebrand and Haines (1966, 1967), Vest (1979), and Ha-
riharan (1984).

16.9. COMMON FEATURES

All of the techniques described produce fringes corresponding to contours of
equal height on the object. They all have a similar contour interval determined
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by the fringe spacing or grating period and the angle between the illumination
and viewing directions as long as the illumination and viewing are collimated.
Phase shifting can be applied to any of the techniques to produce quantitative
height information as long as sinusoidal fringes are present at the camera. The
surface heights measured are relative to a reference surface that is a plane as
long as the fringes or grating lines are straight and equally spaced at the object.
The only difference between the moiré techniques and the projected fringes and
two-angle holography is the change in the location of the reference plane. If the
fringes are digitized or phase-measuring interferometry techniques are applied,
the reference plane can be changed in the computer mathematically.

The precision of these contouring techniques depends on the number of
fringes used. When the fringes are digitized using fringe-following techniques,
the surface height can be determined to 1/10 of a fringe. If phase measurement is
used, the surface heights can be determined to 1/100 of a fringe. Therefore it is
advantageous to use as many fringes as possible. And because a reference plane
can easily be changed in a computer, projected fringe contouring is the simplest
way to contour an object interferometrically.

16.10. COMPARISON TO CONVENTIONAL INTERFEROMETRY

The measurement of surface contour can be related to making the same mea-
surement using a Twyman-Green interferometer assuming a long effective
wavelength. The loci of the lines or fringes projected onto the surface (assuming
illumination and viewing at infinity) is given by

y =ztan a + nd, (16.31)

where z is the height of the surface at the point y, d is the fringe spacing mea-
sured along the y axis, and = is an integer referring to fringe order number. If
the same surface were tested using a Twyman-Green interferometer, a bright
fringe would be obtained whenever

2z — ysiny = nA, (16.32)

where A is the wavelength and Y is the tilt of the reference plane. By comparing
Egs. (16.31) and (16.32), it can be seen that they are equivalent as long as

)\effective
d=— (16.33)
sin vy
and
= fan o, (1634)

sin vy
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where A oy 1 the effective wavelength. The effective wavelength can then
be written as

2d 2p
A e = 2C = = R 16.
effective tan @  cos « tan « (16.33)

where C is the contour interval as defined in Eq. (16.20). Thus, contouring
using these techniques is similar to measuring the object in a Twyman-Green
interferometer using a source with wavelength A .geciive-

16.11. APPLICATIONS

These techniques can all be used for displacement measurement or stress anal-
ysis as well as for contouring objects. Displacement measurement is performed
by comparing the fringe patterns obtained before and after a small movement
of the object or before and after applying a load to the object. Because the
sensitivity of these tests are variable, they can be used for a larger range of
displacements and stresses than the holographic techniques. Differential inter-
ferometry comparing two objects or an object and a master can also be per-
formed by comparing the two fringe patterns obtained. Finally, time-average
vibration analysis can also be performed with moiré, yielding results similar to
those obtained with time-average holography with a much longer effective
wavelength.

Using phase-measurement techniques, the surface height relative to some
reference surface can be obtained quantitatively. If the contour lines are straight
and equally spaced in object space, then the reference surface will be a plane.
In the computer, any plane (or surface) desired can be subtracted from the sur-
face height to yield the surface profile relative to any plane (or surface). This
is similar to viewing the contour lines through a grating (or deformed grating)
to reduce their number. If the contour lines are not straight and equally spaced,
the reference surface will be something other than a plane. The reference sur-
face can be determined by placing a flat surface at the location of the object
and measuring the surface height. Once this reference surface is measured, it
can be subtracted from subsequent measurements to yield the surface height
relative to a plane surface. Thus, with the use of phase-measuring interfer-
ometry techniques, the surface height can be made relative to any surface and
transformed to surface heights relative to another surface. Taking this one step
further, a master component can be compared to a number of test components
to determine if their shape is within the specification. It should also be pointed
out that this measurement is sensitive to a certain direction, and that there may
be areas where data are missing because of shadows on the surface.

As an example, Fig. 16.20 shows the mask of Figs. 16.11 and 16.15 con-
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Figure 16.20. Mask measured with projected fringes and phase-measurement interferometry. (a)
Isometric plot of measured surface height. (b) Isometric plot after best-fit plane removed. (c) Two-
dimensional contour plot of measured surface height. (d) Two-dimensional contour plot after best-
fit plane removed. Units on plots are in number of contour intervals. One contour interval is ap-
proximately 10 mm. The surface is about 150 mm in diameter.
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Figure 16.20. (Continued)

toured using fringe projection and phase-measurement interferometry. The
fringes are produced using a Twyman-Green interferometer with a He-Ne laser.
A high-resolution camera with 1320 x 900 pixels and a zoom lens is used to
view the fringes. Surface heights are calculated using phase-measurement tech-
niques at each detector point. A total of five interferograms were used to cal-
culate the surface shown in Fig. 16.20a. The best-fit plane has been subtracted
from the surface to yield Fig. 16.20b. In this way the reference plane has been
changed. Figures 16.20c and 16.20d show two-dimensional contour maps of
the object before and after the best-fit plane is removed. These contours can
also be thought of as the fringes that would be viewed on the object. Figure
16.20c shows the fringes without a second grating, and Fig. 16.20d is with a
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second reference grating chosen to minimize the fringe spacing. The contour
interval for this example is 10 mm, and the total peak-to-valley height deviation
after the tilt is subtracted is about 30 mm.

16.12. SUMMARY

The techniques of projected fringe contouring, projection moiré, shadow moiré,
and two-angle holographic contouring are all similar. They all involve project-
ing a pattern of lines or interference fringes onto an object and then viewing
those contour lines from a different direction. In the case of the moiré tech-
niques, the contour lines are viewed through a grating to reduce the total number
of fringes. In all of the techniques, the surface height is measured relative to a
reference surface. The reference surface will be a plane if the projected grating
lines or interference fringes are straight and equally spaced at the object and
viewed at infinity or with a telecentric imaging system. The use of the second
grating in the moiré techniques changes the reference plane but does not affect
the contour interval. The sensitivity of the techniques is a maximum when the
contour lines are viewed at an angle of 90° with respect to the projection di-
rection. Quantitative data can be obtained from any of these techniques using
phase-measurement interferometry techniques. The precision of the surface-
height measurement will depend on the number of fringes present. Surface-
height measurements can be made with a repeatability of 1/100 of a contour interval
rms (root-mean-square). Thus, the number of fringes used should be as many
as can easily be measured by the detection system. The contour interval can be
changed to increase the number of fringes, and once the surface height is cal-
culated, a reference surface can be subtracted in the computer to find the surface
height relative to any desired surface.
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