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Abstract

This paper presents a stationary wavelet transform (SWT) method for speckle noise reduction in digital speckle pattern

interferometry fringes. The main advantage of SWT is its translation invariance, which makes it important in statistical image

processing applications. This method was used to denoise a simulated speckle fringe patterns, a good fidelity value was obtained.

Applied to the wavelet phase evaluation, it has provided a phase distribution with a good accuracy.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Digital speckle pattern interferometry (DSPI) is a

whole field optical method for non-contact and non-

destructive surface analysis. It’s now considered as a

powerful tool for industrial measurements. It enables

full-field measurement of optical phase changes via the

acquisition of speckle patterns [1,2]. After acquisition, a

simple subtraction is usually performed to obtain a

fringe pattern.

The greatest challenges in speckle interferometry

focus on relating fringe patterns to phase mapping,

permitting the direct determination of surface deforma-

tion. However, as DSPI fringes are characterized by a

strong speckle noise background, a denoising method

must be used before the phase evaluation.

Wavelet techniques have become an attractive and

efficient tool in image denoising. A fast algorithm of

discrete wavelet transform (DWT) is multiresolution

analysis [3], which is a non-redundant decomposition.

The drawback of non-redundant transform is their

non-invariance in space, i.e. the coefficients of a delayed

signal are not a space-shifted version those of the

original signal. A new algorithm was introduced in [4]

known as stationary wavelet transform (SWT) that

makes the wavelet decomposition space invariant. This

improves the power of wavelet in image denoising. In

this paper we are going to use the SWT (method) to

denoise a simulated speckle fringe pattern and apply it

in the wavelet phase extraction technique [5].

2. Computer simulated DSPI fringes

In order to generate the speckle patterns diffracted by

a surface, we simulate the clean imaging optical system

[6] shown in the Fig. 1 to generate fringe patterns as in

an out of plane interferometer.

Within the paraxial approximation, optical propaga-

tion through any complex optical system, described by

an ABCD ray transfer matrix, can be formulated by

Collins formulas [7]. Collins has obtained an analytic

form for the resulting complex field amplitude. Let

Uðx0; y0Þ be the field on the input plane ðx0; y0Þ located
at z ¼ 0: The diffraction integral relating the fields
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across the input and output planes can be expressed as

Uðx; yÞ

¼ j

lB
expð�jkLÞ

ZZ

Uðx0; y0Þ exp � jk

2B
ðDðx2 þ y2Þ

�

� 2ðxx0 þ yy0Þ þ Aðx20 þ y20ÞÞ
�

dx0 dy0, ð1Þ

where ðx; yÞ are transverse coordinates of the output

plane, k is the optical wave number, j is a complex

defined by j2 ¼ �1; l is the free-space wavelength, L is

the optical distance along the z-axis, and A; B; D [8] are

the ray matrix elements for the complete optical system

between input and output planes. When the input and

output planes are in free space, the determinant of

ABCD matrix is unity (i.e. AD� BC ¼ 1).

To generate a speckle pattern, the reflected field

Uðx0; y0Þ is supposed to be given by

Uðx0; y0Þ ¼ r0Pðx0; y0Þ exp½ihðx0; y0Þ�, (2)

where r0 is the average reflectivity, P is the incident

beam on the surface, and h is a random phase uniformly

distributed in the interval ½�p;p�:
In this study we apply Eq. (1) to find the field at the

plane of the limiting aperture with A ¼ 0; B ¼ f ; C ¼
�1=f ; et D ¼ 0; multiplying it by the aperture function

and applying Eq. (1) a second time to the remainder of

the system with A ¼ 0; B ¼ f ;C ¼ �1=f ; and D ¼ 0:
By varying the limiting aperture radius, we can match

the target resolution to ensure a fully resolved speckle

pattern across the observation plane.

Out-of-plane DSPI interferometers combine the

optical field scattered by the object with a uniform

reference field. The first order statistics of the inter-

ference of a speckle pattern and a reference field with

zero phase are given by the equation [9]

rðIÞ ¼ exp½�ðI þ I rÞ=hIi�
hIi I0 2

ðII rÞ
hIi

1=2
 !

, (3)

where I0 is the zero-order first kind modified Bessel

function, hIi is the intensity average of the speckle field

alone, and I r is the intensity of the reference field with

zero phase, such that the beam ratio r ¼ I rhIi�1:

Several interferograms with various speckle sizes were

evaluated. In all the cases we have found a good

agreement between the numerical model and the

theoretical curve of the probability density function

given by Eq. (3). Fig. 2 shows such a comparison for an

interferogram with an average speckle size of three

pixels when the incident beam waist was much larger

than the width of the pupil stop. The speckle fringe

patterns are obtained by subtraction of a reference

speckled image from image of displaced surface.

The intensity distribution of a reference speckled

image (before displacement) is

I1ðx; yÞ ¼ Ibðx; yÞ½1þ V ðx; yÞ cosðfsðx; yÞÞ�, (4)

where Ib is the bias intensity, V the visibility and fs is

the original phase from the speckle that appears as the

high frequency and apparently random pixel-by-pixel

intensity variation.
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Fig. 1. Schematic setup.

Fig. 2. Comparison between the numerical model and the theoretical

curve for the probability density function of the intensity, in (a) speckle

field alone and in (b) speckle field with the addition of a constant

reference field with zero phase with r ¼ 2: The average speckle size is 3
pixels.
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After displacement, the intensity distribution becomes

I2ðx; yÞ ¼ Ibðx; yÞ½1þ V ðx; yÞ cosðfsðx; yÞ þ jðx; yÞÞ�,
(5)

where j is the phase change in the light resulting from

the displacement. We assume that the displacements are

sufficiently small that speckle decorrelation effects can

be ignored.

The intensity distribution in the speckle correlogram

is given by

Iðx; yÞ ¼ 2IbV sin
j

2

� �

sin fs þ
j

2

� �

. (6)

Fringes obtained in Eq. (6) are characterized by a

speckle noise background; a noise reduction method

must be used before the phase distribution is evaluated.

The desired information containing the sinðj=2Þ
fringe term (shape of envelope modulating the random

speckle term) may be rectified and filtered by appro-

priate computer image processing in order to remove the

high frequency sinðfs þ j=2Þ noise.

3. Wavelet analysis for optical interferometry

In optical interferometry, many research works

[10–21] have developed wavelet analysis to improve

metrology based on speckle interferometry in two

principles domains: the fringe patterns denoising, and

the phase or the local frequency extraction from the

processed images.

3.1. Denoising technique

3.1.1. Discrete wavelet transform

Several texts address the principles of wavelet trans-

form [22–24]. However, a brief description of the

method is given here for completeness. The standard

discrete wavelet transform DWT [3] is based on a low

pass filter H and a high pass filter G and on a binary

decimation.

Let fhng and fgng be the sequences defining the filters

H and G: The filter H is assumed to satisfy the internal

orthogonality relation
X

n

hnhnþ2j ¼ 0 (7)

for all integers ja0; and to have
P

h2n ¼ 1: The filter G is

defined by

gn ¼ ð�1Þnh1�n (8)

for all n; and satisfy the same internal orthogonality as

H: The filters obey the mutual orthogonality relation
X

n

hngnþ2j ¼ 0 (9)

for all integers j: Filters constructed in this way are

called quadrature mirror filters.

The binary decimation operator Do simply chooses

every even member of a sequence, so that ðDoxÞj ¼ x2j ;
for all integers j: It follows from the internal and mutual

orthogonality properties of the quadrature mirror filters

that the mapping of a sequence x to the mapping of

sequencies ðDoGx;DoHxÞ is an orthogonal transforma-

tion. If x is a finite sequence of length 2m with periodic

boundary conditions applied, then each of DoGx and

DoHx will be sequences of length 2m�1: The discrete

wavelet transform algorithm is derived from a multi-

resolution analysis, performed as follows. Defining the

smooth cj at level j and the detail d j at level j by

cj ¼ DoHcjþ1 and d j ¼ DoGc
jþ1. (10)

It can be seen from Eq. (9) that the approximation at

each level is fed down to the next level to give rise to

smooth and detail at that level. Because the mapping

ðDoGx;DoHxÞ is an orthogonal transform, it can be

easily inverted to find cjþ1 in terms of cj and d j :

cjþ1 ¼ R0ðcj ; d jÞ, (11)

where R0 is the inverse transform.

The discrete wavelet transform is obtained by

continuing this process to obtain the detail at each level

with the approximation at the zero level. Eq. (10) shows

that the process can be reversed by reconstructing c1

from d0 and c0; and c2 from d1 and c1; and so on.

3.1.2. Stationary wavelet transform

The standard DWT is non-redundant, which is space

variant. SWT was presented in [4] and is space invariant.

A clear description and analysis of the method is

presented in [25]. In summary, the SWT method can

at each level, after applying the low and high pass filters

to the data be described as new sequences that have the

same length as the original sequences. To do this, the

original data is not decimated; however the filters at

each level are modified by padding them out with zeros.

Let Z be the operator that alternates a given sequence

with zeros, so that for all integers j; ðZxÞ2j ¼ xj and

ðZxÞ2jþ1 ¼ 0: Define filters H ½r� and G½r� to have weights

Zrh and Zrg; respectively. Thus the filter H ½r� has the

weight h
½r�
2rj

¼ hj and h
½r�
kj ¼ 0 if k is not a multiple of 2r:

The filter H ½r� is obtained by inserting a zero between

every adjacent pair of elements of the filter H ½r�1�; and
similarly for G½r�: It is immediate that

Dr
0H

½r� ¼ HDr
0 and Dr

0G
½r� ¼ GDr

0. (12)

To define the stationary wavelet transform, we start

by setting aJ to be the original sequence cJ : For j ¼
J; J � 1; . . . ; 1; we then recursively define

aj�1 ¼ H ½J�j�aj and bj�1 ¼ G½J�j�aj. (13)
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If the vector aJ is of length 2J ; then all the vectors aj and

bj will be of the same length, rather than becoming

shorter as j decreases as in the standard DWT.

3.1.3. Denoising technique

After the SWT decomposition, the image is denoised

by shrinking the coefficients from the detail subbands

with a soft threshold function [26]. The procedure

removes noise by thresholding only the wavelet coeffi-

cients of the detail subbands, while keeping the low-

resolution coefficients unaltered. The soft thresholding

rule is normally chosen, because it has been shown to

achieve near-optimal minimax rate, and the optimal soft

thresholding estimator yields a smaller risk than the

optimal hard thresholding estimator. The threshold is

generally estimated from the knowledge of the noise

variance. The optimal threshold is the universal one [26]

that can be estimated by means of the variance s2 of the

coefficients in the highest level of the wavelet basis

decomposition.

To evaluate the performance of the denoising method,

we have calculated the fidelity f [9] defined by

f ¼ 1�
PN

1 ðI � I idealÞ2

I2ideal
, (14)

where I ideal is the noiseless image and I the denoised one.

The fidelity quantifies how well image details are

preserved. A fidelity value close to 1 will indicate that

the filtered image is similar to the noiseless one.

3.2. Wavelet phase extraction

When a high frequency spatial carrier is added to the

phase, the fringe pattern of Eq. (6), leads after

processing to a modulated fringe pattern which can be

represented as follows

Iðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cosðmyþ fðx; yÞÞ, (15)

where Iðx; yÞ; Aðx; yÞ; Bðx; yÞ are recorded intensity,

background intensity and fringe amplitude, respectively,

fðx; yÞ is the desired phase information and my is the

phase modulated carrier. This spatial carrier must

respect the following condition:

m4
qf

qy

�

�

�

�

�

�

�

�

max

. (16)

The one-dimensional wavelet transform of the fringe

pattern intensity, in the y direction, is given by

W ðx; s; xÞ ¼ 1
ffiffi

s
p
Z þ1

�1
½Aðx; yÞ þ Bðx; yÞ

� cosðmyþ fðx; xÞÞ� C
y� x

s

� �� �

n

dy. ð17Þ

Exploiting the localization property of the wavelet, the

development of the phase of interest f on Taylor series

near the central value x; allowed us to write

fðx; yÞ ¼ fðx; xÞ þ ðy� xÞ qf
qy

ðx; xÞ þ . . . . (18)

Assuming a slow variation of A and B, which is

convenient in usual cases, and owing the localization

of the wavelet, we can neglect the higher order of ðy� xÞ
with respect to the phase-modulated carrier. With these

considerations, the wavelet transform becomes

W ðx; s; xÞ ¼ Bðx; xÞ
ffiffi

s
p

Z þ1

�1
cos myþ fðx; xÞ
�

þðy� xÞ qf
qy

ðx; xÞ
�

C
y� x

s

� �� ��
dy. ð19Þ

Using an analytic wavelet, in our case Paul wavelet

defined by

CðxÞ ¼ 2nn!ð1� ixÞ�ðnþ1Þ

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nÞ!=2
p (20)

the extremum of the scale S obtained from the modulus

jW ðx; s; xÞj is given by

Sðx; xÞ ¼ 2nþ 1

2m1

, (21)

where

m1 ¼ mþ qf

qy
ðx; xÞ. (22)

Eqs. (21) and (22) give then the phase gradient by

qf

qy
ðx; xÞ ¼ 2nþ 1

2Sðx; xÞ �m. (23)

This leads to the phase by integration of the gradient.

4. Results of simulation

To analyze the performance of the SWT denoising

technique, two fringe patterns were generated. The

fringe pattern shown in Fig. 3a, obtained by adding a

known phase fðx0; y0Þ to the random phase hðx0; y0Þ
such that

fðx0; y0Þ ¼ 0:0004ððx� 256Þ2 þ ðy� 256Þ2Þ (24)

and the high frequency modulated fringe pattern shown

in Fig. 3b, obtained by adding a high frequency spatial

carrier my to the phase, with m ¼ 0:63 radian/pixel. The

fringe patterns are obtained for an average speckle size

of 3 pixels. A comparison with the DWT subband

removal technique [19] is done.

In Fig. 4, we present the filtered images of the fringe

pattern shown in Fig. 3a, obtained with the two

methods. The upper part is obtained with the DWT

method, using a Daubachies wavelet with four-length

filter, keeping the LL, HL, and LH subbands in the

fourth level of the wavelet decomposition and setting the
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other subbands to zero. The lower part is obtained with

the SWT method, after the image is decomposed at level

four, using the same wavelet. We have obtained a

fidelity value f of 0.90 for DWT and 0.94 for the SWT

technique.

The efficiency of the SWT method is shown when

filtering the high frequency modulated fringe pattern of

Fig. 3b. We can see in Fig. 5, upper part, that DWT

method destroys the fringes when the image is decom-

posed at level 3 while the SWT method, in the lower

part, give a good result and keep the fringes unaltered at

level 4. We have obtained a fidelity value f of 0.74 for

DWT and 0.87 for the SWT technique.

The wavelet phase extraction technique is then

applied to the SWT filtered modulated fringe pattern,

lower part of the Fig. 5, to retrieve the phase

distribution. The recovered phase distribution is pre-

sented in Fig. 6a, and the exact phase of Eq. (24) is

shown in Fig. 6b; using the fidelity coefficient for

comparison, we have obtained a fidelity value of 0.9916.

Fig. 6c shows the difference between the two phase

distributions represented by a gray scale levels. Over the

majority of the surface, the two distributions are in a

good agreement.

5. Conclusion

In this paper the SWT method is used to reduce

speckle noise in DSPI fringes. The study is carried out in

computer simulated fringes through the evaluation of

the fidelity parameter. It is shown that the SWT method

is appropriate to remove the speckle noise and maintains

the fringe pattern features especially for fringe patterns
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Fig. 4. The filtered fringe pattern. The upper part is the resultant one

by the DWT method and the lower part is the resultant one by SWT

method.

Fig. 3. (a) The noisily fringe pattern for an average size of three pixels

obtained by means of the numerical model, (b) the corresponding high

frequency modulated fringe pattern.

Fig. 5. The filtered high frequency modulated fringe pattern. The

upper part is the resultant one by the DWT method when the image is

decomposed at level 3 and the lower part is the resultant one by SWT

method when the image is decomposed at level 4.
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with high spatial frequency. The wavelet phase extrac-

tion algorithm was extended to DSPI. Its association

with SWT denoising has provided a phase distribution

with a good accuracy.
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Fig. 6. (a) Retrieved phase distribution of the lower part of Fig. 6, (b)

the exact phase distribution, (c) the difference between (a) and (b).
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