Fitting refractive-index data with the Sellmeier

dispersion formula

Berge Tatian

The fitting of measured optical index data to the Sellmeier dispersion formula, using the variable projection
algorithm, is described. Examples of fits obtained by this method to several Schott optical glasses and non-

glass materials are given.

I. Introduction

This paper describes a method for the fitting of op-
tical index data to the Sellmeier dispersion formula.
The work described began in 1964. It was shown in the
1960s that the Sellmeier formula was suitable for ac-
curately fitting both glass and nonglass!-3 materials.
This paper describes a program, INFIT, which uses a new
curve-fitting procedure and which is applicable to both
types of material.

In Sec. II we discuss the need for curve-fitting index
data. In Sec. III we present the Sellmeier formula and
discuss the specific problems involved in fitting it. In
Sec. IV we describe the new algorithm used in the recent
continuation of the work of Ref. 3. In Sec. V we de-
scribe some specific features of the INFIT program and
present our numerical results, comparing them with
results taken from the literature when possible. Fi-
nally, as a postscript, Sec. VI gives a comparison of
INFIT with the results of four additional references
discovered after the main body of this paper was
written.

Il. The Problem

References 1 and 2 cover most of the reasons curve-
fitting index data are useful to do and the physical jus-
tification for using the Sellmeier formula for this pur-
pose. In addition, Herzberger has pointed out the re-
lationship between fitting dispersion data and the cor-
rection of chromatic aberrations in lens systems.? It
might also be of interest to relate the reasons for our
interest in this subject. At the time of preparing Ref.
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3, Itek was primarily in the business of manufacturing
large aperture high-quality refractive lenses for use in
visible light. As is well known, chromatic aberration
is an important problem associated with such lenses.
Since all refractive materials exhibit dispersion, the only
way to correct the chromatic aberration is with a
weighted combination of the dispersions of different
materials, thus obtaining a composite material of more
or less zero dispersion. The accuracy with which this
has to be done is equal to a fraction of the difference in
physical path times the optical index for any two rays
contributing to a given image point. Since the measure
for this difference is the wavelength of light, the various
dispersion curves have to be known very accurately, in
particular, about 1 in the sixth place for the most critical
applications in visible light.®

Aside from the problem of making glass to such a high
standard, measuring its optical properties this accu-
rately is itself an extremely difficult problem. Indices
are measured in carefully controlled conditions using
certain discrete wavelengths corresponding to stable,
strong, isolated, etc. absorption or emission lines. The
Schott Optical Glass Co., who was our major supplier
of glass because of the reliability not only of their glass
quality but also of the data they furnished for it, gave
dispersion data in their catalog to five-place accuracy
at 10-12 wavelengths from 1.0 to 0.36 um. At that time,
they did not provide data for a dispersion formula. The
catalog data were an average of measurements over a
more or less number of lots of the glass, depending on
its relative popularity. For a specific purchase, they
provided a melt sheet consisting of measurements on
that specific batch to six-place accuracy over a lesser
number of wavelengths. Thus, if the lens was to be used
over a short-wavelength band, the dispersion would be
specified directly only over a relatively small number
of wavelengths, and an error in only one of these could
be disastrous. In effect, then, such a lens, because of
its extreme sensitivity to the dispersion data, could be
considered as a device for checking the dispersion data,
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except that it would be an extremely expensive device
for such a purpose.

Two approaches suggested themselves for ensuring
against the possibility of an error in dispersion data.
One was to try to measure the data independently, and
a small laboratory was actually set up to do this. The
other was to apply curve-fitting techniques on the data
to smooth the errors and indicate their magnitude. The
latter approach would have been useful even without
the concern for errors, since we needed the index data
at intermediate wavelengths in order to efficiently in-
tegrate the lens performance effects over wavelength.
Because of the extreme sensitivity of the performance
of the lens to the data and the relatively large separation
of the measured points, interpolation based on a power
series approach would not have sufficed. As far asthe
measurement option was concerned, this rapidly turned
into a fiasco, since, after our laboratory rejected some
glass samples and they were returned to Schott, Schott
sent them back insisting they were as claimed.
Thereupon, applying our newly developed fitting
method to both sets of data, we determined that the
Schott data were indeed correct.

lll. Sellmeier Dispersion Formula

There are several dispersion formulas available that
could have been used for fitting index data. These in-
clude, as the most important, those due to Hartman,
Conrady, Herzberger, Schott Optical Glass, Inc., and
Sellmeier. Some of these, such as the Conrady, Herz-
berger, and Schott formulas, are linear in the fitting
constants, which means they can be fitted easily using
the classical least-squares procedure. This was an
important consideration prior to the availability of to-
day’s powerful electronic computers. However, from
what has been said above, it is clear that fitting accuracy
should be the dominant consideration in choosing a
dispersion formula. From the results given here and
elsewhere, the Sellmeier formula is not only the most
accurate of the formulas mentioned, but it is capable of
fitting index data to an accuracy fully consistent with
both the present ability to measure such data and the
accuracy needed for most applications.

The Sellmeier formula is given by

2 kAN
N HE])\?—B}’
N is the optical index at wavelength A, and %, A;, and
B; are the constants to be determined by the fitting
process. The difficulty in fitting Eq. (1) is due to the
indeterminancy of the number of terms & and the
nonlinearity with respect to the B; values. From Refs.
2 and 3 it has been found that &£ = 3 is generally a nec-
essary and sufficient value for satisfactorily fitting al-
most all the materials in practical use in their main
transparent region. However, even when & is known,
there are several difficulties in solving for the B; con-
stants. These are choice of starting values, iteration to
a solution, and degeneracy.

The choice of starting values is not too critical as such.
The problem lies in that the B; values cannot get too

v
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Fig. 1. Fitting error, BK7—fourteen points from 0.37 to 1.01 um:
A = optimum two-term fit; + = three-term fit, B, = 0.17; Y = three-
term fit, Bo = 0.26; O = optimum three-term fit.

close to or lie within the transmission band of the ma-
terial, so that whatever one chooses for the initial con-
figuration of absorption bands has to remain that. Here
again, it has been found that for all the three-term cases
tried, the optimum configuration is two absorption
bands on the ultraviolet (UV) side and one on the in-
frared (IR) side of the transmission band (Case A of Ref.
2). In Ref. 2 a fairly elaborate procedure is given to
obtain the three-term formula starting values after a
two-term fit is obtained. In both Ref. 3 and this paper
it has been found that almost any values can be used for
starting values, provided they are not too close together
and are not too close to the transmission band of the
material. For glass, we always start with B; = 0.1, Bo
= 0.22, and B3z = 4. The procedure for nonglass mate-
rials is described in Sec. V; the choice of starting values
for these is also fairly arbitrary.

The basic iteration procedure used in Refs. 2 and 3
is nonlinear least squares using Newton’s method. The
major cause of failure in the iteration is degeneracy,
where the influence of one or more of the B; terms on
the state of fit becomes small. This can occur in several
conditions: (1) an insufficient number of measured
data points; (2) insufficient accuracy in the measure-
ments, where incidently the accuracy of the wavelength
data has to be consistent with that of the index mea-
surement; (3) the wavelength band defined by the data
points is too narrow; and (4) an absorption band is weak.
One is apt to have more trouble with the first and third
conditions with glass because the transmission band for
glass is naturally narrow and there tends to be a lack of
suitable wavelength sources. On the other hand, the
second condition is generally a problem with nonglass
materials because most of the data points are in the
nonvisible spectrum and because the optical quality of
many nonglass materials is not that high. The fourth
condition seems to be a problem most often in glass
cases. If the IR band is weak, the corresponding B;
value has a tendency to go to infinity, with a corre-
sponding large A; value. We take care of this by put-
ting a limit on how large the IR B; value can get and
bounding it when it tries to exceed that. We also have
found that for crown (low dispersion) glasses, the UV
band closest to the transmission band of the glass tends
to be weak. This is illustrated in Fig. 1. The two curves
marked with a + and Y represent a three-term fit to the
crown glass, BK7, in which the value of By is fixed at



0.17 and 0.26, respectively. As can be seen, there is little
difference between these two solutions, or for that
matter between these and the optimum solution, which
is marked by boxes. However, the curve marked with
triangles, which is the best two-term fit, shows that a
three-term fit is necessary. In the program of Ref. 3,
we circumvented this form of degeneracy by obtaining
a sequence of three-term fits in which the B values were
fixed at a set of discrete values, and then fitting the re-
sulting merit values to a quadratic to obtain the mini-
mum with respect to Bo.

IV. Variable Projection AlgorithmS7

The procedures used in Refs. 2 and 3 are each capable
of solving the fitting problem they were designed for
and, with additional modifications, may also be
adaptable to the more general case. However, since
then a more powerful algorithm, specifically suited to
the general curve-fitting problem, has become available.
This gives promise of being able to solve the general
index fitting problem in a unified way, this is, with a
minimum of special ad hoc procedures, and so we have
incorporated this variable projection (VP) algorithm
into a new program called INFIT. The basic idea of this
method follows.

The general curve-fitting problem can be stated as
follows. Given the m component vectors A and N that
represent the data, the [ component vector o and the n
component vector a, which are the fitting parameters,
the m X n matrix of functions, ®(a,A), and the m
component residual vector r(a,o), we want to fit the
data to the functions in the least-squares sense or, in
other words, obtain

min r(a,0)]2 = [N — $(aNal2. BC)

The norm | . .. | is the Euclidean norm (the square root
of the sum of squares). If a is fixed, this gives

min [r(a)|2 = [N — ®(\)al?, (3)
which is just a linear least-squares problem whose so-
lution® is

a=®&*N, 4)

where ®+ is the generalized inverse of ®, which if ® has
the rank n, is given by (#7®)-1®7, T indicating the
transpose. The more general nonlinear problem, Eq.
(2), has to be solved by means of a Newton method it-
eration. Therefore, let us expand the perturbed re-
sidual vector by a Taylor series up to the linear terms

r(a +da,a+ da) = r(a,a@) — (4’, 22) (da,da)T. (5)
o
Then Eq. (2) becomes

min [lr(a,a) — (<I>, g) (da,da) 7|2, (6)
da,da da

which, again being linear, has the solution

w&me=(Q§3+r@ax @

Then a and « are incremented by da and de, and this
is repeated until no further improvement results.

Note that, because the two variables « and a occur as
a product in Eq. (2), the problem of optimizing with
respect to both sets of parameters is nonlinear, that is,
we have lost the advantage of the linearity in a. The
basic idea of the VP algorithm is to preserve the sepa-
ration of the parameters into linear and nonlinear sets.
Thus, if we consider a in Eq. (4) as a function of &, Eq.
(2) becomes

min [N — &(a)®+(a)N|2, ®

which is a nonlinear problem in « alone. The operator
P = ®&* is the projection operator onto the space
spanned by the columns of ®, which is how the algo-
rithm gets its name. To solve Eq. (8) by nonlinear least
squares as in Egs. (5)—(7), we need the derivative of this
projection operator with respect to e. If the symbol D
indicates the derivative operator and I is the unit ma-
trix, this is given by

DP=Q+Q7,
Q=I-P)DP)P*. 9

The theoretical and computational details of the algo-
rithm can be found in the indicated references.

V. Description of INFIT Program and Numerical
Results

The details of the implementation of the VP algo-
rithm in the INFIT program are as follows. For glass,
a three-term formula is used exclusively with starting
values as indicated above. For nonglass materials, we
start with a two-term formula, and then successively
add additional UV terms, the additions being made only
if substantial improvement resulted from the last case.
Finally, an attempt at adding a second IR term to the
best previous case is made. The starting B; values of
the UV terms are (1) an approximation to the UV B;
value closest to the transmission band of the material
is obtained by fitting one term of the Sellmeier formula
to several data points on the UV end of the band, and
(2) successive UV B; values are set at half of the value
of the previous B;. One IR B; value is always started
at double the longest wavelength used. If asecond IR
term is being used, its B; value is fixed at the upper
boundary for the IR terms, 100 times the longest
wavelength input. The squares of the B; values are the
actual variables used in the computations, and in ad-
dition, because the IR B; values can become numerically
large, the squares of their reciprocals are used as the
variables.

The data for five Schott glasses® were fitted using the
INFIT program. The index values used are given in the
catalog to five-decimal-place accuracy over 15-18
wavelengths from 0.36 to 2.32 um. The VP algorithm
as described above obtained the optimum three-term
fit for all these cases without the use of any other special
procedure, as for example, dropping one of the UV de-
nominator coefficients, as was sometimes necessary in
the old program. The data used in the old program
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Fig. 2. Results from INFIT program for four glasses.

Table I.

Selimeier Coefficients for Selected Schott Glasses

Al A2 A3
Glass B1 AB B3
FK5 1.03630719 1.52107703e —1 9.13166269¢ — 1
7.76227030e — 2 1.38959626e —1 9.93162512
BALF4 1.25385390 1.98113511e —1 1.01615191
8.56548405e — 2 1.73243878¢ — 1 1.08069635e + 1
KZFSN4 1.38374965 1.64626811e —1 8.5913757e — 1
9.48292206e — 2 2.01806158¢ —1 8.28807544
SF13 1.68311631 2.28813100e — 1 5.17482874e — 2
1.17985319¢ — 1 2.49318140e —1 2.67826498

were over the wavelength range from 0.36 to 1.014 um.
The fact that the new data are available at four addi-
tional wavelengths, from 1.06 to 2.32 um, is not the
reason for the improved performance, because the case
of Fig. 1, used to illustrate the problem of degeneracy,
and that of Fig. 2(d), were also over this smaller range.
The coefficients obtained for four of the glasses are
given in Table I, and the resulting fitting errors are
plotted in Figs. 2(a)-(d).

To more clearly display the errors, the data points in
these plots are shown as equally spaced in wavelength,
even though they are not. This is justified by the fact
that the errors are independent of each other. In the
same diagram we have also plotted the error in the
Schott formula as given in the Schott catalog. These
curves illustrate that the two formulas are equally valid
over the 0.36-1.014-um range, but the Sellmeier formula
works well over the extended range from 1.014 to 2.33
um, whereas the Schott formula exhibits large errors.

The INFIT program was also used to fit the data for
eleven nonglass materials taken from various sources,
as summarized in Table II. For some of these materials,
it was necessary to limit the solutions for the B; values.
Since, as mentioned earlier, the actual variable used in
the iteration is B? or 1/B?, these values cannot be less
than zero. Also, they cannot be such that they fall in
the transmission band of the material. In addition, it
is desirable for the logic of the coding that the B; terms
not change their numerical order. These conditions
impose positive and negative constraints on the solu-
tions obtained for the B; terms. In all cases, the un-
constrained solution was obtained first. This was ex-
amined for constraint violations of the types described

Table Il. Eleven Nonglass Materials Whose Data were Fitted to the Sellmeier Formula
No. of Wavelength
Name Symbol points band, um Accuracy® Reference
Zinc sulfide ZnS 59 0.42-18.2 3 10, 11
Zinc selenide ZnSe 56 0.54-18.2 4 10
Fused silica Si0, 60 0.21-3.71 5 12
Germanium Ge 17 2.06-13.0 4 13
Silicon Si 30 1.36-11.0 4 14
Fluorite CaF, 46 0.23-9.72 5 15
Barium fluoride BaFq 45 0.26-10.4 5 16
Sapphire AlyO4 46 0.26-5.58 5 17
Arsenic trisulfide AsyS3 26 0.58-11.9 5 18
Cesium iodide Csl 54 0.30-53.1 5 19
Thallium-bromide-iodide KRS5 38 0.58-39.4 5 20

¢ Indicates the number of decimal places to which the data were given.

4480 APPLIED OPTICS / Vol. 23, No. 24 / 15 December 1984



Table Ill.

Selimeier Coefficients for Eleven Nonglass Materials

Al A2 A3 A4
Material B1 B2 B3 B4
ZnS 3.60981117 4.90409060e — 1 2.73290892
1.69807804e — 1 3.02036761e — 1 3.38906653e + 1
ZnSe 4.45813734 4.67216334e — 1 2.89566290
2.00859853e — 1 3.91371166e — 1 4.71362108e + 1
Si0; 6.63472443¢ — 1 4.40647918e — 1 8.99007061e — 1
6.65176613e — 2 1.15015076e — 1 9.90316809
Ge 1.47587446e + 1 2.35256294e — 1 —2.48822748e + 1
4.34303403e — 1 1.26245893 1.30200000e + 3
Si 1.06684293¢ + 1 3.04347484¢ — 3 1.54133408
3.01516485¢ — 1 1.13475115 1.10400000e + 3
CaFy 3.37600771e — 1 7.01104586e — 1 3.84781530
0.00000000 9.36732830e — 2 3.46438880¢ + 1
BaFy 1.00630737 1.43785573e — 1 3.78847824
7.55931756e — 2 1.32364522¢ — 1 4.61709395¢ + 1
AlO3 5.31480751e — 1 1.55060106 5.28958116
2.17947151e — 2 1.03348342¢ — 1 1.79393145¢e + 1
AssS3 4.07205767 7.44196974e — 1 9.88377784¢ — 1
2.08841706e — 1 3.95964740e — 1 2.77481958¢e + 1
Csl 1.29377099 7.43072510e — 1 2.91889631
1.19603583e — 1 2.0355933%¢ — 1 1.51026230e + 2
1.19456223 8.4274535% —~ 1 1.30468586e — 1 3.12612881e + 3
1.12551827e¢ — 1 2.00665347¢ — 1 8.03225264¢ + 1 5.31200000e + 3
KRS5 3.75415165 9.09002797¢ — 1 1.25434711e + 1

2.08331008e — 1

3.77160136e — 1

1.65646424¢e + 2

above, which, if present, were dealt with by suitably
bounding the solution.

For all eleven materials in the two-term fit cases, only
silicon required any limiting action, and this was a
positive bound violation. The IR numerator term, Ao,
for both Si and Ge, ended up negative, which while

unphysical, was accepted because it still yielded a

smooth interpolation. This effect probably occurred
because both materials have very low dispersions in the
long-wavelength end of their spectra, and their data are
difficult to measure.

In the three-term fit cases, seven of the materials did
not require any limiting action. The Si and Ge mate-
rials had positive bound violations; CaFs and CsI had
negative bound violations for their By coefficients that
wanted to become negative. Coefficient By for CaF,
ended up at zero. Coefficient A3 for Ge ended up neg-
ative as in the two-term case. All the cases for four-
term fits involving three UV terms and one IR term
required both types of limiting action. Two of these
cases failed, and the remainder converged to solutions
with no improvement over the three-term fits. The
four-term fits involving two UV terms and two IR terms
all succeeded, but only one case, Csl resulted in any
improvement, and this was marginal.

Therefore, based on the above results, it again seems
to be generally true that a three-term Sellmeier formula
is adequate for all cases. Table III gives the coefficients
for the optimum fits obtained in the above, and Figs.
3-14 show the resulting errors. (A comparison of the
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Fig. 3. Fitting error, zinc sulfide—fifty-nine points from 0.42 to 18.2
um.
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Fig.4. Fitting error, zinc selenide—fifty-six points from 0.54 to 18.2
um,

two fits for CsI is shown in Fig. 13.) Comparative re-
sults from the literature are also plotted where available.
It is seen that our results and those obtained using the
program described in Ref. 2 give equivalent results. As
a matter of interest, the fitting of all the nonglass cases
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Fig. 7. Fitting error, silicon—thirty points from 1.36 to 11.0 um.
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Fig. 9. Fitting error, barium fluoride—forty-five points from 0.27

to 10.3 um.
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Fig. 11. Fitting error, arsenic trisulfide—twenty-six points from 0.58
to 11.9 um.
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Fig. 12. Fitting error, cesium iodide—fifty-four points from 0.30 to
53.1 um.
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Fig. 13. Fitting error, cesium iodide—fifty-four points from 0.30 to
53.1 um, three-term case vs four-term case.
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Fig. 14. Fitting error, thallium-bromide-iodide—thirty-eight points
from 0.58 to 39.4 um.
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Fig. 15. Fitting error, cesium bromide—thirty-seven points from
0.37 to 39.2 um.
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mentioned, exclusive of the plotting, took less than 7 sec
on a machine equivalent to an IBM model 68.

VL. Postscript

After the preceding pages were written, four other
references on fitting refractive indices to the Sellmeier
equation were discovered. Reference 21 is a compen-
dium from many sources of optical and physical data for
the alkali halides. Many separate measurements of
index data are given for each material. These were
obtained in different conditions including large differ-
ences of temperature, over different wavelength inter-
vals, and with different accuracies, depending on the
difficulty of the particular measurement. Some of the
data extends well into the neighboring absorption bands
of the transparent region. For each material, these data
are combined into a single modified Sellmeier equation
representing the dispersion of the material at 293 K.
[The modification allows the constant term in Eq. (1)
to be other than 1.] The resonance wavelengths [B ; in
Eq. (1)] are obtained by physical measurements; a
least-squares solution is used to obtain the A;.

As a typical example taken from Ref. 21, we consider
the material, cesium bromide. A six-term Sellmeier fit
(five UV terms and one IR term) is given for this ma-
terial covering the 0.21-55.0-um band. For comparison,
we fit the data in curve 1 on page 509 of Ref. 21, which
gives index data for 37 wavelengths from 0.36 to 39.2
um. These data were used because they seem to be the
most accurate and cover most of the useful wavelength
band of the material.

A four-term Sellmeier fit was obtained using INFIT
(two UV terms, two IR terms). Figure 15 shows the
results of this fit with that of the six-term fit from Ref.
21.- The greater errors of the reference fit at both ends
of the spectrum are undoubtedly due to the fact that
that fit covers a greater bandwidth than considered
here. However, the magnitude of the errors on the IR
side seems to contradict the claimed accuracy of 1 in the
fourth place. We attempted to readjust the numerator
terms of the six-term Sellmeier fit given in Ref. 21 for
the shorter range considered, but this failed because the
six terms are not sufficiently independent over this
range.

As a better test of INFITSs capability to fit this material
in comparison to that of the six-term formula of the
reference, we used the latter to generate forty-six index
values evenly spread over the 0.25-40.0-um range. This
range was selected because it represents the useful range
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Fig. 16. Fitting error, cesium bromide—forty-six points from 0.25
to 40 um generated by literature formula.
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Fig. 17. Fitting error, cadmium sulfide O—forty-one points from
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Fig. 19. Fitting error, zinc sulfidle—twenty-nine points from 0.40
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of the material for optical systems. Also, the accuracy
of the index data available outside of this range is more
than an order of magnitude less than that of the data
within the range. Figure 16 shows how closely INFIT
could fit these data with both a three- and four-term fit.
The four-term fit consisted of three UV terms and one
IR term. Both fits are well within the estimated un-
certainty of the data used. Note that the error in Fig.
16 is plotted at a 10X scale relative to that of Fig. 15.
Reference 22 shows that a one-term Sellmeier equa-
tion can be transformed to a linear equation. Reference
23 extends this to show that an N-term Sellmeier
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Table IV. Sellmeier Coefficients for Fits in Figs. 15 and 17-19

Al A2 A3 A4 A5
Material B1 B2 B3 B4 B5
CsBr 8.84694025E — 01 9.01277636E — 01 9.91952400F — 02 2.70456187E + 03
8.37324633E — 02 1.65640698E — 01 5.87212331E + 01 3.92200000E + 03
CdSO 3.96582820F + 00 1.81138737E — 01 —2.38694754E + 02
2.36228040F — 01 4.82851992E — 01 1.40000000E + 02
CdSe 3.97478769E + 00 2.66808089E — 01 7.40772832E — 04 —3.22573381E + 01
2.24269842E — 01 4.66937848E — 01 5.09151386E ~ 01 9.89949494F + 01
ZnS 7.92955926E — 01 3.06534624E + 00 2.44169740E — 01 8.40661571E — 01 2.04956238E + 03
0.00000000E + 00 2.01416644E — 01 3.13426461E — 01 2.65651741E + 01 1.30000000E + 03

equation can be separated so that the denominator
coefficients satisfy N — 1 simultaneous Nth order
equations. This method is already to be found for N
= 2in Ref. 1. Itis pointed out there that this procedure
is not equivalent to a least-squares fit to N because of
the algebraic transformations. Reference 23 gives as
an example a two-UV-term Sellmeier fit to the ordinary
and extraordinary dispersions of single crystals of
cadmium sulfide. Figures 17 and 18 show the fits ob-
tained for both these cases from Ref. 23 compared with
three-term fits using INFIT. Note that the missing term
in the fits obtained in Ref. 23 is the IR term, whereas the
greatest errors are on the UV side of the spectrum, in-
dicating that the addition of an IR term probably would
not result in a great improvement in the fit.

Reference 24 reports on new measurements of the
index of chemical vapor grown zinc sulfide. These
measurements represent an improvement in accuracy
of more than an order of magnitude over the results in
Ref. 10. The data were fit to a series whose terms are
Chebyshev polynomials up to the eleventh order. The
argument of the polynomials is the function of A given
by

x = [loge(A — 0.25) — 0.3394896]/2.2060417.

The significance of this function, how the constants
used in it were arrived at or how universal they are, is
not explained.

Applying INFIT to these data proved to be a real test
as it took a five-term Sellmeier formula to achieve a
satisfactory fit. The results are shown in Fig. 19. This
case is interesting because of the following two points.
One is that the above formula seems to be a satisfactory
alternative to using the Sellmeier formula. In fact, it
seems to give a somewhat closer fit than the Sellmeier
formula in the UV end of the spectrum. However, since
both fits are within the claimed accuracy of the data,
this may be due to the fact that the above series, being
equivalent to a high-order polynomial, may just be
following the errors closer. The other point is that our
earlier remark that, based on our previous experience,
a three-term Sellmeier fit was generally sufficient to
satisfactorily fit the available data obviously has to be
modified when the data become as accurate as in this
case over a large wavelength range.

The coefficients of the Sellmeier fits to the four cases
discussed in this section are given in Table IV.
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