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Abstract

White-light interferometry is a technique to measure
surface topology of objects such as semiconductors,
liquid crystal displays (LCDs), plastic films, and pre-
cision machinery parts. We devise a generalized sam-
pling theorem for white-light interferometry. It re-
constructs a square envelope function of an interfer-
ence fringe directly from sampled values of the inter-
ference fringe, not from those of the square envelope
function itself. The reconstruction formula requires
only arithmetical calculations, no transcendental cal-
culations except for only one cosine function. It has
been installed in a commercial system that achieved
the world’s fastest vertical scanning speed, 42µm/s,
6-14 times faster than conventional methods.

1 Introduction

We propose a generalized sampling theorem for surface
profiling by white-light interferometry. It is a tech-
nique to measure surface topology of objects such as
semiconductors, liquid crystal displays (LCDs), plastic
films, and precision machinery parts [1–7,12–14]. The
proposed sampling theorem has the following interest-
ing feature. It reconstructs a square envelope function,
r(z), of an interference fringe, f(z), from sampled val-
ues of f(z), not r(z).

There exists a similar problem, where a function
should be reconstructed from sampled values of its
filtered function [8, 9]. However, our problem is its
reverse. It is a problem of reconstructing a nonlin-
early filtered function r(z) from sampled values of the
original function f(z).

The proposed sampling theorem is very simple. It
requires only arithmetical calculations, no transcen-
dental calculations except for only one cosine function.

It has been installed in a commercial system [13]
which achieved the world’s fastest vertical scanning
speed, 6-14 times faster than those of the conventional
systems [12, 14].

2 Surface Profiling by White-

Light Interferometry

In this section, surface profiling by white-light inter-
ferometry is outlined. Figure 1 shows a basic set up
of a white-light interferometer used for surface pro-
filing. An incoherent white-light source illuminates
a beam-splitter through a narrowband optical filter,
whose center wavelength and bandwidth are λc and
2λb, respectively. For example, for a typical filter
λc = 600nm and λb = 30nm. The beam-splitter trans-
mits one portion of the beam, indicated by the dashed
line, to a surface of an object being observed and the
other portion, indicated by the dotted line, to a ref-
erence mirror. These two beams are recombined and
interfere. The resultant beam intensity is observed by
a charge-coupled device (CCD) video camera which
has, for example, 512×480 detectors. Each of them
corresponds to a point on the object surface.

As the interferometer is scanned along the vertical
axis, z-axis, the intensity observed by one of the detec-
tors is varied. The intensity along the z-axis is shown
in Figure 2 by a dotted line. The graph is called the
white-light interference fringe or simply the interfer-
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Figure 1: Basic setup of a white-light interferometer.

1



� ✁ ✂✄� ✂✄✁ ☎✆� ☎✆✁ ✝✆� ✝✆✁ ✞✆�

�

☎✆�

✞✆�

✟✆�

✠✆�

✂✄�✆�

✂✄☎✆�

✂✄✞✆�

Figure 2: The white-light interference fringe g(z) and
its sampled values shown by ‘•’.

ence fringe. It shifts to the right in Figure 2 if the
height of the object surface at a point is high, while it
shifts to the left if the height is low. Hence, the maxi-
mum position of the fringe provides the height of the
point on the surface.

A CCD camera outputs the intensity of the inter-
ference fringe, for example, every 1/30 second. Hence,
we can utilize only discrete sampled values of the in-
terference fringe as shown by ‘•’ in Figure 2. From
these sampled values, we have to estimate the max-
imum position of the interference fringe. Therefore,
sampling theory naturally plays an important role.

3 Mathematical Model of the

Interference Fringe

We shall describe a mathematical model of the in-
terference fringe following [5, 6]. In Figure 1, L1 is
a distance of the reference mirror from the point O
where the beam from the light source passes through
the beam splitter. E is a virtual plane whose distance
from the point O is L1. z is the distance of the plane
E from the stage. It is referred to as the height of the
interferometer.

As mentioned before, each CCD detector corre-
sponds to a point (x, y) on the object surface, where
x and y are the transverse coordinates on the stage of
the interferometer. The height of the surface of the
object at the point (x, y) is denoted by zp.

A model of the interference fringe is given as

g(z) = f(z) + C, (1)

where C is a constant and f(z) is a function defined
by

f(z) =

∫ ku

kl

ψ(k) cos 2k(z − zp) dk. (2)

In Eq.(2), k is the angular wavenumber defined by

k =
2π

λ
, (3)

where λ is the wavelength. In the interval of integra-
tion, kl and ku are

kl =
2π

λc + λb

, ku =
2π

λc − λb

. (4)

ψ(k) is an energy distribution of the incident beam to
the CCD detector with respect to k. It is restricted to
the interval [kl, ku] by the optical filter:

ψ(k) = 0 (k < kl , k > ku). (5)

Since f(z) is band-limited as shown later in Eq.(16),
f(z) and g(z) are continuous. Hence, we can discuss
sampled values of g(z) and we have

Lemma 1 ([5]) The interference fringe g(z) has the
maximum only at z = zp, i.e., it holds that for z 6= zp

g(z) < g(zp). (6)

Lemma 1 guarantees that the maximum position of
the interference fringe g(z) agrees with the height zp of
the point on the object surface. In practice, however, it
is hard to obtain the maximum position zp from g(z),
because g(z) has high-frequency components. In order
to cope with this problem, we use the square envelope
function of the interference fringe. The details will be
discussed in the following sections.

4 Square Envelope Function

In order to overcome the problem mentioned at the end
of the previous section, we shall introduce a function,
r(z), which has the following three properties:

(i) r(z) has the maximum only at z = zp, i.e., it holds
that r(z) < r(zp) for z 6= zp.

(ii) r(z) is smoother than the interference fringe.

(iii) r(z) can be reconstructed from sampled values of
the interference fringe.

Let kc be any fixed positive real number. Let us
define

mc(z) =

∫ ku

kl

ψ(k) cos 2{k(z − zp) − kcz}dk, (7)

ms(z) = −

∫ ku

kl

ψ(k) sin 2{k(z − zp) − kcz}dk. (8)

Then, the interference fringe f(z) is expressed by

f(z) = mc(z) cos 2kcz + ms(z) sin 2kcz. (9)

Eq.(9) yields

f(z) = m(z) cos{2kcz − α(z)}, (10)

where
m(z) =

√

{mc(z)}2 + {ms(z)}2, (11)
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Figure 3: An example of the interference fringe f(z)
and its envelope m(z).

α(z) =















tan−1 ms(z)

mc(z)
(mc(z) 6= 0),

π/2 (mc(z) = 0, ms(z) > 0),
−π/2 (mc(z) = 0, ms(z) < 0).

The value of tan−1(x) is restricted to the interval
(−π/2, π/2).

The function f(z) and m(z) are shown in Figure 3
by dotted and solid lines, respectively. We can see that
the function m(z) is the envelope of the interference
fringe f(z).

Now, we shall introduce the square envelope func-
tions of f(z).

Definition 1 The function r(z) defined by

r(z) = {mc(z)}2 + {ms(z)}2 (12)

is called the square envelope function of the interfer-
ence fringe f(z).

The following two lemmas guarantee that the square
envelope function r(z) has the properties (i) and (ii)
mentioned at the beginning of this section. In the
next section, it will be shown that the square envelope
function has the property (iii), too.

Lemma 2 The square envelope function r(z) is inde-
pendent of kc. It has the maximum at only z = zp,
i.e., it holds that for any z 6= zp

r(z) < r(zp). (13)

Lemma 2 implies that the square envelope function
has the property (i).

We shall show that r(z) has the property (ii). Let

f̂(ω) be the Fourier transform of f(z):

f̂(ω) =

∫

∞

−∞

f(z)e−iωzdz. (14)

From Eq.(2), we have

f̂(ω) =
π

2
e−iωzpψ

(

|ω|

2

)

. (15)

Eq.(15) means that f(z) is a bandpass signal such that

f̂(ω) = 0 (|ω| < ωl , |ω| > ωu), (16)

where
ωl = 2kl, ωu = 2ku. (17)

Lemma 3 The square envelope function r(z) is a low-
pass signal such that

r̂(ω) = 0 (|ω| > ωu − ωl), (18)

where r̂(ω) is the Fourier transform of r(z).

Eqs.(17) and (4) imply that ωu − ωl < ωl if and
only if λc > 3λb. In this case, r(z) is smoother than
f(z) because of Eqs.(16) and (18). For example, if
λc = 600nm and λb = 30nm, then ωl = 19.95[1/µm],
ωu − ωl = 2.10[1/µm]. Hence, r(z) is much smoother
than f(z), and the square envelope function has the
property (ii).

5 Sampling Theorem for Square

Envelope Functions

In this section, we shall show that the square envelope
function r(z) has the property (iii) mentioned in the
last section. That is, we shall provide a formula of
reconstructing r(z) from sampled values of the inter-
ference fringe f(z). Since r(z) is defined by functions
mc(z) and ms(z) in Eq.(12), we shall start with sam-
pling theorems for these functions.

5.1 Sampling Theorems for mc(z) and

ms(z)

We first show that mc(z) and ms(z) are band-limited
signals of the lowpass type. Let m̂c(ω) and m̂s(ω) be
the Fourier transforms of mc(z) and ms(z), respec-
tively. Let

ωc = 2kc. (19)

Lemma 4 mc(z) and ms(z) are lowpass signals such
that

m̂c(ω) = m̂s(ω) = 0 (|ω| > ωb), (20)

where ωb is

ωb = max{|ωc − ωl|, |ωc − ωu|} (21)

=

{

ωu − ωc (ωc ≤ ωu+ωl

2 ),

ωc − ωl (ωc > ωu+ωl

2 ).
(22)

Lemma 4 implies that mc(z) and ms(z) are com-
pletely reconstructed from their sampled values if the
sampling interval is less than or equal to the Nyquist
interval ∆b defined by

∆b =
π

ωb

. (23)

These sampled values are, however, not available di-
rectly.
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Then, we shall discuss the problem of obtaining sam-
pled values of mc(z) and ms(z) from sampled values
of f(z). It can be divided into the following two sub-
problems:

(i) Can we obtain sampled values of mc(z) and ms(z)
from sampled values of f(z)?

(ii) If (i) is possible, is the sampling interval used in
(i) consistent with ∆b in Eq.(23)?

We first discuss the problem (i). The basic idea
is that, if sin 2kcz or cos 2kcz in Eq.(9) vanishes at
z = z0, we can obtain mc(z0) or ms(z0) from f(z0),
respectively. Let ∆c be a sampling interval such that

∆c =
π

ωc

. (24)

It follows from Eqs.(24) and (19) that sin 2kcz0 = 0 if
and only if z0 = n∆c for any fixed integer n. In this
case, cos{2kc(n∆c)} = (−1)n, and Eq.(9) yields

mc(n∆c) = (−1)nf(n∆c). (25)

Similarly, cos 2kcz0 = 0 if and only if z0 = (n + 1
2 )∆c,

and we have

ms((n + 1
2 )∆c) = (−1)nf((n + 1

2 )∆c). (26)

Owing to Eqs.(25) and (26), the problem (i) has been
settled in a very simple way.

Now, the problem (ii) reduces to the problem of ob-
taining a condition for ∆c ≤ ∆b. Note that both ∆b

and ∆c are functions of ωc because of Eqs.(22), (23),
and (24). The following Lemma 5 provides a necessary
and sufficient condition for ∆c ≤ ∆b.

Lemma 5 It holds that

∆c ≤ ∆b (27)

if and only if ωc given by Eq.(19) satisfies

ωc ≥ 1
2 ωu. (28)

If we let ωc = (ωu + ωl)/2, then Eq.(28) holds. In
this case, if λc = 600nm and λb = 30nm, we have
∆c = 0.299nm and ∆b = 2.99nm. ∆b is 10 times as
large as ∆c. This example means that we can reduce
sample points {n∆c}

∞

n=−∞
and {(n + 1

2 )∆c}
∞

n=−∞
in

Eqs.(25) and (26) when we apply the Someya-Shannon
sampling theorem [10, 11] to mc(z) and ms(z).

Consider the case that for a positive integer M , ev-
ery M sample points among {n∆c}

∞

n=−∞
and {(n +

1
2 )∆c}

∞

n=−∞
are used. In this case, the problem (ii)

reduces to the problem of obtaining a condition for
M∆c ≤ ∆b. The following Lemma 6 provides a neces-
sary and sufficient condition for this relation.

Lemma 6 For any fixed ωc ≥ 1
2 ωu, it holds that

M∆c ≤ ∆b (29)

if and only if M satisfies











1 ≤ M ≤
ωc

ωu − ωc

(ωc ≤
ωu + ωl

2
),

1 ≤ M ≤
ωc

ωc − ωl

(ωc >
ωu + ωl

2
).

(30)

By using the integer M in Lemma 6, we can reduce
sample points {n∆c}

∞

n=−∞
and {(n+ 1

2 )∆c}
∞

n=−∞
. Let

Ic and Is be any fixed nonnegative integers less than
M . Let

z(c)
n = (nM + Ic)∆c, (31)

z(s)
n = {(nM + Is) + 1

2}∆c. (32)

Ic and Is control initial points of z
(c)
n and z

(s)
n , i.e.,

z
(c)
0 = Ic∆c and z

(s)
0 = (Is + 1

2 )∆c. We can impose
the restrictions 0 ≤ Ic, Is ≤ M − 1 without loss of
generality.

For these sample points, Eqs.(25) and (26) yield

mc(z
(c)
n ) = (−1)nM+Icf(z(c)

n ), (33)

ms(z
(s)
n ) = (−1)nM+Isf(z(s)

n ). (34)

Then, we have

Theorem 1 (Sampling Theorems for mc(z) and
ms(z)) For any fixed ωc ≥ 1

2 ωu, let ∆c be a sam-
pling interval defined by Eq.(24), and M be a positive
integer such that Eq.(30) holds. Let Ic and Is be non-

negative integers less than M . Let {z
(c)
n }∞n=−∞

and

{z
(s)
n }∞n=−∞

be sample points defined by Eqs.(31) and
(32). Then, it holds that

mc(z) = (−1)Ic

∞
∑

n=−∞

(−1)nMf(z(c)
n )sinc

z − z
(c)
n

M∆c

,

(35)

ms(z) = (−1)Is

∞
∑

n=−∞

(−1)nMf(z(s)
n )sinc

z − z
(s)
n

M∆c

,

(36)
where sinc(z) is a function defined by

sinc(z) =

{

sin πz

πz
(z 6= 0),

1 (z = 0).
(37)

5.2 Sampling Theorem for r(z)

Based on Theorem 1, we shall derive a sampling theo-
rem for the square envelope function r(z). Remember
that the optical filter in the interferometer is character-
ized by the center wavelength λc and the bandwidth
2λb as mentioned in Section 2. Since λc and λb are
more familiar than ωl and ωu for practical engineers,
we shall use λc and λb from now on. These parameters
are mutually related by

ωl =
4π

λc + λb

, ωu =
4π

λc − λb

(38)

because of Eqs.(4) and (17).

4



In order to reconstruct the square envelope func-
tion r(z) by using Eqs.(35) and (36), we need both

{z
(c)
n }∞n=−∞

and {z
(s)
n }∞n=−∞

. The total sample points

{z
(c)
n , z

(s)
n }∞n=−∞

are not equally spaced in general.
However, uniform sampling is more useful in practi-
cal applications. We shall derive such a sampling the-
orem for square envelope functions. We discuss the
case where Ic = 0 in this paper. It can be easily ex-
tended to the general Ic. Since Ic = 0, between two

consecutive sample points z
(c)
n and z

(c)
n+1 there is ex-

actly one sample point z
(s)
n . Hence, uniform sampling

can be achieved when

z
(c)
n+1 − z(s)

n = z(s)
n − z(c)

n . (39)

Eq.(39) holds if and only if

Is = 1
2 (M − 1). (40)

Eqs.(32) and (40) yield

z(s)
n = 1

2 (2n + 1)M∆c. (41)

Hence, if we let

∆ = 1
2M∆c, (42)

zn = n∆, (43)

then

z(c)
n = z2n, z(s)

n = z2n+1, (44)

and we have

Theorem 2 (Sampling Theorem for Square Envelope
Functions) Let I be a nonnegative integer such that

0 ≤ I ≤
λc − λb

2λb

, (45)

and ∆ be a real number which satisfies

I

4
(λc + λb) ≤ ∆ ≤

I + 1

4
(λc − λb). (46)

Let {zn}
∞

n=−∞
be sample points defined by Eq.(43).

Then, it holds that

1. When z is a sample point zj,

r(zj) = {f(zj)}
2 +

4

π2

{

∞
∑

n=−∞

f(zj+2n+1)

2n + 1

}2

.

(47)

2. When z is not any sample point,

r(z) =
2∆2

π2



(1 − cos
πz

∆
)

{

∞
∑

n=−∞

f(z2n)

z − z2n

}2

+ (1 + cos
πz

∆
)

{

∞
∑

n=−∞

f(z2n+1)

z − z2n+1

}2


 . (48)

Note that Eq.(47) needs only arithmetical calcula-
tions. Eq.(48) needs arithmetical calculations except
for only one cosine function calculation. It does not
need no other transcendental calculations.

λc and λb are the characteristics of the optical filter
used in an interferometer. Eqs.(45) and (46) mean
that the characteristics of the optical filter determine
the sampling interval ∆ completely.

The following is a direct consequence of Theorem 2.

Corollary 1 The maximum, ∆max, of the sampling
interval ∆ is given by

∆max =
λc − λb

4

(⌊

λc − λb

2λb

⌋

+ 1

)

, (49)

where ⌊x⌋ is the maximum integer which does not ex-
ceed a real number x.

If an optical filter of λc = 600nm and λb = 30nm
is used, ∆max is 1.425µm. It is much wider than sam-
pling intervals used in conventional systems. For ex-
ample, in the systems produced by Veeco Instruments
Inc. and Zygo Corporation, sampling intervals are
0.24µm and 0.10µm, respectively [12, 14]. ∆max is
about 6 and 14 times wider than intervals of these
systems.

Eq.(46) means that an infinite number of sampling
intervals ∆ are available. Each of them can be used
for complete reconstruction of r(z). There is no difer-
ence among them. In practical applications, however,
only finite number of sample points are available, and
Eqs.(47) and (48) are truncated. In such a situation,
each sampling interval causes different effects. A wider
sampling interval allows us faster scan of the interfer-
ometer in Figure 1, while it causes larger truncation
error. Hence, for choosing the sampling interval ∆, we
have to take scanning speed and the truncation error
into account at the same time.

6 New Surface Profiling Algo-

rithm and Surface Profiler

By using Theorem 2, we propose a new surface pro-
filing algorithm. Theorem 2 assumes that (a) an in-
finite number of sampled values can be used, and (b)
sampled values f(zn) of the interference fringe f(z)
are available. In practical applications, however, (a)
only a finite number of sampled values can be used,
and (b) only sampled values g(zn) of the interference
fringe g(z) in Eq.(1) are available.

For the problem (a), we truncate the infinite series
in Eqs.(47) and (48) from n = 0 to N − 1. For the
problem (b), the sampled values f(zn) is approximated
by

fn = g(zn) − Ĉ, (50)

where Ĉ is an estimate of C in Eq.(1). For example,
the average of {g(zn)}N−1

n=0 can be used as Ĉ:

Ĉ =
1

N

N−1
∑

n=0

g(zn). (51)
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The surface profiling algorithm based on these pro-
cess is named the EES algorithm after Estimation of
the square Envelope function by Sampling theorem.
This algorithm has been installed in a commercial sys-
tem [13], which is shown in Figure 4. Figure 5 shows a
three-dimensional image of IC bumps obtained by the
surface profiler.

If an optical filter of λc = 600nm and λb = 30nm
is used, the maximum scanning speed of the system is
42.75µm/s. It is the world’s fastest scan speed. We
can make the scan speed faster by changing the optical
filter,

In order to evaluate the accuracy of the profiler, we
measured the surface profile of a step height standard
of 9.947µm. Its three-dimensional image is shown in
Figure 6. The difference between the averages of esti-
mated values of zp for the lower part and the higher
part is 9.933µm. The relative error is 0.13%, which

Figure 4: Photograph of a surface profiler in which the
EES algorithm has been installed.

Figure 5: Three-dimensional image of IC bumps ob-
tained by the surface profiler shown in Figure 4.
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Figure 6: Three-dimensional image of a step height
standard of 9.947µm obtained by the surface profiler.

shows the good performance of the surface profiler.
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