
ar
X

iv
:n

u
cl

-t
h
/0

5
1
1
0
4
5
v
1
  
1
7
 N

o
v
 2

0
0
5

FZJ–IKP(TH)–2005–33

submitted to acta physica slovaca 1– 12

Hadronic production of η–mesons: recent results and open questions

C. Hanhart1

Institut für Kernphysik, Forschungszentrum Jülich GmbH,
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I review recent insights and open questions connected with the production of η–mesons from

hadrons.

PACS:

1 Introductory remarks

In recent years a large number of high accuracy data was published on the production of η–

mesons in various reactions, such as πN → ηN [1], γN → ηN [2], NN → NNη [3, 4],

pn → dη [5], γd → NNη [6], γ3He→ η3He [7], pd → η3He [8] as well as data on heavier

nuclei that I will not discuss here.

Unfortunately, at present theory is far from being equally accurate and thus we are now

pushed to identify the class of questions that can be addressed theoretically at present in a con-

trolled way and to investigate those. In this article I will present my personal point of view

of what should be studied in the coming years in respect to η production from hadrons. The

eta–network provides the ideal soil for this enterprise.

It is well known that the production of eta mesons from single nucleons is dominated by

the resonance S11(1535) irrespective of the probe. Thus investigating η production off hadrons

means to some extend to study the S11 in various settings. Especially since the nature of this

resonance is heavily debated in the literature (see also next section and references given there), a

systematic study of η production in various environments is of high importance.

2 Production from single nucleons and the S11

Unfortunately it is not yet possible to derive hadron spectra from QCD directly, although large

progress has been made in lattice approaches recently (see, e.g., Refs. [9]). We therefore do

not yet understand how nature produces hadrons out of quarks. The probably most prominent

example that highlights our degree of ignorance is the spectrum of the lightest baryons.
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The problem is reflected in the ordering of the various states: The non–relativistic quark

model in its original formulation — based on a harmonic oscillator potential [10] — predicts an

arrangement of states with alternating parities. However, in the baryon spectrum the first positive

parity excitation of the nucleon (the so called Roper resonance) is lighter than the first negative

parity excitation — the S11(1535). This is illustrated in Fig. 2

The inclusion of an instanton induced interaction in the quark–quark potential improved the

picture, however, without changing the order of the lightest states [11]. To my understanding

there are so far two possible explanations of the spectrum in the literature, one, where the Roper

is generated dynamically and thus interpreting the P11(1710) as the first quark state [12,13], and

another, where the ordering of states was changed by introducing a flavor dependent quark–quark

interaction [14].

At present it is not clear what the connection between these two pictures is — if such a

connection exits at all. Recently the whole situation became even more confusing for it was

claimed that based on chiral dynamics the S11(1535) appears as a dynamically generated state

[15,16]. A look at the baryon spectrum — Fig. 2 — reveals that, if confirmed, this puts the quark

model in a complicated situation for now the order of states is in even more severe disagreement

with its predictions and it is hard to imagine that a flavor dependent interaction can overcome

the huge gap between the 1650 and the 1440. It is therefore of high importance to understand

the nature of the low lying resonances for this promises deep insights into how the nature makes

hadrons.

How is it possible to distinguish molecular states and compact quark states? Based on an old

proposal by Weinberg [17] in Ref. [18], in line with a series of older works [19], we identified

the energy dependence of the elastic scattering amplitude in the molecule forming channel as a

key quantity. The method applies if the binding energy of the state is significantly smaller than

any other scale of the problem. In particular the inelastic threshold needs to be far away. Thus,

to understand if the S11 is an ηN molecule, experimental information is needed on elastic ηN
scattering. Unfortunately this channel is not directly accessible. Various theoretical analyses of
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the non–diagonal channels lead to only very weak constraints of, e.g., the ηN scattering length:
a compilation presented in Ref. [20] gives

aηN = (0.2− 1.1, 0.26− 0.35) fm, (1)

where the first range refers to the real part and the second to the imaginary part. An imaginary
part to a scattering length arises in the presence of inelastic channels. Here these are the πN and
the ππN channels. An improved analysis using all available data is therefore urgently called for.
Note that an updated analysis for πN scattering is currently under way [21].

Experimental information on the S11 can be derived from data on πN → πN , πN → ηN
and πN → ππN as well as the corresponding γ induced reactions to control systematics. One
may ask whether the two pion channels are really necessary — after all the particle data booklet
only lists a branching ratio of 1–10 % for all the two pion channels. However, a direct comparison
of the total cross section for πN → ηN and the inelasticity of πN scattering in the S11 channel
reveals a need for these. Using the optical theorem, one can directly convert the inelasticity η
to the inelastic cross section. Based on the values for momentum and inelasticity as given in
Ref. [22] we find at Etot = 1540 MeV σπN

in =2π(1 − η2)/3k21=3.5 mb, where k1 denotes the
incoming pion momentum. If the ηN channel would be the only inelastic channel that couples
to πN in the S11–partial wave, these 3.5 mb need to agree to the peak value of the πN → ηN
cross section. However, the measured value is significantly lower. The situation is illustrated
in Fig. 2. Thus a proper inclusion of the two pion channels is necessary, as was stressed in
Refs. [23, 24, 25].

To summarize the investigations based on reactions on a single baryon we state that in order
to better understand the nature of the S11(1535) both high accuracy data and theoretical studies
are necessary to derive constraints on the ηN scattering parameters.

In addition, it is expected that a (loosely bound) molecule and a compact quark state behave
very different in the presence of additional baryons. This field is unfortunately still lacking a sys-

tematic approach at present, although microscopic calculations are available for both the ηd [26]

and the η3He [27] system. In what follows I will briefly present and discuss on a qualitative level

some phenomena recently observed in theses systems.

3 The reaction NN → ηNN

Unpolarized Data is available for total and differential cross sections for pp → ppη [3] and for

total cross sections for pp → pnη [4] and pp → dη [5]. For pp → ppη analyzing powers were

measured as well [28].

The energy dependence of the total cross sections for the various eta production channels in

NN collisions is shown in Fig. 3. The curves are the results of a microscopic calculation using

two different models for the NN interaction [25]. This calculation includes the ηN interaction

only to leading order. The picture nicely illustrates that it is necessary to go beyond perturbation

theory for the ηNN system to understand the energy dependence at low energies. This was done

in Ref. [29] for the channel pp → ppη and in Refs. [30, 26] for pp → dη and it was indeed

possible to describe the energy dependence of the various channels, once few body equations

were employed for the final state interaction.

However, it turned out that the pp invariant mass spectrum measured for pp → ppη [3] can

not be described in this way — the data is shown in Fig. 4. The calculation that was capable
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Fig. 2. Comparison of the measured cross section for πN → ηN to various calculations. The dotted line
denotes the results of Ref. [13], where no direct coupling of the S11 to the two pion channels was included.
The dashed line shows the results of Ref. [24] — where a coupling of the S11 to the π∆ channel in a
d–wave was included — for this cross section for only the S11 channel (dashed line) and for the full result
(solid line). The data was taken from Refs. [1].

to describe the energy dependence of the total cross section quite well, failed to describe the
invariant mass spectrum [29]: The model results for this observable were quite close to the
dashed line in the figure that was calculated under the assumption that only the NN FSI distorts
the NN S–waves. To resolve the discrepancy it was speculated that either there is a significant
ηN interaction [31], not captured by the model of Ref. [29]. On the contrary, Deloff argued that
there might be a significant energy dependence of the production operator [32], and in Ref. [33]
a significant contribution of NN P–waves were proposed as a possible solution for the puzzle.
Note that even isotropic angular distributions can be compatible with NN P–waves. All the can
be read of the ppη invariant mass spectrum is that a term quadratic in the final momentum is
missing to explain the data (c.f. Fig. 4). However, such a dependence would emerge from all
three explanations. Fortunately it is possible to isolate the NN P–waves by a double polarized
measurement. For this it is sufficient to measure Axx as well as the differential cross section σ0,
since

3σΣ = σ(1 +Axx) = 2σ(↑↑) ,

where the arrows indicate that both the spin of the beam as well as the target are aligned per-
pendicular to the beam. Consequently the spin singlet initial state — and therefore neither
1S0 →3 P0s nor 1D2 →3 P2s — does not contribute to 3σΣ

2. Note the observable is the

2Here we use the notation 2S+1LJ →
2S′

+1 L′

J′
lη , where S, L, J (S′, L′, J ′) denote spin, angular momentum,

and total angular momentum of the initial (final) NN pair; lη denotes the angular momentum of the outgoing η–meson

with respect to the NN system. For a review of the selection rules see Ref. [34].
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Fig. 3. Energy dependence of the total cross sections for the various η production channels. The different
curves are results employing different NN wave functions in a microscopic calculation for the different
channels. The picture is taken from Ref. [25].

same that can be used to measure the parity of narrow resonances [35].
It should be clear that only when the partial wave decomposition of the ppη spectrum is

known, we can understand the role the ηN interaction plays here. Especially that the calculation
of Ref. [29] failed to describe the spectrum indicates that a lot is still to be learned from the
reactions NN → NNπ. For example, in Ref. [33] it is shown that the requirement to describe
the ppη spectrum by NN P–waves strongly constraints the NN → NN∗(1535) transition
potential.

4 The reactions pd → η3He and γ3He→ η3He

The most prominent effect of the η–few–nucleon interaction can be seen in η–nucleus systems,
like ηd [5], η3He [8], and ηα [36].

Phenomenological investigations [37,38,39] as well as microscopic calculations for η–nucleus
interactions exist from various groups [27] — some of these will be presented in the contribution
by T. Pena to these proceedings. Thus here I will more focus on those features of the systems
ηd and η3He that can be directly read off the data. The tool we use is a final state interaction
enhancement factor f(q), where q denotes the momentum of the final state particles in the center
of mass, according to Watson and Midgal [40] in the scattering length approximation

f(q) =
1

1− iaq
=

1

1− iaRq + aIq
, (2)

where aR (aI ) denotes the real (imaginary) part of the η–nucleus scattering length. As in case of
the elementary amplitude (c.f. Eq. (1)) a is a complex valued quantity because of the presence of
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Fig. 4. Plot of the pp invariant mass spectrum for the reaction pp → ppη at an excess energy of 15 MeV.
The dashed line shows the distribution expected, if only the pp S–wave contributes (including the NN

FSI). As an example, the dot–dashed curve shows the expected distribution for NN P–waves and the solid
line is the sum of both. The data is from Refs. [3].

inelastic channels. Note that one should be careful in interpreting the value of a extracted from a
fit to production data as the scattering length. It is known since long, that there is a well defined
connection between the parameters of elastic scattering and the effect of final state interactions.
This connection is put on a solid theoretical basis using dispersion theory [41]. However, a direct
proportionality between the energy dependence of scattering and production only holds, if the
scattering length is significantly larger than the next term in the effective range expansion —
the effective range. In addition, a systematic study of final state interaction effects revealed that
the Watson formula tends to give a scattering length that is too large; however, there is a clear
correlation amongst the values of elastic scattering and production [42]. One should also stress
that in the presence of inelasticities it is not even possible to derive an expression for the final
state interaction effect in closed form. Thus the results should be taken on a qualitative level.

To study the singularity structure of Eq. (2) we need to analytically continue the momentum
into the complex plane. The physical sheet is given by those momenta with positive imaginary
parts — the unphysical one by negative imaginary parts. The sign of the imaginary part of the
scattering length, on the other hand, is fixed to be positive through unitarity. It is the sign of the
real part that decides, whether the nearby pole we want to investigate refers to a bound state or a
virtual state. Thus only a negative real part refers to a bound state3. Haider and Liu [37] pointed
out that for the existence of a bound state the additional condition aI < |aR| is to hold.

How can we measure the sign of the imaginary part? In a cross section measurement what

3Unfortunately there are different sign conventions present in the literature. We here use that of Goldberger and
Watson [41], which is common for meson–nucleon systems. Note, however, for nucleon–nucleon scattering the scattering
length is traditionally defined with a relative minus sign compared to the convention used here.
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Fig. 5. Result for the fit of the FSI formula of Eq. (2) to the world data on the reaction pd → η3He. The
figures are taken from Ref. [43], where also a complete list of experimental references is given. The left
panel the data for the amplitude is shown as well as our best fits. For comparison also data on pd → π03He
is given. The left panel shows the confidence levels for the extracted real and imaginary part of the scattering
length.

typically enters observables close to the threshold is |f(q)|2. Then, above threshold, we get

|f(q)|2 =
1

1 + 2aIq + |a|2q2
, with q =

√

2µE ,

where E denotes the kinetic energy of the final system with respect to the η–nucleus threshold
and µ is the corresponding reduced mass. Therefore above threshold E > 0. Thus any measure-

ment above the η–nucleus threshold is sensitive only to the magnitude of the real part, but not to

its sign; measurements above threshold are necessary to pin down the absolute values of the real

and the imaginary part of the scattering length. It should be clear from the given formula that

only measurements very close to the threshold allow one to disentangle aI from aR.

On the other hand, below threshold (E ≤ 0) we get

|f(q)|2 =
1

1 + 2aRκ+ |a|2κ2
, with κ =

√

−2µE .

Thus, now real and imaginary part have changed their roles. Since we know the sign of the imag-

inary part high accuracy measurements of the energy dependence of the η–nucleus amplitude

above and below the eta threshold allows one to extract the sign of the real part of the scattering

length [44].
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But what does it mean to measure an amplitude below threshold? This can only work by
identifying inelastic channels that show a significant coupling to the η–nucleus channel. We
will discuss one example for this in great detail below. However, we would first like to briefly
comment on the expected magnitude of the imaginary part. We know that there is a significant
coupling of πN → ηN (c.f. Eq. (1)) near threshold. One might therefore expect an imaginary
part of the scattering length of the order of at least one fermi. In contrast to this in a recent
analysis of the world data base for η3He values for the imaginary part of the η3He scattering
length were extracted that were compatible with zero [43]. The result of this fit is illustrated in
Fig. 5. The left panel shows the scattering amplitude, defined through

|f(q)|2 = (q/k)σtot/4π , (3)

where k denote the initial cms momentum. From this fit we extracted

a=|4.3±0.3|+i(0.25±0.25) fm . (4)

The numbers given are in line with a recent K–matrix analysis [39].

Can we understand such a small imaginary part of the scattering length? The answer is yes.
Let us start the discussion for simplicity with the ηd system. The central observation was that the
Pauli Principal for few–nucleon systems also needs to hold for intermediate states [45]. Techni-
cally this is to be realized by a consistent inclusion of self energy diagrams and rescatterings. To

understand the role of the πNN intermediate state in the regime of a prominent ηd s–wave inter-

action, we observe, that the ηN → πN operator must be an isovector acting on the nucleons. On

the other hand, a ηN s–wave necessarily connects to a πN s–wave and therefore the operator is

spin independent. If such an operator acts on the deuteron wave function it forces the NN pair

into an isospin 1 state, but leaves the spin in the spin triplet. A spin triplet NN pair with isospin

1, however, has necessarily odd angular momentum and therefore, to conserve parity, also the

pion must be in a p–wave. As a consequence the potentially most prominent inelastic channel

is blocked. As the deuteron is a prominent building block also of 3He this argument at least to

some extend should hold as well. This was worked out in more detail in Ref. [46].

In the process of preparing this talk I observed an amusing similarity that I wanted to share.

When plotted in the same figure both the ηd interaction and the η3He interaction show a very

similar energy dependence. This is illustrated in Fig. 6. The curves show a best fit to the ηd data

as well as the best fit to the η3He data, as explained above. This similarity might point at the

conjecture used above, namely that the η3He dynamics is at least to a large extend given by the

interaction of the η with the deuteron substructure of the He.

In contrast to the imaginary part of the scattering length, the real part as extract from the fit

to the pd → η3He data is quite sizable. Under the assumption that this large value is a signal of a

bound state, in Ref. [47] the relation between the scattering length and the position of the bound

state pole was investigated and values quite close to the threshold were extracted. However, to

make this analysis useful we need to know, if a bound state exists or not.

Therefore we now turn to η–nucleus measurements below the η threshold. As mentioned

here we have to look at different channels. Experiments for this were proposed quite some

ago [48], but only realized recently. At COSY there was a measurement of the ratio pd → π+t
to pd → π03He [49] and it could be shown that this ratio is indeed sensitive to the sign of the real
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Fig. 6. Energy dependence of the ηd (squares) and η3He (dots) interaction as derived from cross section
data of the reactions pn → dη [5] and pd → η3He [8]. The dashed line corresponds the best fit of the final
state interaction formula Eq. (2) solely to the ηd data, whereas the solid curve corresponds to the best fit to
the η3He data.

part of the η–nucleus scattering length [44]. Since the existing data is not of sufficient accuracy
and there is currently no new measurement planed, we will not describe this here in detail.

The TAPS collaboration at MAMI recently ran a quite successful experiment that clearly
showed a strong η3He interaction right below threshold [7]. What was measured was the reaction
γ3He→ π0pX , where, in order to find the signal, a cut was introduced to only count π0p pairs
that go out back–to–back in the center of mass system. This cut was motivated by the observation
that if there were a bound η–nucleus system the S11(1535) would certainly play a prominent
role in it. As the measurement was performed right at threshold this S11 should be at rest and
correspondingly the outgoing π0–p pairs from its decay should go out back–to–back in the cms
of the whole system. And indeed a clear peak structure could be identified in the data. The
structure extracted, after subtraction of the neighboring angular bins, is shown in the left panel of
Fig. 7 as a function of the reduced photon energy. The perpendicular line indicates the position
of the η3He threshold. To analyze this data we may use the same formula for the final state
interaction effects as used for other production reactions — Eq. (2) — with both imaginary part
and real part of the scattering length as extracted from pd → η3He (c.f. Eq. (4)). This is possible
because final state interactions are universal in large momentum transfer reactions.

There is one additional comment necessary before we can apply Eq. (2) to the TAPS data:
there is in principle some interference with the background possible. Thus, what was identified
as the resonance signal might well have some contribution from an interference term, and the full
signal may be written as

N
(

2Re(Bf res) + |f res|
2
)

, (5)

where B is some complex number parameterizing that part of the background that is allowed
to interfere with the resonance signal and N is a measure of the total strength of the signal.
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Fig. 7. Comparison of the various fit to the data, as a function of the reduced photon energy W defined in

Ref. [7]. The left panel: binned as the data; the right panel: no binning. The solid (dashed) line corresponds

to a = (+4, 1) (a = (−4, 1)) fm, and the dotted one to a = (0, 3.5) fm. The vertical line indicates the

position of the η3He threshold.

Therefore, three different fits were performed: fit 1 included only the pure resonance signal

(B = 0; only N as a free parameter); fit 2 included only the interference term (B → ∞; N and

the phase of B as a free parameter); and fit 3 considered the full structure (thus here we have 3

free parameters: N , |B| and the phase of B). As it turned out, the χ2 per degree of freedom for

the two scenarios (positive and negative real part of the scattering length) was almost the same

in all three cases and thus for illustration in Fig. 7 we only show the results of the second fit,

where the curves in the left panel correspond to the results after binning in accordance with that

of the experiment and the right panel corresponds to the unbinned results. To keep the number

of free parameters low we choose a = (±4, 1) fm. In both figures the dashed line corresponds

to a negative real part (indicating the existence of a bound state) and the solid line corresponds

to a positive real part (indicating a virtual state). For comparison also a curve is shown that has

the maximum imaginary part together with a vanishing real part still compatible with a subset

of the available pd → η3He data [43]. The fit gave a χ2 per degree of freedom of 1 for the

latter case, whereas it was worse than 3 in the former. Thus the data prefers the solution that

corresponds to a virtual state, although the existence of a bound state can not be excluded, given

the quality of the data. Note, already in Ref. [47] the interpretation of the TAPS data as a bound

state was questioned. Fortunately a new experiment will be performed soon. The expected much

higher statistics promise for a near future an unambiguous decision on what scenario is realized:

a bound state or a virtual state.

5 Summary

In this talk various aspects of η–meson production were discussed. The main issue is to inves-

tigate the η–nucleon interaction and in particular the S11 resonance in various environments.
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These studies promise insights not only into the nature of this state but also into the existence
of meson–nucleus bound states. Especially on the theory side a lot still needs to be done, but
this field of research promises deep insight in strong interaction physics in the non–perturbative
regime.
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