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ABSTRACT Non-dipole effects in electron energy-loss spectroscopy are 

evaluated in terms of deviation of the inelastic scattering from a Lorentzian angular 

dependence, which is assumed in established procedures for plural-scattering 

deconvolution, thickness measurement and Kramers-Kronig analysis. The deviation 

appears to be small and may be outweighed by the effect of plural (elastic + 

inelastic) scattering, which is not removed by conventional deconvolution methods. 

In the core-loss region of the spectrum, non-Lorentzian behaviour stems from 

reduction of the generalized oscillator strength from its optical value and (for 

energies far above an ionization threshold) formation of a Bethe-ridge angular 

distribution. At incident energies above 200 keV, retardation effects further distort 

the angular distribution, even for core losses just above threshold. 

With an on-axis collection aperture, non-dipole effects are masked by the rapid 

falloff of intensity with scattering angle, but they may be important for off-axis 

measurements. Near-edge fine structure is sensitive to non-dipole effects but these 

can be minimized by use of an angle-limiting collection aperture. 

 

INTRODUCTION 

 

At the accelerating voltages used in the TEM and STEM, the inelastic scattering of a 

transmitted electron is predominantly a dipolar interaction (just as in optical excitation), 

leading to a Lorentzian angular distribution of the inelastic signal S per unit solid angle:  

dS/dΩ = C/(θ2
+θE

2
)      (1) 

where C is a constant, θ is the scattering angle and θE
 
is the characteristic angle for an 

energy loss E, given by  E/mv
2
 (m = relativistic electron mass, v = incident-electron 

speed) or approximately  E/(2E0) at small incident energy E0. This dipole formalism 

allows scattering cross sections and sum rules to be written using relatively simple 

equations that form the basis of various spectral-processing procedures such as Kramers-

Kronig analysis, quantitative elemental analysis and the measurement of specimen 



thickness. Equation (1) is also assumed when correcting for plural inelastic scattering and 

incident-beam angular convergence, as discussed below. 

 

 In practice, the dipole approximation holds only over a limited angular range. As 

the scattering angle approaches some value θc, the scattered intensity falls off more 

rapidly than implied by Eq. (1), equivalent to reduction in the coefficient C. For 

scattering that involves single-electron excitation, this critical angle is often taken as the 

Bethe-ridge angle: θc ~ (E/E0)
1/2

 (Inokuti, 1971). For plasmon scattering, a Hartree-Fock 

calculation (Ferrell, 1957) gives θc ~ (0.74)Ep/(p0vF), where p0 is the incident-electron 

momentum and vF is the magnitude of the Fermi velocity, in agreement with 300kV 

measurements on a 100nm polycrystalline Al film (Bertoni et al., 2011). In many 

materials, the two formulas for θc give similar values; see Table 1.  

Although θc is often described as a cutoff angle, the cutoff of intensity is only 

gradual. There is always some single-electron scattering above θc, even in free-electron 

plasmon metals such as Al (Batson and Silcox, 1983). 

To ensure validity of the dipole formalism, it therefore seems necessary to restrict 

the collection semi-angle β of the electron spectrometer to a value less than θc. For low 

energy losses, the angles involved are then quite small (see Table 1) and choosing β << 

θc reduces the energy-loss signal and the signal/noise ratio. More importantly, Eq.(1) 

assumes parallel illumination, whereas the convergence semi-angle α of a focused 

electron probe can easily exceed θc, especially for very small probes formed by  

aberration-corrected lenses. In this situation, a small collection aperture greatly reduces 

the inelastic signal without selecting scattering angles smaller than θc. 

 

Table 1: characteristic and cutoff angles (in mrad) for E0 = 100 keV and vF = 10
6 
m/s. 

 

E(eV) θE(mrad) (E/E0)
1/2

 0.74E/(p0vf)  

10 0.054 10 7 

30 0.16 17 20 

100 0.54 32 -- 

300 1.6 57 -- 

 

QUANTITATIVE ANALYSIS OF LOW-LOSS SPECTRA 

The low-loss region of the energy-loss spectrum is usually understood to imply 

energy losses below about 100 eV. In this region, inelastic scattering involves mainly 

outer-shell (valence or conduction) electrons and gives rise to plasmon excitation. The 

average distance between scattering events (the inelastic or plasmon mean free path) lies 



within the range 50 nm to 200 nm, depending on the incident energy and the chemical 

composition of the specimen. Often the thickness of the TEM specimen is also within this 

range, so plural scattering (where a transmitted electron undergoes more than one 

scattering event) is unavoidable. Because plural scattering invalidates the use of a single-

scattering formula, it is often removed (in a process referred to as deconvolution) as the 

first step in spectral processing.  

The most common deconvolution procedures are the Fourier-log method (which 

can be applied to the entire spectrum) and Fourier-ratio processing (used to remove 

plasmon/core-loss scattering from ionization edges). These procedures are exact only if 

all scattering is recorded, implying a large collection aperture β but in contradiction with 

the dipole requirement above. It can be shown that the error introduced by using a small 

aperture is minor, thanks to the θ-2
 behaviour of the Lorentzian angular distribution for θ 

>> θE (Egerton and Wang, 1990; Su et al., 1992; Egerton and Wong, 1995). As a result, 

deconvolution routines perform adequately provided β >> θE, as is usually the case (see 

Table 1; β is typically 5 mrad or more). 

Provided the energy-loss spectrum has been recorded with an on-axis angle-

limiting aperture (e.g. TEM objective aperture) that accepts electrons scattered through 

angles up to β, integration of Eq.(1) gives the single-scattering inelastic intensity as: 

S(E) = I0 t (2π a0T)
-1

 Im[-1/ε(E)] loge(1+β2
/θE

2
)     (2) 

where I0 is the integral of the zero-loss peak, t is the specimen thickness, a0 = 52 pm, and 

T = m0v
2
/2 (somewhat less than the incident energy E0 because the relativistic mass m of 

an incident electron exceeds its rest mass m0). Im[-1/ε(E)] is the so-called energy-loss 

function, ε(E) being the complex relative permittivity for a photon frequency f = E/h, 

where h is the Planck constant.   

Figure 1a shows low-loss spectra recorded from a gold film, each corrected (by 

Fourier-log deconvolution) for plural inelastic scattering. The spectra correspond to 

collection semi-angles between 2.6 mrad (smallest TEM objective aperture) and 104 

mrad (no objective aperture). Their intensities are expected to differ because of the 

different values of the aperture function, loge(1+β2
/ θE

2
) in Eq.(2). 

According to Eq.(2), these differences can be removed by applying a standard  

“aperture correction”: dividing each data point by loge(1+β2
/ θE

2
) where θE

 
varies with 

energy loss but β is a constant, determined by the collection-aperture radius. As shown in 

Fig. 1b, however, some difference among the spectra still remains. Recognizing that the 

cutoff angle θc ~ (E/E0)
1/2

 can be less than β  at low energy loss, it seems appropriate to 

replace β by (E/E0)
1/2

 in Eq.(2) whenever (E/E0)
1/2

 < β. After applying this revised form 

of correction, the energy dependences lie within a few percent of each other; see Fig. 1c. 

Similar results (not shown) were obtained from data recorded from a silicon specimen 

using 100keV electrons. 
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Fig.1. (a) Low-loss spectra recorded from a gold film with E0 = 300 keV and different 

collection apertures: β = 104 mrad (OA0), 18 mrad (OA1), 12 mrad (OA2), 4.6 mrad 

(OA3) and 2.6 mrad (OA4).  (b) Same spectra after dividing by the aperture function 

loge(1+β2
/ θE

2
). (c) Same spectra after dividing by loge(1+β2

/ θE
2
) with β taken as 

(E/E0)
1/2

 whenever (E/E0)
1/2

 < β. All spectra have been normalized at the plasmon 

maximum. 

 

Low-loss spectra can be used to measure the local thickness of a TEM specimen. One 

method for doing this makes use of a Kramers-Kronig sum rule, according to which the 

thickness t is given by: 

t = (4a0T/I0) (1-1/n
2
)

-1
  ∫ [S(E)/E] [loge(1+β2

/θE
2
)]

-1 
dE   (3) 

where n is the refractive index of the specimen at optical frequencies. For a metal or good 

conductor, n is large and 1/n
2
 can be taken as zero. The procedure described by Eq.(3) is 

a standard item in the EELS menu of the Gatan company’s Digital Micrograph spectrum-

processing software. The form of the logarithm term in Eq.(3) implies that dipole 

scattering predominates. 

Figure 2 shows measurements of the thickness of a gold film, based on Eq.(3) 

with five value of β. Because Eq.(3) assumes the dipole scattering, it is expected to fail 

for larger collection semi-angles. Indeed, the measured thickness falls from about 68 nm 

at β = 2.6 mrad to 50 nm at β = 18 mrad, then to below 40 nm for β = 104 nm where a 

dipole formula is clearly inappropriate. Limiting the value of β in the formula to 12.9 

mrad (the Bethe-ridge cut-off for E = 50 eV) reduces the t-variation at high β (dashed 



black line in Fig.2), as might be expected. Implementation of the previous scheme, in 

which β is replaced by θc = (E/E0)
1/2

 where necessary, further reduces the variation but  

leaves a 15% variation in measured thickness over the entire angular range (red dash-dot 

curve in Fig. 2).  
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Fig. 2.  Thickness measurements on a gold film using 300keV incident electrons and 

different collection semi-angles. Error bars show the variation in measured thickness 

between nearby areas of film. The dotted vertical line shows the value of the lowest-order 

Bragg-scattering angle θe  

Having attempted to allow for the angular cutoff, we might presume that the 

remaining variation seen in Fig. 2 stems from other factors. Especially in thicker 

specimens, the angular distribution of inelastic scattering is affected by the simultaneous 

occurrence of elastic scattering. In the case of a crystalline specimen, this elastic 

scattering takes the form of Bragg beams, each of which can act as a secondary source of 

inelastic scattering. In the kinematic (thin-specimen) limit, where Bragg intensities are 

weak and there is little chance of an electron being re-scattered into the central beam, 

each Bragg beam is simply broadened by the inelastic scattering, whose the angular 

distribution can be assumed to be described by Eq.(1).  



On average, elastic scattering involves much larger angles than inelastic 

scattering. Each Bragg beam corresponds to scattering angle θe = λ/d, where d is the 

interplanar spacing and λ is the transmitted-electron wavelength. For gold and 300keV 

electrons (λ = 1.97 pm), the lowest value of θe is 7 mrad, a value less that the critical 

angle for inelastic scattering (Table 1). Some of the Bragg-beam electrons will therefore 

be scattered inelastically back towards the optic axis so that they enter a small on-axis 

collection aperture. A larger aperture should increase this Bragg-beam contribution, 

which may account for the initial rise in t in Fig.2. But when β > θe, Bragg-beam 

electrons start to contribute to I0 in Eq.(3), giving a decrease in the measured thickness, as 

in Fig.2. Our suggested explanation for the 15% thickness variation in Fig. 2 is therefore 

in terms of plural (elastic + inelastic) scattering, an effect not included in Eq. (3) and not 

removed by the usual inelastic-scattering deconvolution.  

 Bertoni et al. (2011) divided Fourier transforms of plasmon-loss and zero-loss 

diffraction patterns recorded from a 100nm film of polycrystalline Al using 300keV 

electrons. This two-dimensional Fourier-ratio deconvolution was apparently successful in 

correcting for Bragg+plasmon scattering, since it resulted in the expected single-

scattering angular distribution of plasmon scattering. But elastic and phonon scattering is 

strong in materials of high atomic number such as gold and, except in ultra-thin 

specimens, the scattering is dynamical. It is then unlikely that 2-D Fourier-ratio 

deconvolution will be accurate and a more elaborate scheme (e.g. Batson and Silcox, 

1983) may be necessary. 

 Another application of low-loss EELS is for determining the local bandgap Eg in a 

semiconductor or insulator, Eg being taken as the energy loss at which inelastic scattering 

(causing conduction electrons to be excited to an empty valence band) starts to appear. 

Apart from the tail of the zero-loss peak, the main problem here is an inelastic 

background caused by Cerenkov emission, which occurs if the electron travels faster than 

the speed of light (c/n) within the specimen. Cerenkov loss is characterized by a narrow 

angular distribution that is distinctly non-Lorentzian: the inelastic intensity typically 

peaks at an angle of several microradians (Stoeger-Pollach et al., 2006). Its energy-

dependence is complicated by the occurrence of surface-plasmon modes, whose intensity 

also has a non-Lorentzian angular dependence, peaking at θE/3
1/2

 in the case of a thicker 

specimen and decreasing as θ3
 at higher angles. 

 Some monochromated TEM-EELS systems now achieve an energy resolution 

below 20 meV, sufficient to investigate nuclear-vibrational (phonon) modes of energy 

loss (Krivanek et al, 2013). At small scattering angles, the phonon signal is dominated by 

dipole scattering, with a narrow Lorentzian angular distribution that implies a spatial 

resolution limited to some tens of nm (Egerton, 2014). At higher angles, there appears to 

be a non-dipole component, which may offer the possibility of high spatial resolution in 

radiation-resistant specimens (Cueva and Muller, 2013; Dwyer, 2014; Rez, 2014).  

 

 

 



QUANTITATIVE ANALYSIS OF CORE-LOSS SPECTRA 

 At energy losses above 100 eV, inner-shell (atomic-core) excitation gives rise to 

ionization edges whose threshold energy is approximately the binding energy of a 

particular inner shell. Inner-shell excitation being an atomic rather than collective effect, 

the single-scattering core-loss intensity is usually written in terms of an energy-

differential oscillator strength per atom df/dE, rather than the energy-loss function: 

Sc(E) = I0 (na t) 4πa0
2
(R/T)(R/E) (df/dE) loge(1+β2

/ θE
2
)    (4) 

where na is the concentration (atoms/volume) of the element giving rise to the edge and R 

is the Rydberg energy (13.6 eV). At low scattering angles, df/dE is constant and equal to 

the optical oscillator strength, which effectively defines the dipole region of scattering. 

 Equation (4) can be integrated over an energy range Δ beyond the edge threshold, 

to provide a formula that is useful for elemental analysis. If deconvolution is employed to 

remove plural (plasmon + core-loss) scattering, the core-loss integral is given by:  

Ic(β,Δ) = I0 (na t) σc(β,Δ)     (5) 

Applying Eq.(5) to the ionization edges of two different elements, the concentration ratio 

is obtained from a measured ratio of core-loss intensities and a ratio of calculated cross 

sections, without any need to know the zero-loss integral I0 or the specimen thickness t . 

Software is available for calculating each core-loss cross section σc(β,Δ) without making 

a dipole approximation (Egerton, 1978; Leapman et al, 1980)..  

 However, concerns about the effect of elastic scattering are even more relevant to 

the core-loss region. Because θE
 
= E/mv

2
 increases with energy loss E, there is a 

reasonable probability of an elastically scattered electron being core-loss scattered back 

into the collection aperture (or vice versa), increasing the value of Ic(β,Δ) above that 

given by Eq. (5). For an amorphous specimen, this probability increases with increasing 

specimen thickness but decreases with increasing aperture size; for β ~ 20 mrad it should 

be less than 10% for specimens up to 100nm thick  (Cheng and Egerton, 1993; Egerton 

and Wong, 1995). In a crystalline specimen, the effect of elastic scattering depends on the 

Bragg angles relative to the aperture semi-angle and (for a single crystal) on the specimen 

orientation and thickness. Allowing for dynamical effects and phonon scattering, the 

resulting core-loss intensity can be calculated down to the atomic scale (Urban et al., 

2013) but only if the crystallographic structure and composition of the specimen are 

already known. 

 Just as for the low-loss region, we can examine non-dipole effects in terms of the 

extent to which the angular distribution of inelastic scattering departs from the Lorentzian 

form that gives rise to Eq.(4). Figure 3 shows predictions of the K-loss intensity collected 

by an on-axis aperture, based on a hydrogenic model (Egerton, 1978). At the oxygen K-

edge threshold and at an energy 100 eV above the threshold, the intensity starts to fall 

below the Lorentzian prediction for θ  > 20 mrad, reflecting a decrease in the oscillator 

strength below its optical value. For an energy 500 eV beyond the edge, however, a 

Lorentzian formula underestimates the intensity at higher collection angles and the angle-



integrated intensity. This underestimate arises because, for energy losses greatly 

exceeding the binding energy of the electrons being excited, these electrons behave more 

like free particles. The angular distribution of inelastic scattering changes from having its 

maximum at θ = 0 (as for the Lorentzian angular distribution) to a maximum around the 

Bethe-ridge angle θ = (E/E0)
1/2

. This situation occurs also in the case of valence-electron 

scattering, which can be a major component to the background preceding an ionization 

edge, in which case a small collection angle is needed to maximize the edge/background 

ratio (Egerton, 2011). 

 

Fig. 3. Oxygen K-shell intensity (at 535 eV, 635 eV and 1035 eV) collected by an 

aperture of semi-angle β, as calculated using a hydrogenic model and as predicted by a 

dipole formula, Eq. (2).  

 

 For the L23 edges of some elements (e.g. Al, Si, certain transition metals), as well 

as the M45 edges of some rare earths, the spectral intensity is suppressed at energy losses 

just above the ionization threshold by a “centrifugal” potential barrier within each atom, 

giving rise to a rounded edge with a “delayed maximum”  (Leapman et al., 1980). This 

effect alters the angular distribution of core-loss scattering but is not very significant 

since it occurs mainly within 10 eV of the threshold, where the intensity is low (Manson, 

1972).  

 Loeffler et al. (2011) measured small departures from a Lorentzian angular 

distribution as the EELS collection aperture was moved off-axis to record higher-angle L-

shell scattering of 200keV electrons in silicon. The rapid fall in intensity gave rise to 



dynamic-range and statistical-noise problems; to reduce such problems, they recorded 

also the variation of L-shell intensity with energy loss (between 100 eV and 200 eV) for a 

spectrometer entrance aperture 7.8 mrad away from the optic axis. The intensity just 

above threshold was found to be up to 25% smaller than a Lorentzian prediction. 

 Another situation in which the angular distribution of core-loss scattering 

becomes non-Lorentzian is at high incident energies. When an incident electrons travels 

close to the speed of light, relativistic retardation effects occur and Cerenkov x-rays can 

be emitted (Bazylev et al., 1976). The core-loss angular distribution is broadened and 

dSc/dΩ peaks at a non-zero angle, as shown in Fig. 5a. This effect has been confirmed by 

energy-filtered diffraction measurements on amorphous carbon at E0 =1 MeV (Kurata et 

al., 1997). Retardation augments the logarithm term in Eq.(4) by an amount (Egerton, 

2011): 

G = 2logeγ – loge[(β
2
+θE

2
)/( β2

+θE
2
/γ2

)] – (v
2
/c

2
)[β2

/(β2
+θE

2
/γ2

)]  (6) 

where γ = 1– v
2
/c

2
. At E0 = 300 keV, the angle-integrated cross section is increased by 

about 20% for collection semi-angles of the order of the characteristic angle θE, as seen in 

Fig. 5b.  

 

(a) 

 



(b)  

  

Fig. 5. (a) Energy-diffferential cross section (energy loss just above the ionization 

threshold) for K-shell scattering, calculated for an Al atom using a hydrogenic model 

with (solid curves) and without (dashed curves)  relativistic retardation. (b) Percentage 

increase (due to retardation) in the angle-integrated cross section, according to Eq.(6), 

plotted as a function of the normalized collection semi-angle β. 

 In the case of an anisotropic material such as graphite, the situation is more 

complicated. For a uniaxial material such as graphite, the σ* and π* intensities depend on 

specimen orientation relative to the incident beam (Souche et al., 1998; Radtke et al., 

2006) but the total intensity is independent of orientation and has an angular dependence 

similar to Fig.5a.  

 Besides their use for elemental quantification, ionization edges are of interest 

because their fine structure gives an indication of the electronic band structure and the 

density ρf of unoccupied states above the Fermi level. According to the Fermi Golden 

Rule, the probability Pif for electron transition from an initial atomic state Ψi to a 

continuum final state Ψf is  

Pif = (1/h) |Mif|
2
 ρf     (7) 

where the matrix element Mif =  ∫ Ψf
*
exp(iq.r)Ψi is a property of the atom involved and q 

is the scattering wavevector. Dipole transitions correspond to the first term i(q.r) in the 

expansion of the exp(iq.r) operator; higher-order non-dipole terms are small provided q 

<< 1/rc, where rc is the radius of the core state. A hydrogenic model gives rc = a0/Z*, the 

effective nuclear charge Z* being related to atomic number Z by Z* = Z - 0.3 for a K-

shell initial state (Egerton, 1978). Therefore dipole conditions should hold for θ << 



Z*/(k0a0), implying θ << 63 mrad for the carbon K-edge and 100keV electrons (k0 = 

1697/nm). For the carbon-K and Ti-L23 edges, Rez  (1989) calculated that non-dipole 

components amount to less than 10% for q < 45 nm
-1

 (θ < 23 mrad for 100keV electrons). 

If a large (100mrad) collection aperture is used, dipole-forbidden transitions can become 

weakly visible; for example, lanthanum M2 and M3 edges from La2O3, which disappear 

when a small (1.6mrad) aperture is used (Ahn and Krivanek, 1983). 

 Saldin and Yao (1990) calculated that the non-dipole contribution becomes 

substantial at energies well above the ionization threshold: 270 eV above threshold for 

the oxygen K-edge. Essex et al. (1999) concluded that the dipole approximation is 

inappropriate beyond 50 eV for Li K-edge atomic imaging. In the near-edge region, 

however, the dipole selection rule can be expected to hold: K-shell spectroscopy with a 

collection semi-angle below 20 mrad will measure mainly the density of empty p-states, 

while L-shell analysis will measure mainly d-states. 

 

CONCLUSIONS 

 Modern TEMs are capable of analyzing very small areas of specimen but this 

capability may involve focusing the electrons into a small-diameter probe whose angular 

convergence exceeds the dipole range of scattering. The validity of EELS formulas that 

incorporate the dipole approximation is therefore of concern. 

 We have investigated non-dipole effects in terms of departure of the angular 

distribution of inelastic scattering from a Lorentzian dependence. For energy losses 

below 100 eV, such departures affect the accuracy of established procedures for plural-

scattering deconvolution, thickness measurement and Kramers-Kronig analysis. The non-

dipole effect can be reduced by using an energy-dependent cutoff angle in the analysis, 

but it appears to amount to only a few percent and (especially for thicker specimens) may 

be outweighed by the effect of plural (elastic + inelastic) scattering, which is not removed 

by conventional deconvolution methods.  

 In the core-loss region of the spectrum, non-Lorentzian behaviour involves a 

reduction of the generalized oscillator strength from its optical value or (for energy losses 

much greater than an ionization threshold) a free-electron response that gives rise to a 

Bethe-ridge angular distribution. At incident energies above 200 keV, relativistic 

retardation effects distort the Lorentzian angular distribution, even for core losses just 

above threshold. 

 For the common situation of an on-axis spectrometer entrance aperture, non-

dipole effects associated with higher scattering angles are largely masked, because of the 

rapid falloff of intensity with scattering angle. But as pointed out by Loeffler et al. 

(2011), off-axis measurements (e.g. of band structure or magnetic chiral dichroism) may 

be significantly affected, requiring more sophisticated theory for their analysis. 

 Near-edge fine structure can be interpreted in terms of a symmetry-projected 

density of states, but the dipole selection rule breaks down for higher scattering angles 



and energies far above the ionization threshold. A small angle-limiting collection aperture 

helps to minimize this effect. 
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