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Abstract— Grid computing provides the ability to access and
utilize heterogeneous sets of resources, distributed over multiple
domains, as part of virtual organizations. The emerging Grid
computing infrastructure gives rise to a class of scientific appli-
cations that have collaborative and distributed resource-sharing
requirements, such as teleimmersive, visualization and simula-
tion services. This class of application has stringent real-time
constraints and Quality of Service (QoS) requirements. Because
this class of applications operates in a collaborative mode, data
needs to be stored and delivered to execution services in a timely
manner, and, similarly, high-performance computing resources
need to be ready to handle the execution of data analysis and
calculations to meet deadlines. A QoS management approach is
required to orchestrate, and guarantee, the interaction between
such applications entities. In this paper we design and implement
a QoS system and show how Grid applications can easily become
QoS compliant. We validate this hypothesis in a case study on
a Grid application called ‘Nanoscale Structures’ at the Argonne
National Laboratory (ANL). We then run a comparative job
submission based on Globus toolkit 2, and the developed Open
Grid Service Architecture (OGSA) based QoS approach. Results
show the QoS approach is superior to other approaches, which
implies a better performance result for applications with QoS
provision.

I. INTRODUCTION

Grid Computing [?], [1] has traditionally focused on large-

scale, and high-end, resource sharing, innovative applications

and the achievement of high performance. Grid applications

integrate diverse network environments with widely-varying

resource and security characteristics, to cater for multiple

usage scenarios. The emerging Grid computing infrastructure

gives rise to a class of recent commercial applications, and

traditional scientific applications, that have collaborative and

distributed resource-sharing requirements, such as teleimmer-

sive, visualization and nanoscale structures. This new class of

applications requires high performance resources, the provi-

sion of which is a key theme in Grid infrastructures. These

resources are expensive and scarce, and are generally not

accessible to small and mid-range corporations, but Grid

computing is attempting to make these high-end resources

available to most computer developers.

Much research effort has concentrated on providing mech-

anisms to administer and manage such complex settings.

The focus is mainly on dealing with the so-called ‘resource

management and scheduling problem’, and basically providing

algorithms to deal with multiple incoming jobs to be dis-

patched to a somewhat limited number of high-end resources.

This is achieved by means of sophisticated queuing systems,

and dispatching jobs as resources become available.

There is a fundamental problem and, while very important

from the client’s viewpoint, this has not had a great deal

of research attention. This problem can be described in the

form of asking questions - ‘Which resource can execute the

job, during a specific time, with the most success?’ and

‘What Quality of Service (QoS) guarantees can the client

be offered?’ This ‘QoS Problem’ usually arises in a shared

resource environment. As more and more requests are initiated

for the same set of shared resources, eventually the new

requests have to be queued, as resources become busy or

congested. There are two solutions for this problem: i) either

increase the scarce resources, which is very expensive, or ii)

introduce QoS mechanisms that provide guarantees, fairness

and efficiently utilizes the underlying resource.

Consider the following scenario; a group of scientists would

like to conduct a collaborative simulation experiment for, and

during, a specific period of time, using Grid high performance

resources and infrastructure. The experiment will run at site

‘A’ on a Grid resource with fine-grained computation and

storage requirements. The database, with the required data

for the simulation, is located at site ‘B’. A second group of

scientists participating in the simulation experiment are located

at site ‘C’. Moreover, the experiment requires a specific

network bandwidth to connect site B and site A throughout

the simulation, and sufficient network bandwidth to deliver

the simulation data input, from the database to the processing

Grid node, during the experiment. It is clear that this typical

scenario has a number of requirements that a normal resource

management or scheduling system cannot fulfill. To make this

experiment work we need to equip the Grid infrastructure

with QoS management to support, not only network resources,

but also for storage, compute, and possibly for specialized

instruments.

Motivated by similar scenarios, we propose a comprehen-

sive QoS architecture in service-oriented Grids, called G-

QoSm. The G-QoSm addresses solutions to the concerns

discussed earlier. We validate our proposed architecture with

a ‘proof of concept’ prototype implementation, and show its

effectiveness in a Grid system by conducting a case study in

the Argonne National Laboratory, with a class of scientific

application with QoS guarantee requirements from the ANL

advanced analytical electron microscope, called ‘Nanoscale

Structures’ Application.
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We provide a discussion on QoS background, in Section II.

In Section III we outline the general requirements of the Grid

QoS management systems and present the current Grid QoS

systems. In Section IV our Grid QoS management (G-QoSm)

is presented and the major components are outlined. In Section

V we discuss an example of a typical high performance

Grid application, called nanoscale application and its QoS

requirements are outlined. In Section VII we discuss some

performance results, based on executing applications with QoS

support, and prototype implementation screen shots are given.

A summary of future work concludes our paper.

II. QUALITY OF SERVICE BACKGROUND

Quality of Service (QoS) has been explored in various

contexts, particularly for computer networks [2] and multi-

media applications [3]. Network QoS allows the application

to describe its network link requirement so as to function

efficiently. Multimedia QoS on the other hand, deals with

network and server resource requirements to ‘play’ a ‘mul-

timedia document’ in an acceptable mode. Recently, the Grid

community expressed interest in QoS, and as part of the

Globus project the General-purpose Architecture for Reserva-

tion and Allocation (GARA) was designed and implemented

[4]. Moreover, quantitative characteristics are providing QoS

for quantifiable elements, such as networks and CPUs. Qualita-

tive characteristics are providing QoS for qualitative elements,

such as service reliability and user satisfaction on service

performance perception.

For example, in a network community these quantitative

characteristics are described in terms of network QoS matrix

to describe data transmission requirements, including:

• Delay - the time it takes a packet to travel from sender

to receiver.

• Delay jitter - the variation in the delay of packets taking

the same route.

• Throughput - the rate at which packets go through the

network (i.e. bandwidth).

• Packet-loss rate - the rate at which packets are dropped,

lost or become corrupted.

These four parameters of network QoS form the network

QoS measurement matrix.

CPU or ‘compute’ QoS can be divided into shared and

exclusive categories [5].In shared CPU, where more than one

user-level application shares the CPU, the application can

specify a percentage of the CPU. In the case of exclusive

in large multiprocessors systems, where usually one user-level

application has exclusive access to one or more CPUs, the

application can specify number of CPUs as the QoS parameter.

Another dimension of QoS is related to storage device, namely,

memory and disks. In this context, QoS is specified in two

parameters: bandwidth and space. Bandwidth is the rate of data

transfer between the storage devices to the application. Space

parameter is the amount of storage space that the application

can use for writing data. When applications specify QoS

requirements, the characteristics of the resource, and the period

the resource is required, is usually specified. Reservation can

be seen as giving the application the confidence, or assurance,

that the resource allocation will succeed with the required

level of QoS when needed. Moreover, the reservation can

be ‘immediate’ or in ‘advance’, and the duration of the

reservation can be ‘definite’, for a defined period of time, or

‘indefinite’, for a specified start time and unlimited duration.

III. QOS IN GRID COMPUTING

The Grid can be seen as a global-scale distributed-

computing infrastructure with coordinated resource sharing

[1]. The fundamental Grid problem that many researcher have

been investigating is “resource management”, specifying how

can the Grid middleware provide resource coordination for

client/application transparently in such a complex infrastruc-

ture with diverse resource characteristics? One of the most

successful middleware tools that provides such coordination

is the Globus Alliance Project [6]. The availability of Grid

middleware tools, such as the Globus Toolkit, where facilitate

persistent access to Grid services, motivated the application

developers, first in scientific and more recently business-

oriented disciplines, to build sophisticated Grid applications

with complex Grid resources requirements. In most Grid set-

tings, Grid applications submits their requirements to Grid re-

source management entity that schedules the jobs as resources

become available. However, there exists a class of applications

that cannot wait for resources to be available or must be

executed at Grid resources at a particular time. Therefore, we

believe that the Grid resource management entity should be

equipped to handle such sophisticated situations. To this end,

the following section we outline the basic requirements for

Grid QoS management.

A. Requirements

Grid resource management system should adhere to impor-

tant requirements that relate to QoS issues:

a) Resource Advance Reservation: The system should

support mechanisms for advance, immediate, or ‘on demand’

resource reservation. Advance reservation is particularly im-

portant when dealing with scarce resources, as is often the case

with high performance and high end scientific applications in

Grids.

b) Reservation Policy: The system should support a

mechanism which facilitates Grid resource owners enforcing

their policies governing when, how, and who can use their

resource, while decoupling reservation and policy entities, in

order to improve reservation flexibility [7].

c) Agreement Protocol: The system should assure the

clients of their advance reservation status, and the resource

quality they expect during the service session. Such assurance

can be contained in an agreement protocol, such as Service

Level Agreements (SLAs).

d) Security: The system should prevent malicious users

penetrating, or altering, data repositories that hold information

about reservations, policies and agreement protocols. In addi-

tion to a secure channel between the client/application and the

Grid resource(s), a proper security infrastructure is required,

such as Public Key Infrastructure (PKI).
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e) Simple: The QoS enhancement should have a reason-

ably simple design that requires minimal overheads in terms of

computation, infrastructure, storage and message complexity.

f) Scalability: The approach should be scalable to a large

number of entities, as the Grid is a global scale infrastructure,

and there will be dynamic resources and users joining the Grid.

B. Current QoS Systems

QoS in Grids is relatively recent, and, as a result, the

only substantial system developed, within the Grid commu-

nity to our knowledge, is the General-purpose Architecture

for Reservation and Allocation (GARA). GARA is a QoS

framework that provides programmers a convenient access to

end-to-end QoS. It provides advance reservations with uniform

treatment to various types of resources such as network,

compute and disk. GARA’s reservation is a promise that the

client/application who initiated the reservation will receive a

specific level of service quality from the resource manager.

GARA also provides Application Program Interface (API) to

manipulate reservation requests, such as, create, modify, bind

and cancel. GARA utilizes a Dynamic Soft Real-time (DSRT)

[8] scheduler as the underlying ‘compute’ resource manager.

Moreover, it also utilizes Cisco routers to deliver network QoS.

Although GARA gained popularity in the Grid community,

it has certain limitations in coping with current application

requirements and technologies, summarized as follows:

• Most current applications employ the emerging new tech-

nology, the ‘Web Services’ and the Open Grid Service

Architecture (OGSA) [9]. Unfortunately GARA is not

OGSA-enabled, and OGSA-enabled applications cannot

therefore leverage GARA services.

• Grid applications require the simultaneous allocation of

various resources, once the resource manager establishes

the required resources and possibly reserves the resources

for future allocation. An agreement protocol should then

be in place to inform the application about the resources

negotiated for allocation, and what level of quality the

application should expect. This information is usually en-

capsulated in a Service Level Agreement (SLA). GARA

does not support the concept of an agreement protocol,

and if an application requires a CPU and a network

resource, the application has to perform two separate

calls to GARA, and, on success, receives two different

handlers, and it is the application’s responsibility to

manage these handles when claiming the resources. We

view this as a limitation.

• QoS monitoring and adaptation during the active QoS

session is one of the most important and successful

mechanisms to provide a quality guarantee. Most QoS

management systems are tooled with adaptive functions

[], unlike GARA.

IV. THE GRID QOS MANAGEMENT

Grid Quality of Service Management (G-QoSm) is a new

approach to supporting Quality of Service (QoS) management

in computational Grids, in the context of Open Grid Service

Architecture (OGSA). The G-QoSm is an ongoing project and

Fig. 1. The G-QoSm Architecture with an OGSA-enabled QoS service.

more details can be found in [10], [11]. The QoS management

consists of several of operational phases include a number

of QoS functions; for example, in QoS-oriented architectures,

during the ‘establishment’ phase, a client’s application states

the desired service and QoS specification. The QoS manage-

ment system then undertakes a service discovery, based on the

specified QoS properties, and negotiates an agreement offer for

the client’s application. During the ‘active’ phase, additional

activities, including QoS monitoring, adaptation, accounting

and, possibly, re-negotiation, may take place. The ‘clearing’

phase is responsible for terminating the QoS session, either

through resource reservation expiration, agreement violation

or service completion, and resources are then freed for use by

other clients. Our framework supports these 3 phases and can

be realized through the interaction between the various frame-

work components. Figure 1 depicts the G-QoSm architecture.

In the following subsections we provide a brief discussion

on the interaction between the framework components and

highlight the Grid application’s integration provision.

A. QoS Grid Service

The basic building block of our architecture is the QoS

Grid Service (QGS); an OGSA-enabled Grid service providing

QoS functionalities, such as negotiation and reservation. It

exists in every Grid node that can give resources for use

by Grid users under QoS constraints. As QGS is a Grid

service, it publishes itself to QoS registry service, such as the

UDDIe [12] to be known for others. In addition to the QoS

functionalities, it supports two types of resource allocation

strategies; 1)resource-domain, that is to provide compute,

network and disk QoS with fine-grained specifications and 2)

time-domain, where the whole Grid node, in which the QGS

resides, can be reserved for defined period of time. This is

handled by ensuring that all executables on this particular Grid

node should pass through the QGS. Further, the QGS interacts

with a number of modules to deliver QoS guarantees, these

modules are, as depicted in Figure 1, QoS Handler, reservation

manager, allocation manager, and QoS registry service. The



4

underlying QoS that QGS offers are ‘compute’, and currently

we are in the process of integrating network and disk support.

g) QoS Handler: The QoS Handler constitutes the link

between the Java CoG Kit Core and the QGS, with more

information on the Java CoG Kit Core given below. Further,

it is an implementation of the Core ‘TaskHandler’ interface,

which captures the required QoS action, encapsulated in the

Core ‘Task’ object, such as QoS negotiation request or QoS job

submission. The Task object also contains QoS related parame-

ters depending on the Task action required; for example, in the

case of a ‘negotiation request’, parameters provided include:

start-time, end-time, resource type and specifications. Once

the Task object has been formulated, then the QoS Handler

is, for example, delegated, on behalf of the client/application,

to negotiate QoS requests. In this case the QoS Handler is

seen as the client, from the QGS point of view. This is a

very useful approach, especially when the application requires

more than one Grid node, and all it needs do is to instantiate

the required number of QoS Handler objects, submit the

Task object to the handlers and let the handlers negotiate

QoS requests with the QGS and return with an agreement,

if any. It is worth mentioning that the GGF Grid Resource

Agreement and Allocation Protocol (GRAAP) Working Group

[13] is attempting to define a WS-Agreement protocol meant

to address machine to machine negotiations. We therefore

structure our approach to fulfill this particular requirement.

Further, in a QoS job submission in an ‘interactive mode’, the

QoS Handler listens for notifications of job status, with the

notification implemented by the QGS as an OGSA notification.

h) Reservation Manger: The reservation manager is ba-

sically a data structure that supports reservations for quantifi-

able resources; resources associated with defined capacities.

The reservation manager is de-coupled from the underlying

resources and does not have direct interaction with them. How-

ever, it obtains resource characteristics, and policies governing

resource usage, from the policy manager. The policy manager,

on the other hand, is responsible for validating reservation

requests by applying domain-specific rules, established by

the resource owners, on when, how and who can use their

resource. In brief, when the reservation manager receives

a reservation request from the QGS, it contacts the policy

manager for validation and then performs admission control

to check on the availability of the requested resource. Upon

success, it returns a positive reply to the QGS, which allows

the QGS to propose a negotiable service agreement offer.

i) Allocation Manger: The Allocation Manager’s pri-

mary role is to interact with underlying resource managers for

resource allocation and de-allocation, and to inquire about the

status of the resources. It has interfaces with various resource

managers employed in this framework, namely, the Dynamic

Soft Real Time Scheduler (DSRT) [8], a Network Resource

Manager (NRM), and currently investigating the Nest as the

disk storage resource manager [14]. Furthermore, when the

allocation manager receives resource allocation request, from

the QGS, it forward the request to the designated underlying

resource manager. Also the Allocation Manager interacts with

adaptive services to enforce adaptation strategies, with more

details on our adaptation strategies to be found in [15].

j) QoS Registry Service: As the framework operates

in the OGSA architecture, then the QGS and other Grid

services in the OGSI container should be published in some

registry service so they can be known for others. The service

publishing process, in this discussion, doesn’t mean simply

publishing a service name, URL and simple description. How-

ever, services are published with the conventional web services

information, in addition to QoS related information. For ex-

ample, in the case of QGS, is publishes information on what

computation QoS does it offer? and what allocation strategies

does it employ? and similarly for networks what classes of

network QoS does it offer, e.g. best effort, controlled-load

or guaranteed. On the other hand, in the case of the other

Grid services, the publishing process involves publishing QoS

properties, which may include performance characteristics and

service execution requirements. In this framework an extended

version of the Universal Description Discovery and Integration

is used as our QoS register service. The UDDIe [12] is web

services registry system, which facilities to service providers

a means to publish their services with QoS properties and,

hence, be able to search for these services based on their QoS

properties.

B. Java CoG Core

The Java CoG Kit Core provides a technology- and

architecture-independent abstraction layer that provides true

interoperability across multiple Grid implementations. The

Java CoG Core provides convenient API for the Grid appli-

cations to access the underlying Grid technology. Further, the

Java CoG Core has a number of components. Two of which

are related to this discussion; i) Task and ii) Handlers. More

detail on Java CoG Core can be found in [16].

k) Task: A Task is the atomic unit of execution in Java

CoG Kit Core. It represents a generic Grid functionality

including remote job execution, file transfer request, or in-

formation query. It has a unique identity, a security context, a

specification, and a service contact.

The task identity helps in uniquely representing the task

across the Grid. The security context represents the abstract

security credentials of the task. It is apparent that every

underlying Grid implementation enforces its own security

requirements therefore making it necessary to abstract a

generalized security context. Hence, the security context in

Core offers a common construct that can be extended by the

different implementations of Core to satisfy the corresponding

back-end requirement. The specification represents the actual

attributes or parameters required for the execution of the Grid-

centric task. The generalized specification can be extended for

common Grid tasks such as remote job execution, file transfer,

and information query. The service contact associated with a

task symbolizes the Grid resource required to execute it.

l) Handlers: The TaskHandler is to process task objects.

The task handler provides a simple interface to handle a

generic Grid task submitted to it. It is capable of categorizing

the tasks and providing the appropriate functionality for it. For

example, the task handler will handle a remote job execution

task differently than a file transfer request task. This approach
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does not impose any restrictions on the implementation of

the task handler as long as its working is transparent to the

end user. This module is back-end-specific and has a separate

implementation for each Grid architecture it supports.

C. Application Integration

We have developed a prototype implementation to demon-

strate the ease of use, and effectiveness, of a Grid

application utilizing QoS functions. The implementation

is publicly available from the CoG project web site

http://www.globus.org/cog/java. In order for Grid applications

to make use of this framework, they need to do the following

(4) simple steps: a) create a Task object using Java Core, b)

depending on the type of the required QoS function, setup the

necessary objects for security, job specification and service

contact, c) instantiate a QoS Handler, and d)associate the

created Task with the QoS Handler and finally submit the

Task. Table I is a java code segment showing three sample

methods demonstrating how applications could generate QoS

negotiation request, QoS job submission, and Task submission

to the QoS handler, respectively.

The concept of abstracting the QoS services and interacting

with the QGS by creating a Task (i.e. QoS function) and

submitting this to a QoS Handler, has a great advantage, and

flexibility and scalability, when dealing with multiple Gird

nodes. For example, this approach forms the basic element for

the design of a QoS broker, whereby the broker contacts the

QoS registry service to discover available QGS(s). Then, if the

application, for instance, requires ‘10’ Grid nodes, the broker

creates 10 different Task objects and only ‘1’ QoS Handler and

submits the Task to the corresponding QGS. This approach,

a basis for a brokering system, obviously supports scalability;

highly desirable and required in Grid computing.

V. POSITION-RESOLVED DIFFRACTION FOR NANOSCALE

STRUCTURES APPLICATION CASE STUDY

To validate our hypothesis, we integrate this application with

our reference implementation and prototype a Grid computing

environment for the analysis of nanoscale structures. As part of

this structure a new experimental technique, named position-

resolved diffraction, is being developed to study nanoscale

structures, as part of Argonne National Laboratory’s advanced

analytical electron microscope [17]. With this technique, a

focused electron probe is sequentially scanned across a two-

dimensional field of view of a thin specimen. At each point on

the specimen a two-dimensional electron diffraction pattern is

acquired and stored (Figure 2).

Analysis of the spatial variation in the electron diffraction

pattern of each measured point allows the researcher to study

subtle changes, resulting from micro-structural differences,

such as ferro- and electromagnetic domain formation and

motion, at unprecedented spatial scales. As much as one

terabyte of data can be taken during such an experiment. This

analysis of the data requires a resource rich Grid infrastructure

to accommodate real-time constraints. Results need to be

archived, remote compute resources need to be reserved and

made available during an experiment, and the data needs to be

/*** QoS: Prepare Negotiation Task ***/

private void prepareQosNegotiationTask()

{

// create a QoS service, and setup QoS attributes

Task task =

new QosTaskImpl(‘‘myTask’’, QoS.NEGOTIATION);

this.task.setAttribute(‘‘startTime’’, startTime);

this.task.setAttribute(‘‘endTime’’, endTime);

this.task.setAttribute(‘‘allocationStrategy’’, strategy);

this.task.setAttribute(‘‘cpu_capacity’’, cpuCapacity);

// create a Globus version of the security context

SecurityContextImpl securityContext =

new GlobusSecurityContextImpl();

// selects the default credentials

securityContext.setCredential(null);

// associate the security context with the task

task.setSecurityContext(securityContext);

// create a contact for the Grid resource

Contact contact = new Contact(‘‘myGridNode’’);

// create a service contact

ServiceContact service =

new ServiceContactImpl(qosServiceURL);

// associate the service contact with the contact

contact.setServiceContact(‘‘QGSurl’’,service);

// associate the contact with the task

task.setContact(contact);

}

/*** QoS: Prepare Job Submission Task ***/

private void prepareQosJobSubmissionTask()

{

// create a QoS JobSumbission Task

Task task =

new TaskImpl(‘‘myTask’’, QoS.JOBSUBMISSION);

this.task.setAttribute(‘‘agreementToken’’, token);

// create a remote job specification

JobSpecification spec = new JobSpecificationImpl();

// set all the job related parameters

spec.setExecutable(‘‘/rashid/myExecutable’’);

spec.setRedirected(false);

spec.setStdOutput(‘‘QosOutput’’);

//associate the specification with the task

task.setSpecification(spec);

// create a Globus version of the security context

SecurityContextImpl securityContext =

new GlobusSecurityContextImpl();

securityContext.setCredential(null);

task.setSecurityContext(securityContext);

Contact contact = new Contact(‘‘myQoScontact’’);

ServiceContact service =

new ServiceContactImpl(qosServiceURL);

contact.setServiceContact(‘‘QGSurl’’,service);

task.setContact(contact);

}

/*** QoS: Task Submission to QoS Handler ***/

private void QosTaskSubmission(Task task)

{

TaskHandler handler = new QoSTaskHandlerImpl();

// submit the task to the handler

handler.submit(task);

}

TABLE I

A SAMPLE CODE SEGMENT FOR QOS NEGOTIATION AND JOB

SUBMISSION TASK, AND TASK SUBMISSION TO QOS HANDLER
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Fig. 2. Data Analysis for the Electron Microscope Formulated as a Workflow
that uses Grid Resources. Progress of the calculation is updated in real-time

moved to the compute resources where they will be analyzed.

Results need to be gathered and presented in a form that is

meaningful to the scientist.

The Java CoG Kit provides a convenient abstraction for for-

mulating these tasks while reusing the patterns for file transfer,

job execution and job management. At the same time it hides

much of the complexity, which the Grid application developer

may not want to see. The overall application presents one of

many scientific use patterns that occur in high-end instrument

scenarios. This includes a high volume of interaction during an

experiment that must be dealt with in an adaptive and flexible

way. Unexpected and unpredicted experiment conditions must

be considered, and the instrument operator’s interface to the

Grid must be as simple as possible while at the same time

providing needed flexibility to interactively modify the exper-

iment setup. This is achieved by reusing the CoG graphical

components and integrating them in a scientific problem-

solving environment that targets the flexible use of such an

instrument.

The need for a flexible infrastructure is demonstrated

through a simple experiment flow depicted in Figure 3. The

elementary logic of the instrument control can be expressed

in a sequence of processes that depend on each other, and we

distinguish the following processes:

• Data acquisition: gathers time-delayed images from the

electron microscope.

• Backup: backs up the incoming data.

• Data analysis: performs scientific calculations on the time

delayed images.

• Result display: gathers the results from the data analysis,

in a form easy to interpret, to enable further judgments

for steering the experiment.

By formulating the process of the experiment through a

graphical interface, the scientist is able to interact through

a graphical component of the instrument and experiment

resources, and has the ability to decide when, what and

where data, gathered during the course of the experiment, is

backed up. Image filters and monitors that are plugged into the

Fig. 3. Asynchronous Processes Define a Workflow Steered by the Scientist
to Support the Problem-solving Process with the help of abstract Grid tasks

workflow for image analysis help to validate the correctness

and usefulness of the running experiment. As the sample in

the instrument may require specialized and individual filters,

the experiment operator must be given a methodology that

allows their easy creation. Due to the focus on the experiment

itself, the use of the Grid should be enabled through simple

abstractions.

Based on the application description, we derive the follow-

ing requirements for QoS:

• Network requirements to transfer the time-delayed im-

ages from the electron microscope in the data acquisition

process.

• Disk storage to cache incoming data during the backup

process.

• Computation power to process the scientific calculations

on the time-delayed images in real-time, as new images

become available in the data analysis process.

• Collect results produced by the data analysis process and

transfer them to a display, where the scientist can interpret

outcomes and further steer the experiment.

VI. CASE SCENARIOS AND REQUIREMENTS

In this section, we address three ‘use case’ scenarios derived

from the application requirements, where we believe a G-

QoSm framework would be of great benefit.

m) Collaborative real-time experiments: Here we envis-

age a group of scientists, located in different domains, who

collaborate in conducting a nanoscale structure experiment.

Each scientist will participate in the experiment by provid-

ing their data ‘images’ from their site and then transferring

them to the data analysis process on a high performance

computing resource. The scientists at correspondent domains

should establish a guaranteed network bandwidth to conduct

data transfer on-time, and, similarly, the scientist, at the data

analysis process location, must establish resource guarantees,

not only for the data transfer but also for computing power

with adequate resources to perform the data analysis and
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produce result in a specific time, when all scientist are online

to interact/steer the experiment.

n) Ad-hoc Real-time Experiments needing Computing

Power: Sometimes scientists conduct experiments to find out,

or verify, certain findings on an ad-hoc basis, i.e. without

prior arrangement. The experiment needs to be conducted

in a Grid infrastructure, with enough computing resources

to perform the desired experiment in a reasonable time and

fulfill the scientist ad-hoc requirements. Here, the scientist

would need to generate the experiment work flow and will

require some commitment from the Grid middleware, that the

required resources for the experiment work flow is indeed

available at this time. This requirement can be accomplished

by submitting a QoS negotiation request to a QoS manager.

The QoS manager can give such commitment if resources are

available at that specific time, or can propose a new available

time, and then it is up to the scientist to accept or reject it.

o) Experiments with Deadline Constraints: Here the

scientist has deadline constraints on delivering the experiment

results, and the Grid resources to undertake the experiment

should be planned ahead to guarantee such requirements. The

QoS manager must be contacted in advance to negotiate a

QoS agreement to guarantee resource availability during the

experiment.

The above ‘use cases’ have the following common elements:

• Need Grid resources with particular capabilities,

• The resources must be available for a pre-defined period

of time, and

• An agreement to indicate the commitment level of re-

source availability.

With these elements in mind, the G-QoSm framework is

engineered to fulfill resource requests with QoS specifica-

tions, perform advance reservations of resources, generate QoS

agreements and execute services, based on pre-negotiated QoS

agreements. The G-QoSm must be able to handle these sce-

narios. We conducted this experiment based on the third ‘use

case’ scenario, at Argonne National Laboratory (ANL). In the

following section we provide an experiment implementation

discussion, and give some performance results.

VII. IMPLEMENTATION AND RESULTS

The implementation test bed was based on Intel Pentium

processor 1.2 GHz and 512 MB of memory. The machine has

Linux and Globus toolkit version 3 OGSI service container, as

well as Globus toolkit version 2. As indicated earlier, the Java

CoG is the API provider for the application. This gives a great

advantage in conducting a comparative performance study,

based on different underlying technologies using the same API

interface. We experimented with the nanoscale application,

using two different approaches: 1) Using a QoS handler and

2) Using a GT2 handler.

A. Time-Domain Example

In this section we show results based on using the frame-

work for resource allocation in a time-domain strategy. Time-

domain means the whole computer is reserved for a particular

application and the application can thus submit multiple jobs

Fig. 4. Plot of Performance Data based on QoS Service Job Submission

Time taken to process images using QoS & GT2

Number − of − Images 25 50 75 90

Dataset1 : QoS 4:40 9:20 13:55 16:55

Dataset2 : GT2 5:20 10:35 15:42 18:25

TABLE II

NUMBER OF IMAGES AND TIME TAKEN TO PROCESS THE IMAGES UNDER

QOS SERVICE AND GT2 BASED JOB SUBMISSION

to the reserved node. We tested this methodology with the

nanoscale application, which is workflow driven, with the

actual computation image analysis based on a given sample

electron diffraction. The sample consists of a large number

of images, for example, 900 images, depending on the res-

olution of the microscope. As the 900 images are from the

same electron diffraction sample, the size, and image pattern,

difference between images is minimal. This implies that the

processing requirement for individual image analysis, from the

same sample, is almost constant.

Our hypothesis is that job submission based on QoS

constraints, in shared resource environments, such as Grids,

perform better than other methods, such as using a standard

GT2 job submission.

To prove our hypothesis we conducted two sets of runs; 1)

job submission based on QoS and 2) a standard job submission

based on GT2 Gram. Each set consists of four runs; a) 25

images, b) 50 images, c) 75 images and d) 90 images. Table

II shows the generated performance result with the number of

images and the time taken to process that number of images.

Figure 4 plots the results from dataset (1), a job submission

based on QoS. The plot is linear, as expected, because images

within a sample are almost identical in size, and very similar in

pattern, and the processing time per image is therefore almost

constant within any one sample. Another observation drawn

from this result is that the linear plot, increasing as the image

number increases, proves the QoS service manages to maintain

reserved resources, throughout the reserved duration of the

experiment. The dataset (2),standard job based on GT2 Gram,

would also produce a linear plot, and shows that it took more

time to process the images compared to the QoS option. This is

because a constant load is applied to simulate a shared multi-

user environment. It is important to note that, in a typical

environment, the plot would not be linear, as the expected
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Fig. 5. User Interface showing Parameters for the QoS Negotiation Task

loading of the system will keep changing dynamically as user

processes start and finish, but in this test we simulate a multi-

user shared environment in a worst case scenario.

From these data our hypothesis is thus proven to be valid.

B. Resource-Domain Example

In this section we show results when the framework used

to allocate CPU resources with QoS specification, using

a resource-domain allocation strategy. The resource domain

implies that a slot of the CPU power is reserved and the

client/application can submit jobs to be executed under such

constraints. The process can be done using the Java CoG Kit

API to create a Task object and then submitting the created

Task to the QoS Handler to negotiate the required resources.

Upon success a service level agreement (SLA) is returned

for use when claiming reserved resource in the future. As

indicated in our architecture Figure 1, the API can be utilized

through a variety of types of application, such as Portals,

Swing and Legacy applications.

For demonstration purposes, we employ, in this example, a

GUI Swing technology to access the API. Figure 5 is a screen-

shot showing parameters required to create a Negotiation Task

to be submitted to the QoS Handler. Figure 6 is a screen-shot

showing a QoS Job Submission Task object being created to

be submitted for execution. Note the executable program is

‘mathAppl’ and needs to be executed within 60% of the CPU

power. Two, computaion-intesive, competing processes where

started (process: compute & delay) before the guaranteed

process ‘mathAppl’ starts, in Figure 7 the 6 most CPU

intensive processes are shown before the guaranteed process

Fig. 6. User Interface showing Parameters for the QoS Job Submission Task

Fig. 7. CPU Utilization of the 6 most CPU-Intensive Current Processes,
before starting the guaranteed process.

‘mathAppl’ gets submitted . Figure 8 is a screen-shot showing

CPU utilization of the 6 most CPU intensive processes after

the guaranteed process has been started. The Figure also shows

the process ‘mathAppl’, as a ‘Guaranteed’ process, colored

red, and utilizing exactly 60% of the CPU power of this Grid

node, while the competing processes utilizing the remainder

of the CPU power.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a discussion on QoS in different

disciplines, including the networking community, distributed

multimedia and Grid computing. We define the QoS matrix

for networking, computation and storage media. General re-

quirement for QoS management, in the context of service

Grids, are outlined. GARA as an example of a popular QoS
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Fig. 8. CPU Utilization of the 6 most CPU-Intensive Current Processes,
after starting the guaranteed process.

framework in the Grid community is discussed, and some of

its shortcomings are highlighted. Then we describe our G-

QoSm architecture, emphasizing the application integration

and describe how practical Grid applications can utilize our

system through the Java CoG Kit API.

We chose the ‘Nanoscale Structures’ application as a typical

Grid high performance computation-intensive application and

demonstrate the usefulness of the G-QoSm architecture for

such class of applications. We also present a number of

‘use case’ scenarios where our framework would be of great

benefit. It is important to note that the proposed architecture is

not only suitable for Nanoscale Structures, but this application

has many similarities to many applications with computation

intensive and networking requirements. We finally show per-

formance results based on a comparative performance of GT2,

and QoS based job submissions. Based on our performance

results the QoS approach stands out amongst other non-

QoS approaches, which validates our hypothesis. Another

important result from this reference implementation is the

practicality of how a non-QoS-aware legacy application can,

with simple API, become a QoS-aware application and can

run on guaranteed resources.

As future work, although in our framework we employ a

simple agreement protocol, we nevertheless intend to investi-

gate this line of research in accordance with the GGF GRAAP

working group WS-agreement standard. We are also in the

process of further investigating resource allocation strategies

and capacity planning.
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