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Statistical Coulomb interactions in conventional scanning electron microscopy mostly affect the probe

size via energy spread and virtual source broadening in the emitter vicinity. However, in a multi-beam

probe forming system such as a multi-beam Scanning Electron Microscopes (MBSEM), the trajectory

displacement due to interactions in the whole column can give a contribution to the final probe size.

For single-beam systems, this can be expressed using approximate formulae for the total trajectory

displacement in a beam segment (Jansen’s theory) or by integrating contributions of infinitesimally

thin beam slices (the slice method). We build on Jansen’s theory of statistical Coulomb interactions

and develop formulae for the trajectory displacement in a multi-beam system. We also develop a more

precise semi-analytical result using the slice method. We compare both approaches with a Monte-

Carlo simulation and show a good agreement with the results of the slice method. Finally, we discuss

the implications of our results for the optical design of multi-beam SEM. In a multi-beam with probe

size dominated by Coulomb interactions, an increase in the number of beamlets does not necessarily

provide an increase of throughput, because the probe size is limited by the total current. Furthermore,

we disprove the notion of “the fewer crossovers – the less Coulomb interactions” by showing the

quadratic dependence of trajectory displacement on segment length.

Keywords: Coulomb interactions; trajectory displacement; multi-beam SEM; electron optics; slice

method.

1. Introduction

Charged particles, unlike photons, interact with each other by the Coulomb repulsion. The

Coulomb interaction in charged particle beams can be described as a combination of three

effects. The space charge effect is the repulsion caused by the averaged charge density of

the beam. The Boerch effect and the trajectory displacement are statistical effects caused by

the stochastic nature of the particle beam. The former describes longitudinal acceleration

or deceleration of individual particles which manifests itself as energy broadening of the

1



2 Jan Stopka, Pieter Kruit

beam. The latter is a transverse effect and, as the name suggests, describes the displacement

of the particle trajectory.1

An analytic solution to the many body problem of Coulomb interactions in particle

beam is not feasible. An exhausting description starting at two particle dynamic and ending

with an approximate but general formula for Coulomb interaction effects using macro-

scopic beam parameters was given by Jansen.2

Although these formulae allow calculation of Coulomb interactions for a wide range of

system parameters such as current, energy or beam dimensions, they are derived for a single

particle beam of cylindrical or conical shape. There are, however, more complicated sys-

tems such as projection- or multi-beam electron lithography machines3, 4 and multi-beam

scanning electron microscopes,5 which can be limited by statistical Coulomb interactions.

Multi-beam systems have a very different beam geometry than single beam systems

and a revision of the formulae is therefore needed in order to be able to estimate statistical

Coulomb interactions in such a system. In the type of multi-beam system that is the subject

of this study, the beam from a single electron source is split in multiple beams, typically

tens to hundreds.6–9 An array of miniature lenses creates an array of source images, which

are subsequently demagnified and imaged onto a specimen using one or more macro-lenses.

In the example of Ref. 8, this demagnification is performed by a standard SEM column.

In the following sections we briefly introduce Jansen’s theory of trajectory displacement

and we modify the formulae to describe a trajectory displacement in multi-beam systems.

2. Theory of trajectory displacement

In this section we give a brief introduction into the analytic model of trajectory displace-

ment (TD) as derived by Jansen.2, 10 For simplicity we assume that the beam is divided into

several segments by thin optical components (lenses). The individual contributions from

the segments can then be combined together to obtain the total TD of the system.

The analytic model of statistical Coulomb interactions is based on the so called two-

particle interaction model. The two-particle model assumes the current to be small enough

that the Coulomb interactions between the particles are rare and the scattering events can

therefore be treated as uncorrelated. Full description of this model is out of scope of this

section and for detailed information see Ref. 2.

There are a few important parameters defining the geometry of the beam segment. There

is the length of the segment L, the distance from the start of the segment to the beam cross-

over Lc and the distance from the start of the segment to the Gaussian image plane Li (for

a multi-beam Lc and Li are generally different). It is useful to normalize the two distances

by the segment length and therefore obtain two dimensionless parameters

Sc =
Lc

L
, Si =

Li

L
. (1)

The lateral geometry of the beam segment is described by the beam radius of the

crossover rc and by the semi-angle of the beam envelope α0. From those we can construct
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the so called characteristic beam diameter

K =
α0L

2rc
. (2)

The beam itself is also defined by the total current I and potential V .

A general formula covering all meaningful settings of the system is not known, and

so it is necessary to interpolate between different regimes which describe asymptotic ap-

proximations. We limit ourselves to relatively low current, or more specifically low dimen-

sionless particle density. The dimensionless particle density is given by a ratio between the

average kinetic energy in the frame of reference moving with the beam and the potential

energy between a pair of particles with average axial separation. It can be expressed as

λ∗ =
e2λ/4πε0

m (α0vz)
2
=

√

me

27π2ε2
0
e
·

I

α2

0
V 3/2

. (3)

For values of I ≈ 100 nA, V ≈ 5 kV and α0 ≈ 0.1mrad we have λ∗ ≈ 0.2. Typically

we deal with lower currents, higher energies and larger semi-angles, so λ∗ ≪ 1, therefore

the mutual potential energy is much less than the transverse kinetic energy and thus the

collissions are weak and we can consider only Holtzmark and Pencil beam regimes. The

Holtzmark regime describes the asymptotic case where the charge is uniformly distributed

in the whole 3D space. Pencil-beam, on the other hand, describes the case where the dis-

tance of the particles to the optical axis is much less than their longitudinal spacing. There

are formulae for trajectory displacement in these regimes:2

FW50,HT = 2.35 · SHT (Sc, Si,K) ·
L2/3I2/3

α
4/3
0

V 4/3
, (4)

FW50,PT = 2.16 · 1030 · SPT (Sc, Si,K) ·
L3α0I

3

V 5/2
(5)

The constants are in SI units. The functions SHT and SPT are specified by Jansen.10

Usually, we are not entirely in one of those regimes and therefore it is necessary to take

both contributions into account and interpolate between them using the power-sum rule:1

FW50 =
(

FW
−6/7
50,HT + FW

−6/7
50,PT

)−7/6

(6)

3. Trajectory displacement in a multi-beam system

In a multi-beam system, the aim is to project an array of (virtual) sources into the image

plane. In our case we assume a square array of N × N sources, but the concept can be

easily extended to other geometries as well. Ideally, all beamlets are focused in this plane.

However, this is challenging to achieve due to geometrical aberrations of the lenses. One

way to minimize the effect of geometrical aberrations is to position all the lenses either

in an image plane where all beamlets are focused or in the common crossover plane.11

Such a geometry can be treated as a series of segments described in figure 1 or its mirror

counterpart.
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N

p

2rc

L

Figure 1. Multi-beam segment section. The segment is described by four parameters: N the number of beamlets

in one row/column, p the pitch, L the length of the segment and rc the field radius in the common crossover.

For such a segment we have Si = 0 and Sc = 1. The formulae (4) and (5) are derived

for a single beam segment. In order to use them for the multi-beam segment, we approx-

imate the multi-beam field by a single fully filled segment. This approximation is valid

for a sufficiently large number of beamlets, but it would fail for a system with only a few

beamlets. For a square array of N2 beamlets with a pitch p, this approximation replaces

the square array by a circle of the same area. The radius of the circle is thus r1 = Np√
π

.

Since the crossover is at the end of the segment, this radius is related to the semi-angle

α0 = r1
L = Np√

πL
. This gives the characteristic beam diameter K = Np

2
√
πrc

.

With this setting, the functions SHT and SPT take the form

SHT = 3 ·
1 + 4

3
K − (1 + 2K)

2/3

2K2/3
, (7)

SPT =
3 + 2K

K
. (8)

Finally we get for trajectory displacement in multi-beam segment for Holtzmark and

pencil-beam regime respectively:

FW50,HT =7.41
L2I2/3

Npr
1/3
c V 4/3

·

·

(

1 +
3

4K
−

3

4K1/3

(

2 +
1

K

)2/3
)

,

(9)

FW50,PT =2.44 · 1030 ·
NpL2I3

V 5/2

(

1 +
3

2K

)

(10)

4. Slice method

The above mentioned formulae (9) and (10) work best for a segment operating under one

particular regime (either Holtzmark or pencil beam). For an intermediate regime, the inter-

polation formula (6) seem to give a good approximation for single beam segments. How-

ever, this may not be the case for multi-beam segments and we should check this carefully.

An alternative for interpolating between between the results of the purely Holtzmark and
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pencil-beam regime as in equation 6, is to use the slice method.12 This consists of calculat-

ing the total TD contribution from all regimes in thin cylindrical slices across the segment

length and integrating these total TD contributions to obtain the TD in the segment. The

differential contributions for Holtzmark and pencil beam regime in a thin slice of thickness

∆z can be expressed2 as

∆FW50,HT

∆z
= CH

I2/3

V 4/3r
4/3
c

z − zi
(

1 + α0|z−zc|
rc

)4/3
, (11)

∆FW50,PT

∆z
= CP

I3rc
V 5/2

(z − zi)

(

1 +
α0|z − zc|

rc

)

(12)

with CH = 1.393 and CP = 2.593 · 1031 in SI units.

We can combine both regimes with the addition rule

∆FW50 =
(

∆FW
−6/7
50,HT +∆FW

−6/7
50,PT

)−7/6

. (13)

The trajectory displacement can then be calculated as

FW50 =

∣

∣

∣

∣

∣

∣

L
∫

0

∆FW50

∆z
dz

∣

∣

∣

∣

∣

∣

. (14)

The direct integration of total differential contributions using the slice method has the

potential of being much more precise than the power sum of the total trajectory displace-

ments for the two regimes. On the other hand, the integral can not be expressed analytically,

so it is not that straightforward to see dependencies on individual parameters of the system.

5. Boerch effect in a multi-beam system

In a single beam probe forming system it is often not the trajectory displacement that is of

most concern, but rather the Boersch effect – broadening of the energy distribution due to

statistical Coulomb interactions.

The reason is the chromatic aberration of the system, which is typically dominant over

the trajectory displacement.

However, this is not the case for a multi-beam system where an array of focused spots is

imaged because with the same beamlet semi-angles and lens excitations as in single-beam

system we have much larger total current.

To get an estimate of the Boerch effect for a multi-beam, we use expressions for a seg-

ment geometry with a narrow crossover:

∆EFW50,H

E
= 0.891

m
1/3
e

ε0

I2/3

r
1/3
c α0V 4/3

, (15)

∆EFW50,P

E
= 0.642

me

ε0e2
I2L

V 2
, (16)

∆E50

E
=

1

E

(

∆E−4

50,H +∆E−4

50,P

)−1/4

(17)
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Figure 2. Differential contribution to trajectory displacement for Holtzmark (dashed) and pencil-beam (dotted)

regimes and the corresponding power-sum (solid) as functions of position within the segment. A transition from

Holtzmark to pencil-beam regime across the segment is clearly visible.

This expression gives an energy spread of about 0.05 eV for a typical setting with ∼ 100

beamlets, 500 pA beamlet current, 5 keV energy, 0.1mrad semi-angle, 100µm crossover

radius and 500mm segment length. This is much lower than the energy spread of the emit-

ter (∼ 0.8 eV for a Schottky emitter), so the Boerch effect in multi-beam can be in our case

neglected.

6. Monte Carlo simulation

In order to validate our formulae for the trajectory displacement in a multi-beam system

we performed a Monte Carlo simulation using the software General Particle Tracer.13 Ex-

perimental verification of Monte Carlo simulation of statistical Coulomb interactions in

multi-beam system was performed in Ref. 14.

The layout of the simulation follows the segment geometry depicted on figure 1. A

large number of particles (n = 4 ·105) is launched from a square array of N2 point sources

towards a common crossover. The temporal distribution of the particles is uniform. The

angular distribution within each beamlet is also uniform.

Since the common crossover is not in the image plane, in order to determine the trajec-

tory displacement it is necessary to back-project the particles from the common crossover

to the starting plane. There we see a clear blur of the originally point-like source. In order

to estimate the FW50 of the spot we first determine its center as a point (medx,med y).

Then for each particle we calculate its distance to this center. Double the median of these

distances is our FW50 estimate. This metric is simple, but robust, reliable and resilient to
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Beamlet current Ib [ nA] 0.1, 0.2, 0.3, 0.45, 0.65, 0.85, 1.0

Energy V [ keV] 3, 5, 7, 9, 11, 13, 15, 17, 20

Segment length L [ mm] 100, 150, 200, 250, 300, 350, 400, 450

Semi-angle α [ mrad] 0.06, 0.09, 0.13, 0.20, 0.30, 0.45, 0.68

Pitch p [µm] 20, 40, 60, 80, 100, 130, 160

outliers.

A base setting was chosen and for each of the system parameters a number of runs was

performed to deduce the dependence on each parameter. The set of parameters is described

in table 1 with the base setting typed in bold. For all runs the beamlets were arranged in

a square array of 14× 14 beamlets.

7. Comparison of the methods

The results of the Monte Carlo simulation can be compared with the theoretical calculation

using the integral formulae (6), (9), (10) and the slice method using (11), (12), (13). The

comparison is shown in figure 3.

The integral formula gives TD in the correct order of magnitude and some trends such

as the quadratic dependence on segment length or current and voltage dependence are pre-

dicted fairly well. However, the integral formula fails to accurately describe dependence on

the cross-over radius due to the transition between Holtzmark and pencil-beam regime.

On the other hand, the slice method provides an elegant solution to the problem with

the transition. We can see that the slice method fits the Monte-Carlo simulation very well

and even predicts correctly the dependence on the common-crossover radius.

8. Dependence on beamlet position

The theory and expressions developed so far are only valid for the central beamlet. The

effect of trajectory displacement is weaker for beamlets further away from the axis. We

can predict the trajectory displacement in the outermost (corner) beamlet by the following

consideration. Let us think about the field as four congruent, touching fields with each one

quarter of the current. From the two particle interaction approximation we can deduce that

when part of the field is rotated around a certain beamlet, the trajectory displacement in

the beamlet does not change. This lets us ”unwrap” the four components around the corner

beamlet effectively making it the central beamlet of a different multi-beam setup. Thus the

trajectory displacement of the corner beamlet can be calculated using the same formulae as

for the center beamlet, but with a transformation Ib 7−→ Ib/4 and N 7−→ 2N , at the same

pitch. The transformation is explained in figure 4.

The ratio between the trajectory displacement for the innermost and outermost beamlet

depends on N . For values of about N ∼ 10 it is less than 2, so the trajectory displacements

for all beamlets are comparable. To obtain the trajectory displacement for any other beamlet

we can use linear interpolation of the two (dependent on distance of the beamlet from the

axis).
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Figure 3. Comparison of analytical formulae for the total TD (dashed line), the slice method calculation (solid

line) and Monte-Carlo simulation (dots) with base setting emphasized (a cross). Dependence of trajectory dis-

placement on various parameters of the system.

Validity of this prediction was tested by a Monte-Carlo simulation described in the

previous section. The transformed analytical formula does not describe the trajectory dis-

placement of the outer beamlet very precisely (off by a factor of 0.7). However, the slice

method using transformed formulae fits the simulated data very well.

9. Implications for design of MBSEM

The studied behavior of trajectory displacement has important implications for the design

of electron optics of TD limited systems such as the MBSEM. The first is the obvious

conclusion that a shorter system is better, similar to all systems with trajectory displace-

ment. The second is that the quadratic dependence of TD on segment length suggests that
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Figure 4. Unwrapping the field around the corner beamlet moves it into the center of the field. The TD for the

corner beamlet can be then calculated using the formula for the central one with a transformation Ib 7−→ Ib/4
and N 7−→ 2N .

having a system with multiple shorter segments can reduce the effect of trajectory displace-

ment. A Monte Carlo simulation verified this behavior. There are, of course, limitations, as

multiple shorter segments require more lenses and thus may introduce larger geometrical

aberrations. Let us return to the question of how to add the contributions from different

segments. For a single beam system with the image plane in the cross-over (Sc = Si), the

displacement contributions from both sides of the cross-over add up and there are argu-

ments to add the contributions from subsequent sections linearly as well if the individual

collisions are incomplete throughout the column. In the multi-beam configuration, how-

ever, displacements on one side of the cross-over may compensate displacements at the

other side. Further study of this effect is underway.

Another important remark concerns the number of beamlets in a MBSEM. The through-

put of a system is roughly given by the total current of the multi-beam. For low number of

beamlets or low currents, the probe size is given by geometrical aberrations of the system.

Increase in number of beamlets thus gives higher total current with the same probe size.

However, for high number of beamlets or high beamlet currents the probe size is domi-

nated by trajectory displacement and increase in number of beamlets does not improve the

throughput anymore, since in order to preserve the probe size it is necessary to decrease the

beamlet current.

Last but not least it is worth noting that the TD in a segment manifests itself in the

image plane of the segment and effectively behaves as an enlargement of the source size.

For large currents it is therefore advantageous to increase the demagnification of the system,

as the TD is demagnified along with the virtual source. When we combine this argument

with the above analysis on the number of beamlets, it may turn out that a larger number of

beamlets even has a disadvantage as compared to an intermediate number: a larger N leads

to a smaller pitch in the object plane of the segment. A large demagnification may then lead

to an unacceptably small pitch at the specimen.

10. Conclusions

This article studied the trajectory displacement in a simplified segment of a multi-beam

system. We approximated the multi-beam by a fully-filled circular single-beam of the same

dimensions to use the well-known expressions for trajectory displacement in a single-beam
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segment.

This allowed us to derive an analytic expression for the total trajectory displacement in

a multi-beam segment as well as a differential contribution from a thin slice of the segment.

Both approaches were compared with a Monte Carlo simulation of the multi-beam segment.

While the Monte Carlo method gives most reliable results, it is very time consuming and

it gives no insight into the overall behaviour of the trajectory displacement. We have shown

that the analytic expressions for trajectory displacement fail to give accurate estimates for

a segment with a transition from one regime to the other. On the other hand, the slice

method is a fast and reliable way to accurately estimate the trajectory displacement even

for configurations with such a transition.
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