Wavefront measurement interferometry at the operational
wavelength of extreme-ultraviolet lithography
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Two basic types of interferometer, a point diffraction interferometer (PDI) and a lateral shearing inter-
ferometer (LSI) suitable for operation in the extreme-ultraviolet (EUV) wavelength region, are described.
To address the challenges of wavefront measurement with an accuracy of 0.1 nm rms, we present a
calibration method for the PDI that places a mask with two large windows at the image plane of the
illumination point light source and a general approach to deriving the phase-shift algorithm series that
eliminates the undesired zeroth-order effect in the LSI. These approaches to improving the measurement
accuracy were experimentally verified by the wavefront measurements of a Schwarzschild-type EUV

projection lens.
OCIS codes:

1. Introduction

By 2013, if we stay on the semiconductor indus-
try’s historic productivity curve, photolithography on
wafers will be called for with critical feature sizes as
small as 32 nm and below. Extreme-ultraviolet li-
thography (EUVL) tools will possibly help us achieve
such critical dimension features and now is targeted
to resolve minimum feature sizes of 32 nm and be-
low. Among other potential next-generation lithog-
raphy tools, EUVL preserves the experience and
advantages of conventional optical lithography but
produces high resolution due to its extremely short
wavelength. However, since the light in the extreme-
ultraviolet (EUV) wavelength region is not transmit-
table through most optical materials, it brings with
it one of the largest difficulties in the manufacture
of both projection lenses and its metrology system. In
the final characterization of the wavefront aberra-
tions of lithographic projection optics with all-
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reflective optical components, some research has
shown potential uncertainty due to the response of
the resonant-reflective multilayer coatings when
tested at different wavelengths [1]. In this respect,
wavefront characterization at the operational wave-
length carries unambiguous performance informa-
tion about the test optics. This becomes the key driver
for developing EUV metrology. The typical wave-
length of 13.5 nm is determined by the highest re-
flectivity one can get out of the Mo—Si multilayers
coated on the surface of reflective components oper-
ated in the EUV wavelength region. In this paper, we
provide descriptions of a point diffraction interferom-
eter (PDI) and a lateral shearing interferometer (LSI)
applied to wavefront metrology for EUVL lithogra-
phy. The projection optics is aligned with a resulting
wavefront error of ~1 nm rms. Such a wavefront tol-
erance places extremely high demands on the at-
wavelength interferometry to provide measurement
accuracy of the order of less than 0.1 nm rms. To
achieve such high measurement accuracy, inter-
ferometer calibration and noise-insensitive phase
analysis are essential issues. We present a simple



and easy-to-handle calibration method for the PDI
and a phase-shifting algorithm series for the LSI. We
report our experimental wavefront measurement of
a 0.2 NA Schwarzschild-type lithographic projection
lens on both the PDI and the LSI to verify the cali-
bration method and algorithm series proposed in this

paper.

2. Descriptions of the Point Diffractive Interferometer
and the Lateral Shearing Interferometer

A schematic diagram of the PDI used in our experi-
ment is shown in Fig. 1(a). The test optics is illumi-
nated with spatially coherent light that is diffracted
at the first mask from a pinhole smaller than the
diffraction-limited focused spot for a certain illumi-
nation numerical aperture, so that the aberration
from the optical source is spatially filtered out by it.
A second mask with a large window and a small
pinhole is placed at the image plane of the tested
optics conjugated with the first pinhole mask. A grat-
ing is inserted into the beam upstream of the test
optics and functions as a beam splitter in a typical
interferometer. Thereafter, the beam is divided into
high-order diffracted beams with small angular sep-
aration. The window transmits the first-order beam
containing aberrations caused by the test optics and
grating, and the pinhole, which is smaller than the
diffraction-limited focus of the tested optics, diffracts
the zeroth-order beam and generates a spherical
wavefront that is used as a reference wavefront for
interferometry. The two wavefronts produce interfer-
ence fringe patterns, and the fringes can be detected
by a CCD camera and analyzed to obtain the aberra-
tion information of the test optics.

EUV interferometry is also performed with LSI
using a cross-grating beam splitter and applying a
Fourier transform phase retrieval algorithm. This
approach has been demonstrated to produce results
consistent with the PDI to ~0.3—0.5 nm rms [2,3].
Other configurations of the LSI featuring double
gratings [4] or a cross-grating setting in the Talbot
plane [5-7] have been proposed as well. Basically,
lateral shearing interferometry consists of displacing
the defective wavefront laterally by a small amount
and obtaining the interference pattern between the
original and the displaced test wavefronts. Figure
1(b) shows the schematic diagram of our LSI system.
An aberration-free spherical wavefront is generated
by diffraction at the first pinhole placed in the object
plane just as in the PDI. After passing through the
test optics, the wavefront is diffracted by a linear
binary grating or a cross grating. An order-selection
mask that has two or four large windows is placed at
the image plane. The window mask is set for blocking
the undesired diffraction orders and selecting the test
beams, in this case the *1st orders. By using the
order-selection mask for spatial filtering, optical
noise is reduced and measurement precision is im-
proved. The *1st-order diffracted waves, which carry
the aberration information of the test optics, interfere
with each other. The interference fringe pattern can
be detected with a CCD camera. To reconstruct the
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Fig. 1. Configurations of our experimental systems. (a) PDI: The
second window transmits the first-order beam containing aberra-
tions caused by the test optics and the second pinhole diffracts the
zeroth-order beam and generates a spherical wavefront, which is
used as a reference wavefront in the PDI. (b) LSI: The two windows
on the mask transmit *1st-order diffracted waves. Both of them
carry the aberration information of the test optics but laterally
shifted by a small amount. The original and the displaced test
wavefronts produced the interference pattern in lateral shearing
interferometry.

wavefront of the test optics, two sheared wavefronts
normally in the orthogonal shear directions are re-
quired. The larger shearing amount is preferred to
achieve higher measurement accuracy, while at the
same time, the smaller grating pitch and the smaller
space distance between the mask and grating are
demanded. Phase analysis is carried out with a
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phase-shifting method or Fourier transform phase
retrieval.

3. Calibration Method for the Point Diffractive
Interferometer

In the PDI configuration, the interferograms carry
not only the phase differences between the test wave-
front and reference wavefront but also the systematic
aberration errors in the interferometer. Factors that
determine the accuracy of the PDI include hyperbolic
fringes (geometric coma), grating diffraction (coma),
CCD camera-plane tilt and grating tilt, etc. [8]. Fig-
ure 2 illustrates the calibration measurement princi-
ple we proposed for the PDI. To achieve better fringe
contrast, the zeroth-order beam focuses on the pin-
hole and the first-order beam of the test wavefront
passes through the window; therefore the tested
wavefront is a combined result of the test projection
optics aberration and the grating diffraction aberra-
tion error, which only occurs in the diffracted beams.
To extract the true wavefront of the test projection
optics from the tested wavefronts, two measurements
are needed. One measurement is carried out using
the regular PDI configuration with a pinhole—-window
mask, and the other measurement is carried out with
a window—window mask under the same diffraction
order of the grating. Subtracting one measurement

PDI Calibration
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CCD camera

Fig. 2. Illustration of the calibration principle for the PDI: Two
measurements were carried out by using two different mask
patterns. Subtracting one measurement from the other, the re-
sult is the direct comparison between the wavefront aberration
of the test optics and the ideal wavefront diffracted from the
small pinhole.
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from the other, the resulting wavefront is a direct
comparison between the wavefront aberration of the
projection optics and the reference wavefront dif-
fracted from the second small pinhole. In a way, one
can think of this as using an aberrated reference in
the interferometer.

As a further explanation, assuming measurement
T,, taken with a pinhole-window mask, is described by

T, = (WT1 + WR1) + Wsys1 — Wgo, @)

where W, is the real aberration of the test optics,
deviated from an ideal spherical wavefront Wy,
that passes through the first-order window. Wy, is
the zeroth-order diffraction-limited ideal reference
spherical wavefront diffracted from the second pin-
hole of the PDI in Fig. 1(a). Wy; — Wy, is the geomet-
ric optical path difference due to the two decentered
nonaberrated spherical wavefronts, which produce
the hyperbolic fringes that were analyzed to produce
a systematic error in the PDI as tilts and comas.
Wsys1 are the PDI systematic aberration errors,
mainly including the diffraction error due to first-
order diffraction of the grating and the positioning
error of the fringe image detector, etc. If directly tak-
ing T as the measured aberration of the test optics,
the measurement accuracy is heavily dependent on
the amount of the PDI systematic errors Wgyg,
whereas Wy, — Wg, can be removed based on calcu-
lation. To improve the measurement accuracy by re-
moving the PDI systematic errors Wgyg;, here we
propose a method by taking a second measurement 7',
with a window—window mask as shown in Fig. 2 that
can be described as

Ty=(Wrp+ Wgi) + Wayss = (Wro + Wre),  (2)

where Wy is also the real aberration of the test optics
but passes through the zeroth-order window instead
of through the second pinhole in the first measure-
ment as described in Eq. (1). Subtracting the two
measurements of Eqs. (1) and (2), the difference be-
tween these two measurements is the real aberration
of the test optics, i.e.,

Wy=T;—Ty= Wy 3)

Therefore using the obtained W; as the final mea-
surement instead of T'; in the conventional PDI could
improve the absolute measurement accuracy since
the systematic error Wgyg; in Eq. (1) has been re-
moved. Furthermore, numerically shifting W in the
amount of A corresponding to the zeroth- and first-
order diffraction beam separation in the image, Eq.
(3) becomes

Wy a=Wro1=Wpy. 4)



Then subtracting Eq. (4) from the PDI measure-
ment of Eq. (1), we obtain

Wy=T,—W;3. 2= Wsysi + (Wgr1 — Wro). (5)

W, gives the total systematic errors, including the
grating diffraction error, which exits only in the dif-
fraction order, the geometric aberration caused by
laterally shifting two ideal spherical wavefronts, and
the positioning error of the fringe image detector ef-
fects. The precondition of this calibration method
assumes the PDI produces the ideal spherical wave-
front from both the first and second pinholes. The
calibration accuracy could be affected by the varia-
tions of environment and the small systematic error
deviations between the two measurements of Egs. (1)
and (2).

4. Phase-Shifting Algorithm Series for the Lateral
Shearing Interferometer

In the LSI, to address the problem of undesired dif-
fraction interference of Oth and higher orders, al-
though the even orders are suppressed by choice of a
duty ratio of 50% and a sideband filter, placed at the
focal plane of the optics to select the wanted *1st
order beam and stop the undesired Oth and higher
diffraction orders, a certain percentage of the Oth
order beam leaks through the *1st-order window
(Fig. 3) and that can reduce the measurement accu-
racy. To solve this problem, we propose using the
general approach [9,10] to derive a phase-shift algo-
rithm series that can suppress the zeroth-order ef-
fect. We express the actual phase in a convenient
form that takes the errors into account and develop
the detected phase from a generic algorithm. Setting
to zero the terms that involve unwanted errors leads
to a set of algorithm coefficients, which can thus be
found. By using this approach, one could develop an
algorithm series for an individual interferometer
based on relevant concerns about the main error
sources and eliminate the error source effects to any
desired order.

Here we express a three-beam interferometer, i.e.,
two signal beams and one noise beam. The central
task is to estimate the interference phase of the sig-
nal without the effect of the noise beam. In the Fig.
1(b) LSI setup, the three interfering wavefronts are
the —1st order, E_; = a_; exp(kW_,); the Oth order,
E, = ayexp(kW,); and the 1st order, E, = a4
exp(kW,), of the grating, where a_;, ay, a; and W_,,
W,, W, are amplitudes and phases of the —1st, Oth,
and 1st orders of the diffraction wavefronts. The in-
terference fringe intensity of the three wavefronts
are expressed as

Fig. 3. Illustrating that, although the order-selective window is
designed to only pass the test beam, i.e., the 1st- (or the —1st-) order
diffraction beam, the Oth-order noise beam could spread and pass
through the order-selective window, too; therefore it interferes
with the test beam and as a result it reduces the measurement
accuracy.

80— aOZ + a12 + a,lz + 2a0a1 COS[k(Wl - Wo)]
+ 2(10(171 COS[k(WO - Wfl)]
+ 2a,a_, cos[k(W; — W_y)], (6)

where W; — W_; expresses the shear wavefront,
which is to be tested, and W; — W, and W, — W_; are
noise due to the unwanted zeroth-order beam. As-
suming the grating displacement is Ax and the grat-
ing pitch is p, the phase-shift amount A¢ follows the
function

Ad = 2mmAx/p, (7

where m is the diffraction order of the wavefront.
Therefore taking the undesired zeroth-order into ac-
count, we have

(83— 8-3) — (81— &-1) =8aa_; sin[k(W; — W_y)], (8)

(84 +g—4)/2 — (82t 8-2) T80 =8aia_ cos[k(W;— W_y)],
9

which are free from the zeroth-order wavefront,
where g 4,8 5,...,80,...,83 &4 are fringe intensi-
ties with m/2 phase shifts between W; and W_,.
Therefore, the detected phase with the nine-frame
algorithm from Egs. (8) and (9) is

2(83—8-3) —2(81—8-1)

(CaT8-4)—2(82+t82) + 28]
(10)

k(W,—W_,)=tan™"

The phase-shifting algorithm that immunizes the
zeroth-order noise beam effect generally takes the
form

N
mEZO [2(g4m+3 _g’(4m+3)) - 2(g4rn+1 _g—(4m+1))]

k(Wl - Wfl) = tan71 N

m=0

, (1D

[(am+a T 8- cam+ay) — 2(8amra T 8- (am+2)) T (8am T &-4m)]

20 September 2007 / Vol. 46, No. 27 / APPLIED OPTICS 6786



where m and N are integers.

5. Experimental Setup

The NewSUBARU synchrotron facility at the Univer-
sity of Hyogo is an electron storage ring, the electron
energy of which is 1 GeV. The long undulator (LU) is
inserted into one of the straight sections and is
10.8 m long. The periodic length of the LU magnetic
field is 5.4 cm, and the periodic number is 200. The
so-called K factor of the LU is set to be ~1.3 to yield
the 13 nm radiation. This way, the LU was optimized
to yield strong radiation near 13 nm. To select the
best suitable conditions to evaluate the wavefront
quality of the optical projection lens at the manu-
facturing level, we have built an EUV experimental
measurement interferometer (EEI) (Fig. 4) using
Schwarzschild-type test optics and installed the
system in the NewSUBARU beam line of the LU.
The beam coming from the undulator is focused
on the first pinhole mask placed at the object plane
of the test optic by a Schwarzschild-type illumina-
tor. The EEI has five piezostages for precise align-
ment of optical components such as pinhole masks
and gratings. Each mask and grating contains many dif-
ferent patterns and gratings. We can easily change
the type of testing interferometer by exchanging pat-

EUV beam from
NewSUBARU undulator

terns on these masks and gratings. The test optics
was designed to have a demagnification of 20X and
an image-side numerical aperture of 0.2. The mirror
surfaces were coated with Mo—Si multilayers.

In the PDI, a beam-splitter grating was placed up-
stream of the optics, following the configuration
shown schematically in Fig. 1(a). The PDI uses a
small pinhole on the first mask and an aberration-
free spherical wavefront is generated by the pinhole.
The spherical wavefront is divided into the Oth- and
+1st-order diffracted waves by a binary grating.
These waves pass through the test optics and arrive
at a second pinhole mask, which has a small pinhole
and a large window. The zeroth-order wave passes
through the small pinhole and generates a spherical
wave again. One of the first-order diffracted waves
goes through the large window, carrying the aberra-
tion information of the test optics. These two waves
interfere and the interference fringes are observed by
a CCD camera. In the calibrated PDI, illustrated in
Fig. 2, proposed in this paper, the mask pattern con-
taining two large windows was also included. The
absolute PDI uses two measurements. The first mea-
surement is carried out using the standard PDI con-
figuration with a pinhole-window mask. The second
measurement is carried out with a window—window
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Fig. 4. Experimental setup: The beam coming from the undulator is focused on the first pinhole mask placed at the object plane of the
test optic by a Schwarzschild-type illuminator. The EEI has five piezostages for precise alignment of optical components such as pinhole
masks and gratings. Each mask and grating contains many different patterns and gratings for the different types of interferometer.
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mask under the same diffraction orders of the grat-
ing. The second measurement is used as calibration
data of the systematic error of the interferometer.
Only the first-order beam includes the diffraction ab-
errations. Both measurements have the same sys-
tematic errors. According to Eqgs. (1)—(3), subtracting
one measurement from the other, the result is a di-
rect comparison between the wavefront aberration of
the test optics and the ideal wavefront diffracted from
the small pinhole.

The LSI, illustrated in Fig. 1(b), was realized by
placing a grating beam splitter downstream of the
optics and the mask was chosen to contain two large
windows in the image plane so as to transmit the
+1st orders. When the initial pinhole is illuminated
by the EUV radiation, an aberration-free spherical

wavefront is generated by diffraction at the first pin-
hole. The aberration-free wave goes through the test
optics. The wave passing through the optics is aber-
rated and diffracted by a binary grating. An order-
selection mask is placed at the image plane of the
optics under test. The mask has two large windows
that act as a spatial filter. Only the *=1st-order dif-
fracted waves can pass through the windows and Oth
and higher order diffracted waves are blocked by the
order-selection mask. By using the order-selection
mask for spatial filtering, noise is reduced and mea-
surement precision is improved. The =1st-order
diffracted waves, which carry the aberration infor-
mation of the test optics, interfere with each other
and the fringe patterns are detected with the same
CCD camera as for the PDI.
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Fig. 5. Comparisons between two different calibration methods: The agreement between these two different methods confirmed our
proposed calibration principle experimentally as the rotation method is generally considered one with high accuracy and reliability. The
9th, 16th, and 25th Zernike orders are not compared due to their axial symmetry. The 17th, 18th, 28th, and 29th orders are not compared
due to the choice of rotation angle of 90°. (a) Systematic aberration errors expressed in Zernike polynomials measured by the two different
calibration methods (sys-rot: obtained by the rotation method; sys-w-w: obtained by the proposed method in this paper). (b) Differences
between the systematic errors in the PDI measured by these two different calibration methods.

20 September 2007 / Vol. 46, No. 27 / APPLIED OPTICS 6788



6. Proof-of-Principle Experiments

A. Calibration Method for the Point Diffractive
Interferometer

To experimentally assess the calibration accuracy of
our proposed method in Section 3, on the one hand,
following the measurement principle illustrated in
Fig. 2, we took two measurements with the window—
pinhole mask and the window—window mask on an
EEI, respectively, and calculated the total systematic
aberration of the PDI with Eq. (5). On the other hand,
we used one other conventional calibration method
and measured the same Schwarzschild-type projec-
tion optics in two different orientations of the test
optics, by rotating the test optics axially 90° while the
systematic errors were kept unchanged as follows:

TR = (Wp,™ + Way) + Weys: — Who, (12)

where T,® is the tested wavefront after the tested
optics is rotated 90°. W, denotes the wavefront of
the tested optics after it is rotated. By further rotat-
ing the tested wavefront numerically back in the op-
posite direction from Eq. (12),

Ws = (Wry + WRI_R) + Weyss T=Wgo ® (13)

was obtained. By subtracting measurement Eq. (13)
from measurement Eq. (1), we have

T~ Ws=(Wsys: — WSYSliR) + (Wgr1 — Wro)
- (WleR - WR()?R). (14)

The tested wavefront is used to expand into a set of
basic orthogonal functions. For the ring field such as
that produced by a Schwarzschild optical system,
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Fig. 6. Larger deviations among the measurements before calibration are considered mainly due to the different systematic errors in the
different PDI structure. The consistency in the results after employing our proposed calibration method indicates the achievable calibration
accuracy experimentally. (a) Measured wavefronts on an EEI based on the configuration of the Fig. 1(a) PDI before calibration. (b)
Measured wavefronts on an EEI based on the configuration of the Fig. 2 PDI after calibration.
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these expansion functions are annular Zernike poly-
nomials. The optimal coefficients are determined
based on the least-squares fitting method. From the
two measurements before and after the optics was
rotated, one can only obtain the axially asymmetric
components of the total systematic aberration:

We = Wgys1 + (Wr1 — Wro). (15)

We finally obtained the annular Zernike polynomial
coefficients of the systematic aberration from these
two methods based on Eqs. (5) and (14) and plotted
them in Fig. 5, noted as sys-w-w for our proposed
method and sys-rot for the other rotation method.
Although the calibration method proposed in Section
3 is also able to detect the axially symmetrical com-
ponents, only the axially asymmetrical components
of the systematic aberration are shown in Fig. 5 for
comparison. As a result, we reconstruct the obtained
systematic error wavefront with the calculated coef-
ficients shown in Fig. 5(a) and the corresponding an-
nular Zernike polynomials; the systematic aberration
wavefront of the PDI had a rms value of 1.31 nm from
our proposed calibration method and 1.29 nm rms
from the rotation calibration method. Taking the

PDI-R iy

0.16 Arms

PDI-L iy

0.17 A rms

CAL-Rit2

0.09A rms

CAL-L

0.09Arms

differences of these two measured sets of annular
Zernike coefficients as shown in Fig. 5(b) and in the
same way above, we reconstruct the wavefront dif-
ference between these two methods; the rms value of
the wavefront differences was 0.086 nm. The agree-
ment between these two different methods proved
our proposed calibration principle experimentally
and also indicated the achievable high accuracy of
our proposed calibration method for the PDI, by com-
parison with the rotation method as it is generally
considered one with high accuracy and reliability.
Figure 6 shows measured results based on the
PDI setup but with four different arrangements.
PDI-R is with the pinhole on the right side of the
window, whereas PDI-L is on the left. PDI-U and
PDI-D are with the pinholes on the upside and
downside, respectively. Each PDI used a different
diffraction pinhole as a reference. PDI-R and PDI-L
used the same grating, whereas PDI-U and PDI-D
shared another orthogonal grating. The maximum
deviation to the averaged measurement aberration
wavefront of the four PDIs is ~0.35 nm rms before
calibration [Fig. 6(a)]. But after taking second mea-
surements with two large windows following Fig. 2
and subtracting the systematic aberration errors

ABS-R iwa

0.10Arms
ABS-L iwa

0.11 Arms

Fig.7. Measured wavefronts on an EEI to illustrate the principle of the calibration method described in Section 3. Some of the wavefronts
expressed in Zernike coefficients have appeared in Figs. 6(a) and 6(b).
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from them respectively as indicated with Eq. (3), the
measurement results from these calibrated PDIs at-
tained consistency within 0.14 nm rms [Fig. 6(b)].
The larger differences among the measurements be-
fore calibration are considered mainly due to the
different systematic errors in the different PDI struc-
ture. The consistency in the results after employing
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Fig. 8. Measured interferometric fringes of the LSI on an EEI
used in the comparisons of different algorithms to verify that Eq.
(10) itself is sufficient to eliminate the zeroth-order beam effect as
its principle implied. (a) Example of the measured fringe of the LSI
[Fig. 1(b)] with the zeroth-order noise beam effect remaining. (b)
Example of the measured fringe of the LSI where the zeroth-order
noise beam was partially removed by the Fourier transform method
for comparison.
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our proposed calibration method indicates the achiev-
able calibration accuracy experimentally. The main
remaining errors could be due to the reference wave-
front defects in the PDIs. Figure 7 illustrates the
calibration procedure by measuring the wavefront of
the test Schwarzschild-type projection optics on the
PDI-R and PDI-L following Egs. (1)—(3) experimen-
tally.

B. Phase Analysis Algorithm Series for the Lateral
Shearing Interferometer

To experimentally confirm the zeroth-order noise-
beam-insensitive property of the phase analysis algo-
rithm of Eq. (10), we took two sets of measurements
of nine frames with /2 phase shifts using the LSI
mode on an EEI, as shown in Fig. 1(b). The unwanted
zeroth-order beam remained in the set 1 interfero-
grams [one example shown in Fig. 8(a)] and was par-
tially removed by the Fourier transform method for
comparison in the set 2 interferograms [one example
in Fig. 8(b)]. For comparison, we selected the nine-
frame phase-shifting algorithm described by Eq. (16),
which was not derived from removing the zeroth
noise beam [9]:

W= tanfl[ 26(g1—g-1) —6(85—8-3)
1) 16(g2+8 2) = (84t 8 4) —30g0 |
(16)

k(Wl -

The derivation process of the phase-shift analysis
algorithms described in Section 4 indicated that the
zeroth-order beam would not affect the measurement
accuracy when Eq. (10) is applied, whereas Eq. (16)
was not designed for this purpose. In this experiment,
those two sets of interferograms with and without a
zeroth-order beam in the interferograms were ana-
lyzed with Egs. (10) and (16), respectively. For each
algorithm, the differences between these two ana-
lyzed results are expressed with 37 annular Zernike
polynomials and plotted in Fig. 9. In the case of using

—A— Eq.(16)
—=— Eq.(10)

Zemike coefficient differences (waves)

-0.16

Zernike orders
Fig. 9. Measured wavefront differences obtained from two sets of
interferograms shown in Figs. 8(a) and 8(b) using Egs. (10) and
(16), respectively. The difference when Eq. (10) was applied was
much smaller than the case when Eq. (16) was applied. It exper-
imentally indicated that the measurement accuracy was less af-
fected by the zeroth-order noise beam when Eq. (10) was applied.



Eq. (10), the difference is much smaller than in the
case of applying Eq. (16). This indicated experimen-
tally that the measurement accuracy was less ef-
fected by the zeroth-order noise beam when Eq. (10)
was applied. This measurement result showed exper-
imentally that Eq. (10) itself is sufficient to eliminate
the zeroth-order beam effect as its principle implied.

7. Summary

We have described our configurations of the point
diffraction interferometer and the lateral shearing
interferometer for characterizing the projection li-
thography optics at the operational wavelength em-
ployed in EUVL. A simple but easy-to-perform
calibration method for the PDI was proposed. A
zeroth-order noise-beam-insensitive phase-shifting
algorithm series was proposed for the LSI. Some ex-
perimental results were presented that show self-
approved consistency of the calibration method and
the algorithm series we proposed.
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