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Abstract: Biological apatites composing the inorganic part of many hard tissues have many characteristics

differing from mineral and/or synthetic apatites. Before the modern precise analytical technique and methods

were introduced to the hard tissue study, the non-stoichiometry of biological apatites was a problem, and the

carbonated apatite in bone and tooth was sometimes mistaken for a mixture of calcium carbonates, calcium

phosphates, and calcium oxides. Apatite is a mineral group which makes wide ranged solid-solution systems.

Although hydroxyapatite is the most stable phase in the mimetic conditions to body system among the calcium

phosphates, it can not be successfully precipitated under laboratory conditions. Therefore, some mechanisms

have been proposed to crystallize biological apatite in the body conditions. In this review, the history of unveiling

the nature of biological apatites is described from a crystallographic viewpoint, and bio-medical applications of

calcium phosphates are introduced.
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Introduction

Biological apatites, composing the inorganic part of many hard

tissues with the wide distribution from vertebrate bone and tooth

to invertebrate Brachiopod Lingula shell1-3), have many charac-

teristics differing from the mineral and/or synthetic apatites4). The

terms of “Biomineral” and “Biomineralization” were firstly used

by Oomori for the pearl5). And the terms of “calcification” and

“mineralization” were used as the same meanings in this paper,

though there are some controversies for the use of these terms.

Before the modern precise analytical technique and methods had

been introduced to the hard tissue study, the nonstoichiometry of

biological apatites was the arduous problem6). These confusion

or turmoil was caused from the unique wide variability of apatite

crystal itself7,8). Therefore, it was unavoidable even if it mistaken

the carbonated apatite in bone and tooth as the mixture of cal-

cium carbonate, calcium phosphate, and calcium oxide9-14).

Before access to the crystallography of apatite and biological

apatite in this content, it should be clarified what is crystal. Be-

cause, at the formation stage of hard tissues there is a discussion

for a long time lasting about the presence of amorphous, or non-

crystalline, materials15-23). The “amorphous” problem in hard tis-

sues was discussed together with the “precursor” problem in the

latter part. Among the wide ranged calcium phosphate compo-

nents, only orthophosphate, PO4
3-, occurs in the normal human

body system, and the other types such as diphospate, P2O7
4-, triph-

osphate, P3O10
5-, tetraphosphate, P4O13

6-, pentaphosphate, P5O16
7-,

and the other condensed chained phosphates were not found8).

This review briefly describes the history of resolving the “Apa-

tite Problem” in mineralogy and also the “Biological apatite Prob-

lem” in the biomineralogy, in concern with the variety of calcium

phosphates and apatites. The history of biological apatite was

described with the study of the x-ray diffraction (XRD) which is

the most powerful and reliable method for crystallographic analy-

sis24), and the other modern analytical instruments such as Fou-

rier Transform InfraRed (FTIR), Fourier Transform Raman (FT

Raman) spectroscopy which are the powerful and reliable meth-

ods for molecular structure analysis25), and some elemental analy-

sis techniques.

Calcium phosphates are the essential minerals for human body

not only for the skeletal system but for the homeostasis of min-

eral balance in body. At the last part, the biomedical applications

of apatite and calcium phosphates were briefly reviewed with spe-

cial remarks on R. Z. LeGeros, she and her colleague firstly proved

biological apatite as carbonateapatite.

Apatite Crystallography and X-ray Diffraction Analysis

Mineral Apatite Group, and Etymology of “Apatite”
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Apatite is the most abundant of the phosphatic minerals and

consequently is of great importance to industry as the phosphorus

containing compounds8). Apatites are found in the variety of

occurrences in nature; in ignious rocks, metamorphic rocks,

sedimentary rocks, meteorites as well as in many biological origins

including fossils6,26,27).

Apatite was named from the Greek “απαταω”, to decieve,

because of the older mineralogists having referred wrongly it to

aquamarine, chrysolite, amethyst, flour, schorl, etc. showing the

variety in color and morphology7). “Asparagus stone” from Spain

was one of the strangely named examples, and “Osteolite” was

named for those found in the fossil bones. “Collophane” as

carbonate hydroxyapatite, “Stafferite” as francolite, and the other

old names are still used at now.

Apatite group has the chemical formula of M10(XO4)6Z2, where

M = Ca, Sr, Ba, Cd, Pb, etc., X = P, As, V, Mn, Cr, etc., and Z =

OH, F, Cl, Br, etc.6). The name “apatite” describes a family of

compounds having similar structure (hexagonal crystal system,

space group, P63//m) in spite of a wide range of composition4,28,29).

The apatite series makes a unique solid-solution system; for

example, hydroxyapatite, HAp Ca10(PO4)6(OH)2, and fluorapatite,

FAp Ca10(PO4)6F2, making a perfect solidsolution system (Fig.

1)30,31). It is notable that the nomenclature of hydroxyapatite valid

from the terminal composition, Ca10(PO4)6(OH)2, to the midpoint,

Ca10(PO4)6FOH, in the OH-F solid solution system.

Therefore, the slightly substituted F for OH apatite might not

be called as flourapatite, which sometimes misused in some

international medical and dental journals.

Table 16-8,32-34) list the major apatite group minerals with the

unit cell dimensions, which are useful to identify the mineral

species and/or estimation of the substituted ions. Based on the

wide range substitution system of apatite, the included elements,

i.e. rare earth elements, have some important information such as

geological chronology, environmental geology, geothermometry,

etc.35-37).

Crystal Structures of Apatite and Related Calcium Phosphates

Before the exact apatite crystal structure had been solved, the

apatitic Xray patterns were found in tooth and bone mineral39,40).

In 1930, NaraySzabo41) and Mehmel42) determined the crystal

structure of FAp and HAp, respectively. However, it was observed

that many calcium phosphates with low Ca/P ratio precipitated

from solution give the X-ray diffraction pattern of HAp but depart

from the ideal stoichiometry, Ca10(PO4)6(OH)2
43). In 1964, the

precise crystal structure of HAp was determined44). In 1969, the

refinement of the naturally occurred HAp was performed45), and

in 1980, fine apatite crystal structure characterization from

gravimetrically separated human teeth was achieved by the

Reitveld analysis of X-ray data46).

In the HAp crystal structure, there are two sites for calcium

ions, namely Ca(I) and Ca(II). The Ca(I) is called as the columnar

Ca, and the Ca(II) the screw axis Ca (Fig. 2). The screw axis Ca

makes the calcium triangle, and then the calcium tunnel, in which

the OH ions locate. Based on this structural configuration, the

OH ions easily substitute with F ions, and the OH ions in tooth

enamel are easily released by attack of acids resulted in tooth

decay (Fig. 3).

For the more information of the calcium phosphates and apatite

crystal structure, refer the references47-52), and it may be worth to

introduce the techniques and methods for hard tissue research53-62).

Calcium Phosphate Precursors of Apatite

There are some solid phases of calcium phosphate that have

been linked to biological mineralization (Table 2). HAp is

universally recognized as the final solid mineral phase of bone

and teeth6,64). The other calcium phosphates have been implicated

as minor or precursor phases; they are acid stable and will convert

to the thermodynamically stable and insoluble HAp at a high pH

(Fig. 4). HAp is stable at neutral or basic pH65). Tricalcium

phosphate, TCP, needs Mg ion for its formation at room

temperature. Both dicalcium phosphate dehydrate, DCPD, or

dicalcium phosphate, DCP, and octacalcium phosphate, OCP, have

acid phosphate groups (HPO4) and a structural plane on which

HAp can be grown epitaxially66,67).

These hypotheses may explain the dominant morphology of

bone apatite is platelets68) and also in tooth enamel69). The formation

mechanism of platelike crystals in the mineralized collagen fibrils

is not fully understood. One possible explanation is that crystal

growth occurs via an OCP intermediate (Fig. 5)67,70). OCP has

almost the same crystal structure as HAp but contains an extra

hydrated layer that may be responsible for the observed

plateshaped crystals in natural bone. Amorphous calcium
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Figure 1. F-OH-Cl solid-solution diagram for the apatite minerals

occurred in igneous rocks 30)
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Table 1. Apatite Group Minerals6-8, 31-34) 

Chemical name Idealized chemical     Unit cell dimensions        Strong X-ray       Powder Diffraction

mineral name formula      axis (Å ), angle (°)        diffraction peaks       File (PDF) (JCPDS card no.)

Hydroxyapatite Ca10(PO4)6(OH)2      a = 9.41,  c = 6.88 2.814  (100)   9-432

HAp (Hexagonal) 2.778    (60)

2.720    (60)

Hydroxyapatite  Ca10(PO4)6(OH)2      a = 9.445,   b = 18.853, 2.817    (66)

(Monoclinic)      c = 6.8783, β = 120 2.724    (79)

2.267  (100)

Fluorapatite Ca10(PO4)6F2      a = 9.3973, c = 6.8782 2.800  (100)   15-876

FAp 2.702    (60)

Chlorapatite             Ca10(PO4)6Cl2      a = 9.5979, c =  6.7762 2.853  (100)   12-263

2.770  (100)

1.960  (50)

Oxyapatite             Ca10(PO4)6O                 a = 9.38,     c =  6.93

Pyromorphite             Pb10(PO4)6Cl2     a = 9.987,   c =  7.33 2.99  (100)   19-701

2.96  (100)

2.89  (60)

Dahllite Ca10(PO4)5(CO3)    a = 9.419, c = 6.886 2.811 (80)   21-145

carbonate apatites                   (OH)2 2.717 (100)

2.261 (35)

Francolite Ca10(PO4)5,(CO3)F2    a = 9.346, c = 6.887 2.79 (55)

2.692(100)   31-267

                                                                                                                       2.24 (45)

Alforsite             Ba10(PO4)6Cl2    a = 10.25, c = 7.64 3.06 (100)   35-691

2.13  (40)

2.03  (30)

Fermorite (Ca,Sr)10(AsO4,PO4)6 3.49 (50)   14-215

                       (OH,F)2 2.86 (100)

2.75 (60)

Whitlockite Ca18Mg2(PO4)12    a = 10.357, c = 37.077          3.1845  (59)   (syn. 9-169)

[PO3(OH)]2             2.8604 (100)

            2.5893 (73)

Mimetite Pb10(AsO4)6Cl2    a = 10.250, c = 7.454 3.06 (100)   19-683

                                          3.01   (95)

                                          2.96   (65)

Chlorellestadite Ca10(SiO4)3(SO4)3Cl2      a = 9.491, c = 6.921 2.84  (100)   25-173

(Ellestadite)                                           2.74  (60)

1.85  (50)

Britholite Ca4(Ca,Ce)6                    a = 9.63, c = 7.03 3.48 (80)   31-892

(SiO4,PO4)6(OH,F)2 2.836  (100)

2.809 (80)

phosphate, ACP, was also found to spontaneously precipitate to

apatite at physiological conditions16,71-76) (Fig. 6). Although many

studies searching OCP in vivo had been failed17,77-78), the improved

methods of imaging and structure determination have since led to

the identification of stable and transient forms of amorphous

precursors in biomineralization of bone and teeth8,18,19,22,79). The
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Chemical composition Ca/P ratio JCPDS card

Octacalcium phosphate (OCP) Ca8H2(PO4)6・5H2O 1.33 26-1056

hydroxyspodiosite Ca2PO4(OH)・2H2O 2.00

Teracalcium phosphate Ca3(PO4)2・CaO 2.00

Tricalcium phosphate (TCP) Ca3(PO4)2 1.50 9-167

α­TCP (high temp. type) 9-348

β­TCP (low temp. type)

Dicalcium phosphate CaHPO4・2H2O 1.00 9-77

dihydrate (DCPD) 11-293

Brushite

Calcium phosphate-sulfate hydrate CaHPO4・CaSO4・4H2O 0.50 41-585

Ardealite

Dicalcium phosphate CaHPO4・1/2H2O 1.00

hemihydrate (DCPh)

Dicalcium phosphate (DCP) CaHPO4 1.00 9-80

Monetite

Monocalcium phosphate Ca(H2PO4)2・H2O 0.50 9-347

monohydrate (MCPM)

Monocalcium phosphate (MCP) Ca(H2PO4)2 0.50 9-390

Amorphous calcium Ca9(HPO4)6(OH)6 1.33

phosphate

Table 2. Calcium phosphates Candidates for the Precursor of Apatite Formation 63)

Figure 2. Crystal structure of hydroxyapatite30)

role of polyphosphate in the bone formation was repostulated80).

The role of amorphous phases in mineralization of HAp in

biological tissues such as bone continues to be a subject of great

research interest81).

Studies on the early phases of the calcification can be divided

into two groups: those carried out up to about 1960 on the basis

of histological, histochemical, biochemical and biophysical

methods on topics related to the nature and composition of the

inorganic component of hard tissues, and those carried out after

1960s by applying the more refined modern methods74). With

specific reference to bone that three concepts were prominent at

that time: that the bone mineral is carbonateapatite; that it is a

calcium carbonate mixed with HAp; or that it is a mixture of TCP

and calcium carbonate. In 1985, Posner73) stated that “the bone
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mineral is a calcium and hydroxyl-deficient, hydrogen and

carbonate-containing analogue of HAp characterized by structural

imperfection”. The early stage of calcification problem still

remained to be clarified.

For the more information of apatite formation in body system,

refer the references82-85).

Biological Apatites

Nonstoichiometry of the Inorganic Composition in Hard Tissues

     The word “Hard Tissue” is also used in the other vertebrate

and invertebrate kingdom such as fish scale, shell of a tortoise,

spicules of sand star and coral, beaks of cattle fish, shells of

bivalves and Brachiopod, test of Foraminifera, and so on3,74). “Hard

Tissues” may not be defined clearly, but usually including tooth

enamel, dentin, cementum, and bone in vertebrates and also

including pathological concretions such as dental calculus, salivary

stones, and many pathological calculus34,86). Except otolith in the

inner ear, all the inorganic parts of human bone and teeth are

composed of biological apatites.

     As early as 1926, the inorganic phases of bone and teeth are

basically calcium HAp9). The detailed crystal structure of human

tooth enamel apatite was determined46,87). The term “Biological

Apatite” is used for these apatite which were produced by

organisms. However, the minor but important differences between

these biological apatites and mineral/synthetic apatites were not

clarified still now. It was notable that one of the origin of life

hypothesis there is “Apatite Hypothesis”82,88).

     Limited to the tooth enamel, dentin and bone in human body,

the number of analytic reports for these materials have been

published. However, unexpectedly the chemical compositions for

these could not be converged. For human enamel, the most hardest

and highly mineralized tissue in body, Ca wt % ranged from 33.6

to 39.4, P wt % from 16.1 to 18.0, and CO3 from 1.95 to 3.66, Ca/

P ratio (by weight) from 1.92 to 2.17, Ca/P (molar) from 1.5 to

1.6810,89). There arose such an idea of “nonstoichiometric apatite”

or “Ca-deficient apatite” that could explain the non uniform

analytical data in part. Several theories have been put forward to

explain the nonstoichiometry of biological apatite, such as

deficiency of calcium ions, excess ion adsorption on the crystal

surface, lattice substituions, and the addition of a second

phase90-93). When the ionic substitutions occur in the apatite crystal

structure, the values of the a- and c-axes, and the a/c ratio, may

change6,34). However, the high carbonate content leaded the old

investigators to mistakes as these biological inorganic components

might be composed of some calcium carbonates together with

calcium phosphate and calcium oxide. And the investigators at

that time considered that the nonstoichiometry of these inorganic

matters might be due to the mixture of these components. Because,

at that time, it was resumed that apatite crystal may not substitute

carbonate ions so much. Then, the old anatomy and histology

textbooks unfortunately described as the inorganic components

being calcium phosphate plus calcium carbonate. This

misunderstood was corrected later when the biological apatites

are proved as carbonated apatite53,94). And hereafter it has been

verified that the highly carbonated apatite is the common feature

for the biological apatite.

     Although it had been revealed that human teeth and bones are

composed of biological apatites, their chemical compositions were

not unified and varied from parts to parts of bones and teeth, and

among individual teeth and bones95-100). The variation in the

chemical composition of the biological apatites may be due to

such conditions of the cell activity, timing, physiological and also

circadian rhythm of these hard tissue formation. For the more

information on the chemistry of hard tissues, refer the

references4,6,34,74,78,101,102).

Biological Apatite as Carbonate Apatite

     Biological apatites, occur as the inorganic portion of many

hard tissues, differ from pure HA in stoichiometry, composition

and crystallinity, and therefore have different physical and

mechanical properties. Biological apatites are typically calcium

deficient carbonated calcium HAp, so are strictly carbonate

apatites rather than HAp6,34).

     Carbonate ion substitution in the apatite crystal structure occurs

in two site, namely A-site substitution for OH ion, and B-site for

PO4 ion103-105). FTIR spectroscopic studies of synthetic and

biological carbonate apatite showed that the absorption bands at
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670 cm-1 and 757 cm-1 can be attributed to A-site carbonate, and

692 cm-1 and 718 cm-1 to B-site106), 878, 1465 and 1550 cm-1 for

A-site, and 872, 1415 and 1500 cm-1 for B-site107). The bands at

PO4 v3 domain of A-site and B-site appeared at 1108 cm-1 and

1070 cm-1 , respectively108).

     Substitution of components in these biological apatites occurs

in a couple manner in order to balance the electrical charges,

so-called Type B substitution94). This means that there is an

equivalent calcium for sodium as phosphate for carbonate

modification and the other substitutions109-111). As a result,

biological apatites vary in the products after sintering112). Thus,

sintering enamel or dentin above 800 ℃ gives HA and small

amounts of b-TCP varying the b-TCP/HA ratio depending on the

portions or individuals49,95,96).

     For the more information of biomineralization concerning to

biological apatites, refer the references 60,61,83,113-116).

Biomedical Application of Apatite and Calcium Phosphates

In Vitro and In Vivo Cell Reactions of Synthetic Apatites

     The cell reactions with the synthetic calcium phosphates have

been investigated and the cell afinity has been clarified117,118). Zinc

and/or magnesium containing calcium phosphate119-123), and the

osteoconductive calcium phosphates124-128) have been studied and

applied to clinical uses.

Calcium Phosphates as Biomedical Applications and Food

Additives

     Calcium phosphates and biphasic calcium phosphate ceramics

can be candidate for the bone-scaffold and restorative

dentistry129-135). Calcium phosphate based coatings have been

developed and used in clinical dentistry and medicine136-138).

     Amorphous calcium phosphate is also the candidate for the

bone tissue repair substartes as well as the precursor of biological

apatite in vivo73,139). Tetracalcium phosphate140), TCP141,142), and

OCP143).

     Antibacterial and mineralizing calcium phosphate-based

treatments are developped144,145), and drug delivery system using

some calcium phosphates are now adopted to clinical

applications146,147). A new synthetic bone mineral (SBM) diet was

developed and  the  effect  was  confi rmed  by an imal

experiment148-150).
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