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Olivier Pourquié, e-mail: pourquie@igbmc.fr

Genetic basis for tooth malformations:
from mice to men and back again

Mitsiadis TA, Luder HU. Genetic basis for tooth malformations: from
mice to men and back again.
Clin Genet 2011: 80: 319–329.  John Wiley & Sons A/S, 2011

Teeth arise from sequential and reciprocal interactions between the oral
epithelium and the cranial neural crest-derived mesenchyme. Their
formation involves a precisely orchestrated series of molecular and
morphogenetic events. Numerous regulatory genes that have been
primarily found in organisms such as Drosophila, zebrafish, xenopus and
mouse are associated with all stages of tooth formation (patterning,
morphogenesis, cytodifferentiation and mineralization). Most of these
genes belong to evolutionary conserved signaling pathways that regulate
communication between epithelium and mesenchyme during embryonic
development. These signaling molecules together with specific
transcription factors constitute a unique molecular imprint for
odontogenesis and contribute to the generation of teeth with various and
function-specific shapes. Mutations in several genes involved in tooth
formation cause developmental absence and/or defects of teeth in mice. In
humans, the odontogenic molecular program is not as well known as that
of mice. However, some insight can be obtained from the study of
mutations in regulatory genes, which lead to tooth agenesis and/or the
formation of defective dental tissues.

Conflict of interest

There is no existing conflict of interest.

TA Mitsiadis and HU Luder

Institute of Oral Biology, Center of Dental

Medicine, Faculty of Medicine, University

of Zurich, 8032 Zurich, Switzerland

Key words: ameloblasts – amelogenesis

imperfecta – BMP – dental

malformations – dental pathology –

enamel – FGF – Notch – odontogenesis

– oligodontia – tooth agenesis – tooth

development – transcription factors

Corresponding author: Thimios

Mitsiadis, Institute of Oral Biology,

Center of Dental Medicine, Faculty of

Medicine, University of Zurich,

Plattenstrasse 11, 8032 Zurich,

Switzerland.

Tel.: +41 44 634 3390,

+41 44 634 3140;

fax: +41 44 634 4310;

e-mail: thimios.mitsiadis@zzm.uzh.ch

or

Hans Ulrich Luder, Institute of Oral

Biology, Center of Dental Medicine,

Faculty of Medicine, University of

Zurich, Plattenstrasse 11, 8032 Zurich,

Switzerland.

Tel.: +41 44 634 3390,

+41 44 634 3140;

fax: +41 44 634 4310;

e-mail: hansulrich.luder@zzm.uzh.ch

Received 21 July 2011, revised and

accepted for publication 3 August 2011

Mechanisms of tooth development

Teeth are derived from cranial neural crest-derived mes-
enchyme (also called ectomesenchyme) and epithelium
of the first branchial arch and a part of the frontonasal
process (1–4). Irrespective of the generation (pri-
mary/permanent) and class of teeth (incisors, canines,
premolars, and molars), odontogenesis proceeds in
morphologically distinct stages (Fig. 1). Similar to the

development of other organs that form as epithelial

appendages (hairs, whiskers, nails, glands), tooth for-

mation starts with epithelial thickenings at the sites of

the future dental arches in the maxilla and mandible,

which are called the dental placodes. Subsequent fea-

tures of odontogenesis include the budding of the

epithelium and the concomitant mesenchymal conden-

sation, the continuous folding of the epithelium that is
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Fig. 1. Stages of embryonic human tooth development. Dental epithelium and its derivatives (enamel) are in red color, dental mesenchyme and its
derivatives (dentin) in blue. The most significant signaling molecules (in bold capitals) and transcription factors (in italics) that are involved in the
various stages of tooth development are shown, epithelial signals and transcription factors in red, mesenchymal signals and transcription factors in
blue. Mutations in humans affecting tooth development are presented with asterisks.

responsible for the shape of the tooth crown, and finally
the differentiation of dental mesenchymal and epithe-
lial cells into the dentin producing odontoblasts and the
enamel-forming ameloblasts, respectively (2, 5).

A series of sequential and reciprocal epithelial–
mesenchymal interactions regulates all stages of odon-
togenesis, from tooth initiation to cytodifferentiation. A
well-conserved molecular ‘dialog’ is used for the com-
munication of epithelial and mesenchymal cells (2, 3, 6,
7). Signaling molecules control all steps of tooth forma-
tion by coordinating cell proliferation, differentiation,
apoptosis, extracellular matrix synthesis and mineral
deposition. The same molecules are repetitively used
during the different stages of tooth development and are
regulated according to a precise timing mechanism. The
main molecules that are involved in tooth development
belong to five signaling pathways: Notch, bone morpho-
genetic protein (BMP), fibroblast growth factor (FGF),

sonic hedgehog (Shh) and wingless/integration 1 (Wnt).
These signaling pathways involve numerous other
molecules such as cell-surface receptors and transcrip-
tion factors, which regulate gene expression (2, 6–8).

Role of neural crest cells and oral epithelium in tooth

initiation

The first direct evidence of participation of neural crest
cells in tooth formation was achieved following DiI
injection into the midbrain and anterior hindbrain of rat
embryos (9). This allowed the analysis of labeled crest
cells within odontogenic regions of the first branchial
arch. Genetic markers such as Wnt1 were also used to
clearly show that dental mesenchyme in mice is derived
from cranial neural crest cells (10).

Classical tissue recombination experiments between
mouse oral epithelium and ectomesenchyme have
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identified the oral epithelium as providing the instructive
information for the initiation of tooth formation (11,
12). However, it is probable that the oral epithelium
used in these experiments had already acquired a pre-
pattern as a consequence of a prior interaction with cra-
nial neural crest cells. Indeed, tooth-like structures were
formed in mouse/chick chimeras, where the chick crest
cells were replaced by mouse crest cells (13). These
transplantation experiments clearly indicated that cra-
nial neural crest cells also contain odontogenic potential
and contribute equally with the oral epithelium to the
initiation of tooth formation (14).

Genetic basis for the dental field determination

The territories where the teeth will grow in the oral
epithelium as well as the tooth numbers are genetically
determined from the very early stages of embryonic
development. The transcription factor Pitx2 defines
the oral epithelial area, where teeth will grow (15,
16). Deletion of Pitx2 results in the complete arrest
of tooth development before placode formation (17,
18). Strong epithelial signals are needed to create
dental placodes. Several signaling molecules have been
implicated as activators (FGFs, Wnt) or inhibitors
(BMPs) of placode formation (1, 2, 6, 7, 19). Molecules
of the ectodysplasin (Eda) signaling are also involved
in the formation and growth of the dental placodes
in mice (20). Increased Eda signaling in transgenic
mice contributes to larger than normal dental placodes
and results in the development of extra teeth (21). In
contrast, inactivation of Eda signaling in the Tabby
mouse causes partial tooth agenesis and misshapen
first molars. However, this tooth phenotype can be
rescued after injection of Eda protein to pregnant Tabby
mice (22). The most severe phenotype in mice is caused
by p63 and Runx2 deletion, which results in the
developmental arrest of all teeth (23, 24).

Genetic basis for the position, number and shape

of teeth

The budding of the dental epithelium is followed by a
mesenchymal condensation around the bud (Fig. 1). A
strict molecular program, which is crucial for the con-
tinuation of tooth development, monitors these cellular
events. During the bud stage, the odontogenic poten-
tial shifts from the dental epithelium to the condensing
mesenchyme that can instruct any kind of epithelium
to form tooth-specific structures (12). This transition
is tightly regulated by interactions between the dental
epithelial and mesenchymal tissues. Epithelial signals
such as BMP, FGF, Shh and Wnt molecules may deter-
mine the display and fate of the ectomesenchyme for
the generation of distinct tooth shapes/classes (1, 2, 6,
7, 25, 26). From all these molecules, BMP4 and FGF8
constitute essential early oral epithelial signals for the
activation of specific genes in the underlying mes-
enchyme (2, 7, 25, 27). It has been suggested that var-
ious concentrations of these two signals could control

tooth patterning; BMP4 directs the shape of incisors,
while FGF8 directs the shape of molars (7, 25, 27).
BMP4 induces in the ectomesenchyme the expression
of Msx1 and Msx2, providing thus the spatial informa-
tion for incisor patterning (1, 15, 16, 27). FGF8 induces
in the ectomesenchyme the expression of Barx1, Dlx1,
Dlx2, Lhx6 and Lhx7 genes, which are indispensable
for molar morphogenesis (1, 15, 16). Members of each
family of these homeobox genes may have compen-
satory functions. Indeed, the simultaneous inactivation
of Msx1 and Msx2, or Dlx1 and Dlx2 results in arrest
of tooth formation at the initiation stage (Fig. 1) (28,
29). Pax9 is expressed in the mesenchyme of both
incisors and molars (30, 31). Islet1 is expressed only
in the incisor field of the oral epithelium (32). A reg-
ulatory loop exists between Islet1 and BMP4 in the
oral epithelium (32). Ectopic expression of Islet1 in the
molar field of the oral epithelium leads to downregula-
tion of Barx1 expression in the mesenchyme, entailing
the inhibition of molar development (32).

Thus, the complementary expression of the above
genes defines territories associated with the formation
of the various classes of teeth (1, 25) (Fig. 2). On
the basis of the restricted and combinatorial expres-
sion domains of signaling molecules and transcription
factors in the epithelium and ectomesenchyme of the
first branchial arch, a ‘co-operative genetic interaction’
model has been proposed (25). Neural crest-derived
cells, transcription factors and signaling molecules col-
lectively contribute to the position, number and shape
of teeth (25). In mice, mutations in genes encoding for
several transcription factors such as Lef1, Msx1, Pax9
and Runx2 result in developmental arrest of all teeth at
the bud stage (2, 7, 26) (Fig. 1).

Genetic basis for the maxillary and mandibular

dentition

The molecular pathways that control tooth formation
in the maxilla and mandible are not the same. Several
genes such as Dlx are differentially expressed in
the maxillary and mandibular processes (33), thus
indicating a genetic difference between maxillary
and mandibular tooth specification. Indeed, only the
maxillary molars failed to develop in double mutants
that lack both Dlx1 and Dlx2 (Dlx1; Dlx2-/ -) (34).
Pitx1 is another gene controlling mandibular identity.
In the ectomesenchyme, Pitx1 is exclusively expressed
in the proximal part of the developing mandible where
molars will develop (35). In mice, Pitx1 deletion
results in small misshaped mandibular molars (35).
Similarly, deletion of the mesenchymal gene Activin ßA
in mice leads to the selective loss of the incisors and
mandibular molars, while the maxillary molars develop
normally (36, 37).

Genetic basis for the ameloblast fate

Dental epithelial cells differentiate into ameloblasts,
which form the hardest mineralized tissue of the body.
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(a)

(b) (c)

Fig. 2. Expression of transcription factors in the ectomesenchyme and
epithelium of the nasal (np), maxillary (mx) and mandibular (md)
processes during embryogenesis. (a) Neural crest-derived cells that
migrate into the first branchial arch of an embryo are under the
influence of signaling molecules and transcription factors (indicated by
a variety of colors). Disposal of the various teeth on the dental axis is
time-dependent, and combinations of different signaling molecules and
transcription factors will contribute to a variety of tooth shapes/classes
(incisors, canines, premolars and molars). Defects in the number of
neural crest cells, signals (e.g. SHH) or transcription factors (e.g.
MSX1) are responsible for misshaped teeth and/or tooth agenesis. (b)
Expression of Barx1 in the first branchial arch mesenchyme of a mouse
embryo. (c) Expression of Tbx1 in oral epithelium of a mouse embryo.
oc, oral cavity.

The specification of these cells involves molecules of
the Notch pathway (38, 39) and the Tbx1 transcription
regulator (40, 41). Notch genes encode transmembrane
receptors that participate in communication between
neighboring cells (42). Notch receptors are activated
by transmembrane ligands belonging to the Delta or
Jagged families. In the developing teeth, Notch and
Jagged and Delta are expressed in neighboring cell
layers of the dental epithelium (38, 39, 43–45). Notch
signaling has a pivotal role in the establishment of the
tooth morphology and cytodifferentiation as Jagged2
mutant mice exhibit teeth with an abnormal shape and
absence of the enamel matrix (39, 45).

Clinical and genetic findings have shown that Tbx1
also plays a significant role for the determination
of dental epithelial cells to adopt the ameloblast
fate. Patients with the DiGeorge syndrome, which is
a TBX1 dependent disorder, exhibit hypodontia and
enamel defects (46). In mice, Tbx1 deletion leads
to hypoplastic incisors that lack enamel (40). FGF
molecules affect both Tbx1 expression and proliferation
of ameloblast progenitors in dental epithelium (41).

Human congenital tooth malformations

While there is an excellent agreement in morphologic
stages of tooth development in mice and humans,
knowledge on the molecular control of odontogenesis in
humans is necessarily limited. However, some insight is

(a)

(b)

(c)

Fig. 3. Panoramic radiographs illustrating types of agenesis of per-
manent teeth (asterisks). (a) Single agenesis of the lower left second
premolar, the most frequently missing permanent tooth apart from the
third molars. (b) Oligodontia as it is known to occur due to mutations
in MSX1 : All the eight premolars, two of four canines and seven of
eight incisors, but no molars are missing. (c) Oligodontia as it could
occur due to a defect in PAX9 : All upper molars, but no other perma-
nent teeth are missing (for a reliable assessment of third molar tooth
buds, the patient was too young).

given by experiments of nature, which lead to hereditary
developmental malformations such as tooth agenesis or
enamel dysplasias.

Tooth agenesis

The term tooth agenesis denotes a condition where
deciduous (primary) and/or permanent teeth fail to
develop. It is likewise referred to as hypodontia, but the
same term is also used to characterize agenesis of up
to six teeth (excluding the third molars) only (Fig. 3a).
In contrast, agenesis of more than six teeth (Fig. 3b)
or all teeth of a particular class (Fig. 3c) is referred
to as oligodontia, and the term anodontia denotes
the extremely rare condition, where all teeth fail to
develop.

Tooth agenesis is the most frequent developmen-
tal malformation of the orofacial complex. However,
prevalence ratios vary considerably between genera-
tions and classes of teeth and reveal some character-
istic patterns. Thus, with a frequency of less than 1%,
agenesis of primary teeth is rare (47, 48). Among the
permanent teeth, absence of at least one third molar
(prevalence 20–30%) is the most abundant.
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Agenesis of the other permanent teeth is significantly
more frequent in females than in males and varies
between continents (49). As a rule, the teeth of a class
which are formed last, most often fail to develop. Thus,
when disregarding third molars, mandibular second pre-
molars are missing most frequently (prevalence about
3%), followed by maxillary second incisors and maxil-
lary second premolars (49). With increasing numbers of
teeth missing in an individual patient, prevalence rates
of tooth agenesis decrease markedly, and the frequency
of oligodontia is only about 0.1–0.2% (49).

Most cases of tooth agenesis occur without devel-
opmental defects in other organs and are referred to
as non-syndromic. However, missing teeth are also
observed in association with other malformations, most
noticeably with cleft lip with or without cleft palate.
Interestingly, tooth agenesis outside the cleft area is
also significantly higher than in the general popula-
tion (50, 51). Even if hypodontia apparently is non-
syndromic, it is commonly associated with a gen-
eral reduction of crown sizes and a retardation of
tooth formation (52–55). Thus, tooth agenesis could
be regarded as an extreme tooth size reduction, which
occurs below a certain critical threshold of odontogenic
potential (51, 52).

Genetic defects so far could only be identified in
severe forms of non-syndromic tooth agenesis. They
affect the homeobox gene MSX1 (56–59), the paired-
box gene PAX9 (26, 60–71), and AXIN2, the gene for
an intracellular antagonist of Wnt signaling (72). All
these three genes have been shown to be important
regulators of early stages of tooth development in
mice, particularly at the transition from the bud to
the cap stage (50, 51). Therefore, mutations causing
oligodontia in humans are assumed to result in an
arrest of tooth development at the bud stage, when
haploinsufficiency reduces gene dosage and, hence,
tooth-forming potential below a critical level (51).
However, contrary to what could be expected based on
the purported role of MSX1, PAX9, and AXIN2 in tooth
development, oligodontia caused by defects in these
genes reveals typical, although partly overlapping and
highly variable patterns of tooth agenesis (Fig. 3b,c).
PAX9 and MSX1 mutations in humans do not affect
all teeth of the same class (56–68). For example,
mutations in the PAX9 gene affect mostly molars.
Mutations in AXIN2 seem to cause a combination of
MSX1 and PAX9 phenotypes. They affect exclusively
the permanent dentition, but never the maxillary central
incisors (51, 72). These, as well as canines and first
molars are very stable teeth and seldom congenitally
missing (73). The observation that the susceptibility
for the consequences of a particular genetic defect
varies between primary and permanent teeth as well
as between classes and types of teeth raises some
questions as to the universal validity of the concepts
regarding the control of tooth formation. In this context,
it should not be forgotten that the most common
model for the study of odontogenesis, the mouse,
possesses only one generation and two classes of
teeth.

Genetic defects associated with syndromic forms of
hypodontia mostly affect genes other than those causing
non-syndromic oligodontia. An exception is MSX1,
mutations of which can also result in Witkop syndrome,
where defects of finger and toe nails accompany tooth
agenesis (74). The most profound effects on skin and
its appendages in combination with hypodontia and
a reduction in tooth size is observed in some forms
of ectodermal dysplasia, which are caused by genetic
defects in the EDA pathway, i.e. the EDA, EDAR,
EDARADD, IKKγ, NEMO, and p63 genes (50, 51,
75–78). Interestingly, mutations in EDA can also be
responsible for non-syndromic hypodontia (79, 80). A
striking phenotype of tooth agenesis characterized by
the consistent, otherwise extremely rare absence of
the maxillary central incisors is observed in Rieger
syndrome, which is caused by defects in the homebox
gene PITX2 (51, 77, 81).

Familial occurrence and concordance of tooth age-
nesis in twins suggest a significant genetic influence
also in the milder forms of hypodontia, for example
the common premolar-incisor agenesis (51, 82–85). If
oligodontia is regarded as a consequence of a criti-
cal deficiency in gene dosage, it is conceivable that
milder hypodontia results from DNA sequence vari-
ants, which have less severe effects on gene function.
However, searches for polymorphisms in candidate
genes responsible for oligodontia yielded inconsistent
results (86–90). A significant role in hypodontia was
shown for variants and haplotypes of TGFA (86, 91),
IRF6 (92, 93), FGFR1 (92) as well as MMP1 and
MMP20 (94). Thus, there does not seem to be a major
hypodontia locus (51).

Amelogenesis imperfecta

The term amelogenesis imperfecta (AI) designates
hereditary developmental malformations of tooth
enamel. In a strict sense the definition includes only
enamel dysplasias that occur in the absence of defects
in other tissues. A now widely accepted nomenclature
of AI relies on the mode of inheritance, the pheno-
type, and (if known) the molecular cause of the enamel
defect (95). The phenotypic classification takes into
account that enamel is formed in two major steps.
In a first step, the secretory stage of amelogenesis,
ameloblasts secrete an organic matrix in which hydrox-
yapatite crystals are loosely deposited. In a second step,
most of the matrix proteins are degraded and resorbed
by the ameloblasts, while the crystals grow in thickness
until they come into contact with each other and the
mineral density of enamel attains about 95% (96). Dis-
turbances of the secretory stage result in the hypoplastic
type of AI characterized by a quantitative deficiency
of the enamel (Fig. 4a–f). The quantitative deficiency
ranges from (virtual) aplasia, termed smooth hypoplas-
tic AI (Fig. 4a,c,e), to vertical furrows (Fig. 4b), hori-
zontal grooves, or pits (Fig. 4d,f), collectively referred
to as rough (local) hypoplastic AI. Disturbances of the
mineralization process result in the hypomineralized
type of AI characterized by a qualitative deficiency, i.e.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Smooth (a, c, e) and rough (b, d, f) hypoplastic forms of amelogenesis imperfecta. (a) Intraoral view of the maxillary dentition of a female
patient showing the conical shape of the tooth crowns, which in the absence of enamel is determined by the dentin cores (crowns of the incisors
had been constructed prosthodontically). Note the missing right second molar (arrow), the eruption of which is delayed in comparison with the
contralateral tooth. (c) Intraoral radiograph from the brother of the patient shown in (a): No enamel can be recognized. (e) Backscattered electron
micrograph of an upper third molar surgically removed from the patient shown in (a): In comparison with the enamel (E) of a healthy third molar
(g), the mineral density of the enamel-like material of the patient’s tooth is essentially normal, but its thickness is only about 3–5%. (b) Frontal view
of the incisors of a female patient showing vertical enamel furrows and streaks (arrows), as they occur as a result of X-chromosome inactivation
(Lyonization). How these furrows and streaks arise is illustrated by a light micrograph from an incisor tooth germ (h) at the stage of enamel (E) and
dentin (D) formation: X-chromosome inactivation is a random process taking place in the stem cells, which reside in the cervical loop (CL). The
result of inactivation is propagated to all descendant daughter cells that differentiate in the vertical direction (arrow) and produce new inner enamel
epithelial (IEE) cells to finally become enamel-forming cells, ameloblasts. As a consequence, clusters of ameloblasts arise along the circumference
of the tooth germ, which carry an X chromosome with either a normal or defective AMELX gene and alternatively produce a normal or defective
enamel matrix. (d) Frontal view of the incisors of a female patient showing enamel pits. (f) A backscattered electron micrograph of a maxillary
premolar from the same patient reveals similar pits associated with regions of slightly hypomineralized enamel (arrow), which account for the slight
yellow-brown discoloration. D, dentin, DP, dental papilla, OEE, outer enamel epithelium. Original magnifications (e) ×110, (f, g) ×50, (h) ×20.

enamel of about normal thickness, but reduced mineral
and increased protein content (Fig. 5a–g). A moder-
ate reduction in mineral density largely confined to the
borders between the enamel prisms (Fig. 5e) leads to
the hypomaturated type of AI (Fig. 5a,c,e). The result

of an even more severe mineral deficiency and protein
retention is the hypocalcified form of AI (Fig. 5b,d,f).
The majority of genetic defects responsible for AI have
been identified in genes for enamel matrix proteins and
enzymes required for the degradation of the enamel
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Hypomaturated (a, c, e, g) and hypocalcified (b, d, f) forms of amelogenesis imperfecta. (a) Lateral view of the posterior permanent teeth
of a female patient showing extensive enamel chipping, because hypomaturated enamel exhibits reduced resistance to mechanical loading, but is
hard enough to break. (c) In the panoramic radiograph from the same patient, an enamel shade can be recognized only along interdental tooth
surfaces. (e) A backscattered electron micrograph from an impacted maxillary third molar reveals that the mineral density of the inner 2/3 to 3/4
of the enamel (E) is considerably reduced (arrows). (g) The detail marked by the rectangle in (e) shows that the mineral deficiency is not uniform,
but particularly prominent along the borders of the enamel prisms (arrows). This may account for the disproportionate reduction in biomechanical
properties. (b) Frontal view of the permanent incisors of a male patient. In contrast to hypomaturated (a), hypocalcified enamel exhibits a yellow-
brown discoloration and is so soft that it does not break, but is rapidly lost as a result of masticatory function. Note the primary molars which
seem markedly less affected. (d) The panoramic radiograph from the same patient does not allow discriminating enamel from dentin. (f) As shown
by a light micrograph from a ground section of a maxillary primary canine, the hypocalcified enamel (E) is stained as intensely as dentin (D),
because it contains large amounts of organic matrix. (h) In contrast, normal enamel (E) is not stained at all, although coloration of the dentin (D) is
comparable to that shown in (f). P, pulp. Original magnifications (e) ×25, (f) ×50, (g) ×1100, (h) ×12.5.

matrix during the maturation stage. The gene for the
most abundant enamel matrix protein, amelogenin, is
located on the X- and Y-chromosomes, but in males
about 90% of the protein is transcribed from AMELX,
the copy on the X-chromosome (96, 97). Hence, muta-
tions in AMELX cause X-linked AI which reveals
diverse phenotypes, depending on the gender and the

site of the mutation (96). In particular, hypoplastic
forms of AI differ between sexes. While males usu-
ally present smooth hypoplastic AI, the phenotype in
females is characterized by vertical furrows, which
are due to X-chromosome inactivation (Fig. 4b) (98).
Mutations in the signal peptide of AMELX resulting
in failure of protein secretion as well as defects that
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truncate the critical carboxy-terminus of amelogenin,
cause smooth hypoplastic AI. In contrast, mutations in
the amino-terminal region of AMELX which remove or
alter proteinase cleavage sites, result in a hypomaturated
AI type (97, 99).

While so far no defects responsible for AI could be
detected in the AMBN gene encoding ameloblastin, sev-
eral mutations were identified in the gene for enamelin
(ENAM ) located on chromosome 4q21 (97, 99–102).
They result in autosomal dominant or recessive smooth
or rough hypoplastic AI. While the smooth hypoplas-
tic phenotype resembles that seen with AMELX muta-
tions, rough hypoplastic AI caused by defects in ENAM
shows a peculiar phenotype characterized by horizontal
grooves (103). It has been hypothesized that the enamel
defects due to mutations in ENAM are dose depen-
dent, smooth and rough hypoplastic phenotypes seg-
regating as a recessive and dominant trait, respectively
(100).

A further group of mutations causing AI affect
the genes for enamelysin (MMP20 ) and kallikrein 4
(KLK4 ), both of which are tooth specific and important
for proper enamel maturation (96, 99, 104, 105). In fact,
all the identified genetic defects result in a loss of func-
tion of the enzymes and autosomal recessive AI of the
(pigmented) hypomaturated type. Rather surprisingly,
several mutations causing a very similar AI phenotype
were recently identified in WDR72, the gene for WD
repeat-containing protein 72 (106, 107). It is indeed
expressed in maturation-stage ameloblasts (107), but
was previously not known to be involved in enamel
formation.

Responsible mutations for the autosomal dominant
hypocalcified AI, which is the third major form of AI
and the most common in North America, have been
identified only recently. Kim et al. (108) reported two
nonsense mutations in FAM83H (family with sequence
similarities 83 member H), which perfectly segregated
with the disease. Identification of additional defects in
the same gene (109–112) allowed genotype–phenotype
correlations (113). All mutations, most of them non-
sense mutations, occur in the last exon and considerably
truncate the putative protein. It has been hypothesized
that a short protein results in generalized hypocalci-
fied AI, while a less severely truncated protein leads
to a conspicuous attenuated phenotype characterized by
hypocalcified enamel confined to the cervical part of the
crowns (113). As the FAM83H gene is not expressed
exclusively in teeth (108), a further question is why
mutations cause AI without any apparent consequences
in other tissues. It is speculated that enamel mineraliza-
tion critically depends on high protein levels and that
the truncated protein could exert a dominant negative
effect (109, 113).

In summary, the distinct phenotypic forms of AI are
genetically heterogeneous. Mutations in both AMELX
and ENAM can result in either smooth or rough
hypoplastic AI, and the hypomaturated type can be
caused by genetic defects in AMELX, MMP20, KLK4,
and WDR72. Only mutations in FAM83H seem to
consistently result in hypocalcified AI, although with

some variation in expressivity. However, overall less
than half of the AI cases can be accounted for by defects
in candidate genes known to date (114, 115).

Conclusion

Over the last years, a big effort has been made to
understand the molecular and cellular mechanisms con-
trolling tooth development and pathology. Much infor-
mation on the genes that are important for human tooth
formation has been revealed using the mouse model.
However, very little is known on the generation of
well-known human dental pathologies that are the con-
sequence of aberrant cell differentiation and subsequent
dental matrix formation. The complex genetic interac-
tions leading to these human dental malformations can
be only studied in detail in transgenic mice. Elucidat-
ing when and how signaling molecules and transcription
factors dictate tooth initiation, morphology and miner-
alization will open new horizons to the dental discipline
and will create new challenges. Novel genetic knowl-
edge together with tissue engineering and stem cell
approaches will probably instruct development of novel
therapies in dentistry (116, 117).
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13. Mitsiadis TA, Chéraud Y, Sharpe P, Fontaine-Pérus J. Development

of teeth in chick embryos after mouse neural crest transplantations.

Proc Natl Acad Sci U S A 2003: 100 (11): 6541–6545.

14. Mitsiadis TA, Catón J, Cobourne M. Waking-up the sleeping beauty:

recovery of the ancestral bird odontogenic program. J Exp Zool Part

B Mol Dev Evol 2006: 306B (3): 227–233.

15. Mitsiadis TA, Mucchielli ML, Raffo S, Proust J-P, Koopman P,

Goridis C. Expression of the transcription factors Otlx2, Barx1

and Sox9 during mouse odontogenesis. Eur J Oral Sci 1998: 106

(Suppl. 1): 112–116.

16. Mucchielli M-L, Mitsiadis TA, Raffo S, Brunet J-F, Proust J-P,

Goridis C. Mouse Otlx2/RIEG expression in the odontogenic epithe-

lium precedes tooth initiation and requires mesenchyme-derived sig-

nals for its maintenance. Dev Biol 1997: 189 (2): 275–284.

17. Lin CR, Kioussi C, O’Connell S et al. Pitx2 regulates lung asymme-

try, cardiac positioning and pituitary and tooth morphogenesis. Nature

1999: 401 (6750): 279–282.

18. Lu M-F, Pressman C, Dyer R, Johnson RL, Martin JF. Function of

Rieger syndrome gene in left-right asymmetry and craniofacial

development. Nature 1999: 401 (6750): 276–278.

19. Mustonen T, Ilmonen M, Pummila M et al. Ectodysplasin A1 pro-

motes placodal cell fate during early morphogenesis of ectodermal

appendages. Development 2004: 131 (20): 4907–4919.

20. Mikkola ML. TNF superfamily in skin appendage development.

Cytokine Growth Factor Rev 2008: 19 (3–4): 219–230.

21. Mustonen T, Pispa J, Mikkola ML et al. Stimulation of ectodermal

organ development by ectodysplasin-A1. Dev Biol 2003: 259 (1):

123–136.

22. Gaide O, Schneider P. Permanent correction of an inherited ectoder-

mal dysplasia with recombinant EDA. Nat Med 2003: 9 (5): 614–618.

23. Mills AA, Zheng B, Wang X-J, Vogel H, Roop DR, Bradley A. p63

is a p53 homologue required for limb and epidermal morphogenesis.

Nature 1999: 398 (6729): 708–713.
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