W00T'17

11th USENIX Workshop on Offensive Technologies

One Car, Two Frames:

Attacks on Hitag-2 Remote Keyless Entry Systems Revisited

Ryad BENADJILA¹

José LOPES-ESTEVES²

 1 Thales C&S, ryadbenadjila@gmail.com

Mathieu RENARD²

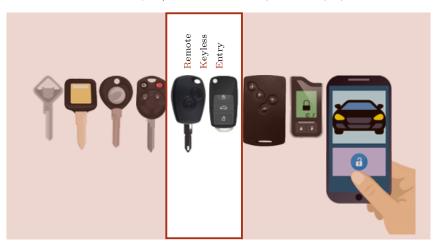
Chaouki KASMI²

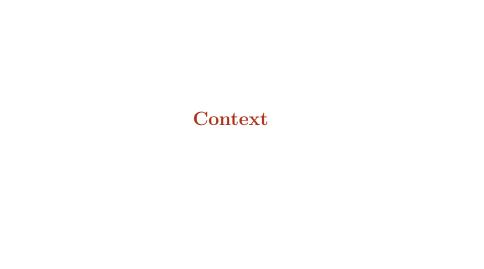
 2 ANSSI, forename.name@ssi.gouv.fr

August 15, 2017 Vancouver, BC, Canada

Used to open/close a car and for anti-theft immobilizers.

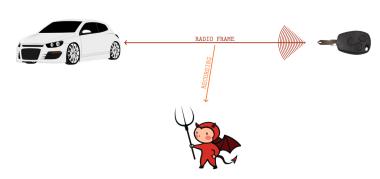
■ Used to open/close a car and for anti-theft immobilizers.



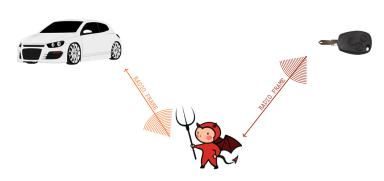


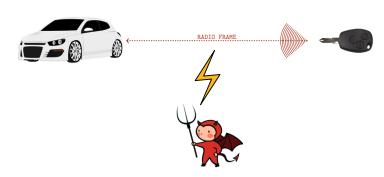
■ Used to open/close a car and for anti-theft immobilizers.

■ This talk: focus on open/close Remote Keyless Entry systems.

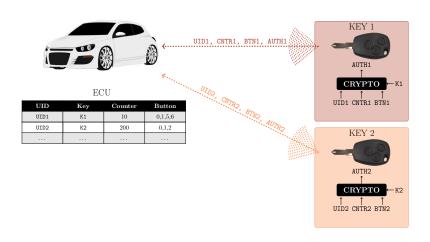


RKE:

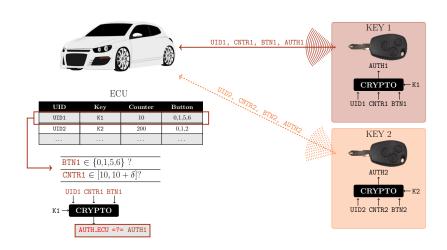

1. Monodirectional communication between remote key and ECU.

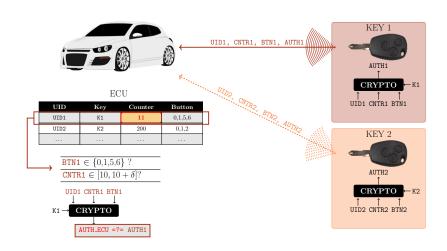

- 1. Monodirectional communication between remote key and ECU.
- 2. Threats: recording,

- 1. Monodirectional communication between remote key and ECU.
- 2. Threats: recording, replaying,



- 1. Monodirectional communication between remote key and ECU.
- 2. Threats: recording, replaying, jamming,




- 1. Monodirectional communication between remote key and ECU.
- 2. Threats: recording, replaying, jamming, spoofing.

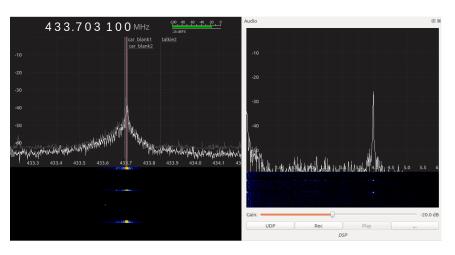
Remote Keyless Entry

USENIX 2016: attacks on RKE systems

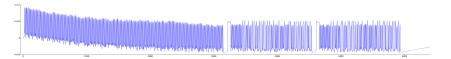
- USENIX 2016 article: "Lock It and Still Lose It On the (In)Security of Automotive Remote Keyless Entry Systems".
- Two attacks are discussed:
 - Volkswagen good crypto but master keys are shared amongst all vehicles since 2000!
 - PCF7946 Philips/NXP transponder using Hitag-2. Correlation attack unveiled.

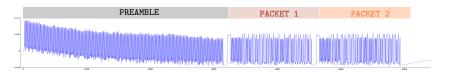
USENIX 2016: attacks on RKE systems

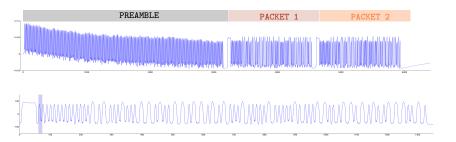
- Goal: setup the attack targeting the PCF7946.
 - 1. Capture and decode the radio frames.
 - 2. Implement the correlation attack.
 - 3. Find the secret key using the attack.
 - 4. Craft valid radio frames and profit.
- Constraints: black-box approach.
 - Breaking the car was not an option!
 - Neither invasive nor semi-invasive attacks on the PCF7946 considered.
 - ► Time and resource costly!

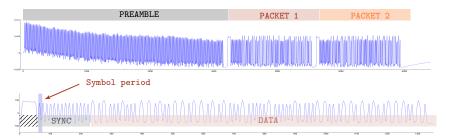

Radio signal analysis

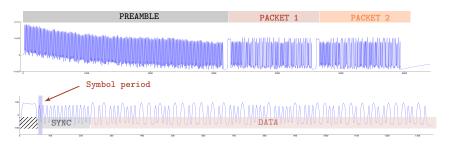
From RF signal to bits


- Useful information to be gathered:
 - Central frequency and channel bandwidth.
 - Modulation.
 - Channel encoding.
 - Packet format.
- White-box analysis:


Parameter	Value		
Working frequency	ISM 433 MHz		
Modulation	ASK/FSK		
Channel encoding	Manchester/NRZ		
Packet format	see USENIX 2016		


Demodulation: spectral analysis

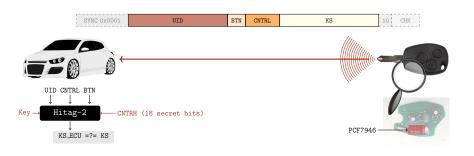



■ Modulation: ASK (Amplitude Shift Keying).

■ Results:

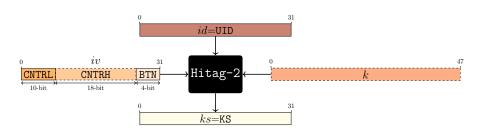
- Modulation: ASK.
- Channel encoding: Manchester.
- Observing invariants to get back to the data.
- Using the checksum for sanity check.

	32-bit	4-bit	10-bit	32-bit	2-bit	8-bit	
SYNC 0x0001	UID	BTN	CNTRL	KS	10	CHK	
104-bit							

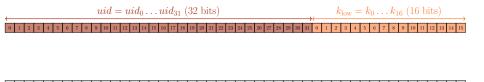

Hitag-2

The Hitag-2 algorithm

- Late 90's stream cipher from Philips (NXP).
- Hardware reverse engineered in 2007.


The Hitag-2 algorithm

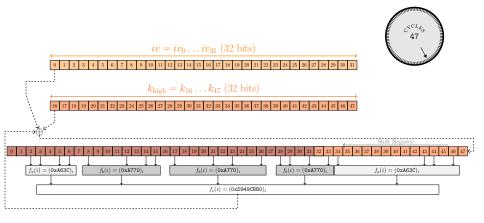
- Late 90's stream cipher from Philips (NXP).
- Hardware reverse engineered in 2007.
- Using the algorithm in a RKE context:

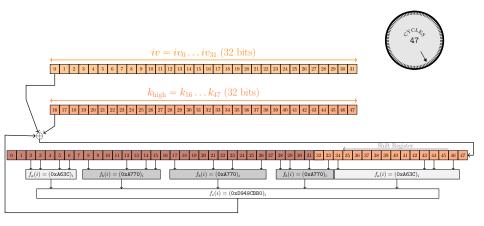


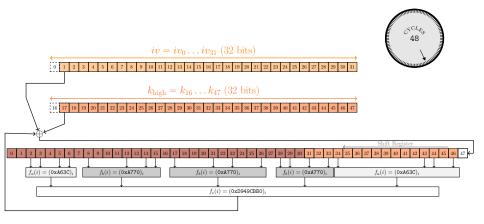
The Hitag-2 algorithm

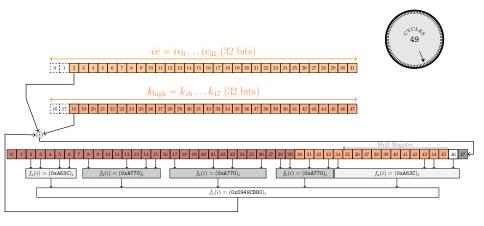
- Late 90's stream cipher from Philips (NXP).
- Hardware reverse engineered in 2007.
- Using the algorithm in a RKE context:

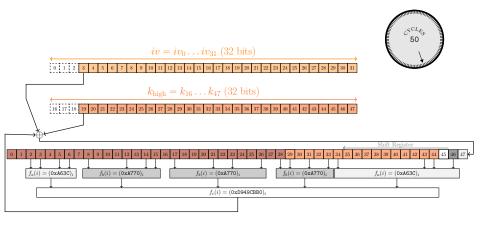
Hitag-2: initialization phase

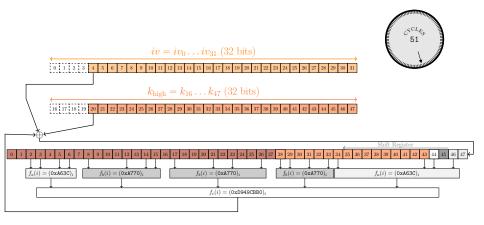

Internal state Hitag-2 (48 bits)

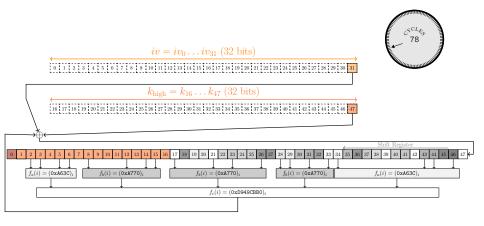

Hitag-2: initialization phase





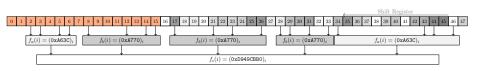

Internal state Hitag-2 (48 bits)

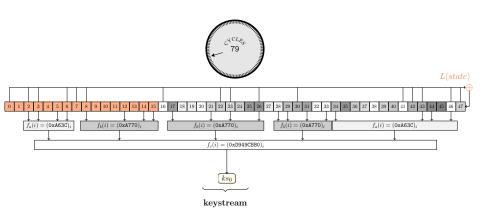


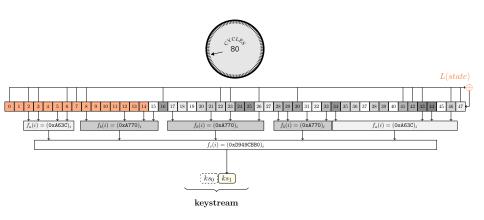


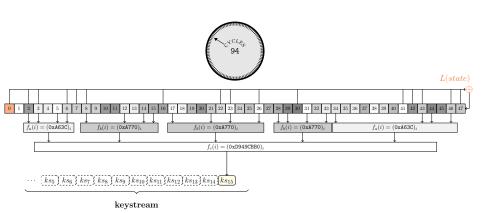
Hitag-2: randomization phase

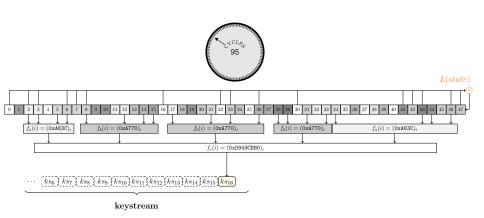
Hitag-2: randomization phase


Hitag-2: randomization phase

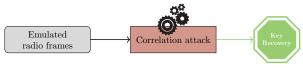



$$iv = iv_0 \dots iv_{31}$$
 (32 bits)


$$k_{\text{high}} = k_{16} \dots k_{47}$$
 (32 bits)

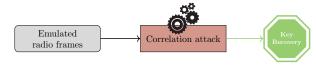

 $16\overset{1}{1}7\overset{1}{1}8\overset{1}{1}9\overset{1}{2}0\overset{1}{1}21\overset{1}{1}22\overset{1$

Hitag-2: the correlation attack

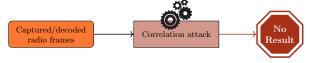

- Introduced by the USENIX 2016 article:
 - Key recovery with 4 to 8 radio frames.
 - The key search space is significantly reduced.
 - Uses key candidates scoring deduced from the observed keystream.

Hitag-2: the correlation attack

- Introduced by the USENIX 2016 article:
 - Key recovery with 4 to 8 radio frames.
 - The key search space is significantly reduced.
 - Uses key candidates scoring deduced from the observed keystream.
- Solving the unknown CNTRH issue:
 - Supposed to be set to zero at manufacturing time.
 - Authors suggest to estimate the vehicle's age.

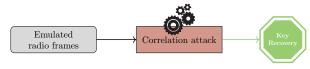

Implementing the correlation based cryptanalysis

- Tests on emulated radio frames.
 - Our implementation works.
 - The key is found in a few minutes.

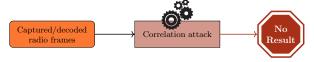


Implementing the correlation based cryptanalysis

- Tests on emulated radio frames.
 - Our implementation works.
 - The key is found in a few minutes.



- Tests on real radio frames (with unknown CNTRH).
 - Cryptanalysis does not converge towards a proper key.



Implementing the correlation based cryptanalysis

- Tests on emulated radio frames.
 - Our implementation works.
 - The key is found in a few minutes.

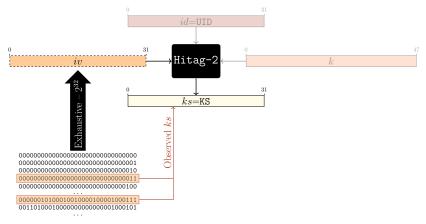
- Tests on real radio frames (with unknown CNTRH).
 - Cryptanalysis does not converge towards a proper key.

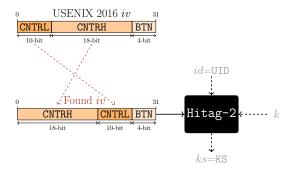
- Our Hitag-2 RKE system might be different!
 - We need to understand the discrepancies.

Black box reverse engineering

- How can it be performed?
 - We had access to the vehicle but no access to the ECU.
 - No NDA with NXP: neither datasheets nor SDKs.

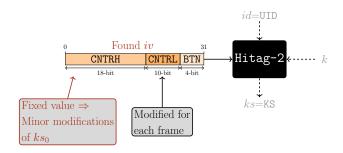
Black box reverse engineering


- How can it be performed?
 - We had access to the vehicle but no access to the ECU.
 - No NDA with NXP: neither datasheets nor SDKs.
- We found programmable blank keys containing the PCF7946!


• They use the manufacturing default key 0x4f4e4d494b52.

Finding the *iv* format: a black box approach

■ Brute forcing the 2^{32} iv and finding explicit patterns for observed ks, with fixed and known id and k.



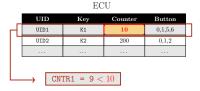
Finding the iv format: the discrepancies

Finding the iv format: the discrepancies

■ Explains why the USENIX 2016 correlation attack fails.

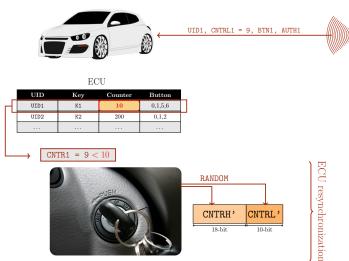
|Blank keys |Discrepancies |Attacks

Uncovering an ECU mitigation



ECU

UID	Key	Counter	Button
UID1	K1	10	0,1,5,6
UID2	K2	200	0,1,2


Uncovering an ECU mitigation

Uncovering an ECU mitigation

■ Resynchronization with near-field 125 KHz when starting the engine.

Optimized exhaustive search

- Uses two triplets (id, iv, ks):
 - Searches over 2⁴⁸ keys the one realizing the observed keystreams.
 - Implementation of a heavily parallelized and optimized brute-forcer on CPU and GPU (in OpenCL).

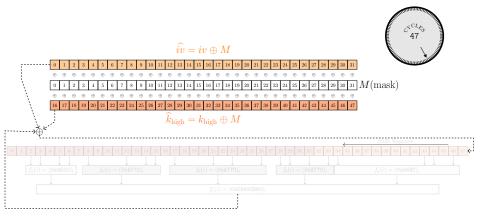
Optimized exhaustive search

- Uses two triplets (id, iv, ks):
 - Searches over 2⁴⁸ keys the one realizing the observed keystreams.
 - Implementation of a heavily parallelized and optimized brute-forcer on CPU and GPU (in OpenCL).
- Tested on Amazon EC2 instances:

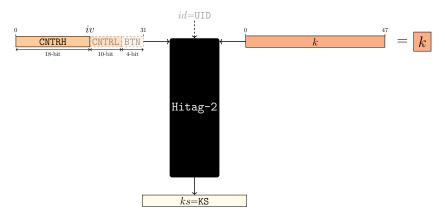
${f Platform}$	\mathbf{Time}
GeForce GTX 780Ti	18 hours
One Amazon EC2 [†] instance	45 minutes
Three Amazon EC2 † instances	15 minutes

 $^{^\}dagger p2.16 x large:~16$ Tesla K80, 128 CPU

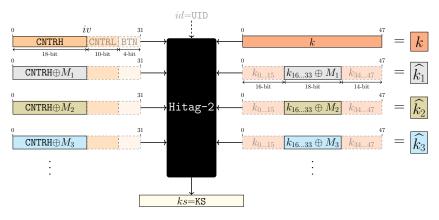
Optimized exhaustive search

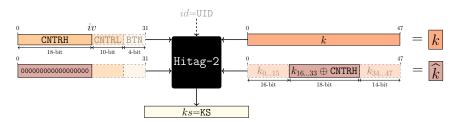

- Uses two triplets (id, iv, ks):
 - Searches over 2⁴⁸ keys the one realizing the observed keystreams.
 - Implementation of a heavily parallelized and optimized brute-forcer on CPU and GPU (in OpenCL).
- Tested on Amazon EC2 instances:

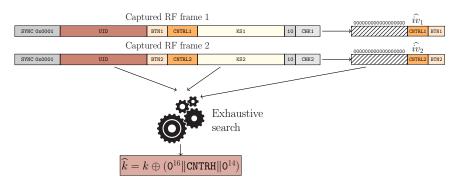
${f Platform}$	\mathbf{Time}
GeForce GTX 780Ti	18 hours
One Amazon EC2 [†] instance	45 minutes
Three Amazon EC2 [†] instances	15 minutes


 $^{^\}dagger \mathtt{p2.16xlarge}\colon 16$ Tesla K80, 128 CPU

■ How to deal with the unknown part of CNTRH?

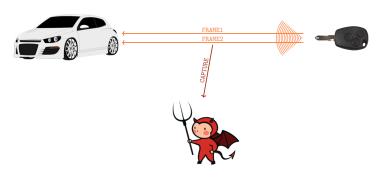

■ Masking can be inserted during the randomization phase.


 \blacksquare Many equivalent keys generating the same keystream can be exposed through iv masking.


■ Many equivalent keys generating the same keystream can be exposed through iv masking.

- \blacksquare Many equivalent keys generating the same keystream can be exposed through iv masking.
- Particular case of interest: when the mask is CNTRH.

- \blacksquare Many equivalent keys generating the same keystream can be exposed through iv masking.
- An exhaustive search with equivalent \hat{iv} produces an equivalent key \hat{k} masked with CNTRH.



- \blacksquare Many equivalent keys generating the same keystream can be exposed through iv masking.
- An exhaustive search with equivalent \hat{iv} produces an equivalent key \hat{k} masked with CNTRH.

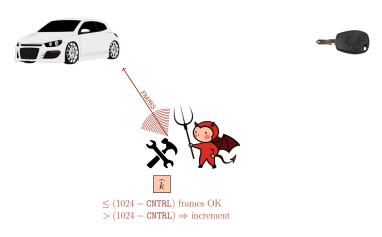
 \blacksquare No need to find the real key k to craft legitimate frames!

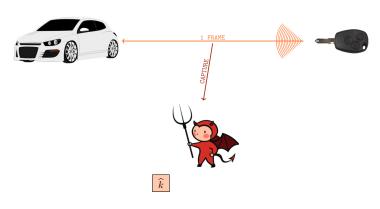
New attacks 1/2: capture two frames and guess

■ Without ECU resynchronization.

New attacks 1/2: capture two frames and guess

■ Without ECU resynchronization.




New attacks 1/2: capture two frames and guess

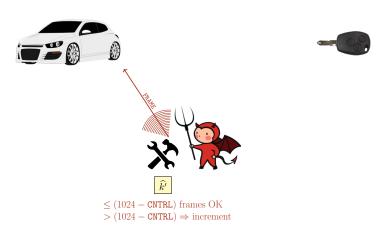
■ Without ECU resynchronization.

New attacks 2/2: recapture and adapt

■ With ECU resynchronization.

New attacks 2/2: recapture and adapt

■ With ECU resynchronization.



New attacks 2/2: recapture and adapt

■ With ECU resynchronization.

Conclusion

- Results:
 - A hardened RKE Hitag-2 exposed.
 - ► Mitigation through ECU resynchronization.

Conclusion

■ Results:

- A hardened RKE Hitag-2 exposed.
 - ► Mitigation through ECU resynchronization.

• Attack complexity = 2 RF frames, +1 with the ECU mitigation.

Conclusion

■ Results:

- A hardened RKE Hitag-2 exposed.
 - ► Mitigation through ECU resynchronization.

- Attack complexity = 2 RF frames, +1 with the ECU mitigation.
- Obsolete and proprietary cryptography is broken:
 - Time to make a change!

W00T'17

11th USENIX Workshop on Offensive Technologies

One Car, Two Frames: Attacks on Hitag-2 Remote Keyless Entry Systems Revisited

