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Abstract

Research has shown that Remote Keyless Entry systems
(RKEs) often lack the required security features. RKEs
from popular and widely known car manufacturers were
successfully broken by attackers. The same also ap-
plies for non-automotive applications such as the Mi-
fare Classic card which was used for electronic lock-
ing systems. This work proposes an alternative design
and architecture for a remote keyless entry system solv-
ing well-known security issues like wiretapping the com-
munication between the transceivers and extracting the
cryptographic key from one of the peer’s memory. The
communication between the peers (key fob and lock con-
troller) is performed bidirectional, the authentication is
ensured by a challenge response mechanism. An ap-
propriate hardware and necessary components are se-
lected with regard to power consumption and timing con-
straints. Evaluating both parameters gives important in-
formation about further engineering for the prototype.
Depending on the chosen authentication algorithm, avail-
ability of libraries are checked and evaluated whether
they can be used in this context. Another task is the
definition of a communication protocol which transfers
the payload between the peers and supports the chosen
authentication mechanism. A prototype is build which
allows to evaluate the above mentioned parameters such
as timing constraints and power consumption.

1 Introduction

Nowadays nearly every sold car comes with a RKE. This
system consists of two devices, the electronic circuitry
inside the car key (transponder) and the receiver inside
the car. The user can lock or unlock the car remotely,
from a distance up to 50 meters far away. It just takes
the press of a button on the transponder and, when in
reach, the car locks or unlocks the doors. This is known
as an active RKE. The same mechanism exists as a pas-

sive RKE. The difference is that the user does not need
to press a button on the transponder to invoke locking or
unlocking. When in reach, the car locks or unlocks au-
tomatically in case a door handle is pulled. The signal,
which is transmitted between the transponder and the re-
ceiver is promised to be secure against manipulation, but
depending on the system, vulnerabilities and exploits ex-
ist to overcome the integrated security mechanisms to al-
low a severe manipulation, such as unlocking and start-
ing the car without the proper car key. Attacks against
these systems were successfully carried out by other re-
searchers and include methods like cryptanalysis or re-
verse engineering. While cryptanalysis and reverse engi-
neering also have the aim to determine the working prin-
ciples of the underlying algorithms, attacks like bridging,
jamming or grabbing can be carried out without the de-
tailed knowledge of the underlying technology or cryp-
tographic schemes.

The aim of this work is to propose a new design for
RKE:s using a different architecture than the systems be-
ing currently in use. The architecture will focus on the
communication protocol, the physical data transmission
scheme and therefore to improve the overall security of
the system.

2 Related Works

Several researchers have shown that proprietary ciphers
and algorithms which are used in current RKEs were suc-
cessfully broken. In [6] Garcia et al. describe their re-
verse engineering process of the four VW schemes which
were used in RKEs from year 2000 until 2016. All four
schemes were demonstrated to be insecure and crypt-
analysis revealed that common principles were violated,
such as omitting proper authentication and ignoring the
need for encryption when using rolling-code schemes.
Instead of data encryption, signal obfuscation was used
to mislead potential attackers.

Other cryptographic schemes which are used in cur-


johannes@spektrum-engineering.de

rent RKEs are named KEELOQ, Hitag? and Megamos.
These three schemes can also be considered broken, be-
cause researchers have developed different methods to
recover the secret key or to clone the complete transpon-
der. In [5] Eisenbarth et al. demonstrate a side channel
attack to clone a transponder which uses the KEELOQ
hopping code scheme. Another attack to recover the se-
cret key from a KEELOQ transponder was performed by
[4] using a slide-algebraic attack.

Hitag2 was broken by a brute-force attack by Stem-
bera and Novotny. They describe their brute-force attack
using the COPACOBANA! in [12]. Brute forcing be-
came possible because the Hitag2 algorithm allows wire-
tapping the communication between the transponder and
the receiver which reveals the transponder serial number,
initialisation vector and authenticator. With the knowl-
edge of these parameters, the COPACOBANA can be
used to generate all possible cryptographic keys and to
calculate (using the initialisation vector and serial num-
ber) the corresponding authenticator. Every calculated
authenticator is compared to the sniffed one, if two are
equal, then the secret key is known.

Megamos was broken by performing a key-update at-
tack described in [13]. Verdult et al. describe the
cryptanalysis of the Megamos scheme by wiretapping
the communication between the transponder and the re-
ceiver. Once the authenticator and the nonce was sniffed
successfully, the transponder was manipulated by updat-
ing the registers which stored the secret key. The sniffed
authenticator and nonce is then replayed to the transpon-
der which only replies with its own authenticator if the
secret key fits the replayed authenticator. The secret key
gets updated inside the transponder after every unsuc-
cessful attempt and once the transponder replies with its
own authenticator, the secret key is found.

These works show that proprietary RKEs often lack
necessary security features and that the architecture
which is currently in use can be improved to meet higher
security standards. Improving the current architecture re-
garding the security is the aim of this work.

3 RKEs currently in use

RKEs perform the data transmission between the peers
by using radio frequency (RF) signals with a frequency
of 433 MHz or 868 MHz (in Europe), some manufac-
turers used infrared (IR) signals instead. Cryptographic
schemes were omitted, the protocol mainly consisted of
sending commands to the receiver inside the car. This
technique is known as “fixed-code” transmission, be-
cause for every requested action the same command
(message) is send. This makes systems vulnerable to
replay attacks. Nowadays “rolling-code” or "hopping-
code” schemes are used which overcome the “replay-

attack” vulnerabilities. [!]

The fixed-code” and rolling-code” schemes are
both unidirectional which makes a receiver inside the
transponder needless. Rolling-code schemes are mainly
used with small, economical and low powered remote
controls. The scheme is also found in garage door open-
ers or building access control systems [5]. The plain
rolling-code technique consists of a quite simple algo-
rithm which is executed on the transponder and receiver
side, it is designed to work with unidirectional data flow.
This scheme is not vulnerable to replay attacks, because
with every transmission a new code is sent. This is done
by a sequence counter which is present in the sender and
the receiver, both peers maintain their counter values in-
dependently. Additionally, both share a secret key which
is used to encrypt the message at the sender side and de-
crypt it at the receiver side. After each transmission the
sender updates its sequence counter (e.g. incrementing),
once a message is send, the receiver decrypts the mes-
sage and validates the received counter value against its
own sequence counter. If the value is within a predefined
range, the receiver accepts the message, updates its own
sequence counter and performs the desired action. If the
counter value is out of range, the internal counter is not
updated and the action is not performed. [1]

Using unidirectional communication is still the stan-
dard for current RKEs, nevertheless some luxury cars
nowadays use a bidirectional communication scheme
which is technically known as a passive RKE. Transpon-
ders being part of a passive RKE additionally require a
low frequency receiver which is triggered as soon as the
transponder is nearby the car. A low RF signal is send
by the car which is received by the transponder and de-
activates the sleep mode of the microcontroller. Then a
message is send out by the transponder which shows the
car that the user is in range. In common scenarios this
will unlock the doors. This feature is mainly introduced
to save energy because letting the RKE send out connec-
tion requests and wait for a response would drain lots of
energy and therefore decrease the battery live of the car
key. [!]

Passive RKEs such as “Keyless-Go” systems are vul-
nerable to bridging attacks. It is called bridging because
the distance between the key and the car — which is nor-
mally limited to just a few meters — is extended by con-
verting the signal and transmitting it over a larger dis-
tance. The adversaries just need access to the passive
car key and the other adversary needs to be near the car.
Getting access to the car key is quite simple, because the
driver is most likely having the car key in his pocket or
bag and the communication — including transmission of
the wake-up signal —is carried out wirelessly. Special de-
vices can emulate the wake-up signal and thereby force
the key to initiate a communication. Both, the car key



Figure 1: Transponder inside a car key, belongs to a
Smart 451-2

and the receiver have no possibility to recognize that the
communication is extended by a bridge and that the re-
ceiver is farer away than just a few meters.

Performing a jamming attack is effective when trying
to overcome active RKEs. This is done by just inter-
rupting the transponder’s RF signals in such a way that
the receiver is not able to receive the original message
(for instance sending an arbitrary message on the same
frequency with a higher power rating). In RKEs which
implement the rolling-code scheme, this offence can be
paired with a grabbing attack. In addition to jamming,
the transponder’s signal is recorded and later replayed
by the adversary. This has the effect that the owner will
not recognize a third party having access to the vehicle
because unlocking will be carried out as usual. [1]

The immobilizer, which is typically placed inside a
car key as well, will not be discussed separately be-
cause the security of RKEs and immobilizers rely on
the same principle, the authentication mechanism. Once,
two peers are mutually authenticated, the concrete use
case is not critical any more, because the communication
is resistant against manipulation.

Figure 1 shows a car key of a modern car, a Smart
ForTwo (451-2), build in 2013. The car key features
a mechanical key blade and the electronic circuitry for
an active RKE (buttons for user interaction are visible).
When searching for the two microchips which are sol-
dered on the PCB it turns out that the PCF 7941 is
a Hitag2 controller’ (manufactured by NXP) and the
other one (labelled as 5700 B3 61250) is manufactured
by Infineon and is a wireless signal transmitter sold as
TDAS5100°, operating at 868/433 MHz. This leads to the
assumption that also this RKE is vulnerable to the attacks
introduced in the previous sections.

4 Contribution

Literature research shows (section 2, section 3) that
RKEs currently in use lack the necessary security fea-
tures. Therefore, the author’s contribution is the propo-
sition of a new design and alternative architecture for a

secure and reliable RKE, focussing the automotive sec-
tor and their needs, but allowing an easy adoption of
the approach for other domains and industries. The fo-
cus lies on open source authentication and cryptographic
algorithms, secure key storage and authenticated, bidi-
rectional communication between the two peers. While
current systems are focused on low energy consump-
tion and therefore accept lower cryptographic schemes,
the approach of this work is to use existing authentica-
tion and encryption mechanisms to increase security. It
is most likely that these mechanisms demand a higher
CPU performance to carry out the operations in the same
short time as current RKE systems. In addition to the
more complex cryptographic mechanisms, the transmis-
sion between the key fob and the receiver will also be
implemented and evaluated using non-RKE-standard so-
lutions such as Bluetooth Low Energy (BLE), Near Field
Communication (NFC) or Wireless Local Area Network
(WLAN) approaches. Higher CPU performance and new
transmission schemes may lead to higher power con-
sumption which could require a complete redesign of the
electrical specifications and primarily the power supply.
At the first glance this seems to be an disadvantage but
on the other hand new transmission schemes may allow
to simplify the complete system, for instance by intro-
ducing smartphones as transponders.

S Prototype Development

This section describes the details about the prototype de-
velopment including the defined requirements, proposed
hardware and software architecture and explains basic
thoughts about the chosen prototyping hardware. The
development is lead by the aim to define system char-
acteristics which support increased security compared to
the current RKEs, low power consumption and crypto-
graphic algorithms which have low execution times on
the chosen hardware. The software implementation will
be introduced shortly and will be further discussed in
section 6.

5.1 Requirements

The requirements were designed by keeping functional-
ity for the automotive industry in mind, because RKE
systems are one of the most important security features
to prevent unauthorised access to vehicles. Generally the
proposed requirements can also be applied to RKE sys-
tems used in other contexts like building access control
or similar use cases. The security and communication
outside of RKE:s is not part of the requirements and the
corresponding implementation. Introducing vulnerabil-
ities to a system by connecting it to other less secured



components, should be clear and will therefore not be
discussed in this context.

In section 3 several scenarios were described which
lead to unauthorised access to a car without requiring
knowledge of the underlying algorithms and protocols.
These attacks were described as sniffing, jamming, grab-
bing and bridging.

Sniffing a communication cannot be prevented, the only
possibility is to perform a communication which leaves
the adversary with data which cannot be interpreted or
evaluated without the knowledge of the decryption key.
This can be realised using authentication and encryption.
Jamming and grabbing is also technically hard to pre-
vent because radio signals may interfere with each other
when using the same frequency. Nevertheless, the effect
of jamming can be attenuated by notifying the user when
his request could not be fulfilled at the receiver side. This
can be performed by implementing bidirectional commu-
nication and an appropriate authentication mechanism.
Grabbing is mainly used for passive RKEs (Keyless-Go
systems) which activate the transponder automatically
when it is nearby the vehicle. This attack can easily be
prevented by establishing a communication solely when
the user physically interacts with the car key.

These requirements demand mutual authentication be-
tween both peers to increases integrity of the whole sys-
tem and therefore ask for an appropriate algorithm. Chal-
lenge response authentication seems to be a reliable and
fast forward way to ensure secure communication. Op-
tionally, after authenticating a message, it can be en-
crypted. This is not always necessary in this case because
a message which is signed by the sender will be rejected
by the receiver when the message was modified during
transmission. Another indispensable requirement when
cryptographic schemes are used, is a secure key storage
mechanism for embedded devices. Solving this require-
ment is also demanded by other applications (like mo-
bile computing) and can therefore be seen as an already
resolved task. Nevertheless, mechanisms will shortly be
introduced.

The proposed ways of communication, authentication
and key management are assumed to be computational
more complex than the classical mechanisms described
in section 3. Therefore a CPU with sufficient perfor-
mance is necessary. Taking the possible execution time
for data authentication into account leads to the require-
ment to focus on the timing constraints. Letting the
user wait for more than one second until his “request”
is fulfilled seems inadequate regarding the comfort. Be-
side the timing constraints, the power consumption of
the CPU is an important factor. Increased complexity
regarding computation and data transmission automati-
cally leads to a higher current drain by the CPU. This
needs to be monitored to ensure an optimised alternative

for current RKEs. Providing a higher level of security but
disregarding comfort by reducing the transponder battery
life seems inadequate. Therefore the project has to cover
the following technical requirements:

1. Bidirectional communication to allow user notifica-
tions and

2. mutual authentication using a challenge response
principle

3. Authenticated and (optionally) encrypted commu-
nication

4. Secure key storage

5. CPU & algorithm which support timing constraints
(performance)

6. CPU, algorithms and RF components which con-
sume low power

5.2 Proposed Architecture

The distinctiveness when engineering and designing
such a RKE is the fact, that physical, electrical and
computer science principles have to be used in combi-
nation to secure access to a physical resource. It is not
sufficient to solely secure the resource physically (e.g.
bulletproof doors and glass), the information security
between the data exchange of the remote control and the
local control circuits — which operate the door latch —
have the same demands for security. Additionally, these
techniques need to be combined into one system, which
also requires to provide a secure interface between these
two. For instance, having a super secure communication
scheme between the transponder and the base station and
having super tight doors, door latches and unbreakable
glass is not providing any security when the interfaces
between the electrical and mechanical parts are physi-
cally accessible and an attacker just needs to short circuit
the coil which operates the latch. Nevertheless, for this
work the author assumes that the physical measures
were taken to properly protect the resource and that the
interface between the electrical and physical system also
complies to sufficient security principles.

Authentication and Cryptography. An embedded
system, which performs security related tasks, should
stick to the IT-security principles: confidentiality,
integrity, authentication and authorization.  These
principles can be met by using cryptographic algorithms
to encrypt or decrypt data, generate communication and
authentication challenges or requests. The cryptographic
components include functions such as symmetrical
encryption/decryption, hashing, signing and random
number generation.
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Figure 2: Transponders having own, unique signing and
encryption keys

The overall basis for this RKE architecture is the au-
thentication scheme. It has to ensure a proper identifi-
cation of the peers involved in data exchange. Several
methods like X.509 certification and public key infras-
tructure (PKI) exist, but authentication in an itself closed
system (closed meaning the ability to communicate to
a limited number of partners only) demands other re-
quirements. Implementing a PKI architecture is always
more complex and more error prone than implementing
a symmetrical cryptographic scheme. Additionally, the
features a PKI architecture offers (e.g. verifying certifi-
cate validity) seems immoderate for this system and does
not provide any benefit regarding security or simplicity.
It is rather the opposite case, using a symmetric cryp-
tographic scheme requires less CPU performance com-
pared to PKI schemes. Therefore, using a challenge re-
sponse authentication mechanism (CRAM) seems appro-
priate for this project and leads to a pre-shared key (PSK)
architecture, such as EAP-PSK [2].

To ensure the above mentioned principles it is neces-
sary to perform mutual authentication and (optional) en-
cryption. Mutual authentication will be performed by un-
ambiguously identifying both peers using EAP-PSK and
by authenticating every message. EAP-PSK was cho-
sen because it fulfills the above mentioned security prin-
ciples by relying on a single, symmetric cryptographic
algorithm, CMAC (cipher-based message authentication
code) and is not limited to a specific data transmission
mechanism. It can be used to transmit data securely
over an insecure channel, a protocol which tracks the
state of the connection between peers — like TCP/IP —
is not necessary. EAP-PSK delivers its own mechanism
to keep track of the ongoing connection. The communi-
cating peers identify each other by a fixed pre-shared ID
and the shared secret. Figure 2 shows the shared keys
between the transponders and the station. It becomes
clear that every transponder has its own, unique sign-
ing and encryption key (signing key # encryption key),
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Figure 3: Authentication scheme according to EAP-PSK

which are shared with the base station — these are the
shared-secrets. Depending on the transponder’s identi-
fier, the base station knows which shared key to use for
the authentication and authenticated message exchange.
This requirement is not only claimed by the EAP-PSK
standard, it additionally allows to easily introduce smart-
phones to act as transponders.

EAP-PSK was implemented for the prototype and
slightly modified to be compliant with the use case, the
field of RKE applications and to be used with the avail-
able data transmission schemes. Figure 3 shows the se-
quence diagram where the authentication and communi-
cation between both peers is shown, the sequence com-
plies to the EAP-PSK standard (cf. [2, Fig. 9]). Ac-
cording to EAP-PSK, the server is the initiator of the
authentication. To comply with this specification, step
(1) was introduced to tell the base station (B) to initiate
the authentication process. S, is the sequence number
to identify the datagrams, A is just the indicator to tell
the base station to start the authentication. These fields
then become concatenated which is denoted by ||. In (2),
the base station (B) starts the authentication by sending
Sy, together with the random number challenge Rp and
the identity indicator IDp. The transponder (A) then au-
thenticates itself to B in (3) by demonstrating the ability
to compute a message authentication code (denoted as
MACsag][...]) over the transponder identifier IDy4, IDp,
Rp and its self generated challenge R4 using the given
shared secret SAB. The MAC is sent back to B together
with the generated challenge R4, ID4 and Rp. B then val-
idates the received MAC by calculating the same MAC
over the received data and the previously defined chal-
lenge. If both MACs are identical, assumed this is the
case in (*1), then A is properly authenticated to B, be-



cause it was able to prove its possession of the shared
key SAB by responding correctly to the challenge. In (4)
B now performs the same, it responds to the previously
received challenge by computing a MAC over IDp and
R4 using the shared secret SAB. The MAC is then sent
as a reply to A, together with the token Tp(;), where A
validates the received MAC by computing the MAC over
its local copies of IDp and R4. The validation succeeds
if both MACs are identical. Tp;) is used as a session
identifier to keep the state of the authentication (compa-
rable to RAND_S, message 3 in [2, Ch. 4.1, Fig. 9]). To
additionally prove the successful authentication, B can
encrypt (denoted as kag[...]) the message consisting of
Tp(1) and the computed MAC using a second shared se-
cret, the encryption key AB. This can be compared to
the secure channel, denoted as PCHANNEL_S 0 by the
EAP-PSK standard. In (*2) B is also authenticated to A,
because B could prove the possession of the shared secret
SAB by computing the MAC over the given challenge R4.

The authentication is finished and the transponder can
continue with the payload preparation. When the user
pushes a specific button on the transponder A, then a
corresponding, predefined pattern is written to the Com-
mand buffer which is later inserted into the message in
(5). A is sending the Command by concatenating the re-
ceived Tp(;), Command and a self generated token T4(;).
T(1) is part of the message to prove the state of authen-
tication to the base station, and Ty;) is part of the mes-
sage to allow B to prove the state of authentication to A
with the following message. The transponder expects to
receive Ty;) with the next response from B. The mes-
sage, which is about to be sent in (5), is authenticated
by computing a MAC over [Tp)||Command||Ta1)] and
the shared key SAB. This MAC is placed in front of the
payload and is sent to B as the datagram with the for-
mat [MAC||Tp(1)||Command||Ty;)]. This datagram can
optionally be encrypted, in case confidential information
is contained.

In (*3), B validates the MAC and validates the state
of authentication by checking whether T(;)-received is
the same as Tp(;)-send in (4). Then the Command (e.g.
locking or unlocking the door) is carried out and a con-
firmation message is prepared.

In (6), a new authentication indicator Tpg)
is generated and is send back to A together
with the received Ty(;), Confirmation and a
MAC over [Ta( | Confirmation||Tpp)] using the
shared secret SAB. The datagram has the format
[MAC||T4(1)||Confirmation|| Tg2)] and can optionally be
encrypted before transmission.

In (*4) A validates the MAC and validates Ty4(;) by
comparing the received T4(;) with the previously sent
TA( 1)-

The sequence number (S,) was chosen to be of the

Table 1: EAP-PSK protocol and datagram sizes

Datagram | 1 | 2 3 4 5 6 | Total
Size (byte) | 2 | 65 | 129 | 65 | 129 | 129 | 519
Sender A| B A B A B X
Receiver B| A B A B A X

datatype byte, because it is just used to number the mes-
sages (same as Flags is doing according to EAP-PSK).
A maximum of six messages is exchanged during one
transaction (authentication, transmitting the command
and receiving the confirmation), which suffices to use the
datatype byte for S,. The peer’s IDs (IDa, IDp) were
chosen to have a size of 32 bytes, the same applies for
the random challenges (R4, Rp). The benefit of using
a large random number space for the challenge is, that
dictionary attacks become unlikely, because the amount
of messages an attacker will have to sniff is quite large
(23%"8 = 225%) The same applies for the size of the to-
kens T, which prove the state of the authentication and
prevent replay protection. The tokens 7, are generated
from the same RNG source as the random challenges Rx
and Rp. Also, Command and Confirmation were chosen
to have a length of 32 bytes, which allows to transmit ad-
ditional information together with the actual command.

The MAC requires a key of 32 bytes and is always pro-
ducing an output having the size of 32 bytes. In (5) and
(6) the MAC was put as the first part of the message (ex-
cept for §,) to start the cipher text with a not previously
transmitted bitstring — in case encryption is used. Table |
shows the datagram sizes which are transmitted between
the transponder and the base station as demonstrated in
figure 3. This becomes important when choosing the data
transmission mechanism.

The peer authentication and the message authenti-
cation was performed by using the HMAC-SHA256.
CMAC and HMAC (keyed-hash message authentication
code) both fulfil the similar aim, authenticating a mes-
sage using a symmetric cryptographic key. The differ-
ence is, that the HMAC uses a cryptographic hash func-
tion, while the CMAC uses a symmetric key block cipher
[I1]. Both are specified in a RFC and according to [! I,
Ch. 1], CMAC should be favoured on systems ~’in which
AES is more readily available than a hash function”. For
the prototype, this is not the case, it is rather the opposite
case — encryption was considered to be optional. This is
the reasons why HMAC was favoured over CMAC for
this particular case.

The circumstance, which might has caused confusion
in figure 3 is that the encryption was put on top of
the authenticated plaintext, even though cryptographic
working modes, which ensure authenticated-encryption
— such as AES-GCM or AES-EAX - exist. This was
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Figure 4: Proposed hardware architecture for prototype

done in view of the forthcoming timing measurements
to provide a separation of authenticating a plaintext
and encrypting a message. Additionally, encryption
was decided to be optional, which led to the decision
that just implementing an authenticated-encryption
algorithm seems inappropriate, regarding the fact that
“authenticate-then-encrypt” seems to be the current
practice. By first authenticating a plaintext and then
encrypting the plaintext including the MAC, provides
the longest running time and therefore considers the
worst case scenario, which is important to judge the
results correctly. Nevertheless, the author is aware
of the fact, that when authentication in combination
with encryption is a definite must, then choosing an
authenticated-encryption working mode seems to be a
better solution.

Hardware Architecture. Figure 4 shows the pro-
posed hardware architecture of the RKE consisting of
the transponder and base station. Both systems are
powered by a microprocessor and have the necessary
peripherals for operation such as SRAM, EEPROM,
and flash storage. A power management module is
taking care for powering the devices. The base station
additionally has a bus transceiver which is connected to
the other parts of the locking system, for instance the
electronic door latch, door state sensor (open or closed)
or additional devices. Both devices have wireless data
transmission components such as the RF processor
and the RF antenna. The RF processor is taking care
for the transmission, it implements the transport layer.
Tasks are data serialization, data modulation, electrical
transmission depending on the chosen standard and
error detection. Communication is bidirectional and
the RF components are not taking care for any data
securing mechanism, the input to the RF processor is a
bitstream or data packets which will be send as they are.
Cryptographic related tasks will be performed on the
microprocessor and their related peripherals only. The
SRAM is a volatile storage used for basic operations on
registers. In this particular use case it can also be used
for key generation using physical unclonable functions
(PUF). The buttons and LEDs or the vibration motor

integrated into the transponder will be used for user
interaction. By pressing a button the user requests a
corresponding action like locking or unlocking and the
vibration motor or LEDs will confirm the requested
action.

The transponder is battery powered but in case of
an empty battery it is necessary to power it externally.
Therefore the induction coil is included and the power
management module decides which source has priority
for powering the transponder.

As it became already visible in figure 4, the pro-
posed architecture was designed to work as an “offline
architecture” meaning that the authentication and data
exchange solely relies on the transponder and the base
station. This architecture was chosen intentionally be-
cause connecting the base station and transponders to the
internet and performing the authentication decentralised
may not only introduce new attack vectors, but also
makes the architecture more complex regarding overall
system availability.

Wireless Data Transmission Architecture. Data
transmission and retrieval will be performed using Blue-
tooth Low Energy (BLE), because it seems promising
regarding the energy consumption, communication
distance (up to 50 meters, dependent on the specific
module) and availability in smartphones. This allows to
introduce the smartphone as a transponder easily.

Other standards, such as WLAN (IEEE 802.11x) or
ZigBee (IEEE 802.15.4) could also be used, but BLE
seems more promising regarding component distribu-
tion, device availability, energy consumption and exten-
sibility. BLE is used in smartphones and other portable
devices, whereas ZigBee is only available in dedicated
devices. Also, discussions about using BLE in indus-
trial and safety-critical applications — such as vehicles
— were already made by [7]. They conclude that BLE
is a good choice for inter-vehicular data exchange be-
tween sensors/actuators regarding energy consumption
and data rate. Lin et al. claim in [7] a current drain of
17.9 mA for their evaluated BLE device. They show that
BLE outperforms ZigBee regarding the power consump-
tion. Also, they state the maximum data rate of BLE
as 1 Mbps, whereas ZigBee is limited to 250 kbps and
therefore is also outperformed. According to [10], WiFi
(IEEE 802.11) is more power efficient when regarding
the energy per bit, but the current drain peaks (WiFi:
116 mA, BLE: 12.5mA) prevent the compatibility with
several battery types, such as CR2032. This limits the
field of use drastically and is therefore not a candidate
for this proposed RKE architecture.

Nevertheless, the proposed authentication architecture
does not rely on BLE being used for wireless data trans-
mission, in this particular use case it seems appropriate.



Figure 5: Arduino prototyping platform: Primo, Zero,
Due

Secure Key Storage. As already described before,
mechanisms to securely store keys on embedded
systems already exist. This is mainly performed by
cryptographic co-processors which can be integrated
in the embedded system or were already integrated in
the microchip by the manufacturers to increase security.
These systems are used — for instance — in smartphones
to store the users credentials or cryptographic keys
and work reliably. Another option to perform a secure
key storage without additional co-processors are called
PUFs. These functions rely on deviations inside a
microchip which are caused by the production process.
Bohm et al. introduce in [3] a PUF based on the startup
values of SRAM cells in a microcontroller. When a
microcontroller is starting up the SRAM cells have
either a / or 0 state. These startup states of every SRAM
cell is majoritarian the same throughout one device
but majoritarian different compared to other devices.
This characteristic can be used to generate or store
cryptographic keys securely on a microcontroller or an
embedded system. Basically this SRAM PUF is not
storing a cryptographic key, it is generating always the
same key, but a unique one per device.

5.3 Implementation

The implementation is performed on three different pro-
totyping boards with different CPUs, as seen in figure 5
and the specification seen in table 2. This gives important
information about the algorithm behaviour on different
platforms. The cryptographic library, which was chosen
is named mbedtls*. Mbedtls provides functions to access
symmetric and asymmetric cryptography algorithms, it
is dual-licensed under GPLv2 and Apache License 2.0
and is maintained by ARM mbed>. The library does not
have any external dependencies, the compiled binary has
a size of 60 KB and requires only 64 KB RAM when
executed. This makes it an ideal solution to run on a
bare-metal embedded system, such as the Arduino pro-
totyping platform.

Mbedtls provides the required algorithms such as
HMAC-SHA256 and AES256-CBC which are used for
message authentication and message encryption. Other
encryption algorithms such as Blowfish can also be

used, but AES has a good energy efficiency (cf. [&,
Ch. 5.5, fig. 11]) and was proposed by Verdult and Gar-
ciain [13, Ch. 9]. For such a block cipher an appropriate
working mode is necessary to prevent statistical analy-
sis of the cipher text. An appropriate working mode is
cipher-block-chaining (CBC) and is chosen for the im-
plementation.

In section 5.2 the EAP-PSK algorithm was introduced.
To properly generate the necessary random challenges, a
RNG is required. Random number generation is often
an issue on bare-metal systems, because of a missing en-
tropy source. This is why the Cortex-M series CPUs of-
ten have an on-chip RNG. This is also the case for the Ar-
duino Primo, which has it integrated on its nRF52832 mi-
crocontroller. Additional benefit of this particular RNG
is the suitability in cryptographic applications. The hard-
ware RNG inside the nRF52832 uses internal thermal
noise to generate true non-deterministic random num-
bers. [9, Ch. 26, p. 255].

Data transmission was realised using BLE. The
nRF52832 microcontroller features an integrated BLE
module which was used for this purpose. The software
libraries are part of the Arduino IDE® and are used ac-
cordingly. Before transmitting a datagram over BLE, it
becomes base64 encoded, which is performed using the
above mentioned mbedtls library.

6 Prototype Evaluation

In this section the evaluation of the timing constraints
and the transponder power consumption will be de-
scribed, the results will be shown. As described in sec-
tion 5.3, the timing constraints of the cryptographic com-
ponents will be evaluated separately on different CPU
architectures, which are shown in table 2. Afterwards
the evaluation of the cryptographic components in com-
bination with the EAP-PSK protocol (section 5.2) will be
carried out on the prototype. This provides valuable in-
formation about the prototype’s performance in contrast
to the other CPUs.

The second part of the evaluation is to measure the
power consumption of the transponder to evaluate the
feasibility and deployment in a RKE system. This will
give necessary information about the required battery ca-
pacity when used inside a car key.

6.1 Timing constraint evaluation

To determine the execution time of the software com-
ponents, each component was evaluated independently
from the others: HMAC, Encryption & Decryption,
base64 encoding & decoding. The size of the input
buffer for the cryptographic software components was



Table 2: Arduino prototyping platform hardware specifications

Arduino | Processor CPU Arch. Clock Freq. | CPU Manufacturer Memory | SRAM
Primo nRF52832 ARM Cortex-M4F | 64 MHz Nordic Semiconductor | 512 KB 64 KB
Zero ATSAMD21G18 | ARM Cortex-M0+ | 48 MHz Atmel 256 KB 32 KB
Due AT91SAM3XS8E | ARM Cortex-M3 84 Mhz Atmel 512 KB 96 KB
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Figure 6: Timing measurements of cryptographic soft-
ware components on the prototyping boards

determined according to the protocol described in sec-
tion 5.2 and was therefore set to 128 bytes, because that
is the size of the largest datagram (compare table 1). The
execution time of the RNG was not measured, because it
is implemented in hardware on the Arduino Primo and is
not a software component.

In figure 6 the execution times of the components
were clearly arranged and at the first glance it be-
comes clear that the AT91SAM3XS8E (Arduino Due) is
the fastest CPU, directly followed by the nRF52832 (Ar-
duino Primo). The operation with the shortest execution
time on all CPUs is base64 encoding, while the longest
execution time is the HMAC, but only on the Arduino
Primo and Arduino Zero (ATSAMD?21G18). On the Due,
base64 decoding has the longest execution time. The
Due has the CPU with the shortest execution time of all
operations, except for encryption and base64 decoding,
there the Primo is about 9us and 129 s faster. Com-
paring the values of the Primo and Due is quite interest-
ing, because the CPU frequency of the Due is 20 MHz

Figure 7: Prototype timing constraints by datagram in us

higher and therefore assuming the Due being generally
faster seems logical. Therefore the difference in perfor-
mance will most likely be caused by the architectural dif-
ference. When taking a closer look at the specification of
the ARM-Cortex-M4 (architecture of nRF52832/Primo),
it turns out that this architecture is equipped with a so
called DPS’ extension, short for digital signal process-
ing. According to ARM, this extension speeds up math-
ematical operations such as vector-dot-product, vector
multiplication, etc and allows to perform signal process-
ing directly on the microcontroller. In how far the im-
plemented algorithms and libraries have a benefit from
the DSP extension is unclear and will not further be ana-
lyzed, because it is out of scope at this state of the project.
The DSP could be a reason for the similar performance of
both CPUs with different clock frequencies, but is noth-
ing more than an assumption.

After measuring the timing constraints of the single
software components, the timing constraints of the pro-
totype were analyzed. This measurement is only per-
formed on the Arduino Primo, because it requires BLE
communication ability and the other prototyping boards
do not have this. Figure 7 shows the mean (standard de-
viation of 14 ps for the transponder and 52 ps for the base
station) of 20 measurements for every datagram, which is
transmitted between the transponder and the base station
(cf. figure 3).

The execution time required by the transponder and
the base station are quite similar for the corresponding
datagrams, because both peers mainly perform the same
operations to mutual authenticate. Datagram 1 takes
equally long on both sides, because no critical opera-
tions are performed. The base station just gets an authen-
tication request and responds to this with datagram 2.




Table 3: Bluetooth LE specification according to [10]
and [Y]

Data rate (theoretically) 1 Mbit/s (125 kbytes/s)

Data rate (Application) | 305 kbit/s (38.13 kbytes/s)

Power drain (RX) 5.4mA
Power drain (TX) 5.3mA
Transmission distance 50m

For datagram 3, the base station needs almost twice the
time to validate the content than the transponder needs
to prepare the content. This is caused by the implemen-
tation on the base station side. Datagram 3 is validated
by checking the integrity of the message, meaning the
HMAC is generated over the received data, when this
check succeeds, then the actual authentication is per-
formed, meaning the HMAC is validated using the lo-
cally stored data (Rg). This shows that the HMAC is
performed twice for one datagram, which explains the
longer runtime. Datagram 4 takes longer to be validated
by the transponder than the base station needs to prepare
it. This is caused by the fact, that the encryption is faster
than the decryption. Both peers mainly behave similar
for datagram 5 and datagram 6, again, here the timing
difference between encryption and decryption becomes
noticeable.

In total, both peers have about the same timing con-
straints, the base station is approximately 200 us slower,
the reasons are mainly datagram 3, with a difference of
400 ps and datagram 4, where the base station is faster
and therefore compensates datagram 3.

Nevertheless, the measurement and analysis show, that
the timing constraints of the software components and
the chosen protocol, EAP-PSK is indeed suited for the
use in an RKE system. Summing up the total time
which is consumed by the base station and the transpon-
der (transmission and datagram evaluation is of course
consecutive) gives a total time of 2705 us 4 2898 us =
5603 ps. This shows, that the calculations, which are per-
formed locally on the peers to mutual authenticate just
consume 5.603 ms. Again, in section 5.1 the maximum
runtime for a transmission cycle (mutual authentication,
payload transmission) was defined as one second. As the
evaluation shows, the cryptographic operations just con-
sume 5%o of this defined one second. Therefore the pro-
posed cryptographic library and protocol can be used for
the architecture and implementation as intended before.

During the implementation and evaluation it turned
out, that the data exchange between the transponder and
the base station takes longer than demanded by the re-
quirements in section 5.1. This can be seen in figure
10, where the timings of the transmission (channel 03)
and receipt (channel 02) are shown. When the channel
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Figure 8: Experimental setup: Primo Core with keypad,
amplifying circuit and logic analyzer

is pulled high, the process of transmitting or receiving is
active, when the channel is pulled low, the correspond-
ing process is inactive. From the button press on the
transponder until the base station receives the Command
(datagram 5, compare figure 3) and performs the corre-
sponding action, it takes about 14 seconds. The transpon-
der is transmitting and receiving 3 packets, the duration
is directly dependent on the message size (compare table
1). Interestingly, the transmission from the transponder
to the base station takes longer than the transmission in
the opposite direction, as depicted in figure 10. Table
1 shows that both datagrams have equal sizes, but fig-
ure 10 shows that the duration of receiving datagram 6 is
shorter than the the duration of transmitting the equally
sized datagram 5. The reason seems to be the bluetooth
library provided with the Arduino package as described
in section 5.3. The slow data transmission and the asym-
metric data rates indicate, that the provided bluetooth li-
brary cannot be used for data transmission.

Nevertheless, this does not mean that BLE is generally
unsuited, table 3 shows, that the theoretical data through-
put is about 1 Mbit/s while the application throughput
is about 38 kbytes/s (compare [10, section: “Through-
put”]). The data which is sent between both peers (com-
pare table 1) is 519 bytes in total. According to this spec-
ification, the theoretical time which is consumed to trans-

mit the 519 bytes is sgopnrrer; = 0-0136s. This shows

that it is possible, at least regarding the specification, to
perform the authentication, send the command and re-
ceive the confirmation in far less than a second.



6.2 Power consumption evaluation

It is important to measure the transponder’s power drain
to judge the usability in mobile applications. The power
consumption varies depending on the CPU’s load when
executing a binary. Therefore the power consumption
evaluation will help to decide whether the implemented
authentication and transmission algorithm is energy-
efficient enough to be used in the proposed mobile ap-
plication. Assuming this is the case, this evaluation will
also help choosing a proper battery type with an appro-
priate capacity. To perform the measurement, the in-
troduced Arduino Primo cannot be used, because it fea-
tures additional components, such as a WLAN module, a
power regulator and an on-board debugger, which would
have distorted the power consumption and measurement.
Therefore a device with less components, but the same
CPU was required. A related device is the Arduino Primo
Core, which also features the nRF52832 microcontroller
but without the other components. To get ready for the
measurement, the Arduino Primo Core was prepared to
allow access to some external I/O pins, to connect a key-
pad (emulating the button press on the transponder) and
to connect the voltage measurement equipment (depicted
in figure 8). Measuring the power consumption of the
base station will not be performed, because it is not a mo-
bile device and will therefore most likely not be battery
powered. Additionally, the operations performed on the
base station are mainly the same as on the transponder,
just the order is different. Therefore the power consump-
tion of the base station can be supposed to be identical
with the transponder.

The Arduino Primo’s on-board microntroller
(nRF52832) is sold as a "low power device”. According
to the key features of the nRF52832 demonstrated in
the product specification [9], the electric current when
running BLE applications is about S mA to 6 mA, when
BLE is disabled, the current is even less, about 55 pA.
To determine the current, it is possible to measure the
potential difference over a shunt, which is connected in
series to the microcontroller development board. Figure
9 shows the circuit diagram of a low-side DC current
measurement circuit with a shunt, a non-inverting
amplifier and the prototyping board, which is the "load”.
The potential difference measured over the shunt is
proportional to the current which is consumed by the
load. By using a 1Q shunt the current drain of the
load can be determined by I = % The non-inverting
amplifier is required to amplify the voltage gathered over
the shunt, because the raw voltage is too low for being
measured reliably with standard tools. According to the
amplification circuit in figure 9, the voltage is multiplied
by factor 11, then measured by an analog-digital con-
verter (ADC). This is important for the analysis, because
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Figure 9: Low-side DC current sensing

the determined current drain has to be divided by 11 to
gather the correct values.

The power drain of several transmission cycles is then
recorded by a logic analyzer. An appropriate device is
the Saleae Logic 8%, which can record analog and digital
signals up to 50 MHz. The analog input of the logic ana-
lyzer was connected to the amplifier’s output (as seen in
figure 9), three digital inputs of the logic analyzer were
connected to digital outputs of the Arduino Primo Core
development board. The digital channels are used to de-
termine whether the board is transmitting or receiving
data via BLE and to determine the duration of one com-
plete transmission cycle. The sampling rate of the analog
measurement was set to 125kS/s. According to Nyquist-
Shannon’s sampling theorem, the sampling rate has to be
2 % fmax to record it correctly. The corresponding sam-
pling rate was checked before using an oscilloscope and
determined as fmax = 5 kHz, consequently the sampling
rate has to be greater 10kHz. The nearest, larger value
which can be set in the sampling software is 125kS/s.

Figure 10 shows the analog outputs of the measure-
ment (channel 00), together with the transmission (chan-
nel 03) and receipt (channel 02). Obviously, the power
consumption is not changing with the state of the trans-
mission, it mainly stays constant. It does not matter
whether the system is transmitting, receiving or perform-
ing a cryptographic operation (according to the protocol
and the implementation, the system is performing local
cryptographic tasks, when not transmitting and not re-
ceiving), the power consumption stays the same.

To give further statements about an appropriate battery
type the measured current drain was integrated over the
run time. The run time is given with a total of 16.89 sec-
onds for a complete transmission cycle (compare figure
10). The integral has the size 2.11514 (product of cur-



Figure 10: nRF52832: Current drain and transmission states recorded by Logic 8

rent drain and time consumed by one transmission cy-
cle). According to the amplification factor of 11, the real
current drain is given by % =0.1923. The proceed-
ing to decide about a proper battery type is to determine,
how often a user can press the button and invoke the
transmission cycle until the battery is drained. To do this,
the current drain of the transponder will be converted to
mA: 0.1923As=192.3mAs = 23mAs — 11.30mA to
get the power drain of the transponder for a single trans-
mission cycle.

Assuming a standard button-cell of type CR2032 hav-
ing a capacity of 250 mA h as a reference battery, because
it is often found in small remote controls or car keys. The
overall capacity suffices for lzf%‘;ﬁ:}{ = 21.95h, meaning
the transponder with the current algorithm and BLE li-
brary implementation can be powered about 21h in to-
tal. One transmission cycle takes 16.89 s, meaning it can
be invoked about %;96;)5 ~ 4,476 times. Assuming a
usage of 6 times per day (assuming 3 times opening and
closing a resource) leads to 6*365 = 2,190 times per year
the transponder becomes invoked by the user. According
to the battery’s capacity, which can invoke this transpon-
der about 4,476 times in total, the battery would last for
about i‘gg ~ 2 years (self-discharge and quality of bat-
tery was neglected). This is similar to current car keys

and transponders.

7 Results

The evaluation shows that the proposed and implemented
architecture can indeed be used as a RKE system. The
evaluation of the timing constraints prove that the intro-
duced authentication algorithm and the proposed crypto-
graphic libraries are fast enough to deliver the required
outputs to authenticate the user and transmit the nec-
essary payload. These steps take 5.6 ms in total. The
analysis also shows that the only bottleneck is the data
transmission, which relies on the BLE library provided
with the Arduino Primo package. The data transmission
takes in total about 17 s, which is far to much. As already
described, according to the BLE specification, the trans-
mission of the required 519 bytes is possible in less than
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a second.

The power efficiency of the potential transponder then
was analyzed, to determine which kind of battery should
be used. The current drain of the nRF52832 CPU is about
11.39 mA and therefore a standard CR 2032 battery lasts
up to two years.

The timing constraint comparison with related CPUs
demonstrates the general availability of microcontrollers
suitable for the application in RKE systems. According
to their physical footprint (which is definitely larger than
the nRF52832’s footprint, cf. figure 5) these CPU’s may
not be used in a transponder, but regarding their timing
constraints, they could act as the base station.

The EAP-PSK protocol guarantees reliable, mutual
authentication and therefore eliminates vulnerabilities
which are found in current RKE systems, such as jam-
ming, grabbing or bridging. Jamming will be recognized
because the system notices when the authentication pro-
cess becomes aborted. The grabbing vulnerability is also
eliminated, because it works with unidirectional commu-
nication schemes only. Additional, a bridging attack will
not be effective, because the authentication challenges
and the token (proving the authentication state) are just
valid for a short period of time. Enlarging the communi-
cation distance will lead to a longer signal travel time and
renders the challenge and token invalid when received
later than expected.

8 Conclusion

To sum it up, this work demonstrates the ability to build
securer and more flexible RKE systems than currently
done by the automotive industry. Authentication algo-
rithms exist and were implemented, compatible micro-
controllers were introduced and data transmission mech-
anisms were discussed and evaluated.

The evaluation shows, that basically all requirements
were met, or, regarding BLE at least can be met ac-
cording to their specification. Defining a concrete BLE
implementation which meets the required timing con-
straints is necessary for future works. The implemented
authentication mechanism should be validated further



and reviewed according to the security considerations.
Additionally, extended literature research about alterna-
tive authentication mechanisms should be performed to
allow a comparison between authentication algorithms.
Afterwards, a concrete application for this RKE archi-
tecture can be defined. As stated before, the use within
the automotive industry and therefore the implementa-
tion in vehicles seems a good choice but the architecture
can also be used in any other field where reliable and
wireless authentication is an important requirement.
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ICOPACOBANA website: http://www.copacobana.org

’Datasheet PCF7941:  https://media.digikey.com/pdf/
Data},20Sheets/NXP%20PDFs/PCF7x41ATJ. pdf

3Datasheet TDAS5100:  http://media.digikey.com/PDF/
Data%20Sheets/Infineon’20PDFs/TDA5100.pdf

4Mbedtls website: https://tls.mbed.org

3 ARM mbed website: https://www.mbed. com/

6Arduino IDE website: https://www.arduino.cc/en/Main/
Software

7ARM DSP extension: https://developer.arm.com/
technologies/dsp/dsp-for-cortex-m

8Logic 8 data sheet: http://downloads.saleae.com/specs/
Logic+8+Data+Sheet.pdf
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