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Abstract—Remote Keyless Entry (RKE) systems are ubiqui-
tous in modern day automobiles, providing convenience for
vehicle owners - occasionally at the cost of security. Most
automobile companies have proprietary implementations of
RKE; these are sometimes built on insecure algorithms and
authentication mechanisms. This paper presents a compre-
hensive study conducted on the RKE systems of multiple
cars from four automobile manufacturers not previously
explored.
Specifically, we analyze the design, implementation, and
security levels of 7 different cars manufactured by Honda,
Maruti-Suzuki, Toyota, and Mahindra. We also do a deep
dive into the RKE system of a particular Honda model.
We evaluate the susceptibility of these systems to known
vulnerabilities (such as RollJam [1] and RollBack [2] at-
tacks). This is accomplished using a novel tool – ‘Puck-
py’, that helps analyze RKE protocols. Our tool automates
several aspects of the protocol analysis process, reducing
time and logistical constraints in RKE research; we provide
standardized protocols to execute various attacks using our
Puck-Py tool. We find that, despite having a long period
of time to fix security issues, several popular automobiles
remain susceptible to attacks, including the basic RollJam
attack.

Index Terms—RKE security, automotive security, SDR

1. Introduction

Modern cars have adopted several electronic mech-
anisms to improve user convenience and vehicle safety.
In particular, the development of cheap wireless com-
munication technologies like Bluetooth, Radio Frequency
Identification (RFID), and Wi-Fi, has allowed automotive
manufacturers to create a variety of features.

One such feature is the Remote Keyless Entry (RKE)
system using RFID technology. This allows users to con-
trol door and boot locks by pressing buttons on a key fob.
RKE systems come as a standard feature in most cars
today - for many of us, mechanical turnkeys to open and
lock cars are a thing of the past. Another important feature
in this space is Keyless Ignition (KI) systems, where
the key is equipped with a transponder that emits low-
frequency signals to a receiver unit in the car to validate

itself (usually via a challenge-response mechanism). Once
validated, the car activates a start/stop button that can be
pushed by the user to start the engine [3]. Keys equipped
with RKE and KI systems are often called Smart Keys.

The security of RKE systems is critical: a compro-
mise of such a system could lead to vehicle theft and
might even jeopardize passenger safety. Smart keys have
proved to be vulnerable to several classes of attacks such
as Rolljam, Rollback, and Relay [4], [5]. While prior
work has explored RKE and Passive Keyless Entry (PKE)
schemes, this has been limited to a small set of automotive
brands [3], [6]–[8].

Governments and regulators across the world have
recognized the grave threat posed by weak automotive
RKE systems. This has led to instructions for automotive
manufacturers and organizations like the National High-
way Traffic Safety Administration (NHTSA) to address
RKE system safety hazards [9]. We investigate the RKE
and KI schemes of four automotive manufacturers Maruti-
Suzuki, Honda, Toyota, and Mahindra [10], providing
a comprehensive understanding of the security of smart
key systems in real-world use. Our analysis serves as
a useful benchmark for assessing the industry’s overall
vulnerability; we also hope that this will aid in identifying
new risks and help manufacturers improve security.

1.1. Our Contributions

1) We analyze the RKE schemes of four major au-
tomotive manufacturers: Honda, Toyota, Maruti-
Suzuki, and Mahindra. Our analysis includes test-
ing the schemes for two major vulnerabilities
from previous research: RollJam and RollBack
(§2.6.1 & §2.6.2).
The models tested during our analysis represent
approximately 7 million units that were on the
road as of 2020 (refer to Table 1). We find that a
large number of these cars are vulnerable to even
basic attacks, despite these attacks being known
for many years.

2) We conduct a detailed analysis of a single RKE
system (a Honda; see Section §4). The system we
test is currently being used by around 2 million
Honda cars worldwide (Refer to Table 1).



3) We design a tool, Puck-py, which streamlines
data analysis and processing of radio frequency
(RF) packets used in various RKE schemes. It is
designed to efficiently capture, demodulate, save,
and transmit packets at the desired frequency.
It is also capable of carrying out jamming of
RF signals. By automating the protocol analysis
process, Puck-py enables researchers to conduct
in-depth investigations while reducing both logis-
tical and time constraints (Refer to Section §5).

TABLE 1. UNITS SOLD FOR CAR MODELS WE SURVEYED

Manufacturer Model Year Cars Sold

Maruti Suzuki Dzire 2020 2,196,046 [11]
Baleno 2016 1,212,137 [12], [13]

Honda Mobilio 2015 245,637
Jazz 2016 465,230 [14], [15]
Brio 2016 592,792 [16]

Toyota Innova 2014 2,309,174 [17]
Mahindra Scorpio 2016 580,000 [18]

2. Technical Background and Related work

2.1. Rf Signals & Modulation & Encodings in
Context Of Automobiles

RF signals are used widely in modern automobile
RKE systems to make opening vehicle doors from a
distance convenient. The frequency of RF signals used in
automobiles operates at or around 433 MHz. The smart
key transmits an RF signal when the keyholder presses
the close or open button. The vehicle’s body control
module (BCM) then authenticates the signal. Based on
this process it either unlocks the door, locks the door or
rejects the signal. There are different types of modulations
used in vehicle RKE systems of which the most commonly
utilized techniques in RF key fobs are Amplitude Shift
Keying (ASK) and Frequency Shift Keying (FSK) [3].

Apart from modulation techniques, an encoding tech-
nique is applied to decrease the probability of the signal
being affected by noise or interference. RKE systems
most commonly use Manchester encoding and Differential
Manchester encoding.

2.2. Components of Smart Key

A typical car keyfob’s printed ciruit board (PCB) con-
sists of a central micro-controller (µC). The µC are gen-
erally made specifically for automotive purposes. These
generally include a transponder circuit, programmable
controller, ROM, RAM and an EEPROM (Electrically
Erasable Programmable Read-only Memory). If the manu-
facturer deems it necessary, a separate EEPROM IC is also
present, mostly in older models, to hold additional data.
The keys also contain a coin-cell battery, and an antenna
usually embedded inside the PCB. The transponder circuit
mentioned earlier can be embedded in the µC, or they
are a separate unit independent of the key’s µC. The term
transponder is a portmanteau of transmitter and responder.
Here, ts primary function is to emit a response signal upon
receiving a signal: this is used mainly in car immobilizers
to prevent theft.

Figure 1. The Components of the disassembled Honda key, the main
components are the Coin Cell Battery, the Micro-Controller and the
Antenna.

2.3. Keyless Ignition or Push Button Start System

This feature enables the car’s ignition system to detect
a smart key if it is within a distance defined by the
manufacturer. This range typically does not exceed the
body of the car. The smart key includes a transponder
that emits low frequency RF signals to wake the ignition
system and authenticate itself. Once authenticated the
car’s immobilizer is deactivated and the ‘Start/Stop’ button
is activated, allowing the user to start the car.

2.4. Rolling Code Scheme & Encryption Algo-
rithms

‘Rolling code’ or ‘Code hopping’ schemes are cryp-
tographic schemes used to secure RKE systems against
replay attacks, where the attacker simply records and
replays the unlock signal from a car key to gain access to
the car.

Rolling code schemes prevent such attacks by using an
encrypted counter value (or an encrypted random number).
I.e., the plaintext in such an encrypted rolling code scheme
is a counter value (or a random number), along with other
data such as a UID and button press. If a random num-
ber is being used, the pseudorandom number generator
(PRNG) is known to the smart key and the vehicle. The
latter decrypts the code received. If the UID is known, the
current counter value is compared to the last counter value.
If it is a random number, the vehicle generates the ‘next’
random number using the common PRNG and compares
it to the received value. In both cases, if the value received
is between i+ 1 and i+ n ( here i is last valid received
value and n is the maximum number of missed values),
the value is deemed valid and accepted.

The comparison is usually done up to the next 256
numbers, to ensure missed values (such as button presses
away from the car) do not impact the system. Using
a counter or random value ensures the RKE system is
secured from replay attacks as each value can only be
used once. A code is no longer valid if it has already been
received. Some cars make special allowances to prevent
false negatives – if there is a large difference between the
code received and the car’s current counter, the car waits
to see if the subsequent code received is also next in the
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sequence. If so, the car resets its counter in sync with the
last code received.

A widely used rolling code scheme is KEELOQ [19].
The ‘KEELOQ Hopping Codes’ use a 16-bit secret
counter to synchronize the sending and receiving units.
The KEELOQ block cipher has been broken by sev-
eral techniques like slide-determine [20] and meet-in-the-
middle [21] as far back as 2012.

Hitag2 [22] and DST40 [23] are common encryption
algorithms used in the authentication protocols of various
automotive RKE systems. However, prior work has long
since revealed vulnerabilities in these algorithms, specifi-
cally dictionary and key-recovery attacks [8], [24]–[26].

2.5. Software Defined Radio (SDR)

Software defined radios (SDRs) are radio systems
where traditional analog radio components have been
replaced by software. The replaced radio components
include modulators, demodulators, and tuners. This de-
sign allows SDRs to be configurable, enabling them to
handle a wide range of protocols, modulation schemes
and frequencies [27]. SDRs have two components:

• An RF frontend that receives the RF signals and
converts them into its equivalent digital represen-
tation. (E.g., RTL-SDR [28] and LimeSDR [29].)

• A software backend that performs the signal
processing the task such as demodulation and de-
coding. GNU radio, rtl 433 and Universal Radio
Hacker are examples of software backends [30],
[31]. Software backends are usually run on a
computer connected to the RF frontend.

Due to their flexibility and direct integration with
computers, SDRs are a popular tool used to attack cars.

2.6. Established attacks: RollJam, RollBack, Re-
play

2.6.1. RollJam Attack. RollJam is a modified version of
a replay attack that exploits the iterative counter feature
of rolling code schemes [1]. Every car has a listening
frequency (smart key frequency) range. The difference
between upper and lower bounds of this listening range
is usually within 0.3− 0.4 MHz. RollJam attacks exploit
this range. The attack comprises three actions - jamming,
interception, and replay.

1) Jamming step: Jamming of all communication
between the vehicle and the smart key is achieved
by sending dummy packets to the target vehicle
at a frequency slightly above or below the smart
key’s frequency but still within the vehicle’s lis-
tening range.

2) Interception step: Two unique RF signals are
eavesdropped. The victim is forced to press the
smart key’s open button twice (since the car does
not unlock due to jamming). Both RF signals are
stored in memory. To be able to jam the car’s re-
ciever while still being able to record the packets
transmitted by the key on the attack device the
jamming frequency and listening frequncy should
not interfere with each other. At the same time,

Figure 2. Maruti Suzuki Baleno’s listening range accommodates a jam-
ming and listening frequency such that they do not interfere with each
other. Baleno uses 2-FSK. The Y-axis measures relative gain.

both jamming and listening frequencies should
be within the vehicle’s upper and lower bounds
of the frequency range. Thus, the greater the
listening range, the more likely it is RollJam will
work. Refer to Figure 2 to see the difference in
jamming and listening frequencies.

3) Replay step: Once two signals are stored, the
first intercepted RF signal (oldest signal) is re-
played. The car unlocks but the attacker now has
one valid unused rolling code, which can be used
to gain access to the vehicle.

2.6.2. RollBack Attack. RollBack is a time-agnostic re-
play attack that exploits the re-syncing system in cars with
rolling code encryption [2]. It has the same three phases as
RollJam - jamming, interception, and replay. The jamming
and interception steps are similar to RollJam, where the
attacker captures two rolling codes from the smart key.
After capturing two rolling codes, jamming stops, and the
smart key’s RF signals start reaching the vehicle.

The victim can then lock and unlock the car multiple
times (unlike with RollJam). The attacker then replays
the oldest captured rolling code to reset the rolling codes’
counter value or the pseudo random number generator in
the vehicle. The second captured rolling key code is then
replayed. Since this is the next code in the sequence the
counter value is reset and the attacker gains access to the
target vehicle [2]. While RollJam relies on replaying the
eavesdropped signal before the car hears another unlock
signal, RollBack is time agnostic, as long as enough
lock and unlock signals have been played between the
interception and replay step.

2.6.3. Relay Attack. A relay attack involves signal in-
terception and ‘relaying’ the signal between two rogue
devices that can communicate over long distances [32].

In a typical relay attack, an attacker places two rogue
devices - one near the system being attacked (i.e., the
vehicle), and another near the victim’s device (i.e., the
smart key). By doing this, the attacker fools the distance



constraint set on the victim’s device. Each rogue device
intercepts the signal from the victim’s device and the tar-
get system. The intercepted signal is then shared between
the rogue devices [33].

By relaying the signals, the rogue devices trick the tar-
get system into believing that the victim’s device is within
range and is communicating with the system directly. This
can allow the attacker to gain access to the target system
and in some cases start the vehicle without physical access
to the smart key. With the addition of SDRs to the system,
attackers may also transmit these systems using digital
communication methods with ease, increasing the range
and effectiveness of relay attacks.

TABLE 2. POSSIBLE SMART KEY RF ATTACKS

Key Tech RF Attacks

Immobilizer None
RKE Rolljam, Rollback

RKE and KI Rolljam, Rollback, Relay
PRKE and PKI Relay

2.7. Similar Works

There exists significant prior work about the security
of smart keys. Cryptanalytical methods have been used ex-
tensively to identify vulnerabilities in car security systems,
exposing weaknesses in various encryption algorithms
used within the industry.

In 2012, the Hitag2 security system, which has been
in use since 1996 in car immobilizers, was shown to be
vulnerable to a host of cryptographic methods [8]. The
KeeLoq rolling code scheme was also broken using meet-
in-the-middle attacks [21]. Similarly, in 2016 an intense
analysis of VolksWagen cars revealed vulnerabilities in
both the RKE and immobilizer systems [3]. It was shown
that the keys of VolksWagen cars could be cloned, and
their ‘master keys’ recovered to break into cars and start
their engines. In 2021, the firmware update platform of the
Tesla Model X was revealed as a potential attack surface
which enabled the pairing of malicious keys to the car [7].

It is clear that cryptanalytical methods have revealed
major gaps in the security system of modern vehicles.
However, these methods often require extensive reverse
engineering for different manufacturers along with exper-
tise (to execute an attack). Further, cryptanalytical meth-
ods have been theoretically explored to a large extent - as
such, we focus on ‘practical’ attacks in this paper.

The RollJam attack was proposed in 2015 as an al-
ternative non-cryptographic method to break into RKE
systems (using simply record, jamming, and replay [1]
at the protocol level). This was then built upon in 2022
by the RollBack attack which proposed a time-agnostic
expansion on RollJam [2]. Critically, these eavesdropping
based attacks required far lesser cryptographic knowledge
to be executed successfully. They marked a cheaper, easier
way to gain unauthorized access to a car.

Of the research described above, only the RollBack
attack was extensively tested on various car models in a
research setting. Some of the cryptographic attacks were
tested on chipsets, but not practically on entire vehicles.
E.g., attacks on KeeLoq were tested against simulations

and data generated by a HCS410 KeeLoq transponder
[21]. Through our research, we seek to assess the ef-
fectiveness of RollJam and RollBack on vehicles across
various manufacturers and model years. We also propose
manufacturer-agnostic tools that will enable researchers
to analyze, quantify and compare the security of vehicles
with minimal reverse engineering.

3. Our Exploration of RKE systems

We explore the RKE systems of four different auto-
motive manufacturers: Honda, Toyota, Maruti-Suzuki, and
Mahindra. The RKE schemes of these companies have not
been explored by previous research.

Smart keys for the manufacturers were procured by
going to local second-hand or spare car markets and
enquiring about both fresh and second-hand keys. After
extracting PCBs from the keys, we found that a typical
key consists of a (µC) sometimes an added EEPROM, a
transmitter/receiver unit, and an antenna in the PCB itself.

3.1. IC analysis of various key-fobs

TABLE 3. SMART KEY ICS (Baleno & Scorpio owners didn’t permit
us to open the keys to inspect them)

Model IC

Dzire Microchip 12F635
Baleno NA
Mobilio NXP PCF7941

Jazz NXP PCF7941
Brio NXP PCF7941

Innova Microchip 362T
Scorpio NA

Both the Suzuki and the Honda key have a single
µC that controls the whole key; the Honda key has a
PCF7941. It has a 4 Kbyte ROM, 64 Byte RAM, a 384
bit EEPROM and an 8-bit RISC Architecture (MRK-II)
and uses Hitag2 cipher. The Toyota key on the other
hand uses a HCS362T IC with a KeeLoq code hopping
encoder. The IC itself has EEPROM, a 32-bit shift register,
and a Programmable 64-bit (cryptographic) key with read
protection. However, unlike the Honda IC, it does not have
a transponder built in.

Unlike the Honda and the Toyota key, both of which
are manufactured for automotive applications, the Mi-
crochip 12F635 used in the Maruti-Suzuki, is a generic
IC with a RISC CPU. It also has a KeeLoq compatible
hardware cryptographic module and is capable of sending
and receiving low-frequency signals. This leads us to
believe that the µC is used as a transponder as well. Refer
to Table 3.

3.2. RKE Packet Analysis

We utilized two RF demodulation software tools, Uni-
versal Radio Hacker (URH) and RTL 433 for extracting
RF information from our set of captured Smart Key RF
packets. RTL 433 was utilized for receiving and demod-
ulating packets at frequencies of 433.92 MHz, and 315
MHz. It supports 245 RF protocols which enabled us



to handle a wide range of protocols. URH supported
common SDRs such as RTL-SDR, HackRF and made it
easy to investigate wireless protocols.

The captured set included lock and unlock key presses
of multiple smart keys of 4 different manufacturers:
Maruti-Suzuki, Honda, Toyota and Mahindra. On pressing
the smart key, usually more than one RF packet gets
released. Through cropping and replaying the packets to
the vehicle, we removed redundant packets to isolate exact
packet sizes.

By comparing multiple lock and unlock RF packets
for each smart key separately using URH, we were able
to identify the preamble, static code and encrypted code
for each key. On closely analysing the static code, we
identified the bits that contained information about which
smart key button was pressed. Each packet has three major
segments:

• The preamble is a fixed-length code which is
at the start of the packet. Its main purpose is
to distinguish the signal from other packets in
the vicinity and informs the receiver on how to
synchronize its clock with the smart key’s clock
so that it can correctly identify the start of each
bit.

• The static code consists of important details such
as the smart key ID and command type (lock or
unlock).

• The encrypted code consists of the rolling code.

TABLE 4. MODULATION AND OPTIMAL JAMMING & LISTENING
FREQUENCY OF THE SURVEYED CARS

Model Mod Jam(MHz) Listen(MHz)

Dzire FSK 433.5 433.9
Baleno FSK 433.6 433.8
Mobilio FSK 433.5 433.9

Jazz FSK 433.5 433.9
Brio FSK 433.6 433.9

Innova ASK 433.3 434
Scorpio ASK 433.6 433.9

Specific packet information for the tested smart keys can
be referred to in Table 4.

3.3. Response to RollJam and RollBack Attacks

We performed RollJam and RollBack attacks using
URH and RfCat. We used URH to find the jamming
and listening frequency (Refer to Figure 3 to see the
jamming and listening frequency for Scorpio). We used
URH to capture the first two RF packets from the smart
key and saved it on disk. After the storing it on disk,
Rfcat stops jamming and allows the smart key and vehicle
to synchronize their rolling code counters once again. We
then used Rfcat (sub GHz analysis tool) to send the bits at
a later time to reset the rolling code counter as explained
for each attack protocol [34].

We attempted RollBack attacks with 2, 5, 10 and 15
key presses, however it was not successful on any of the
cars. It is possible that the key press count was not high
enough for the vulnerability to be exploited. Refer to Table
5 to see the success rate of RollJam and Rollback attacks
on the vehicles we tested.

TABLE 5. ROLLJAM AND ROLLBACK ATTACKS

Model RollJam RollBack

Dzire ✓ ×
Baleno ✓ ×
Mobilio ✓ ×

Jazz ✓ ×
Brio ✓ ×

Innova ✓ ×
Scorpio ✓ ×

Figure 3. Mahindra Scorpio Jamming and Listening Frequency. Unlike
Maruti Suzuki Baleno, Scorpio uses 1-ASK modulation. The Y-axis
measures relative gain.

3.4. Evaluating Attack Susceptibility

A helpful addition to research and development would
be a metric to benchmark vehicle susceptibility to RF
based eavesdropping attacks.

Such a metric would have to be based around the
range of frequencies available for exploitation for a given
car. It would have to take into account hardware related
properties of the car’s antenna as well as the attacker’s
antenna. Such a metric would also be influenced by other
factors like distance of the attacker from the car and wear
and tear of the devices.

In §A) we propose a potential metric to analyse the
susceptibility of vehicles to eavesdropping attacks. Al-
though this depends on a variety of hardware related
properties of the car’s receiver, we attempt to lay out the
basic structure for a universal metric to benchmark RKE
security levels.

4. Comprehensive Analysis of the Honda
RKE System

We investigate the Honda RKE system, examining its
components and analyzing it to gain a comprehensive
understanding of its inner workings. We procured old
Honda Smart keys (programmed) and a BCM of a 2016
Honda Mobilio. It is worth noting that several other Honda
models, including the Amaze, Brio, and Jazz, utilize the
same parts, and thus the findings of this study are appli-
cable to those models as well.



4.1. Exploration of the Honda Key fob

As mentioned in section §3, we managed to procure
two Honda keys (2012 Brio and 2015 Mobilio) from local
scrapyards. The Mobilio key had a PCF7941 Security
Transponder and RISC controller [35]. This is a single
chip Keyless Entry controller, specifically designed by
Phillips Semiconductor for vehicular applications. It has
a 4 KB ROM, 64 Byte RAM, a 384 bit EEPROM, and
an 8-bit RISC Architecture (MRK-II).

The Brio used a NXP µC (61x0915), but due to the
unavailability of any documentation regarding its working,
extracting anything usable from the IC was a difficult task.
There are some methods to re-construct the binary via tar-
geted microscopic images of the exposed ROM and then
using image processing to identify each individual section,
but we did not have access to the required equipment.

Some key models purposefully hide the printing on
the IC which makes such reverse engineering difficult.

4.2. Exploration of the Honda Body Control
Module (BCM)

Apart from the key, we also obtained a Honda BCM
for Honda Mobilio, year 2015 - 2016, several steps were
taken to examine its internal components. The process
involved cleaning the BCM, removing connectors, and un-
covering the underlying PCB. Notable components iden-
tified on the PCB include:

• CAN Transceiver: The NXP AU5790 CAN
Transceiver, which is responsible for providing
interface between a CAN data link controller and
a single wire physical bus line [36].

• Multiplexer: NXP 74HC15D 8-input multiplexer
was also identified on the PCB [37]. This compo-
nent facilitates the selection and routing of multi-
ple input signals to the desired output, contributing
to the functionality of the BCM

• Power MOSFET: MOSFETs are commonly used
for switching and amplifying signals in electronic
circuits. Its presence suggests its role in signal
control and amplification withing the BCM.

• EEPROM: Among the components the Seiko
S93A56A stood out due to available documenta-
tion about the IC [38]. This IC is a Serial EEP-
ROM (Electrically Erasable Programmable Read-
Only Memory) with a capacity of 128 × 16 bits.
EEPROMs are non-volatile that can store data
even when power is removed. The S93A56A is
commonly used in automotive applications for
storing critical information such as configuration
settings, calibration data, and other relevant data. It
is notable for being easily readable programmable
using relatively commonly available programmers
since it lacks built-in read or write protection
mechanisms.

Using a XGecu T48 (EEPROM programmer), ex-
tracted the raw binary data from the IC and performed
static analysis. The extracted firmware itself was 512 bytes
in size. Normally, the size of such extracted files range
from 0.5 to 2 Mega Bytes, and the binary is usually the

Figure 4. Disassembled Honda BCM: The main components are: (1)
NXP 74HC151D (8-input multiplexer), (2) Seiko S93A56A (EEPROM),
(3) YAZAKI HMC712

device firmware stored on the EEPROM, as the firmware
doesn’t need to update on a regular basis.

In our case, the file size itself indicated that this was
not the firmware of the device. A hex dump of the file
showed many random bits, and converting them to strings
also yielded a similar result. Passing the firmware in
reverse engineering tools like Ghidra and Binary Ninja
also led to the same result. Several possible explanations
can account for these observations:

• Non-Firmware Data: The Binary Data may not
be the actual firmware, but could represent some
other form of data stored in the IC. The absence
of recognizable patterns or structures by Ghidra
or binwalk suggests that it may not contain exe-
cutable code or human-readable information.

• Secret Key or Other Relevant Data: It is pos-
sible that binary data represents a secret key used
by the BCM for purposes such as authenticating
a key fob or managing the immobilizer. This data
might be stored in an external storage to prevent
unauthorized access or for safekeeping [39].

• Diagnostic Logs: Another possibility is that the
binary data is stored in the IC’s EEPROM could
be log files maintained by the BCM for diagnostic
purposes [40]. These logs might contain informa-
tion related to the functioning of the BCM and
could be used for troubleshooting or analysis.

• Damaged EEPROM: Given that the BCM was
obtained from second-hand dealers, and its prior
conditions are unknown, it is also plausible that
the EEPROM itself is damaged. This could explain
the lack of meaningful data extraction or analysis
results.

5. Our RKE Protocol Analyzer: Puck-py

Research in this area lacks a tool that can perform
vehicle manufacturer based packet identification and real-
time packet segmentation. To our knowledge there is also
no device that can perform RollJam attacks outside a
research setting. Such an attack scenario should allow
for the victim to use their smart key arbitrarily. This



requires a device that can run for long periods of time, and
also store and replay the necessary packets whenever the
victim uses their smart key. To tackle such problems, we
have developed a portable tool which we call ’Puck-py’
that can handle real-time packet identification and packet
segmentation.

5.1. Build of the Tool

As described earlier, a RollJam attack has three com-
ponents — smart key signal jamming, smart key signal
capture and smart key signal replay. Our tool performs
the first two components without any user intervention.
To replay a captured signal, the user only needs to input
the ’send’ command in a terminal program.

Figure 5. Our RKE Protocol Analyzer: Puck-py; Made with a Raspberry
Pi Zero 2 w, a power bank, a yard stick and an RTL-SDR

5.1.1. Hardware. The device is small enough to be easily
attached to a vehicle. It consists of a Raspberry Pi zero
2w, connected to an RTL-SDR and Yardstick-One using
its ports, with a 5000mA power-bank for portability. The
YARD Stick One can transmit or receive digital wireless
signals at frequencies below 1 GHz: we use this for
jamming [41]. The RTL-SDR is an ultra cheap software
defined radio based on DVB-T TV tuners. We use this as
the eavesdropping device for RF signal capture.

5.1.2. Software. Our software comprises two compo-
nents: packet detection and the transmission.

The packet detection component has been forked from
rtl 433 repository. We have added more features to the
program. After a signal is detected, the packets go through
a preamble detection step. This checks whether the de-
tected packets match the preamble of the rf signal we
want. If our program detects the wanted preamble, it sends
out the bits in text format to our sending component using
Linux dbus.

The signal transmission component is a python pro-
gram. This component has complete control over the
yardstick. Its main role is to perform the jamming and
transmission of smart key RF packets. On receiving pack-
ets from the packet detection component, it maintains a
queue-like data structure to store all the packets received.
If more than two packets are received, it replays the oldest
packet using the Yardstick one. This component also
listens on a separate thread for commands, if it receives

a send command, it sends out all packets stored in the
data structure. Refer to GitHub links of both the com-
ponents here: packet detection component, transmission
component.

5.2. Setup & Execution

Figure 6. Puck-py program runtime flowchart

For the device to attack a vehicle, a few preliminary
steps are required. The smart key listening frequency, jam-
ming frequency and packet information of the smart key’s
RF packet have to be determined and fed in as program
inputs. These are easily determined due to the similarity in
listening ranges for various cars. The packet information
is needed to create a packet detection function for the
vehicle (documentation for how to write this function and
add it to the device is on our Github page).

When the device is started, its first action is jamming
the vehicle. On detecting an RF signal, our device de-
modulates the signal into bits and then performs checks
on the preamble of the signal. If the preamble matches
any pre-stored schema, the device is setup to perform an
attack on the corresponding vehicle model.

Every captured signal that is an ‘unlock’ signal is then
stored onto a queue. If the queue, which contains unlock
signals, has captured two signals, it releases the oldest
unlock signal to open the car. The victim needs to press
the unlock button at least two times to open the vehicle’s
door the first time. After the first signal replay, every key
press will unlock the car. The device also prevents a ‘lock’
signal from reaching the car to prevent the stored ‘unlock’
key press from getting invalidated as the rolling codes
counter used, are the same in both ‘lock’ and ‘unlock’
key presses.

https://github.com/johndoe145/puck-py-c
https://github.com/johndoe145/puck-py
https://github.com/johndoe145/puck-py


To send the stored ‘unlock’ key press in the puck,
the attacker has to be within the puck’s proximity, ensure
that the puck is connected to the attacker’s Wi-Fi, and
then perform SSH. The attacker runs a python script
that communicates with the ’Puck-py’ program, which
can command it to replay the stored ‘unlock’ RF signal.
While sending the stored signal, the jamming and listening
activity on the device is paused. See Figure 6 for a
flowchart on how the device works.

5.3. Puck-py Attack Scenario

Figure 7. Puck-py Attack Phases

Phase 1: We latch our device onto the victim’s car and
run our software Puck-py (a C program called puckpy 433
and a python program called puckpy). The victim then
approaches the vehicle, when they press the open button
on their smart key for the first time, the vehicle’s door
remains locked.

Phase 2: After the signal from the second key press
is read by Puck-py, it replays the first one. The car deems
the signal from the first key press as valid.

Phase 3: After driving to their destination, the victim
clicks on the close button, but the door does not close.
Our device forces the victim to close the door manually
by continually jamming all close signals.

Phase 4: The attacker now has access to one valid
open signal and can go to the vehicle’s location, use
the Puck-py terminal program (a python program called
puckpy cli) to replay the second captured signal and open
the vehicle.

6. Conclusion

We conclude that vehicle owners need to be more
cognizant of the security-convenience tradeoffs involved
in the use of smart keys. The implications of this study ex-
tend beyond individual vehicle owners, as the widespread
use of insecure RKE systems poses a broader concern for
public safety and security. We show that major automotive
manufacturers have used insecure RKE systems despite
prior work repeatedly raising vulnerability issues. Our
novel device ’Puck-py’ helps streamline RKE security
evaluation process by significantly reducing manual effort
in multiple stages of the process, offering researchers
enhanced efficiency and ease of use.

The continued use of vulnerable RKE systems, as
documented in this study, underscores the inadequacy of
automotive security levels of vehicles currently on the
road.

6.1. Future Work

• Explore the RKE systems of more manufac-
turers: Extend the investigation of RKE systems
beyond the passenger car market to include other
sectors in the automotive industry.

• Improve our RKE protocol analyzer, ‘Puck-
py’: We would like to add the ability to carry out
relay attacks. This will greatly benefit research in
PKE systems. Automating the process of identi-
fying and isolating the appropriate frequency for
blocking and capturing signals will eliminate the
need for manual input.

• Explore a general metric for safety benchmark-
ing: We would like to extend our work in to
devise a general metric to benchmark safety from
RF based attacks.

Our work will facilitate further research by others and
make it easy to test unexplored RKE systems.
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Appendix A.
Eavesdropping RF Attack Sufficiency Value
(δ)

Recall that eavesdropping RF attacks, such as RollJam
and RollBack require the attacker to successfully jam the
vehicle’s receiver unit while simultaneously capturing the
signal from the smart key. The harder this is, the lower the
chances of a successful attack. Cars listen for RF signals
at a frequency range. The upper bound (Fu) and the lower
bound (Fl) of this frequency range varies from car to
car. We introduce a value called ’attack sufficiency value’
(ASV), notated as δ which serves as metric to identify how
vulnerable a particular car is to eavesdropping attacks.

As explained in §2.6.1 the greater the listening range,
the easier it is to execute an eavesdropping attack. This is
further constrained by Fk, since the jamming frequency
must be chosen somewhere between Fk and either Fu

or Fl. So the possible ranges to choose the jamming
frequency are Fk − Fl and Fu − Fk.

The ability to successfully execute the attack is also
impacted by the antenna being used. The ability of the
antenna to successfully receive signals is related to the
distance from the transmitter using the notion of field
strength. Thus, antenna’s field strength (Afs) can be cal-
culated using the field strength formula [42]:

V/M =

√
30 · watts · 10(GaindBi/10)

Distance(m)
To relate the constraints on executing an eavesdrop-

ping attack, ASV (δ) is calculated using the formula
below:

δ = Afs × max(Fk − Fl, Fu − Fk)

where:

Fk is the transmitting frequency of key
Fl is the lowest listening frequency
Fu is the highest listening frequency
Afs is the field strength of listening antenna

This takes into account the largest possible range
within which the jamming frequency may be chosen and
the ability of the attacker’s antenna to eavesdrop on the
transmitted packets from a given antenna and distance.
Thus we see that the vulnerability of the car to eaves-
dropping attacks ∝ δ.

The Afs for our antenna was calculated using the field
strength formula [42] with a distance of 0.5 meters:

V/M =

√
30 · watts · 10(GaindBi/10)

Distance(m)

=

√
30 · 0.01 · 10(7/10)

0.5

= 2.45

We have calculated δ values for three different car
models: Baleno, Dzire and Innova. Refer to Table 6 for δ
results. Intriguingly, we observed divergent δ values when
comparing two Innova cars of identical make, specifica-
tions, and year of manufacture. One plausible explanation
for this discrepancy, could be the varying impact of wear

https://tches.iacr.org/index.php/TCHES/article/view/8546
https://tches.iacr.org/index.php/TCHES/article/view/8289
https://github.com/atlas0fd00m/rfcat


and tear on the listening units’ efficiency in the respective
cars.

TABLE 6. ASV CALCULATION TABLE

Model Fu Fl Fk δ

Dzire 434.3 433.5 433.9 0.98
Innova-1 434.7 433.3 434 1.715
Innova-2 434.6 433.4 434 1.47
Baleno 434 433.6 433.8 0.49
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