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Um erfolgreich ein Doktorats studium abzuschliessen, muss der Student wohl genährt sein.
Dies lässt sich durch die folgenden Rezepte bewerkstelligen.

Zur Vorspeise: Frittaten Suppe

Zutaten für 1ne Person:
1
4 Stk. Ei, 20 g. Mehl, 15 ml. Milch, 14 Stk. Petersilie, 250 ml. Rindsuppe, 14 TL Salz

Zubereitung:
1. Ei mit Milch versprudeln und salzen, Mehl dazugeben bis ein dünnflüssiger Teig

entsteht.
2. In die sehr heiße Pfanne den Teig einfüllen (1 Suppenschöpfer voll) und daraus feine

Frittaten backen, und auskühlen lassen.
3. Die Frittaten nudelig bzw. in dünne Scheiben schneiden und in eine klare Rindssuppe

geben.

Zur Hauptspeise: Wiener Schnitzel

Zutaten für 1ne Person:
1 Stk. Schnitzelfleisch (aus der Keule), 14 Priese Salz, Butterschmalz, 25 g. Mehl, 25 g.
Semmelbrösel, 14 Stk. Ei,

Zubereitung:
1. Für das einfache Wiener Schnitzel zuerst die einzelnen Rindfleischstücke mit Hilfe

eines Fleischhammers dünn ausklopfen. Jedes Stück gut salzen.
2. Das Ei aufschlagen und mit Hilfe einer Gabel verquirlen.
3. Für die goldige Panier, zuerst jedes Fleischstück in Mehl wenden. Danach durch das

verquirlte Ei ziehen. Und zum Schluß in Semmelbrösel jede Seite gut andrücken.
4. In einer Pfanne das Öl sehr heiß werden lassen. Anschließend das Fleisch goldgelb,

schwimmend ausbraten.

Zur Nachspeise: Oma’s Apfelstrudel

Zutaten für 1ne Person:
63 g. Mehl (glatt), 14 TL Öl, 14 TL Essig, 14 Stk. Ei, 14 Prise Salz, 132 l. Wasser (lauwarm), 25 g.
Butter, 20 g. Brösel, 13 g. Nüsse (gerieben), 38 kg. Äpfel (säuerlich), 25 g. Kristallzucker, 13

g. Rosinen, 34 EL Zimt,

Zubereitung:
1. Für den Teig das Mehl auf ein Nudelbrett sieben, in der Mitte eine Grube machen, mit

einem Messer Öl, Essig, Salz, Ei und nach und nach lauwarmes Wasser einrühren.
2. Den Teig mit der Hand so lange rasch kneten oder abschlagen, bis er seidig glatt ist.
3. Den Teig auf eine bemehlte Stelle des Nudelbretts legen, dünn mit Öl bestreichen und

mit einer vorgewärmten Schüssel bedecken. Mindestens 1/2 Stunde rasten lassen,
dabei die Schüssel zwei- oder dreimal wechseln.

4. Ein großes Baumwolltuch auf einem Tisch ausbreiten, dünn mit Mehl bestäuben. Den
Strudelteig in die Mitte legen, etwas ausrollen und mit Hilfe der Handrücken vor-
sichtig ausziehen, bis er hauchdünn und durchsichtig ist.

5. Für die Fülle die Brösel hell rösten und mit den Nüssen vermischen. Äpfel schälen,entkernen
und dann blättrig schneiden oder hobeln. Rosinen waschen, Butter zerlassen.

6. Den ausgezogenen Strudelteig zu zwei Dritteln mit Bröseln bestreuen und mit Äpfeln
belegen. Zucker, Zimt und Rosinen darüberstreuen, die Ränder aufschlagen und das
restliche Teigdrittel überschlagen. Mit der Butter betropfen den Strudel locker ein-
rollen, auf ein befettetes Backblech legen und bei 180-200C ca. 30-40 Minuten backen.
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A B S T R A C T

Symmetric-key primitives are used to ensure the confidentiality of two or more
parties to maintain a private communication channel. While legacy cryptographic
primitives just ensure the confidentiality of messages, modern symmetric-key algo-
rithms further grant integrity and authenticity, simultaneously.
With the rise of the Internet, and the flourishing digitalisation of many services,
privacy and security of those communication channels became more and more im-
portant. Many conventional standards and recommendations for cryptographic
algorithms have been published. Those include for block ciphers the Data Encryp-
tion Standard (DES), and the Advanced Encryption Standard (AES), and for hash
functions the Secure Hash Algorithms SHA-1, SHA-2, and Keccak as SHA-3. Yet,
modern cryptographic algorithms are designed to run on desktop/server systems,
however, in resource constrained environments those conventional cryptographic
standards are often inefficient or difficult to implement. Lightweight cryptography
emerged from the lack of primitives that are capable of running in highly constraint
but interconnected environments (i.e., sensor networks, automotive systems, RFID
tags, and smart grids) the Internet of Things (IoT) in general.
This thesis presents novel advances in those areas. The research in this thesis is split
in two parts, contributing to the foundations and the cryptanalysis of lightweight
and efficient symmetric-key primitives.
In Part I of this thesis, we present a broad study of different design strategies of
lightweight block ciphers against the security of differential cryptanalysis. Accord-
ingly, we show that many lightweight ciphers have a significant gap between single
differential trails and differentials. Furthermore, we study energy-efficient S-boxes,
that are an important building block of ciphers based on substitution permutation
networks. In our research, we analyse all 4-bit S-boxes and give recommendations
for S-boxes with low-energy consumption that can be used in battery-powered em-
bedded devices such as medical implants.
Part II focuses on cryptanalysis of lightweight block ciphers. First we present zero-
correlation attacks on the STK construction of the Tweakey framework, by consid-
ering linear masks in the tweakey schedule. By transforming the attacks to integral
attacks, we can reduce the data complexity and show attacks on the tweakable
lightweight block ciphers Qarma, Skinny and Deoxys. Second, we study related-
tweakey impossible differential attacks against the tweakable lightweight block ci-
pher Skinny where we present an attacks on 23 (out of 36) rounds on Skinny-
64/128. Third, we study differential attacks on reduced-round versions of the block
cipher family Sparx. Sparx has recently been published and it is the first ARX-based
block cipher with provable bounds against differential and linear cryptanalysis. In
our work, we show truncated differential and rectangle attacks on several reduced-
round versions of Sparx.
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1 I N T R O D U C T I O N

C O N T E N T S

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 motivation
Over the last few years, the number of electronic devices connected to the Internet
have drastically increased. While the first electronic device, that has been connected
to the Internet (i.e., at that time the ARPANET) was a Coca-Cola drink dispenser [319],
nowadays there are billions of devices connected to the Internet. This network of
embedded devices, home appliances, vehicles, sensor networks, or many other em-
bedded devices containing electronics, sensors, and actuators is called the Internet of
Things (IoT). The number of IoT devices is increasing by around 30% year-over-year,
and initial estimates are showing that there will be around 30 billion connected de-
vices by 2020 [268]. Moreover, the global market value of the IoT is predicted to
reach 7.1 trillion US$ by 2020 [176]. There is an extensive market for IoT devices
showing the huge benefits of connected devices. This include home automation,
elder care, medical and health care, smart traffic control, transport systems, smart
grids, intelligent maintenance systems, smart cities, and many further use cases.
Home automation systems allow to control lightning, heating, air conditioning, me-
dia and security systems that in a long term can benefit the energy consumption in
flats and houses. Elderly care systems and smart houses can provide assistance for
people with disabilities, with systems offering voice control or sensors that monitor
for medical emergencies. Moreover, in the medical and health care setting mobile
hearth monitors and glucose monitoring systems for diabetes patients, can connect
to a smart phone and be used to, for example monitor the medicine intake. Fur-
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2 introduction

thermore, smart traffic control, smart parking and electronic toll collection systems
can speed up waiting times and allow a better traffic flow. In industry, RFID-chips
can be used on supply chain networks. Moreover, in agriculture, temperature, hu-
midity and wind speed sensors can be used to improve the quality and quantity of
growing crops.

While there are many benefits and use cases with connected devices, there are also
plenty of security and privacy issues coming along when devices are designed/man-
ufactured without consulting security-aware engineers. Moreover, often standard
cryptographic algorithms do not fit on embedded devices or decrease the efficiency,
and are therefore often ignored. There are many examples for major security and
privacy breaches that occurred in a short timespan. In October 2016 one of the
largest Distributed Denial of Service (DDoS) attacks was launched on Dyn, a Domain
Name Service provider, using an IoT botnet [66]. Consequently, parts of the Inter-
net went down, including Twitter, Netflix, CNN, Reddit and the Guardian. The
botnet was created with the malware Mirai and distributed to other IoT devices
by using default usernames and passwords. Shortly later, in November 2016 Ro-
nen et al. [289] showed a massive attack on the Zigbee Light Link protocol, where
in particular they were targeting Philips Hue smart lamps. In their attack, they use
a side-channel attack to extract the global AES-CCM key and then to spread a
worm via the over-the-air (OTA) update mechanism to further infect other smart
lamps. They could then use the malicious smart lamps in large scale DDoS attacks.
Moreover, to show the seriousness of attacks against IoT devices, in 2015 Miller
and Valasek presented an attack to take over the whole control system of a Jeep
Cherokee [247]. In their attack, they exploit a predictable Wi-Fi password in the
multimedia system to update the firmware. The multimedia system did not have
proper authenticity checks making the attack possible. As the multimedia system
is connected to the Control Area Network (CAN) that connects around 70 electronic
control units including engine control, transmission, airbags and braking, the at-
tackers were able to take full control of the car. Another safety critical vulnerability
of medical implants was published in January 2017. Hackers were able to exploit
a vulnerability in the transmitter of cardiac devices [218], such as pacemakers and
defibrillators. The vulnerability occurred when a medical implant remotely shared
its data with physicians. The hackers were able to show that they can deplete the
battery of the implant or even administer incorrect pacing or shocks. Apart from
security and safety issues, the lack of security in IoT devices, also leads to severe
privacy issues. In February 2017, the German Federal Network Agency released a
press statement [158] about some children’s toys that can be used to spy on people.
In particular, the Cayla doll had several critical vulnerabilities that can be used to
access cameras and microphones, that are part of the doll, via the Internet.

The cryptographic research community, industry and standardisation agencies rec-
ognized the security problems within IoT devices, and all the involved bodies are
eager to find solutions. As a result, in recent years many new ciphers have been
published that are optimised for resource-constrained environments. The overall
research area is called Lightweight Cryptography. Security and privacy are impor-
tant in embedded devices, as we mentioned above by showcasing several recent
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vulnerabilities in IoT devices. However, as the majority of modern cryptographic
algorithms are designed for implementation on desktop/server systems, many of
those algorithms become inefficient or are impossible to implement in constrained
devices.
While there has been a significant effort by the academic research community and
industry to efficiently implement standard algorithms, such as DES and AES, on
resource constrained devices, there are still further issues with many legacy algo-
rithms. There are many results on hardware [38, 44, 331] and software [239, 275, 305]
implementations of AES that allow very small implementations with an area of
around 2200 GE and a latency of 246 cycles per byte for encryption. Moreover,
some microprocessors are often shipped with crypto co-processors that offer hard-
ware acceleration for AES [165].
Nevertheless, hardware acceleration also reaches its limits and too many optimi-
sations allow for side-channel attacks. Moreover, optimisations for speed are not
always enough, as many embedded devices also require small memory and code
footprints. AES is a reasonable fast cipher when implemented in embedded environ-
ments, however, its large block size and S-box do not allow small implementations,
and further AES is vulnerable to side-channel attacks. Additionally, other crypto-
graphic standards such as SHA-2 and SHA-3 require a large amount of memory, for
storing the internal states (i.e., 512 bits for SHA-2 and 1600 bits for SHA-3).
Biryukov and Perrin provided a large study about the state-of-the-art in lightweight
symmetric cryptography [81]. In their work they listed many proprietary/legacy
algorithms mainly proposed from industry, where many of them have been bro-
ken [41, 179]. Table 1 gives an overview of some proprietary/legacy lightweight
algorithms identified by Biryukov and Perrin.
The cryptographic research community published an extensive number of light-
weight cryptographic primitives in the last few years to overcome the issues with
proprietary/legacy algorithms. Most of the modern lightweight cryptographic al-
gorithms are from academia, while a few are from industry. Modern lightweight
ciphers are often lightweight by design. This lightweightness can also be seen as
a set of specific design choices. In the following we will list a few design choices
that were recently used for designing dedicated lightweight symmetric primitives.
Moreover, we often have to decide between different trade-off’s, when designing a
lightweight cipher. Figure 1 illustrates the trade-off’s for lightweight cryptography.
Cryptographic primitives can be implemented in software to secure protocol com-
munication and encrypt data that needs to be stored securely. Among the rele-
vant metrics for software implementations are the amount of data that is written
to memory (RAM consumption), the code size, and the throughput. Many micro-
controllers operate on small words of 8, 16, 32 bits. For smaller microcontrollers,
e.g., 8-bit processors, the costs of rotations are quite expensive, however, rotations
by the word-size of the microcontroller are usually cheap. Therefore, many recent
lightweight ciphers are designed to use rotations by multiples of the word-size,
which are cheaper to implement. Some further tricks are to pre-compute often used
variables, and also for example subkeys of a cipher. This can save time, at the
expense of more memory. More sophisticated techniques are bit-sliced implemen-
tations [237].
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Table 1: Proprietary/legacy lightweight primitives as identified by Biryukov and Perrin [81]

Name Intended platform Key Internal State IV Reference

A5/1

Cell Phones

64 64 22 [104]

A5/2 64 81 22 [42]

CMEA 64 16-48 - [339]

ORYX 96 96 - [340]

A5-GMR-1
Satellite Phones

64 82 19 [143]

A5-GMR-2 64 68 22 [143]

DSC Cordless phones 64 80 35 [235]

SecureMemory

Atmel chips
64 109 128 [161]

CryptoMemory 64 117 128 [161]

Hitag2

Car key / immobilizers

48 48 64 [333]

Megamos 96 57 56 [334]

Keeloq 64 32 - [179]

DST40 40 40 - [100]

iClass

Smart cards
64 40 - [160]

Crypto-1 48 48 96 [266]

CSS
DVD players

40 42 - [47]

Cryptomeria 56 64 - [102]

CSA-BC
Digital televisions

64 64 - [346]

CSA-SC 64 103 64 [346]

PC1 Amazon Kindle 128 152 - [80]

SecurID Secure token 64 64 - [78]

E0 Bluetooth devices 128 128 - [358]

Many efficient implementations are also directly implemented in hardware. Among
the relevant metrics for efficient hardware implementations are the memory con-
sumption, the implementation’s size (normally measured in Gate Equivalent (GE)),
latency, throughput, and power consumption. All of those metrics are related to
each other, and it is important to find trade-off’s according to a specific use case.
As memory is often one of the most expensive parts, lightweight ciphers are de-
signed to operate on smaller block sizes and use smaller key sizes.
Another desirable design feature of lightweight ciphers is resilience against side-
channel attacks. In side-channel attacks, leakage information from real-world phys-
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Figure 1: Trade-off’s in Lightweight Cryptography between Security/Throughput/Area1

ical processes such as power consumption or varying execution times are exploited
to extract secret information from a cipher. Such attacks require an attacker to have
physical access to the device. To prevent against such attacks, several countermea-
sures have to be applied, which often add severe overhead to the implementation
of a cipher. Masking [280] is an implementation technique to protect against side-
channel attacks, which uses an external source of random data to randomize the
input of operations that might leak information.

The components and operations in a lightweight block cipher are typically simpler
than in standard block ciphers like AES. In contrast to simplifying the round func-
tions, often the number of rounds has to be increased to achieve the same security.
As memory is very expensive the implementation of a S-Box as look-up table can
lead to a large hardware footprint. Therefore, lightweight block ciphers have usu-
ally small (e.g., 4-bit) S-Boxes. To save further memory, lightweight block ciphers
are using small block sizes (i.e., 64 bits, rather then 128 bits). Another option is to
reduce the key sizes to 80 or 96 bits for efficiency. As a result, simpler key schedules
improve the memory, latency and power consumption of lightweight block ciphers.
In 2007 Bogdanov et al. [95] proposed Present, an ultra-lightweight block cipher
based on a Substitution-Permutation Network that is optimised for hardware and
can be implemented with just 1075 GE. Present is bit-oriented and has a hardwired
diffusion layer. In 2011, Guo et al. [168] designed LED, an SPN cipher that is heavily

1 Lightweight cryptography trade-off’s as identified by Gregor Leander. Available at: https:

//www.cosic.esat.kuleuven.be/ecrypt/courses/albena11/slides/gregor_leander_lightweight.pdf.
Date accessed: 19. Oct. 2018

https://www.cosic.esat.kuleuven.be/ecrypt/courses/albena11/slides/gregor_leander_lightweight.pdf
https://www.cosic.esat.kuleuven.be/ecrypt/courses/albena11/slides/gregor_leander_lightweight.pdf
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based on AES. Interesting in that design is the lack of the key schedule, as it applies
the same 64-bit key every four rounds to the state for LED-64. The 128-bit version
simply divides the key in two 64-bit sub-keys and then alternately adds them to the
state. Reducing the latency is the main goal of the block cipher Prince [101]. There
is no real key schedule in Prince, as it derives three 64-bit keys from a 128-bit mas-
ter key. Prince is a reflection cipher, meaning that the first rounds are the inverse
of the last rounds, so that the decryption of a key k is identical to an encryption
with key k⊕α, where α is a constant based on π. The block cipher Midori [37] was
designed for reducing the energy consumption when implemented in hardware. It
has an AES-like structure and a very lightweight almost-MDS involutory matrix
M as diffusion layer. In 2013, Simon and Speck [46] were designed by the NSA.
Both ciphers perform exceptionally well in both hardware and software and were
recently considered for standardisation. Compared to the standard approach, no
security analysis or design rational was given by the designers. Simon is hardware-
oriented and based on a Feistel-Network with only the following operations: AND,
rotation, XOR. Speck is software oriented and based on an ARX construction with
the typical operations: addition, rotation, XOR. In 2016, Skinny [50] has been pub-
lished to compete with Simon. The main idea behind the design is to be efficient as
possible but without sacrificing security. Skinny is a tweakable block cipher based
on the Tweakey framework [188] with the components chosen because of a good
compromise between cryptographic properties and hardware costs.

Conventional hash functions such as SHA-1, SHA-2 and SHA-3 (i.e., Keccak) may
not be suitable for constraint environments due to their large internal state sizes
and high power consumption. Lightweight hash functions differ in various aspects
as they are optimised for smaller message sizes and/or have smaller internal states
and output sizes. PHOTON [167] is a P-Sponge based AES-like hash function, with
an internal state size of 100 to 288 bits and an digest of 80 to 256 bits. The state
update function is close to the LED cipher. In 2011, Bogdanov et al. [94] designed
SPONGENT, a P-Sponge where the permutation is a modified version of the block
cipher Present. SipHash [31] has an ARX structure and is inspired by BLAKE and
Skein and has a digest size of 64 bits.

Stream ciphers generate a key stream from a given key k and an initialization vec-
tor IV , which is then simply XORed with the plaintext to generate a ciphertext. It
must be infeasible for an attacker to retrieve the key, even if a large part of the
keystream is available to the attacker. In 2008, the eSTREAM competition aimed to
identify a portfolio of stream ciphers that should be suitable for widespread adop-
tion. Three of the finalists are suitable for hardware applications in a restricted
environment. Grain was designed by Hell et al. [170] and is based on two finite
state registers whose clocking influence each others update function to make it
non-linear. Grain requires 3239 GE in hardware. MICKEY [35] is based on two
linear feedback shift registers (LFSR) that are irregularly clocked. MICKEY requires
3600 GE in hardware. Trivium is also a finalist from the eSTREAM competition that
has three LFSR’s with different length. Trivium [129] requires 3488 GE in hardware.



1.2 publications 7

The aim of authenticated encryption is to provide confidentiality and integrity (i.e.,
data authenticity) simultaneously. In 2014, the CAESAR (Competition for Authenti-
cated Encryption: Security, Applicability and Robustness) competition started with the
aim to identify a portfolio of authenticated ciphers that offer advantages over AES-
GCM and are suitable for widespread adoption.
ACORN [351] is based on six LFSR’s and has a state size of 293 bits. ACORN
provides full security, for both, encryption and authentication. The hardware costs
should be close to that of Trivium according to the designers. SCREAM [164] is
a tweakable block ciphers in the Tweakable Authenticated Encryption (TAE) mode.
SCREAM is based on LS designs Robin and Fantomas. Bertoni et al. designed
Ketje [62] that is a lightweight variant of SHA-3. Ketje relies on the Sponge con-
struction in the MonkeyWrap mode. The internal state size is only 200 bits for
Ketje-Jr and 400 bits for Ketje-Sr. Ascon [140] is an easy to implement, Sponge-
based authenticated cipher with a custom tailored SPN cipher. It is fast in both,
hardware and software even with added countermeasures against side-channel at-
tacks. Another CAESAR candidate is the 64-bit tweakable block cipher Joltik [186],
that is based on the Tweakey framework. Joltik is AES-like and uses the S-Box of
Piccolo and the round constants of LED. The MDS matrix is involutory and non-
circulant.

The contributions of this thesis are in the cryptanalysis of symmetric-key primi-
tives and the analysis of several components of symmetric-key ciphers. Third-party
cryptanalysis of symmetric-key primitives ensures that there is more trust in the
security claims of designers, by further offering insights in the security of the anal-
ysed ciphers. Moreover, as the design of cryptographic primitives is often limited
by time constraints and the huge choice of different components in ciphers, the
initial attacks and analysis is naturally limited. Therefore, it demands a deeper
analysis by the cryptographic community. Within this thesis, some novel ideas are
used to extend the currently best attacks on several recently proposed lightweight
ciphers. Moreover, we study the components of symmetric-key primitives and some
cryptographic attacks in general.

1.2 publications
This thesis is based on the research contributions which the author performed dur-
ing his PhD studies. The majority of the work has been published at conferences.
The papers are listed below:

Conference Papers:

1. Ankele, R., Banik, S., Chakraborti, A., List, E., Mendel, F., Sim, S.M., Wang,
G.: Related-key impossible-differential attack on reduced-round Skinny. In:
Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17: 15th International Con-
ference on Applied Cryptography and Network Security. Lecture Notes in
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Computer Science, vol. 10355, pp. 208–228. Springer, Heidelberg, Germany,
Kanazawa, Japan (Jul 10–12, 2017)

2. Ankele, R., Böhl, F., Friedberger, S.: MergeMAC: A MAC for authentication
with strict time constraints and limited bandwidth. In: Preneel, B., Vercauteren,
F. (eds.) ACNS 18: 16th International Conference on Applied Cryptography
and Network Security. Lecture Notes in Computer Science, vol. 10892, pp.
381–399. Springer, Heidelberg, Germany, Leuven, Belgium (Jul 2–4, 2018)

3. Ankele, R., List, E.: Differential cryptanalysis of round-reduced Sparx-64/128.
In: Preneel, B., Vercauteren, F. (eds.) ACNS 18: 16th International Conference
on Applied Cryptography and Network Security. Lecture Notes in Computer
Science, vol. 10892, pp. 459–475. Springer, Heidelberg, Germany, Leuven, Bel-
gium (Jul 2–4, 2018)

4. Ankele, R., Kölbl, S.: Mind the gap - a closer look at the security of block
ciphers against differential cryptanalysis. In: Cid, C., Jacobson, M.J. (eds.) Se-
lected Areas in Cryptography – SAC 2018. Springer International Publishing,
Cham (2018)

In Submission:

1. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.: Zero-
correlation attacks on the TWEAKEY framework. IACR Transactions on Sym-
metric Cryptology 2018(4) (Sep 2018), submitted

Pre-Prints:

1. Ankele, Ralph, Ankele, Robin: Software benchmarking of the 2
nd round CAE-

SAR candidates. Cryptology ePrint Archive, Report 2016/740 (2016), http:

//eprint.iacr.org/2016/740

2. Ankele, R., Banik, S., Chakraborti, A., List, E., Mendel, F., Sim, S.M., Wang, G.:
Related-key impossible-differential attack on reduced-round SKINNY. Cryp-
tology ePrint Archive, Report 2016/1127 (2016), http://eprint.iacr.org/

2016/1127

3. Ankele, R., List, E.: Differential cryptanalysis of round-reduced Sparx-64/128.
Cryptology ePrint Archive, Report 2018/332 (2018), https://eprint.iacr.org/
2018/332

4. Ankele, R., Böhl, F., Friedberger, S.: MergeMAC: A MAC for authentication
with strict time constraints and limited bandwidth. Cryptology ePrint Archive,
Report 2018/342 (2018), https://eprint.iacr.org/2018/342

5.

Technical Reports:

1. Ankele, R., Banegas, G., Boss, E., Božilov, D., Friedberger, S., Lacharité, M.S.,
Li, C., Martinoli, M., Minelli, M., Minihold, M., Rosie, R., Šijačić, D., Soria-

http://eprint.iacr.org/2016/740
http://eprint.iacr.org/2016/740
http://eprint.iacr.org/2016/1127
http://eprint.iacr.org/2016/1127
https://eprint.iacr.org/2018/332
https://eprint.iacr.org/2018/332
https://eprint.iacr.org/2018/342
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Vázquez, E.: Technical report on first designs for IoT & cloud. Tech. rep., Eu-
ropean Integrated Research Training Network on Advanced Cryptographic
Technologies for the Internet of Things and the Cloud (2017)

2. Ankele, R., Banegas, G., Boss, E., Božilov, D., Friedberger, S., Lacharité, M.S.,
Li, C., Martinoli, M., Minelli, M., Minihold, M., Panny, L., Rosie, R., Šijačić,
D., Soria-Vázquez, E., Wang, J.: Technical report on implementations for IoT
& cloud. Tech. rep., European Integrated Research Training Network on Ad-
vanced Cryptographic Technologies for the Internet of Things and the Cloud
(2018)

1.3 thesis structure
This thesis presents some selected research contributions of the author during his
studies at the Information Security Group at Royal Holloway University of London.
The contributions were accomplished under the supervision of Prof. Carlos Cid. In
the following we give a detailed summary of the thesis outline.

1.3.1 Part I - Foundations

Part I of this thesis presents novel research into the foundations of symmetric cryp-
tography. In Chapter 3 we study some aspects of differential cryptanalysis applied
to many lightweight block ciphers. Differential cryptanalysis is one of the most
powerful attack vectors in symmetric cryptography, first published in the early 90s
and since then many extensions and further insights have been published. Chap-
ter 4 presents research in some of the building blocks of block ciphers. We analyse
all possible 4-bit S-boxes regarding their energy consumption. Due to the intercon-
nectivity of many devices and the need for security in embedded devices such as
sensor networks, RFID tags and medical implants, the Internet of Things (IoT) in
general, many of those devices are battery-powered and the energy consumption
plays a critical roll in the performance evaluation of ciphers used in those devices.

Chapter 3 - Differential Cryptanalysis of Lightweight Block Ciphers

In this chapter, we study the effects of differential cryptanalysis of several recently
proposed lightweight block ciphers. Resistance against differential cryptanalysis is
an important design criteria for any modern block cipher and most designs rely
on finding some upper bound on probability of single differential trails. However,
already at EUROCRYPT’91, Lai et al.comprehended that differential cryptanalysis
rather uses differentials instead of single trails.
We consider exactly the gap between these two approaches and investigate this gap
in the context of recent lightweight cryptographic primitives. This shows that for
many recent designs like Midori, Skinny or Sparx one has to be careful as bounds
from counting the number of active S-boxes only give an inaccurate evaluation of
the best differential distinguishers. For several designs we found new differential
distinguishers and show how this gap evolves. We found an 8-round differential
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distinguisher for Skinny-64 with a probability of 2−56.93, while the best single trail
only suggests a probability of 2−72. Our approach is integrated into publicly avail-
able tools and can easily be used when developing new cryptographic primitives.
Moreover, as differential cryptanalysis is critically dependent on the distribution
over the keys for the probability of differentials, we provide experiments for some
of these new differentials found, in order to confirm that our estimates for the
probability are correct. While for Skinny-64 the distribution over the keys follows
a Poisson distribution, as one would expect, we noticed that Speck-64 follows a
bimodal distribution, and the distribution of Midori-64 suggests a large class of
weak keys.

Chapter 4 - Analysis of Low-Energy 4-bit S-boxes

Many devices in resource constrained environments, the Internet of Things (IoT)
in general, are powered by batteries. Thus, those devices often operate on a tight
power/energy budget. Medical implants such as pacemakers, insulin pumps or
brain implants are some examples for this devices. Security and privacy is crucial
in the communication channel of those devices.
Lightweight cryptography is an active field of research and there have been many
cipher proposals in the last few years. In conventional cryptographic standards the
trade-off between security and performance is optimised for high performance en-
vironments. However, in resource constrained environments those cryptographic
standards are difficult or impossible to implement. Hence, lightweight ciphers
have been optimized for area, power consumption, memory complexity, latency
and throughput. Yet, little work has been done on energy efficient ciphers.
We are trying to fill this gap and give a detailed study on energy-efficient design
strategies for block ciphers. Moreover, we concentrate our research on Substitution-
Boxes (S-boxes) that are an important building block of Substitution Permutation
Networks (SPN). We analyse all optimal 4× 4-bit S-boxes, and classify them in two
groups, based on Present-like and Prince-like designs, that we show to be optimal
block cipher designs for low-energy consumption. In that context we further anal-
yse all involutory 4-bit permutations, and study the differential and linear branch
numbers of all optimal 4-bit affine equivalence classes.
As a result, we give recommendations for optimal low-energy S-boxes, that cipher
designers can use in their ciphers, for instance in the upcoming lightweight cryp-
tography standardisation process by the National Institute of Standards and Tech-
nology (NIST).

1.3.2 Part II - Cryptanalysis

Part II of this thesis presents novel research in the cryptanalysis of some recently
proposed lightweight block cipher families. The analysis of block ciphers is an
important step to strengthen the trust and the reliability in a cipher. In Chapter 5 we
analyse the security of the Tweakey framework, with applications to the tweakable
block ciphers Qarma, Mantis and Skinny. Moreover, in Chapter 6 we analyse the
security of the tweakable block cipher Skinny. Finally, in Chapter 7 we analyse the
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security of Sparx, an ARX-based block cipher designed according to a new design
strategy called the long-trail strategy (LTS).

Chapter 5 - Zero-Correlation Attacks on Tweakable Block Ciphers with a linear Tweak
Schedule

In this chapter, we present zero-correlation attacks on tweakable block ciphers with
a linear tweak schedule, based on [23]. The design and analysis of dedicated tweak-
able block ciphers is a quite recent and very active research field that provides
an ongoing stream of new insights. For instance, results of Kranz, Leander, and
Wiemer from FSE’17 show that the addition of a tweak using a linear tweak sched-
ule does not introduce new linear characteristics. We consider for the first time—to
the best of our knowledge— the effect of the tweak on zero-correlation linear crypt-
analysis. It turns out that the tweak can be used to get zero-correlation linear hulls
covering more rounds, which also implies the existence of integral distinguishers
on the same number of rounds. The so obtained integral distinguishers cover more
rounds compared to existing ones that have been found using the division property,
for the tweakable block ciphers Qarma, Mantis, and Skinny. In particular, this
leads to the best attack (with respect to number of rounds) on a round-reduced
variant of Qarma.

Chapter 6 - Cryptanalysis of the Tweakable Block Cipher Skinny-64/128

In this chapter, we present a related-tweakey impossible-differential attack on a
round-reduced version of the tweakable block cipher Skinny based on [20]. Further-
more, we present some unpublished results on integral distinguisher of Skinny.
At CRYPTO’16, Beierle et al. presented Skinny, a family of lightweight tweakable
block ciphers intended to offer an alternative to the NSA designs Simon and Speck.
Skinny can be implemented efficiently in both software and hardware and supports
block sizes of 64 and 128 bits as well as tweakey sizes of 64, 128, 192 and 128,
256, 384 bits respectively. In this chapter we present a related-tweakey impossible-
differential attack on up to 23 (out of 36) rounds of Skinny-64/128 for different
tweak sizes. All our attacks can be trivially extended to Skinny-128/128.

Chapter 7 - Differential Cryptanalysis of Round-Reduced Sparx-64/128

In this chapter, we analyse the lightweight block cipher Sparx presented at ASI-
ACRYPT 2016. We present truncated-differential attacks and rectangle attacks on a
round-reduced version of Sparx based on [27].
Sparx is a family of ARX-based block ciphers designed according to the long-trail
strategy (LTS) that was introduced together with Sparx by Dinu et al. at ASIACRYPT
2016. Similar to the wide-trail strategy, the LTS allows provable upper bounds on
the length of differential characteristics and linear paths. Thus, the cipher is a
highly interesting target for third-party cryptanalysis. However, the only third-
party cryptanalysis on Sparx-64/128 to date was given by Abdelkhalek et al. at
AFRICACRYPT 2017 who proposed impossible-differential attacks on 15 and 16

(out of 24) rounds.
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We present chosen-ciphertext differential attacks on 16 rounds of Sparx-64/128.
First, we show a truncated-differential analysis that requires 232 chosen ciphertexts
and approximately 293 encryptions. Second, we illustrate the effectiveness of boo-
merangs on Sparx by a rectangle attack that requires approximately 259.6 chosen
ciphertexts and about 2122.2 encryption equivalents.
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2.1 notation
We denote by F2 the finite field of two elements x ∈ {0, 1}. For positive integer n, we
denote by Fn2 the n-dimensional vector space over F2. We represent functions by
upper case letters and indices by lowercase letters. We denote with {0, 1}n the set of
all n-bit strings and {0, 1}∗ the set of bit strings of arbitrary length. Let x,y ∈ {0, 1}n

for some positive integer n then, we denote by x‖y the concatenation of x and y, by
x⊕y their bitwise XOR, by x≪ r a rotation by r bits to the left and by x≫ r rotation
by r bits to the right; moreover, we denote by x � y = (x + y) mod 2n modular
addition, and by x� y = (x− y) mod 2n modular subtraction. For all bit strings
x ∈ {0, 1}n, we index the bits x = (xn−1 . . . x1x0) where xn−1 is the most significant
and x0 the least significant bit of x. Given a bit string x = (x1‖ . . . ‖xm) ∈ ({0, 1}mn)
consisting of m words of n bit each, we denote by

x≪n r
def
= (x1≪ r)‖ . . . ‖(xm≪ r)

the word-wise independent rotated value. We overload the notation for tuples of
bit strings x ∈ ({0, 1}n)m: x = (x1, . . . , xm), to still mean word-wise independent

rotation x≪n r
def
= (x1≪ r), . . . , (xm≪ r). We use typewriter font to represent

hexadecimal values, e.g., 0110 = 272. We use the same font but with annotation to
represent bit strings, e.g., (0110)2 = 6. Moreover, we will use the symbol * at the

13
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position of certain bits to indicate that they can take arbitrary values, e.g., (0*10)2 ∈
{2, 6}. As a shorthand notation for probabilities p, we often write hw = − log2(p)
when the meaning of p is clear from the context.

2.2 modern cryptography
Cryptography (from the Ancient Greek κρυπτoζ, translated hidden, secret; and from
γραφειυ, translated to write) is the study of techniques to securely communicate
in the presence of third parties. There are various aspects that modern encryption
schemes try to achieve, such as data confidentiality, data integrity, authentication, and
non-repudiation. The application areas of cryptography are reaching wide-spread ar-
eas, including secure communication, electronic commerce, digital cryptocurrencies, chip-
based payment cards, digital rights management, and many further use cases.
Pre-modern cryptography, also called historical-cryptography, was mainly based on
encrypting messages to hide information if the messages are intercepted by enemies
(i.e., adversaries). The history of cryptography reaches back many thousand years
until the ancient Greek and Roman empire. The main types of ciphers were simple
transposition ciphers, which rearranged the order of letters in a message, or sub-
stitution ciphers that replace parts of letters with other letters. Some well known
examples are the CAESAR cipher; an early substitution cipher that replaces each
letter with another letter shifted by a fixed position in the alphabet. The Vigenère
cipher is a polyalphabetic substitution cipher, by applying a series of CAESAR ci-
phers in sequence, but with different shift values. In the early 20th century, many
mechanical encryption devices were invented. Those include the German Enigma,
the Lorenz, the British Typex, the US M-209, and the USSR Fialka M-125 machines1.
With the invention of computers and further research into cryptographic algorithms
simple transposition or substitution ciphers became deprecated. Modern cryptog-
raphy is based on mathematical and computational hard problems, making them
hard to be broken by computationally-bounded adversaries. These schemes are of-
ten provable secure, based on the underlying hard mathematical problem such as
for example the integer factorization or the discrete logarithm problem. Moreover, there
also exist information-theoretical secure schemes, that cannot be broken even with un-
limited computing power, such as the one-time pad. However, these schemes are
inefficient for larger instances.

2.2.1 Cryptographic Goals and Principles

The fundamental problem that cryptography tries to solve is to ensure a private
communication channel between two or more parties. In this context, we normally
consider two parties, named Alice and Bob, that are communicating over an inse-
cure channel, such as the Internet. In our scenario, we consider the communication
channel insecure, as there may exist a third party or adversary, named Eve, who be-
haves malicious and tries to intercept and tamper with the communication between
Alice and Bob. Note that neither Alice, Bob or Eve are necessarily physical persons,

1 http://cryptomuseum.com/crypto/index.htm

http://cryptomuseum.com/crypto/index.htm
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Listen Modify

Insecured channel of communication

Figure 2: Basic setup of two parties communicating over an insecure channel.

instead they might as well be servers, institutions or governments. Figure 2 illus-
trates the basic communication setup between two parties over an insecure channel.
While in general the main goal of cryptography is to achieve a private communica-
tion channel by keeping the communication secret, the aim of modern cryptography
is threefold. These properties guarantee the security of the communication between
Alice and Bob:

• Confidentiality: It must be impossible for a passive adversary Eve, meaning that
she only listens to the communication between Alice and Bob without modi-
fying any of its content that she intercepts, to obtain any meaningful informa-
tion.

• Integrity: It must be impossible for an active adversary Eve, meaning she can
tamper with the messages, that a message that has been modified by a third
party, in this scenario from Eve, is accepted. In other words, this implies that
the communicating parties, Alice and Bob, should be able to detect when a
modification of any of their messages exchanged, occurs.

• Authenticity: It must be impossible for an active adversary Eve, meaning that
she can tamper with the messages, withhold the messages or even create com-
pletely new messages, to impersonate one of the communicating parties. In
particular, Alice and Bob should be able to rely that the messages they receive,
is originating either from Alice or Bob.

Authenticity is a special case of integrity. While integrity requires that changes in
data are detectable, with authenticity one requires that the data is the same as when
it was under control of a specific entity. In that case, authentication makes sure that
a given entity actually is who one believes it is. Authenticity can then be achieved
by providing authentication of data through integrity.

2.2.2 Symmetric vs Public-Key Cryptography

Cryptography can be split in many different areas. Yet, when we want to encrypt
a message, we typically work in two different areas, symmetric-key, also often called



16 background

secret-key cryptography, and asymmetric-key, also often called public-key cryptogra-
phy.
Symmetric-key cryptography involves using one single-key to encrypt and decrypt
data. The advantage of symmetric-key cryptography is that it is efficient and secure.
However, it works well locally, when it is easy to store the key somewhere secure.
In a global network, such as the Internet, in order to decrypt the messages a user
has to have access to the key. This means, we have an additional overhead, that
the symmetric-key has to be exchange initially. Therefore, one would require a
complicated key-exchange protocol, or the users have to meet initially to securely
exchange keys.
Public-key cryptography solves the issues with the keys by offering a pair of keys.
The public key can be sent along with the message, and as its name mentions, it is
public accessible. However, the second key of the pair, the private key must always
be in the possession of the sender, and must not be disclosed, i.e., it must be kept
private. The private key is generated based on a derivation from the public key,
and only a receiver that has access to the private key can decrypt messages. Public-
key cryptography is therefore often based on mathematical hard problems, such
as factoring and the discrete logarithm. Compared to symmetric-key cryptography,
public-key cryptography is often very slow and resource intensive.

2.2.3 Kerckhoffs’ Principle

In 1883, Auguste Kerckhoffs published six design principles for military ciphers in
the journal of military sciences titled La Cryptographie Militaires [198](in French):

1. The system must be substantially, if not mathematically, undecipherable;

2. The system must not require secrecy and can be stolen by the enemy without
causing trouble;

3. It must be easy to communicate and retain the key without the aid of written
notes, it must also be easy to change or modify the key at the discretion of the
correspondents;

4. The system ought to be compatible with telegram communication;

5. The system must be portable, and its use must not require more than one
person;

6. Finally, given the circumstances in which such system is applied, it must be
easy to use and must neither stress the mind or require the knowledge of a
long series of rules.

While some of them are not longer relevant, due to the use of computers that run
the complex encryption algorithms, Kerckhoffs’ second axiom is commonly known
as Kerckhoffs’ principle and is still important in the design of modern cryptographic
algorithms. Kerckhoffs’ principle basically states that the security of the cipher has
to rely exclusively on the secrecy of the key. This is in strong contrast to stegano-
graphic encoding, which has been used in ancient Greek and the Roman empire
and even further until the nineteenth century, mainly in transposition ciphers of
alphanumeric characters.
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While Kerckhoffs’ principle was followed by many ciphers that are published in
academic publications and are used in standards, there have been a few ciphers that
were mainly proposed by industry, that did not follow the principle and the security
also depends on the secrecy of the algorithms. Some examples are the Keeloq block
cipher, that was used for many remote keyless entry systems in cars/garages, the
MIFARE stream cipher which is still widely used in contactless smart cards for bus
and train tickets, the DECT cipher for cordless home telephones, baby phones and
traffic lights, and also the Kindle Cipher (PC1) that has been used by the Amazon
Kindle eBook reader as a DRM system. All those ciphers are highly efficient, but
they are based on proprietary/not public specifications. Moreover, they do not
use standardised design principles, and are practically broken by the cryptographic
community [80, 131, 179, 267].
However, even government agencies use an approach of security by obscurity where
they further rely on the secrecy of their designs or implementations. This includes a
list called NSA Suite A Cryptography that includes classified algorithms in the United
States of America that are used for especially sensitive data. Moreover, the Russian
intelligence agencies use proprietary algorithms such as GOST and Kuznyechik,
which have been attacked [30, 180] or parts of it have been successfully reverse
engineered [82].

2.3 symmetric primitives
Symmetric cryptographic primitives are used in a wide range of applications, such
as secure communication, electronic commerce, digital cryptocurrencies, chip-based pay-
ment cards, digital rights management. There are several different primitives that are
tailored to achieve the main goals in cryptography authenticity, confidentiality and
integrity. These primitives include block ciphers, stream ciphers, hash functions, mes-
sage authentication codes and authenticated ciphers. In the following we will give an
overview of those primitives.

2.3.1 Block Ciphers

A block cipher is a deterministic algorithm that operates on a number of bits with a
fixed length, called a block. Block ciphers provide confidentiality of data, by trans-
forming an input message M, that is split in chunks of the block size n, into a
ciphertext C. Due to the simplicity of many block ciphers, they are very flexible
cryptographic building blocks and are used to design many other cryptographic
primitives such as stream ciphers, hash functions, message authentication codes
and authenticated encryption schemes. We can formally define a block cipher as
follows:

Definition 1. Let k,n be two positive integers, then a block cipher E is given by

E(K,M) : Fk2 ×Fn2 → Fn2

(K,M)→ C,
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where K ∈ Fk2 is a key of fixed length k. A block cipher represents a permutation
over Fn2 , where n is the block length of the cipher. The encryption function E takes
a key K and transforms a message M into a ciphertext C. For a fixed key K we can
further define the inverse of the encryption function D = E−1 to be the decryption
function.

In the remainder of this thesis, we will denote the encryption function of block ci-
pher with Ek(·) = E(K, ·) and the decryption function as Dk(·) = D(K, ·) respectively.
To ensure correctness it has to hold that:

∀K ∈ Fk2 ,∀M ∈ Fn2 : DK(EK(M)) =M. (1)

A block cipher should therefore, for a fixed key K be a permutation over Fn2 . Typi-
cal block sizes are n = 64, 128 bits, where 128-bit are considered in a high security
use-cases and 64-bit are normally used in lightweight block ciphers that are im-
plemented in constrained environments. The key lengths typically vary between
k = 64, 80, 96, 128, 192, 256 bits. Recently, the European Excellence in the Area of Cryp-
tology Network ECRYPT-CSA published a report [1] recommending 80-bit security
for legacy standards2, 128-bit for near term protection3 and 256-bit for long term
protection4.
In the design of block ciphers, there are two important concepts that were identified
by Shannon in his seminal paper [308] in 1949. These are the concepts of confusion
and diffusion:

• Confusion: defines that each bit of the ciphertext C should depend on parts
of the secret key K, obscuring the relation between both as much as possible.
This can also be interpreted as any statistical property in the ciphertext should
not depend on the plaintext.

• Diffusion: defines that if a single bit in the plaintext is changed/flipped, then
statistically half of the bits in the ciphertext should change. This can also
be interpreted as that a block cipher should be highly non-linear. So any
statistical property in the plaintext, should not be present in the ciphertext.

Iterated Designs

Most of the modern block ciphers are iterated designs, which means that they apply
an invertible transformation, also called a round function, repeatedly. Each iteration
is refereed to as a round in a block cipher. The concept of a round-based block cipher
can be written as the composition of several rounds:

EK = Fi−1(Ki−1, ·) ◦ · · · ◦ F0(K0, ·), (2)

where Fi(Ki, ·) is the ith round function and Ki is the ith round key. The round
function F has to be a bijection in Fn2 to ensure correctness.
The theoretical concept of an iterated block cipher was first addressed by Even
and Mansour [153] in 1991. Their work was motivated by the DESX construction

2 Legacy standard: Should not be used in new systems
3 Near term protection: Security for at least ten years (2018-2028)
4 Long term protection: Security for thirty to fifty years (2018-2068)
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proposed by Rivest [284] in 1984, in which he improved DES by adding two inde-
pendent pre- and post-whitening keys to the plaintext and ciphertext, respectively.
The Even-Mansour scheme replaced the round function of DES in the middle with
a publicly known permutation, and kept the whitening keys. The resulting scheme
is provable secure and extremely simple. The encryption consists of adding a key
K with XOR to the plaintext, applying a publicly known permutation π and then
adding the key K again via XOR to produce the ciphertext. Figure 3 illustrates the
Even-Mansour construction.

key-alternating ciphers. A further generalisation of the Even-Mansour con-
struction are key-alternating ciphers that iterates the Even-Mansour construction over
multiple rounds. Key-alternating ciphers apply a round function Fi for several
rounds alternating with an application of round keys Ki that is added usually with
XOR. The round keys Ki are generated by a key schedule algorithm, that expands the
key K (also called master key) into several round keys Ki. Formally we can denote
the key schedule algorithm by a function

KS : Fk2 → (Fk2)
i, (3)

K→ (K0,K1, . . . ,Ki−1). (4)

Figure 4 illustrates the construction for key-alternating ciphers. Again, in key-
alternating ciphers extra whitening keys are added in the begin and the end. The
intention of those whitening keys is to restrict control of the inputs/outputs of the
cipher in the first and last rounds, to an adversary. This further helps to increase
the security against i.e., meet-in-the-middle attacks.
It is fairly easy to construct a secure block cipher that is cryptographically secure,
by simply using a large number of rounds. However, a cipher with many rounds
will be inefficient. Modern block ciphers have additional design criteria, includ-
ing performance such as small area, low latency, high throughput, low energy and
power consumption and security against side channel attacks. Furthermore, a ci-
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pher should be easy to analyse, meaning that it should be simple to analyse and
understand, while the security should depend on the cryptographic keys as out-
lined by Kerckhoffs’ principle in Section 2.2.3. This further helps to determine a
recommendation for the number of rounds needed for a block cipher to be secure
against cryptographic attacks as outlined in Section 2.4.
In the following, we are describing the most commonly used design strategies for
block ciphers, including Feistel ciphers, Substitution Permutation Networks and Lai-
Massey Ciphers.

feistel ciphers. A Feistel cipher is a symmetric structure for designing block
ciphers. Feistel ciphers were first published by Feistel and Coppersmith in IBM’s
commercial Lucifer cipher [154], and named after the first author. The most com-
mon Feistel cipher is the Data Encryption Standard (DES), which is based on Lu-
cifer with modifications by the National Security Agency (NSA). A Feistel cipher
is an iterated cipher and an internal function called a round function F. The big
advantage of a Feistel cipher is that encryption and decryption is very similar or
identical in some cases. Thus compared to substitution permutation networks the
round function does not have to be invertible. This allows to reuse the same hard-
ware implementation for both encryption and decryption, and further the round
keys just have to be used reversed. The Feistel construction is well studied. Luby
and Rackoff [234] proved that if the round function in a Feistel cipher is a pseudo-
random function, then three rounds are sufficient to consider a Feistel cipher to be
a pseudorandom permutation.
We can describe the encryption function as follows. The state is typically halved
into two halves of n/2 bits each that are called the left and right halves, that we can
denote as (Xi, Yi). One round consists typically of a round function F that is applied
to one of the two halves of the state, together with a round key Ki. The output is
then combined with XOR to the other half of the state, and finally the two halves are
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swapped. One round of a general Feistel cipher is illustrated in Figure 5a. We can
formally describe the state update of a Feistel cipher as follows:

Xi+1 = Yi ⊕ F(Xi,Ki) (5)

Yi+1 = Xi (6)

Some examples of commonly used Feistel ciphers are FEAL [250], Twofish [303],
Camellia [29], GOST [142], and Simon [46].

substitution permutation networks. Substitution Permutation Networks
(SPN) are a common approach to design a block cipher. The design approach links
cryptographic building blocks together that are specifically selected to fulfil certain
criteria (i.e., confusion, diffusion) as outlined in the work of Shannon. The round
function of an SPN cipher typically consists of the following three building blocks:

• Substitution Layer: In general, a Substitution Box (S-box) takes inputs of m
bits and transforms then into outputs of n bits. S-boxes can simply be im-
plemented as a lookup tables, where the input is then just substituted with a
value in the lookup table. Typically a layer of several smaller S-boxes with 8
bits is used. Lightweight ciphers normally have S-boxes with 4 bits. The aim
of an S-box is to achieve confusion, that is to obscure the relationship between
the key and the ciphertext. This part is normally the only non-linear operation
in a block cipher.

• Permutation Layer: The permutation layer in an SPN is normally applied to
the whole state. The permutation layer aims to diffuse the state, i.e., if one bit
of the plaintext is changed, then statistically half of the bits in the ciphertext
should change. A common approach is to combine two steps. First, the state
bits are permuted by mapping the bits into new positions. Second, a linear
mixing is applied to the state, in which the transformed bits can be noted
as a linear combination of the input bits. The best diffusion properties are
achieved by MDS matrices. Some lightweight designs further use binary ma-
trices (i.e., Skinny [50], Midori [37]) or just use a simple permutation that can
be implemented just by wiring (i.e., Present [95]).

• Key Addition: A round key Ki is mixed into the state, typically by using the
XOR operation.

One round of a general Substitution Permutation Network is illustrated in Fig-
ure 5b.
The most common SPN cipher is the Advanced Encryption Standard (AES) [259].
After some flaws have been published against DES in the 1990s [73, 125, 238], the
National Institute of Standards and Technology (NIST) announced a cryptographic
competition for a new standard in 1997. In 2001, the Rijndael block cipher family,
designed by Daemen and Rijmen was selected as the winner. The AES is a family
of block ciphers consisting of a block size n = 128 and key size of k = 128, 192, 256.
The round function of AES is depicted in Figure 6. At the time of writing, the AES is
the most widespread used block cipher, and it is used in many applications. Several
hardware vendors and chip designers also have dedicated AES implementations in
their chipsets. For example Intel offers hardware optimised implementations in
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their AES New Instructions (AES-NI) [165]. The state in AES is arranged in a 4× 4
matrix, consisting of one byte per entry. The round function of AES consists of four
steps, in the following order:

• SubBytes: Each byte is replaced with another one, according to a lookup table.
This is the only non-linear operation in AES.

• ShiftRows: Each row of the state is cyclically shifted by i = 0, 1, 2, 3 steps.

• MixColumns: Each column is multiplied by an MDS matrix, where the linear
mixing operation combines the four bytes of each column. The MDS matrix is
the following: 

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 .

• AddRoundKey: Each byte is combined with a round key using the XOR opera-
tion.

One round of AES is illustrated in Figure 6.

lai-massey ciphers. The Lai-Massey scheme has first been published by Lai
and Massey in the design of Idea [214]. The design closely follows the principles
of Feistel ciphers, however with a few differences. Similar as in Feistel ciphers, the
round function F does not have to be invertible and the state is split into two words
of n/2 each. However, contrary to Feistel ciphers, the round function is applied to
the difference of both state words. The result of the round function is then added to
both state words. Let F : F

n/2
2 → F

n/2
2 denote the round function, let H : Fn2 → Fn2

denote the half-round function and let K0,K1, . . . ,Kn be the sub-keys for rounds
0, 1, . . . ,n. Let (Xi, Yi) denote the state, which is updated as follows:

(X ′i, Y
′
i) = H(Xi, Yi) (7)

Ti = FKi(X
′
i � Y ′i) (8)

(Xi+1, Yi+1) = (X ′i � Ti, Y ′i � Ti) (9)

One round of a general Lai-Massey scheme is illustrated in Figure 5c.
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Modes of Operation

Block ciphers are a fixed mapping of Fn2 → Fn2 . However, in real-world applications
messages have a length different from the typical block sizes n = 64, 128, i.e., we
want to encrypt arbitrary length messages F∗2 → F∗2. The solution of this problem
are block cipher modes of operation. In a mode, the input message is split into
several chunks of the block size n and if necessary padded to be a multiple of n. In
the following, the most common block cipher modes are described.

electronic codebook (ecb). In Electronic Codebook mode the message is split
into blocks with a block length defined by the underlying block cipher. Each block
is then encrypted separately making the mode fully parallel for both encryption
and decryption, respectively. Formally, we can denote the encryption of a message
block Mi by:

Ci = EK(Mi) (10)

The resulting ciphertext blocks are then concatenated together and form the cipher-
text. Electronic Codebook mode has an obvious disadvantage, as there is no interac-
tion with any of the other plaintext/ciphertext blocks. Identical plaintext blocks are
encrypted to identical ciphertext blocks leaving it vulnerable to any adversary that
searches for patterns in the ciphertexts. It is not recommended to use Electronic
Codebook mode in cryptographic protocols. The mode is illustrated in Figure 7a.

cipher block chaining (cbc). The Cipher Block Chaining mode was invented
by Ehrsam et al. [150] in 1976. The mode splits the message into blocks with a
block length defined by the underlying block cipher. Each block of plaintext is
then combined by XOR with the previous ciphertext block before being feed to the
underlying block cipher. This chaining of blocks makes each ciphertext dependent
on all plaintext blocks that are processed beforehand. The initial chaining value is
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replaced by an initialisation vector. Formally, we can denote the encryption of a
message block Mi by:

C0 = IV (11)

Ci = EK(Mi ⊕Ci−1) (12)

As Cipher Block Chaining depends on all previous plaintexts it is not parallelizable
in encryption direction, however it is fully parallelizable in decryption direction.
Cipher Block Chaining is the most commonly used block cipher mode. The mode
is illustrated in Figure 7b.

cipher feedback (cfb). The Cipher Feedback mode is similar to the Cipher
Block Chaining mode and allows turning a block cipher into a self-synchronizing
stream cipher. Similar as in Cipher Block Chaining mode the message is split into
blocks with a block length defined by the underlying block cipher. The ith cipher-
text block Ci is then calculated by encrypting the previous ciphertext Ci−1 and
combined with the current message block Mi by XOR. Again, each ciphertext is de-
pendent on the previous message blocks. The initial chaining value is replaced by
an initialisation vector. Formally, we can denote the encryption of a message block
Mi by:

C0 = IV (13)

Ci = EK(Ci−1)⊕Mi (14)

Similar as in Cipher Block Chaining mode encryption can not be parallelised, but
it is possible to fully parallelise decryption. The straightforward Cipher Feedback
mode is not self-synchronizing, as it is just possible to detect transmission errors if
a whole block is lost. Losing just a few bits will permanently distort the following
blocks. To turn Cipher Feedback mode into a self-synchronizing stream cipher one
can use a shift register that allows to re-synchronize after x-bits are lost, where x
is the number of bits the shift register is shifting. This is also known as CFB-1 or
CFB-8 [145], according to the size of shifting. The mode is illustrated in Figure 7c.

output feedback (ofb). The Output Feedback mode can be used to turn a
block cipher into a synchronous stream cipher. The message is split into blocks
with a block length defined by the underlying block cipher. A keystream is then
computed by initially taking an initialization vector that is feed to an underlying
block cipher. The output of the block cipher is then always feed as input to the next
block cipher. A ciphertext Ci is computed by combining the message Mi with XOR

to the current output of the keystream. Formally, we can denote the encryption of
a message block Mi by:

C0 = IV (15)

Ci = EK(Ci−1 ⊕Mi−1)⊕Mi (16)

Because of the symmetry of XOR encryption and decryption is the same. Moreover,
as the plaintext/ciphertext is just combined in the final step, the keystream can
be calculated in advance and the XOR with the plaintext/ciphertext can be fully
parallelised. The mode is illustrated in Figure 7d.
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counter (ctr). The Counter mode was published by Diffie and Hellman [133]
in 1979. Like Output Feedback mode it can be used to turn block ciphers into a
stream cipher. The message is split into blocks with a block length defined by the
underlying block cipher. It further uses an initialization vector IV (also called nonce)
that is concatenated with an counter cnt. The counter should not be repeated, and
a simple increment-by-one counter is the most popular. The IV and counter are
then fed to the block cipher and the result is combined with each message block
Mi to generated ciphertext block Ci. For the next block, the counter is incremented
by one. Formally, we can denote the encryption of a message block Mi by:

Ci = EK(IV‖cnt)⊕Mi (17)

Counter mode is deterministic and allows parallelisation for both encryption and
decryption. The mode is illustrated in Figure 7e.

Tweakable Block Ciphers

Tweakable block ciphers have first been published with the Hasty Pudding ci-
pher [304]. Later, Liskov, Rivest and Wagner [227] generalised the concept of tweak-
able block ciphers and suggested to move the randomisation of symmetric primi-
tives at protocol level, usually done with a nonce or an initialization vector, to block
cipher level. A block cipher can be described as a mapping E : {0, 1}k × {0, 1}n →
{0, 1}n, where n is the block size, and k is the key size of the cipher. The block
cipher EK then transforms an n-bit plaintext P to an n-bit ciphertext C = E(K,P)
using a k-bit key. A tweakable block cipher adds another t-bit input T called tweak.
Formally, we can denote this as E : {0, 1}k× {0, 1}t× {0, 1}n → {0, 1}n. The ciphertext
is now generated as C = E(K, T ,P). Similar as for a regular block cipher E(K, ·), a
tweakable block cipher E(K, T , ·) is a permutation for all K, T ∈ {0, 1}k × {0, 1}t. The
tweak as additional input is public and provides a family of unrelated block ciphers.
A comparison of tweakable block ciphers and regular block ciphers is illustrated in
Figure 8.
The application areas of tweakable block ciphers are authenticated encryption modes
(e.g., OCB [288], Deoxys [189]), message authentication codes (e.g., PMAC [86],
OMAC [181]), format-preserving encryption algorithms and disk encryption (e.g.,
XTS).
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We can construct tweakable block ciphers either as dedicated designs, from block ci-
phers or from permutations. Dedicated designs, such as Skinny, Joltik-BC, Deoxys-
BC, can be constructed i.e., using the Tweakey framework. The XE, XEX [287] and
LRW [227] modes allow a designer to turn a block cipher into a tweakable block ci-
pher. Further, Minematsu’s TBC [248] mode allows to use a permutation instead of
a block cipher. In the following, we describe the first two mentioned constructions
in more detail.

the lrw, xex and xe constructions. Liskov, Rivest and Wagner [227] gener-
alised the concept of tweakable block ciphers and proposed a mode that turns block
ciphers into tweakable block ciphers. The LRW construction uses an XOR-universal
hash function h, where the tweak is processed by hk ′(T) = k ′ ⊗ T , where ⊗ rep-
resents a field multiplication. The construction is secure up to the birthday bound.
The LRW construction is illustrated in Figure 9a.
The XE and XEX construction is designed by Rogaway [287] in 2004. Similar to the
LRW construction they are used to turn a block cipher into a tweakable block cipher.
The tweak is obtained through a mask, that is calculated from a few constants α,β,γ
and the encryption of a nonce N. XE and XEX both achieve security up to the
birthday bound. The constructions are illustrated in Figure 9b and Figure 9c.

the tweakey construction. From an efficiency point of view, updating the
tweak in a tweakable block cipher should be very efficient. This implies that the
tweak schedule should be lighter than the key schedule. However, from a security
point of view, the tweak is publicly known and fully controllable by an adversary.
Thus, this implies that the tweak schedule should be at least as strong as the key
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schedule. The Tweakey framework [188] tries to tackle this paradox by considering
tweak = key, or in the notion of the designers tweakey. In the Tweakey framework, the
regular key schedule is replaced by an tweakey schedule, that instead of round keys
generates round tweakeys. An tweakable block cipher using an n-bit key and an
n-bit tweak, has a 2n-bit tweakey. The Tweakey framework has two functions, h is
the tweakey update function that updates the tweakey material round by round in
a linear fashion. The g function is the tweakey extraction function, that extracts the
round tweakeys and compresses the tweakey from 2n-bits to n-bits. The Tweakey

construction is illustrated in Figure 10.
Yet, simply using the same tweak each round for the whole block size decreases
the security [187]. Therefore, the designers of Tweakey proposed the Superposition-
Tweakey (STK) construction. The idea is to separate the tweakey material in several
words and then use the tweakey schedule for one word, and superpose it in a secure
way. To turn the Tweakey framework into the STK construction the tweakey update
function h should consist of the same permutation each round and is followed
by a multiplication of each nibble with a value αk ∈ GF(2c) that is different for
each tweakey word. Moreover, the round tweakey extraction function g consist of
combining each tweakey word by XOR to compress them to n-bit. We give some
detailed insights in the security of the Tweakey framework in Chapter 5.

2.3.2 Stream Ciphers

A stream cipher is a symmetric-key algorithm that combines plaintext bits with a
pseudorandom stream of key bits, also called keystream. In comparison to block
ciphers, that encrypt blocks of fixed length at a time, stream ciphers encrypt single
bits at a time. This is done by considering an arbitrary message of length |M| and
combining it, normally using the XOR operation, with a keystream of the same length
as the message. We can define a stream cipher as follows:

Definition 2. Let k, iv be two positive integers, then a stream cipher S is given by

S(K, IV ,M) : Fk2 ×Fiv2 ×F∗2 → F∗2
(K, IV ,M)→ C,

where K ∈ Fk2 is a key of fixed length k and IV ∈ Fiv2 is an initialisation vector or
seed for the stream cipher of fixed length iv. The stream cipher generates a pseudo-
random keystream that can then be combined with the message M to generate the
ciphertext C.

In general, a stream cipher can be seen as the one-time pad (OTP), or also known
as Vernam cipher. The one-time pad computes the ciphertext C = M⊕ K, where
|C| = |M| = |K|. It was proven to be secure by Shannon in 1949 [308], but its security
requires that the keystream is never repeated, and the keystream is chosen com-
pletely at random. While this is ideal in a theoretical sense, it is usually infeasible
to achieve in a practical application. To circumvent this problem, stream ciphers
generate a pseudorandom keystream from a random seed value, which depends on
the secret key with a convenient key size, such as i.e., 128-bits.
There exist two types of stream ciphers, synchronous and self-synchronising stream
ciphers that can be distinguished by how the keystream is generated. In the former



28 background

Table 2: The final portfolio of the eSTREAM competition.

Profile 1 (software) Profile 2 (hardware)

HC-128 [350] Grain [170]

Rabbit [91] MICKEY [35]

Salsa 20/12 [58] Trivium [129]

SOSEMANUK [56]

one, the keystream is generated independent of the plaintext and ciphertext and is
then combined with the plaintext or ciphertext to encrypt or decrypt, respectively.
In the later one, parts of the ciphertext are used to compute the keystream. This
allows a receiver to synchronise with the keystream generator, allowing for easier
recovery of possible dropped ciphertext bits.
The security of a stream cipher mainly depends on the keystream. The keystream
must have a large period and should be free of any biases that would let an ad-
versary be able to distinguish the output from random. Furthermore, the seed
to generate the keystream should not be reused. It should also be infeasible for
an adversary to recover the internal state or the key of the stream cipher from the
keystream as the adversary otherwise could continue generating its own keystream.
Stream ciphers are often used in applications with an unknown length of the mes-
sage input. The advantage of stream ciphers is that they can encrypt individual
message bits on-the-fly, which can be advantageous in real-time systems. Using a
block cipher smaller messages than the block size need to be padded, resulting in
a huge overhead in both the transmission and padding of the messages. Stream
ciphers are typically used in the security protocols for wireless networks, such as
WEP, WPA and also in TLS.
The most relevant stream ciphers in practical use-cases are ChaCha [59], that will
be used also in TLS 1.3, RC-4 [28] which has been widely used until TLS 1.2 and
A5/1 [104], A5/2 [104] that are used in mobile phone networks. As of September
2011, the European Union’s ECRYPT network announced a portfolio of stream ci-
phers that had been submitted to a stream cipher competition, called eSTREAM.
Those ciphers are split in two use-cases, Profile 1 for software-optimised stream ci-
phers and Profile 2 for hardware-optimised stream ciphers. The eSTREAM portfolio
includes the following algorithms outlined in Table 2.

2.3.3 Cryptographic Hash Functions

A cryptographic hash function maps arbitrary-length input data to a fixed-length
output string, also called hash or digest. It is designed to be an one-way function, that
is, a function which is infeasible to invert. Cryptographic hash functions have many
applications in information-security to provide integrity of data. These include
digital signature, message authentication codes, checksums, storage of passwords,
crypto-currencies, and the generation of pseudo-random numbers. An ideal hash
function achieves the following main properties:
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• Deterministic: the same message should always result in the same hash.

• Efficient: it should be fast to compute the hash for a given message.

• One-way: it should be infeasible to generate the message from a given hash
value.

• Secure: even a small change to the message should result in a complete change
of the hash value, uncorrelated to the old hash value.

• Unique: it should be infeasible to find two messages that result in the same
hash value.

We can formally define a hash function as follows:

Definition 3. Let n be a positive integer, then a cryptographic hash function H is
given by

H(M) : F∗2 → Fn2

M→ τ,

The security of a cryptographic hash function depends on three main properties
defined as follows:

• Collision resistance: It should be infeasible to find two messages m1 and m2
that result in the same hash value, i.e., hash(m1) = hash(m2), where m1 6=
m2. If such a message pair can be found it is called a cryptographic hash
collision. Due to the birthday paradox, collision attacks can occur with a
complexity of 2n/2.

• Pre-image resistance: It should be infeasible to find any message m, that is the
pre-image of a given hash value τ = hash(m). This property relates to the
fact that a hash function should represent an one-way function. Pre-image
resistance is given up to a complexity of 2n.

• Second pre-image resistance: Given an arbitrary message m1, it should be infea-
sible that an adversary can find a different message m2, that results in the
same hash value, i.e., such that hash(m1) = hash(m2) but m1 6= m2. Second
pre-image resistance is given up to a complexity of 2n. Moreover, if a hash
function is collision resistant, this implies that it is also second pre-image re-
sistant. However, this does not hold for pre-image resistance.

The Merkle-Damgård Construction

The Merkle-Damgård construction is a common way to use one-way compression
functions inside a cryptographic hash function. The construction has been indepen-
dently published by Merkle [246] and Damgård [123] in 1989. It is widely used in
the MD-5 [283], SHA-1 [148] and SHA-2 [260] families.
Hash functions process arbitrary length messages into a fixed-length output, also
called digest. The Merkle-Damgård construction splits the message in several blocks
of a fixed block size and then operates on them in sequence feeding the messages
to an one-way compression function. This compression function is either specially
designed, as it is the case for i.e., MD-5, SHA-1 and SHA-2, or it is based on an
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Figure 12: Modes for hash functions based on block ciphers.

underlying block cipher. The last block also has to be length padded, which is cru-
cial to the security of the Merkle-Damgård construction. We can formally define
the functioning of the Merkle-Damgård construction as follows. A compression
function F is applied iteratively to the chaining value Hi, for 1 6 i 6 l+ 1 together
with the message input Mi, to obtain the next chaining value Hi+1. The initial
chaining value H0 = IV is replaced by an initialization vector. In the end, we ob-
tain Hl+1 that is the hash digest of our hash function H. Figure 11 illustrates the
Merkle-Damgård construction.

Constructions from Block Ciphers

One-way compression functions can be build using block ciphers. A block cipher
is a mapping of two fixed-length inputs, i.e., the plaintext and the key, to a fixed-
length output ciphertext. A normal block cipher is just partially valid as a one-way
compression function, as on the one hand, it is hard to find a key that encrypts the
plaintext to the ciphertext but on the other hand, given a ciphertext and a key the
plaintext can be recovered by using the decryption algorithm. Nevertheless, there
are some modes, Davies–Meyer, Matyas–Meyer–Oseas and Miyaguchi–Preneel, that
can be used to turn block ciphers into one-way compression functions.

davies-meyer construction. The construction has been first published by
Winternitz [348, 349] and is attributed to Davies and further it has been published
by Davies and Price [126] where it has been attributed to Meyer. The construction
splits the input message in parts of size κ and feeds the message blocks as key to
an underlying block cipher. The previous hash value Hi−1 is used as plaintext for
the block cipher. The output ciphertext is then XORed with the previous hash value
Hi−1 to create a new hash value Hi. In the initial round, the previous hash value
is replaced by a constant initialisation vector H0. The construction is illustrated in
Figure 12a. We can denote one iteration as:

Hi = Emi(Hi−1)⊕Hi−1, 1 6 i 6 l. (18)
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Figure 13: Sponge construction.

The length of the final hash value τ = Hl is the block size n of the underlying block
cipher. The Davis-Meyer construction has one fixed point, that occurs independent
of the underlying block ciphers. For any message m, one can find a hash value h
such that Em(h)⊕ h = h, by choosing h = E−1m (0). However, so far no practical
attack has been published, based on this fixed point.

matyas-meyer-oseas construction. The construction has first been published
by Matyas, Meyer and Oseas [241] in 1985. It can be seen as the dual to the Davies-
Meyer construction, as it splits the message in blocks and processes them as the
plaintexts to the underlying block cipher. The previous hash value Hi−1 is used
as key to the underlying block cipher. The next hash value Hi is then generated
by combining the output of the block cipher with XOR to the input message block.
In the initial round, the previous hash value is replaced by a constant initialisation
vector H0. The construction is illustrated in Figure 12b. We can denote one iteration
as:

Hi = Eg(Hi−1)(mi)⊕mi, 1 6 i 6 l, (19)

where g : Fn2 → Fκ2 is a function that compresses the previous hash value from
blocksize n to the key size κ of the underlying block cipher.

miyaguchi-preneel construction. The construction has been independently
proposed by Miyaguchi et al. [251] and Preneel et al. [278]. The Miyaguchi-Preneel
construction is an extended variant of the Matyas-Meyer-Oseas construction. Sim-
ilar to Matyas-Meyer-Oseas the message is split in blocks that are processed as
plaintext to the underlying block cipher. The next hash value Hi is generated by
combining the output of the block cipher with XOR to the input message block and
with the previous hash value Hi−1. The construction is illustrated in Figure 12c.
We can denote one iteration as:

Hi = Eg(Hi−1)(mi)⊕Hi−1 ⊕mi, 1 6 i 6 l, (20)

where g : Fn2 → Fκ2 is again a function that compresses the previous hash value
from blocksize n to the key size κ of the underlying block cipher.
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Figure 14: State of Keccak
5

Sponge Construction

The Sponge construction is a function that maps variable-length inputs to variable-
length outputs. It can be seen as a generalisation of both a hash function and a
stream cipher, where the former has a variable-length output and the later has a
variable-length input, respectively. The sponge construction is a simple iterated
construction based on a state memory, that is divided into two sections: the bitrate
r and the capacity c, and further a fixed-length permutation P and a padding rule.
The construction works as follows, as depicted in Figure 13. First, the input message
is padded with a reversible padding rule. Next, the input message is split into
blocks of size r. Then the internal state memory is initialized to zero and the sponge
construction continues in two phases:

• Absorbing Phase: in the absorbing phase, the r-bit input blocks are combined
by XOR to the state memory, interleaved by applications of the permutation P,
over the whole state memory r+ c.

• Squeezing Phase: in the squeezing phase, the first r-bits are returned as output
blocks, while the state memory is still interleaved with applications to the
permutation P.

Note that the capacity is never directly affected by any input or output block in
both the absorbing and squeezing phase.

5 Figure source: https://keccak.team/figures.html

https://keccak.team/figures.html
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Table 3: Instances of Keccak for SHA-3 and SHAKE by NIST.

Instance Digest length Rate r Capacity c
Security Strength

Collision Preimage Second-Preimage

SHA-3-224(M) 224 1152 448 112 224 224

SHA-3-256(M) 256 1088 512 128 256 256

SHA-3-384(M) 384 832 768 192 384 384

SHA-3-512(M) 512 576 1024 256 512 512

SHAKE-128(M, d) d 1344 256 min(d/2, 128) > min(d, 128) min(d, 128)

SHAKE-256(M, d) d 1088 512 min(d/2, 256) > min(d, 256) min(d, 256)

The sponge construction can be used to construct several cryptographic primitives
such as block ciphers, stream ciphers, hash functions, message authentication codes
and authenticated encryption schemes. In the following, we focus on sponge con-
structions when used as hash algorithms. The Secure Hash Algorithm 1 (SHA-1)
and the family of Secure Hash Algorithm 2 (SHA-2) are two commonly used hash
functions based on the Merkle-Damgård construction, that has been standardised
by the National Institute of Standards and Technology (NIST). In 2007, NIST de-
cided that SHA-2 needs to be replaced and organised a public competition [262]
for a new hash standard, SHA-3. The winner of the SHA-3 competition was Kec-
cak [61], which is based on the sponge construction. Keccak uses a block transfor-
mation function f, which is a permutation that uses only the logic operations XOR,
AND and NOT. It is designed for simple implementations in both hardware and soft-
ware. The block transformation function f consists of five steps that operated on the
three-dimensional state, which is organised as a 5× 5×w array, where w = 64-bits
is the word size. The state of Keccak is illustrated in Figure 14. The steps of the
block transformation function f are the following:

• θ: is a linear diffusion step. The parity of each column in a slices is calculated
and added to a neighbouring column in the same and next higher slice.

• ρ: is a linear diffusion step that bitwise rotates the words by a triangular
number.

• π: is a linear diffusion step that permutes the words in a fixed pattern.

• ξ: is the only non-linear function. It is a mapping of degree 2 that operates
on each row of the state independently and can be described as xi ← xi ⊕
(¬yi&zi), where x,y, z are rows of the state.

• ι: is a simple XOR of a round constant RCi to a lane to break symmetries.

NIST defined six instances of Keccak as SHA-3 and SHAKE [261] for different
message lengths M and output lengths d, as denoted in Table 3.

2.3.4 Message Authentication Codes

Message Authentication Codes (MAC) are used to authenticate a message, i.e., to
confirm that the message has not been altered and that the message is indeed from
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the intended sender. The message authentication code therefore produces a tag that
can be sent with the message, and be verified by the receiver. In this context the
message authentication code protects the data integrity of a message and ensures
the authenticity of the sender by allowing a receiver (who is also in possession of the
secret key) to verify that the message was sent by a sender who is also in possession
of the secret key. We can formally define a Message Authentication Code as follows:

Definition 4. Let k,n be two positive integers, then a Message Authentication Code
(MAC) M is given by

MACMK(·) : Fk2 ×F∗2 → Fn2

where K ∈ Fk2 is a key of fixed length k. The Message Authentication Code consists
of three algorithms (M.G, M.S, M.V):

• Key-Generation M.G: generates a key K ∈ Fk2 of length k.

• Signing M.S: generates a tag τ based on the key K and an arbitrary length
message M.

• Verification M.V: returns either

{
accepted if the tag τ is a valid tag,
rejected or ⊥ if the tag τ is not valid,

.

where a valid tag can only be computed by a sender with possession of the secret
key K.

While Message Authentication Codes are similar to cryptographic hash functions
they have different security requirements. For a Message Authentication Code to
be considered secure it must resist any existential forgery under chosen-plaintext
attacks. This can be defined formally in the notation of EUF-CMA according to
Bellare et al. [52].

Definition 5 (EUF-CMA). A Message Authentication Code (MAC) is considered
unforgable if for any efficient adversary A

Pr

 k→M.G(1n),

(x, t)→ AM.S(k,·)(1n), x /∈ Query(AM.S(k,·)(1n))

M.V(k, x, t) = accepted

 = ε (21)

An adversary which makes qm distinct calls to M.S(k, ·), qv distinct calls to M.V(k, ·, t),
runs in time t and wins the game with probability at least ε is called a (t, qm, qv,
ε)-adversary. A MAC is considered (t, qm, qv, ε)-secure if there exists no (t, qm,
qv, ε)-adversary.

Message Authentication Codes are used in various applications. These include
electronic signatures, payment schemes, commitment schemes and many internet
protocols such as TLS/SSH.

Message Authentication Codes from Block Ciphers

Message Authentication Codes can be constructed from other cryptographic primi-
tives, i.e., from block ciphers. In the following, we give an overview of some of the
most relevant constructions.
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Figure 15: Message Authentication Codes from Block Ciphers.

cipher-block-chaining message authentication code (cbc-mac). CBC-
MAC is a MAC that is based on block ciphers in CBC-Mode. The message is en-
crypted by the block cipher in CBC-mode and instead of producing ciphertexts, the
outputs of the block cipher are chained together and are combined with the message
inputs using XOR and then fed as input to the next block cipher. The initialisation
vector is set to zero. The output of the last block cipher call is then used as the tag
τ.
CBC-MAC is secure for fixed-length messages, if the underlying block cipher is
secure [53]. However, for variable-length messages CBC-MAC is insecure. This is
because, if an adversary can construct two message/tag pairs (m, τ) and (m ′, τ ′),
she can generate a new valid message m ′′ = m||(m ′1 ⊕ τ)||m2|| . . . ||m ′n that will
result in tag τ ′. This issue can be resolved by either prepending the length of
the message in the first message block, or if the message length is unknown by
encrypting the last block a second time with a different key, which is also defined as
Encrypt-last-block CBC-MAC (ECBC-MAC). CBC-MAC is illustrated in Figure 15a.

parallelizable message authentication code (pmac). PMAC addresses
the problem that CBC-MAC is inherently serial. Black and Rogaway [86] proposed
PMAC that is fully parallelizable, while it is still as efficient as CBC-MAC in serial
environments. Parallelism is also highly desirable on modern high-end CPUs, as in
dedicated hardware the speed is limited either by the latency or by the amount of
parallelism that can be utilised from the underlying block cipher.
PMAC computes the tag by first combining each message block and a mask with
XOR. The result is then fed to an underlying block cipher and the outputs of the
block cipher are then combined by XOR. Finally, the tag τ is generated by another
application of a block cipher. PMAC is illustrated in Figure 15b.

one-key message authentication code (omac) and cipher-based message
authentication code (cmac). Black and Rogaway [85] initially proposed XCBC,
a variant of CBC-MAC that solves the issues with CBC-MAC. However, the variant
requires three independent keys. Consequently, Iwata and Kurosawa [181] pro-
posed an improvement called One-Key MAC (OMAC), that required just one key.
Iwata and Kurosawa further improved OMAC, and renamed the original proposal
to OMAC2, while the new version was called OMAC1. In 2005, CMAC [182] that
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Figure 16: Message Authentication Codes from Block Ciphers.

is identical to OMAC1 became a recommendation by the National Institute of Stan-
dards and Technology (NIST).
The tag is computed similar as in CBC-MAC. The main differences are that no
initialisation vector is used, and the last block is handled differently. The message
blocks are still chained with the outputs of the previous block cipher. For the last
block mn, a temporary value k0 = Ek(0) is calculated, then two subkeys k1,k2 are
derived. Depending if the last block is a complete block, the last block is either
combined by XOR with k1 or if it is an incomplete block, the block is padded with
10 . . . 02 and then combined by XOR with k2. Finally, the tag value is generated
by applying the XOR of the previous chaining value and the special last block mn
to the underlying block cipher and the l highest bits are used as tag τ. CMAC is
illustrated in Figure 16a.

poly1305. Poly1305 is a message authentication code designed by Bernstein [57]
that is based on the evaluation of a polynomial over a finite field. The advantage
of this approach is that short keys can be used, key generation is fast and the
message authentication can be very efficient. Poly1305 is recommended to be used
in combination with AES and a tag is generated by:

τ = Polyr(m, AESk(n)) (22)

= (((c1r
q + c2r

q−1 + · · ·+ cqr1) mod 2130 − 5) + AESk(n)) mod 2128 (23)

where n is a nonce under the secret key (k, r), and

ci = m[16i− 16] + 28m[16i− 15] + 216m[16i− 14] + · · ·+ 2120m[16i− 1] + 2128

(24)

are integers that are computed from the message m into a polynomial that is then
reduced modulo the prime 2130 − 5 in Poly1305.

chaskey. Mouha et al. [255] published a very efficient message authentication
code that is designed for microcontrollers, called Chaskey. It is intended for ap-
plications that still require a security of 128-bit, but need to be implemented in a
constrained environment that does not allow the use of any standard MAC algo-
rithm.
Chaskey is based on a 128-bit block cipher that uses ARX operations for efficiency.
A MAC tag is computed by first splitting the message in l blocks of 128 bits each.
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The messages are then combined by XOR with the state and interleaved with an
application to a permutation π. The initial state is set to the key K. Furthermore,
the key K is used to derive two subkeys K1 and K2, that are combined with the
state after the message is absorbed into the state. Finally, the tag τ is generated by
truncating the state to t-bits. Chaskey is illustrated in Figure 16b.

Message Authentication Codes from Hash Functions

Message authentication codes can further be constructed by using hash functions.
The most prominent example is HMAC.

hash-based message authentication code (hmac). Hash-based Message
Authentication Code (HMAC) was published by Bellare et al. [51] in 1996. It in-
volves a cryptographic hash function, such as MD-5, SHA-1 or SHA-2, and a secret
key K. The design of HMAC was motivated with the existence of length-extension
attacks [136]. This occurs when a tag is calculated with a hash function by concate-
nation the key and the message τ = H(key||message). With many hash functions
it is possible to append data to the message without knowing the key and one can
then create a valid tag value τ.
HMAC initially derives two subkeys ki, ko from the secret key. Then it calls a hash
function two times, while in the first pass it produces an internal hash derived from
the message and the inner key ki. In the second pass to the hash function, the
internal hash and the outer key ko are used and a final tag τ is produced. Formally,
we can define HMAC as:

HMAC(K,M) = H((K ′ ⊕ opad)||H((K ′ ⊕ ipad)||M)) (25)

where opad = 0x5C5C . . . 5C and ipad = 0x3636 . . . 36 are the outer and inner
padding. HMAC is illustrated in Figure 17.

2.3.5 Authenticated Encryption

Authenticated Encryption (AE) and Authenticated Encryption with Associated Data
(AEAD) are a special form of encryption that simultaneously provides message pri-
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vacy (i.e., confidentiality) and integrity (i.e., data authenticity). The need for AE
schemes emerged when encryption is used in online applications such as TLS/SSL,
where an adversary can intercept and tamper with ciphertexts. Securing such sys-
tems would require the secure combination of cryptographic primitives that provide
confidentiality and authenticity. The simplest way to protect against active adver-
saries is to combine a block cipher that provides confidentiality with a message
authentication code that provides integrity of the data. Yet, the generic composi-
tion, the combination of a confidentiality mode with an authentication mode, may
lead to implementation errors and is often not efficient (i.e., the input stream has
to be processed twice, for the encryption scheme and the message authentication
code). Recently, some practical attacks [110, 332] have confirmed the vulnerability
of these AE schemes. Currently, two block cipher modes are widespread used to
provide authenticated encryption. The TLS 1.2 cipher suite includes Galois/Counter
Mode (GCM) [147] and Counter with CBC-MAC (CCM) [146] using AES as the un-
derlying block cipher. Moreover, in 2013 the Competition for Authenticated Encryption:
Security, Applicability, and Robustness (CAESAR) [60] was announced to overcome the
recent critical attacks and to achieve fast and efficient AE schemes that should be
suitable for widespread adoption.
We can formally define an authenticated encryption scheme with associated data as
follows:

Definition 6. Let κ,η, τ be three positive integers, then an authenticated encryption
scheme with associated data (AEAD) is given by the following three algorithms:

• Key-Derivation AEAD.K: that returns a key K ∈ Fκ2 where K $←− K returns a
randomly sampled key from the keyspace.

• Encryption AEAD.E: is the encryption function which is specified as

E : Fκ2 ×F
η
2 ×F∗2 ×F∗2 → F∗2 ×Fτ2 (26)

(K,N,A,M)→ (C, T), (27)

where K is the secret key, N is an η-bit nonce, A is the associated data of arbi-
trary length, which is authenticated but not encrypted, and M is the message,
again of arbitrary length. The nonce N is a value that must not be repeated for
a fixed key K. The encryption function E produces a ciphertext C of arbitrary
length and a τ-bit tag T .

• Decryption AEAD.D: is the decryption function which is specified as

D : Fκ2 ×F
η
2 ×F∗2 ×F∗2 ×Fτ2 → F∗2 ∪ {⊥} (28)

(K,N,A,C, T)→
{
M, T = T ′

⊥, T 6= T ′
, (29)

where K,N,A,C, T are the same as in the encryption algorithm, and T ′ is the
tag that the verifier computes by the decryption algorithm. If the ⊥ symbol is
returned, the verifier can reject the message as a verification error is detected.
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Constructions for Authenticated Encryption

In the following, we describe three generic compositions of a block cipher and a
message authentication code to construct an AE scheme. These construction can
simply be changed to AEAD schemes by adding an additional associated data A
input, however, for simplicity we ignore the associated data in the following de-
scription.

encrypt-then-mac. In the Encrypt-then-MAC mode, the plaintext is first en-
crypted by a block cipher E to produce the ciphertext. Then the ciphertext is fed to
a message authentication code, and the MAC tag τ is produced. The ciphertext and
the MAC tag are then sent together to the verifier. Formally this can be notated as
following; First, the sender computes the ciphertext C and MAC tag τ:

C||τ = EK(M)||MACK(EK(M)). (30)

The verifier then first computes:

τ ′ =MACK(C). (31)

and checks if τ = τ ′. If the tags match, the verify proceeds to compute

M = DK(C). (32)

to obtain the messageM. Figure 18a illustrates the encryption and tag generation in
Encrypt-then-MAC. Encrypt-then-MAC is used in i.e., IPsec [307] and TLS 1.2 [282].
Bellare and Namprempre [55] proved that Encrypt-then-MAC is the only generic
construction that satisfies all conditions to be considered a secure AE scheme, under
the assumption that the message authentication code achieves strong unforgability.
Encrypt-then-MAC is further highly efficient, as the MAC tag τ can be verified
before decryption. This allows for faster verification, if an adversary attempts to
forge messages, as the ciphertext can be rejected without spending additional effort
on decryption.
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encrypt-and-mac. In the Encrypt-and-MAC mode, the encryption and tag gen-
eration are completely separated. The sender first computes the ciphertext C using
a block cipher E. The MAC tag τ can be computed in parallel using a message
authentication code MAC. The ciphertext C and MAC tag τ are then concatenated
and send to the verifier. Formally this can be notated as following; The ciphertext
and tag are computed by:

C||τ = EK(M)||MACK(M). (33)

and sent to the verifier. The verifier can then compute

M = DK(C) and τ ′ =MACK(M) (34)

and the message M is accepted if and only if the tags match, i.e., τ = τ ′. Fig-
ure 18c illustrates the encryption and tag generation in Encrypt-and-MAC. Encrypt-
and-MAC is used in SSH [233]. The ciphertext is not protected by the message
authentication code and the MAC tag τ ′ can only be verified after decryption of
the ciphertext. Bellare et al. [54] pointed out security issues and fixes for the Binary
Packet Protocol (BPP) in SSH.

mac-then-encrypt. In the MAC-then-Encrypt mode, the MAC tag τ is first
computed by a message authentication code MAC. The message and the tag τ are
then fed to a block cipher E to obtain the ciphertext C. The ciphertext and the
tag are then concatenated and sent to the verifier. Formally this can be notated as
following; First the sender computes the MAC tag τ by

τ =MACK(M) (35)

and then computes the ciphertext C by

C = EK(M||τ) (36)

and sends the concatenation of the ciphertext C and MAC tag τ to the verifier. The
verifier can then decrypt the ciphertext C and check the MAC tag τ ′ by

M ′||τ = DK(C) and τ ′ =MACK(M ′). (37)

The verifier accepts the message M if the MAC tags τ = τ ′ match. Figure 18b illus-
trates the encryption and tag generation in MAC-then-Encrypt. MAC-then-Encrypt
is used widespread in SSL [157], TLS [282] and DTLS [149]. A major drawback in
comparison to Encrypt-then-MAC is that the whole message needs to be decrypted
before the tag can be verified. An adversary can use this i.e., in Denial of Service
(DoS) attacks by flooding the verifier with wrong message/tag pairs. An even more
critical vulnerability is that the tag is part of the plaintext for the block cipher. This
attack is known as padding oracle attacks [332], when the encryption uses a block
cipher in CBC-mode. This attacks have been further exploited in the recent Lucky
Thirteen attack [8] on TLS and DTLS and POODLE [252] on SSL 3.0, that also utilises
a downgrade attack by forcing an server to use SSL 3.0.
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Counter with CBC-MAC (CCM)

CCM was designed by Whiting et al. [347] and is a widely used mode for authenti-
cated encryption. The application of CCM reaches from the IEEE 802.11i standard,
to IPSec [335], TLS 1.2 [296] as well as for Bluetooth Low Energy (i.e., Bluetooth 4.0).
The motivation behind the design of CCM was the submission of OCB mode for
the IEEE 802.11i standard. OCB in comparison to CCM had a patent pending on
the algorithm.
CCM combines the use of counter mode encryption (CTR) with the well-known
CBC-MAC for authentication. The primitives are combined in a MAC-then-Encrypt
style, where first a MAC tag τ is obtained by processing the message with CBC-
MAC, and then the message together with the tag τ are encrypted using counter
mode. Compared to MAC-then-Encrypt, CCM makes use of just one key, for both
the message authentication code and the encryption part. Figure 19 illustrates CCM.
From a performance perspective CCM is two-pass, meaning that the message needs
to be processed by the message authentication code, and then a second time for
the encryption part. Therefore, it lacks performance in comparison to one-pass
modes like GCM or OCB. From a security perspective, Jonsson [191] proved CCM
to be secure up to the birthday bound. Rogaway and Wagner [286] published some
issues of CCM mainly concerning performance, including that CCM is not online,
it disrupts word-alignment, and further CCM can not pre-process static associated
data. Apart from that, no serious security issues are published.

Galois/Counter Mode (GCM)

GCM was designed by McGrew and Viega [243] and is currently the most common
AEAD block cipher mode of operation. It has been widely adopted because of its
efficiency and performance. GCM in general is defined for 128-bit block ciphers, but
it is mostly used in combination with AES-128. GCM is used in many applications
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including TLS 1.2 [296], SSH [178] and IPSec [335]. AES-GCM is further included
in the NSA Suite B Cryptography [263].
GCM uses a block cipher in CTR mode for encryption, and further utilises multipli-
cations by elements of the finite field F2n , specified by an irreducible polynomial.
The counter of the block cipher is initialized by a nonce N and incremented for
each message. The ciphertexts are then obtained by using the CTR mode. The tag
for authentication is computed in a procedure called GHASH. Therefore, the tag
is computed over the associated data and the ciphertexts, that are fed to a polyno-
mial multiplication in the finite field over F2n . The last block is then computed as
T = H⊕ EK(X⊕ (|A|‖|C|)), where T is the final tag, H is a constant, X is the run-
ning polynomial, and |A|, |C| are the length of the associated data and ciphertext.
Figure 20 illustrates GCM.
GCM is ideal for data that is sent in packets, such as in SSH and TLS, because
it has a very low latency and a minimum operation overhead. Moreover, AES-
GCM, as it is used in many applications, achieves very high performance on high-
end CPUs. This is mainly due to hardware acceleration on Intel CPUs, that were
introduced as AES New Instructions (AES-NI) [165]. Due to its widespread use, GCM
has also reached the focus of the cryptographic community and there are many
cryptanalytic results on the security of GCM. Joux [192] showed that one can recover
the hashing key H by using pairs of messages using the same nonce. Saarinen [294]
showed weak keys in GHASH that lead to a hashing key of low degree. Procter
and Cid [279] generalised the previous attacks based on weak keys according to
algebraic properties of the polynomial-based hash function. Abdelraheem et al. [4]
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showed the first universal forger attacks on GCM, that did not require the misuse
of nonces.

Competition for Authenticated Encryption: Security, Applicability, and Robustness
(CAESAR)

In 2013, the CAESAR competition [60] was announced to identify a portfolio of
authenticated ciphers that offer advantages over AES-GCM and should be suitable
for widespread adoption. In March 2014, 57 first round candidates were submitted
to the CAESAR competition. Abed et al. [6] provided a classification and a general
overview of the candidates. Table 4 gives an overview of all first-round candidates.
In this thesis, we particularly focused on a few candidates based on the Tweakey

framework. In the following, we give a more detailed overview for this candidates.
A more interested reader should check the individual papers and design specifica-
tions for more details on other CAESAR candidates.

kiasu. Kiasu is an authenticated encryption scheme designed by Jean et al. [187],
that is based on ad-hoc tweakable AES integrated in two authenticated encryption
modes, COPA [13] and ΘCB3 [211]. The round function is exactly the same as
for AES-128, but with a fixed 64-bit tweak value T added to the first two rows of
each subkey. Kiasu provides 128-bit security (including related-key and related-
tweak attacks). From a performance point of view, the speed overhead compared
to standard AES-128 is minimal. The design benefits from all optimisations of AES
and it is also backwards compatible to AES by setting the tweak to zero. From a
security point of view, Kiasu has not reached a lot of attention and there is just a
little analysis published so far. Kiasu was not selected to continue in the CAESAR
competition after the first round. Dobraunig and List [141] provide impossible
differential and boomerang attacks on eight rounds of Kiasu. Moreover, Dobraunig
et al. [139] published a 7-round square attack on Kiasu.

joltik. Joltik is a family of authenticated encryption schemes designed by Jean
et al. [186], that is based on the STK construction of the Tweakey framework. The
underlying block cipher of Joltik, is a lightweight 64-bit ad-hoc tweakable block
cipher. The design is AES-like using the 4-bit S-box of Piccolo. The linear layer
consists of an involutory MDS matrix with a low decryption overhead. From a
performance point of view, Joltik is very lightweight that can be implemented in
hardware in ≈ 2100 GE. Moreover, Joltik behaves especially well for small mes-
sages. From a security point of view, Joltik has not reached a lot of attention and
there is just a little analysis published so far. Joltik was not selected to continue
in the CAESAR competition after the second round. The best published attack on
Joltik is by Zong et al. [364] that is based on related-tweakey impossible differen-
tials and reaches 10 rounds.

deoxys. Deoxys is an authenticated encryption scheme designed by Jean et al.
[189], that is based on the STK construction of the Tweakey framework. Similar
as in Kiasu, Deoxys also uses exactly the AES round function as an underlying
block cipher. However, in contrast to Kiasu, Deoxys employs a more complex, lin-
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Table 4: Overview of the 1st round CAESAR candidates as classified by Abed et al. [6].
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++AE [281] AES X/X X/X - - -

AES-CMCC [330] AES -/X -/- X X X
AES-COPA [14] AES X/X X/X X X X
AES-CPFB [253] AES X/- X/X X X -

AES-JAMBU [352] AES -/- X/X X - -

AES-OTR [249] AES X/X X/X X X -

AEZ [173] AES [4] X/X -/- X X X
AVALANCHE [10] AES X/X X/X X X -

CBA [175] AES X/X X/X X - -

CLOC [183] AES, Twine -/- X/X X X -

Deoxys6= [189] Deoxys-BC X/X X/X - X -

Deoxys= [189] Deoxys-BC X/X X/X - X X
ELmD [124] AES X/X X/X - X X
iFeed [360] AES X/- X/X X X -

iSCREAM [164] iSCREAM, SPN X/X X/X X - -

Joltik6= [186] Joltik-BC X/X X/X - X -

Joltik= [186] Joltik-BC X/X X/X - X X
Julius-CTR [36] AES X/X -/- X X -

Julius-ECB [36] AES X/X -/- - X X
KIASU 6= [187] AES X/X X/X - X -

KIASU= [187] AES X/X X/X - X X
LAC [359] LBlock X/X X/X - - -

OCB [212] AES X/X X/X - X -

POET [5] AES -/- X/X X X X
SCREAM [164] SCREAM, SPN X/X X/X X - -

SHELL [341] AES X/X X/X - X X
SILC [184] AES, Present, LED -/X X/X X X -

Silver [276] MAES X/X X/X - X -

YAES [103] AES X/X X/X X - -

D
ed

ic
at

ed AES-AEGIS [353] AES X/- X/X X - -

MORUS [177] MORUS -/- X/X X - -

Tiaoxin [265] AES [1] X/X X/X X - -
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continued...
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ACORN [351] ACORN X/X X/X X - -

Enchilada [169] ChaCha, Rijndael X/X X/X X X -

HS1-SIV [210] ChaCha, Poly1305 -/- -/- X X X
Raviyoyla [337] MAGv2 -/- X/X X - -

Sablier [357] Sablier X/X X/X X - -

TriviA-ck [112] Trivium X/X -/- X X -

Wheesht [242] Wheesht -/- X/X X - -

CF-based OMD [115] SHA-2 -/- X/X X X -

Pe
rm

ut
at

io
n

ba
se

d Minalpher [300] Minalpher-P X/X X/X - X X
PAEQ [76] AESQ X/X X/X X X X

Prøst-COPA [195] Prøst X/X X/X X X X
Prøst-OTR [195] Prøst X/X X/X X X -

Artemia [9] JHAE -/- X/X X X -

Sp
on

ge
ba

se
d

Ascon [140] Ascon -/- X/X X X X
ICEPOLE [254] Keccack-like X/X X/X X X -

Ketje [62] Keccack-f -/- X/X X X -

Keyak [63] Keccack-f X/X X/X X X -

NORX [33] NORX X/X X/X X X -

π-cipher [163] π-cipher X/X X/X X - -

PRIMATEs-GIBBON [12] PRIMATE -/- X/X X X -

PRIMATEs-HANUMAN [12] PRIMATE -/- X/X X X -

PRIMATEs-APE [12] PRIMATE -/- X/X - X X
Prøst-APE [195] Prøst -/- X/X - - X
STRIBOB [274] Streebog -/- X/X X X -

ear tweakey schedule, instead of adding the same tweak each round. Deoxys also
benefits from the performance of optimised implementations and hardware acceler-
ation such as the AES-NI instructions. From a performance point of view, Deoxys

achieves good software performance (less than a cycle per byte on recent proces-
sors). It also performs very good with small messages and can be implemented in
hardware with around 4600 GE. From a security point of view, Deoxys has reached
the most attention from all CAESAR candidates based on the Tweakey framework.
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At the time of writing, Deoxys is still a candidate of the CAESAR competition, and
it is considered for a high security use case. Cid et al. [113] published rectangle
attacks, reaching 10 from 14 round for Deoxys-256 and 13 from 16 rounds for De-
oxys-384. Sasaki improved the complexities of the attacks in [298].

2.4 cryptanalysis
Cryptanalysis (from the Greek kryptós meaning hidden, and analýein meaning to
loosen) is the study of information systems and algorithms, in order to find hidden
aspects of the system. In a general sense it is used to breach a cryptographic secu-
rity system to gain access to encrypted data without the knowledge of the secret
key. Essentially, an attacker tries to break one or more of the cryptographic goals
that a secure cryptosystem shall achieve (i.e., confidentiality, authenticity and in-
tegrity). We can distinguish between two forms of cryptanalysis. Firstly, we can
consider mathematical or conventional cryptanalysis which studies the weaknesses of
cryptographic algorithms. Secondly, we can consider implementation attacks or side-
channel attacks that rather than searching for weaknesses in the cryptographic algo-
rithms themself, an attacker tries to exploit weaknesses in the implementation of
algorithms or exploits side-channel information such as power consumption, tim-
ing information, electromagnetic leaks or other side-channel information. In this
thesis, we focus on conventional cryptanalysis.

2.4.1 Adversarial Models and Goals

When talking about attacks and adversaries we can classify the strengths and the
goals of an attacker. This helps us to assess the severity of an successful attack. In
particular, depending on available computational power any cryptosystem can be
broken (i.e., by using brute-force attacks). Therefore, we can also make a distinction
between when an attack is considered a theoretical attack or when we talk about
practical attacks.

Adversarial Models

In the following, we consider several different adversarial models and list them in
order of the strength of their assumption (from weaker to stronger).

• Ciphertext-only attacks: In this scenario, the attacker can obtain only the cipher-
texts C produced by the encryption algorithm EK of a cipher. An attacker can
observe statistical abnormalities in the ciphertexts to attack the cipher. This
scenario can be considered when an attacker is for example able to intercept
an encrypted communication channel and observes some of the ciphertexts.

• Known-plaintext attacks: In this scenario, the attacker is capable of obtaining a
set of plaintext/ciphertext pairs (Pi,Ci), such that Ci = EK(Pi). This scenario
can be considered, when an attacker is for example intercepts ciphertexts but
also gets access to the corresponding plaintexts. An important distinction to
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the following models, in the known-plaintext model, the attacker until now
just has read access.

• Chosen-ciphertext attacks: In this scenario, the attacker is able to obtain a set
of plaintexts Pi such that Pi = DK(Ci) is the decryption of a set of chosen
ciphertexts Ci by the choice of the attacker. This scenario can be considered,
when the attacker has physical access to an encryption device and can query
it with chosen-ciphertext queries.

• Chosen-plaintext attacks: This scenario is the dual to the chosen-ciphertext attack,
such that an attacker can obtain a set of ciphertexts Ci that are the encryption
of a set of chosen plaintexts Ci = EK(Pi). Compared to known-plaintext attacks
the plaintexts are now a choice of the attacker.

• Adaptive Chosen-ciphertext attacks: This scenario is similar to normal chosen-
ciphertext attacks, however, the attacker can now adaptive choose the cipher-
texts Cj depending on the obtained plaintext/ciphertext pairs (Pi,Ci) for
1 6 i 6 j 6 n, in a set of n plaintext/ciphertext pairs (Pi,Ci).

• Adaptive Chosen-plaintext attacks: This scenario is the dual to the adaptive chosen-
ciphertext attacks, however, the attacker can now adaptive choose the plaintexts
Pj depending on the obtained plaintext/ciphertext pairs (Pi,Ci) for 1 6 i 6
j 6 n, in a set of n plaintext/ciphertext pairs (Pi,Ci).

Additionally, to the adversarial model of an attack we can also consider different
models about the secret-key. Again, we list them in order of the strength of their
assumption (from weaker to stronger).

• Secret-key model: This is the most common model and also complies with Ker-
ckhoffs’ principle as outlined in Section 2.2.3 that states that the security of a
cryptographic system should rely on the secrecy of the key-material. In this
model, it is assumed that the attack has no knowledge of the secret-key.

• Related-key model: In this model, an attacker is allowed to analyse the crypto-
graphic primitive not just with one single secret-key K, but rather with a set
of related-keys Ki, where additionally the attacker can choose the relation her-
self. In Chapter 6 we attack the block cipher Skinny with a related-tweakey
impossible differential attack.

• Known-key model: In this model, the attacker is actually allowed to know the
secret-key. The model was initially proposed by Knudsen and Rijmen [203]
to distinguish ciphertext from random with the knowledge of the key. The
aim of this model is to find structural weaknesses in a cipher. While the
keys are known to the attacker, this model does not directly compromise the
confidentiality of a cipher.

• Chosen-key model: This model is similar to the known-key model, however, the
attacker can also choose the key herself. This is an even stronger assumption
in the favour of an attacker.
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Adversarial Goals

When considering cryptographic attacks, we can rank the attacks by severity of the
impact to a cipher. In the following we list the attacks in order of the severity of the
attacks (from weaker to stronger).

• Distinguisher: In a distinguishing attack, an attacker tries to efficiently distin-
guish between a cryptographic primitive and an ideal version of a primitive.
In case of a block cipher, the ideal version of a primitive would be a random
permutation.

• Local deduction: In a local deduction, an attacker is able to determine a sin-
gle plaintext/ciphertext pair (P,C) such that C = EK(P), where neither the
plaintext P or the ciphertext C have been previously been observed by the
attacker.

• Global deduction: In a global deduction, an attacker is able to find a function F
that is functionally equivalent to the encryption algorithm EK, without known
the secret key K.

• Key-recovery: In a key-recovery attack the attacker is able to recover parts, or
the whole secret-key K. If an attacker is able to recover the whole secret-key
we can also talk about a total break.

Complexity Metrics

Evaluating the complexity of an attack is an important step in an cryptographic
attack against a cipher. In general, we want to check if the attack improves upon
simple brute-force attacks. Moreover, many designers claim security of their primi-
tives based on some complexity bounds. To consider an attack valid, the attack has
to improve against brute-force.

• Time: As time complexity we understand the time that is required to perform
the attack. The unit for time in that case is sometimes, however, different from
the normal units such as seconds, minutes, hours and days. As theoretical
attacks often require a complexity of above 264, the unit is often given in CPU
instructions, or evaluations of the encryption function. Furthermore, often we
distinguish between an offline phase, also called pre-computation phase, that is
the time when plaintext/ciphertext pairs are observed, and secondly an online
phase, which is the time were the attack is performed on the obtained data.

• Memory: The memory complexity gives the number of read/write accesses
to a data structure that is used to store data used in the attack. Memory
complexity is normally given in bytes. On a high-end computer a complexity
of 240 bytes (i.e., 1TB) for read/write accesses to a data structure is an upper
limit before the arithmetic calculations could become a bottleneck.

• Data: The data complexity refers to the number of plaintexts, ciphertext or
a combination of both that are used as input data to attack the cryptographic
primitive. For a valid attack, the data complexity is limited to the block size
of the cryptographic primitive. Otherwise, an attacker could just build a so
called full code book containing all plaintext/ciphertext combinations, under
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one key. Therefore, we require that the data complexity is always < 2n for an
n-bit block cipher.

Moreover, we can distinguish between theoretical attacks and practical attacks. For an
attack to be considered practical we can consider several metrics. By considering
time/memory/data complexity we can argue that a time complexity of around 250

computations is acceptable on a modern desktop computer. Moreover, a memory
complexity of 240 which would be equal to approximately 1 Terabyte read/write
accesses to a data structure, and further a data complexity of around 250 which is
equal to 1 Petabyte on input data would be acceptable. If we consider costs as a
measurement metric, we can argue that around 10000 US$6 would be an appropri-
ate limit for an practical attack. Nevertheless, we can also consider more powerful
attackers such as nation-state adversaries or organisations with a much higher bud-
get and access to more powerful computer-clusters. An example for such an attack
could be the first SHA-1 collision [314] that took about 1 year on 110 high-end GPUs
which can be compared to a time complexity of around 263.1 computations.

2.4.2 Differential Cryptanalysis

Differential cryptanalysis is one of the most powerful attack vectors in the analysis
of symmetric-key primitives. It has been firstly published by Biham and Shamir [73]
to analyse DES, and has become one of the prime attack vectors which any mod-
ern symmetric-key primitive has to be resistant against. Most differential attacks
are applied to block ciphers, but they are also applicable to stream ciphers, hash
functions and other symmetric-key primitives. In a nutshell, the idea behind dif-
ferential cryptanalysis is to find pairs of plaintexts and ciphertexts, where a certain
difference between those texts occurs with high probability. The challenge for a
cryptanalyst consists of finding differences with a high probability or to show that
no such difference exists. In a random permutation such difference occurs with
a probability of 2−n, where n is the length of the permutation. In a block cipher
we try to find a difference that occurs with a probability > 2−n to get an efficient
distinguisher. Later, we can use this distinguisher in a key-recovery attack as we
will discuss later in this Section.

Definition 7. Let P,P ′ ∈ Fn2 be two plaintexts of length n. The XOR-difference be-
tween P and P ′ can be defined as

α = P⊕ P ′.

In general, in the analysis of symmetric-key primitives we use XOR-differences. How-
ever, that is not necessarily a strict requirement, and any other difference can be
used (e.g., one might use the difference of modular addition P� P ′). The choice of
the difference mainly depends on with what operation the secret-key is added to the
internal state. More details on the choice of differences can be found in [130, 223].

6 This would allow one to rent [11] approximately 6400 Intel Xeon CPUs with 2.3GHz, 256TB RAM and
3600TB SSD storage for 1 day. Moreover, this would correspond to a time complexity of 252, a memory
complexity of 248 and a data complexity of 251.
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The idea of differential cryptanalysis is to look at pairs of plaintexts (P,P ′) and the
corresponding ciphertexts (C,C ′) and try to find some texts with differences α and
β, where α = P⊕ P ′ and β = C⊕C ′, occurs with a high probability.

Definition 8. Let F be a vectorial Boolean function of the form F : Fn2 → Fn2 . A
differential is a pair of differences (α,β) ∈ Fn2 ×Fn2 , where we call α the input
difference, and β the output difference of the function F.

We further denote a differential (α,β) over F as α F−→ β. Moreover, in an attack
we often encrypt many plaintext pairs (P,P ′) and want them to achieve the desired
input difference α. Therefore, we can denote a pair of plaintexts (P,P ′) as a right
pair, if it fulfils the desired difference, or as a wrong pair if it does not.

Definition 9. The differential probability of a differential (α,β) over a vectorial Boolean
function F is given by

DP(α F−→ β) = Pr
X
(F(X)⊕ F(X⊕α) = β). (38)

where X is a random variable that is uniformly distributed over Fn2 .

For ease of notation we define the weight of a differential as − log2(DP(·)). Any non-
zero differential for a random permutation F$ : Fn2 → Fn2 will have a differential
probability close to 2−n. Therefore one is interested in finding any differential

with DP(α F−→ β) � 2−n. In general, it is computationally infeasible to compute
the exact value of the DP as this would require to exhaustively search through the
whole space of all possible plaintexts. One can use the structure of a block cipher,
to obtain a good approximation of the actual DP with less computational effort by
tracking the differences through the round functions. Virtually all currently used
block ciphers are iterative block ciphers, i.e., they are composed of applying a simple
round function r times

EK(·) = fr(·) ◦ . . . ◦ f1(·). (39)

Definition 10. A differential trail Q is a sequence of differences α F−→ β over several
iterations of a function F

Q = (α1
F1−→ α2

F2−→ . . .
Fr−1−−−→ αr). (40)

Yet, it is still computationally infeasible to compute the exact value of DP(Q) and
the general approach is to assume independence of the rounds. For most designs it
is feasible to compute the exact probability of a differential for a single round.

Definition 11. Let Q be a differential trail over a several iterations of a vectorial
Boolean function F, then the differential trail probability can be defined as

DTP(Q) =

r−1∏
i=1

Pr
X
(αi

fi−→
X
αi+1). (41)

While this assumption of independent rounds is not true in general, it has been
shown to serve as a good approximation in practice [116, 172]. However, if an
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adversary wants to construct a distinguisher, she actually does not care about any
intermediate differences and is only interested in the probability of the differential.
The adversary can therefore collect all differential trails sharing the same input and
output difference to get a better estimate

Pr(α1
E−→ αr) =

∑
α2,...,αr−1

Pr
X
(α1

f1−→
X
α2

f2−−−−→
f1(X)

· · ·αr−1
fr−1−−−−−−−−−−→

fr−1◦...◦f1(X)
αr). (42)

It is often assumed that the probability of the differential is close to the probability
of the best single trail. While this might hold for some ciphers this assumption has
been shown to be inaccurate in several cases and does not hold for many modern
block ciphers [75, 137]. We will show later in Chapter 3 that this assumption fails
particularly often for some recently designed lightweight block ciphers.
We consider two different criteria for a design: differential trail resistant (DTR), which
means that no single differential trail exists with a probability larger than 2−n and
differential resistant (DR) which means that it should be difficult to find a differen-
tial with a probability larger than 2−n. Note that we typically cannot avoid that
there are differentials with DP > 2−n, as if we fix the input difference to α1 then∑
αr 6=0 Pr(α1

E−→ αr) = 1. This implies that there exists at least one differential with
a probability DP > 2−n. In the Wide-Trail Strategy which was used to design the
AES and subsequently many other ciphers, Daemen and Rijmen suggest that it is
a sound design strategy to restrict the probability of difference propagation [120].
Nevertheless, this does not result in a proof for security.
Note that in the definitions so far the influence of the keys was ignored. However,
the DP for a specific differential strongly depends on the choice of the secret key and
it is therefore of interest how this distribution looks like. To solve this problem we
could compute the probabilities of a differential over the whole key space, however
this is again practically infeasible which leads one to use the expected differential
probability.

Definition 12. The expected differential probability of a block cipher Ek of an r-round
differential (α,β), with a key-size of κ-bits is defined as

EDP(α E−→ β) = 2κ
∑
k∈Fκ2

Pr
X
(α

Ek−→
X
β). (43)

Lai et al. [215] showed that for an iterated cipher, if the round function satisfies that
the differential probability is independent of the choice of one of the component
plaintexts under a difference, it can be considered a Markov cipher.

Definition 13 ([215], Def. page 22.). Let EK(·) be an iterated cipher of r rounds.
A Markov cipher can then be defined if it there is a group operation ⊗ for defining
differences such that, for all choices of α and β,

Pr(∆Y = β|∆X = α,X = γ)

is independent of γ, when the key K is drawn uniform at random, i.e., K $←− Fκ2 , or,
equivalently, if

Pr(∆Y = β|∆X = α,X = γ) = Pr(∆Y(1) = β1|∆X = α)
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for all choices of γ when the key K is drawn uniform at random.

Moreover, for a Markov cipher that has independent round-keys, the sequence of
round differences forms a Markov chain.

Definition 14 ([215], Theorem 2, page 22.). If an r-round iterated cipher EK(·) is a
Markov cipher and the r round keys are independent and uniformly random, then

the differential trail Q(α1
E−→ αr) = α1

f1−→
X
α2

f2−−−−→
f1(X)

· · ·αr−1
fr−1−−−−−−−−−−→

fr−1◦...◦f1(X)
αr is a

homogeneous Markov chain.

In order to derive a security proof against differential cryptanalysis often the Hy-
pothesis of Stochastic Equivalence [215] is used which states that for all differentials
Q it holds that for most keys K the differential probability of a trail is close to the
expected differential probability, DPK(Q) ≈ EDP(Q).

Definition 15. Let EK(·) be an iterated cipher of r rounds. The Hypothesis of Stochas-
tic Equivalence states that for all r-round differentials (α,β) it holds that

Pr(α
EK−−→ β) ≈ Pr(α

EK ′−−→ β). (44)

Moreover, this holds for almost all subkey values K ∈ Fκ2 .

In practice this hypothesis does not always hold [107], which we will also see later
in Chapter 3.

Distinguisher

In a cryptographic attack an attacker first tries to find a distinguisher for the cryp-
tographic primitive and then to mount a key-recovery based on the distinguisher.
Let’s focus now on a block cipher E, and let (α,β) be a differential of E with a
probability DPE(α,β). For a valid attack, we require that the DPE(α,β) of the dis-
tinguisher is� 2−n, as the DP of a random permutation is 2n.
We can then consider an oracle O, that the attacker can interact with. The attacker
can query the oracle with either plaintexts or ciphertexts, depending on the attack
model as defined in Section 2.4.1, and gets the corresponding outputs. The oracle
then either returns the output of the block cipher E or the output of a random per-
mutation π. The goal of the attacker then is to distinguish if the output originated
from the block cipher or the random permutation. In the case of differential crypt-
analysis, the attacker can therefore query the oracle O with a pair of inputs P,P⊕α,
where α is the input difference. If the oracle then returns two ciphertexts (C,C ′)
where C ′ = C⊕ β, and β is the output difference, then the attacker knows with a
high probability that (C,C ′) = O(P),O(P ⊕ α) and the oracle returned the output
of the block cipher E. If any other output difference is returned, then with a high
probability the oracle O returned an output of the random permutation π.
Finding differential distinguishers efficiently is a hard problem. However, there are
many automated tools that help with the search for various cryptographic primi-
tives. Mouha et al. [257] used Mixed Integer Linear Programming (MILP) to count
active S-boxes and to compute provable bounds. Furthermore, there have been a
few approaches of using automated tools to find optimal trails, and to collect many
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Figure 21: Example of an r-round key-recovery attack based on an (r− 1)-round differential
distinguisher.

trails with the same input/output differences. This idea was first introduced by
Sun et al. [317] who used MILP. Likewise, tools using SAT/SMT solvers are used
where the results were applied to Salsa-20 [256], Norx [32], and Simon [206]. Chap-
ter 3 gives more details about the search for optimal differential trails based on a
SAT/SMT-based tool.

Key-Recovery Attacks

Let EK[r] be an r-round key-alternating block cipher, with a secret key K ∈ Fκ2 con-
sisting of an invertible round function f, so that the ciphertext Ci can be expressed
as Ci = f(xi)⊕ k∗r , where xi denotes the state at (r− 1) rounds and k∗r is the actual
final rth round subkey. In a key-recovery attack, we use an r− 1 round differential
(α,β) with a differential probability DPE(α,β)� 2−n, where n is the block size of
EK[r]. In the following, we describe an r-round attack on the block cipher EK[r].
Let’s assume we found an (r− 1)-round differential (α,β) for the block cipher EK[r],
with high differential probability, as outlined in Figure 21. We can turn the (r− 1)-
round differential into a key-recovery attack on r-rounds.

attack steps. We assume a chosen-plaintext attack (CPA) scenario, where the at-
tacker is able to obtainN ciphertext pairs (Ci,C ′i), that correspond to the encryption
of N chosen plaintext pairs (Pi,P ′i) under a key K ∈ Fκ2 and 1 6 i 6 N.
The attack consists of the following steps:

1. Initialise a list K of 2κ key counters and set them all to zero, for each possible
guess of key kr.

2. For each of the 2κ guesses of kr:

2.1 Decrypt both ciphertexts (Ci,C ′i) for one round, i.e., for i = 1, . . . ,N
compute v = f−1(Ci ⊕ kr) and v ′ = f−1(C ′i ⊕ kr).

2.2 Increase the key counter in K, at the position of kr for each pair that
satisfies (v⊕ v ′) = β.

3. Output the key candidate in K in descending order of their corresponding
counters.
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Figure 22: (Left:) A correct key-guess decrypts one round to the end of the differential dis-
tinguisher, (Right:) A wrong key-guess randomizes the state by encrypting one
more round with a random-key (i.e., the wrong key) value.

A differential (α,β) is assumed to have a differential probability p, for a correct
key. Therefore, the expected key counter for the key candidate is Np, where N
denotes the number of chosen-plaintexts. Statistically, we will also get false-positive
candidates, and let’s denote by p ′ the probability of a right pair, with a wrong key
k ′r 6= kr, for which the key counter is also Np ′. Yet, assuming that the attacker
found a differential with high probability, we expect that p� p ′ and the counter for
a correct key guess is significantly higher then the one for wrong key guesses. This
assumption is based on the fact that for wrong pairs, we assume that the counters of
the key candidates are distributed uniform at random. This is also characterised in
the hypothesis of wrong-key randomisation. Basically, we can further say that a correct
key guess decrypts one round to the state of round r− 1 as illustrated in Figure 22.
However, a wrong key guess would randomise the state by encrypting for another
round with the wrongly guessed key candidate, as depicted in Figure 22.

complexity estimation and correctness. The success probability of a dif-
ferential attack can be quantified with the signal-to-noise ratio. We can call the event
that a right pair suggests the correct key value a signal, while we call a false-positive
pair that suggests a wrong key value as noise. For a successful attack the signal-to-
noise ratio has to diverge from 1. To achieve a good ratio, an attacker therefore has
to increase the number of chosen-text pairs, which we can quantify by c/DPE(α,β)
pairs (Pi,P ′i) that follow the differential (α,β), and c denotes a small constant.
We can then estimate the data complexity of the key-recovery attack by c/DPE(α,β)
chosen-text pairs. The time complexity is then dependent on this number of chosen-
texts and any additional computational overhead. The memory complexity stems
from the number of potential key-counters one has to store. To improve either time
or memory complexity, time-memory trade-off techniques [171] can be used.

2.4.3 Variants of Differential Cryptanalysis

Since differential cryptanalysis has firstly been published, many different variants
have been developed. These variants simplify parts of the analysis and therefore
often lower the attack complexities or allow to find distinguishers for a larger num-
ber of rounds. In the following, we are going to describe some of the more popular
variants of differential cryptanalysis, including: higher-order differentials, truncated
differentials, impossible differentials and boomerang/rectangle attacks.
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Higher-order Differential Cryptanalysis

Higher-order differential cryptanalysis is a generalisation of differential cryptanal-
ysis. While standard differential cryptanalysis uses differences between two mes-
sages, either plaintexts or ciphertexts, in higher-order differential cryptanalysis the
propagation of a set of differences in a larger set of messages is used. Lai [213] firstly
showed that differentials can be seen as a special case of higher order derivates. Let
F : Fn2 → Fn2 be a block cipher that maps n-bit strings to n-bit strings, for a fixed
key K. Then in standard differential cryptanalysis we are interested in finding a
pair of messages with an input difference α that results in an output difference β
such that

F(x⊕α)⊕ F(x) = β
holds for many messages x ∈ Fn2 . However, we can also describe this differential
equation as

∆αF(x) = F(x⊕α)⊕ F(x),
where ∆αF(·) denotes the first-order derivation of F at a point α. Moreover, we can
then define the dth-order derivative recursively as

∆
(d)
α1,...,αdF(x) = ∆αd(∆

(d−1)
α1,...,αd−1F(x)).

Based on this observation, Knudsen [201] was able to show that the concept of
higher order derivatives can be used in attacks against block ciphers. In general,
this works by considering a block cipher as a Boolean function and the fact that
taking the derivative of a function decreases the algebraic degree of the function.
Therefore, if we consider a block cipher EK that has an algebraic degree of d, then
the (d+ 1)th order derivative of EK is zero, for any given input x ∈ Fn2 . We will
further describe this zero-sum property in Section 2.4.6, when we describe integral
attacks.
While many modern block ciphers ensure that the algebraic degree is growing fast
enough, so the set of messages required, exceeds the data complexity there is one
published attack by Jakobsen and Knudsen [185] breaking the KN-cipher [273],
which was designed to be resistant against standard differential cryptanalysis, but
can be broken using higher order differential attacks.

Truncated Differential Cryptanalysis

Truncated Differentials were firstly introduced by Knudsen [201] in 1994. It is a
generalisation of standard differential cryptanalysis. In comparison to standard
cryptanalysis, that analyses full differences between two messages over a word or
the whole blocksize, in truncated differential cryptanalysis differences are just par-
tially determined, while leaving parts of the difference unspecified. We can formally
define a truncated differential as:

Definition 16. Let α be an t-bit truncated difference, where α ∈ {0, 1, ∗}t. In this bit-
wise notation 1 denotes that there is a difference, 0 denotes there is no difference,
and ∗ is a wildcard that indicates either a 0 or a 1.

For example, given a truncated difference α = 0*1, with 3-bit, then this would allow
differences α = 001, 011.
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Figure 23: (Left): Differential probabilities using standard differential cryptanalysis, (Right):
Differential probability using truncated differentials.

The advantage of using truncated differentials becomes distinct when looking at the
differential probability of a truncated differential. In general, truncated differentials
are a more flexible approach to express expected differences between two texts. In
the following, lets consider the differential transition of a difference through a S-
box S. Then for example an input difference α = 0001 results in output differences
β1 = 1000 with probability 3/16, β2 = 1110 with probability 3/16, β3 = 1101 with
probability 5/16, β3 = 1001 with probability 5/16 and to all other possible output
differences with probability 0. Then instead of considering just a fixed differential,

i.e., α S−→ β2 with probability 5/16, we can also consider the truncated difference

γ = 1*** where the differential α S−→ γ results in a probability 1. Figure 23 further
illustrates the improved differential probability if we consider a truncated differen-
tial γ = 1*** instead of standard differential cryptanalysis.
Truncated differentials have been used to improve many attacks [194, 202, 204].
Moreover, in Chapter 7 we show a truncated differential attack on a round-reduced
version of the block cipher Sparx.

Impossible Differentials

Impossible differential attacks have been introduced independently by Biham et al.
[69, 70] and Knudsen [200], and they are widely used as an important cryptana-
lytic technique. It is a special form of standard differential cryptanalysis. While in
standard differential cryptanalysis an attacker is interested in finding a differential
with a probability higher than the expected probability of a random permutation,
in impossible differential cryptanalysis the attacker tries to find an impossible dif-
ferential, meaning the probability should be exactly zero. We can formally define
an impossible differential by

Definition 17. Let F : Fn2 → Fn2 be a Boolean function, and let (α,β) ∈ Fn2 ×Fn2 be a
differential. The differential (α,β) is called an impossible differential if the differential
probability DP(α,β) = 0.
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We can find impossible differentials by considering a differential (α,β) that covers
a few rounds in encryption direction, and a second differential (γ, δ) that covers
a few rounds in decryption direction. We require that both differentials have a
probability DP(α,β) = DP(γ, δ) = 1 and we choose the differences in such way that
β 6= γ contradicts at at least one bit. Then, when considering the differential (α, δ)
the probability is exactly zero which would then be an impossible differential.
For a key-recovery attack we can add rounds before and/or after the impossible
differential. An attacker can then collect pairs with certain plaintext and ciphertext
differences. If there exists a pair that meets the input and output values of the
impossible differential under some subkey, these subkeys must be wrong, as the
differential has probability zero. In this way, we filter as many wrong keys as
possible and exhaustively search through the rest of the key-candidates.
In Chapter 6 we show an related-key impossible differential attack on a round-
reduced version of the block cipher Skinny.

Boomerang Attacks

Boomerang attacks, as proposed by Wagner [338], allow an attacker to concatenate
two short differentials with high probability when long differentials with sufficient
probability are absent or hard to find. In the basic setting, an adversary decomposes
an encryption function E : {0, 1}k× {0, 1}n → {0, 1}n into two sub-ciphers E = E2 ◦E1,

such that E(P) def
= E2(E1(P)). Then, it considers a first differential α → β with

probability p over E1 and a second differential γ → δ with probability q over E2.
These are often called upper and lower differentials or trails, respectively. They can
then be combined in a chosen-plaintext and adaptive chosen-ciphertext attack to
construct a boomerang distinguisher that consists of the following steps:

1. Choose a plaintext pair (P,P ′) with difference α = P ⊕ P ′ and encrypt it
through E to obtain its ciphertext pair (C,C ′) with difference β.

2. Derive D = C⊕ δ and D ′ = C ′⊕ δ (the δ-shift) and decrypt D and D ′ through
E−1 to obtain the corresponding plaintext pair (Q,Q ′).

3. If the plaintext pair (Q,Q ′) has difference α = Q⊕Q ′, then (P,P ′,Q,Q ′) form
a correct quartet.

Proposition 1. For a quartet (P,P ′,Q,Q ′), there exists a differential with an input
difference α for P ′ = P ⊕ α, Q ′ = Q⊕ α, and a corresponding output difference
β for U ′ = U ⊕ β, V ′ = V ⊕ β with probability p. If we consider a differential
δ → γ with input difference D = C⊕ δ, D ′ = C ′ ⊕ δ and a corresponding output
difference γ for V = U⊕ γ, it holds with probability q that V ′ = U ′ ⊕ γ. Then, we
can connect both differentials if we consider V = U⊕γ, it follows that V ′ = V ⊕β =

(U⊕ γ)⊕β = (U⊕β)⊕ γ = U ′ ⊕ γ.

A boomerang distinguisher is outlined in Figure 24. Calculating the probabilities
for a correct quartet requires to consider both plaintext pairs (P,P ′) and (Q,Q ′)
and results in a probability of (pq)2. In the attack published by Wagner [338], the
probability of the boomerang distinguisher is asserted as

Pr[E−1(E(x⊕α)⊕ δ)⊕ E−1(E(x)⊕ δ) = α] = (pq)2.



58 background

P P ′

E1 E1

E2 E2

C C ′

Q Q′

E1 E1

E2 E2

D D′

α

α

δ δ

β

β

γ γ

E

E1

E2

Figure 24: Boomerang distinguisher.

The initial assumption for boomerang attacks was that the two differential trails for
E1 and E2 can be chosen independently. However, Murphy [258] showed that for
SPN ciphers, independently chosen differential trails can be incompatible, mean-
ing that the probability of a right quartet can be zero. Therefore, for a successful
boomerang attack, the rounds in the middle construction have to be verified for
correctness. This further lead to the development of the sandwich attack [144].
Moreover, the probability of a correct quartet can be improved if one fixes input
differences α and δ but allows all possible differences for β and γ, with the only
requirement that β 6= γ. A boomerang distinguisher would then consider all trails
of the form α→ β ′ for the upper trail and δ→ γ ′ for the lower trail. This increases

the probability to (p̂q̂)2 where p̂ =
√∑

β ′ Pr2 [α→ β ′] and q̂ =
√∑

γ ′ Pr2 [δ→ γ ′]

where p̂ is evaluated over E1 and q̂ over E−12 , respectively.

connecting boomerang trails. There exist a few approaches to increase the
transitional probability of boomerang trails in the middle, i.e., in the switching
phase between top and bottom trail. Three well-established approaches are the
Feistel switch, ladder switch and S-box switch [77]. Recently, Cid et al.[114] proposed
a tool called Boomerang Connectivity Table that calculates the probabilities for the
connecting round in the middle.
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Rectangle Attacks

In boomerang attacks, the adversary needs to query its oracles with chosen plain-
texts and adaptively chosen ciphertexts. One can turn a boomerang attack into a en-
tirely chosen-plaintext attack by considering Rectangle attacks. Rectangle attacks [71]
have been derived from the amplified boomerang [197], both of which transform the
boomerang into a purely chosen-plaintext attack (or chosen-ciphertext, if the adver-
sary starts from the opposite direction). The core idea is to encrypt many pairs
(P,P ′) with difference P ′⊕ P = α in the hope that some of those will form a quartet
with the desired differences in the middle with probability 2−n. Given N plaintext
pairs, the number of correct quartets is reduced to N2 · 2−n · (p̂q̂)2. Note that two
pairs (U,U ′) and (V ,V ′) can be combined in two distinct ways to a quartet in the
middle: U⊕ V = U ′ ⊕ V ′ = β or U⊕U ′ = V ⊕ V ′ = β. [72] presented further
improvements to the technique. The disadvantages of rectangle compared to boo-
merang attacks are the increased data complexity and the large number of potential
quartets that have to be filtered to find correct quartets.

2.4.4 Linear Cryptanalysis

Linear cryptanalysis is based on finding linear approximations to the partly non-
linear behaviour of the components of a cipher. It is together with differential
cryptanalysis one of the most widely used tools in the analysis of block ciphers.
Linear cryptanalysis was initially discovered by Matsui and Yamagishi [240], who
applied the attack against the FEAL cipher in 1992. Subsequently, Matsui [238] ap-
plied the attack on the DES block cipher. While differential cryptanalysis works
as a chosen-plaintext attack, linear cryptanalysis is considered a known-plaintext
attack. Moreover, differential cryptanalysis considers pairs of plaintext and cipher-
texts, while in linear cryptanalysis we just consider plaintexts and ciphertexts but
not in pairs. In a nutshell, in linear cryptanalysis we try to approximate a linear
Boolean function of the output of the block cipher EK(x) by a linear function of the
input x. Therefore, an attacker searches for a pair of input and output masks α,γ
such that the bias of the linear approximation

〈γ,EK(x)〉 ≈ 〈α, x〉

becomes large. We can define the bias εEK(α,γ) by

Pr
X
[〈γ,EK(x)〉 = 〈α, x〉] = 1

2
+ εEK(α,γ).

Definition 18. Let a linear mask be a value α ∈ Fn2 . We can define a bit that is 1
in a mask as an active bit. Moreover, we use a mask to select/partition bits from
an n-bit value X ∈ Fn2 . We can then use the linear mask α = αn−1|| . . . ||α0 to select
certain bits at the positions with active bits from the value X = Xn−1|| . . . ||X0, where
the parity of the masked bits is computed by

〈α,X〉 =
n−1⊕
i=0

αiXi.
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In comparison to differential cryptanalysis, a linear mask can be compared to a dif-
ference.

Definition 19. Let f : Fn2 → Fm2 be a vectorial Boolean function. If we evaluate this
function at positions α ∈ Fn2 and γ ∈ Fm2 , where α is the input mask and γ is the
output mask of the function f, we can define the Fourier coefficient as

f̂(α,γ) =
∑
x∈Fn2

(−1)〈α,x〉+〈γ,f(x)〉.

The Fourier coefficient of a block cipher EK can be used to approximate the bias
of a linear approximation. However, it is often more convenient to work with the
correlation cEK(α,γ) = 2εEK(α,γ). We can then define the Fourier coefficient of a
block cipher as

ÊK(α,γ) = 2ncEK(α,γ) = 2n+1εEK(α,γ).

Yet, it is still computationally infeasible to compute the (exact) Fourier coefficient of
a block cipher, we make use of the fact that nearly every block cipher is round based.
Therefore we can calculate the linear trail of a block cipher, that is in comparison to
differential cryptanalysis, the same as a differential trail.

Definition 20. Let Fr : Fn2 → Fn2 denote a vectorial Boolean function, and let F =

Fr−1 ◦ · · · ◦ F0. We can then define a tuple of the form

(α0, . . . ,αr) ∈ (Fn2 )
(r+1)

as a linear trail, for the function F. Moreover, we refer to α0 as input mask, and to αr
as output mask, respectively. Furthermore, we can call the masks αi for 0 < i < r
intermediate masks.

When using a linear trail in a distinguishing or key-recovery attack, we are interested
in the probability that such a linear approximation holds. Therefore, we can define
the linear trail correlation.

Definition 21. Let Fr : Fn2 → Fn2 denote a vectorial Boolean function, and let F =

Fr−1 ◦ · · · ◦ F0. Moreover, let (α0, . . . ,αr) denote a r-round linear trail over F. We
can then denote the linear trail correlation for i = 0, . . . , r− 1 rounds over Fr by

CorrFr(α0,αr) = 2 · Pr
X
[〈X,αi〉 = 〈Fi(X),αi+1〉] − 1,

where the probability is taken over X ∈ Fn2 . Moreover, when we consider Fi as the
round function of an iterated block cipher EK the probability is also taken over the
round keys.

Matsui [238] derived the linear trail correlation in his attacks against DES with a
method called the piling-up lemma, where he assumes that the linear approximations
of different rounds behave as independent Boolean random variables. We can then
write the combined linear trail correlation over F as

CorrF(α0, . . . ,αr) =
r−1∏
i=0

CorrFi(αi,αi+1).
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Later, Nyberg [271] introduced the concept of linear hulls that are important tools to
understand how the correlation is composed. Moreover, Nyberg also showed that
Matsui in his attack against DES, actually also used linear hulls and not just single
linear trails. This has also been shown for iterated block ciphers, with the concept of
correlation matrices [117]. In comparison to differential cryptanalysis, we can think
of linear hulls as the same concept as differentials. With linear hulls Nyberg basically
showed that the Fourier coefficient of a block cipher EK(x) = F(x,k) corresponds to
the signed sum of the Fourier coefficients of a Boolean function F : Fn2 ×Fm2 → Fn2 ,
with an m-bit key k, over all possible masks for the key-input, i.e.,

2mÊK(α,γ) =
∑
β∈Fm2

(−1)〈β,k〉F̂((α,β),γ)

Definition 22. Let α0 and αr be linear masks over a Boolean function F. We can
define a linear hull, with α0 as input mask and αr as output mask, as a set Lr(α0,αr)
that consists of the input mask α0 and the output mask αr, but with intermediate
masks that can take any value.

For a linear attack, we are then further interested in the correlation of the linear hull
over a block cipher E.

Definition 23. Let Lr(α0,αr) denote a linear hull as a set with α0 as input mask and
αr as output mask, and let Q be the linear trail. We can denote CorrQ = |CorrKQ|

the correlation for the linear trail for any key, and sign(Q) is a sign bit indicating
the sign of CorrKQ for the all-zero expanded key. We can then denote the correlation
for a linear hull as

CorrKα0,αr =
∑

q0=α0,qr=αr

(−1)Q·K
′⊕sign(Q)CorrQ.

The correlation of linear hulls is highly dependent on the keys, which is further
discussed in [90, 98, 209].
In a linear attack, an attacker is generally interested in determining a linear hull
(α,γ) that maximizes the absolute correlation |CorrE(Lr(α,γ))|. Similar as with
differential cryptanalysis, there are some automated tools that can help an attacker
with the search for optimal linear hulls such as [138, 317].

Distinguisher

Similar as in differential cryptanalysis, we can use linear trails for distinguishing
attacks and based on that distinguisher we can mount key-recovery attacks. Lets
again consider the scenario were an attacker interacts with an oracle O by providing
queries with inputs and requesting an output from the oracle. The oracle O returns
either the output of a block cipher EK with a fixed key K, or returns the output
of an ideal permutation π, whose outputs are sample uniform at random. The
goal of the attacker is to distinguish if she is interacting with the block cipher E or
with the random permutation π. The attacker therefore initializes two counters T0
and T1 to zero, and sends a plaintext Pi to the oracle. Then the attacker computes
〈Pi,α〉⊕ 〈Ci,γ〉 and if the output is zero she increase T0, otherwise T1. If the output
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Figure 25: Example of an r-round key-recovery attack based on an (r− 1)-round linear dis-
tinguisher.

comes from the ideal permutation π, we can expect that both T0 and T1 have values
close to N/2, where N is the number of queries. However, if one of the counters is
close to 1/2N(CorrE + 1) we assume the output stems from the block cipher EK.

Key-Recovery Attacks

Let EK[r] be a r-round key-alternating block cipher, with a secret-key K ∈ Fκ2 con-
sisting of an invertible round function f, so that the ciphertext Ci can be expressed
as Ci = f(xi)⊕ k∗r , where xi denotes the state at (r− 1) rounds and k∗r is the actual
final rth round subkey. In a key-recovery attack, we use a r− 1 round linear hull
Lr(α,β) with a high absolute correlation |CorrE(Lr(α,β))|. In the following, we
describe an r-round attack on the block cipher EK[r].
Let’s assume we found a (r− 1)-round linear hull (α,β) for the block cipher EK[r],
with high absolute correlation, as outlined in Figure 25. We can turn the (r− 1)-
round linear hull into a key-recovery attack on r-rounds.

attack steps. We assume a known-plaintext attack (KPA) scenario, where the at-
tacker is able to obtain N ciphertexts Ci, that correspond to the encryption of N
plaintext pairs Pi under a key K ∈ Fκ2 and 1 6 i 6 N.
The attack consists of the following steps:

1. Initialize two lists Kr,0,Kr,1 of 2κ key counters and set them all to zero, for
each possible guess of key kr.

2. For each of the 2κ guesses of kr:

2.1 Decrypt each ciphertext Ci for one round, i.e., for i = 1, . . . ,N and com-
pute v = f−1(Ci ⊕ kr).

2.2 Compute 〈Pi,α〉 ⊕ 〈v,β〉. If it equals zero, then increase the key counter
in list Kr,0, otherwise increase the counter in Kr,1.

3. Output the key candidate k ′ = max{Kr,0,Kr,1}.

Similar as in the differential cryptanalysis case, we can assume that for a wrong
key guess, the distribution of the counters Kr,0,Kr,1 will be uniform at N/2, where
N is the number of plaintexts queried to the oracle O. By repeating the attack for
many plaintext/ciphertext pairs (Pi,Ci), either one of the key counters Kr,0,Kr,1
will significantly derivate from N/2 allowing an attacker to uniquely identify the
correct key.
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2.4.5 Variants of Linear Cryptanalysis

Compared to differential cryptanalysis, there are not that many variants for linear
cryptanalysis. One variant of linear cryptanalysis was proposed by Kaliski and Rob-
shaw [193], that suggested to use multiple linear approximations for the same key bits.
This allows an attacker to reduce the data complexity of an attack, as with each
linear approximation we can get more suggested bits for the key-candidates. More-
over, as a counterpart of impossible differentials, Bogdanov and Rijmen introduced
zero-correlation linear attacks [97], which we are going to explain in more details in
the following.

Zero-Correlation Attacks

Zero-correlation linear cryptanalysis was introduced by Bogdanov and Rijmen [97]
in 2014. Let α and β be the linear mask for the plaintext and ciphertext, then
zero-correlations exploits the pair (α,β) with correlation exactly zero.

Definition 24. Let F : Fn2 → Fn2 be a Boolean function, and let α,β ∈ Fn2 be two
linear masks. Moreover, let Lr(α,β) be the linear hull, that is spanned by using α
as the input mask and β as output mask. We say that the linear hull Lr(α,β) has
zero-correlation, if the correlation of the linear hull Lr(α,β) is exactly zero.

One clear drawback of basic zero-correlation linear cryptanalysis is its huge data
complexity. In order to detect that the correlation is exactly zero, it is a priori
necessary to encrypt (almost) every possible message. Later, the data complexity
was reduced by exploiting multiple or multidimensional zero-correlation linear ap-
proximations [96, 99]. When there are ` zero-correlation linear approximations for
an n-bit block cipher, the required data complexity can be roughly estimated as
O(2n/

√
`). Nevertheless, zero-correlation attacks have been successfully applied to

many ciphers, such as [329] on round-reduced Sparx, [93] on round-reduced ver-
sions of Camellia and Clefia and [295] against round-reduced Skinny.
The main technique to derive zero-correlation linear approximations is very similar
to deriving impossible differentials, that is a miss-in-the-middle approach. In a
nutshell, starting with a given input and output mask, one propagates the input
mask forward and the output mask backwards through the encryption (respectively
decryption) process. This propagation usually does not capture all linear trails with
non-zero correlation in both direction exactly as this might easily get very difficult
to handle, but rather captures an easy to describe super-set of all those trails. The
fact that the linear approximation is then derived by deducing that those supersets
of forward and backward linear trails have an empty intersection. As an illustration,
we recall the well known zero-correlation hull on 4 rounds of the AES [97]. Here,
all bytes of the input mask are non-zero except for one diagonal, and the output
linear mask is non-zero for only one byte. This then causes a contradiction in the
second round MixColumns operation because of its branch number of 5.
Moreover, in Chapter 5 we use zero-correlation linear distinguishers to construct
integral attacks on tweakable block ciphers, with applications to reduced-round
versions of Qarma, Mantis and Skinny.



64 background

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB

zero-correlation

inactive

any

Figure 26: Zero-correlation linear hull on 4-round AES

2.4.6 Integral Cryptanalysis

Integral attacks were first introduced by Daemen et al. [118] as a dedicated attack
against the block cipher Square and later extended to integral attacks [205]. These
attacks have been shown extremely power against AES-like ciphers [139, 155, 321].
Similar as with higher-order differentials, in integral attacks an attacker prepares a Λ-
set of chosen plaintexts so that particular cells of the state are held constant, while
other cells vary trough all possible values.
Let a Λ-set be a set of ω states, where ω is the word size (in bits) of the block cipher,
where all states are different in some bytes (i.e., active), and equal in some other
state bytes (i.e., constant). Further properties of a Λ-set are defined below. Let λ
denote the subset of active bytes in the Λ-set. Then it holds for the Λ-set that

∀x,y ∈ Λ :

{
xi,j 6= yi,j for (i, j) ∈ λ
xi,j = yi,j for (i, j) /∈ λ

Then an attacker considers some properties of the set, when propagating the set
through several rounds of the cipher. The common properties used in standard
integral attacks are:

• Active (A): The value of a cell takes all possible values in the set.

• Constant (C): The value of a cell is fixed to a constant value.

• Unknown (?): The value of a cell is unknown.

• Balanced (B): The XOR-sum of all values in a cell is zero.

There are different rules for the propagation of the integral properties through the
components of an SPN-cipher. The linear layer consisting of simple word-rotations
or shifts, just changes the positions in a multiset, but does not change the set itself.
A multiplication with an MDS matrix, as in MixColumns in AES affects the output
multiset just if there are more then one active, balanced or unknown word included.
For example, if there are two or more active words the output multiset becomes bal-
anced. Moreover, the propagation through an S-box changes the integral property.
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Figure 27: Key-recovery on a key-alternating cipher for integral attacks.

An active or constant input set through an S-box remains active or constant, respec-
tively. However, an balanced input set becomes unknown when propagated through
an S-box.

key-recovery for integral attacks. After finding an integral distinguisher
over several rounds, by propagating the input set through several rounds of the
cipher until it reaches a state where there is at least one cell that is balanced left, we
can mount an key-recovery attack based on the integral distinguisher. In a nutshell,
this can be done by further propagating the balanced cell for a few rounds and then
guessing round keys and calculating backwards to check if for a particular guess of
an round key, the balanced property is still present.
In more details, lets consider a key-alternating cipher that can be expressed as:

C = Kr ⊕ Fr(· · · ⊕ F2(K1 ⊕ F1(K0 ⊕ P)))

where, Fi is the round function of a block cipher (i.e., a permutation), K0,K1, . . . ,Kr
are the round keys, and C,P are the ciphertext, and the plaintext, respectively. The
number of rounds, that are covered by an integral attack, can be split into two parts
r = r1 + r2. Then, r1 covers the integral distinguisher with N chosen plaintexts,
and r2 are the number of rounds when the balanced bits on the output of the
distinguisher are diffused to k2-bits by additional r2 rounds. We can then guess k1-
bit keys, from Kr−r2 ,Kr−r2+1, . . . ,Kr−1, and k2-bit keys from key Kr, and calculate
back r2 rounds to check for an balanced state. The attack is further outlined in
Figure 27.
Further improvements for the key-recovery have been published by Ferguson et al.
that used a partial-sum technique [155], and by Todo and Aoki that developed the
FFT Key-Recovery technique [324].
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Figure 28: Integral distinguisher on 3-round AES.

integral attacks on aes. Integral attacks were initially introduced by Knud-
sen as a dedicated attack against the block cipher Square [118]. In the following,
we give details on the attack applied to 4, 5 and 6 rounds of AES.
Figure 28 shows a 3-round integral distinguisher on AES. The attacker starts by
preparing a set of plaintexts that has one active byte (i.e., in our case at position 0,
however, the position can be any), while the other 15 bytes remain constant. The
first application of SubBytes does not change any of the bytes. ShiftRows does not
shift the first row, so again nothing changes. The first application of MixColumns

activates the whole first row. The final key addition does not change the set. In the
second round, ShiftRows shifts the active row so that there is an active cell in each
column. MixColumns then activates the entire state. In the third round, MixColumns
transforms the entire active state to an entire balanced state. In the fourth round, the
application of the S-box layer change the entire set to become unknown. We can turn
the three round integral distinguisher in a 4, 5, and 6 round key-recovery attack.
For the four round attack we can consider the rounds:

4 round attack = AddRoundKey+ 3 round distinguisher + final round,

as outlined in Figure 29. The initial AddRoundKey does not change the set of plain-
texts. The attack works as follows:

1. Encrypt a Λ-set with one active position.

2. For each of the 28 guesses of RK4:

2.1 Decrypt each ciphertext pair (Ci,C ′i) for one round to the output of
round 3.

2.2 Verify the balanced property.

i. For a correct guess of the key, the balanced property must hold.
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Figure 29: Integral attack on 4 round AES.

ii. For an incorrect guess of the key, the balanced property holds with a
probability of 1/256.

We can repeat the attack for all 16 positions in the state, and then invert the key-
schedule to recover the master key.
For the five round attack we can consider the rounds:

5 round attack = AddRoundKey+ 3 round distinguisher + 1 round + final round,

as outlined in Figure 30. An attacker guesses the row-shifted column of the key in
round 5, and then decrypts 1 byte of the output of round 4. Then the attacker can
simply apply the 4 round attack as described above. The attack requires approxi-
mately 6Λ-sets and 240 steps.
For the six round attack we can consider the rounds:

6 round attack = AK+ 1 round + 3 round distinguisher + 1 round + final round,

as outlined in Figure 31. An attacker guesses the inverse-row shifted column of
the initial key RK0. Then the attacker chooses plaintexts, such that the output
of round 1 forms a Λ-set. Therefore, the attacker needs 232 plaintexts for one
column, that forms a Λ set after 1-round. Again, the attacker can apply the previous
5 round attack, as outlined above. The attack requires approximately 235Λ-sets
and a complexity of 272 steps. The 6-round attack can be improved by the partial-
sum technique of Ferguson et al. [155] that improves the time complexity to 245

computations.

2.4.7 Variants of Integral Cryptanalysis

Since integral cryptanalysis has been firstly published as a dedicated attack against
the block cipher Square, it has been further developed. Compared to the square at-
tack, in integral cryptanalysis we also consider backward propagation from the start
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Figure 30: Integral attack on 5 round AES.

of the integral distinguisher. Another improvement is the division property that addi-
tionally considers the algebraic degree of an S-box and can be seen as a combination
of integral attacks and higher-order differentials.

Division Property

The division property is a generalisation of integral attacks and higher-order dif-
ferential distinguishers, and has recently been introduced by Todo [322]. Later, the
division property was used in an attack on full Misty-1 by Todo [321]. The division
property was initially proposed against word-based ciphers, but further extended
to the bit-based division property by Todo and Morii [326].
The division property of a multi-set uses bit-product functions over Fn2 .

Definition 25 ([322]). Let πu : Fn2 → F2 be a bit-product function for any u ∈ Fn2 .
For any input x ∈ Fn2 πu(x) is the product of x[i] satisfying that u[i] = 1, i.e., we can
define

πu(x) =

n∏
i=1

x[i]u[i].

Note, we interpret 00 = 1, for correctness.
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Figure 31: Integral attack on 6-round AES.

Definition 26 ([322]). Let πu : (Fn12 × F
n2
2 × · · · × F

nm
2 ) → F2 be a bit-product

function for any u ∈ (Fn12 × F
n2
2 × · · · × F

nm
2 ). For any input x ∈ (Fn12 × F

n2
2 ×

· · · ×F
nm
2 ) πu(x) is defined as

πu =

n∏
i=1

πui(xi).

The division property makes also used of the algebraic structure of an S-box. There-
fore, we can further define the algebraic degree of an S-box, which is represented
as the highest exponent in the univariate polynomials of the Algebraic Normal Form
(ANF) of an S-box.

Definition 27 ([322]). Let f : Fn2 → Fn2 be a Boolean function, then the ANF is
represented as

f(x) =
⊕
u∈Fn2

afu

(
n∏
i=1

x[i]u[i]

)
=
⊕
u∈Fn2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u.

Compared to standard integral attacks, the division property further exploits the
algebraic degree of an S-box. If we consider an input multiset X that is active, then
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Table 5: Example calculation of πu(x) for input set X = {0x0, 0x3, 0x3, x3, 0x5, 0x5, 0x6, 0x8,
0xB, 0xD, 0xE}.

0x0 0x3 0x3 0x3 0x5 0x6 0x8 0xB 0xD 0xE
∑
πu(x)

0000 0011 0011 0011 0101 0110 1000 1011 1101 1110 (
⊕
πu(x))

u=0000 1 1 1 1 1 1 1 1 1 1 10 (0)

u=0001 0 1 1 1 1 0 0 1 1 0 6 (0)

u=0010 0 1 1 1 0 1 0 1 0 1 6 (0)

u=0011 0 1 1 1 0 0 0 1 0 0 4 (0)

u=0100 0 0 0 0 1 1 0 0 1 1 4 (0)

u=0101 0 0 0 0 1 0 0 0 1 0 2 (0)

u=0110 0 0 0 0 0 1 0 0 0 1 2 (0)

u=0111 0 0 0 0 0 0 0 0 0 0 0 (0)

u=1000 0 0 0 0 0 0 1 1 1 1 4 (0)

u=1001 0 0 0 0 0 0 0 1 1 0 2 (0)

u=1010 0 0 0 0 0 0 0 1 0 1 2 (0)

u=1011 0 0 0 0 0 0 0 1 0 0 1 (1)

u=1100 0 0 0 0 0 0 0 0 1 1 2 (0)

u=1101 0 0 0 0 0 0 0 0 1 0 1 (1)

u=1110 0 0 0 0 0 0 0 0 0 1 1 (1)

u=1111 0 0 0 0 0 0 0 0 0 0 0 (0)

the output multiset is also active propagated through an S-box. Moreover, if an input
multiset X is balanced then the output multiset becomes unknown. Additionally, if
we consider an input multiset with 2d+1 chosen texts, the output multiset becomes
balanced, as the (d+ 1)st derivative of an S-box with degree d is zero. In standard
integral cryptanalysis this property is not further exploited.

Definition 28 (Division property [322]). Let X be a multiset where all elements in
the set take a value of (Fn12 ×F

n2
2 × · · · ×F

nm
2 ). When the multiset has the division

property D
n1,n2,...,nm
K , where K denotes a set of m-dimensional vectors whose ith

element takes a value between 0 and ni, it fulfils the following conditions:

⊕
x∈X

πu(x) =

{
unknown, if there are k ∈ K s.t. wt(u) � k,
0, otherwise.

Lets consider an example to show how the division property is calculated for an
input set X ∈ F42. Let the input set X be:

X = {0x0, 0x3, 0x3, x3, 0x5, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE}.

From the example shown in Table 5, we can see that all u satisfying that the hamming
weight w(u) < 3 and the XOR-sum

⊕
x∈X πu(x) = 0. Therefore, the multiset X has

division property D43.
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The division property can then be used to construct integral distinguishers, where
the propagation of the division property through the different components of an
SPN cipher are explained in the following. Let’s consider an (l,d,m)-SPN cipher,
where l is the bit-size of the S-boxes, m is the number of S-boxes in the S-box layer,
and d is the algebraic degree of an S-box. We can evaluate the propagation of the
division property through the different components of an SPN cipher as follows:

• S-box Layer: Assume that the input multiset of the S-box layer has division
property D

l,m
k . As the S-box layer consists of m× l-bit S-boxes with algebraic

degree d, the output set of the S-box layer has division property D
l,m
k’ , where

k ′i = dki/de if ki < l and k ′i = l if ki = l.

• Concatenation: Since the output of the S-box layer is a value of the form (Fl2)
m

but the input of the Diffusion layer is of the form Flm2 we have to convert
in between. Let X be the output of the S-box layer and Y be the input of
the Diffusion layer. The parity of πv(y) for all y ∈ Y becomes unknown
if and only if we choose v satisfying the hamming weight w(v) >

∑m
i=1 ki.

Therefore, it holds that the input set Y of the Diffusion layer has the division
property Dlmk ′ .

• Diffusion Layer: The diffusion layer normally consists of an (l,m)-bit linear
function. As the algebraic degree of an linear function is exactly 1, there is no
change in the division property.

• Partition: We have a similar problem of converting the format of the set be-
tween Diffusion layer back to the S-boxes layer. Again, let X be the output of
the Diffusion layer and Y be the input of the S-boxes layer. When the output
set X of the Diffusion layer has division property D

l,m
k , the sufficient condi-

tion that the parity of πu(x) for all x ∈ X becomes unknown is k 6 w(u).
Therefore, the input set Y of the S-box layer has the collective division prop-
erty D

l,m
k ′(1),k ′(2),...,k ′(q) , where q denotes the number of all possible vectors

satisfying k ′(j)1 + k ′(j)2 + dots+ k ′(j)m = k for 1 6 j 6 q.

We can then construct integral distinguishers using the division property by evalu-
ating the propagation characteristic of the collective division property.

2.4.8 Yoyo Cryptanalysis

Yoyo attacks are closely related to boomerangs attacks. In both techniques, the ad-
versary first lets the oracle encrypt chosen-texts, and then observes the correspond-
ing encryptions and adaptively chooses new ciphertexts, that are then decrypted
in the hope for a certain property in their corresponding plaintexts. Initially, yoyo
attacks have been proposed by Biham et al. on Skipjack-3XOR [68], and have been
revived by Biryukov et al. [79] for analysing Feistel networks with secret round
functions. Recently, Rønjom et al. [290] showed yoyo-based distinguishers and key-
recovery attacks on generic SPNs and applications to round-reduced AES.
Assume, E : Fm·b2 → Fm·b2 is a permutation over elements of n = m · b bits that
can be divided into m words of b bits each. The core idea of yoyo attacks is to
encrypt chosen-plaintext pairs (P0,P1) with a certain input difference through E
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and collect the corresponding ciphertexts (C0,C1). The cryptanalyst crafts a set
of new ciphertexts from the recombination of words from C0 and C1. Let C0[i]
denote the i-th b-bit word of C0. Let v = (v0, . . . , vm−1) denote a Boolean vector,
i.e., v ∈ Fm2 , and let ρ : Fm·b2 ×Fm·b2 ×Fm2 → Fm·b2 be defined as

ρ
(
C0,C1, v

)
def
= (Cv0 [0]‖ . . . ‖Cvm−1 [m− 1]) .

Given v 6= (0, 0, . . . , 0), one can derive two modified ciphertexts C2 = ρ(C0,C1, v)
and C3 = ρ(C0,C1, v), where v denotes the vector of the element-wise inverse
Boolean vector, i.e., vi = 1⊕ vi for 0 6 i < m. Then, C2 consists of the words of C0

at all positions i where vi = 0 and of the words of C1 at the remaining positions.
The situation is vice versa for C3. The cryptanalyst then queries the so-derived
ciphertexts to obtain the corresponding plaintexts (P2,P3). The core observation
is that the vector v defines a word-wise difference pattern: C2 differs from C0 in
exactly the words where vi = 1 holds. This difference pattern is preserved through
any partial map of E that operates on the b-bit words separately, e.g., an S-box layer
in an SPN.

2.5 design principles
In this section, we discuss a few design principles and properties of Boolean func-
tions. In general, we can define every symmetric cryptographic primitive as a
Boolean function and therefore we can also inherit the properties of Boolean func-
tions for symmetric cryptographic primitives. Concretely, we focus in this section
on cryptographic S-boxes and give a more detailed overview on energy-efficient
S-boxes in Chapter 4.

2.5.1 Boolean functions

Definition 29. A Boolean Function of n variables is a function f : Fn2 → Fn2 . The
set of all Boolean functions is denoted as BFn, which has cardinality |BFn| = 2

2n .

Definition 30. The Hamming weight wH(x) of a binary vector x ∈ Fn2 is the num-
ber of non-zero coordinates. The Hamming weight wH(f) of a Boolean function f
over Fn2 is the size of the support of the function, where the support is defined as
Supp(f)← {x ∈ Fn2 | f(x) 6= 0}.
A Boolean function is usually defined by its truth table that gives the images of
all its possible inputs in F2. However, in cryptography and coding theory the
natural representation is the n-variable polynomial representation over F2, also
called Algebraic Normal Form (ANF):

Definition 31. Let f be a Boolean function of n variables. Then there exists a unique
multivariate polynomial in F2[x1, . . . , xn]/(x21 + x1, . . . , x2n + xn) such that

f(x1, . . . , xn) =
⊕

I∈P(N)

aI

(∏
i∈I

xi

)
=

⊕
I∈P(N)

aIx
I,
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where P(N) denotes the power set of N = {1, . . . ,n}.

In lightweight cryptography, we are interested in reducing the computational over-
head. This can mathematically be achieved by designing involutory functions, that
enable the use of the same function for encryption and decryption.

Definition 32. Let f be a function. Then f is an involution, or an involutory function
if and only if it is its own inverse such that:

f(f(x)) = x,

for all x in the domain of f.

The Fourier transform of the sign function fχ = (−1)f(x) is the Walsh transform.

Definition 33. Let f be a Boolean function. Then f̂χ(u) is called the Walsh coefficient
if:

f̂χ(u) =
∑
x∈Fn2

(−1)f(x)⊕x·u

2.5.2 Cryptographic S-boxes

Many cryptographic primitives use Boolean functions as building blocks. In Sub-
stitution Permutation Network (SPN) ciphers, the S-boxes are a set of m Boolean
functions from Fn2 → Fm2 (with n inputs and m outputs) of n variables, defined as
the coordinates of f.

Definition 34. Let S be an S-box from Fn2 to Fm2 . The Boolean functions, also called
coordinates, of S are n-variable Boolean functions such that:

Sλ : x� λ · S(x)

for any λ ∈ Fm2 .

Cryptographic S-boxes require further properties, such as we are only interested in
non-linear Boolean functions. Moreover, we want an S-box to be invertible (i.e. for
decryption) so we require an S-box to be a bijection.

Definition 35 ([108, page 24]). Let S be an S-box from Fn2 to Fn2 . S is a permutation
if and only if all its non-trivial coordinate functions are balanced.

Cryptographic functions must be balanced functions to avoid any statistical depen-
dence between input and output. That is the output must be uniformly distributed.
A Boolean function f is balanced if and only if f̂χ(0) = F(f) = 0.

Property 1 ([111, page 24]). Let f be a Boolean function from Fn2 to Fn2 . Then f is a
balanced function if and only if:

f̂χ(0) = F(f) = 0,

where f̂χ(u) =
∑
x∈Fn2

(−1)f(x)⊕x·u is the Walsh transform of f, and F(f) = f̂χ(0) =∑
x∈Fn2

(−1)f(x) = 0.
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An even stronger relation was introduced by Siegenthaler [311] who defined that
a Boolean function f has to be m-resilient, then there exists no correlation between
the output of a function and (at most) m coordinates of its input.

Definition 36 ([111, page 56], [311, page 777]). Let f be a Boolean function from Fn2
to Fn2 . Than f is called an m-resilient function, if any of it restrictions obtained by
fixing at most m of its input coordinates xi is balanced.

Cryptographic functions need to have a high algebraic degree. Algebraic attacks
exploit low algebraic degrees of an S-box or low degrees on a non-trivial compo-
nent function. The algebraic degree of an S-box is usually defined by the algebraic
degrees of its coordinate functions.

Definition 37. Let S be an S-box from Fn2 to Fn2 and let f1, . . . , fn be its coordinate
functions. Then if we consider the boolean functions in algebraic normal form, as
in Definition 31, then the (algebraic) degree of f is defined as:

deg f = max{wH(I) : I ∈ Fn2 ,aI 6= 0} ,

The (algebraic) degree for an S-box is then the maximal algebraic degree of its
coordinate functions.

The branch number of a Boolean function f defines the minimum number of active
S-boxes at the input and output of f. Moreover, it can be used to measure diffusion,
especially for linear and differential trails as defined by Daemen and Rijmen [121].

Definition 38 ([121, page 131]). Let f be a Boolean function. Then the differential
branch number of f is defined by:

Bd(f) = min
a,b 6=a

{wH(a⊕ b) +wH(f(a)⊕ f(b))} .

Similar to the differential branch number, we can further define the linear branch
number.

Definition 39 ([121, page 132]). Let f be a Boolean function. Then the linear branch
number of f is defined by:

Bl(f,α) = min
α,β,C(αTx,βT f(x)) 6=0

{wH(α) +wH(β)} .

2.5.3 Properties of cryptographic S-boxes

Cryptographic S-boxes play an important role in the resistance against attacks such
as differential and linear cryptanalysis.
Differential Cryptanalysis has been introduced by Biham and Shamir [74]. It ba-
sically studies the propagation of a difference between two plaintexts over several
rounds in a block cipher. The resistance against differential cryptanalysis can be
quantified as the maximal probability that a given non-zero input difference leads
to a given output difference for an S-box and is determined by the differential unifor-
mity of the S-box.
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Definition 40 ([270, page 58]). Let S be an S-box from Fn2 to Fn2 . For any a,b ∈ Fn2
we can define:

δ(∆in,∆out) = #{x ∈ Fn2 | S(x⊕∆in)⊕ S(x) = ∆out }

and the maximum
δS = max

a6=0,b
δ(a,b)

is the differential uniformity of S.

The minimum differential uniformity that can be achieved was shown by Nyberg
and Knudsen [272] is δ(S) > 2, where S is an S-box from Fn2 to Fn2 . For S-boxes
that fulfil this equation with equality are called Almost Perfect Non-linear (APN)
functions.
The differential probability of an S-box measures the probability for a given non-
zero input difference leads to a given output difference for an S-box.

Definition 41. Let S be an S-box from Fn2 to Fn2 . For any a,b ∈ Fn2 we can define
the differential probability as:

DP(a→ b) = 2−n · δ(a,b)

Linear cryptanalysis has been first introduced by Matsui [238]. In a nutshell, it
is based on finding affine approximations for the non-linear components of a cipher.
The resistance against linear cryptanalysis can be determined with the linearity of
a cipher which evaluates the deviation of a Boolean function from being linear or
affine.

Definition 42 ([269, page 93]). Let S be an S-box from Fn2 to Fn2 . Then the linearity
of the S-box can be defined as:

L(S) = max
a∈Fn2 ,b∈Fn2 \{0}

|L(Sb(a))| = max
a∈Fn2 ,b∈Fn2 \{0}

∣∣∣Ŝb(a)∣∣∣
where Ŝb(a) is the Walsh coefficient from S.

A lower bound for the linearity of a Boolean function can be derived using Parse-
val’s relation

∑
a∈Fn2

(f̂χ(u))
2 = 22n and is bound by L(f) > 2n2 . Boolean functions

that fulfil this equation with equality were firstly shown by Rothaus [291]. Those
functions are called bent functions and exist only for even n and are not balanced.
The linear probability bias (ε) of an S-box measures the correlation and gives the
deviation from a uniform probability regarding affine or linear functions.

Definition 43. Let S be an S-box from Fn2 to Fn2 . Then the linear probability bias of
S can be defined as:

ε 6
∣∣∣∣ L(S)2n+1

∣∣∣∣ .
When designing a cryptographic primitive, it is important to reduce the number of
possible S-boxes and consider just S-boxes with similar cryptographic properties to
study further implementation relevant properties. Some well known classification
tools are the notion of linear and affine equivalence.
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Definition 44 ([128, page 76]). Let S1, S2 be two invertible S-boxes from Fn2 to Fn2 .
Let A,B ∈ GLn(Fn2 ) be two invertible n×n matrices. Then S1 is linear equivalent to
S2 if the following holds:

S1(x) = B
−1 · S2(A · x)

for all x ∈ Fn2 .

The notion of affine equivalence even further reduces the number of different equiva-
lence classes.

Definition 45 ([128, page 78]). Let S1, S2 be two invertible S-boxes from Fn2 to Fn2 .
Let A,B ∈ GLn(Fn2 ) be two invertible n× n matrices and let a,b ∈ Fn2 . Then S1 is
affine equivalent to S2 if the following holds:

S1(x) = B
−1 · S2(A · x⊕ a)⊕ b

for all x ∈ Fn2 .
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executive summary. In this chapter, we study the effects of differential crypt-
analysis of several recently proposed lightweight block ciphers. Resistance against
differential cryptanalysis is an important design criterion for any modern block ci-
pher and most designs rely on finding some upper bound on probability of single
differential trails. However, already at EUROCRYPT’91, Lai et al. conjectured that
differential cryptanalysis rather uses differentials instead of single trails.
We consider exactly the gap between these two approaches and investigate this gap
in the context of recent lightweight cryptographic primitives. This shows that for
many recent designs like Midori, Skinny or Sparx one has to be careful as bounds
from counting the number of active S-boxes only give an inaccurate evaluation of
the best differential distinguishers. For several designs we found new differential
distinguishers and show how this gap evolves. We found an 8-round differential
distinguisher for Skinny-64 with a probability of 2−56.93, while the best single trail
only suggests a probability of 2−72. Our approach is integrated into publicly avail-
able tools and can easily be used when developing new cryptographic primitives.
Moreover, as differential cryptanalysis is critically dependent on the distribution
over the keys for the probability of differentials, we provide experiments for some
of these new differentials found, in order to confirm that our estimates for the
probability are correct. While for Skinny-64 the distribution over the keys follows
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a Poisson distribution, as one would expect, we noticed that Speck-64 follows a
bimodal distribution, and the distribution of Midori-64 suggests a large class of
weak keys.

declaration of authorship. The work described in this chapter is based on
the paper [24]: Mind the Gap - A Closer Look at the Security of Block Ciphers against
Differential Cryptanalysis and was presented at The 25th Conference on Selected Areas
in Cryptography (SAC’18) in Calgary, Canada. The paper is joint work with Stefan
Kölbl. All authors contributed equally to the results of the paper. The contributions
of the author are the following:

• Implementation of several block ciphers in an automated search tool.

• Search for single differential trails and differentials for several block ciphers.

• Adapting/Adding new functionalities to the differential search tool (i.e., sup-
port for S-boxes).

3.1 introduction
Differential cryptanalysis, first published by Biham and Shamir [73] to analyse the
DES, has become one of the prime attack vectors which any modern symmetric-
key primitive has to be resistant against. The idea behind differential cryptanalysis
is to find pairs of plaintexts and ciphertexts, where a certain difference between
those texts occurs with high probability. The challenge for a cryptanalyst consists
of finding differences with a high probability or to show that no such difference
exists. A popular approach is to design a cipher in such a way that one can find
a bound on the best differential trails, either directly e.g., the wide-trail strategy
deployed in AES or using methods based on Matsui’s algorithm, MILP or SAT.
A differential trail specifies all the intermediate differences after each round of the
primitive. However, when constructing a differential distinguisher one only cares
about the input and output difference. It is often assumed that a single trail domi-
nates the probability of such a differential, however this is not true in general and
leads to imprecise estimates of the probability in many cases [75, 137].
In the work by Lai et al. [215] they showed that for an iterated cipher, the round
function satisfies that the differential probability is independent of the choice of
one of the component plaintexts under a difference, it can be considered a Markov
cipher. Moreover, for a Markov cipher that has independent round-keys, the se-
quence of round differences forms a Markov chain. As differential cryptanalysis
considers just the first and last difference and ignores the intermediate values, the
probability of such a differential can then be computed as the sum of all trails, that
are formed by the differentials. While this assumes that the rounds are indepen-
dent, it provides a more precise estimate and the probability of the most probable
differential will always be greater than the probability of the most probable trail.
We provide a broad study covering different design strategies and investigate the
differential gap between single trails and differentials for the block ciphers LBlock,
Midori, Present, Prince, Rectangle, Simon, Skinny, Sparx, Speck and Twine. In
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order to do this, we use an automated approach for enumerating the trails with the
highest probability contributing to a differential based on SMT solvers [256], which
we adopt to different design strategies. This allows us to efficiently enumerate
a large set of trails contributing to the probability of a differential resulting in a
precise estimate for the probability of differentials.
For Skinny-64we present an 8-round differential distinguisher with a probability of
2−56.93, while the best single trail only suggests a probability of 2−72. For Midori-
64we show that the best trail for 8 rounds, with a probability of 2−76 can be used to
find a differential with a probability of 2−60.86. Our results show that in the case of
many new lightweight ciphers like Midori-64, Skinny-64, and Sparx-64 the proba-
bilities improve significantly and that we can find differential distinguishers which
are able to cover more rounds. This suggests that one should be particularly careful
with lightweight block ciphers when using simpler approximations like counting
the number of active S-boxes.
Our method is generic and can easily be applied to other designs as one only needs
to describe the differential behaviour of the round function and can re-use all the
components we implemented for doing so. This allows both to find optimal differ-
ential trails and to enumerate all trails contributing to a differential.
Furthermore, we provide experiments to verify that our estimates of the differen-
tial probability provide a good approximation. However, we also noticed that the
distribution over the choice of keys varies significantly for some design strategies
and that commonly made assumptions do not hold for reduced-round versions.
While for Skinny-64 the distribution over the keys follows relatively closely what
one would expect we noticed that for Midori-64 for a large class of keys there are
no pairs following the differential at all, while for very few keys the probability is
significantly higher.

related work. Daemen and Rijmen firstly studied the probability of differen-
tials for AES in their work on Plateau Characteristics [122]. In their work, they
analysed AES on the distribution of differential probability over the choice of keys
and showed that all 2-round trails have either a zero probability or for a small subset
of keys the probability is non-zero. However, they only considered AES, but further
proved that other ciphers with 4-uniform S-boxes will show a similar result. In the
case of AES and AES-like ciphers, there has also been a lot of research in study-
ing the expected differential/linear probability (MEDP/MELP) [119, 196], that is
used to provable bound the security of a block cipher against differential/linear
cryptanalysis.
In recent years, many automated tools were proposed that could help designers
to prove bounds against differential/linear attacks. Mouha et al. [257] used Mixed
Integer Linear Programming (MILP) to count active S-boxes and compute provable
bounds. Furthermore, there have been a few approaches of using automated tools
to find optimal trails, and to collect many trails with the same input/output differ-
ences. This idea was first introduced by Sun et al. [317] who used MILP. Likewise,
tools using SAT/SMT solvers are used where the results were applied to Salsa-
20 [256], Norx [32], and Simon [206].
Moreover, there exist several design and attack papers that study the effect of
numerous trails contributing to the probability of a differential: Mantis [137],



82 differential cryptanalysis of lightweight block ciphers

Noekeon [190], Salsa [256], Simon/Speck [83, 206], Rectangle [361] and Twine [75].
Yet, these are often based on truncated differentials or dedicated algorithms for
finding large numbers of trails. For example in [151], Eichlseder and Kales attack
Mantis-6 by finding a large cluster of differential trails. Contrary to the attack on
Mantis-5 by Dobraunig et al. [137] where the cluster was found manually, in the at-
tack on Mantis-6, Eichlseder and Kales used a tool based on truncated-differentials.
Similar effects have also been observed in the case of linear cryptanalysis, where
Abdelraheem et al. [3] showed that the security margins based on the distribution
of linear biases are not always accurate. Their work has further been studied and
improved by Blondeau and Nyberg [89].

software. All the models for enumerating the differential trails are publicly
available at https://github.com/TheBananaMan/cryptosmt.

differentials and differential trails A detailed description about differ-
ential cryptanalysis can be found in Chapter 2.4.2.

3.2 design strategies for lightweight block ci-
phers

We arrange the ciphers in several classes according to different design strategies.
In general one can distinguish between two main design families for block ciphers,
Substitution-Permutation Networks (SPN) and Feistel Networks. Within these families
we can gather ciphers according to other structural properties. These are for SPN
ciphers: AES-like, Bit-sliced S-boxes, Bit-based Permutation Layers, Reflection Ciphers,
ARX-based and for Feistel Networks: ARX-based, Generalized Feistel Networks, Two-
branched Feistel Networks.

3.2.1 Substitution-Permutation Networks

Substitution-Permutation Networks provide confusion and diffusion in two distinct
operations. Confusion is achieved by a layer of normally small concatenated S-
boxes, while diffusion is provided by a linear permutation of the whole blocksize.

AES-like Ciphers

AES-like ciphers closely follow the structure of AES, as all ciphers in that category
incorporate their internal state as 4× 4 matrices, with one entry arranged as a 4-bit
nibble or a 8-bit byte entry. An S-box is applied to each of the entries to provide
confusion, and the diffusion layer normally consists of an MDS-matrix applied to
the columns of the state matrix.

midori [37] is a family of energy efficient lightweight block ciphers with 16

rounds. The family offers two blocksizes of 64/128 bits and a key size of 128 bits.
Midori-64 uses lightweight 4-bit S-boxes to provide confusion and an involutory bi-

https://github.com/TheBananaMan/cryptosmt
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Figure 32: Midori encryption function

nary almost-MDS matrix for diffusion. The round function of Midori is illustrated
in Figure 32.
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Figure 33: Skinny round function

skinny [50] is a family of lightweight tweakable block ciphers based on the
Tweakey framework [188]. The family offers block sizes n of 64 and 128 bits and
tweakey sizes from n/2n/3n bits. Skinny-64 has an AES-like round function and
uses a simple 4-bit S-box for confusion. Diffusion is provided by a very sparse
binary matrix, that can be implemented with just three XOR gates. Skinny recom-
mends 32/36/40 rounds depending on the tweakey size. The round function of
Skinny is illustrated in Figure 33. We study the security of Skinny in Chapter 5

against zero-correlation attacks and in Chapter 6 against impossible differential at-
tacks.

Bit-sliced S-boxes

Ciphers in this category are based on a non-linear layer that consists of parallel
applications of several small S-boxes which can be implemented using basic bitwise
operations such as XOR, AND and OR gates.
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Figure 34: Rectangle round function

rectangle [361] is an ultra lightweight block cipher that is optimised for soft-
ware and hardware. It operates on a 64-bit state that is arranged in a 4× 16 matrix
and has 25 rounds. The non-linear layer consists of 4-bit S-boxes that are executed
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in parallel on the columns to provide confusion. The diffusion layer consists of sim-
ple fixed row-wise rotations by a different value for each row. The round function
is illustrated in 34.

Bit-based Permutation Layer

Bit-based permutation layer SPNs ciphers can be separated by their diffusion layer.
All of them have a simple 4/8−bit S-box layer, and a bit-permutation as diffusion
layer. The advantage of those designs is that the bit-permutation can be efficiently
implemented in hardware by just wiring the outputs. The diffusion of those designs
depends highly on the differential/linear branch numbers of the S-boxes.
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Figure 35: Two round functions of Present

present [95] is a very lightweight cipher that is optimised for small area. It uses
a simple bit-permutation, that can be implemented in hardware just by wiring, to
provide diffusion. Present has a block size of 64 bits and supports key sizes of 80
and 128 bits. It uses simple 4-bit S-boxes to provide confusion and a bit-permutation
for diffusion. Present recommends 31 rounds where two rounds are illustrated in
Figure 51.

Reflection Ciphers

Reflection ciphers have the α reflection property, which means that decryption with
one key corresponds to encryption with a related key. This can be achieved by
keeping the cipher symmetric around the middle and varying the round constants
by a constant α.
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prince [101] is a lightweight block cipher that is optimised for latency when im-
plemented in hardware. Prince has a 64-bit block size and a 128-bit key size. It uses
a 4-bit S-box for confusion and a combination of AES ShiftRows and an involutory
binary matrix for diffusion. Prince has 12 rounds as illustrated in Figure 53.

ARX-based Ciphers

ARX-based SPNs use an ARX-Box to provide confusion instead of an S-box. The
use of an ARX-Box allows to provide provable bounds for linear and differential
cryptanalysis, which is not possible in other ARX-based designs. Moreover, ARX-
based ciphers are very efficient in software and hardware as they just use modular
additions, rotations and XOR gates.
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Figure 37: (Left): Sparx step function, (Right): Speckey which is inside of one ARX-box

sparx [135] is a lightweight block cipher that was designed according to the long
trail strategy [135]. In contrast to the Wide-Trail strategy that uses small strong S-
boxes, in the long-trail strategy a large and weaker ARX-box is used. This allows
to bound the differential and linear probabilities, compared to other ARX designs.
Sparx-64 uses a 32-bit block cipher that is similar to Speck with 32-bit block size
as an ARX-based S-box to provide confusion. Diffusion is provided by a linear
layer that is similar to the linear layer of Noekeon [190] in a Feistel structure. We
further analyse the security of Sparx in Chapter 7 against truncated-differential and
rectangle attacks.

3.2.2 Feistel Networks

In a Feistel construction, the input is split in two parts, that interact with each
other. The advantage of the structure of an Feistel network is that encryption and
decryption operations are very similar or even identical in some ciphers.

ARX-based Feistel Networks

ARX-based Feistel networks use only modular additions, rotations and XOR in their
round functions. The non-linearity is provided by the modular additions, while
diffusion is provided by the XOR and rotations.
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Figure 38: Round function of Simon

simon [46] is a family of AND-RX block ciphers optimized for hardware. The
cipher was designed by the NSA and performs exceptionally well in hardware and
software. It is a classical Feistel-network which uses an AND gate to provide non-
linearity for confusion and rotations and XOR for diffusion. The Simon family offers
block sizes of 32 to 128 bits and key sizes of 64 or 256 bits. Depending on the
block size and key size Simon recommends between 32 and 72 rounds. The round
function of Simon is illustrated in Figure 38.
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Figure 39: Round function of Speck

speck [46] is a family of ADD-RX bock ciphers optimized for software. The
cipher was designed by the NSA and follows a typical ARX cipher where the round
function is inspired by the underlying block cipher Threefish of the hash function
Skein [156]. The Speck family offers block sizes of 32 to 128 bits and key sizes of
64 or 256 bits. Depending on the block size and the key size Speck recommends
between 22 and 34 rounds. The round function of Speck is illustrated in Figure 39.

Generalized Feistel Networks

Compared to classical Feistel networks such as DES, generalized Feistel networks
split the state in two or more words, and use the permutation of the Feistel network
for diffusion.

twine [318] is a lightweight block cipher based on a generalized Feistel structure.
The cipher has 16 branches of 4-bit each. The Feistel function, that is iterated 8 times
per round, consists of XORing the round key and a 4-bit S-box to provide confusion.
The diffusion layer is a sophisticated permutation. Twine has a 64-bit block size and
a key size of 80 or 128 bits. The round function of Twine is illustrated in Figure 40.
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Figure 40: Twine round function

Two-branched Feistel Networks

Two-branched Feistel networks split the state in two sub-words. The round function
is then applied to one of the words and the output is XORed to the other sub-word.
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Figure 41: (Left) Round function of LBlock, (Right) Feistel function of LBlock

lblock [318] is a lightweight block cipher optimised for both hardware and soft-
ware. It is based on a two-branched Feistel network of 32 bits each. The Feistel
function of LBlock consists of a layer of 8 distinct 4-bit S-boxes and a word permu-
tation that is similar to Twine. LBlock has a block size of 64 bits and a key length
of 80 bits. It consists of 32 Feistel rounds as illustrated in Figure 41.

3.3 finding differential trails efficiently
While there are many methods based on SAT, MILP or Matsui’s algorithm to find
differential trails and even prove an upper bound on the probability of the best
single trail, it remains a hard problem to find a good estimate on the probability
of the best differential. Even finding those differential trails remains a difficult
problem for some design strategies and cryptanalysts had to search manually for
differentials in some attacks [345]. Nowadays a variety of automated tools [84, 222,
313] is available which are constantly improved and help cryptanalysts in finding
good differential trails.

3.3.1 SAT/SMT Solvers

SAT solvers are used to solve the Boolean satisfiability problem (SAT) and are based
on heuristic algorithms. A solver starts from an initial assignment for the literals
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and then builds a search tree by using systematic backtracking until all conflicting
clauses are resolved and either an assignment of variables for a satisfiable set of
clauses is returned or the solver decides that this instance is unsatisfiable. The
most commonly algorithms used in SAT solvers are based on the original idea of
DPLL [127].
SMT solvers are more powerful than SAT solvers in the sense that they can ex-
press constraints on a higher abstraction layer and allow simple first-order logic. In
general, SMT solvers often translate the problem to SAT and then use an improved
version of the DPLL algorithm and backtracking to infer when theory conflicts arise.
Moreover, the solver checks the feasibility of conjunctions from the first-order logic
predicates as it interacts with the Boolean formulas that are returned by the SAT
solver.
There exists a few SAT/SMT solvers that are suitable for our use cases. STP [336] is
an SMT solver that uses the CVC and SMTLIB2 language to encode the constraints
and then invokes a SAT solver to check for satisfiability of the model. CryptoMin-
iSat [236] is an advanced SAT solver that supports features like XOR recovery1 to
simplify clauses. As XOR operations are commonly used in cryptography this can
be an advantage and potentially reduces the solving time. We also considered other
solvers like Boolector [264], which for some instances provide a better performance,
however in general this only provides an improvement by a small constant factor
and it is hard to identify for which instances one obtains any advantage.

3.3.2 From Differential Cryptanalysis to Satisfiability Modulo Theories

When using automated tool like SAT/SMT solvers, one can simplify the search
for differential trails and differentials by modelling the differential behaviour of
the block cipher. For this we represent all intermediate states of our block cipher
as variables which corresponds to the differences and encode the transitions of
differences through the round functions as constraints that can be processed by the
SMT/SAT solver. An advantage of using SMT over SAT for the modelling is that
most SMT solvers support reasoning over bit-vectors which are commonly used
in block cipher designs, especially when considering word-oriented ciphers. This
both simplifies the modelling of the constraints and can lead to an improved time
for solving the given problem instances compared to an encoding in SAT.

Constructing an SMT Model

We focus on a tool that uses the CVC language2 for encoding the differential be-
haviour of block ciphers. Therefore, we encode the constraints imposed by the
round function for each round of the block cipher and the probability of the result-
ing differential transitions. Our main goal here is to construct an SMT model which
decides whether

∃Q : DP(Q) = 2−t, (45)

1 See https://www.msoos.org/2011/03/recovering-xors-from-a-cnf/
2 A list of all bitwise and word level functions in CVC is available at: http://stp.github.io/cvc-input-
language/

https://www.msoos.org/2011/03/recovering-xors-from-a-cnf/
http://stp.github.io/cvc-input-language/
http://stp.github.io/cvc-input-language/
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which allows us to find the best differential trail Q for a cipher by finding the
minimum value t for which the model is satisfiable, where t is a non-negative
integer.
In order to represent the differential behaviour of a cipher we consider any opera-
tion in the cipher, e.g., the application of an S-box, matrix multiplication, word-wise
operation or bit operation, and add constraints for a valid transition from an input
to an output difference such that any valid assignment to the variables corresponds
to a valid differential trail in the actual operation. For any non-linear component
we introduce additional variables wj which represent the log2 probability of the
differential transition. The probability of Q is then given by

∑
wj. This means that

a valid assignment for all these variables directly gives us the differential trail Q
with all intermediate differences and DP(Q) = p.
In the following we give an overview on how the different components of the ci-
phers can be modelled in the SMT model. The algorithms to find the optimal differ-
ential trails and consequently good estimates for the differentials are described in
the following.

S-boxes

Substitution Permutation Network (SPN) ciphers typically use S-boxes, which are
non-linear functions operating on a small number of bits. These are often 4- or
8-bit functions and therefore we can compute the differential probability by simply
constructing the Difference Distribution Table (DDT), which is a full lookup table
of all possible pairs of input/output differences, for each S-box. In our SMT model
we represent the input difference to an n-bit S-box as α = α1, . . . ,αn respectively
the output as β = β1, . . . ,βn. These variables correspond to the input/output
difference to this S-box and we want to constrain them to only allow non-zero
probability combinations of input and output differences. We further introduce
additional variables w = w1, . . . ,wn which are used to represent the probability of
the transition. The probability of the transition is encoded as 2−wt(w), where wt(·)
denotes the Hamming weight of w.
In order to construct the constraints on the variables, we first find all valid tran-
sitions and their corresponding probability. We want to construct a CNF which
is satisfiable if and only if the assignment corresponds to such a valid trail. One
simple way to this is by just considering all assignments which are impossible. If a

transition is defined as (a
S−→ b) and has a probability c then we add the following

clause

T = N(a1,α1)∨ . . .∨N(an,αn)∨

N(b1,β1)∨ . . .∨N(b1,βn)∨

N(c1,w1)∨ . . .∨N(cn,wn)

(46)

where

N(xi,yi) =

{
¬yi, if xi = 0
yi, if xi = 1

. (47)
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This clause is only satisfiable if the variables of the corresponding S-box are not
set to the invalid assignment. For example let a = (1, 0, 1, 1), b = (0, 0, 0, 0) and
c = (0, 0, 0, 0) then we add the clause

(¬α0 ∨α1 ∨¬α2 ∨¬α3 ∨β0 ∨β1 ∨β2 ∨β3 ∨w0 ∨w1 ∨w2 ∨w3). (48)

We implemented this approach to generate the SMT models for 4- and 8-bit S-boxes,
where most of the lightweight ciphers actually use 4-bit S-boxes which allows a very
compact description (i.e., to represent the 4-bit S-box of Skinny we need 12 variables
and about 3999 clauses in CNF). Note that our method is limited to S-boxes which
have a DDT with entries that are a power of 2. For other S-boxes a similar method
could be used by using l additional variables for encoding probabilities of the form
2−0.5, 2−0.25, . . . to get an approximation of the actual probability.

Linear Layers

The diffusion layers of Substitution Permutation Networks in lightweight ciphers
are often constructed with simple bit-permutations (e.g., Present) or by multipli-
cation with matrices having only binary coefficients (e.g., Midori, Skinny). ARX-
based ciphers (e.g., Speck) use the diffusion properties of XOR combined with rota-
tions. Feistel networks (e.g., Simon, LBlock, Twine) also mix the state by switching
parts of the states on every Feistel switch.
For modelling rotations and bit-permutations in an SAT/SMT solver, we simply
have to re-index the variables accordingly before they are input to another func-
tion. This can be achieved using SMT predicates (ASSERT and equality) in the CVC
language. Rotations can be realised using predicates for shifting words and the
word-wise or function that are available in the CVC language. The multiplication
by a binary matrix can be modelled using the xor predicate at the word-level.

ARX Designs

ARX designs use modular additions (modulo 2n), XOR and rotations. As modular
addition is the only non-linear component, that is not already available in the SMT
solver, we use an algorithm proposed by Lipmaa and Moriai [226] to efficiently
compute the differential probability of modular addition. Let xdp+(α,β → γ) be
the XOR differential probability of modular addition, where α,β are input differences
and γ is the output difference, then it holds that a differential is valid if and only if:

eq(α� 1,β� 1,γ� 1)∧ (α⊕β⊕ γ⊕ (β� 1)) = 0 (49)

where
eq(x,y, z) := (¬x⊕ y)∧ (¬x⊕ z). (50)

The weight of a valid differential is defined as:

w(α,β,γ) := − log2 (xdp
+(α,β→ γ)) = wt ′(¬eq(α,β,γ)). (51)

where wt ′(·) denotes the Hamming weight omitting the most significant bit. We
implemented this algorithm to calculate the differential probability of modular ad-
ditions.
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3.3.3 Finding the Best Trail and Differentials

We use the open-source tool CryptoSMT [313] for the automated search of dif-
ferential trails and implemented several missing functionalities for block ciphers
(i.e., support for S-boxes as described in Section 4.3, and binary diffusion matrices).
CryptoSMT is based on the state-of-the-art SAT/SMT solvers, CryptoMiniSat [236]
and STP [336].
The tool offers a simple API that allows cryptanalysts and designers to formu-
late various cryptanalytic problems and solve them with the underlying SAT/SMT
solver. We added the models for the block ciphers Skinny, Midori, Rectangle,
Present, Prince, Sparx, Twine and LBlock (Note that some of these are block ci-
pher families and we focused on a subset of parameters) to CryptoSMT and use the
following two functionalities provided by the tool:

• Decide if a differential trail with probability p exists.

• Enumerate all differential trails with a probability of p.

Based on this we can achieve our two goals, namely finding the best differential
trail and estimating the probability of the differential.

Best Differential Trail

In order to find the trail Q with maximum probability pmax for r rounds of a block
cipher we start by checking whether our model is satisfiable for a probability of p,
starting at p = 1. If our model is not satisfiable we continue by checking whether
there is a valid assignment for p = 2−1. Note that for all our block ciphers the
probability of the differential transitions are powers of two and therefore there does
not exist any differential trail which has a probability p ′ such that 2−(t+1) < p ′ <
2−t for any integer t. We continue this process until we reach a model which is
satisfiable, which gives us an assignment of all variables of the state forming a
valid differential trail with probability pmax = 2−t. Considering that we start with
probability p = 1 and then we constantly increase the weight, and finish as soon
as we found an valid assignment, we can ensure that we found the best differential
trail. Our experiments have shown that this search strategy is considerable fast. As
it is normally easier for an SAT solver to detect if a problem is satisfiable, then to
detect if it is unsatisfiable (i.e., which in the worst case would require to exhaustively
go through the whole search space), another good search strategy would be a top-
down approach, where one could search for a valid trail for a large t, and then
decrease t with a constant that becomes smaller for each step. This algorithm is
also known as gradient descent and is often used to find a maximum/minimum in
optimisation problems.

Estimate for the Probability of a Differential

In order to find a good differential we can use a tool assisted approach to compute
an approximation for Equation 42, as shown in [256]. We first obtain the best single
trail Q with probability p = 2−t which gives us the input difference α1 and output
difference αr. Subsequently we modify our model and fix the input and output
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difference to α1 respectively αr. Note that this restricts the search space significantly
and results in a much faster time for solving any subsequent SMT instances.
The next step is to find all differential trails Q, such that DP(Q) = 2−u, for u =

t, t + 1, . . ., under this new constraints. This allows us to collect more and more
terms of the sum in Equation 42, improving our approximation for the differential.
By doing this process we always search for those differential trails which contribute
the most to the probability of the differential first.
Here we assume that the input and output difference imposed by the best differen-
tial trail correspond to a good differential. While this assumption might not always
hold and some of the differentials we found significantly improve the best differ-
ential distinguishers there could still exist better starting points for our search, for
example as shown in [207] against the block cipher Simeck.

3.4 analysis of the gap in lightweight ciphers
The construction of cryptographic primitives optimised for resource constrained de-
vices has received a lot of attention over the last decade and various design strate-
gies and optimisation targets have been explored. All these primitives exhibit the
idea of using simpler operations in order to save costs and therefore often exhibit a
simpler algebraic structure compared to other symmetric-key algorithms.
For some design strategies this leads to a significant larger gap between single trails
and differentials. This gap becomes especially relevant for aggressively optimised
designs with minor security margins. Table 6 gives an overview of all the block
ciphers we analysed with the methodology outlined in Section 3.3 and their security
margins as well as the best known differential attacks.
In the following, we provide some detailed analysis of the differential gaps of sev-
eral lightweight block ciphers. We focus in more detail on Skinny, Midori and
Sparx as there are no results published on the differential effects of those ciphers to
the best of our knowledge.

3.4.1 Skinny

Skinny [50] is an AES-like tweakable block cipher, based on the Tweakey frame-
work [188]. The aim of Skinny is to achieve the hardware performance of the
AND-RX-cipher Simon and have strong security bounds against differential/linear
attacks (this includes the related-key scenario), while also having competitive soft-
ware performance. The resistance against differential/linear attacks in Skinny is
based on counting the minimal number of active S-boxes, in the single-key and
related-tweakey models. As the design of Skinny is based on a few very simple but
highly efficient cryptographic building blocks, it seems intuitive that one can expect
that a large number of differential trails will contribute to a differential. Recent at-
tacks [20, 230] exploited the low branch number of the binary diffusion matrix, as
well as properties of the tweakey schedule.
Using our tool-assisted approach we analysed this gap in Skinny-64 (see Figure 42)
and can provide some new insights to the security of Skinny-64. For example the
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Table 6: Best attacks and security margins (active S-boxes) for various design strategies for
symmetric cryptographic primitives. D/MD/RK/ID/R/TD = differential, multiple
differential, related-key, impossible differential, rectangle, truncated differential
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Midori 64 128 16 9 rounds full rounds (RK) [162] 7

Skinny 64 64 32 24 rounds 19 rounds (ID) [230] X
Skinny 64 128 36 28 rounds 23 rounds (ID) [20, 230] X
Skinny 64 192 40 32 rounds 27 rounds (R) [230] X

Bit-sliced Rectangle 64 80/128 25 - 18 rounds (D) [320, 361] Sec.3.4.6

Present-like Present 64 80/128 31 12 rounds 26 rounds (D) [229, 343] X

Reflection Prince 64 128 12 - 10 rounds (MD) [109] X

ARX Sparx 64 128 24 9 rounds 16 rounds (TD) [26] X
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AND-RX
Simon 64 96 42 - 26 rounds (D) [7] X
Simon 64 128 44 - 26 rounds (D) [7] X

ARX
Speck 64 96 26 - 19 rounds (D) [312] X
Speck 64 128 27 - 20 rounds (D) [312] X

GFN
Twine 64 80 36 21 rounds 23 rounds (ID) [75] 7

Twine 64 128 36 21 rounds 25 rounds (ID) [75] 7

Two-branched LBlock 64 80 32 17 rounds 24 rounds (ID) [344] 7

best 8-round single differential trail Q8max suggests a probability of 2−72 while the
differential D8 defined by the input/output difference of Q8max consists of a large
cluster of trails leading to the differential

0x0104401000C01C00
8−round Skinny-64−−−−−−−−−−−−→ 0x0606060000060666 (52)

with a probability of larger than 2−56.55 by taking all 821896 trails3 into account
which have DP > 2−99. Note that the probabilities and the number of character-
istics are obtained with a fixed input/output difference as noted in Equation 52.
This suggests that estimates from active S-boxes should be taken with care as the
gap is fairly large. However, the number of rounds in Skinny-64 is chosen very
conservatively and it provides a large security margin.
In particular the probability of the differential improves very quickly when adding
more trails, as the distribution of the number of trails with a probability 2−t is very
flat over the choice of t (see Figure 42). For example there are 39699 trails with
DP = 2−75 and 25413 trails with DP = 2−76 and the probability of the differential
only improves marginally by considering more trails with a lower probability. On
the contrary, for designs like Simon (see Figure 46) this distribution grows exponen-
tially as the probability of the single trails decreases as has also been noted in [206],
and one has to take a much larger number of trails into account before getting a

3 This process took in total 23.5 hours on a single core, however after 1 hour the estimate for the differen-
tial probability improves by less than 2−0.9.
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Figure 42: Probability for the best single trails and differentials for Skinny-64 (left), and
the distribution of the number of trails with a fixed probability contributing to
the best 8-round differential for Skinny-64 (right). The green line indicates the
probability of the differential when summing up the probability of all trails up to
this probability, which highlights the small improvement when adding all lower
probability trails.

good approximation. For a detailed overview over how many trails contribute to
each differential see Table 7.

3.4.2 Midori

Midori is an AES-like lightweight block cipher optimised for low-energy usage
using a binary near-MDS matrix combined with a generic cell permutation for dif-
fusion. Despite that Midori-64 has a large number of 232 weak keys, for which
Midori-64 can be practically broken with invariant subspace attacks [166], there
has been no differential attacks on even reduced versions of Midori, apart from a
related-key attack by Gérault and Lafourcade [162].
The gap between the differential probability of a single trail and a differential be-
haves similar to Skinny-64, i.e., counting the active S-boxes gives an inaccurate
bound against differential distinguishers. For example we found new differentials
for Midori-64 where the 8-round single differential trail suggests a probability of
2−76 and the corresponding 8-round differential

0x0A000000A0000005
8−round Midori-64−−−−−−−−−−−−−→ 0x000000000000A0AA (53)

has a probability of larger than 2−60.86 by summing all 693730 trails up to a proba-
bility of 2−114. Similar to Skinny the distribution of the contributing trails is very
flat, which means that we quickly approach a good estimate for the probability of
the differential (see Figure 43).

3.4.3 Sparx

Sparx [135] is based on the long-trail strategy, introduced alongside with Sparx,
which can be seen as combining the ARX approach with an SPN, allowing to pro-
vide bounds on the differential resistance of an ARX cipher by counting the active
S-boxes. While it is also feasible to prove such a bound using the methodology
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Table 7: Detailed results on the differentials found for Skinny-64. We first provide the best
differential trail for r rounds. Next we give an estimate of the differential with the
input/output difference of the best differential trail found. #Trails gives the number
of differential trails we used for the estimate followed by the maximum weight of
the differential trails we use for the estimate. Timetrail gives the search time to
find the best single differential trail and Timediff provides the time to search all the
differential trails for the best differential.

r PrTrail PrDifferential #Trails Max weight Timetrail Timediff

6 2−32 2−23.51 100319 45 22m54s 1h38m

7 2−52 2−39.49 141800 58 1h03m 5h13m

8 2−72 2−56.55 821896 98 1h24m 23h20m

9 2−82 2−65.36 277464 89 1h06m 29h25m

10 2−92 2−75.98 66438 92 1h42m 2h59m

11 2−102 2−86.63 64339 103 2h36m 3h14m

12 2−110 2−95.00 62382 113 3h12m 3h37m

13 2−116 2−100.06 165079 124 2h42m 24h42m

14 2−122 2−106.71 100457 127 3h30m 10h25m

15 2−132 2−114.65 326404 142 7h23m 37h21m

16 2−150 2−135.41 24598 150 30h35m 1h44m

17 2−164 2−150.07 21524 165 60h09m 1h53m

18 2−176 2−161.64 20903 177 92h04m 1h54m

19 2−184 2−168.27 54245 185 60h22m 3h38m

20 2−192 2−176.74 39169 193 60h10m 2h59m

...
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Figure 43: Probability for the best single trails and differentials for various rounds of Midori-
64 (left), and Distribution of the trails contributing to the best 8-round Differential
for Midori-64 (right).

from Section 3.3, it is often computationally infeasible or the bounds are not very
tight [256]. The designers of Sparx used the YAARX toolkit [84] to show truncated
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Table 8: Detailed results on the differentials found for Midori-64.

r PrTrail PrDifferential #Trails Max weight Timetrail Timediff

4 2−32 2−23.79 896 36 31m36s 2m4s

5 2−46 2−35.13 55168 54 56m42s 1h10m

6 2−60 2−48.36 11072 71 1h54m 29m

7 2−70 2−57.43 28588 99 3h12m 1h32m

8 2−76 2−60.87 693730 114 1h6m 23h36m

9 2−82 2−66.52 104694 90 56m 3h12m

10 2−100 2−83.86 120181 106 5h12m 4h36m

11 2−114 2−98.04 87055 119 10h56m 3h18m

12 2−124 2−108.59 88373 131 1d02h 4h54m

13 2−134 2−118.70 56596 139 22h02m 3h06m

14 2−144 2−131.18 13932 149 1d16h 9h36m

15 2−150 2−137.07 25680 155 20h30m 1h48m

16 2−168 2−155.58 11815 172 3d21h 1h12m

trails, that they used to compute the differential bounds. One of the main design
motivations of Sparx was that it should be very difficult to find differential trails
for a large number of rounds for ARX-based ciphers with a state of more than 32
bits [134].
Our experiments have shown that ARX ciphers do not have a very strong differ-
ential effect compared to the previous lightweight SPN constructions. However,
as Sparx is in-between those it is an interesting target. Our results suggest that
Sparx-64 has a differential effect comparable to other ARX designs like Speck-64
(see Figure 44). The major limitation for applying our approach to Sparx is that the
search for optimal differential trails on Sparx is computationally very costly. While
trails up to 6 rounds can be found in less then 5 minutes, the 10-round trail took
already 32 days, on a single core4.

3.4.4 Results for other Lightweight Ciphers

Table 13 summarises the gaps between single-trails and differentials for all light-
weight block ciphers we analysed. We observed that for most ciphers a large gap
between the probability for single-trails and differentials exists and that a higher
number of rounds is required for the block ciphers to be differential resistant. The
gaps also increase significantly with the number of rounds, which is not surprising
as with more rounds there are more valid differential trails for a given input/output
difference.

4 Note that this process can not easily be parallelised as most SAT solvers are inherently serial.
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Figure 44: Comparison of the best single trails and differentials for various rounds of Speck-
64 (left), and Sparx-64 (right).

Table 9: Detailed results on the differentials found for Sparx-64.

r Best Trail Differential #Trails Max weight Timetrail Timediff

1 1 1 1 1 0.02s 0.03s

2 2−1 2−1 1 2 0.1s 0.07s

3 2−3 2−3 1 4 0.5s 0.09s

4 2−5 2−4.99 8 49 2.4s 3.36s

5 2−9 2−8.99 12944 58 25s 2m12s

6 2−13 2−12.99 70133 51 3m48s 3h06m

7 2−24 2−23.95 56301 60 47h48m 28m

8 2−29 2−28.53 37124 60 15d5h 17m

9 2−35 2−32.87 233155 58 22d7h 7h42m

10 2−42 2−38.12 1294158 73 32d12h 35h18m

....

The biggest gap, in term of number of rounds, occurs for Simon-64 with a gap
of five rounds. There is also a 2-round gap for ciphers like Present, Midori and
Twine. However, it seems that the gap for Simon-64 grows faster, considering that
the differentials and trails seem to follow an exponential growth as also observed
in [206]. In comparison Present, Midori and Twine seem to grow in a linear way.
In relation to the number of rounds, the gap for Midori also has quite a significant
impact and allows to extend the distinguisher by two rounds. Further we observed
that there seem to be nearly no gaps for ciphers like Rectangle and Speck. We
illustrate the gaps for the analysed ciphers in Figure 45 and we provide Figure 46

showing the distribution of valid differential trails that contribute to the probability
of the best differential for each cipher.
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3.4.5 Differentials for Midori, Skinny and Sparx

In the following we give the best differentials that we found for Midori, Skinny

and Sparx. The differentials for many other lightweight ciphers together with the
source code to generate the differential models is publicly available at: https://

github.com/TheBananaMan/cryptosmt

Table 10: The best differentials that we found for various rounds of Midori-64.

r Differential PrDifferential

4 0x0000020000022000→ 0x0020220002022002 2−23.79

5 0x0004100000000100→ 0x0222220222222022 2−35.13

6 0x0550000000005000→ 0x0000AA0000007707 2−48.36

7 0x0AA00500700A0000→ 0x00005AFF0000AAA0 2−57.43

8 0x0A000000A0000005→ 0x000000000000A0AA 2−60.87

9 0x0000000A050000A0→ 0x770700000AAAA0AA 2−66.52

10 0x0500005050000000→ 0xDD7A7D0D25727A7D 2−83.86

11 0x0000A00000500500→ 0xAAA0AAA50AAAAA0A 2−98.04

12 0xA0A00A0A00007000→ 0x0000DD7A00007077 2−108.59

13 0x0000A0070A000AA0→ 0x00000555A5AFAF5F 2−118.70

14 0x0000000000000500→ 0x000070777707AAA0 2−131.18

15 0x0A0000A00000000A→ 0x05550000AA0AAAA0 2−137.07

16 0xAA00A0A0AAA00A70→ 0x00007077AA0A7770 2−155.58

3.4.6 Application of the Differential Gaps to the Best Published Differential At-
tacks

In the following, we analyse the best published differential attacks and discuss
improvements of the attacks by considering the differential gaps between single-
trails and differentials.

midori-64 . Gérault and Lafourcade [162] proposed related-key differential at-
tacks on full-round Midori-64, where they use 16 ·15-round and 4 ·14-round related-
key differential trails to recover the key. In their attacks they do not exploit differ-
entials. In comparison, the best differential that we found reaches 8 rounds with a
probability of 2−60.86.

skinny-64. Liu et al. [230] propose related-tweakey rectangle attacks on 26 rounds
of Skinny-64-192 and they use optimal single differential trails based on truncated-
differential trails. The authors exploit the differential gap of Skinny by using 5000
single differential trails to compute the differential for a 22-round distinguisher. In

https://github.com/TheBananaMan/cryptosmt
https://github.com/TheBananaMan/cryptosmt
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Table 11: The best differentials that we found for various rounds of Skinny-64.

r Differential PrDifferential

6 0x0041C00001000000→ 0x4044400400404444 2−23.51

7 0x002220222B222000→ 0x0444004404004444 2−39.49

8 0x0104401000C01C00→ 0x0606060000060666 2−56.55

9 0x0020000200020200→ 0x0060000100600160 2−65.36

10 0x0008200020000020→ 0x0008808000880088 2−75.98

11 0x0002200000000200→ 0x0444004404004444 2−86.63

12 0x0004000000000000→ 0x0001000100000001 2−95.00

13 0x0200000000002000→ 0x0001001100000001 2−100.06

14 0x4000040000400000→ 0x0404040000040444 2−106.71

15 0x8008080000800000→ 0x1066100600601666 2−114.65

16 0x0020000220000000→ 0x8880088080008888 2−135.41

17 0x004C400004000000→ 0x2002022022020022 2−150.07

18 0x400C0000C00C0000→ 0x0077001100660077 2−161.64

19 0x2200000000002008→ 0x0077001100660077 2−168.27

20 0x8800000000008009→ 0x8800080900008800 2−176.74

. . .

Table 12: The best differentials that we found for various rounds of Sparx-64.

r Differential PrDifferential

1 (0x0040, 0x8000, 0x0000, 0x0000)→ (0x0000, 0x0002, 0x0000, 0x0000) 1

2 (0x0010, 0x2000, 0x0000, 0x0000)→ (0x8000, 0x8002, 0x0000, 0x0000) 2−1

3 (0x2800, 0x0010, 0x0000, 0x0000)→ (0x8300, 0x8302, 0x8100, 0x8102) 2−3

4 (0x0000, 0x0000, 0x2800, 0x0010)→ (0x8000, 0x840A, 0x0000, 0x0000) 2−4.99

5 (0x0000, 0x0000, 0x0211, 0x0A04)→ (0x8000, 0x840A, 0x0000, 0x0000) 2−8.99

6 (0x0000, 0x0000, 0x0211, 0x0A04)→ (0xAF1A, 0xBF30, 0x850A, 0x9520) 2−12.99

7 (0x0000, 0x0000, 0x7448, 0xB0F8)→ (0x8004, 0x8C0E, 0x8000, 0x840A) 2−23.95

8 (0x0000, 0x0000, 0x0050, 0x8402)→ (0x0040, 0x0542, 0x0040, 0x0542) 2−28.53

9 (0x2800, 0x0010, 0x2800, 0x0010)→ (0x5761, 0x1764, 0x5221, 0x1224) 2−32.87

10 (0x2800, 0x0010, 0x2800, 0x0010)→ (0x8081, 0x8283, 0x8000, 0x8002) 2−38.12

. . .

comparison, the best differential trail with no differences in the tweak/key that we
found reaches 8 rounds with a probability of 2−56.55.
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Table 13: Gap between the number of rounds required for a cipher to be differential trail
resistant (DTR) and differential resistant (DR). Note that DR is only a lower bound
and there might still exist better differentials.

Group Design Strategy Cipher Block Size Key Size Rounds DTR DR

SP
N

AES-like
Midori 64 128 16 7 9

Skinny 64 64/128/192 32 8 9

Bit-sliced Rectangle 64 80/128 25 15 15

Present-like Present 64 80/128 31 15 17

Reflection Prince 64 128 12 6 8

ARX-based Sparx 64 128 24 15 155

Fe
is

te
l

AND-RX Simon 64 96/128 42 19 246

ARX Speck 64 96/128 26 > 15 > 157

GFN Twine 64 80/128 36 14 16

Two-branched LBlock 64 80 32 15 16

rectangle. Zhang et al. [361] studied the differential effect and showed an 18-
round differential attack, where they used a 14-round differential with a probabil-
ity of 2−62.83. In our analysis we found a better differential for 14 rounds with
probability of 2−60.63 by summing up 40627 single-trails which would improve the
complexity of these attacks. For more rounds the distinguisher are below 2−64.

present. Liu and Jin [229] presented an 18-round attack based on slender-sets.
Wang et al. [343] further presented normal differential attacks on 16-round Present

where they used a differential with probability 2−62.13 by summing up 91 differen-
tial trails which is comparable to our differentials.

prince. Canteaut et al. [109] showed differential attacks on 10 rounds of Prince,
by considering multiple differential trails. In their attack they use 12 differentials,
for six rounds with a probability of 2−56.42 by summing up 1536 single-trails. The
differential we found for 6 rounds only has a probability of about 2−62, but does
not lead to further improvements of the attack.

sparx-64 . Ankele and List [26] (also see Chapter 7 for further details) studied
truncated-differential attacks on 16 rounds of Sparx-64/128 and used single differ-
ential trails, for the first part of the 14-round distinguisher, and truncated the second
part of the distinguisher. The designers of Sparx-64 claim that Sparx is differential
secure for 15 rounds, however, by considering the differential effect of Sparx-64,
also in comparison with Speck-64, it seems likely that there exist differentials with
more than 15 rounds with a data complexity below using the full codebook.

5 Single-Trail differentials of Sparx [135] are proven to reach 15 rounds, while the authors mention that
they don’t expect the bound to be tight.

6 The best differentials for Simon-64 reach 23 rounds with 2−63.91 [232].
7 The best differentials for Speck-64 reach 15 rounds with 2−60.56 [312].
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Figure 45: Probability for the best single trails and differentials for various rounds of differ-
ent block ciphers. 1st row: Simon-64 (left) and Present (right), 2nd row: Rectan-
gle (left) and Prince (right), 3rd row: Speck-64 (left) and Twine (right), 4th row:
LBlock (left)

simon-64. Abed et al. [7] presented differential attacks on Simon-64, where they
used a 21-round distinguisher with a probability of 2−61.01. Better distinguishers
are reported by [232] for 23 rounds with a probability of 2−63.91. The differentials
we found are in line with previous results.
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Figure 46: Distribution of the trails contributing to the best Differential for various block
ciphers. 1st row: Simon-64 (left) and Present (right), 2nd row: Rectangle (left)
and Prince (right), 3rd row: Speck-64 (left) and Twine (right), 4th row: LBlock

(left) and Sparx-64 (right)

speck-64. Song et al. [312] presented 20-round attacks on Speck-64 by construct-
ing a distinguisher from two short trails where they concatenated the two trails to
a 15-round trail with probability 2−60.56. The distinguishers used in the attack are
already based on differentials and the differentials we found do not lead to any
improvement.
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twine. Biryukov et al. [75] showed a 25-round impossible differential attack and a
truncated differential attack on 23 rounds by chaining several iterated 4-round trails
together. In the paper the authors also considered differentials for 12 rounds with a
probability of 2−52.08 and 16 rounds with probability 2−67.59. The best differential
that we found reaches 15 rounds with a probability of 2−62.89.

lblock. Wang et al. [344] published a 24-round impossible differential attack on
LBlock. Due to the nature of impossible differential attacks, trails with probability
1 are used for constructing these. The best differential that we found reaches 15
rounds with a probability of 2−61.43.

3.5 experimental verification and the influence
of keys

In Section 3.1 we made several assumptions in order to compute DP(Q) and in this
section we compare the theoretical estimates with experiments for reduced-round
versions. This serves two purpose: First we want to see how close our estimate for
DP(α,β) is and secondly we want to see the distribution over the choice of the keys.
Specifically, we are interested in the number of pairs

δK(α,β) = #{x ∈ Fn2 | EK(x)⊕ EK(x⊕α) = β}. (54)

This number of good pairs will vary over the choice of key. For a random process we
would expect that the number of valid pairs is about DP ·2n and follows a Poisson
distribution.

Definition 46. Let X be a Poisson distributed random variable representing the

number of pairs (a,b) with values in Fn2 following a differential D = (α
f−→ β), that

means f(a)⊕ f(a⊕α) = β, then

Pr(X = l) = (2np)l
e−(2np)

l!
(55)

where p is the probability of the differential.

In the following, we experimentally verify differentials for Skinny, Speck and Mi-
dori for a large number of random pairs of plaintexts and a random choice of keys
to see how good this approximation is.

3.5.1 Skinny

As a first example we look at Skinny-64. We use the 6-round differential

D = (0x0000010010000041, 0x4444004040044044)

for Skinny-64. The best trail which is part of D has a probability of 2−32 and by
collecting all trails (100319) contributing to this differential we estimate DP(D) ≈
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Figure 47: Distribution of δK(Q) over a random choice of K for 6-round Skinny-64.
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Figure 48: Distribution of δK(Q) over a random choice of K for 7-round Speck-64.

2−23.52. We try out 230 randomly selected pairs for 10000 keys and count the
number of pairs following D. From our estimate we would expect that on average
we get about 89 pairs for a key.
As one can see from Figure 47 our estimate of DP(D) provides a good approxi-
mation for the distribution over the keys, although the distribution has a larger
variance than we expected.

3.5.2 Speck

For Speck-64 we look at the differential

D = ((0x40004092, 0x10420040), (0x8080A080, 0x8481A4A0))

over 7 rounds. The best trail in D has a probability of 2−21 and this only slightly
improves to about 2−20.95 using six additional trails. We again run our experiments
for 230 randomly selected pairs for 10000 keys and count the number of pairs fol-
lowing D. On average we would expect 530 pairs.
In Figure 48 it can be seen that for 7-round Speck-64 the distribution is bimodal and
we over- and under-estimate the number of valid pairs for most keys.
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Figure 49: Distribution of δK(Q) over a random choice of K for 4-round Midori-64. We
omitted the 2545 keys with zero good pairs in this plot.

3.5.3 Midori

For Midori-64 we look at the differential

D = (0x0200200000020000, 0x0202220020020020)

over 4 rounds. The best trail in D has a probability of 2−32 and this improves to
about 2−23.79 using 896 additional trails. We again run our experiments for 230

randomly selected pairs for 3200 keys and count the number of pairs following D.
On average we would expect about 74 pairs.
In Figure 49 it can be seen that for 4-round Midori-64 the distribution is very
different from the previous cases. For some keys the probability is significantly
higher and for ≈ 80% of the keys we get zero good pairs. This means that for a
large fraction of keys we actually found an impossible differential and one should
be careful when constructing differential distinguishers for Midori. In particular
it would be interesting to classify this set of impossible keys and we leave this as
an open problem. Moreover, this also implies the existence of a large class of weak
keys, that has also been observed in the invariant subspace attacks on Midori-
64 [166, 220, 325].

3.6 conclusion
In this Chapter, we showed for several lightweight block ciphers that the gap be-
tween single differential trails and differentials can be surprisingly large. This leads
to significantly higher probability of differentials in several designs and allows us
to have differential distinguishers covering more rounds.
We provided a simple framework to automate the process of collecting many differ-
ential trails that are contributing to the probability of a differential. We hope this
will encourage future designs of cryptographic primitives to apply our methodol-
ogy in order to provide better bounds on the security against differential cryptanal-
ysis.
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Further we verified differentials for a reduced number of rounds experimentally
and showed that our improved estimates of the probability of differentials of Skinny

closely resembles what happens in experiments. However, we can also observe that
some commonly made assumptions on the distribution of good pairs following a
differential over the choice of keys has to be made very carefully. For instance,
the results for Speck and Midori indicate that one needs to be very careful in
presuming that the estimates apply to all key values.
One restriction with our approach is that while our differentials improve a lot upon
the single trails, we do not always find the optimal differentials. Identifying the
most promising differentials is still an open question and using the best single trail
as a starting point might not always be optimal.
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executive summary. In this chapter, we study 4-bit cryptographic S-boxes with
a focus on low-energy designs. Many devices in resource constrained environments,
the Internet of Things (IoT) in general, are powered by batteries. Thus, those devices
often operate on a tight power/energy budget. Medical implants such as pacemak-
ers, insulin pumps or brain implants are some examples. Security and privacy is
crucial in the communication channel of these devices.
Lightweight cryptography is an active field of research and there have been many
cipher proposals in the last few years. In conventional cryptographic standards the
trade-off between security and performance is optimised for high performance en-
vironments. However, in resource constrained environments those cryptographic
standards are difficult or impossible to implement. Hence, lightweight ciphers
have been optimised for area, power consumption, memory complexity, latency
and throughput. Yet, little work has been done on energy efficient ciphers.
We are trying to fill this gap and give a detailed study on energy-efficient design
strategies for block ciphers. Moreover, we concentrate our research on Substitution-
Boxes (S-boxes) that are an important building block of Substitution Permutation
Networks (SPN). We analyse all optimal 4× 4-bit S-boxes, and classify them in two
groups, based on Present-like and Prince-like designs, that we show to be optimal
block cipher designs for low-energy consumption. In that context we further anal-
yse all involutory 4-bit permutations, and study the differential and linear branch
numbers of all optimal 4-bit affine equivalence classes.

107
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As a result, we give recommendations for optimal low-energy S-boxes, that cipher
designers can use in their ciphers, for instance in the upcoming lightweight cryp-
tography standardisation process by the National Institute of Standards and Tech-
nology (NIST).

declaration of authorship. The work described in this chapter is based on
the paper: Fighting Climate Change - Towards Energy-Efficient S-boxes which is cur-
rently in preparation for publishing. The paper is joint work with Erik Boss, Miroslav
Knežević, Marco Martinoli, and Tolga Yalçın. All authors contributed equally to the
results of the paper. The contributions of the author are the following:

• Implementation of the search for involutory S-boxes,

• Implementation of the search for S-boxes with high differential/linear branch-
ing number,

• Cryptographic analysis of all 4× 4-bit S-boxes

4.1 introduction
Lightweight cryptography emerged from the lack of primitives that are capable to
run in highly constraint but interconnected environments (i.e., automotive systems,
sensor networks, RFID tags, healthcare and smart grids) the Internet of Things
(IoT) in general. Security and privacy is very important in all these areas. Yet,
modern cryptographic algorithms are designed to run on desktop/server systems
and are not suitable for these restricted environments. Lightweight cryptographic
algorithms aim to provide solutions tailored for resource constraint environments
without compromising efficiency or security. A significant amount of effort has been
done in recent years by the cryptographic community to tackle these limitations;
this combines efficient implementations of conventional cryptographic algorithms
and the design of new lightweight primitives.
A lot of block ciphers have been designed were the aspects of lightweightness are
measured by e.g., area, power consumption, memory complexity, latency and resis-
tance against side channel attacks. These ciphers include Hight [174], Present [95],
Clefia [310], LED [168], Prince [101], Katan/Katantan [105], Piccolo [309],
Sparx [135], Skinny [50] and Gift [40].
However, there has been little work on energy-efficient designs with just Midori [37]
that has been optimised specifically for low-energy. Energy consumption is a mea-
surement of a power source (i.e., battery) over time (i.e., the duration of executing
an operation). Hence, the measurement of energy is a more relevant parameter
than power to measure the efficiency of a cipher. Certainly, optimising a cipher for
low-energy has a wide range of applications as a lot of devices in constraint environ-
ments are battery powered and they are therefore working with a tight power/en-
ergy budget. Especially crucial are several medical implants such as pacemakers,
brain implants for epilepsy and seizure patients as well as insulin pumps for dia-
betes patients.
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Recently, the US National Institute of Standards and Technology (NIST) has also
published a call for a standardisation process of lightweight ciphers [43]. In the call,
they specifically devote one of the main design requirements to be low-energy:

"The algorithms should be flexible to support various implementation
strategies (low energy, low power, low latency)."

We concentrate on some of the underlying components of a block cipher. In par-
ticular, we focus on cryptographic Substitution-Boxes (S-boxes) that are optimised
for low-energy consumption. In that context, we analyse all 4× 4-Bit S-boxes, but
target our analysis on cryptographically optimal S-boxes as defined by Leander and
Poschmann [219].
We analyse several design aspects of low-energy block ciphers, and recommend
two designs in particular, Present [95] and Prince [101], as they are optimal can-
didates for low-energy ciphers. Thus, additionally to low-energy consumption, we
categorise the analysed S-boxes in those two groups relevant to their application
area.
For Present-like designs, we argument that low-energy S-boxes should also have a
high differential/linear branch number to ensure that in an overall block cipher de-
sign the cipher reaches full diffusion after a short number of rounds. Therefore, we
coincide low-energy S-boxes with S-boxes that have an optimal differential/linear
branch number.
Prince-like designs build upon an involutory diffusion layer and the α-reflection
property of reflection ciphers. This property allows to re-use parts of the cipher, by
mirroring the rounds around an involutory middle construction, that then enables
that decryption is the same as encryption with a related key. For a more energy-
efficient design, we therefore study all involutory S-boxes that have an optimal
low-energy consumption.

related work. In his Ph.D thesis, De Cannière [128] firstly studied 4× 4-Bit S-
boxes and provided a simple and efficient algorithm to classify them in 302 affine
equivalent classes. Leander and Poschmann [219] classified all optimal 4× 4-Bit S-
boxes, up to affine equivalence, and identified that there are 16 optimal classes of
S-boxes with respect to differential and linear attacks. Further improvements were
made by Saarinen [293], who provided extended properties of the optimal S-box
classes, up to linear equivalence. In his analysis, he showed that the 16 optimal
affine equivalent classes not only share their differential and linear bounds but also
have equivalent algebraic properties and circuit complexities. Moreover, he defines
4 classes of golden S-boxes with optimal differential/linear bounds and algebraic
properties. In 2018, Sarkar and Syed [297] analysed differential and linear branch
number for S-boxes and obtained bounds for the differential and linear branch
numbers of permutations of Fn2 . They also showed that the maximal differential
branch number for 4× 4-Bit S-boxes can only be achieved by affine permutations.
Banik et al. [39] firstly explored the energy-efficiency of lightweight block ciphers
where they analysed the building blocks of Substitution-Permutation Network (SPN)
ciphers and identified the parameters that affect the energy consumption of a cryp-
tographic primitive. Later, Banik et al. proposed Midori [37], the first block ci-
pher optimised for low-energy. In their design, they tried to optimise each compo-
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nent of the electrical circuit as well as the entire architecture for energy. Recently,
Banik et al. proposed another cipher, Gift [40], which is optimised in all domains
(faster and smaller). The designers claim that any cheaper choice of S-box would
lead to a very weak cipher. Moreover, Gift is one of the most energy efficient
ciphers as of today.

4.2 design considerations for low-energy
The energy consumption for any given block ciphers is dominated by the following
factors.

• Clock Frequency: The energy consumption of charging and discharging the
capacitive load of a gate when an output transition (Note, we will later define
it as switching activity) occurs is highly dependent on the clock frequency
of the circuit. For high frequencies, energy due to leakage just minimally
contributes to the total energy consumption [39].

• Architecture of Cipher Components: The architecture of the underlying ci-
pher components contributes highly to the energy consumption. While the
Canright architecture [106] seems to be the most compact representation in
terms of area, the designers of Midori [37] argument that the Decoder-Switch-
Encoder architecture [64] is optimal for energy.

• Latency: The energy consumption further depends on the latency of the cir-
cuit [199]. Latency in a block cipher can be defined as a measurement of the
time needed to encrypt a single message block:

Latency = N · tcp,

where N is the number of cycles to encrypt a single message block, and tcp is
the time used for encryption by using the critical path of the circuit.

• Width of Data-Path: In hardware implementations, unrolling the round func-
tion of a block cipher improves the throughput compared to fully serialised
designs, where an implementer aims to compute one round in one clock cy-
cle. Unrolling a block cipher allows to compute several round functions in
fewer cycles, at the cost of increased area of the combined circuit. In an un-
rolled design, the energy consumption is improved, as energy does not need
to be spent to store signals at the output of each round [132]. Nevertheless,
Banik et al. [39] showed that fully serialised designs are better for low-energy
by analysing the energy consumption of all components in unrolled and fully
serialised designs.

4.2.1 Fundamental Principles of Power/Energy Consumption

Optimising cryptographic building blocks for low-energy consumption requires a
designer to improve the area, latency and power consumption, simultaneously. In
recent years, the focus of designers has been to reduce the hardware area [38] and
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Table 14: Comparison of energy consumption for round-based implementation of various
lightweight ciphers synthesized with STM 90nm Standard cell library.†

Cipher
Area Delay Cycles Power Energy

(GE) (ns) (µW/@10MHz) (pJ)

Midori-64/128 1542 2.06 17 60.6 103.0

Prince-64/128 2286 4.06 13 111.3 144.7

Rectangle-64/128 1637 1.61 27 76.2 206.0

Gift-64/128 1345 1.83 29 74.8 216.9

Present-64/128 1560 1.63 33 71.1 234.6

Piccolo-64/128 1868 2.32 32 79.4 254.1

Skinny-64/128 1477 1.84 37 80.3 297.0

Simon-64/128 1458 1.83 45 72.7 327.3

LED-64/128 1831 5.25 50 131.3 656.5

AES-128/128 7215 3.83 11 730.3 803.3

the latency [101] of block ciphers. Power and energy are correlated parameters, as
power can be essentially defined as the energy that is consumed per a unit of time.
The power consumption in a fully unrolled hardware circuit is defined as:

Ptotal = Pswitching + Pleakage

where Pswitching � Pleakage. Power leakage Pleakage results from transistors
in CMOS gates when the transistor is off. If the clock frequency is above 1MHz
the leakage is negligible [39]. The switching activity sw of a gate is defined as the
average number of output transitions from 0 → 1 and 1 → 0. Table 15 gives an
overview of the switching activity for several CMOS gates. When measuring the
area of logic gates, the term Gate Equivalence (GE) is often used. Hereby, the logical
gates are compared to the NAND-gate, which is the most common gate, and normally
most of the other gates are constructed with NAND-gates.
The switching power consumption can be estimated as

Pswitching ≈ Ceff · V2DD · fclk · sw

where Ceff is the effective capacity of the gate, VDD is the supply voltage, fclk is
the clock frequency of the circuit, and sw is the switching activity of all gates.
The energy consumption of a hardware circuit is a measurement of the time integral
of power.

E = P · t = P · N
fclk

≈ Ceff · V2DD ·N · sw
† Data obtained from [37, 39, 40]
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Table 15: Comparison of CMOS gates.

Gate
Switching Gate

Activity Equivalent
(GE)

NOT 100% 0.67

NAND 75% 1.0

NOR 75% 1.5

AND 25% 1.6

OR 25% 2

XOR 50% 3

Round-based 2-Round unrolledRegisters

Round Key Logic

MixColumns

Input Multiplexer

Add Round Keys

Round Multiplexer

Other

Sbox Layer

Registers

Round Key Logic1

Round Key Logic2

MixColumns1

MixColumns2

Input Multiplexer

Add Round Keys1

Add Round Keys2

Round Multiplexer

Other

Sbox Layer1

Sbox Layer2

20.8%

15.3%

12.4%
10.9%

10.3%

4.9%
1.4%

24%

8.4%
6%

12.7%

4%
10.4%

6.9%
4.4%

7.1%3.7%0.1%

8%

28.3%

Figure 50: Energy shares for AES-128‡. (Left): Round-based, (Right): 2-Round unrolled.

where P is the power consumption of the hardware circuit, t is the time until one
full block is encrypted and, N is the number of cycle to encrypt a single message
block.
The energy/power consumption of a hardware circuit can be improved by either,
reducing the circuit area (e.g., by serialising the circuit) which reduces the capac-
ity of the circuit Ceff, but would increase the number of cycle to encrypt a single
message block N. Moreover, one can reduce the switching activity sw by choosing
different CMOS gates (See Table 15) or clock gating [292]. Moving to a smaller
CMOS technology would essentially decrease the capacity of the circuit Ceff, and
the supply voltage VDD, but the leakage currents Pleakage would increase. An-
other option is to reduce the operating clock frequency fclk or to reduce the latency,
which would also decrease the number of cycle to encrypt a single message block
N in the hardware circuit.

4.2.2 Block Cipher specific Design Considerations for Low-Energy

The energy consumption of a block cipher depends on several factors as mentioned
above. Figure 50 shows the energy consumption for the underlying building blocks
of AES-128. In a round-based implementation of AES-128 the separate steps of

‡ Data obtained from [39](Figure 2)
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the round function (S-box Layer, MixColumns, AddRoundKey) use about 46.7% of the
total energy consumption. The key schedule takes about 15.3% of the energy con-
sumption, and the remaining 38% are spent to store the states and general logic
(Registers, Input Multiplexer, and Round Multiplexer). The energy consumption in
a block cipher can be reduced by considering the following design decisions:

• Round-based Ciphers: While it seems counter-intuitive that a fully serialised
iterative block cipher consumes less energy, as it obviously requires a longer
execution time, Banik et al. [39] showed that round-based designs are actually
the best in terms of low-energy. In their work they studied AES-128, and
showed that a round-based implementation needs about 350.7 pJ, while 2,
3, 4, 5, and 10-round unrolled designs need 593.6, 1043, 1416.5, 1634.4, and
2129.5 pJ, respectively.

• Substitution Permutation Networks: Block ciphers can be split in two main
design strategies, Feistel networks and Substitution Permutation Networks. In
Feistel networks the encryption and decryption function can be designed with
low overhead making them easy to implement. Yet, the fact that normally just
half of the state is updated by a non-linear function requires more rounds
for the same security. In contrary, in Substitution Permutation Networks the
round transformation is applied to the entire state requiring less rounds for
the same security bounds. Therefore, Substitution Permutation Networks are
more suitable in low-energy designs.

• Few Complex Rounds: In general, low-energy ciphers with a few more com-
plex rounds require less energy than ciphers with a simple round function,
but a vast number of rounds. This can be observed for example by comparing
the energy consumption of Prince and Midori to Simon and Skinny. While
Prince and Midori have 11 and 16 more complex rounds, Simon and Skinny

have 44 and 36 very simple rounds. Nevertheless, Midori requires 103.0pJ,
Prince requires 144.7pJ, while Skinny requires 297.0pJ and Simon requires
327.3pJ. A comparison of several lightweight ciphers is given in Table 14.

• Low Area and Signal Delay: By reducing the area required for the implemen-
tation of a circuit, the capacity is reduced, which leads to less power leakage
and a lower energy consumption. Furthermore, a reduced area improves the
signal delay in the circuit.

• Smaller S-boxes: The designers of Midori [37] observed that 4-bit S-boxes
consume less energy than 8-bit S-boxes, as the signal delay is lower in a 4-bit
S-box. However, designs based on 4-bit S-boxes normally require more rounds
to achieve the same security bounds regarding differential/linear cryptanaly-
sis. Nevertheless, as shown by Banik et al. [37] 4-bit S-boxes still outperform
8-bit S-boxes by a factor of 2.

• Involutions: Cipher designs like Noekeon and the middle layer of Prince

that relies on involutions, facilitates that some components can be reused in
the implementation of the encryption/decryption algorithms. This effectively
reduces the area and improves the energy consumption of a cipher.
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4.2.3 S-box specific Design Considerations for Low-Energy

By analysing the energy consumption of AES as illustrated in Figure 50, one can
observe that a vast majority of the energy consumed by a block cipher is spent by
S-boxes. In a round-based design about 24% of the total energy consumption is
spent in the S-box layer. When unrolling the round function, where we unroll two
rounds of AES-128, around 8% of the energy consumption is spent for the S-box
layer of the first round and around 28.3% are spent for the S-box layer of the second
round. Consequently, by reducing the energy used in an S-box one should be able
to reduce the energy consumption of the whole block cipher. In the following, we
give some S-box specific design considerations for low-energy S-boxes.

• Architecture: While the Canright [106] architecture is the most compact in
terms of area it is less optimal for low-energy. Implementing the S-box di-
rectly as Look-up-table (LUT) requires a large amount of area [302]. The most
energy-efficient architecture for S-boxes is the Decoder-Switch-Encoder archi-
tecture [64, 354].

• Low Area and Signal Delay: Similar as for block cipher designs, reducing the
area of an S-box reduces the signal delay and decreases the capacity of the
circuit.

• Algebraic Structure: The algebraic structure of an S-box has a huge impact
on the switching activity in the circuit. While non-linear gates such as AND,
OR in average just switch 25% on average, XOR gates switch 50% on average
and optimal gates in terms of area, like NAND, NOR gates switch 75% on average
(Note, see Table 15 for details).

• Mathematical Properties: Involutory S-boxes do not require to implement an
inverse S-box, as the S-box is its own inverse. Therefore, involutory S-boxes
are ideal for low-energy ciphers.

4.3 analysis of optimal low-energy s-boxes

4.3.1 Requirements for Optimal Low-Energy S-boxes

An optimal low-energy S-box has to fulfil several criteria. In Section 4.2 we already
specified the performance considerations for an low-energy S-box. Furthermore,
in Chapter 2.5.1 we outlined the necessary criteria for a cryptographically secure
S-box. For an optimal low-energy S-box we first defined the following criteria:
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Figure 51: Round function of Present.

Present SBox Layer

Diffusion Layer

Data State

Key Schedule

Key XOR

Other (Multiplexer, Registers, ...)

28.5%

24.5%

0%

30.6%

10.8%

5.4%

Figure 52: Area distribution of Present syn-
thesized in the Virtual Silicon
(VST) 0.18µm standard cell library.

Table 16: Area distribution of
Present

¶.

Area Distribution

S-box Layer 448 GE 28.5%

1 S-box ≈ 28 GE 1.78%

Diffusion Layer 0 GE 0%

Data State 384 GE 24.5%

Key Schedule 480 GE 30.6%

Key XOR 170 GE 10.8%

Other 86 GE 5.4%

Total 1570 GE 100%

Cryptographic Properties :

• Max. diff. probability = 2−2,

• Max. lin. bias = 2−2,

• Branch number (diff/lin) = 3,

• Algebraic degree = 3,

• No fixed points,

• Involutory

Performance Properties :

• Low area 6 16 GE

• Low power 6 350 nW/@1MHz

• Low number of gates 6 20 gates

• Low circuit complexity

These requirements were inspired by the design rationales of the designs for Mi-
dori, Gift and Prince. The designers of Midori searched for involutory S-boxes
with maximum differential/linear probabilities/bias of 2−2. The designers of Gift

further specified no fixed points, which is relevant in bit-based diffusion layer de-
signs, an algebraic degree of 3 for the whole S-box (i.e., the component functions
can have a lower degree), and a maximum area of 16 GE for the S-box (i.e., the
Present S-box has 21.33 GE, the Skinny S-box has 13.33 GE). However, the design-
ers relaxed the requirements for the maximum differential probability to 2−1.415

and ensured that there are no high probability differential trails when designing
the diffusion layer. The designers of Prince specified maximum differential/linear
probability/bias of 2−2 and further restricted the search space by requiring that all
non-zero component functions of the S-box should have an algebraic degree of 3.

¶ Data obtained from [95]
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4.3.2 Block Cipher Design Strategies for Low-Energy Ciphers

The ambition behind our analysis of low-energy S-boxes is to use the best perform-
ing S-boxes in the design of a block cipher. In Section 4.2.2, we already outline the
requirements for low-energy block cipher designs. Now we want to further study
some lightweight cipher designs to analyse the contribution of the different building
blocks in a block cipher, to further motivate the use of energy-efficient S-boxes.
In this work, we focus on the block ciphers Prince and Present. In the following,
we give details for our choices.

present [95] is a lightweight block cipher that is optimised for small area. The
cipher supports a block size of 64-bits and key sizes of 80 and 128-bits. Present

recommends 31 rounds where one round is illustrated in Figure 51. The diffusion
layer of Present is a simple bit-permutation, that can be implemented in hardware
just by wiring. Compared to the diffusion layer of i.e., AES, that uses a large MDS
matrix, a bit-permutation is optimal to reduce area and consequently also the energy
consumption. The efficiency characteristics (e.g., energy, power, area, . . . ) and also
the cryptographic strength of Present-like designs therefore, mainly depends on its
S-box Layer. Present uses a simple 4-bit S-box S : F42 → F42. The differential branch
number of Present is three, while the linear branch number just reaches two. The
algebraic degree is three. The maximal differential probability is 2−2 and the linear
probability bias is 2−2. Figure 52 and Table 16 show the area distribution of the
components of Present. It is easy to see that the S-box layer has the most impact in
Present. Hence, this also follows for the energy consumption of the components.
The energy consumption of Present is 234.6 pJ in the implementation by [39] in
the STM 90nm standard cell library. This puts Present in the middle of our energy
comparison for lightweight block ciphers as illustrated in Table 14. However, the
designers of Gift [40] have shown that changing the S-boxes to smaller ones, and
adapting the diffusion layer to provide strong cryptographic security bounds can
significantly reduce the area and the energy consumption.

prince [101] is a lightweight block cipher that is optimised for latency when im-
plemented in hardware. The cipher supports a block size of 64-bits and a key size
of 128-bits. Prince recommends 12 rounds as illustrated in Figure 53. The diffu-
sion layer uses a combination of an involutory binary matrix and AES ShiftRows.
Prince uses a simple 4-bit S-box S : F42 → F42. The differential and linear branch
numbers of Prince are only two. The algebraic degree is three. The maximal dif-
ferential probability is 2−2 and the linear probability bias is 2−2. Figure 54 and
Table 17 show the area distribution of the components of fully unrolled Prince for
unconstrained (i.e., 1MHz) and constrained (i.e., 65MHz) clock frequencies. Simi-
lar as for Present, the S-box layer of Prince consumes the most area with around
28.5%. Hence, this also follows for the energy consumption of the components.
The energy consumption of Prince is 144.7 pJ in the implementation by Banik
et al. [39] in the STM 90nm standard cell library. This puts Prince in the second
place after Midori in our energy comparison for lightweight block ciphers as illus-
trated in Table 14. The design of Prince is optimal for low-energy as it requires just
12 rounds compared to i.e., Present or Gift with 31 and 28 rounds, respectively.
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Figure 54: Area distribution of fully unrolled Prince. (Left): clock frequency is uncon-
strained (i.e., 1MHz), (Right): clock frequency is constrained to 65MHz.

Table 17: Area distribution of fully unrolled Prince. We give details for unconstrained
(1MHz)/constrained (65MHz) clock frequencies. Prince is synthesized with the
40nm CMOS library.

Unconstrained Constrained

Fully Unrolled Cipher 7716 GE 47758 GE

Forward Round 623 GE 4065 GE

Diffusion Layer 215 GE 1298 GE

S-box Layer (16 S-boxes) 226 GE 1988 GE

1 S-box ≈ 14 GE ≈ 78-161 GE

Backward Round 696 GE 4415 GE

Diffusion Layer 248 GE 1601 GE

S-box Layer (16 S-boxes) 295 GE 2055 GE

1 S-box ≈ 18 GE ≈ 96-151 GE

Prince uses an involutory binary matrix in the diffusion layer and is a reflection
cipher that uses the α-reflection property that enables the cipher to reuse parts of
the cipher components for both the forward and backwards rounds.
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Figure 55: Green circles indicate involutory S-boxes and blue circles indicate S-boxes with a
high branching number. (Top Left): Area/power plot of the golden class 160. (Top
Right): Instances/area plot of the golden class 160. (Bottom Left): Area/power
plot of the golden class 163. (Bottom Right): Instances/area plot of the golden class
163.

4.3.3 Analysis of Optimal 4-bit S-boxes for Low-Energy Consumption

In our search for optimal low-energy S-boxes, we focused on the requirements de-
fined in Section 4.3.1. Moreover, we made use of the affine equivalence classes
defined by De Cannière [128], and we particularly focused on the set of 16 optimal
classes as classified by Leander and Poschmann [219] and the golden classes classified
by Saarinen [293].
Furthermore, we restricted all 4× 4-bit S-boxes to permutations, which reduced the
search space from 2n2

n
to 2n!. In the case of 4× 4-bit S-boxes the search space

is reduced from 264 to 244.25. As involutory functions are not persistent under
affine equivalence, we then searched for all involutions in the search space and
split them into the affine equivalence classes. Moreover, the differential and linear
branch number also is not persistent under affine equivalence. Therefore, we further
studied all 244.25 S-boxes regarding their differential and linear branching numbers.
Table 20 gives an overview of the distribution of involutions and differential/linear
branch numbers for all 302 affine equivalence classes. Moreover, we provide an
overview of the most important cryptographic properties that hold under affine
equivalence.
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Figure 56: Green circles indicate involutory S-boxes and blue circles indicate S-boxes with a
high branching number. (Top Left): Area/power plot of the optimal class 266. (Top
Right): Instances/area plot of the optimal class 266. (Middle Left): Area/power
plot of the golden class 209. (Middle Right): Instances/area plot of the golden
class 209. (Bottom Left): Area/power plot of the golden class 210. (Bottom Right):
Instances/area plot of the golden class 210.

Figure 55 shows area/power and area/instances plots of the golden classes 160 and
163. Figure 56 shows area/power and area/instances plots for the golden classes 209,
210 and the optimal class 266. Note that all golden classes are also optimal classes. In
our Figures, we label involutions with green circles, and S-boxes with high differ-
ential/linear branch number with blue circles. Moreover, we added annotations for
several lightweight S-boxes of existing ciphers such as Gift, Midori, Noekeon,
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Piccolo, Present, Prince, Rectangle and Skinny. An interesting observation is
that the S-box of the low-latency cipher Prince is leading the ranking, followed
by the S-boxes of the energy-efficient cipher Midori. Furthermore, the involutory
S-box of Noekeon is on 4th position and the simple low-area S-boxes of Skinny

and Piccolo are next. Surprisingly, the S-box of Gift is just on the 7th position in
the ranking, even though the designers made a huge effort to reduce the area and
the number of instances as far as possible. Some further observations show that
non of the optimal affine-equivalence classes have a linear branch number above
two. Moreover for the involutory S-boxes, there are no S-boxes with a differen-
tial/linear branch number of three within all the optimal affine-equivalence classes.
This has also been observed by Leander and Poschmann [219] who compared the
optimal affine-equivalence classes to Serpent-like [67] S-boxes, and by Sakar and
Syed [297] who studied differential/linear branch numbers of permutations. Addi-
tionally, there are also no involutions with less then two fixed points in the optimal
affine-equivalence classes.
Nevertheless, we focused on S-boxes that are optimal in terms of area/power and
area/instances. While in general we are interested in the energy consumption of
an S-box, let’s take briefly a deeper look into how the average power is calculated
in our measurements. Let’s consider a simple AND gate, then the switching power
Pswitching, also called dynamic power in the literature, is calculated as the power
that the AND gate consumes when switching (i.e., a 0 → 1 transition or a 1 → 0

transition). In more details the switching power is equal to the product of switching
current and the power supply (i.e., voltage).

PANDswitching = VDD · IANDswitching
Moreover, we can derive the switching energy by multiplying the switching power
of a gate with the time it takes for that single gate to switch.

EANDswitching = PANDswitching · tANDswitching
That is for a single gate but once we start building up, first the S-box and then
the whole block cipher, for example, then we need to sum up all the energy chunks
consumed by every single gate that switched during the whole encryption, basically.
The number of times a single gate switches is characterised by the switching activity
sw, which is basically a probability that the output of that gate will switch from
0 → 1, or vice versa. While the switching activity is normally data dependent,
when evaluating a cryptographic S-box we can assume that the input and outputs
are chosen uniform at random. This way we can theoretically derive the switching
activity for every single gate from the full circuit description (i.e., what is also called
a netlist). However, in practice, we normally run hundreds of encryptions using
random test vectors and, during those runs, these small lumps of energy of every
individual gate are added up and the total energy consumed is divided with the
time it takes to run all those encryptions. That is how we obtain the figure of
average power consumption for our measurements.
Table 18 gives an overview of the best S-boxes we found in the golden and a few
selected optimal affine-equivalence classes. Those S-boxes are optimal in case of their
cryptographic properties, as well as they are optimal in case of their performance
properties for the use in low-energy ciphers.
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Table 18: Recommended list of S-boxes for low-energy consumption, based on their crypto-
graphic and performance properties. The first eight S-boxes are involutory S-boxes
optimised for Prince-like cipher, and the next seven S-boxes have a high branching
number that are optimised for Present-like ciphers.
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BD2CAF6E98403175 160 3 2 2 8 2−2 4 2−2 2 X 13.25 10 148

DBCF4A6E98512073 160 3 2 2 8 2−2 4 2−2 2 X 13.25 10 142

E623CA1BDF574809 160 3 2 2 8 2−2 4 2−2 2 X 13.25 10 157

EC7F6A42895D1B03 160 3 2 2 8 2−2 4 2−2 2 X 13.25 10 159

E6AC451DBF283709 160 3 2 2 8 2−2 4 2−2 2 X 13.25 10 155

EA6C7F24891D3B05 160 3 2 2 8 2−2 4 2−2 2 X 13.25 10 156

94CE165780BA2F3D 163 3 2 2 8 2−2 4 2−2 2 X 13.75 9 158

6132C90875FB4DEA 266 3 2 2 8 2−2 4 2−2 4 X 13.00 9 146

6B8EC750D43921FA 209 3 3 2 8 2−2 4 2−2 0 7 23.50 17 285

6D8EA730B25941FC 209 3 3 2 8 2−2 4 2−2 0 7 23.50 17 285

5E8D9730B16A42FC 209 3 3 2 8 2−2 4 2−2 0 7 23.50 17 285

3E8B9750D16C24FA 209 3 3 2 8 2−2 4 2−2 0 7 23.50 17 285

A74ECB90D83521F6 209 3 3 2 8 2−2 4 2−2 0 7 23.50 17 285

974DCBA0E83612F5 209 3 3 2 8 2−2 4 2−2 0 7 23.50 17 285

B760C2F9D41E38A5 210 3 3 2 8 2−2 4 2−2 0 7 23.75 17 325

4.3.4 Low-energy S-boxes for Prince-like Designs

After identifying some low-energy S-boxes the natural question that arises is, if one
replaces the S-boxes in an already existing cipher with the low-energy S-boxes, does
the energy consumption of the whole cipher improve? As we already have seen in
Figure 54, the area distribution of the S-box layer takes about 21.9% when the clock
frequency is unconstrained. However, there are also other factors that affect the
energy consumption in a block cipher as further outlined in Section 4.2.2.
Therefore, we replaced the original Prince S-box with the before identified low-
energy S-boxes in a fully-unrolled Prince implementation, and studied the energy
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Table 19: Comparison of fully-unrolled implementations of Prince with our recommended
low-energy S-boxes. We highlight in bold font the S-boxes that improve one of
the performance properties and in light green S-boxes that improve the whole
implementation of Prince. The implementation of Prince is done using the 40nm
CMOS library.

S-box
Area Power

Note
(GE) (nW/@1MHz)

BF32AC916780E5D4 12876 58.12 Original Prince S-box

BD2CAF6E98403175 12729 59.18
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sDBCF4A6E98512073 12729 59.21

E623CA1BDF574809 12678 59.15

EC7F6A42895D1B03 12677 58.45

E6AC451DBF283709 12677 59.84

EA6C7F24891D3B05 12684 57.98

94CE165780BA2F3D 13028 66.43

6132C90875FB4DEA 12706 62.64

6B8EC750D43921FA 15004 72.79
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6D8EA730B25941FC 15002 71.26

5E8D9730B16A42FC 15004 70.89

3E8B9750D16C24FA 15004 71.74

A74ECB90D83521F6 15004 72.64

974DCBA0E83612F5 15000 71.48

B760C2F9D41E38A5 14143 79.05

consumption of the whole cipher. Table 19 outlines our results. We highlight in bold
font, the S-boxes that improve upon the Prince S-box when implemented in a fully-
unrolled Prince implementation. While there are many S-boxes that potentially
improve upon Prince, as it can also be seen in Figure 55 and Figure 56, there is
just a short list of S-boxes that actually improve the performance of Prince when
implemented in the cipher. Moreover, as it can be seen in Table 19, nearly all of
our recommended S-boxes improve the total area of Prince, however, just one of
our recommended S-boxes (highlighted in green) additionally slightly improves the
power consumption.
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Table 20: Cryptographic properties of all affine equivalence classes. We highlight optimal
classes in blue, and golden classes in yellow. The representative of a class is the
lexicographically smallest S-box in the class. Deg., MDBN, MLBN, Lin., ε, δ, DP
denotes the algebraic degree, the maximum differential branch number within the
class, the maximum linear branch number within the class, the linearity, the linear
probability bias, the differential uniformity, and the differential probability of an
S-box, respectively. #Inv. denotes the number of involutions per class.

Representative Deg. MDBN. MLBN. Lin. ε δ DP #Inv.

0 0123456789ABCDEF 1 4 4 16 2−1.00 16 1 229.03

1 0123456789ABCDFE 3 3 2 16 2−1.00 16 1 225.82

2 0123456789ABCEFD 3 2 2 16 2−1.00 12 2−0.42 223.88

3 0123456789ABDEFC 3 3 2 16 2−1.00 16 20.00 224.76

4 0123456789ABDCFE 2 3 3 16 2−1.00 16 20.00 226.21

5 0123456789ACDBFE 3 3 2 16 2−1.00 12 2−0.42 222.30

6 0123456789ACBDFE 3 3 2 16 2−1.00 12 2−0.42 223.11

7 0123456789ACBEFD 3 2 2 16 2−1.00 10 2−0.68 221.88

8 0123456789ACDEFB 3 3 2 16 2−1.00 12 2−0.42 220.30

9 0123456789ACDEBF 3 3 2 16 2−1.00 10 2−0.68 222.30

10 0123456789BCAEFD 3 3 2 16 2−1.00 10 2−0.68 221.30

11 0123456789BCEFDA 3 3 2 16 2−1.00 12 2−0.42 221.30

12 0123456789CDEFAB 2 3 3 16 2−1.00 16 20.00 224.11

13 0123456789CDEFBA 3 3 2 16 2−1.00 16 20.00 223.88

14 0123456879CDEFBA 3 3 2 12 2−1.42 12 2−0.42 219.88

15 012345687A9CBEFD 3 3 2 12 2−1.42 10 2−0.68 219.30

16 012345687A9CDFBE 3 3 2 12 2−1.42 10 2−0.68 218.30

17 0123456879CDEFAB 3 3 2 16 2−1.00 12 2−0.42 220.30

18 0123456879ACDBFE 3 3 2 16 2−1.00 10 2−0.68 219.30

19 0123456879ACDFBE 3 3 2 12 2−1.42 10 2−0.68 218.30

20 0123456879ACDEBF 3 3 2 12 2−1.42 8 2−1.00 218.30

21 0123456879ACBDFE 3 3 2 16 2−1.00 10 2−0.68 220.30

22 0123456879ACFEDB 3 3 2 16 2−1.00 10 2−0.68 220.30

23 0123456879BCEFAD 3 3 2 12 2−1.42 8 2−1.00 218.30

24 012345687A9CFBDE 3 3 2 12 2−1.42 8 2−1.00 220.62

25 0123456879ABCEFD 3 3 2 16 2−1.00 10 2−0.68 220.88

26 0123456879BCDEFA 3 3 2 12 2−1.42 8 2−1.00 219.88

27 012345687ABCDEF9 3 3 2 12 2−1.42 10 2−0.68 218.30

28 0123456879BCEAFD 3 3 2 12 2−1.42 8 2−1.00 218.30

29 012345687ABCEFD9 3 3 2 12 2−1.42 8 2−1.00 0

30 012345687ABCE9FD 3 3 2 12 2−1.42 8 2−1.00 0



124 analysis of low-energy 4-bit s-boxes

continued...

Representative Deg. MDBN. MLBN. Lin. ε δ DP #Inv.

31 0123456879ACBEFD 3 3 2 12 2−1.42 8 2−1.00 218.30

32 0123456879ACFBDE 3 3 2 12 2−1.42 8 2−1.00 218.30

33 0123456879BCEFDA 3 3 2 12 2−1.42 8 2−1.00 0

34 0123456879BCFEAD 3 3 2 12 2−1.42 8 2−1.00 0

35 0123456879CEAFDB 3 3 2 12 2−1.42 8 2−1.00 218.30

36 0123456879CEAFBD 3 3 2 12 2−1.42 8 2−1.00 218.30

37 0123456879ACDEFB 3 3 2 12 2−1.42 8 2−1.00 218.30

38 0123456879ABDEFC 3 3 2 16 2−1.00 12 2−0.42 221.30

39 012345768A9CBEFD 3 3 2 16 2−1.00 8 2−1.00 0

40 012345768A9CBFDE 3 3 2 16 2−1.00 8 2−1.00 0

41 012345768A9CBFED 3 2 2 16 2−1.00 8 2−1.00 221.30

42 012345786ACBED9F 3 2 2 12 2−1.42 6 2−1.42 218.30

43 012345786ABCF9DE 3 3 2 12 2−1.42 8 2−1.00 0

44 012345786AC9BFED 3 3 2 12 2−1.42 8 2−1.00 0

45 012345786A9CFBDE 3 3 2 12 2−1.42 6 2−1.42 220.88

46 012345786ABCDEF9 3 3 2 12 2−1.42 8 2−1.00 218.30

47 012345786AC9DEBF 3 3 2 12 2−1.42 6 2−1.42 0

48 012345786AC9EDFB 3 3 2 12 2−1.42 6 2−1.42 0

49 012345786A9CDEBF 3 3 2 12 2−1.42 6 2−1.42 0

50 012345786A9CFDBE 3 3 2 12 2−1.42 6 2−1.42 0

51 012345786ABCDE9F 3 3 2 12 2−1.42 6 2−1.42 218.30

52 012345786ACBDE9F 3 3 2 12 2−1.42 8 2−1.00 0

53 012345786ACBDFE9 3 3 2 12 2−1.42 8 2−1.00 0

54 012345786A9BCEFD 3 3 2 16 2−1.00 8 2−1.00 219.30

55 012345786AB9CFDE 3 3 2 16 2−1.00 6 2−1.42 219.30

56 012345786AC9BFDE 3 3 2 12 2−1.42 6 2−1.42 218.30

57 012345786A9CBEFD 3 3 2 12 2−1.42 8 2−1.00 218.30

58 012345786ACFDE9B 3 3 2 12 2−1.42 8 2−1.00 0

59 012345786ACEDFB9 3 3 2 12 2−1.42 8 2−1.00 0

60 012345786ACFB9DE 3 3 2 12 2−1.42 6 2−1.42 0

61 012345786ACFDEB9 3 3 2 12 2−1.42 6 2−1.42 0

62 012345786A9CBFED 3 3 2 12 2−1.42 6 2−1.42 218.30

63 012345786AC9DEFB 3 3 2 12 2−1.42 6 2−1.42 0

64 012345786ABCED9F 3 3 2 12 2−1.42 6 2−1.42 0

65 012345786A9CFDEB 3 3 2 12 2−1.42 8 2−1.00 218.30

66 012345786ACB9EFD 3 3 2 12 2−1.42 6 2−1.42 0
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67 012345786ACF9DBE 3 3 2 12 2−1.42 6 2−1.42 0

68 0123457869ACDFEB 3 3 2 12 2−1.42 8 2−1.00 0

69 0123457869ACDEBF 3 3 2 12 2−1.42 8 2−1.00 0

70 012345786ACBF9ED 3 3 2 12 2−1.42 8 2−1.00 0

71 012345786ACEBD9F 3 3 2 12 2−1.42 8 2−1.00 0

72 012345786ACDF9EB 3 3 2 12 2−1.42 8 2−1.00 218.30

73 012345786ACDF9BE 3 3 2 12 2−1.42 8 2−1.00 0

74 012345786ACDE9FB 3 3 2 12 2−1.42 8 2−1.00 0

75 012345786AC9FBED 3 3 2 12 2−1.42 6 2−1.42 218.30

76 012345786ACEBFD9 3 3 2 12 2−1.42 6 2−1.42 218.30

77 012345786A9CEFDB 3 3 2 12 2−1.42 8 2−1.00 220.30

78 0123457869ACBEDF 3 3 2 12 2−1.42 8 2−1.00 218.30

79 0123457869ACBFDE 3 3 2 12 2−1.42 6 2−1.42 0

80 0123457869ACBEFD 3 3 2 12 2−1.42 6 2−1.42 0

81 0123457869ACEFDB 3 3 2 12 2−1.42 8 2−1.00 219.30

82 0123457869ACEBDF 3 3 2 12 2−1.42 6 2−1.42 218.30

83 0123457869ACEBFD 3 3 2 12 2−1.42 8 2−1.00 218.30

84 012345786ACF9EBD 3 3 2 12 2−1.42 6 2−1.42 218.30

85 012345786A9CEBDF 3 3 2 12 2−1.42 8 2−1.00 0

86 012345786A9CFBED 3 3 2 12 2−1.42 8 2−1.00 0

87 012345786ACD9EFB 3 3 2 12 2−1.42 8 2−1.00 0

88 012345786ACD9FBE 3 3 2 12 2−1.42 8 2−1.00 0

89 012345786ACD9EBF 3 3 2 12 2−1.42 8 2−1.00 218.30

90 012345786ABCF9ED 3 3 2 12 2−1.42 6 2−1.42 0

91 012345786ACFBD9E 3 3 2 12 2−1.42 6 2−1.42 0

92 012345786ABC9EDF 3 3 2 12 2−1.42 6 2−1.42 218.30

93 012345786ABC9EFD 3 3 2 12 2−1.42 8 2−1.00 0

94 012345786ACED9FB 3 3 2 12 2−1.42 8 2−1.00 0

95 012345786A9CDFEB 3 3 2 12 2−1.42 6 2−1.42 0

96 012345786A9CEDFB 3 3 2 12 2−1.42 6 2−1.42 0

97 0123458A6BCEDF97 3 3 2 12 2−1.42 6 2−1.42 0

98 0123458A6BCF97ED 3 3 2 12 2−1.42 6 2−1.42 0

99 0123458A6BC97FDE 3 2 2 12 2−1.42 6 2−1.42 218.30

100 0123458A6B9CF7ED 3 2 2 12 2−1.42 8 2−1.00 219.30

101 0123458A6BCFED79 3 3 2 12 2−1.42 8 2−1.00 219.30

102 012345786A9CDBEF 3 3 2 12 2−1.42 8 2−1.00 219.30
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103 0123458A69C7DFEB 3 3 2 12 2−1.42 6 2−1.42 0

104 0123458A69C7FDBE 3 3 2 12 2−1.42 6 2−1.42 0

105 0123458A697CBEFD 3 3 2 12 2−1.42 6 2−1.42 0

106 0123458A697CBFDE 3 3 2 12 2−1.42 6 2−1.42 0

107 0123458A69CE7FDB 3 3 2 12 2−1.42 6 2−1.42 218.30

108 0123458A6C9FEB7D 3 2 2 12 2−1.42 6 2−1.42 0

109 0123458A6CB9F7ED 3 2 2 12 2−1.42 6 2−1.42 0

110 0123458A69CFD7BE 3 3 2 12 2−1.42 6 2−1.42 0

111 0123458A69BC7FDE 3 3 2 12 2−1.42 6 2−1.42 0

112 0123458A6C7EBFD9 3 2 2 12 2−1.42 6 2−1.42 0

113 0123458A6C7FBE9D 3 2 2 12 2−1.42 6 2−1.42 0

114 012345786ACFBDE9 3 3 2 12 2−1.42 6 2−1.42 0

115 012345786ACBE9DF 3 3 2 12 2−1.42 6 2−1.42 0

116 0123458A6C9D7FBE 3 3 2 12 2−1.42 6 2−1.42 0

117 0123458A6C9D7EFB 3 3 2 12 2−1.42 6 2−1.42 0

118 0123458A6C9FDB7E 3 3 2 12 2−1.42 6 2−1.42 218.30

119 012345786ACB9FED 3 2 2 12 2−1.42 6 2−1.42 218.30

120 0123458A6C7EBDF9 3 3 2 12 2−1.42 6 2−1.42 0

121 0123458A6C7FBD9E 3 3 2 12 2−1.42 6 2−1.42 0

122 0123458A6BCE79FD 3 3 2 12 2−1.42 6 2−1.42 218.30

123 0123458A69BCE7DF 3 3 2 12 2−1.42 6 2−1.42 0

124 0123458A69CEBDF7 3 3 2 12 2−1.42 6 2−1.42 0

125 0123458A69CB7EFD 3 3 2 12 2−1.42 6 2−1.42 218.30

126 012345786AC9EDBF 3 3 2 12 2−1.42 6 2−1.42 0

127 012345786ABC9FED 3 3 2 12 2−1.42 6 2−1.42 0

128 0123458A6B9CDE7F 3 3 2 12 2−1.42 6 2−1.42 0

129 0123458A6BC7F9ED 3 3 2 12 2−1.42 6 2−1.42 0

130 0123458A6CBDE79F 3 2 2 8 2−2.00 6 2−1.42 0

131 0123458A6CE9BDF7 3 2 2 8 2−2.00 6 2−1.42 0

132 0123458A6CBD7E9F 3 3 2 12 2−1.42 6 2−1.42 0

133 0123458A6C9FBD7E 3 3 2 12 2−1.42 6 2−1.42 0

134 0123458A69C7DEBF 3 3 2 12 2−1.42 6 2−1.42 218.30

135 0123458A69CDE7FB 3 3 2 12 2−1.42 8 2−1.00 218.30

136 0123458A69C7FBED 3 3 2 12 2−1.42 8 2−1.00 218.30

137 0123458967CEAFBD 3 3 2 12 2−1.42 10 2−0.68 220.30

138 0123458967CEAFDB 3 3 2 12 2−1.42 10 2−0.68 219.30
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139 0123456879BCAEFD 3 3 2 12 2−1.42 8 2−1.00 218.30

140 012345687ABC9FDE 3 3 2 12 2−1.42 8 2−1.00 218.30

141 0123458967CEBFDA 3 2 2 12 2−1.42 10 2−0.68 219.30

142 012345786ACD9FEB 3 3 2 12 2−1.42 8 2−1.00 218.30

143 0123458A69CFB7DE 3 3 2 12 2−1.42 6 2−1.42 0

144 0123458A69CFDEB7 3 3 2 12 2−1.42 6 2−1.42 0

145 0123458A69BCF7ED 3 3 2 12 2−1.42 6 2−1.42 218.30

146 0123458A69CB7FDE 3 2 2 12 2−1.42 6 2−1.42 218.30

147 012345786ABCFDE9 3 3 2 12 2−1.42 6 2−1.42 0

148 012345786ABCE9FD 3 3 2 12 2−1.42 6 2−1.42 0

149 012345786ABCFD9E 3 3 2 12 2−1.42 10 2−0.68 219.30

150 0123458A6BCFDE97 3 3 2 8 2−2.00 6 2−1.42 0

151 0123458A6BCF97DE 3 3 2 8 2−2.00 6 2−1.42 0

152 0123458A6BCF7E9D 3 3 2 12 2−1.42 6 2−1.42 0

153 0123458A6B9CEDF7 3 3 2 12 2−1.42 6 2−1.42 0

154 0123467859CFBEAD 3 3 2 12 2−1.42 4 2−2.00 0

155 0123467859CFEBDA 3 3 2 12 2−1.42 4 2−2.00 0

156 0123458A69CFE7BD 3 2 2 12 2−1.42 6 2−1.42 0

157 0123458A69CEFB7D 3 2 2 12 2−1.42 6 2−1.42 0

158 0123458A6BCF7D9E 3 2 2 8 2−2.00 6 2−1.42 0

159 0123458A6BCED79F 3 2 2 8 2−2.00 6 2−1.42 0

160 0123468B59CED7AF 3 3 2 8 2−2.00 4 2−2.00 218.30

161 0123458A6B7CEDF9 3 3 2 12 2−1.42 6 2−1.42 0

162 0123458A6B7CDFE9 3 3 2 12 2−1.42 6 2−1.42 0

163 0123468C59BDE7AF 3 3 2 8 2−2.00 4 2−2.00 218.30

164 0123458A6B7C9FDE 3 3 2 12 2−1.42 6 2−1.42 0

165 0123458A6B7C9EFD 3 3 2 12 2−1.42 6 2−1.42 0

166 012345896ABCE7DF 3 3 2 12 2−1.42 8 2−1.00 0

167 0123458A67BC9EFD 3 3 2 12 2−1.42 8 2−1.00 0

168 0123458A6CBFE7D9 3 3 2 8 2−2.00 6 2−1.42 219.30

169 012345786ACFB9ED 3 3 2 12 2−1.42 6 2−1.42 0

170 012345786ACEB9DF 3 3 2 12 2−1.42 6 2−1.42 0

171 0123458A6CBF7E9D 3 3 2 8 2−2.00 6 2−1.42 0

172 0123458A6C9DBF7E 3 3 2 8 2−2.00 6 2−1.42 0

173 012345786A9CBDFE 3 3 2 12 2−1.42 8 2−1.00 219.30

174 0123458A69CF7EBD 3 3 2 12 2−1.42 6 2−1.42 218.30
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175 012345786ACDE9BF 3 3 2 12 2−1.42 8 2−1.00 218.30

176 0123457869ACFEBD 3 3 2 12 2−1.42 8 2−1.00 219.30

177 0123457869BCEAFD 3 3 2 12 2−1.42 8 2−1.00 218.30

178 0123458A6C7DBFE9 3 2 2 12 2−1.42 6 2−1.42 218.30

179 012345786A9CEDBF 3 2 2 12 2−1.42 6 2−1.42 219.30

180 0123458A6C9D7FEB 3 2 2 12 2−1.42 6 2−1.42 218.30

181 012345896ABC7FDE 3 3 2 12 2−1.42 8 2−1.00 0

182 0123458A67BC9FDE 3 3 2 12 2−1.42 8 2−1.00 0

183 012345896ACF7BED 3 3 2 12 2−1.42 8 2−1.00 0

184 0123458A67CF9BED 3 3 2 12 2−1.42 8 2−1.00 0

185 012345896ACE7BFD 3 3 2 12 2−1.42 8 2−1.00 0

186 0123458A67CF9BDE 3 3 2 12 2−1.42 8 2−1.00 0

187 012345786ACEFB9D 3 3 2 12 2−1.42 6 2−1.42 218.30

188 012345786ACFEB9D 3 2 2 12 2−1.42 6 2−1.42 218.30

189 0123457869CEFBDA 3 2 2 12 2−1.42 6 2−1.42 219.88

190 0123458A6C7DBEF9 3 3 2 12 2−1.42 6 2−1.42 0

191 0123458A6C7FB9DE 3 3 2 12 2−1.42 6 2−1.42 0

192 0123458A6C7FBED9 3 3 2 12 2−1.42 6 2−1.42 219.30

193 0123458A6C7FDB9E 3 2 2 8 2−2.00 6 2−1.42 220.30

194 012345786ACFED9B 3 3 2 12 2−1.42 6 2−1.42 218.30

195 0123458A6BC7DE9F 3 3 2 12 2−1.42 6 2−1.42 218.30

196 0123468C59BDEA7F 3 2 2 8 2−2.00 4 2−2.00 220.62

197 0123458A6CBDE97F 3 2 2 8 2−2.00 6 2−1.42 218.30

198 0123458A69C7BEFD 3 3 2 12 2−1.42 6 2−1.42 218.30

199 0123458A6BCFD9E7 3 3 2 12 2−1.42 6 2−1.42 0

200 0123458A6BCFD79E 3 3 2 12 2−1.42 6 2−1.42 0

201 012345786ACB9FDE 3 3 2 12 2−1.42 6 2−1.42 0

202 012345786ACE9DFB 3 3 2 12 2−1.42 6 2−1.42 0

203 012345786ACF9BDE 3 3 2 12 2−1.42 8 2−1.00 0

204 012345786ACE9BFD 3 3 2 12 2−1.42 8 2−1.00 0

205 012345786ACDB9EF 3 3 2 12 2−1.42 10 2−0.68 219.30

206 012345896ABCEDF7 3 3 2 12 2−1.42 8 2−1.00 0

207 0123458A67BCEDF9 3 3 2 12 2−1.42 8 2−1.00 0

208 0123458A69C7BFDE 3 2 2 12 2−1.42 6 2−1.42 218.30

209 0123468B59CF7DAE 3 3 2 8 2−2.00 4 2−2.00 0

210 0123468A5BCF7D9E 3 3 2 8 2−2.00 4 2−2.00 0
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211 0123458A69CED7FB 3 2 2 12 2−1.42 6 2−1.42 0

212 0123458A69BC7EFD 3 2 2 12 2−1.42 6 2−1.42 0

213 012345896ABC7EFD 3 3 2 12 2−1.42 8 2−1.00 219.30

214 0123458A67CEB9FD 3 3 2 8 2−2.00 8 2−1.00 0

215 012345896ACEB7FD 3 3 2 8 2−2.00 8 2−1.00 0

216 0123457869CDEFBA 3 3 2 12 2−1.42 12 2−0.42 220.30

217 012345687ABC9EFD 3 3 2 12 2−1.42 10 2−0.68 218.30

218 0123457869BCDEFA 3 3 2 12 2−1.42 10 2−0.68 219.88

219 012345786ACF9BED 3 3 2 12 2−1.42 6 2−1.42 218.30

220 0123468A59CFDE7B 3 3 2 12 2−1.42 4 2−2.00 219.30

221 0123457869CEAFDB 3 3 2 12 2−1.42 6 2−1.42 218.30

222 0123467859CFEADB 3 2 2 12 2−1.42 4 2−2.00 219.30

223 0123468A5BCFDE79 3 2 2 8 2−2.00 4 2−2.00 219.30

224 0123457869CEBFDA 3 3 2 12 2−1.42 6 2−1.42 218.30

225 0123456879CEBFDA 3 2 2 12 2−1.42 8 2−1.00 218.30

226 012345786ABC9FDE 3 3 2 12 2−1.42 6 2−1.42 0

227 012345786ACFD9BE 3 3 2 12 2−1.42 6 2−1.42 0

228 0123458A69BCEDF7 3 3 2 12 2−1.42 8 2−1.00 218.30

229 0123458A6C9DBFE7 3 3 2 12 2−1.42 6 2−1.42 0

230 0123458A6CEB7FD9 3 3 2 12 2−1.42 6 2−1.42 0

231 0123468B59CEDA7F 3 2 2 8 2−2.00 4 2−2.00 218.30

232 0123458A6C9FDBE7 3 3 2 12 2−1.42 6 2−1.42 219.30

233 0123458A67B9CFDE 3 3 2 16 2−1.00 8 2−1.00 0

234 012345896AB7CFDE 3 3 2 16 2−1.00 8 2−1.00 0

235 0123458A69B7CEFD 3 2 2 16 2−1.00 6 2−1.42 219.30

236 0123458A6B97CFDE 3 3 2 16 2−1.00 8 2−1.00 220.88

237 0123458A69B7CFDE 3 3 2 16 2−1.00 8 2−1.00 220.30

238 0123457689CEAFBD 3 2 2 16 2−1.00 10 2−0.68 221.30

239 0123457689CEAFDB 3 3 2 16 2−1.00 10 2−0.68 221.30

240 012345768A9CDEFB 3 2 2 16 2−1.00 8 2−1.00 220.30

241 012345768A9CDEBF 3 3 2 16 2−1.00 8 2−1.00 0

242 012345768A9CDFEB 3 3 2 16 2−1.00 8 2−1.00 0

243 012345768ACF9BDE 3 3 2 16 2−1.00 8 2−1.00 0

244 012345768ACE9BFD 3 3 2 16 2−1.00 8 2−1.00 0

245 012345768ACF9BED 3 2 2 16 2−1.00 8 2−1.00 221.30

246 0123456879BAEFDC 3 3 2 16 2−1.00 12 2−0.42 220.30
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247 012345687AB9DEFC 3 2 2 16 2−1.00 10 2−0.68 220.88

248 0123456879CEFBDA 3 3 2 16 2−1.00 8 2−1.00 219.88

249 0123458A69CFEB7D 3 2 2 12 2−1.42 6 2−1.42 218.30

250 0123458A69CD7FEB 3 3 2 12 2−1.42 8 2−1.00 219.30

251 0123458A69CEF7DB 3 3 2 12 2−1.42 6 2−1.42 218.30

252 0123458A69CEFBD7 3 2 2 16 2−1.00 6 2−1.42 221.11

253 0123458A69CE7FBD 3 3 2 12 2−1.42 6 2−1.42 218.30

254 0123458A69BCFD7E 3 3 2 12 2−1.42 6 2−1.42 218.30

255 012345786ABCEDF9 3 3 2 12 2−1.42 6 2−1.42 218.30

256 012345896ACF7BDE 3 3 2 12 2−1.42 8 2−1.00 0

257 012345896ABCFD7E 3 3 2 12 2−1.42 8 2−1.00 0

258 012345896ACE7BDF 3 3 2 16 2−1.00 8 2−1.00 220.30

259 012345896ACEFDB7 3 3 2 16 2−1.00 8 2−1.00 0

260 012345896AB7CEFD 3 3 2 16 2−1.00 8 2−1.00 0

261 0123458A69CEB7FD 3 2 2 8 2−2.00 6 2−1.42 218.30

262 0123458A6C7DB9FE 3 2 2 8 2−2.00 8 2−1.00 220.30

263 0123458A6BC7EDF9 3 2 2 12 2−1.42 8 2−1.00 219.30

264 0123458A6C7DFEB9 3 3 2 16 2−1.00 8 2−1.00 220.88

265 0123458A6BCDE9F7 3 3 2 12 2−1.42 8 2−1.00 220.30

266 0123468A5BCFED97 3 3 2 8 2−2.00 4 2−2.00 219.30

267 012345786ABCE9DF 3 3 2 12 2−1.42 6 2−1.42 218.30

268 0123458A69CFBED7 3 3 2 12 2−1.42 6 2−1.42 218.30

269 0123458A69CEBFD7 3 3 2 12 2−1.42 6 2−1.42 218.30

270 0123468B5C9DEA7F 3 2 2 8 2−2.00 4 2−2.00 220.30

271 0123468B5C9DAFE7 3 2 2 12 2−1.42 4 2−2.00 221.11

272 0123468B5CD79FAE 3 2 2 8 2−2.00 4 2−2.00 219.30

273 0123458A6C7FEB9D 3 2 2 8 2−2.00 6 2−1.42 219.30

274 0123458A6BCED97F 3 2 2 12 2−1.42 6 2−1.42 218.30

275 0123458A6CF7BE9D 3 3 2 12 2−1.42 6 2−1.42 219.30

276 0123458A6CF7BD9E 3 3 2 12 2−1.42 6 2−1.42 219.30

277 0123458A6BC9DE7F 3 3 2 12 2−1.42 6 2−1.42 218.30

278 0123468B5CD7AF9E 3 2 2 8 2−2.00 4 2−2.00 221.30

279 0123458A6BC7DFE9 3 3 2 12 2−1.42 6 2−1.42 220.30

280 0123457869ACEDBF 3 2 2 12 2−1.42 6 2−1.42 221.88

281 0123457869ACFBDE 3 3 2 12 2−1.42 6 2−1.42 219.30

282 0123468B5CD7F9EA 3 2 2 8 2−2.00 4 2−2.00 222.47



4.4 conclusion 131

continued...

Representative Deg. MDBN. MLBN. Lin. ε δ DP #Inv.

283 0123468B5C9DE7AF 3 2 2 8 2−2.00 4 2−2.00 220.62

284 0123458A6BCF9D7E 3 3 2 8 2−2.00 6 2−1.42 218.30

285 0123457869CEAFBD 3 2 2 12 2−1.42 6 2−1.42 218.30

286 0123458967CEFBDA 3 2 2 16 2−1.00 10 2−0.68 220.30

287 012345768A9CDFBE 3 3 2 16 2−1.00 8 2−1.00 220.88

288 0123456789CEFBDA 3 2 2 16 2−1.00 10 2−0.68 223.76

289 0123456789CEBFDA 3 2 2 16 2−1.00 10 2−0.68 222.30

290 0123456789BCEAFD 3 3 2 16 2−1.00 10 2−0.68 222.62

291 012345768A9BCFED 3 2 2 16 2−1.00 8 2−1.00 223.30

292 012345768A9BCEFD 3 3 2 16 2−1.00 8 2−1.00 221.30

293 0123457689CDEFBA 2 3 3 16 2−1.00 16 20.00 224.11

294 0123456789BAEFDC 2 3 3 16 2−1.00 16 20.00 224.30

295 0123468C59DFA7BE 3 2 2 8 2−2.00 4 2−2.00 218.30

296 0123468A5BCF7E9D 3 3 2 8 2−2.00 4 2−2.00 0

297 0123468A5BCF79DE 3 3 2 8 2−2.00 4 2−2.00 0

298 012345687ACEB9FD 3 2 2 12 2−1.42 6 2−1.42 218.30

299 012345678ACEB9FD 2 2 3 16 2−1.00 8 2−1.00 221.30

300 0123458967CDEFAB 2 3 3 16 2−1.00 16 20.00 224.11

301 0123458967CDEFBA 3 3 2 12 2−1.42 16 20.00 224.11

We provide all involutory S-boxes and S-boxes with a differential/linear branching
number of > 3 in a git repository to encourage further research in this topic. The S-
boxes can be obtained at: https://github.com/TheBananaMan/low-energy-sboxes.

4.4 conclusion
In this chapter, we study cryptographic S-boxes with a focus on low-energy con-
sumption. We give detailed design considerations for low-energy block ciphers in
general, and further provide recommendations for S-boxes with low-energy con-
sumption. After identifying Present and Prince as two optimal block cipher de-
sign strategies, for low-energy consumption, we define requirements for optimal
low-energy S-boxes. In a Present-like design, the bit-based diffusion layer does
not require a lot of overhead and therefore, the main contribution to the energy con-
sumption is based on the S-box layer. We show however, that for a secure cipher, the
differential/linear branch number of the S-box has to be high for this type of block
cipher. On the other hand, in a Prince-like design, one can make use of involutory
S-boxes. We show that there exist some S-boxes that are better then the currently

https://github.com/TheBananaMan/low-energy-sboxes
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used S-boxes, and show that the overall energy-consumption decreases when we
replace the original S-boxes with the ones we recommend.
However, we further noted that the S-box layer in a cipher just contributes partly to
the overall energy consumption and we want to highlight that in an optimal low-
energy block cipher design also the diffusion layer should be optimised for low-
energy. While bit-based diffusion layers are optimal as they can be implemented
in hardware just by wiring, they add several additional requirements to the S-box
layer. As a possible future work, one might look at other ways to construct effi-
cient diffusion layers, such as binary diffusion matrices (i.e., as used in Midori [37],
Skinny [50] and Qarma [34]) or one even consider non-linear diffusion layers as
suggested by Liu et al. [231].
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executive summary. In this chapter, we present zero-correlation attacks on tweak-
able block ciphers with a linear tweak schedule, based on [23].
The design and analysis of dedicated tweakable block ciphers is a quite recent and
very active research field that provides an ongoing stream of new insights. For in-
stance, results of Kranz, Leander, and Wiemer from FSE’17 show that the addition
of a tweak using a linear tweak schedule does not introduce new linear character-
istics. We consider for the first time—to the best of our knowledge— the effect of
the tweak on zero-correlation linear cryptanalysis. It turns out that the tweak can
be used to get zero-correlation linear hulls covering more rounds, which also im-
plies the existence of integral distinguishers on the same number of rounds. The
so obtained integral distinguishers cover more rounds compared to existing ones
that have been found using the division property, for the tweakable block ciphers
Qarma, Mantis, and Skinny. In particular, this leads to the best attack (with re-
spect to number of rounds) on a round-reduced variant of Qarma.

declaration of authorship. The work described in this chapter is based on
the paper [23]: Zero-Correlation Attacks on Tweakable Block Ciphers and is currently
under submission at The 26th Fast Software Encryption conference (FSE’19) in Paris,
France. The paper is joint work with Christoph Dobraunig, Jian Guo, Eran Lam-
booij, Gregor Leander and Yosuke Todo. The work was initiated during a research
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visit of the author to Gregor Leander at Ruhr-Universität Bochum, Germany. All
authors contributed equally to the results of the paper. The contributions of the
author are the following:

• Discovering that the tweak schedule in tweakable block ciphers can be used
to add additional constraints for zero-correlation attacks.

• Application of the attack to Mantis.

• Application of the attack to Skinny.

5.1 introduction
Tweakable block ciphers are constructions, which have—compared to traditional
block ciphers—an additional input called tweak. Ideally, each different choice of
the tweak produces a different instance of a block cipher. This concept has first
been introduced by Schroeppel in the Hasty pudding cipher [304] and was formally
treated by Liskov, Rivest and Wagner [227, 228]. The concept of tweakable block
ciphers allows for very clean modes of operations for authenticated encryption like:
ΘCB3 [211], or Counter in Tweak [277]. When using such a mode, one faces two
choices, either use a construction that takes an ordinary block cipher as building
block to build a tweakable block cipher [211, 216, 245, 342],or use a dedicated tweak-
able block cipher [34, 50, 188].
One can expect that designing a tweakable block cipher from scratch results in
more efficient designs than reusing a block cipher to create a tweakable block ci-
pher. However, when designing dedicated tweakable block ciphers, it has to be
kept in mind that the tweak is an additional publicly known input, which can po-
tentially be influenced by an attacker. This leads to a new challenge in the analysis
of such schemes, since in the chosen plaintext model, the extra input provides addi-
tional freedom for the attacker. This freedom can be exploited in attacks. The most
self-evident attack vector that is influenced by the tweak is differential cryptanaly-
sis [73]. By introducing differences in the tweak, the attacker is able to introduce
differences in-between rounds, which typically leads to longer differential charac-
teristics. Naturally, this increases the number of rounds the attacker can attack in a
key-recovery attack.
Besides this, there is a constant evaluation of known attack vectors on tweakable
block ciphers that exploit using the tweak. There are for example: Boomerang at-
tacks [113, 141], meet-in-the-middle attacks [327], impossible differential attacks [141,
298] and integral attacks [139]. A positive result with respect to the security of
tweakable block ciphers is that the addition of a tweak, using a linear tweak sched-
ule, does not require additional considerations with respect to linear cryptanaly-
sis [208].
Attacks on dedicated tweakable block ciphers exploit the additional freedom intro-
duced by the tweak to extend a distinguisher in the data-path of a cipher. In this
work, we follow this general idea to derive distinguishers on the data-path plus
tweak schedule which can be turned into better attacks. In particular, we exploit
zero-correlation linear hulls [97, 99] on the data-path plus tweak. The fact that a lot
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of state-of-the-art tweakable block cipher constructions not only use a tweak sched-
ule that is linear, but also have very limited diffusion in the tweak bits comes in
handy. This allows us to search for zero-correlation linear hulls with the help of
a miss-in-the-middle approach. In our attacks the miss (i.e., contradiction) occurs
within the tweak schedule.
These zero-correlation linear hulls typically cover more rounds than zero-correlation
linear hulls that only consider the data-path. Next to that, the relation between zero-
correlation and integral distinguishers [96, 315] allows us to get an integral property
(zero sum) in the data path. This property can then be exploited in key-recovery
attacks.
We first examine the effects of zero-correlation linear cryptanalysis on tweakable
block ciphers having a linear key schedule. We focus on the implications on tweak-
able block ciphers following the Superposition Tweakey (STK) constructions. After
that we give examples for zero-correlation linear hulls for three dedicated tweak-
able block ciphers Qarma [34], Mantis [50] and Skinny [50]. As shown in Table 21,
the acquired distinguishers cover more rounds compared to existing results util-
ising the division property, zero-correlation, or conventional approaches to search
integral distinguisher. In the case of round-reduced Qarma [34], these new distin-
guishers allow for attacks covering more rounds than previous ones.
Note that some of the attacks shown in Table 21 require more than 2n data for
an n-bit block size. In contrast to standard block ciphers where 2n is the natural
limit per key (i.e. the full-codebook is reached), tweakable block ciphers allow
to gather the amount of 2n data per tweak and hence, a total of 2n+t data can
be collected considering a t-bit tweak. Our attacks on Skinny require data above
2n, but we do not collect the full-codebook under one fixed tweakey. Hence, we
can recover unknown tweakey-information that has not been queried in our key-
recovery attacks.
Apart from the dedicated attacks, this new way of searching for integral distin-
guishers provides further insights in the design of tweakable block ciphers. One
of the new insights is a better intuition on how the number of positions and the
locations of the tweak addition influences the security of a tweakable block cipher.
For instance, consider the case of a tweakable block cipher where the addition of
the tweak is just performed for a few rounds at the beginning and the end of the
cipher, while for the rounds in the middle just the round keys are added. Such a
construction can lead to the unfortunate situation, that the zero-correlation linear
hulls are independent of the number of computed keyed middle-rounds.

related work. The conversion [315] of zero-correlation linear hulls to what is
commonly referred to as integral distinguishers is not the only method to find such
distinguishers. A common approach to find integral distinguishers is to exploit
knowledge about upper bounds on the algebraic degree of a function as shown
by higher-order differential cryptanalysis [213]. Later on, methods that exploit the
structure of a cipher in a more direct manner have been introduced in an attack
on the block cipher Square [118] which became known under the name integral
cryptanalysis [205]. Moreover, the division property [322] and bit-based division
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Table 21: Overview on previous and proposed key-recovery attacks on variants of Qarma-
64, Mantis, Skinny-64/128 , and Skinny-64/192. MITM/ID/ZC/Inv. = Meet-in-
the-Middle/Impossible Differentials/Zero-Correlation/Invariants

Cipher Rounds Attack type Time Data Memory Ref.

Qarma-64 4/4* MITM 290 216 290 [225]

Qarma-64 4/5* MITM 289 216 289 [225]

Qarma-64 4/6* MITM 270.1 253 2116 [363]

Qarma-64 3/8* ID 264.4 261 - [364]

Qarma-64 4/7* ID 2120.4 261 2116 [355]

Qarma-64 4/8* ZC/Integral 266.2 248.4 253.70 This Work

Mantis 5/5* Inv. 256 29.3 - [65]

Mantis 6/6* Diff. 238 228 - [137]

Mantis 7/7* Diff. 253.94 253.94 - [151]

Mantis 4/8* ZC/Integral 266.2 248.4 253.70 This Work

Skinny-64/128 18 ZC 2126 262.68 264 [295]

Skinny-64/128 19 ID 2119.8 262 2110 [356]

Skinny-64/128 20 ID 2121.08 247.69 247.69 [328]

Skinny-64/128 20 ZC/Integral 297.5 268.4† 282 This Work

Skinny-64/128 23 ID 2124 262.47 277.47 [295]

Skinny-64/128 23 ID 2125.9 262.5 2124.0 [230]

Skinny-64/128 23 ID 279 271.4† 264.0 [20]

Skinny-64/192 21 ID 2180.5 262 2170 [356]

Skinny-64/192 22 ID 2183.97 247.84 274.84 [328]

Skinny-64/192 23 ZC/Integral 2155.6 273.2† 2138 This Work

Skinny-64/192 27 Rectangle 2165.5 263.5 280 [230]

property [326] provide a powerful improvement in the search for integral distin-
guishers that leads to attacks on full Misty-1 [321, 323].
It is worth mentioning that Table 21 just shows key-recovery attacks and thus, does
not represent a complete list of results that provide insight into the security of
Qarma, Mantis and Skinny. For instance Leander, Tezcan, and Wiemer [221] pro-
vide results regarding the length of subspace trails for various ciphers including
Qarma and Skinny. Furthermore, Cid et al. [114] use their new tool called Boomer-
ang Connectivity Table to re-evaluate existing related-tweakey boomerang character-

* We state the number of S-box layers in the inbound/outbound phase of the cipher.
† The attack requires more than 2n data, where n is the block size. The full-codebook in a tweakable

block cipher is exceeded by using more than 2n+t data, considering a t-bit tweak.
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Figure 57: Key-alternating tweakable block cipher with linear tweak schedule.

istics of Skinny. Further works give more insight into the security of Skinny against
differential cryptanalysis [25] and impossible differential cryptanalysis [299] and the
security of Skinny and Mantis against invariant attacks [48]. Eskandari et al. [152]
search for integral distinguishers based on the division property for Qarma-64,
Mantis, and Skinny-64. Furthermore, Zhang and Rijmen [362] give integral distin-
guishers for 10 rounds of Skinny-64 based on the division property.
The property of linear hulls under the related-key setting was also discussed by
Bogdanov et al. in [92]. They showed that there exist linear hulls such that their
bias are invariant under key difference. More concretely, when some bits in the
secret-key must be inactive of a given linear hull, then there exists another linear
hull with the same correlation, where the key difference is induced into the inactive
bits. In comparison to our work, we review this property from zero-correlation
linear hulls. By considering zero-correlation linear hulls, we can construct non-
trivial distinguishers even if all bits in the secret-key/tweak are active. Therefore,
our attacks are less restricted and improve over the results of Bogdanov et al. [92].

5.2 preliminaries

5.2.1 Tweakable Block Cipher and the Tweakey Framework

Let the block and key lengths be n and κ bits, respectively. Then a conventional
block cipher is defined as a function from Fn2 ×Fκ2 → Fn2 . A tweakable block cipher
can accept an additional input called the tweak and it is defined as a function from
Fn2 ×Fκ2 ×Ft2 → Fn2 when the tweak length is t bits. A more detailed explanation
of tweakable block ciphers can be found in Section 2.3.1.
Throughout this chapter, we consider the case of a tweakable round based block ci-
pher with a linear tweak-scheduling L : Ft2 → (Fn2 )

r+1 mapping the (master)-tweak
to the sub-tweaks, as outlined in Figure 57. Those sub-tweaks are then combined
with the current state of the cipher using the XOR operation.
The Tweakey framework [188], as illustrated in Figure 58, is often used to design
dedicated tweakable block ciphers, where the key and tweak are basically treated as
one object called tweakey. Moreover, each sub-tweakey is generated by applying the
same permutation recursively. Based on this framework, there are several dedicated
tweakable block ciphers such as Kiasu-BC [187], Deoxys [189], Joltik [186] and
Skinny [50]. A class of tweakable block cipher denoted by TK-p is introduced
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when the size of the tweakey is (p× n) bits. Then, TK-1 is suited to the simple
single-key block cipher with an n-bit key, and TK-2 is suited to the tweakable block
cipher with an n-bit key and an n-bit tweak. Jean et al. [188] gave practical subclass
of the Tweakey framework named Superposition Tweakey (STK), and Fig. 59 shows
the construction with TK-p. In the STK construction, the internal state and tweakey
state are partitioned into n/c and pn/c c-bit nibbles, respectively. A more detailed
description of the Tweakey framework can be found in Section 2.3.1.
We can notice that the tweakey scheduling algorithm of the STK construction is
fully linear. Since the tweak is usually publicly accessible, attackers can naturally
execute related-tweak attacks. Therefore, we need to discuss the security against
related-tweakey attacks more carefully.

5.2.2 Differential Propagation through Tweakable Block Ciphers

The XOR operation is used to mix the sub-tweakey and internal state in the tweak-
able block ciphers discussed in this chapter. Then, a difference of an internal state
can be cancelled by XORing the same difference of a sub-tweakey, and one round
function is passed for free (i.e., see Fig. 60). Considering related-tweak setting, we
can control differences of certain internal states and acquire the characteristic with
higher probability. The probability of the related-tweak/(twea)key differential char-
acteristic is generally higher than that of the single-key characteristic. Therefore,
such attacks have been well discussed in the context of both related-key attacks on
the block cipher and related-tweakey attacks on the tweakable block ciphers.
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Figure 61: Left: Propagation of linear masks through XOR. Right: Propagation of linear
masks through a branching point.

5.2.3 Linear Propagation through Tweakable Block Ciphers

Linear cryptanalysis makes use of correlations between linear combinations be-
tween input and output bits of a block cipher. More specifically, given a function

F : Fn2 → Fm2 ,

an input mask α ∈ Fn2 , and an output mask β ∈ Fm2 we consider

corF(α,β) := 2 · Prob (〈α, x〉+ 〈β, F(x)〉 = 0) − 1,

where the probability is taken over uniformly distributed inputs x. Traditionally,
a high correlation is used as a distinguisher and then extended to a key-recovery
attack [238]. Moreover, we like to mention that for the understanding of our attacks,
it might be helpful to have two special cases for the propagation of linear masks
in mind. These are how linear masks propagate through an XOR-operation and a
branching-point as illustrated in Figure 61. In the formula, for the XOR-operation

Fn2 ×Fn2 → Fn2

X(x,y) = x+ y

it holds that
corX (((α1,α2) ,β)) 6= 0 iff α1 = α2 = β,

and for the branching point

Fn2 ×Fn2 → Fn2

B(x) = (x, x)
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it holds that

corB (α, ((β1,β2))) 6= 0 iff α+β1 +β2 = 0.

Zero-Correlation Linear Cryptanalysis

Zero-correlation linear cryptanalysis was introduced by Bogdanov and Rijmen [97]
in 2014. Let α and β be the linear mask for a plaintext and ciphertext, respectively,
it exploits the pair (α,β) with correlation exactly zero. One clear drawback of the
basic zero-correlation linear cryptanalysis is its huge data complexity. In order to
detect that the correlation is exactly zero, it is a priori necessary to encrypt (almost)
every possible message. Later, the data complexity was reduced by exploiting multi-
ple or multidimensional zero-correlation linear approximations [96, 99]. When there
are ` zero-correlation linear approximations for an n-bit block cipher, the required
data complexity is roughly estimated as O(2n/

√
`). Another option to reduce the

data complexity is to exploit a link between different cryptanalysis methods and
map the zero-correlation distinguisher to another (different) type of cryptanalysis
with a lower requirement of data-complexity.
Several mathematical links among different types of cryptanalysis have been dis-
cussed, and here we focus on the link between zero-correlation linear cryptanalysis
and integral cryptanalysis [315].

Theorem 1 ([315]). Let F : Fn2 → Fn2 be a function, and A be a subspace of Fn2 and
β ∈ Fn2 \ {0}. Suppose that (α,β) is a zero correlation linear approximation for any α ∈ A,
then for any λ ∈ Fn2 , 〈β, F(x+ λ)〉 is balanced on A⊥ = {x ∈ Fn2 |〈α, x〉 = 0,α ∈ A}.

In other words, when there are zero-correlation linear hulls, it implies an integral
distinguisher. The required number of texts is 2n−m, where m denotes the dimen-
sion of the subspaceA. The key-recovery of the integral attack is often more efficient
than the key-recovery of the zero-correlation linear cryptanalysis. Therefore, when
the key-recovery is taken into consideration, we convert the zero-correlation linear
hulls into integral distinguisher.
Recall the zero-correlation linear hull on 4-round AES (i.e., see Figure 62). The
distinguisher can be converted into the integral distinguisher with 232 texts, which
is the exactly same as the well-known integral distinguisher of the 4-round AES
[118, 205].

5.3 zero-correlation linear cryptanalysis for tweak-
able block ciphers

In the case of a tweakable block cipher

Ek : Fn2 ×Ft2 → Fn2 ,

we consider the tweak to be an additional input from which we can include the
tweak bits into the linear combination of input bits, when considering linear ap-



5.3 zero-correlation linear cryptanalysis for tweakable block ciphers 143

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB

zero-correlation

inactive

any

Figure 62: Zero-correlation linear hull on 4-round AES.

proximations. More precisely, the input mask α now consists of two parts, α1 ∈ Fn2
and α2 ∈ Ft2 and we have to consider

corEk ((α1,α2) ,β) := 2 · Prob (〈α1,P〉+ 〈α2, T〉+ 〈β,Ek(P, T)〉 = 0) − 1

where now the probability is taken over uniformly distributed inputs P and T .
Let L : Ft2 → (Fn2 )

r+1 be a linear tweak-schedule, as was shown in [208]. The
corresponding linear hull for this setting becomes

corF ((α1,α2),β) =
∑

Γ∈(Fn
2
)r−1 ,Γ0=α1 ,Γr=β

LT (Γ)=α2

CΓ (56)

where LT is the adjoint linear layer of L, i.e., the unique linear mapping such that

〈x,L(y)〉 = 〈LT (x),y〉

for all x,y. If we represent L as a matrix multiplication, then LT is the transposed
matrix. This was used in [208] to argue that, in contrast to differential cryptanalysis,
no new linear trails are introduced by the tweak. Thus, in order to protect against
linear cryptanalysis, no fundamental new tools have to be developed. However,
given the additional restriction on linear trails in the hull for tweakable ciphers, the
formula actually already hints that zero-correlation might be more effective in this
case.
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Figure 63: Propagation of masks in a simple two round tweakable block cipher.

As a first example consider the simple case of a two-round tweakable cipher, where
the tweak is just XORed to the state as illustrated in Figure 63.

Ek : Fn2 ×Fn2 → Fn2

Ek(x, t) = R2(R1(x+ t+ k) + t+ k) + t+ k

Here, the tweak-scheduling is clearly linear and the mapping is simply

L : Fn2 → Fn2 ×Fn2 ×Fn2

L(t) = (t, t, t).

The adjoint linear layer, is the mapping

LT : Fn2 ×Fn2 ×Fn2 → Fn2

LT (t1, t2, t3) = t1 + t2 + t3.

Now, consider the linear hull for Ek with input mask (α1,α2) and output mask β.
Note, that the input and output masks are independent [92]. Here α1 is the mask
for the data input and α2 is the input mask for the tweak. According to Equation
(56), the correlation of Ek becomes

corEk (((α1,α2) ,β)) =
∑

Γ∈(Fn
2
)3 ,Γ0=α,Γ2=β

LT (Γ)=β

CΓ .

Now as
LT (Γ) = LT (Γ0, Γ1, Γ2) = Γ0 + Γ1 + Γ2

and Γ0 = α as well as Γ2 = β, we see that Γ1 = α1 + α2 + β and the linear hull
reduces to a single trail, namely

corEk (((α1,α2) ,β)) = corR1(α1,α1 +α2 +β) corR2(α1 +α2 +β,β)

Thus, for a given α1 and β by choosing α2 such that either corR1(α1,α1 + α2 + β)
or corR2(α1 + α2 + β,β) equals zero, we derived a zero-correlation linear approxi-
mation. Thus, as long as there exist a zero-correlation linear approximation for R1
(resp. R2) the corresponding tweakable block cipher has a zero-correlation for any
choice of R2 (resp. R1). This is the basic observation we are going to use throughout
the paper for our attacks.
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Figure 64: Related-tweakey zero-correlation linear hull on the STK with TK-1.

In the general case, we are going to use forward and backward propagation to get
a superset S ⊂ (Fn2 )

r+1 of all characteristics with non-zero correlation. Next, we
check if L(S) ⊂ Ft2 is not the full space. If so, we get a zero correlation by picking
the mask for the tweak in Fr2 \S. Note that, this becomes easier when the tweak-
scheduling actually operates on single nibbles, as is the case for the tweakey setting
of the STK construction, as we will explain next.

5.3.1 Zero-Correlation Linear Hull on STK with TK-1

For simplicity, we start our discussion from the STK construction with TK-1, and
we explain the general case (TK-p) in the following.
Figure 64 shows the zero-correlation linear hull on the STK construction with TK-1.
The tweakey schedule of the STK construction with TK-1 consists of the h ′ function,
where the nibble position is simply substituted. Therefore, different nibbles are
never mixed in the tweakey scheduling algorithm, and we can focus on the ith nibble
in KT1. Then, given a pair of input and output linear masks (Γ0, ΓR), we enumerate
all possible linear characteristics (Γ0, Γ1, . . . , ΓR) and evaluate a set S such that

S =

{
Λ[i] =

R⊕
r=0

Γr[h
′r(i)] | ∀ (Γ0[i], Γ1[h ′(i)], . . . , ΓR[h ′R(i)])

}
,

where Γj[i] denotes the linear mask of the ith nibble in Γj. If the complement Fc2 \ S

is not empty, it causes a contradiction when Λ[i] ∈ Fc2 \ S. Note that the tweakey
except for the ith nibble is independent of this linear hull, and it can be fixed to
(secret) constant. Then, the domain expansion is only n+ c and not n+ t.
Practically, we can use a miss-in-the-middle like algorithm to find such a distin-
guisher.

Definition 47 (Γ sequence). The forward and backward propagations with proba-
bility one are evaluated from the given input linear mask Γ0 and output linear mask
Γr, respectively. Then, for any i, the Γ sequence is defined by the (R+ 1) sequence,
where whether Γr[h ′r(i)] is active, inactive, or any is stored in the rth element.

When the Γ sequence is inactive for any i, it causes a contradiction when Λ[i] is an
active mask. Moreover, when there is one active value in the Γ sequence, it causes
contradiction when Λ[i] is the zero mask. To demonstrate the Γ sequence and to
show how the zero-correlation linear hull is calculated, we introduce the following
toy cipher.
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Figure 65: Related-tweakey zero-correlation linear on the Toy cipher.

Example 1 (ToyCipher). The round function is exactly the same as the AES round
function. A simple tweakey scheduling algorithm is adopted instead of the AES
key scheduling algorithm. The full tweak state is XORed when AddRoundKey is
originally applied, and it uses h ′ = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7], which
is the same as the PT of Skinny.

Figure 65 shows the 5-round related-tweakey linear hull, where we focus on the
first byte in KT1. Then, the Γ sequence is (0, 1, 0, 0), where 0 and 1 denote inactive
and active, respectively. Therefore, if the zero linear mask is applied to the first byte
of KT1, it derives the zero-correlation linear hull. Moreover, we convert the found
zero-correlation linear hull to the corresponding integral distinguisher, as shown
in [315]. Zero linear masks are applied to 32 state bits and 8 tweak bits, and any
linear mask can be applied to the remaining 96 bits. Therefore, the required texts
of the corresponding integral distinguisher is 240, and the distinguisher can cover
5 rounds.
An interesting observation is that the second round function is independent of the
zero-correlation linear hull. In other words, this distinguisher holds even if the
second round function is replaced with any permutation.

5.3.2 Zero-Correlation Linear Hull on TK-p

The STK construction with TK-p has p lines in the tweakey scheduling algorithm,
and the same nibble position substitution function h ′ is applied to each line. On
the other hand, a different coefficient αj is multiplied with each c-bit nibble over
GF(2c) in every line.
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Figure 66: Related-tweakey zero-correlation linear hull on the STK with TK-p.

Similarly to the case of the zero-correlation linear hull on the STK with TK-1, we
can focus on the ith nibble in KT1,KT2, . . . ,KTp. Sub-tweakeys are generated by
the XOR of p lines and all branches connected by XOR must have the same linear
mask. Therefore, we can compute the matrix Λj[i] for 0 < j 6 p, that contains the
tweak masks, by multiplying the block matrix containing the state masks with the
Γ -sequence as follows


Λ1[i]

Λ2[i]
...

Λp[i]

 =


I αT1 (αT1 )

2 · · · (αT1 )
R

I αT2 (αT2 )
2 · · · (αT2 )

R

...
...

...
. . .

...

I αTp (αTp)
2 · · · (αTp)

R

×


Γ0[i]

Γ1[h
′(i)]

Γ2[h
′2(i)]
...

ΓR[h
′R(i)]


where αTj : Fc2 → Fc2 denotes the adjoint linear mapping of αj, i.e., the mapping
such that

〈x,αj(y)〉 = 〈αTj (x),y〉, ∀ x,y ∈ Fc2.

We finally enumerate all possible linear characteristics (Γ0, Γ1, . . . , ΓR) from a given
pair of input and output linear masks (Γ0, ΓR). If the complement of the set of all
possible (Λ1[i]‖Λ2[i]‖ · · · ‖Λp[p]) is not empty, there exists a zero-correlation linear
hull.
Practically, we can use the same method as in the case for TK-1. This is, chosen
Γ0 and Γr, we evaluate the Γ sequence for any i. Then, we can show the following
proposition.

Proposition 2. If there is a pair of linear masks (Γ0, Γr) and the nibble position i such
that the Γ sequence has at most p linearly active values, the tweakable block cipher has a
non-trivial related-tweakey zero-correlation linear hull.

Proof. We consider two cases: the Γ sequence is either inactive or active. The first
case is trivial, and active linear mask Λj[i] causes a contradiction. In the second case,
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we exploit the structure of the p× (R+ 1) block matrix. In the STK construction, αj
is chosen such that the block matrix

I α1 (α1)
2 · · · (α1)

R

I α2 (α2)
2 · · · (α2)

R

...
...

...
. . .

...

I αp (αp)
2 · · · (αp)

R


becomes MDS. Then, the block matrix

I αT1 (αT1 )
2 · · · (αT1 )

R

I αT2 (αT2 )
2 · · · (αT2 )

R

...
...

...
. . .

...

I αTp (αTp)
2 · · · (αTp)

R


also becomes MDS, as—using a suitable choice for the inner product—the adjoint
linear mapping αTj is identical to αj, and thus the block matrix is unchanged. There-
fore, in order to satisfy Λj[i] = 0 for all j ∈ {1, 2, . . . ,p}, the Γ sequence must have at
least p+ 1 linearly active nibbles. In other words, if there are at most p linearly ac-
tive nibbles in the Γ sequence, and this causes a contradiction when all Λj[i] = 0.

Proposition 2 implies that TK-(p+1) always has (r+1)-round zero correlation linear
hull when TK-p has an r-round zero-correlation linear hull.

5.4 application to qarma
We apply our technique to the Qarma family of lightweight tweakable block ci-
phers [34]. Qarma has a block size of 64 or 128 bits, a key length of 128 or 256
bits, and a tweak length of 64 or 128 bits, respectively. We can successfully attack
Qarma-64whose numbers of forward and backward rounds are reduced to 4 and 8,
respectively, under the related-tweak and chosen plaintext setting. More accurately,
only 1 out of 16 cells of the tweak is active, while the other 15 cells take a known
constant value. Our attack is currently the best known attack with respect to the
number of total rounds.

5.4.1 Description of Qarma

An encryption of Qarma consists of forward round functions, a central construc-
tion, and backward round functions. In the specifications, the designer defines
Qarmar as Qarma whose numbers of forward and backward rounds are r+ 1. In
this paper however, for simplicity, we use a different notation denoted by Qarmar1,r2 ,
where the numbers of forward and backward rounds are r1 and r2, respectively.
Thus, Qarmar corresponds to Qarmar+1,r+1.
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Figure 67: Structure of Qarma.

The state of Qarma is represented as a 4× 4 matrix, where each index is defined as
s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

 .

Every cell takes a 4 or 8-bit value in Qarma-64 and Qarma-128, respectively. In the
state denoted by X, let X[i1, i2, . . . , im] be (si1 , si2 , . . . , sim) of X.
One round of Qarma consists of the following round operations (illustrated in
Figure 67):

• AddRoundTweakey (ART): the round tweakey is XORed with the internal state.

• ShuffleCells (τ): substitutes the position of cells, where the Midori [37] cell
permutation,

τ = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2]

is used.

• MixColumns (M:) mixes each column in the internal state by multiplying it with
the matrix M defined as

M = circ(0, ρa, ρb, ρc) =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ,

where ρa denotes the a-bit left rotation. For Qarma-64 and Qarma-128, M =

circ(0, ρ, ρ2, ρ) and M = circ(0, ρ, ρ4, ρ5) are used, respectively.

• SubCells (S): applies a simple 4-bit S-box to every nibble:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 e 2 a 9 f 8 b 6 4 3 7 d c 1 5
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Figure 68: Two zero-correlation linear hulls on Qarma4,5

The tweak schedule consists of two functions, h and ω, where the h function is
defined as simple permutation h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11]. More-
over, the ω function is a bit-based LFSR. The LFSR is however irrelevant for our
attack, as we only consider cell-based linear masks that are either inactive, active or
any. Moreover, we focus on Qarma-64.

5.4.2 Zero-Correlation Linear Hull on QARMA4,5

Figure 68 shows two zero-correlation linear hulls on Qarma4,5. Any linear masks
are applied to 6 cells of the state, i.e., (s2, s7, s8, s12, s13, s15). Moreover, active linear
masks are applied to s0 and s8 of the output, as shown in Figure 68. Then, we focus
on the tweak cell labelled 12. As illustrated in cells highlighted by red frames, the Γ
sequence has just one active cell. Therefore, applying an inactive mask to the tweak
cell labelled 12 causes a contradiction due to Proposition 2. Note that we do not
need to activate any of the other 15 cells in the tweak and they can take any fixed
value. Thus, the domain space of the zero-correlation linear hull becomes at most
17 (= 16+ 1) cells.
The attack assumption of the naive algorithm using zero-correlation linear hull is
the known-plaintext and tweak setting, but it usually requires a huge data complex-
ity. If we assume a chosen-plaintext and related-tweak setting, the required data
complexity can be reduced by linking to integral distinguishers. Any linear masks
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Figure 69: Key-Recovery Attacks on Qarma4,8

are applied to six cells in the two zero-correlation linear hulls, and inactive linear
masks are applied to the other 11 (= 10 + 1) cells. Therefore, the corresponding
related-tweak integral distinguisher requires 210×4 = 240 chosen plaintexts over 24

related tweaks, and the total data complexity is 240+4 = 244. Here, the relation of
the tweak is defined in such a way that the 4-bit cell labelled 12 takes all values.
Both zero-correlation linear hulls outlined in Figure 68 share the same input linear
mask, and the output in position s0 and s8 is balanced at the same time‡.

‡ s10 is also balanced at the same time.
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5.4.3 Key-Recovery Attacks on QARMA4,8

In the key recovery, we first add pre-whitening before the integral distinguisher. Let
P and T denote the states of plaintext and tweak, respectively. We first prepare a
set of plaintexts and tweaks, where 10 cells at position P[0, 1, 3, 4, 5, 6, 9, 10, 11, 14]
and 1 cell at position T [12] are active. Moreover, we choose the input such that
P[12] = T [12], and then, (P ⊕ T)[12] becomes constant, and further coincides to the
input of the integral distinguisher.
We can append three rounds after the integral distinguisher. Figure 69 shows the
key-recovery, and let X and Y be the states defined in Fig. 69. Due to the integral
distinguisher, both s0 and s8 in X are balanced at the same time. Then

X0

X4

X8

X12

 =


0 ρ ρ2 ρ

ρ 0 ρ ρ2

ρ2 ρ 0 ρ

ρ ρ2 ρ 0




Y0

Y4

Y8

Y12

 =


ρY4 + ρ

2Y8 + ρY12

ρY0 + ρY8 + ρ
2Y12

ρ2Y0 + ρY4 + ρY12

ρY0 + ρ
2Y4 + ρY8

 ,

and
n⊕
i=0

(X0 +X8) =

n⊕
i=0

(ρY4 + ρ
2Y8 + ρY12)⊕ (ρ2Y0 + ρY4 + ρY12)

=

n⊕
i=0

(ρ2Y0 + ρ
2Y8) = 0.

Moreover ρ2 is the rotation function,
⊕n
i=0(Y0 + Y8) = 0. We use the meet-in-

the-middle technique for the integral attacks [301], where
⊕n
i=0 Y0 and

⊕n
i=0 Y8

are evaluated independently, and round keys satisfying
⊕n
i=0 Y0 =

⊕n
i=0 Y8 are

recovered. The size of the involved secret-key is 56(= 14× 4) bits in w1 ⊕ k0 and
28(= (1 + 6)× 4) bits in M(τ(k0)), which gives a total of 84 key-bits that can be
recovered. Since one structure removes incorrect secret-key bits by a factor of 2−4,
we need 84/4 = 21 structures to uniquely determine the secret-key.
To compute

⊕n
i=0 Y0, cells labelled red and green are involved, where 36-bit of

ciphertexts, 36-bit of w1 ⊕ k0, and 16-bit of M(τ(k0)) are involved. We first store
the frequency of 36-bit (C[4, 6, 7, 8, 9, 11, 12, 13, 14]) into memory. Then, we use the
FFT key-recovery technique [324], and the time complexity can be evaluated as

21× 4× (216 × (3× 36× 236)) ≈ 265.2.

As a result, we generate a list whose size is 236+16 = 252 and each value takes
((21× 4) + 16+ 4) = 104 bits, where (21× 4)-bit are the concatenation of

⊕n
i=0 X0

in 21 structures, 16-bit are (w1 ⊕ k0)[6, 7, 12, 13], and 4-bit are M(τ(k0))[5].
Similarly, cells labelled blue and green are involved to compute

⊕n
i=0 X8, where

36-bit of ciphertexts, 36-bit of w1 ⊕ k0, and 16-bit of M(τ(k0)) are involved. Then,
we store the frequency of 36-bit (C[0, 2, 5, 6, 7, 10, 12, 13]‖C[15]⊕ T ′[15]) into memory.
Again, the FFT key-recovery technique enables us to compute the sum with 265.2

computations, and we generate a similar list as in the case of
⊕n
i=0 Y0. Finally, we

compare these lists to find a match, and the time complexity is 252.



5.5 application to mantis 153

Thus, the total time complexity is 2× 265.2 + 252 ≈ 266.2, and the required data
complexity is 21× 244 ≈ 248.4. The memory complexity is determined by storing
our two lists and is 2× 104/64× 252 = 253.70

64-bit blocks. We already recover
56-bit w1 ⊕ k0 and 28-bit M(τ(k0)), and there are still 44 bits of the secret-key,
remaining. Finally, we exhaustively guess these bits, but the complexity, i.e., 244, is
negligible compared with 266.2. The security of Qarma-64 is claimed as 2128−d−2

where 2d chosen or known {plaintext, ciphertext, tweak} triples, i.e., 2128−48.46−2 =

277.54 in our case. Therefore, our attack against Qarma4,8 is valid.

5.5 application to mantis
In this section, we apply the attack to a reduced-round version of Mantis8, where
the number of forward and backward rounds are reduced to 4 and 8, respectively.
Our attack assumption is the same as the case of Qarma, where only 1 cell in the
tweak is activated and the other 15 cells can take any known constant.

5.5.1 Description of Mantis

Mantis is a family of lightweight tweakable block ciphers proposed by Beierle
et al. [50] together with Skinny. Mantis has a block size of 64 bits, a key length of
128 bits, and a tweak length of 64 bits, respectively. The structure of Mantis follows
the design of Prince [101] and is aimed to achieve low-latency. While it is rather
easy to turn a cipher into a tweakable cipher by using the Tweakey framework, the
designers reused components of Midori [37] to achieve low-latency. One round of
Mantis consists of the following round operations (illustrated in Figure 70):

• SubCells (SC): substitutes each nibble x by the involuntary Midori S-box
Sb0(x) that is given below:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

• AddConstant (AC): adds a round constant RCi to the state. The constants are
similarly generated as in Prince.

• AddRoundTweakey (ART): adds the (full) round tweakey to the internal state.

• PermuteCells (PC): applies the cell permutation of Midori as given below:

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

• MixColumns (MC): multiplies each column of the state by the binary matrix
from Midori M as shown below:

M =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


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Figure 70: Illustration of the tweakable block cipher Mantis.

The state is represented as a 4× 4 matrix, where each index is defined as
s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

 .

In the state denoted by X, let X[i1, i2, . . . , im] be (si1 , si2 , . . . , sim) of X. The encryp-
tion of Mantis consists of a forward round function, a central construction, and
backward round function, similar as in Qarma. The designers of Mantis defines
Mantisr as Mantis whose numbers of forward and backward rounds are r. For
simplicity, we use different notation denoted by Mantisr1,r2 , where the numbers
of forward and backward rounds are r1 and r2, respectively.

5.5.2 Zero-Correlation Linear Hull on MANTIS4,5

The related-tweak zero-correlation linear distinguishers and the consequential inte-
gral distinguishers for Mantis4,5 are identical to the distinguishers on Qarma4,5.
This is because, wlog. we can re-arrange the components of the round function in
Mantis so that the overall structure of Mantis is the same as for Qarma. We can
define Mantisr ∼ Qarmar by changing the order of the round components from

MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstancti ◦ SubCells

to

SubCells ◦ MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstancti

that is equivalent to the round structure of Qarma. Moreover, as the first and
last round of Qarma are partial rounds (omitting ShuffleCells and MixColumns)
this works for the beginning of the forward/backward rounds. Furthermore, as
Qarma employs one forward and one backward round in the central construc-
tion, ShuffleCells and MixColumns can be added from Mantis to complete the last
round of the forward/backward rounds. The remaining application of one S-box in
Qarma is then equivalent to the application of an S-box in the middle construction
of Mantis.
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Figure 71: Two zero-correlation linear hulls on Mantis4,5.

Since our attack is of a general nature, and the components of Mantis and Qarma

are very similar (see the differences in Table 22) the distinguishers of Qarma can
be re-used. All operations of both Mantis and Qarma are in a nibble-by-nibble
fashion, and the alignment of the state words is the same. Moreover, in the search
for the related-tweak zero-correlation distinguishers, we consider them-bit S-box as
an arbitrary S-box and do not consider the structure of a particular S-box. Similar
the linear layer of Mantis and Qarma just differ by some entries of the MixColumns

matrix M, but again as we consider nibble-by-nibble operations and the matrices
have the same structure (with an all zero-diagonal) there are no differences in the
distinguisher. Finally, the additional application of an LFSR ω in the tweak-update
function of Qarma also does not change the distinguisher, with a similar argument
as for the differences in the MixColumns matrix M.
Figure 71 explicitly shows the distinguishers for Mantis4,5, where cells s0 and s8
after MixColumns are linearly active, respectively.

5.5.3 Key-Recovery Attacks on Mantis4,8

Since our attacks are general against the Tweakey framework, and we can reuse
the distinguishers of Qarma on Mantis, we can further reuse the key-recovery for
Mantis.
Qarma uses a 128-bit master key K that is initially partitioned as w0||k0, where
wi are the whitening keys and ki are the core keys, respectively, for i ∈ {0, 1}. For
encryption, k0 = k1 and w1 = (w0≫ 1)⊕ (w0 � (64− 1)).
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Table 22: Comparison between Mantis and Qarma.

Qarma Mantis

Round
function τ M S

TK

S P M

TK

S-box σ1 = [a,d, e, 6, f, 7, 3, 5, 9, 8, 0, c,b, 1, 2, 4] Sb0 = [c,a,d, 3, e,b, f, 7, 8, 9, 1, 5, 0, 2, 4, 6]

τ = [0,b, 6,d,a, 1, c, 7, 5, e, 3, 8, f, 4, 9, 2] P = [0,b, 6,d,a, 1, c, 7, 5, e, 3, 8, f, 4, 9, 2]

Linear
Layer M =


0 ρ ρ2 ρ

ρ 0 ρ ρ2

ρ2 ρ 0 ρ

ρ ρ2 ρ 0

 M =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


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Figure 72: Key-recovery attack on Mantis4,8.
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Mantis uses a 128-bit master key K that is split into k0||k1 that is then further
extended to the 192-bit key

(k0||k
′
0||k1) = (k0||(k0≫ 1)⊕ (k0 � 63)||k1)

where k0,k ′0 are the whitening keys and k1 is the round key for all rounds in
Mantis.
In the key-recovery of Qarma we recover 56-bit of w1 ⊕ k0 and 28-bit of M(τ(k0)).
Since w1Qarma

= k ′0Mantis

and k0Qarma
= k̄1Mantis

we can recover the same key infor-
mation as in Qarma (i.e., we can recover 56-bit of k ′0 ⊕ k̄1 and 28-bit of M(P(k̄1))).
Equally, as in the attack on Qarma4,8 the complexities to attack Mantis4,8 are
266.2 for time complexity, 248.4 for data complexity, and 253.64 64-bit blocks for the
memory complexity. Figure 72 explicitly shows the key recovery for Mantis4,8.

5.6 application to skinny
In this section, we apply the attack to reduced-round versions of Skinny-64/128
and Skinny-64/192. Skinny [50] is designed according to the STK construction
with TK-p, where p ∈ {1, 2, 3}. We show attacks on 20 rounds of Skinny-64/128 and
23 rounds of Skinny-64/192.

5.6.1 Description of Skinny

Skinny is a family of lightweight tweakable block ciphers proposed by Beierle
et al. [50]. Skinny has a block size n of 64 or 128 bits, and a tweakey size of
n/2n/3n, where the tweakey can be both tweak and key. The aim of Skinny is to
achieve the performance of the NSA ciphers Simon and Speck [46], while still offer-
ing strong security bounds against differential/linear cryptanalysis. One round of
Skinny consists of the following round operations (illustrated in Figure 73):
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• SubCells (SC): substitutes each nibble x by the S-box S(x) which is given
below:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

• AddRoundConstants (AC): adds LFSR-based round constants to cells 0, 4, and
8 of the state.

• AddRoundTweakey (ART): adds the round tweakey to the first two rows of the
state.

• ShiftRows (SR): rotates the ith row, for i = 0 6 i 6 3, by i positions to the
right.

• MixColumns (MC): multiplies each column of the state by the binary matrix M:

M =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0


The state is represented as a 4× 4 matrix, where each index is defined as

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

 .

In the state denoted by X, let X[i1, i2, . . . , im] be (si1 , si2 , . . . , sim) of X. In our
work, we just consider Skinny-64, however, the attack should easily be applicable to
Skinny-128. For two tweakey words (i.e., TK-2) the designers of Skinny recommend
36 rounds, for three tweakey words (i.e., TK-3) the designers recommend 40 rounds.

5.6.2 Zero-Correlation Linear Hull on Skinny-64/128

We searched the zero-correlation linear hull by using the miss-in-the-middle like
algorithm. As a result, we found a 13-round zero-correlation linear hull for Skinny-
64/128. Here, active linear masks are applied to two cells (s0, s3) at the input, and
active linear masks are applied to cells s7 and s11 in the state before MixColumns

at the output, as shown in Figure 75 and Figure 76. Then, we focus on the tweak
cell labelled 9, where the Γ sequence is depicted by using a red frame. Since the
Γ sequence has just two active cells and Skinny-64/128 is based on TK-2, applying
an inactive mask to the before mentioned tweak cell causes a contradiction due to
Proposition 2. Note that the remaining 15× 2 cells in the tweakey can take any
constant, and the domain of our zero-correlation linear hull is 64+ 8 = 72 bits.
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We can link the zero-correlation linear hull to a related-tweakey integral distin-
guisher. We apply any linear mask to the two cells (s0, s3) in the zero-correlation
linear hulls as illustrated in Figure 75 and Figure 76 and apply inactive linear masks
to the remaining 14 cells. Moreover, we apply inactive linear masks to the 2× 4 = 8-
bit tweak cell labelled 9. Therefore, the corresponding related-tweakey integral
distinguisher requires 214×4 = 256 chosen plaintexts over 28 related tweakeys, and
the total data complexity is 256+8 = 264. Here, the relation of the tweakey is de-
fined in such a way that the 2× 4 = 8-bit cell labelled 9 takes all values. The integral
distinguishers share the same input linear masks Γ0, and the output in cell s11 in
the state after MixColumns is balanced.

5.6.3 Key-Recovery for Skinny-64/128

Our attack model is a related-tweakey attack, where 28 related tweakeys are ex-
ploited. Then, there exist generic key-recovery attack with the time complexity of
2128−8 = 2120 [45]. Therefore, the time complexity of a non-trivial key-recovery
attack must be at most 2120.
In the key-recovery, we can prepend 1 round and append 6 rounds to the inte-
gral distinguisher. In total the attack reaches 20 rounds. Figure 77 shows the key-
recovery, and let Xi, Yi, and Zi be the states defined in Figure 77. Let P and T be
the states of plaintext and tweak, respectively. We first prepare a set of chosen Z1,
where 14 cells are active, i.e., Z1[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Moreover, we
need the tweak cell T [1] in the two lines to be active, as it will propagate to cell T [9]
after 1 round, which coincides with the beginning of both integral distinguishers as
shown in Figure 75 and Figure 76. Note that the consistent set of chosen plaintexts
and tweaks is computed from Z1 and T [1] without guessing any bits, since Skinny

does not have a whitening-key addition at the beginning.
Due to the integral distinguisher, both s7 and s11 in Y14 are balanced. Then

Z14[3]

Z14[7]

Z14[11]

Z14[15]

 =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0




Y14[3]

Y14[7]

Y14[11]

Y14[15]

 =


Y14[3] + Y14[11] + Y14[15]

Y14[3]

Y14[7] + Y14[11]

Y14[3] + Y14[11]

 ,

and

n⊕
i=0

Z14[11] =

n⊕
i=0

(Y14[7]⊕ Y14[11]) = 0

In Skinny, the full tweakey is not XORed with the internal state (i.e., just the top
two rows of the tweakey are XORed to the state), and then, the FFT key-recovery
technique is less efficient [324]. Therefore, we estimate the time complexity to re-
cover round keys satisfying

⊕n
i=0 Y11 = 0 in detail by using the partial-sum tech-

nique [155]. The size of the involved secret key is (7+ 6+ 4+ 2+ 1+ 0)× 4 = 80 bits,
and one structure filters incorrect secret-key guesses by a factor of 2−4. Therefore,
we need about 80/4 = 20 structures to uniquely determine the secret key.
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Figure 75: Zero-Correlation Linear Distinguisher for Skinny-64/128.
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Figure 76: Zero-Correlation Linear Distinguisher for Skinny-64/128.
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Figure 77: Key Recovery Attacks on 19 rounds of Skinny-64/128.

Table 23 summarises the procedure of the partial-sum technique, where the time
complexity can be computed as

3× 264 + 272 + 276 + 2× 280 + 284 + 2× 292 + 4× 288 ≈ 293.2

We need to repeat this procedure 20 times to recover the secret-key. Thus, the total
time complexity is 297.5, the data complexity is 20× 264 ≈ 268.4, and the memory
complexity is 1/64 · 288 = 282 64-bit blocks. Note that our attack requires a data
complexity above 264, however, we do not need to collect the full-codebook under
a fixed tweakey.
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Table 23: Procedure for the key-recovery on Skinny-64/128

Step Guessed Key Data Stored Texts Memory (bits) Complexity

0 256 X20[0,1,3,4,5,6,7,8,10,11,12,13,14,15] 256 264

1 TK20[1,5] 252 X20[0,3,4,6,7,8,10,11,12,14,15],Y19[1,5] 252+8 = 260 256+8 = 264

2 TK20[6] 252 X20[0,3,4,7,8,11,12,15],Y19[1,5,6,10,14] 252+12 = 264 252+12 = 264

3 TK20[0,4] 248 X20[3,7,11,15],Y19[0,1,4,5,6,10,12,14] 248+20 = 268 252+20 = 272

4 TK20[3,7] 244 Y19[0,1,3,4,5,6,10,11,12,14,15] 244+28 = 272 248+28 = 276

- 244 X19[0,1,3,4,5,7,8,9,12,13,15]

5 TK19[0,4] 236 X19[1,3,5,7,9,13,15],Y18[4,12] 236+36 = 272 244+36 = 280

6 TK19[3,7] 232 X19[1,5,9,13],Y18[3,4,12,15] 232+44 = 276 236+44 = 280

7 TK19[1,5] 232 Y18[1,3,4,5,9,12,13,15] 232+52 = 284 232+52 = 284

- 232 X18[1,3,4,7,11,12,13,15]

8 TK18[3,7] 224 X18[1,4,12,13],Y17[7,15] 224+60 = 284 232+60 = 292

9 TK18[1] 220 X18[4,12],Y17[7,13,15] 220+64 = 284 224+64 = 288

10 TK18[4] 220 Y17[0,7,8,13,15] 220+68 = 288 220+68 = 288

- 220 X17[0,6,10,12,14]

11 TK17[6] 212 X17[0,12],Y16[6] 212+72 = 284 220+72 = 292

12 TK17[0] 28 Y16[6,12] 28+76 = 284 212+76 = 288

12 TK16[5] 24 Z14[11] 24+80 = 284 28+80 = 288

5.6.4 Related-Tweak Zero-Correlation Linear Distinguisher on Skinny-64/192

We can reuse parts of the zero-correlation linear hull for Skinny-64/128 in the TK-2
setting for that of Skinny-64/192 in the TK-3 setting. Therefore, we apply any linear
mask to cells (s0, s3) in the input mask Γ0. In contrast to the case for Skinny-64/128,
we now apply active linear masks to only cell s9 in the state before MixColumns,
as shown in Figure 78. Then, we focus on the tweakey cell labelled 7, and the Γ
sequence has now three active cells. Again, by using Proposition 2 and applying
an inactive mask to the before mentioned tweakey cell, this causes a contradiction.
Note that the remaining 15× 3 cells in the tweakey can take any constant, and the
domain of our zero-correlation linear hull is 64+ 12 = 76 bits.
Again, we link the zero-correlation linear hull to a related-tweakey integral distin-
guisher. We apply any linear mask to the two cells (s0, s3) in the zero-correlation
linear hulls as illustrated in Figure 78 and apply inactive linear masks to the remain-
ing 14 cells. Moreover, we apply inactive linear masks to the 3× 4 = 12-bit tweak
cell labelled 7. Therefore, the corresponding related-tweakey integral distinguisher
requires 214×4 = 256 chosen plaintexts over 212 related tweakeys, and the total data
complexity is 256+12 = 268. Here, the relation of the tweakey is defined in such a
way that the 3× 4 = 12-bit tweak cell labelled 7 takes all values. The cell s9 before
MixColumns is balanced because any linear mask is applied to the cell.
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Figure 78: Zero-Correlation Linear Distinguisher for Skinny-64/192.

5.6.5 Key-Recovery for Skinny-64/192

Our integral distinguisher uses 212 related tweakeys, and then, there exist generic
key-recovery attack with a time complexity of 2192−12 = 2180 [45]. Therefore, the
time complexity of a non-trivial key-recovery attack must be at most 2180.
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Figure 79: Key-Recovery Attacks on 20-rounds of Skinny-64/192.

In the key-recovery, we can prepend 1 round and append 8 rounds to the inte-
gral distinguisher. In total the attack reaches 23 rounds. Figure 79 shows the key-
recovery, and let Xi, Yi, and Zi be the states as defined in Figure 77. Let P and T be
the states of plaintext and tweak, respectively. We first prepare a set of chosen Z1,
where 14 cells are active, i.e., Z1[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Moreover, we
need the tweak cell T [11] in all three lines of the tweak-schedule to be active, as it
will propagate to cell T [7] after one round, which coincides with the beginning of
both integral distinguishers as shown in Figure 78. Note that the consistent set of
chosen plaintexts is computed from Z1 without guessing any bits.
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Table 24: Procedure for the key-recovery of
⊕n
i=0 Z16[5] on Skinny-64/192.

Step Guessed Key Data Stored Texts Memory (bits) Complexity

0 268 X23[0, 1, 2, . . . , 15],∆TK22[0] 268 268

1 TK23[0, . . . , 7] 268 X22[0, 1, 2, . . . , 15],∆TK22[0] 268+32 = 2100 268+32 = 2100

2 TK22[0, . . . , 7] 264 X21[0, 1, 2, . . . , 15] 264+64 = 2128 268+64 = 2132

3 TK21[0, 4] 256 X21[1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15], Y20[0, 12] 256+72 = 2128 264+72 = 2136

4 TK21[1, 5] 248 X21[2, 3, 6, 7, 10, 11, 14, 15], Y20[0, 5, 12, 13] 248+80 = 2128 256+80 = 2136

5 TK21[2, 6] 248 X21[3, 7, 11, 15], Y20[0, 2, 5, 6, 10, 12, 13, 14] 248+88 = 2136 248+88 = 2136

6 TK21[3, 7] 244 Y20[0, 2, 3, 5, 6, 10, 11, 12, 13, 14, 15] 244+96 = 2140 248+96 = 2144

- 244 X20[0, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15]

7 TK20[0, 4] 236 X20[2, 3, 5, 9, 13, 14, 15], Y19[4, 12] 236+104 = 2140 244+104 = 2148

8 TK20[5] 236 X20[2, 3, 14, 15], Y19[1, 4, 5, 9, 12] 236+108 = 2144 236+108 = 2144

9 TK20[2] 232 X20[3, 15], Y19[1, 4, 5, 9, 12, 14] 232+112 = 2140 236+112 = 2144

10 TK20[3] 228 Y19[1, 4, 5, 9, 12, 14, 15] 228+116 = 2144 232+116 = 2148

- 228 X19[1, 4, 7, 11, 12, 13, 15]

11 TK19[4] 224 X19[1, 7, 11, 13, 15], Y18[8] 224+120 = 2144 228+120 = 2148

12 TK19[1] 220 X19[7, 11, 15], Y18[8, 13] 220+124 = 2144 224+124 = 2148

13 TK19[7] 212 Y18[7, 8, 13] 212+128 = 2140 220+128 = 2148

- 212 X18[6, 10, 14]

14 TK18[6] 24 Y17[6] 24+132 = 2140 212+132 = 2144

- 24 X17[5]

15 TK17[5] 24 Z16[5] 24+136 = 2140 24+136 = 2140

Due to the integral distinguisher s9 in Y16 is balanced. Then
Z16[1]

Z16[5]

Z16[9]

Z16[13]

 =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0




Y16[1]

Y16[5]

Y16[9]

Y16[13]

 =


Y16[1] + Y16[9] + Y16[13]

Y16[1]

Y16[5] + Y16[9]

Y16[1] + Y16[9]

 ,

and
n⊕
i=0

Z16[5] +Z16[13] =

n⊕
i=0

Y16[9] = 0

Similarly to the attack against Qarma, we use the meet-in-the-middle technique for
the integral attack [301], where

⊕n
i=0 Z16[5] and

⊕n
i=0 Z16[13] are independently

evaluated, and round-tweakeys satisfying
⊕n
i=0 Z16[5] =

⊕n
i=0 Z16[13] are recov-

ered. The size of involved secret-tweakey is 148(= 37× 4) bits. Since one structure
removes incorrect secret-key guesses by a factor of 2−4, we need 148/4 = 37 struc-
tures to uniquely determine the secret-key.
To compute

⊕n
i=0 Z16[5], all cells labelled red and green are involved. We use the

partial-sum technique to recover
⊕n
i=0 Z16[5], and the procedure is summarised in

Table 24. Here, ∆TK22[0] is computed from the relation of tweakeys.
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Table 25: Procedure for the key-recovery of
⊕n
i=0 Z16[13] on Skinny-64/192.

Step Guessed Key Data Stored Texts Memory (bits) Complexity

0 256 X23[0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15],∆TK22[0] 256 268

1 TK23[0, 1, 2, 4, 5, 6, 7] 256 X22[0, 1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15],∆TK22[0] 256+28 = 284 256+28 = 284

2 TK22[0, 1, 2, 4, 5, 6, 7] 244 X21[0, 1, 4, 6, 7, 8, 10, 12, 13, 14, 15] 244+56 = 2100 256+56 = 2112

3 TK21[0, 4] 236 X21[1, 6, 7, 10, 13, 14, 15], Y20[4, 12] 236+64 = 2100 244+64 = 2108

4 TK21[1] 232 X21[6, 7, 10, 14, 15], Y20[4, 12, 13] 232+68 = 2100 236+68 = 2104

5 TK21[6] 228 X21[7, 15], Y20[2, 4, 6, 12, 13] 228+72 = 2100 232+72 = 2104

6 TK21[7] 224 Y20[2, 4, 6, 11, 12, 13] 224+76 = 2100 228+76 = 2104

- 224 X20[2, 5, 7, 9, 13, 14]

7 TK20[5] 216 X20[2, 7, 14], Y19[5] 216+80 = 296 224+80 = 2104

8 TK20[2] 212 X20[7], Y19[5, 14] 212+84 = 296 216+84 = 2100

9 TK20[7] 212 Y19[3, 5, 14] 212+88 = 2100 212+88 = 2100

- 212 X19[3, 4, 15]

10 TK19[4] 212 X19[3, 15], Y18[0] 212+92 = 2104 212+92 = 2104

11 TK19[3] 28 Y18[0, 15] 28+96 = 2104 212+96 = 2108

- 28 X18[0, 12]

12 TK18[0] 24 Y17[12] = X17[13] = Z16[13] 24+100 = 2104 28+100 = 2108

Then, the time complexity can be computed by

268 + 2100 + 2132 + 3× 2136 + 2140 + 4× 2144 + 5× 2148 ≈ 2150.4

We also need to compute
⊕n
i=0 Z16[13], but the time complexity is clearly negli-

gible compared with that for
⊕n
i=0 Z16[5]. Nevertheless, the procedure to recover⊕n

i=0 Z16[13] is shown in Table 25, where we consider all cells labelled blue and
green. Again, we use the partial-sum technique to recover

⊕n
i=0 Z16[13], and the

time complexity can be computed by

268 + 284 + 2112 + 3× 2108 + 5× 2104 + 2× 2100 ≈ 2112.3

We need to repeat these two procedures for 37 times to recover the secret-key. Thus,
the total time complexity can be computed by

37× (2150.4 + 2112.3) ≈ 2155.6

the data complexity is 37× 268 ≈ 273.2, and the memory complexity is 1/64 · 2144 =

2138 64-bit blocks. Finally, we compare these lists and find a match. Similarly to
the attack against Skinny-64/128, our attack requires a data complexity above 264,
however, we do not need to collect the full-codebook under a fixed tweakey.

5.7 conclusion
In this chapter, we study zero-correlation attacks on tweakable block ciphers and
consider for the first time the effect of the tweak. Kranz, Leander and Wiemer
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showed that the addition of the tweak, that is updated by a linear key schedule,
does not introduce new linear characteristics, which is quite different to the differ-
ential model. However, given additional restrictions from the linear tweak schedule,
allow us to efficiently calculate the linear hull for tweakable block ciphers. As zero-
correlation cryptanalysis requires huge amounts of data, we turn the distinguishers
into integral distinguisher and then mount key-recovery attacks based on them.
Distinguishers found this way cover more rounds compared to existing results util-
ising the division property, zero-correlation or other conventional approaches to
find integral distinguishers.
We show new attacks on Qarma, Mantis and Skinny, where the attack on Qarma

is currently the best attack (with respect to number of rounds) on a round-reduced
variant of Qarma. This new way of searching for distinguishers on tweakable
block ciphers does not only allow attackers to find longer distinguishers, but also
provides designers of tweakable block ciphers with new insights. For example in
tweakable reflection ciphers like Mantis or Qarma, where the tweak is added just
in the forward and backward rounds, while in the middle rounds just round-keys
are added, the additional middle rounds do not provide extra security with respect
to our attacks. This is because the zero-correlation linear hulls over the tweaks are
independent of the number of keyed middle rounds.
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executive summary. In this chapter, we present a related-tweakey impossible-
differential attack on a round-reduced version of the tweakable block cipher Skinny

based on [20]. Furthermore, we present some unpublished results on integral dis-
tinguisher of Skinny.
At CRYPTO’16, Beierle et al. presented Skinny, a family of lightweight tweakable
block ciphers intended to offer an alternative to the NSA designs Simon and Speck.
Skinny can be implemented efficiently in both software and hardware and supports
block sizes of 64 and 128 bits as well as tweakey sizes of 64, 128, 192 and 128,
256, 384 bits respectively. In this chapter, we present a related-tweakey impossible-
differential attack on up to 23 (out of 36) rounds of Skinny-64/128 for different
tweak sizes. All our attacks can be trivially extended to Skinny-128/128.

declaration of authorship. The work described in this chapter is based on
the paper [20]: Related-Key Impossible-Differential Attack on Reduced-Round Skinny

and was presented at The 15th International Conference on Applied Cryptography and
Network Security (ACNS’17) in Kanazawa, Japan. The paper is joint work with Sub-
hadeep Banik, Avik Chakraborti, Eik List, Florian Mendel, Siang Meng Sim, and
Gaoli Wang. The work was initiated during the group sessions of the 6th Asian
Workshop on Symmetric Cryptography (ASK’16) in Nagoya, Japan. All authors con-
tributed equally to the results of the paper. The contributions of the author are the
following:

169
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• Searching for integral and impossible differential distinguishers of Skinny.

• Improving the key-recovery attack by suggesting to insert the differences in
the tweak.

• Further improvements of the key-recovery attacks to cover more rounds and
reduce the complexities.

6.1 introduction
Skinny is a family of lightweight tweakable block ciphers proposed at CRYPTO’16
by Beierle et al. [50]. The goal of the designers was to design a cipher that could
be implemented highly efficient on both software and hardware platforms, with
performance comparable or better than the Simon and Speck [46] families of block
ciphers. Like the NSA designs Simon and Speck, Skinny supports a wide range
of block sizes and tweak/key sizes – however, in contrast to the And-RX and Add-
RX based NSA proposals, Skinny is based on the better understood Substitution-
Permutation-Network approach.
Skinny offers a large security margin within the number of rounds for each member
of the Skinny family. The designers showed in their initial analysis, which they
published alongside with the specification of Skinny, that their attacks reach close
to half of the number of rounds of the cipher. To motivate third-party cryptanalysis,
the designers of Skinny announced a cryptanalysis competition [49] for Skinny-
64/128 and Skinny-128/128 with the obvious challenge of attacking more rounds
than the preliminary analysis, concerning both the single- and related-key models.

related work. Independent of our analysis Liu et al. [230] analysed Skinny in
the related-tweakey model, showing impossible-differential and rectangle attacks
on 19, 23, and 27 rounds of Skinny-n/n, Skinny-n/2n and Skinny-n/3n, respec-
tively. In [328], Tolba et al. showed impossible-differential attacks for 18, 20, 22
rounds of Skinny-n/n, Skinny-n/2n and Skinny-n/3n, respectively. Addition-
ally, Sadeghi et al. [295] studied related-tweakey impossible- differential and zero-
correlation linear attacks. In comparison to the other attacks, our 23-round related-
tweakey impossible-differential attack on Skinny-64/128 has the lowest time
complexity so far. Table 26 summarises our attacks and compares them to existing
attacks on Skinny.

6.2 description of skinny
A detailed description of the tweakable block cipher Skinny can be found in Chap-
ter 5.6. In the following, we will give a short description of the tweakey schedule
of Skinny, as the attack described in Section 6.3.2 exploits parts of the tweakey
schedule.
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Table 26: Summary of our attacks and comparison to existing cryptanalysis of Skinny.

Instance Rounds Attack Type Time Data Memory Ref

Skinny-64/* 14 Integral 253 248 232 [50]

Skinny-64/64 18 Impossible 257.1 247.5 258.5 [328]

Skinny-64/64 19 Impossible 263.0 261.4 256 [230]

Skinny-64/128 20 Impossible 2121.1 247.7 274.7 [328]

Skinny-64/128 20 ZC/Integral 297.5 268.4 282 Chap. 5.6

Skinny-64/128 21 Impossible 271.4 271.4* 268.0 Sect. 6.3.2

Skinny-64/128 22 Impossible† 271.6 271.4* 264.0 Sect. 6.3.3

Skinny-64/128 23 Impossible 2125.9 262.5 2124.0 [230]

Skinny-64/192 22 Impossible 2184.0 247.8 274.8 [328]

Skinny-64/192 23 ZC/Integral 2155.6 273.2 2138 Chap. 5.6

Skinny-64/128 23 Impossible† 279 271.4* 264.0 Sect. 6.3.4

Skinny-64/192 27 Rectangle 2165.5 263.5 280.0 [230]

Skinny-128/128 18 Impossible 2116.9 292.4 2115.4 [328]

Skinny-128/128 19 Impossible 2124.6 2122.5 2112.0 [230]

Skinny-128/256 20 Impossible 2245.7 292.1 2147.1 [328]

Skinny-128/256 23 Impossible 2251.5 2124.5 2248.0 [230]

Skinny-128/384 22 Impossible 2373.5 292.2 2147.2 [328]

Skinny-128/384 27 Rectangle 2331.0 2112.0 2144.0 [230]

tweakey schedule. The tweakey schedule of Skinny, as illustrated in Figure 80,
follows the Tweakey framework [188]. In contrast to the previous Tweakey de-
signs Deoxys-BC [189] and Joltik-BC [186], Skinny employs a significantly more
lightweight strategy. In each round, only the two topmost rows of each tweakey
word are extracted and XORed to the state. An additional round-dependent constant
is also XORed to the state to prevent against slide attacks.
The 128-bit tweakey is arranged in two 64-bit tweakey words, represented by TK1
and TK2. In each round, the tweakey words are updated by a cell permutation PT
that ensures that the two bottom rows of a tweakey word in a certain round are

* The data complexity of our 21-round attack is beyond codebook. Our attack is more efficient than a
full codebook attack in the case where Skinny is used in a tweak-updating mode (i.e., where the tweak
changes every time, but the key stays the same). This does not effect the 22/23 round attack as 48 bits
of the tweakey are public (i.e. data complexity for full codebook would be 264×248 = 2112, where 264

comes from the state and 248 comes from the tweak).
† Our attack on 22/23 rounds uses the tweak against the recommendation of the Skinny designers but

still conform to the specification in [50].
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Figure 80: Tweakey schedule of Skinny.

exchanged with the two top rows in the tweakey word in the subsequent round.
The permutation is given as:

PT = {9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7}

The permutation PT has a period of 16, as visualised in Figure 81. Moreover, each
individual cell in the two topmost rows of TK2 is transformed by a 4-bit LFSR to
minimise the cancellation of differences from TK1 and TK2; TK1 employs no LFSR
transformation. The LFSR transformation L is given by

L(x3, x2, x1, x0) := (x2, x1, x0, x3 ⊕ x2),

where x3, x2, x1, x0 represent the individual bits of every tweakey nibble. The up-
date equation for the tweak cells can also be written explicitly as:

TKr+11 [i] =
{
TKr1[P[i]] for 0 6 i 6 15,

TKr+12 [i] =

{
L(TKr2[P[i]]) if 0 6 i 6 7,
TKr2[P[i]] otherwise.

where TKra[i] represents the ith nibble of TKa (a = 1, 2) in round r. Note that the
rth-round tweakey is given by Kr = TKr1[i]⊕ TKr2[i], for 0 6 i 6 7.

6.3 related-key impossible-differential attack
Impossible-differential attacks were introduced independently by Biham et al. [69,
70] and Knudsen [200], and they are widely used as an important cryptanalytic
technique. The attack starts with finding an input difference that can never result in
an output difference. By adding rounds before and/or after the impossible differen-
tial, one can collect pairs with certain plaintext and ciphertext differences. If there
exists a pair that meets the input and output values of the impossible differential
under some subkey, these subkeys must be wrong. In this way, we filter as many
wrong keys as possible and exhaustively search the rest of the keys. More details
on impossible differential attacks can be found in Chapter 2.4.3.

notations. Let us state a few notations that are used in the attack description:
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Figure 81: The permutation PT in the tweakey schedule has a period of 16.

Kr represents the rth round key. This is equal to TKr1 ⊕ TKr2. Similarly, kr[i] =
tkr1[i]⊕ tkr2[i] represents the individual ith tweakey nibble in round r.

Ar represents the internal state before SC in round r.

Br represents the internal state after SC in round r.

Cr represents the internal state after AT in round r.

Dr represents the internal state after SR in round r.

Er represents the internal state after MC in round r. Furthermore, Er = Ar+1.

Lt represents the t-times composition of LFSR function L.

X represents the corresponding variable X in the related-key setting.

X[i] represents the ith nibble of the corresponding variable X.

6.3.1 Related-Tweakey Impossible-Differential Distinguisher

Figure 82 presents the 11-round related-key differential trail that we use. While the
first impossible differential distinguishers we constructed where found by hand, we
then used a dedicated automated tool that was adapted from [244]. With the auto-
mated tool, we basically tried every possible position to add a starting difference
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Figure 82: Related-key impossible-differential trail over 11 rounds of Skinny-64/128.

in the tweakey, and then we selected the trails that reached the most rounds with a
valid contradiction in the middle.
For the best trail we found, we introduce a difference in the cell at position 8 of the
combined tweakey. Since the initial difference is in Cell 8, i.e., in one of the bottom
two rows of the tweakey, the state is not affected in the first round. Therefore, the
first time the difference will be added to the state starts from the second round
onwards. Similarly in the backward trail, the difference in the 11th round-tweakey
appears in Cell 11 (in a bottom row), due to which we get an extra round in the
backward direction.

Lemma 1. The equation S(x⊕ ∆in)⊕ S(x) = ∆out has one solution x on average
for ∆in,∆out 6= 0. Similar result holds for the inverse S-Box S−1.

Proof. The above fact can be deduced by analysing the Differential-Distribution Ta-
ble (DDT ) of the S-box S as illustrated in Table 27. The average can be calculated
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as 1
225 ·

∑
δin,δout 6=0DDT(∆in = δin,∆out = δout) ≈ 1. This also holds for the

inverse S-box yielding the same result.

Lemma 2. For random values of x and ∆in,∆out 6= 0, the equation S(x⊕ ∆in)⊕
S(x) = ∆out holds with probability around 2−4.

Proof. The above fact can also be deduced by analysing the Differential-Distribution
Table (DDT ) of the S-box S as illustrated in Table 27. The probability can be calcu-
lated as:

Pr[(x,∆in,∆out)] =
∑

δin,δout 6=0
Pr[(x, δin, δout)|∆in = δin,∆out = δout]

· Pr[∆in = δin,∆out = δout]

=
1

225
·
∑

δin,δout 6=0
DDT(∆in = δin,∆out = δout) · 2−4 ≈ 2−4

where Pr[(x, δin, δout)] denotes the probability that the equation is satisfied for the
triplet x, δin, δout.

6.3.2 21-Round Attack on Skinny-64/128

The impossible differential trail described in Figure 82 can be extended by six
rounds in backward and four rounds in forward direction as shown in the following
two Lemmas.

Lemma 3. It is possible to find plaintext pairs P,P and related-tweakey pairs K,K
such that if the tweakey pairs differ only in nibble position 11, then there is no
difference in the internal state after executing six rounds of Skinny-64/128 with the
plaintext-tweakey pairs (P,K) and (P,K).

Proof. We will show how the required plaintext and tweakey pairs are generated.
We choose the nibble at Position 11 to introduce the initial difference because after
completing six rounds, the difference is shuffled to Cell 8 of the round key, which
coincides with the beginning of the impossible- differential trail, shown in Figure 82.
It can be seen that the AddRoundTweakey in the first round can be pushed behind
the MixColumns operation by changing the first round key to Lin(K1) where Lin =
MC ◦ SR represents the linear layer (refer to Figure 83).

Lin(K1) =


k1[0] k1[1] k1[2] k1[3]

k1[0] k1[1] k1[2] k1[3]

k1[7] k1[4] k1[5] k1[6]

k1[0] k1[1] k1[2] k1[3]


Furthermore, the initial difference between K = TK11 ⊕ TK12 and K = TK11 ⊕ TK12 can
be selected in a specific form, so that in Round 6, the tweakey difference is zero.
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Table 27: Difference-Distribution Table

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 . . . . . . . . . . . . . . .

1 . . . . . . . . 4 4 4 4 . . . .

2 . 4 . 4 . 4 4 . . . . . . . . .

3 . . . . . . . . 2 2 2 2 2 2 2 2

4 . . 4 . . . 2 2 . . . 4 2 2 . .

5 . . 4 . . . 2 2 . . 4 . 2 2 . .

6 . 2 . 2 2 . . 2 2 . 2 . . 2 2 .

7 . 2 . 2 2 . . 2 . 2 . 2 2 . . 2

8 . . . . 4 4 . . . . . . 2 2 2 2

9 . . . . 4 4 . . . . . . 2 2 2 2

a . . . . . 4 4 . 2 2 2 2 . . . .

b . 4 . 4 . . . . . . . . 2 2 2 2

c . . 4 . . . 2 2 4 . . . . . 2 2

d . . 4 . . . 2 2 . 4 . . . . 2 2

e . 2 . 2 2 . . 2 . 2 . 2 . 2 2 .

f . 2 . 2 2 . . 2 2 . 2 . 2 . . 2

Let us denote δ1 = tk11[11]⊕ tk11[11] and δ2 = tk12[11]⊕ tk12[11]. In Round 6, the
difference will appear in Cell 0 of the round key and so we want:

k6[0]⊕ k6[0] = tk61[0]⊕ tk61[0] + tk62[0]⊕ tk62[0]
= tk11[11]⊕ tk11[11]⊕ L3

(
tk12[11]

)
⊕ L3

(
tk12[11]

)
= δ1 ⊕ L3 (δ2) = 0

If the attacker chooses differences δ1, δ2 satisfying the equation δ1 ⊕ L3(δ2) = 0,
then there is no difference introduced via the round-key addition in Round 6. The
attacker should therefore follow the steps:

1. Take any Plaintext P and compute the state after the first round MixColumns,
i.e., E1.

2. Take any three-nibble difference ∆1,∆3,∆4 to construct E1 such that

E1 ⊕ E1 =


0 0 0 0

0 ∆1 0 ∆2

∆3 0 0 0

0 0 0 ∆4


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Figure 83: Trail for the six forward rounds (the values of active nibbles in red are functions
of δ1, δ2, the dark-gray cell visualises the tweakey cancellation).

The value of ∆2 will be determined in Equation 57. The attacker can recover
P by inverting the MC, SR, AC and SC layers on E1.
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3. The attacker chooses the difference α in Cell 14 of E2, and calculates then
k1[1], k1[3], k1[7] so that

B2 ⊕B2 = Lin−1(E2)⊕ Lin−1(E2) =


0 0 0 0

0 α 0 β

α 0 0 0

0 0 0 α

 .

For example, k1[1] is a solution of the equation:

S
(
E1[5]⊕ k1[1]

)
⊕ S

(
E1[5]⊕∆1 ⊕ k1[1]

)
= α.

Lemma 1 ensures that the equation above has one solution on average.

4. β needs to be equal to k2[7]⊕ k2[7] = tk21[7]⊕ tk22[7]⊕ tk21[7]⊕ tk22[7]. This
is equal to tk11[11]⊕ L(tk12[11])⊕ tk11[11]⊕ L(tk12[11]) = δ1 ⊕ L(δ2). Further,
the attacker chooses δ1 and δ2 satisfying δ1 ⊕ L3(δ2) = 0 and calculates β =

δ1 ⊕ L(δ2). ∆2 can then be determined as a solution of the equation:

S
(
E1[7]⊕ k1[3]

)
⊕ S

(
E1[7]⊕∆2 ⊕ k1[3]

)
= β (57)

The attacker now has the values of ∆1, ∆2, ∆3, ∆4 and can compute E1,E1

and hence P,P.

5. However, the attacker still needs that in Round 4, the active nibble in B4[1] is
equal to δ1 ⊕ L2(δ2) to make all the state cells inactive in C4, D4, and E4.

6. The attacker needs to guess three round-key values in Round 1 (i.e., k1[2],
k1[4], k1[6]) and three round-key values in Round 2 (i.e., k2[1] = tk11[15] ⊕
L(tk12[15]), k

2[2] = tk11[8]⊕ L(tk12[8]), k2[6] = tk11[12]⊕ L(tk12[12])).
If the attacker can guess these values, then the actual values (marked with
v) of the state cells are known for the plaintext pair P,P, as opposed to only
differences (marked by 0) in both Figure 83 and Figure 84.

7. Guessing the tweakey nibbles mentioned above enables the attacker to cal-
culate the value of B3[1]. Then, k3[1] = tk11[7]⊕ L(tk12[7]) are calculated as
follows. Since D3[1] = B3[1]⊕ k3[1] holds, we have:

S
(
D3[1]⊕D3[9]⊕D3[13]

)
⊕ S

(
D3[1]⊕D3[9]⊕D3[13]

)
= δ1 ⊕ L2(δ2).

The knowledge of the above guessed key nibbles allows the attacker to calcu-
late D3[9], D3[13], and D3[13], as the attacker can calculated k3[1] = tk11[7]⊕
L(tk12[7]), which is the solution to the equation above. Again, Lemma 1 guar-
antees one solution on average. Since the attacker has already determined
k1[7] = tk11[7]⊕ tk12[7], this also determines the values of tk11[7] and tk12[7].

8. This guarantees that there are no more active nibbles after Round 4. The
key difference does not add to the state in Round 5, and due to the fact that
δ1 ⊕ L3(δ2) = 0, the tweak difference becomes 0 in Round 6.
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Figure 84: Trail for the four backward rounds (the values of active nibbles in red are func-
tions of δ1 and δ2).

Thus, by guessing six and calculating three key nibbles, we can construct P,P and
K,K so that the internal state after six rounds has no active nibbles.

Lemma 4. Let C,C be two ciphertexts after querying plaintext-tweakey pairs (P,K)
and (P,K) to a 21-round Skinny-64/128 encryption oracle. Then for a fraction of
2−40 ciphertext pairs, it is possible to construct a backward trail for Round 21 to
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Round 18 by guessing intermediate tweakey nibbles so that there are no active
nibbles in the internal state at the end of Round 17.

Proof. The attacker starts working backward from the ciphertext pairs C,C and pro-
ceeds as follows (illustrated in Figure 84):

1. The attacker rejects ciphertext pairs that do not have seven inactive cells in
Cells 3, 4, 5, 8, 9, 11, and 14) after peeling off the final MixColumns layer (i.e.,
D21). Thus, a fraction of 2−28 pairs are filtered after this stage.

2. Furthermore, the attacker rejects ciphertext pairs that do not have the differ-
ence δ1 ⊕ L10(δ2) in Cell 13 of A21, i.e., reject if A21[13] ⊕ A21[13] 6= δ1 ⊕
L10(δ2). Since calculating this cell does not require any key guess, the at-
tacker can do this filtering instantly leaving a fraction of 2−4 pairs after this
stage.

3. Since the bottommost two rows of the state are not affected by the tweakey
addition, and since tk11[7], tk

1
2[7] are already known, the attacker can calculate

the actual values in Cells 0, 8, and 12 in A21 for the ciphertext pairs. These
have to be equal since they are the output of the 20th-round MixColumns

operation on the leftmost column which had only one active nibble in its
input. If the active Cells 8 and 12 are different, the attacker can reject the pair.
This adds another filter with probability 2−4.

4. Since the actual values in Cell 0 in A21 for the ciphertext pairs were already
calculated in the previous step, the attacker checks if the value of the active
Cell 0 is equal to that of Cells 8 and 12, and rejects the pair otherwise. This
adds another filter of probability 2−4.

5. The attacker determines k21[5] = tk11[4]⊕ L10(tk12[4]) so that the active nibble
in Cell 5 of A21 is δ1⊕ L10(δ2). Since A21[5] = S−1

(
k21[5]⊕C21[5]

)
, k21[5] is

a solution to the equation below:

S−1
(
k21[5]⊕C21[5]

)
⊕ S−1

(
k21[5]⊕C21[5]

)
= δ1 ⊕ L10(δ2).

6. The attacker determines k21[2] = tk11[1]⊕ L10(tk12[1]) and k21[6] = tk11[2]⊕
L10(tk12[2]) so that the active nibble in Cell 2 and 6 of A21 are equal to the
active nibble in Cell 14. Again, this works since those cells are output of the
20th-round MixColumns operation on Column 2 which had only one active
nibble in its input.

7. Additionally, the attacker guesses k21[4] = tk11[0]⊕ L10(tk12[0]). This enables
the attacker to compute the actual values for the entire leftmost column of
A21 and hence to compute the leftmost column of D20.

8. The value of the active nibble in cell 10 of A20 is given as:

A20[10]⊕A20[10] = S−1
(
B20[10]

)
⊕ S−1

(
B20[10]

)
= S−1

(
D20[8]

)
⊕ S−1

(
D20[8]

)
= η.

(58)
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Since the leftmost column ofD20 is known, the attacker can calculate η, which
must be equal to Cell 14 of A20 since it is the output of the 19th-round Mix-
Columns operation with one active input nibble.

A20[14]⊕A20[14] = S−1
(
D20[13]

)
⊕ S−1

(
D20[13]

)
= S−1

(
A21[1]⊕A21[13]

)
⊕ S−1

(
A21[1]⊕A21[13]

)
.

(59)

It holds that A21[1] = S−1
(
C21[1]⊕ k21[1]

)
and A21[1] = S−1(C21[1]⊕k21[1]).

By calculating Equations (58) and (59), the attacker can solve for k21[1] =

tk11[3]⊕ L10(tk12[3]). One solution on average is guaranteed by Lemma 1.

9. The values tk11[i]⊕ tk12[i], for i = 1, 2, 3, 4, were already determined during
the calculation of the forward trail. So, using their values the attacker can
determine the actual values tk11[i], tk

1
2[i] for i = 1, 2, 3, 4.

10. The attacker calculates k20[2] = tk11[9]⊕ L10(tk12[9]) so that the active nibble
in Cell 2 in A20 is equal to the active value η in Cells 10 and 14 since they
are output of the 19th-round MixColumns operation with one active input
nibble. This is done by solving

η = A20[2]⊕A20[2] = S−1
(
C20[2]⊕ k20[2]

)
⊕ S−1

(
C20[2]⊕ k20[2]

)
. (60)

11. The final condition to be satisfied is that the active nibble in Cell 8 of A19 has
to be equal to δ1 ⊕ L9(δ2) = γ.

γ = S−1
(
D19[10]

)
⊕ S−1

(
D19[10]

)
= S−1

(
A20[6]⊕A20[14]

)
⊕ S−1

(
A20[6]⊕A20[14]

)
.

(61)

Note that A20[6] = S−1(C20[6]⊕ k20[6]) and since A20[6] = A20[6], solving
Equation (61) helps to determine k20[6] = tk11[10]⊕ L10(tk12[10]).

The result follows since in the Steps 1-4, a total of 2−28−4−4−4 = 2−40 ciphertext
pairs are filtered.

Attack Procedure

When combining the findings of Lemmas 3 and 4, one can transform them to an
attack procedure as illustrated in Figure 85:

1. The attacker chooses fixed differences δ1, δ2 satisfying δ1 = L3(δ2).

2. Furthermore, the attacker chooses the nibble values of the random base vari-
able E1 in all Cells except Cells 5, 7, 8, and 15.

3. For each choice of (E1[5], E1[7], E1[8], E1[15]) (216 choices):

• Calculate plaintext P by inverting the first round.
• Query the 21-round encryption oracle for P,K and P,K.
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Figure 85: Related-key impossible differential attack on 21-round Skinny 64/128 (the dark
gray cell visualises the cancellation of the tweakeys).

For every choice of the base variable E1, we have 217 encryption calls. We can pair
related plaintext and tweakey pairs in the following way: For every plaintext Pi,
choose a plaintext Pj so that E1 for Pi and Pj has a non-zero difference in all Cells 5,
7, 8, and 15. For every Pi, there exist (24 − 1)4 ≈ 215.6 such values of Pj, and so
216+15.6 = 231.6 pairs to work with. The attack now proceeds as follows.
For each choice of Pi,Pj (231.6 choices):

• Denote P = Pi and P = Pj.

• The attacker can choose α and proceed with the steps of the above attack with
one exception: The attacker can no longer choose ∆2 as in Step 4 of Lemma 3

since P,P,K,K has already been chosen.
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• With probability 2−4 (as per Lemma 2), the plaintext pair satisfies Equation 57

in Step 4 of Lemma 3 and proceeds; otherwise the attacker aborts.

• Request the ciphertexts C for (P,K) and C for (P,K).

• If C⊕ C does not pass the 2−36 filter (Steps 1, 2, and 3 in Lemma 4), then
abort and start again.

• If they pass the filter, the attacker can guess seven tweakey cells (228 guesses)
and calculate 17 key/tweak cells as follows:

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk12[i] for i = 2,4,6 1

2 tk11[i]⊕L(tk12[i]) for i = 8,12,15 2

3 tk11[i]⊕L10(tk12[i]) for i = 0 21

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1,2,3,4 21

6 tk11[i]⊕L10(tk12[i]) for i = 9,10 20

The 17 tweakey nibbles used for elimination are therefore:

tk11[i], tk
1
2[i] for i = 1, 2, 3, 4, 7

tk11[i]⊕ L10(tk12[i]) for i = 9, 10

tk11[i]⊕ L10(tk12[i]) for i = 0

tk11[i]⊕ L(tk12[i]) for i = 8, 12, 15

tk11[i]⊕ tk12[i] for i = 6

• A fraction of 2−4 tweakeys fulfils the condition required in Step 4 of Lemma 4.

• Therefore, the attacker has a set of 228−4 = 224 wrong key candidates.

The above procedure is repeated with 255 chosen plaintexts until a single key solu-
tion remains for the 17 nibbles of the tweakey.

complexity. For every base value of E1, the attacker makes 217 encryption calls.
Out of these, the attacker has 231.6 pairs to work with. For each pair, the attacker
can then choose α in 24 − 1 ways, which gives her around 235.6 initial guesses for
the forward key nibbles k1[1], k1[3], and k1[7], of which a fraction of 2−4 passes the
filter in Equation 57. Therefore, the attacker has 231.6 pairs to work with. In fact,
for every pair (Pi,Pj) there is only one choice of α going forward on average.

Time complexity = max
{
255+17 encryptions , 255−4.4+24 guesses

}
= 255+19.6.

The attacker gets 255−4.4+24 = 255+19.6 incorrect solutions for 17 nibbles. To re-
duce the keyspace to 1 we need:

217×4 ·
(
1− 2−17×4

)255+19.6

≈ 217×4e−255−48.4
= 1.
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Figure 86: Trail for the five backward rounds (the values of active nibbles in red are functions
of δ1, δ2, grey cells are the key, white cells are the tweak).

The total number of encryption calls to 21-round Skinny-64/128 is 255+17 = 272

and the total number of guesses is 274.6. We also need 268 memory accesses, which
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are negligible in the total complexity. The memory complexity is upper bounded
by storing one bit per key candidate which is therefore 268 bits. The memory
for storing the approximately 2 · 217 plaintexts and corresponding ciphertexts of a
structure at each time is negligible.

6.3.3 22-Round Attack under Partially Known Tweak

The attack above can be extended to 22-round Skinny-64/128 under the assumption
that 48 of the 128 bits in the tweakey are publicly known tweak (see Figure 87 for
details). In particular, we assume that tk11[i], tk

1
2[i] for i = 8, 11, 12, 13, 14, 15 are

reserved for the tweak. The remaining 80 bit constitute the secret key.
In this case, the attacker can add a round at the end (see Figure 86 for details).
Knowing six out of eight cells in the lower half of the tweakey blocks helps in
the following way. From the ciphertext (i.e., E22), one can revert the final round
to compute E21 if we guess k22[4, 5], i.e., , tk11[9, 10]⊕ L11(tk12[9, 10]). The attack
is almost the same as the previous attack, except that the tweakey indices i =

8, 11, 12, 13, 14, 15 and their functions are known and do not need to be guessed.

1. Generate 231.6 plaintext/ciphertext pairs from every base choice of E1 and
217 encryption calls.

2. For each choice of Pi,Pj (231.6 choices):

• Denote P = Pi and P = Pj.
• The attacker can choose α and calculate k1[1], k1[3], and k1[7] as per

Step 3 of Lemma 3.
• The attacker can no longer choose ∆2 as in Step 4 of Lemma 3 since P, P,
K, K already have been chosen.
• With probability 2−4, the plaintext pair satisfies Equation 57 in Step 4 of

Lemma 3 and proceeds; otherwise the attacker aborts.
• The attacker does not need to guess the Round 2 tweakey nibbles since

these are in the lower half of the tweakey blocks and therefore known.
• Retrieve the ciphertext C for (P,K) and the ciphertext C for (P,K).
• Guess k22[4, 5] = tk11[9, 10]⊕ L11(tk12[9, 10]) to get E21.
• If E21 ⊕ E21 does not pass the 2−36 filter, then abort and restart.
• After determining k20[2] = tk11[9]⊕ L10(tk12[9]) and k20[6] = tk11[10]⊕
L10(tk12[10]) in Steps 10 and 11 of Lemma 4, the attacker can uniquely
determine tk11[9, 10] since tk11[9, 10]⊕ L11(tk12[9, 10]) is already guessed.
• If they pass the filter, the attacker can guess six tweakey cells (224 guesses)

and calculate 16 key cells as follows:

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk12[i] for i = 2,4,6 1

2 tk11[i]⊕L10(tk12[i]) for i = 0 21

3 tk11[i]⊕L11(tk12[i]) for i = 9,10 22

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1,2,3,4 21

6 tk11[i], tk
1
2[i] for i = 9,10 20
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Figure 87: Related-Key Impossible Differential Attack on 22 round Skinny 64/128 (grey cells
are the key, white cells are the tweak, the dark gray cell visualises the cancellation
of the tweakeys).

The 16 tweakey nibbles used for elimination are therefore:

tk11[i], tk
1
2[i] for i = 1, 2, 3, 4, 7, 9, 10.

tk11[i]⊕ L10(tk12[i]) for i = 0.
tk11[i]⊕ tk12[i] for i = 6.

• A fraction of 2−4 tweakeys fulfils the condition in Step 4 of Lemma 4.
• Therefore, the attacker has a set of 224−4 = 220 wrong key candidates.

The procedure above is repeated with 254 chosen plaintexts until a single key solu-
tion remains for the 16 nibbles of the tweakey.
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complexity. For every base value of E1, the attacker makes 217 encryption calls.
Out of these, the attacker has 231.6 pairs to work with. For each pair, the attacker
can choose then α in 24 − 1 ways, which gives the attacker around 235.6 initial
guesses for the forward key nibbles k1[1],k1[3],k1[7], of which only a fraction of
2−4 passes the filter in Equation 57. Therefore, the attacker has 231.6 pairs to work
with. For every pair (Pi,Pj) there is only once choice of α going forward on average.

Time complexity = max
{
254+17 encryptions, 254−4.4+20 guesses

}
= 254+17.

The attacker gets 254−4.4+20 = 254+15.6 incorrect solutions for 16 nibbles. To re-
duce the keyspace to 1 we need:

216×4 ·
(
1− 2−16×4

)254+15.6

≈ 216×4e−254−48.4
= 1.

The total number of encryption calls to 22-round Skinny-64/128 is 254+17 = 271.
We also need 264 memory accesses, which are negligible in the total complexity. The
memory complexity is upper bounded by storing one bit per key candidate which
is therefore 264 bits. The memory for storing the approximately 2 · 217 plaintexts
and corresponding ciphertexts of a structure at each time is negligible.

6.3.4 23-Round Attack under Partially Known Tweak

We can further extend the 22 round attack to a 23 round attack by prepending
one round at the beginning. In order to not disrupt the notation, we denote the
additional round prepended at the beginning as the 0th round. That is, the 23
rounds are labelled as Rounds 0 to 22, and the variables A0,B0, . . . are defined as
above. The plaintext is denoted by A0 and the ciphertext by E22. Note that, from
the base value of E1, the plaintext can be calculated if we guess k0[9, 10]. There are
two principal differences to the 22-round attack.

1. When the attacker guesses k22[4, 5] which is tk11[9, 10]⊕ L11(tk12[9, 10]) to in-
vert the final round to get E21, tk11[9, 10] and tk12[9, 10] is uniquely determined.
This is because at the beginning of the outer loop k0[9, 10] has already been
guessed by the attacker to invert the initial round.

2. As the attacker can no longer determine k20[2] = tk11[9] ⊕ L10(tk12[9]) and
k20[6] = tk11[10]⊕ L10(tk12[10]) using Steps 10 and 11 of Lemma 4. The proba-
bility that with the given values of tk11[9, 10] and tk12[9, 10], Equations (60) and
(61) are satisfied is 2−8. This decreases the probability of ciphertext filter from
2−36 to 2−44.

For each initial guess of k0[9, 10], the guessed and calculated key bytes are:

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk12[i] for i = 2,4,6 1

2 tk11[i]⊕L10(tk12[i]) for i = 0 21

3 tk11[i]⊕L11(tk12[i]) for i = 9,10 22

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1,2,3,4 21



188 cryptanalysis of the tweakable block cipher skinny-64/128

The 14 tweakey nibbles used for elimination are therefore:

tk11[i], tk
1
2[i] for i = 1, 2, 3, 4, 7.

tk11[i]⊕ L10(tk12[i]) for i = 0.

tk11[i]⊕ tk12[i] for i = 6.

tk11[i]⊕ L11(tk12[i]) for i = 9, 10

As before, a fraction of 2−4 tweakeys fulfils the condition in Step 4 of Lemma 4.
Therefore, the attacker has a set of 224−4 = 220 wrong key candidates.

complexity. For each iteration of the outer loop, the complexity is calculated as
follows: For every base value of E1, the attacker makes 217 encryption calls. Out
of those, the attacker has 231.6 pairs to work with. For each pair, the attacker can
choose then α in 24 − 1 ways, which gives the attacker around 235.6 initial guesses
for the forward key nibbles k1[1], k1[3], k1[7], of which only a fraction of 2−4 passes
the filter in Equation 57. For every pair (Pi,Pj) there is only one choice of α going
forward on average.

Time complexity = max
{
254+17 encryptions, 254+31.6−44+20 guesses

}
= 254+17.

The attacker gets 254+31.6−44+20 = 254+7.6 incorrect solutions for 14 nibbles. To
reduce the keyspace to 1 we need:

214×4 ·
(
1− 2−14×4

)254+7.6

≈ 214×4e−254−48.4
= 1.

The total number of encryption calls to 22-round Skinny-64/128 can then be esti-
mated with 254+17 = 271. Multiplying this by 28 for the outer loop gives a total
complexity of 271+8 = 279 which is just short of exhaustive search for the 80-bit
key. We also need 254+8 = 262 memory accesses, which are negligible in the total
complexity. The memory complexity is upper bounded by storing one bit per key
candidate which is therefore 264 bits. The memory for storing the approximately
2 · 217 plaintexts and ciphertexts of a structure is negligible.

6.4 related-key integral attacks
Integral attacks were first introduced by Daemen et al. [118] as a dedicated attack
against the block cipher Square and later extended to integral attacks [205]. These
attacks have been shown extremely powerful against AES-like ciphers [139, 155,
321]. Integral attacks prepare a set of chosen plaintexts so that particular cells
of the state are held constant, while other cells vary trough all possible values.
Then an attacker considers some properties of the set, when propagating the set
through several rounds of the cipher (For further details on integral attacks see
Chapter 2.4.6).
The common properties used in standard integral attacks are:

• Active (A): The value of the cell takes all possible values in the set.
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Figure 88: Related-tweakey integral distinguisher over 10 rounds of Skinny-64/128. Empty
cells are constant (i.e., C) values.

• Constant (C): The value of the cell is fixed to a constant value.

• Unknown (?): The value of the cell is unknown.

• Balanced (B): The XOR-sum of all values in the cell is zero.

After propagating the set through several rounds, an attacker then guesses a key-
value and checks if the balanced property holds for a particular cell in the state.

6.4.1 Related-Tweakey Integral Distinguisher

The designers of Skinny [50] already published integral attacks, alongside with the
specification of Skinny, as part of their initial security analysis. However, in their
attacks they do not insert active cells in the tweakey, but rather just add active cells in
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the state. One would assume that adding active cells in the tweakey would improve
the distinguishers, as one can simply cancel the active cells from the state and the
tweakey (if they consist of the exact same values), as shown in [139].
We constructed integral distinguishers, considering active cells in TK1, TK2 and
TK3, which would represent Skinny-n/n, Skinny-n/2n and Skinny-n/3n. Our
distinguisher is experimentally obtained by choosing one active cell in the state and
one in each tweakey word (TK1, TK2 and TK3). We then used the trick by Dobraunig
et al. [139] and cancel the active cells to obtain a constant cell, getting one round for
free. The next addition of the tweakey and the state, will then introduce the active
cell back into the state. By also considering backwards propagation of the active
cells, we turn the square attack into an integral attack. Figure 88 illustrates the best
integral distinguisher we found, by considering active cells in the 3rd round of the
state, and in just one tweakey word (i.e., TK1). We can then propagate the active cell
backwards by three rounds, and forwards by seven rounds, reaching a 10-round
distinguisher.
In the initial cryptanalysis, published alongside with the specification of Skinny [50],
the designers showed integral distinguishers for up to 10-rounds. Compared to the
related-tweakey integral distinguishers, it seems that one cannot reach more rounds
by adding active cells in the tweakey to improve integral attacks on Skinny. Even
though our distinguishers do not improve the attacks, they still give further insights
in the related-tweakey security of Skinny.

6.4.2 14-Round Integral Attacks on Skinny-64/128 [50]

The designers of Skinny [50] further applied a key-recovery attack by appending
4-rounds after the 10-round integral distinguisher. The attack requires 212c = 248

data and 28c = 232 memory and the time complexity is max{25+12c, 25+11c, 25+8c,
210c} and results in 253 computations. Due to the just few number of rounds that
can be attacked with integral attacks, we did not further consider integral attacks
on Skinny.

6.5 conclusion
In this chapter, we analyse the tweakable block cipher Skinny-64/128 against im-
possible differential and integral attacks in the related-tweakey model. Skinny is an
highly interesting target, as it achieves the hardware performance of the NSA cipher
Simon and still offers strong security bounds against differential/linear attacks. We
outline related-key impossible-differential attacks against 21-round Skinny-64/128
as well as attacks on 22 and 23 rounds under the assumption of having 48-bit of the
128-bit tweakey as public tweak. Our attacks are based on an 11-round impossible
differential trail, to which we prepend six and append five rounds before and after
the trail, respectively, to obtain an attack on 22 rounds. Finally, we can prepend a
23rd round under similar assumptions.
Furthermore, we study related-tweakey integral attacks on Skinny by considering
active nibbles not only in the state, but also in the tweakey. Yet, it turns out that one
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cannot improve the distinguishers, but we can give further insights in the security
of Skinny in the related-tweakey model. However, we further study integral at-
tacks on Skinny, where we construct the distinguishers from zero-correlation linear
distinguisher as shown in Chapter 5.
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executive summary. In this chapter, we analyse the lightweight block cipher
Sparx presented at ASIACRYPT’16. We present truncated-differential attacks and
rectangle attacks on a round-reduced version of Sparx based on [26].
Sparx is a family of ARX-based block ciphers designed according to the long-trail
strategy (LTS) that was introduced together with Sparx by Dinu et al. at ASIACRYPT
2016. Similar to the wide-trail strategy, the LTS allows provable upper bounds on
the length of differential trails and linear paths. Thus, the cipher is a highly interest-
ing target for third-party cryptanalysis. However, the only third-party cryptanalysis
on Sparx-64/128 to date was given by Abdelkhalek et al. at AFRICACRYPT’17 who
proposed impossible-differential attacks on 15 and 16 (out of 24) rounds.
We present chosen-ciphertext differential attacks on 16 rounds of Sparx-64/128.
First, we show a truncated-differential analysis that requires 232 chosen ciphertexts
and approximately 293 encryptions. Second, we illustrate the effectiveness of boo-
merangs on Sparx by a rectangle attack that requires approximately 259.6 chosen
ciphertexts and about 2122.2 encryption equivalents.

declaration of authorship. The work described in this chapter is based on
the paper [26]: Differential Cryptanalysis of Round-Reduced Sparx-64/128 and was pre-
sented at The 16th International Conference on Applied Cryptography and Network Se-
curity (ACNS’18) in Leuven, Belgium. The paper is joint work with Eik List. All
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authors contributed equally to the results of the paper. The contributions of the
author are the following:

• Searching for differential trails to construct truncated-differential, rectangle
and yoyo distinguishers.

• Experimental verification of the truncated-differential distinguisher.

• Improving the key-recovery attacks to reach more rounds and to reduce the
complexities.

In the full version of [27], we further present a yoyo attack, which is the contribution
of Eik List.

7.1 introduction
arx ciphers. The design and cryptanalysis of block ciphers is a heuristic com-
petition between designers and analysts. With the introduction of the wide-trail
design strategy in Rijndael, designers could finally provide provable bounds for the
expected probabilities and therefore for the maximal length of differential trails and
linear trails of block ciphers. Rijndael followed the substitution-permutation net-
work design approach, compared to some other ARX-ciphers (i.e., Idea [214] and
RC5 [285]) that use only the omnipresent modular addition, XOR, rotation, and shift
operations that nearly every processor supports out-of-the-box. As a consequence,
SPNs demand an expertised tailoring of their implementations to the operating
platform to be comparably efficient as bit-based designs.
However, in resource-constrained environments, the most efficient software imple-
mentations are still ciphers that employ only logical operations and/or addition,
e.g., ciphers based on modular additions, rotations, and XOR (ARX). Hence, until
recently, there has been a gap between the provable bounds of wide-trail designs,
and the efficiency of ARX-based constructions.

sparx. At ASIACRYPT’16, Dinu et al. introduced Sparx [135], the first ARX-
based family of block ciphers that provides provable bounds on the maximal length
of differential trails and linear trails. Alongside Sparx, the authors developed the
long-trail design strategy, a general approach for ARX-based symmetric-key primi-
tives to obtain provable bounds. Both the long-trail strategy in general, and Sparx

in particular, are interesting targets of cryptanalysis as they try to bridge the gap
between efficiency and providing security bounds. The question arises if Sparx is
also secure against (truncated) differential and boomerang attacks that can exploit
clustering effects of many differential trails.

related work. In the specification of Sparx, the designers reported on their re-
sults of a first automated analysis that no differential trail with probability higher
than 2−n nor any linear trail with bias higher than 2−n/2 exists over five or more
steps. Moreover, they described integral attacks on up to five out of eight steps
of Sparx-64/128, and six out of ten steps of Sparx-128/*. However, those initial
attacks are naturally limited due to time constraints when designing a new ci-
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Table 28: Previous and proposed attacks on Sparx-64/128. KP/CP/CC = known plaintext/-
chosen plaintext/chosen ciphertext. ID = Impossible differential, TD = Truncated
differentials, ZC = Zero-Correlation, MZC = Multidimensional Zero-Correlation.

Instance Rounds Attack type Time Data Memory Ref.

Sparx-64/128 15/24 Integral 2101.0 237.0 CP 264.0 [135]

Sparx-64/128 15/24 ID 294.1 251.0 CP 243.5 [2]

Sparx-64/128 16/24 ID 294.0 261.5 KP 261.5 [2]

Sparx-64/128 16/24 TD 292.0 232.0 CC 261.0 Sect. 7.4

Sparx-64/128 16/24 Rectangle 2122.2 259.6 CC 261.6 Sect. 7.5

Sparx-64/128 16/24 Yoyo 2126.0 264.0†CP 264.0 [27]

Sparx-128/128 22/32 Integral 2105 2102 CP 272 [135]

Sparx-128/128 26/32 MZC 2117.25 2116.2 KP - [329]

Sparx-128/256 24/40 Integral 2233 2104 CP 2202 [135]

Sparx-128/256 29/40 ZC 2227.2 2128‡KP - [329]

pher, and therefore demand a deeper analysis by the cryptographic community.
At AFRICACRYPT’17, Abdelkhalek et al. [2] proposed 12- and 13-round impossible-
differential distinguishers on Sparx-64/128, using the four-step distinguisher for
balanced Type-1 Feistel networks. They extended their attacks by three rounds,
where they exploited dependencies between the key words from the key-schedule.
At SAC’17, Tolba et al. proposed multi-dimensional zero-correlation linear attacks
on up to 26 rounds of Sparx-128/128, and on up to 29 rounds of Sparx-128/256 [329].

7.2 description of the sparx family of ciphers
The Sparx-n/k family comprises three versions, Sparx-64/128, Sparx-128/128, and
Sparx-128/256, where n indicates the block size, and k the key length k. The cipher
is based on a Feistel network with two state words for Sparx-64 and four state words
for Sparx-128, consisting of ns Feistel steps. Each step consists of ra rounds of an
ARX-based round function; plaintexts and ciphertexts consist of w = n/32 words
X0, . . . ,Xw−1 of 32 bits each; the key is divided into 32-bit words (κ0, . . . , κv−1).
The values for the individual versions of Sparx are summarised in Table 29, the
components of the cipher are also depicted in Figure 89.

sparx-64/128. The structure of Sparx-64 is reminiscent of a Feistel network of
eight steps. Each step consists of ra = 3 rounds of the ARX-box A, (i.e., three
rounds of Speckey) on each branch. The Feistel function L is a linear involutive

† The 16-round yoyo attack on Sparx-64/128 in the full version of [27] required the full codebook.
‡ The 29-round zero-correlation attack on Sparx-128/256 of [329] requires the full codebook.
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permutation L : F322 → F322 inspired by [190]. Given the left 32-bit state word x‖y,
the input is split into 16-bit parts x,y, and is mapped to

L(x‖y) def
= (x⊕ ((x⊕ y)≪ 8))‖(y⊕ ((x⊕ y)≪ 8)).

We denote the 64-bit state after Round r interchangeably as (Lr,Rr) = (X0r ‖ X1r ,X2r
‖ X3r) = (XLr ‖ YLr ,XRr ‖ YRr ), and the round key used in Round r interchangeably as
(KLr , KRr ) = (K0r‖K1r , K2r‖K3r).

the key schedule of sparx-64. The 128-bit secret key of Sparx-64/128 is di-
vided into four initial 32-bit words (κ00, κ10, κ20, κ30). In each step, the key schedule
transforms the leftmost 32-bit word κ0s in one iteration of the ARX-box A, adds the
output to the right neighbouring word κ1s , adds a round constant RCi to the right-
most 16-bit half of κ32s to prevent slide attacks, and finally rotates the four words
by one position to the right. The ra = 3 leftmost words κ02s, κ12s, κ22s are used as
round keys for the first, second, and third round of the left branch of Step s+ 1; the
ra = 3 left-most words κ02s+1, κ12s+1, κ22s+1 are used for the first, second, and third
round of the right branch of Step s+ 1. For example, (κ00, κ10, κ20) are used as round
keys for the left branch in the first step, and (κ01, κ11, κ21) are used as round keys for
the right branch in the first step.
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Table 29: Parameters of the individual versions of Sparx.

Cipher #State-words w #Key-words v #Rounds/step ra #Steps ns

Sparx-64/128 2 2 3 8

Sparx-128/128 4 4 4 8

Sparx-128/256 4 8 4 10

7.2.1 Properties and Observations

properties of the key schedule. Abdelkhalek et al. [2] observed that one
can obtain the rounds keys for 2.5 consecutive rounds by guessing only 64-bit of
key material. More precisely, one obtains the round keys for Round 3r+ 1 and the
round key for the right 32-bit branch in Round 3r+ 2 by guessing the 64 bit of the
key material of Round 3r:

Property 2. Given κ2s+1 and κ3s+1, one can directly derive the key words κ2s = κ3s+1,
κ0s+2 = κ3s+1, κ12s+3 = A(κ0s+2), and κ0s+3 = κ2s+1.

properties of the linear layer. We can observe the following for the linear
layer L of Sparx.

Property 3. Given two distinct inputs (x‖y), (x ′‖y ′) ∈ Fm2 and define their differ-
ence ∆ = (∆x‖∆y) = (x⊕ x ′)‖(y⊕ y ′). If ∆x = ∆y = ∆, i.e., (x⊕ x ′) = (y⊕ y ′) = ∆,
then it holds that

L(x‖y)⊕L(x ′‖y ′) = (∆‖∆).

Property 3 and the Feistel structure of Sparx imply the corollary below.

Corollary 1. If ∆Li = ∆Ri = (∆‖∆) after Ara , it follows that ∆Li+1 = 0m since
∆Li+1 = ∆Ri ⊕L(∆Li) = (∆‖∆)⊕ (∆‖∆) = 0m.

properties of the arx-boxes. Given a difference in a certain round, we can
formulate the following.

Property 4. Given a 32-bit difference ∆i = (∆xi,∆yi), we can directly derive ∆yi−1 ←
(∆xi ⊕∆yi)≫ 2 with probability one.

Furthermore, Leurent [224] first showed Property 5. It reduces the effort of studying
all combinations of pairs to that of comparing their outputs from F. One can further
reduce the rank of F to n− d so that outputs of F collide if and only if their inputs
have one of 2d differences.

Property 5. Assume, ∆ ∈ Fn2 is a fixed difference, and x0, . . . , xm ∈ Fn2 represent m
values for which the goal is to find pairs (xi, xj) that result in xi ⊕ xj = ∆. Then, one can
define a linear function F : Fn2 → Fn2 with rank n− 1, s. t. F(∆) = 0n; thus, all pairs
(xi, xj) with xi ⊕ xj = ∆ will collide in F(xi) = F(xj).
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Table 30: An optimal six-
round differential
trail.

Rd. ∆Li ∆Ri hw

0 00000000 02110a04 – –

1 00000000 28000010 0 4

2 00000000 00400000 0 2

3 00000000 80008000 0 0

{L} 80008000 00000000 0 0

4 81008102 00000000 1 0

5 8000840a 00000000 2 0

6 850a9520 00000000 4 0

{L} af1abf30 850a9520 0 0

Table 31: Optimal differentials for up to ten rounds of
Sparx-64; t is the run time of each search.

#Rds. ∆in ∆out hw t

1 (00408000, 00000000) (00000002, 00000000) 0.00 0.02s

2 (00102000, 00000000) (80008002, 00000000) 1.00 0.10s

3 (28000010, 00000000) (83008302, 81008102) 3.00 0.46s

4 (00000000, 28000010) (8000840a, 00000000) 4.99 2.40s

5 (00000000, 02110a04) (8000840a, 00000000) 8.99 25.07s

6 (00000000, 02110a04) (af1abf30, 850a9520) 12.99 0.06h

7 (00000000, 14881008) (82048e0e, 8000840a) 23.95 47.80h

8 (00000000, 540a0120) (8000840a, 8000840a) 28.53 15.20d

9 (28000010, 28000010) (d2609263, d1209123) 32.87 22.30d

10 (28000010, 28000010) (80818283, 80008002) 38.12 32.50d

7.3 differential trails and boomerang distinguish-
ers

We employed a two-step approach; First, we search for optimal differential trails for
up to ten rounds of Sparx-64. Those form the base of the wrapping rounds before
and after the boomerang switches. Thereupon, we consider three most promising
types of boomerangs over five steps.

7.3.1 Searching Optimal Differential Trails

We implemented variants of Sparx in CryptoSMT [313], an open-source tool based
on the SAT/SMT solvers CryptoMiniSat [236] and STP [336] to search for optimal
differential trails§. In this case, the problem to find optimal differential trails is
modelled as a Boolean satisfiability problem, and can then be solved by a SAT solver.
As the differential model of a cipher can be rather complex, we model the problem
as a more general SMT (Satisfiability Modular Theories) problem. The difference to
SAT problems is that SMT problems can express richer languages where e.g., sets of
variables can be expressed as predicates or the problem can be modelled on word
level. We describe the differential behaviour of Sparx using the CVC language. This
allows us to define specific constraints that can be used to limit the search space for
the SAT solver. The solver then tries to find all possible valid differential trails for
the given parameters with decreasing probability.
Table 30 shows an optimal six-round differential trail. Note that hw denotes hw =

− log2(p), for the differential probability p through a round. One can observe that
optimal differential trails for Sparx-64 possess an hourglass structure, i.e., the num-
ber of active bits is minimal in the middle and increases outwards. This is typical for
ARX designs, a single difference is quickly expanded by the avalanche effect, when

§ The differential models for Sparx are available at: https://github.com/TheBananaMan/sparx-

differential-attacks

https://github.com/TheBananaMan/sparx-differential-attacks
https://github.com/TheBananaMan/sparx-differential-attacks
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Table 32: Top (left to right): best trails found for our differentials of Type 1a, Type 1b,
Type 1c, and Type 1d. Middle: best trails found for our differentials of Type 2a,
Type 2b, Type 2d, and Type 2e. Bottom: Type 2c, Type 3a, Type 3b, and Type 3c. Σ
denotes the sum of hw over all rounds.

Rd. ∆Li ∆Ri hw

0 00000000 28000010 – –

1 00000000 00400000 0 2

2 00000000 80008000 0 0

3 00000000 81008102 0 1

{L} 81008102 00000000 0 0

Σ 3

Rd. ∆Li ∆Ri hw

0 28000010 28000010 – –

1 00400000 00400000 2 2

2 80008000 80008000 0 0

3 81008102 83008302 1 2

{L} 00000000 81008102 0 0

Σ 7

Rd. ∆Li ∆Ri hw

0 40404000 00400000 – –

1 40804081 80008000 2 0

2 40004205 81008102 3 1

3 42854a90 8000840a 5 2

{L} d78ddb92 42854a90 0 0

Σ 13

Rd. ∆Li ∆Ri hw

0 80008000 80008000 – –

1 81008102 81008102 1 1

2 8004840e 8004840e 3 3

3 bd1aad20 870a9730 7 8

{L} 00000000 bd1aad20 0 0

Σ 23

Rd. ∆Li ∆Ri hw

0 02110a04 02110a04 – –

1 28000010 28000010 4 4

2 00400000 00400000 2 2

3 80008000 80008000 0 0

{L} 00000000 80008000 0 0

4 00000000 81008102 0 1

5 00000000 8000840a 0 2

6 00000000 850a9520 0 4

{L} 850a9520 00000000 0 0

Σ 19

Rd. ∆Li ∆Ri hw

0 02110a04 00000000 – –

1 28000010 00000000 4 0

2 00400000 00000000 2 0

3 80008000 80008000 0 0

{L} 00000000 80008000 0 0

3 81008102 81008102 1 1

4 8000840a 8000840a 2 2

5 850a9520 2a102a10 4 4

{L} 2a102a10 850a9520 0 0

Σ 20

Rd. ∆Li ∆Ri hw

0 28000010 –

1 00400000 00400000 2 –

2 80008000 80008000 0 0

{L} 00000000 80008000 0 0

3 00000000 81008102 0 1

4 00000000 8000840a 0 2

5 00000000 850a9520 0 4

{L} 850a9520 00000000 0 0

Σ 9

Rd. ∆Li ∆Ri hw

0 28000010 –

1 00400000 00000000 2 –

2 80008000 80008000 0 0

{L} 00000000 80008000 0 0

3 81008102 81008102 1 1

4 8000840a 8000840a 2 2

5 850a9520 850a9520 4 4

{L} 2a102a10 850a9520 0 0

Σ 16

Rd. ∆Li ∆Ri hw

0 00000000 02110a04 – –

1 00000000 28000010 0 4

2 00000000 00400000 0 2

3 00000000 80008000 0 0

{L} 80008000 00000000 0 0

4 81008102 00000000 1 0

5 8000840a 00000000 2 0

6 850a9520 00000000 4 0

{L} af1abf30 850a9520 0 0

Σ 13

Rd. ∆Li ∆Ri hw

0 28000010 28000010 – –

1 00400000 00400000 2 2

2 80008000 80008000 0 0

3 83008302 81008102 2 1

{L} 00000000 83008302 0 0

4 00000000 80088c02 0 5

5 00000000 8502b508 0 5

6 00000000 d0020420 0 7

{L} d0020420 00000000 0 0

7 00801000 00000000 4 0

8 10015001 00000000 2 0

9 52211224 00000000 5 0

{L} 57611764 52211224 0 0

Σ 35

Rd. ∆Li ∆Ri hw

0 00000000 00508402 – –

1 00000000 24023408 0 4

2 00000000 50c080e0 0 7

3 00000000 01810203 0 5

{L} 01810203 00000000 0 0

4 000c0800 00000000 5 0

5 20000000 00000000 3 0

6 00400040 00000000 1 0

{L} 00400040 00400040 0 0

7 80408140 80408140 2 2

8 00400542 00400542 3 3

9 8542904a 8542904a 4 4

{L} 08150815 8542904a 0 0

Σ 37

Rd. ∆Li ∆Ri hw

0 00000000 –

1 00000000 0a204205 0 –

2 00000000 02110a04 0 5

{L} 02110a04 00000000 0 0

3 28000010 00000000 4 0

4 00400000 00000000 2 0

5 80008000 80008000 0 0

{L} 00000000 80008000 0 0

6 81008102 81008102 1 1

7 8000840a 8000840a 2 2

8 850a9520 850a9520 4 4

{L} 2a102a10 850a9520 0 0

Σ 25

propagating outwards in both directions. ARX designs normally have short differ-
ential trails with a high probability, as after a few rounds the differences cannot be
controlled and the probability decreases quickly.
Moreover, using the probability of the best trail is often assumed to be an adequate
approximation of the probability of the best differential. However, this approxima-
tion is not always sufficiently accurate for lightweight ciphers (Note, this has been
studied in Chapter 3, for many different lightweight block cipher design strategies).
Therefore, we tried to evaluate the probability of differentials where feasible. For
the best differentials for Sparx-64, we provide an overview in Table 31.

types of differential trails. After searching differential trails incrementally
for a given interval of rounds, we searched for optimal trails among the following
types:

• Type 1a. Arbitrary single-step trails.
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• Type 1b. Single-step trails with two active branches that have a single active
branch after the step.

• Type 1c. Single-step trails with two active branches that have a single active
branch before the step.

• Type 1d. Single-step trails with two active branches that have a single active
branch before and afterwards.

The first category consists of single-step trails. The best trail for single-steps is a
Type 1a trail with an all zero left branch. Type 1d is especially interesting for the
truncated differential attack in Section 7.4.

• Type 2a. Two-step top trails which collide after the XOR in the right branch
after the first step.

• Type 2b. Two-step bottom trails with only the left branch active at the first
step.

• Type 2c. Two-step trails where only the left branch is active in the first, and
therefore only the right branch is active in the second step.

• Type 2d. 4.5-round versions of Type 2a, but only two rounds before the colli-
sion for the left and one round before for the right branch.

• Type 2e. For the single-sided-top type, we further investigated the versions of
Type 2a where the first step covers only one round.

The second category consists of two-step trails, which are also used in the boomer-
ang and rectangle distinguishers in Section 7.5. We use the two-step trails of Type 2c
for the top trail and Type 2b for the bottom trail of the rectangle distinguisher.
We further considered three-step trails for boomerang and rectangle attacks in our
third category:

• Type 3a. Three-step trails where both branches are active in the first step, and
only one branch is active in the subsequent steps, as is used in both top and
bottom trail of the single-sided bottom type of boomerang.

• Type 3b. Three-step trails where the first two steps are of Type 3a, and both
branches are active in the third step.

• Type 3c. 7.5-round versions of Type 3b, where only one round is considered
for the first step.

The third category consists of three-step trails, which are also used in the boomer-
ang and rectangle distinguishers in Section 7.5. The results for the best trails are
summarised in Table 32.

7.3.2 Boomerang/Rectangle Distinguisher for Sparx-64/128

From the combination of the best identified trails, we continued to form boomerang
and rectangle distinguishers. We considered three types of distinguishers over five
steps.
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Figure 90: Types of five-step boomerangs. White A3 boxes are inactive (zero difference); gray
A-boxes are active (non-zero difference). Hatched boxes indicate active branches
that do not have to be taken into account at the switch.

• Free middle. This type exploits that one can obtain the middle step for free
if one chooses the top and bottom trails such that one of them possesses a
zero difference in the left branch, and the other one has a zero difference in
the right branch, which is a direct application of the Ladder switch. One can
obtain a five-step boomerang in this way, but one will have active differences
in both branches in the first and in the fifth step of the wrapping rounds.

• Single-sided bottom. This type has both branches active at the start of the
top trail, but only one active branch at the end of the bottom trail.

• Single-sided top. This type has both branches active at the end of the bottom
trail, but only one active branch at the beginning of the top trail.

All different types of boomerang/rectangle distinguishers are visualised in Fig-
ure 90. When studying the distinguisher, one can observe that the free-middle
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boomerang type allows for higher probabilities. Table 33 summarises the best boo-
merang distinguisher that consist of single trails that we discovered for one up to
five steps. Through a single step, there exist various boomerangs with probability
one:

Pr
[
(∆L0,∆R0)

1 step−−−→ (∆L3,∆R3)
]
= 1,

for all trails with ∆L0 = 0 and ∆L3 = {L} (∆R3); alternatively, it also holds for all
trails with ∆R0 = ∆R3 = 0.
Over two steps, there exist two-step boomerangs with

Pr
[
(∆L0,∆R0)

2 steps−−−−→ (∆L6,∆R6)
]
> 2−6,

namely for trails of the form

• ∆L0 = 0 and ∆R0 ∈ {28000010, 00400000} and ∆L6 = {L} (∆R6), or

• ∆R0 = 0 and ∆R6 ∈ {81008102, 8000840a} and ∆L6 = {L} (∆R6).

For three steps, the best boomerangs have probability 2−12, using the single-step
trails with the highest probability of Type 1a for the top trail, and a similar trail mir-
rored vertically and starting from a bottom difference of (∆L9,∆R9) = (83008302,
81008102). Similarly, we obtain from the combination of the trails of Type 2a
and Type 1a boomerangs with probability of 2−44 over four steps. Over five steps,
the highest probability of a boomerang with fixed trail results from combining a
trail of Type 2a with the highest probability at the top with a trail of Type 2b with
the highest probability at the bottom.

near-optimal differential trails. Boomerangs that employ a single trail are
of limited expressiveness as one can notice a strong differential clustering effect in
Sparx. For boomerangs, they are particularly strong in the switching rounds. Our
purpose was to find good boomerangs of five steps, where we focused on the free-
middle approach. We used the best trails of Type 1b and Type 2a as top and Type 1a
and Type 2b as bottom trails as a base to study their probability empirically over a
feasible subset of the three steps in the middle. Moreover, our automated search for
optimal differential trails yielded many near-optimal differentials with probability
slightly smaller than that of the optimal ones; as one could anticipate, this small
change in the probability stemmed from the fact that bits adjacent to the active bits
in the optimal differentials were also active in the near-optimal ones, mainly in the
first or the last round. Hence, we also considered those near-optimal trails in our
investigation of potential start and end differences for boomerangs. The subset of
our results is given in Table 34. We used a variant of them for our rectangle attack
in Section 7.5.

7.4 truncated-differential attack on 16-round
sparx-64/128

truncated differential attacks. Truncated Differentials were firstly intro-
duced by Knudsen [201] in 1994. In a nutshell, truncated differential cryptanalysis
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Table 33: Best found boomerangs on step-reduced Sparx-64/128; for up to three steps, we
verified them experimentally with 100 random keys and 220 random pairs each.
Values in parentheses are products of the empirical probabilities over the three
steps in the middle from Table 34 with the theoretical probabilities over the re-
maining step(s).

#Steps Input difference Output difference hw

s ∆L0 ∆R0 ∆L3s ∆R3s theor. empiric.

1 00000000 00400000 83008302 81008102 0 0

2 00000000 28000010 8000840a 00000000 6 5.11

2 00000000 28000010 81008102 00000000 6 5.16

2 00000000 28000010 850a9520 00000000 6 5.31

3 00000000 28000010 83008302 81008102 12 10.55

3 00000000 28000010 8a048e0e 8000840a 12 11.43

4 02110a04 02110a04 83008302 81008102 44 (40.34)

5 28000010 28000010 2a102a10 850a9520 78 (68.54)

5 02110a04 02110a04 2a102a10 850a9520 76 (72.18)

is a generalisation of differential cryptanalysis, were an attacker leaves parts of the
differences unspecified, allowing that parts to take all possible values. This poten-
tially improves the probability of an attack. More details on truncated differentials
can be found in Chapter 2.4.3.

high-level view. In the following, we describe a truncated-differential attack on
16-round Sparx-64/128. On a high level, the Feistel-like structure of Sparx allows
generic trails that pass through almost two steps with only one active branch. The
core observation of our attack is the existence of Type 1d differential trails, i.e., trails
that have an inactive branch before and after a step with probability � 2−32. One
such trail is illustrated in Table 35. The trail is truncated after Round 9; thereupon,
its precise differences are irrelevant as long as it will cancel in the right branch af-
ter the linear layer, and the branch incorporating a zero-difference can propagate
through two further steps (i.e., Rounds 13-18 in Table 35). Thus, an adversary can
observe that only a single branch will be active after five steps; Note that the fi-
nal linear layer can then easily be inverted. On the downside, the probability of
truncated trails must exceed 2−32 for a useful distinguisher.
We employ Property 2 at the plaintext side to reduce the number of steps to trace
through, and to ensure a sufficient probability of the differential. Accordingly, we
obtain the round keys of Round 3, 4, and the one for the right branch of Round 5
from guessing only 64 bits of key material. At the ciphertext side, we choose struc-
tures of 232 texts, such that all texts in a structure have a constant value in the right
branch, and iterate over all values on the left branch through Rounds 16-18. In the
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Table 34: Experimental probabilities of free-middle boomerangs over three steps. Each value
represents − log2(p), where p is the average probability of correct quartets from
100 test runs of random independent keys with 230 random text pairs each.

(∆L0,∆R0)

(∆L9,∆R9) (00000000, 80008000) (00000000, 81008102)

(80008000, 80008000) 20.18 26.54

(83008302, 81008102) 16.34 22.74

(40404000, 00400000) 27.21 30.32

following, we mount a chosen-ciphertext attack on 16-round Sparx-64/128 covering
Rounds 3 through 18; the used differential trail is given in Table 35.

structures and sets. We choose 2m structures of 232 ciphertexts each from a
base text S018 = (L18,R18), and 232 − 1 derived texts Si18 = (Li18,R18) from iterating
over all 232 values L18, and derive 232 ciphertexts Ci ← L(Si) that form the struc-
ture. Since we employ all 232 possible values for the right branch of Rounds 16 to
18, their 263 pairs will form all possible differences in this branch about 231 times at
any point until the end of Round 12, i.e., ∆12. From experiments, we observed that
the truncated differential (80008000, 80008000) leads to (00000000, ********) with
probability 2−17.36. Hence, there is a subset of good differences ∆12 that can lead
to (80008000, 80008000) with this accumulated probability. Since we have 231 pairs
for each such ∆12, we expect that there are about 231−17.36 ≈ 213.64 pairs with
∆9 = (80008000, 80008000), and 213.64−6−5 = 22.64 pairs that follow our trail up to
∆5. We have approximately 263 pairs in a structure that have our desired difference
with probability 2−64, so we expect 2−1 false positive pairs from a structure.

experimental verification of the distinguisher. We verified a variant of
our distinguisher experimentally using 100 random keys and 232 random pairs.
For practicality, we considered it in encryption direction, i.e., we chose random
pairs with start difference (∆L5, ∆R5) = (00000000, 0a204205), encrypted them
to the states after Round 18 and inverted the final linear layer. On average, we
obtained 23.75 pairs with zero difference in the right branch, which corresponds
to a probability of 23.75−32 = 2−28.25, which is close to the theoretical expected
2−28.36.

attack steps. Using Property 5, we define a linear function F : {0, 1}32× {0, 1}32 →
{0, 1}64 with rank n− 1 = 63, so that F(∆) = {0}64 for ∆ = (00000000, 0a204205).
The attack consists of the following steps:

1. Construct 2m structures as described above. For each structure, request the
corresponding 232 plaintexts Pi from a 16-round decryption oracle.

2. Initialize a list K of 264 key counters.

3. For each of the 264 guesses of K02,K12,K22,K32:
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Table 35: The truncated differential trail through 16 rounds. A * symbol marks a truncated
difference which can take any possible value.

Rd. i ∆Li ∆Ri hw

2 ******** ******** – –

3 ******** ******** – –

L 00000000 ******** – –

4 00000000 ******** – –

5 00000000 0a204205 0 –

6 00000000 02110a04 0 5

L 02110a04 00000000 0 0

7 28000010 00000000 4 0

8 00400000 00000000 2 0

9 80008000 00000000 0 0

L 80008000 80008000 0 0

Rd. i ∆Li ∆Ri hw

10 ******** ******** ? ?

11 ******** ******** ? ?

12 ******** ******** ? ?

L 00000000 ******** 0 0

13 00000000 ******** 0 ?

14 00000000 ******** 0 ?

15 00000000 ******** 0 ?

L ******** 00000000 0 0

16 ******** 00000000 ? 0

17 ******** 00000000 ? 0

18 ******** 00000000 ? 0

L ******** ******** 0 0

3.1 Re-encrypt all plaintexts over one round until the state after the linear
layer of Round 3 and store them in H according to the values of their left
branches. Only consider pairs that collide in H ′, which represent pairs
that will collide in L3 after the application of the linear layer L.

3.2 For all texts, compute (L3,R5), apply F(Rr), and store the updated states
in H. Discard all pairs that do not collide. For each colliding pair, incre-
ment the counter for the current key candidate in K.

4. Output the keys in descending order of their corresponding counters.

complexity. The computational complexity results from:

• Step 1 requires 2m+32 16-round decryption. We assume the computational
costs for a decryption and encryption are equal.

• Step 3a requires 264 · 2m+32 · 1/16 · 2 ≈ 2m+92 encryption equivalents since
we consider one out of 16 rounds. From the

(
232

2

)
≈ 263 pairs of one structure,

we expect 263−32 = 231 false positive pairs for each structure at this step.

• We approximate the costs for a call to F by those of a call to two Speckey

rounds since both branches are used. The complexity of Step 3b is therefore
given by 264 · 231+m · 4/32 ≈ 2m+92 encryption equivalents on average. We
expect about 263−64 = 2−1 false-positive pairs per structure and key can-
didate, whereas we have 231−28.36 ≈ 22.64 correct pairs for the correct key
candidate, again per structure.
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Table 36: The differential trails for the top (left) and bottom (right) that are used in the 16-
round rectangle attack on Sparx-64/128.

Rd. i ∆Li ∆Ri hw

4 28000010 – –

5 00400000 00400000 2 –

6 80008000 80008000 0 0

L 00000000 80008000 0 0

7 00000000 ******** 0 –

8 00000000 ******** 0 –

9 00000000 ******** 0 –

L ******** 00000000 0 –

10 ******** 00000000 – 0

11 ******** 00000000 – 0

12 ******** 00000000 – 0

L ******** ******** – 0

Rd. i ∆Li ∆Ri hw

10 00000000 ******** 0 –

11 00000000 ******** 0 –

12 00000000 ******** 0 –

L 02110a04 00000000 0 0

13 ******** 00000000 – 0

14 ******** 00000000 – 0

15 ******** 00000000 – 0

L 80008000 80008000 0 0

16 81008102 81008102 1 1

17 8000840a 8000840a 2 2

18 850a9520 850a9520 4 4

L 2a102a10 850a9520 0 0

The time complexity then sums up to

2m+32 + 2m+92 + 2m+92 ≈ 2m+92 Encryptions.

The memory complexity stems from storing a byte counter for the current key can-
didate, i.e., 264 · 8/64 = 261 states, plus 232 texts. The data complexity is given by
2m+32. A single structure, i.e., m = 1, is sufficient to obtain at least two correct
pairs for the correct key.

7.5 rectangle attack on 16-round sparx-64/128
boomerang and rectangle attacks. Boomerang attacks were firstly introduced
by Wagner [338]. As Boomerang attacks are chosen plaintext and adaptively-chosen
ciphertext attacks, Biham et al. [71] turned them into purely chosen-plaintext attacks
and called them Rectangle Attacks.
In a nutshell, in a boomerang/rectangle attack an attacker splits the cipher in two

parts, E = E2 ◦ E1, such that E(P) def
= E2(E1(P)), and then combines two high prob-

able differential trails for each of the sub-ciphers. There are three well known ap-
proaches to combine the differential trails in the middle, the Feistel switch, S-box
switch and ladder switch [77]. Recently, Cid et al. [114] also studied new ways,
which they defined as Boomerang Connectivity Tables. In the rectangle attack on
Sparx-64/128 we applied a ladder switch, but it remains an open problem if the
attack can be improved using a Boomerang Connectivity Table approach. This would
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however require to find an efficient way to compute the Boomerang Connectivity Table
for a 16-bit modular addition. More details about boomerang and rectangle attacks
can be found in Chapter 2.4.3.

high-level view. In the following we describe a rectangle attack on 16-round
Sparx-64/128. The attack starts after the second round of the cipher, i.e., it starts
with Round 3. Again, we guess 64 key bits to get through Rounds 3 and 4 and the
right branch of Round 5. In total the attack covers then Rounds 3 through 18.

differential trails. Table 36 illustrates the employed differential trails. The
top trail covers Rounds 3 through 9 and the right part of Rounds 10 to 12 since the
right part contains a zero difference which propagates for free through the A3 box
of Rounds 10 to 12. The bottom trail covers Rounds 13 through 18, and the left part
of Rounds 10 through 12 in decryption direction. Again, the bottom trail has a zero
difference in that part in the bottom trail which propagates for free through the A3

box until the begin of Round 10.

experimental verification of the middle rounds. We experimentally ver-
ified the boomerang switch in the middle. From 100 experiments with random
keys and 226 independently at random chosen pairs (P,P ′) with difference α =

(80008000, 80008000), encrypted through three steps to (C,C ′), applied the δ-shift
(80008000, 80008000) to obtain (D,D ′), decrypted those back to (Q,Q ′), and counted
the number of times thatQ⊕Q ′ = α. We observed an average probability of approx-
imately 2−20.18. So, for the correct key, we obtain a probability of approximately
(p̂q̂)2 ≈

(
2−2

)2 · 2−20.18 ·
(
2−14

)2 ≈ 2−52.18 for a valid quartet.

attack procedure. Choose a linear function F : {0, 1}64 → {0, 1}64 of rank 63
such that F(∆L4‖∆R5) = 064. The attack consists of the following steps:

1. Initialise a list of key counters K to zero, for all 264 possible values for the
round keys of Round 2. Initialise two empty hash maps Q and R.

2. Choose 2m ciphertext pairs (C,D) with difference (2a102a10, 850a9520), and
ask for their corresponding plaintexts (P,Q). Store the pairs into H indexed
by P.

3. For each of the 264 guesses of (K02,K12,K22,K32):

3.1 Partially re-encrypt all plaintext pairs (P,Q) to their corresponding states
(LP4 ,RP5 ) and (LQ4 ,RQ5 ).

3.2 Apply F((L4,R5)) to all states and store the corresponding outputs (L̂P4 , R̂P5 )
and (L̂Q4 , R̂Q5 ) into a hash table Q. Only consider pairs p = (L̂P4 , R̂P5 ),

q = (L̂Q4 , R̂Q5 ), p ′ = (L̂P
′
4 , R̂P

′
5 ), q ′ = (L̂Q

′
4 , R̂Q

′
5 ) that collide in either

(p,q) = (p ′,q ′) or (p,q) = (q ′,p ′) and discard all further quartets. We
expect 22m · 22·−64 ≈ 22m−128 quartets on average.

3.3 If a quartet survives, increment the counter for the current key guess.
Choose a plaintext pair with our desired difference – w.l.o.g., (p,p ′) –
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from the current quartet, and check for all remaining key bits if it fol-
lows our path until Round 6. If yes, encrypt it further round-wise until
Round 9. If all round-wise checks pass, check for p if it encrypts to ci-
phertext C. If yes, test again for (q,q ′) and output the key candidate if it
also matches.

4. If no key candidate has been returned, return ⊥.

For m = 58.6 pairs, we can expect (2mp̂q̂)2/2n ≈ 2117.2 · 2−52.18/264 ≈ 2 valid
quartets for the correct key guess. In contrast, we can expect 2117.2−2·64 = 2−10.8

quartets for a wrong key guess.

complexity. The computational complexity results from:

• Step 2 requires 2 · 2m = 2 · 258.6 ≈ 259.6 16-round decryptions. We assume
that the computational costs for a decryption and encryption are equal.

• Steps 3a and 3b require 264 · 2 · 2m · 6/32 = 264 · 2 · 258.6 · 6/32 ≈ 2122.2 en-
cryption equivalents since we consider five out of 32 Speckey rounds in the
16-round cipher for re-encryption and approximate the costs for computing F
by the costs of a Speckey round.

• Step 3b will require 264 · 2 · 2m = 2m+65 memory accesses (MAs) and com-
parisons.

• Step 3c will require at most 264 · 22m−128 · 264 ≈ 2117.2 encryption equiva-
lents to identify the correct key.

Hence, the computations are upper bounded by approximately

259.6 + 2122.2 ≈ 2122.2 encryptions and 259.6 + 2123.6 ≈ 2123.6 MAs.

The data complexity is upper bounded by 259.6 chosen ciphertexts. The memory
complexity is upper bounded by storing at most 4 · 259.6 states at a time, which is
equivalent to storing approximately 261.6 states.

7.6 conclusion
In this chapter, we analyse the lightweight cipher Sparx-64/128 against several cryp-
tographic attacks based on differential cryptanalysis. Sparx has been introduced at
ASIACRYPT’16 alongside with the long trail design strategy, that firstly allows de-
signers to prove security bounds against differential and linear cryptanalysis for an
ARX-based cipher. In our work, we therefore not only analyse Sparx but also can
give an analysis of this new design strategy.
We present two standard differential attacks using truncated differentials and rect-
angle attacks on 16-round Sparx-64/128. The former attack builds upon a nine-
round (three-step) differential trail that is extended by a six-round (two-step) trun-
cated trail. Adopting the observation by Abdelkhalek et al. [2], we can turn the
distinguishers in a 16-round chosen-ciphertext attack and recover the round keys
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by just guessing 64-bit of the key material. Our truncated differential attack requires
approximately 232 chosen ciphertexts, about 232 states, and approximately 293 en-
cryption equivalents. Our proposed rectangle attack exploits the Feistel structure
of Sparx using differential trails with inactive branches over their middle step.
We stress that our attacks do not threaten the security of Sparx-64/128, but provide
deeper insights in its security against attacks in the single-key setting. We can
observe a strong clustering effects of many differential trails in our studies and
exploit them in all our attacks; it remains subject to further studies to employ them
for further rounds. For public verification and future works, our trails, tests, and
implementations of Sparx-64/128 are published into the public domain¶.

¶ https://github.com/TheBananaMan/sparx-differential-attacks

https://github.com/TheBananaMan/sparx-differential-attacks
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8 C O N C L U S I O N

In this thesis, we have presented novel research contributions in the area of light-
weight cryptography. We analysed several lightweight and efficient symmetric-key
primitives and further proposed a new technique in the cryptanalysis of tweakable
block ciphers. Moreover, we studied the foundations of differential cryptanalysis
and provided an in-depth analysis of all 4-bit S-boxes, that are one of the main
building blocks of lightweight Substitution Permutation Networks. In the following,
we give an short summary of the contributions in this thesis and we discuss open
problems and future work in the research area of lightweight cryptography.

8.1 summary of contributions
In the first part of this thesis, we presented novel research in the foundations of
symmetric-key cryptography. Chapter 3 studies the effects of many differential
trails in different lightweight block cipher designs. We showed that there exists a
significant gap between single differential trails and differentials, that ignore the in-
termediate differences, and therefore allow for higher differential probabilities. We
can show that this gap is significantly higher in some recently proposed lightweight
block cipher design strategies. We conclude that designers have to be careful when
claiming security based on single differential trails, especially by using some ag-
gressive block cipher design strategies with very small security margins.
Chapter 4 focused on low-energy 4-bit S-boxes. Many devices in resource con-
strained environments, the Internet of Things (IoT) in general, are powered by bat-
teries. Especially some devices such as medical implants operate on a tight ener-
gy/power budget. Security and privacy is crucial in the communication channels of
those devices. While in recent lightweight ciphers, the focus was on improving the
area/power/latency, we analyse low-energy designs. In particular we analyse all
possible 4-bit S-boxes. We propose two optimal block cipher design strategies for
low-energy consumption, based on Present and Prince-like designs, and further
recommend a selection of low-energy S-boxes.
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The second part of this thesis focused on the cryptanalysis of symmetric-key primi-
tives. In Chapter 5 we presented a novel technique for analysing tweakable block ci-
phers. We consider for the first time the effect of using the tweak in zero-correlation
linear attacks. We show that using this technique we can get distinguishers with
more rounds. We turn the zero-correlation distinguisher into integral distinguish-
ers to reduce the data complexity and mount key-recovery attacks on the recently
proposed tweakable block ciphers Qarma, Mantis and Skinny.
Moreover, Chapter 6 presented related-tweakey impossible differential attacks on
a round-reduced version of the tweakable block cipher Skinny-64/128. Skinny is
a recently proposed lightweight tweakable block cipher that intends to offer an
alternative to the NSA designs Simon and Speck. In our attack we exploited the
slow diffusion of Skinny and some features of the tweakey schedule. We conclude
that despite using some tricks to extend the number of rounds in the key-recovery,
Skinny still offers a large security margin.
Finally, in Chapter 7 we analysed the recently proposed block cipher Sparx. Sparx

has been designed according to the long-trail strategy, which allows to provide
provable upper bounds for differential and linear attacks. We provided an extensive
analysis on the differential effects of Sparx and we showed truncated-differential
and rectangle attacks on reduced-round versions of Sparx. We concluded that Sparx

still offers a large enough security margin, but still further third-party cryptanalysis
is required.

8.2 open problems and future work
While we already discussed some of the open problems and ideas for future re-
search in the individual chapters, we want to provide a summary of open research
problems in the following.
The analysis of block ciphers against differential cryptanalysis started in the early
1990 with the publication of differential cryptanalysis by Biham and Shamir [73].
Since then it has become one of the major tools in the analysis of symmetric-key
primitives, and many extensions have been proposed. While we analysed several
lightweight symmetric-key primitives in Chapter 3, there are many more primitives
that need a more detailed analysis regarding differential cryptanalysis. Moreover,
the theory of differential cryptanalysis is well studied [87, 88, 306]. However, an
interesting research question would be to study the Hypothesis of stochastic equiva-
lence [215] in more details for several recently proposed block cipher designs. More-
over, the key-dependence of several block ciphers in regard to differential cryptanal-
ysis is not well studied. We showed that for ciphers Skinny, Speck and Midori, the
later two have an interesting distribution over the keys, which could be a potential
direction for further research.
In Chapter 4 we studied energy-efficient block cipher design strategies and pro-
vided an detailed overview for 4-bit S-boxes. While we managed to reduce the
search space of all 4-bit S-boxes from 264 to 244.25 by just considering permutations
and we further looked into affine equivalence of S-boxes, it is still a computation-
ally challenging task to analyse all S-boxes. We further showed that when we im-
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plement an S-box in an actual cipher design, sometimes the improvement gained
by the S-box is significantly reduced in the energy consumption of the whole block
cipher. Therefore, it would be an interesting research question to further look into
energy-efficient block cipher designs as a whole, for example by also considering
the diffusion layers. In that context non-linear diffusion layers as suggested by
Liu et al. [231] might be a direction to explore more energy-efficient block cipher
designs.
Chapter 5 presents a novel technique in the cryptanalysis of tweakable block ciphers,
by incorporating the tweak when searching for zero-correlation linear distinguish-
ers. While we demonstrate the attack by applying it to the block ciphers Qarma,
Mantis and Skinny, there are further block ciphers published that were designed
using the Tweakey framework. It would be of interest if the current best attacks on
Deoxys [189], Joltik [186], Kiasu [187] can be improved. Moreover, very recently
ForkAES [15] was published, again based on the Tweakey framework and Kiasu.
It would be of interest to see if our technique can lead to improved attacks on this
cipher.
Chapter 6 shows related-tweakey impossible differential attacks on a round-reduced
version of the tweakable block cipher Skinny-64/128. While there is already a lot of
third party cryptanalysis for Skinny [230, 295, 316, 328], it remains an open task for
cryptanalysts to come up with new attacks techniques, for example as we showed
in Chapter 5. Moreover, it would be interesting to use the block cipher Skinny

in a mode for authenticated encryption, for example as required in the upcoming
lightweight block cipher competition by NIST [43].
In Chapter 7 we analyse the block cipher Sparx and the long-trail design strategy.
As Sparx has been recently proposed further third party cryptanalysis is required
to strengthen the confidence in the cipher. As ARX-based block ciphers are compu-
tationally hard to analyse (i.e., in terms of efficiently finding long distinguishers) it
would be of interest to analyse the cipher in more detail regarding yoyo attacks [68],
differential-linear attacks [217] and even against standard differential attacks, if bet-
ter distinguishers can be found (i.e., by combining several trails to a long one as it
has been shown successfully in the analysis of Speck by Fu et al. [159]).

8.3 personal conclusions
This thesis is a summary of the work that I did during three years of doctoral
research while being enrolled in the PhD program in Information Security at Royal
Holloway University of London. While it is hard to conclude three years of work
in just a few pages, this section focuses on my personal achievements during this
three years.
My PhD is definitely the biggest achievement in my professional career. When I
started my PhD I immediately felt the need to achieve something, to break a cipher
or to find a new technique for cryptanalysis. Little did I know, research takes time.
Moreover, research is hard. It took me about the first year in my PhD to realise
that I had to change my way of thinking. The easy problems in research are boring
to work on. Most of the hard problems are already solved. Finally, there are the
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impossible hard problems, that nobody likes to work on. Solving such an impossible
hard problem is however very interesting and furthermore often very impactful. So
how does one solve an impossible hard research problem? After three years in my
PhD I can suggest the following strategy:

• One has to break the impossible hard problems into little parts. Often, this
little parts are then hard problems, which again are interesting, and actually
possible to solve.

• One has to show some resilience. Research problems are hard, and often it
takes several days/weeks/months to achieve something. Don’t give up. Keep
searching. There is a reason why it is called re-search.

• Be creative. Often the best ideas come from unexpected areas. It is very
helpful to visit the research seminars of other groups and departments in
the university to see on what kind of problems they are working and what
techniques they are using to solve them.

• Networking. Conferences and workshops are not exclusively to present your
new paper. They are a place to find skilled co-authors. Often by simply
discussing your problems, or writing a draft email, one has to put the problem
in simple words, that then gives different views at looking at the problem and
sometimes even shows the solution.

• Finally, it is my strong believe that one is ready to finish a PhD if one accepts
that one understands nothing. This doesn’t mean that one knows nothing or
can’t achieve anything. It means that one has to accept that there will always
be a bigger something. Some more experiments to do, another improvement
to work on, another paper to write. Research is an ever expanding field.

Ultimately, in the case of the analysis of symmetric-key primitives I can conclude
that it will always remains an active field of research, as in general, attacks just
get stronger. However, my hope is that our contributions provide designers of
symmetric-key primitives with better tools for analysis and and further insights in
the security of block cipher designs.
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ferential attacks on lightweight block ciphers Present, Pride, and Rectangle
revisited. In: Bogdanov, A. (ed.) Lightweight Cryptography for Security and
Privacy. pp. 18–32. Springer International Publishing, Cham (2017)

[321] Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw,
M.J.B. (eds.) Advances in Cryptology – CRYPTO 2015, Part I. Lecture Notes
in Computer Science, vol. 9215, pp. 413–432. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2015)

[322] Todo, Y.: Structural evaluation by generalized integral property. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part I.
Lecture Notes in Computer Science, vol. 9056, pp. 287–314. Springer, Heidel-
berg, Germany, Sofia, Bulgaria (Apr 26–30, 2015)

[323] Todo, Y.: Integral cryptanalysis on full MISTY1. Journal of Cryptology 30(3),
920–959 (Jul 2017)

[324] Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D.,
Kiayias, A., Askoxylakis, I.G. (eds.) CANS 14: 13th International Conference
on Cryptology and Network Security. Lecture Notes in Computer Science,
vol. 8813, pp. 64–81. Springer, Heidelberg, Germany, Heraklion, Crete, Greece
(Oct 22–24, 2014)

http://eprint.iacr.org/2014/747
https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/
https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/


244 BIBLIOGRAPHY

[325] Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack - practical attack
on full SCREAM, iSCREAM, and Midori64. In: Cheon, J.H., Takagi, T. (eds.)
Advances in Cryptology – ASIACRYPT 2016, Part II. Lecture Notes in Com-
puter Science, vol. 10032, pp. 3–33. Springer, Heidelberg, Germany, Hanoi,
Vietnam (Dec 4–8, 2016)

[326] Todo, Y., Morii, M.: Bit-based division property and application to Simon
family. In: Peyrin, T. (ed.) Fast Software Encryption – FSE 2016. Lecture Notes
in Computer Science, vol. 9783, pp. 357–377. Springer, Heidelberg, Germany,
Bochum, Germany (Mar 20–23, 2016)

[327] Tolba, M., Abdelkhalek, A., Youssef, A.M.: A meet in the middle attack on
reduced round kiasu-bc. IEICE Transactions 99-A(10), 1888–1890 (2016), http:
//search.ieice.org/bin/summary.php?id=e99-a_10_1888

[328] Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanal-
ysis of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT
17: 9th International Conference on Cryptology in Africa. Lecture Notes in
Computer Science, vol. 10239, pp. 117–134. Springer, Heidelberg, Germany,
Dakar, Senegal (May 24–26, 2017)

[329] Tolba, M., Abdelkhalek, A., Youssef, A.M.: Multidimensional zero-correlation
linear cryptanalysis of reduced round SPARX-128. In: Adams, C., Camenisch,
J. (eds.) SAC 2017: 24th Annual International Workshop on Selected Areas in
Cryptography. Lecture Notes in Computer Science, vol. 10719, pp. 423–441.
Springer, Heidelberg, Germany, Ottawa, ON, Canada (Aug 16–18, 2017)

[330] Trostle, J.: AES-CMCC v1. https://competitions.cr.yp.to/round1/

aescmccv1.pdf (2014)

[331] Ueno, R., Morioka, S., Homma, N., Aoki, T.: A high throughput/gate AES
hardware architecture by compressing encryption and decryption datapaths
- toward efficient CBC-mode implementation. In: Gierlichs, B., Poschmann,
A.Y. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2016.
Lecture Notes in Computer Science, vol. 9813, pp. 538–558. Springer, Heidel-
berg, Germany, Santa Barbara, CA, USA (Aug 17–19, 2016)

[332] Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) Advances in Cryptology – EURO-
CRYPT 2002. Lecture Notes in Computer Science, vol. 2332, pp. 534–546.
Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Apr 28 –
May 2, 2002)

[333] Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 seconds: Hijacking with
hitag2. In: Proceedings of the 21st USENIX Conference on Security Sympo-
sium. pp. 37–37. Security’12, USENIX Association, Berkeley, CA, USA (2012),
http://dl.acm.org/citation.cfm?id=2362793.2362830

[334] Verdult, R., Garcia, F.D., Ege, B.: Dismantling megamos crypto: Wirelessly
lockpicking a vehicle immobilizer. In: 22nd USENIX Security Symposium

http://search.ieice.org/bin/summary.php?id=e99-a_10_1888
http://search.ieice.org/bin/summary.php?id=e99-a_10_1888
https://competitions.cr.yp.to/round1/aescmccv1.pdf
https://competitions.cr.yp.to/round1/aescmccv1.pdf
http://dl.acm.org/citation.cfm?id=2362793.2362830


BIBLIOGRAPHY 245

(USENIX Security 13). USENIX Association, Washington, D.C. (2013),
https://www.usenix.org/conference/usenixsecurity13/dismantling-

megamos-crypto-wirelessly-lockpicking-vehicle-immobilizer

[335] Viega, J., McGrew, D.D.A.: The use of galois/counter mode (GCM) in ipsec
encapsulating security payload (ESP). RFC 4106 (Jun 2005), https://rfc-

editor.org/rfc/rfc4106.txt

[336] Vijay Ganesh and Trevor Hansen and Mate Soos and Dan Liew and Ryan
Govostes: STP constraint solver (2007), https://github.com/stp/stp

[337] Vuckovac, R.: Raviyoyla v1. https://competitions.cr.yp.to/round1/

raviyoylav1.pdf (2014)

[338] Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) Fast Software
Encryption – FSE’99. Lecture Notes in Computer Science, vol. 1636, pp. 156–
170. Springer, Heidelberg, Germany, Rome, Italy (Mar 24–26, 1999)

[339] Wagner, D., Schneier, B., Kelsey, J.: Cryptanalysis of the cellular encryption
algorithm. In: Kaliski Jr., B.S. (ed.) Advances in Cryptology – CRYPTO’97. Lec-
ture Notes in Computer Science, vol. 1294, pp. 526–537. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17–21, 1997)

[340] Wagner, D., Simpson, L., Dawson, E., Kelsey, J., Millan, W., Schneier, B.: Crypt-
analysis of ORYX. In: Tavares, S.E., Meijer, H. (eds.) SAC 1998: 5th Annual
International Workshop on Selected Areas in Cryptography. Lecture Notes
in Computer Science, vol. 1556, pp. 296–305. Springer, Heidelberg, Germany,
Kingston, Ontario, Canada (Aug 17–18, 1999)

[341] Wang, L.: SHELL v2.0. https://competitions.cr.yp.to/round2/

shellv20.pdf (2015)

[342] Wang, L., Guo, J., Zhang, G., Zhao, J., Gu, D.: How to build fully secure
tweakable blockciphers from classical blockciphers. In: Cheon, J.H., Takagi,
T. (eds.) Advances in Cryptology – ASIACRYPT 2016, Part I. Lecture Notes
in Computer Science, vol. 10031, pp. 455–483. Springer, Heidelberg, Germany,
Hanoi, Vietnam (Dec 4–8, 2016)

[343] Wang, M., Sun, Y., Tischhauser, E., Preneel, B.: A model for structure attacks,
with applications to PRESENT and Serpent. In: Canteaut, A. (ed.) Fast Soft-
ware Encryption – FSE 2012. Lecture Notes in Computer Science, vol. 7549,
pp. 49–68. Springer, Heidelberg, Germany, Washington, DC, USA (Mar 19–21,
2012)

[344] Wang, N., Wang, X., Jia, K.: Improved impossible differential attack on
reduced-round LBlock. In: Kwon, S., Yun, A. (eds.) ICISC 15: 18th Interna-
tional Conference on Information Security and Cryptology. Lecture Notes in
Computer Science, vol. 9558, pp. 136–152. Springer, Heidelberg, Germany,
Seoul, Korea (Nov 25–27, 2016)

https://www.usenix.org/conference/usenixsecurity13/dismantling-megamos-crypto-wirelessly-lockpicking-vehicle-immobilizer
https://www.usenix.org/conference/usenixsecurity13/dismantling-megamos-crypto-wirelessly-lockpicking-vehicle-immobilizer
https://rfc-editor.org/rfc/rfc4106.txt
https://rfc-editor.org/rfc/rfc4106.txt
https://github.com/stp/stp
https://competitions.cr.yp.to/round1/raviyoylav1.pdf
https://competitions.cr.yp.to/round1/raviyoylav1.pdf
https://competitions.cr.yp.to/round2/shellv20.pdf
https://competitions.cr.yp.to/round2/shellv20.pdf


246 BIBLIOGRAPHY

[345] Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4,
MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199

(2004), http://eprint.iacr.org/2004/199

[346] Weinmann, R.P., Wirt, K.: Analysis of the DVB common scrambling algo-
rithm. In: Chadwick, D., Preneel, B. (eds.) Communications and Multimedia
Security. pp. 195–207. Springer US, Boston, MA (2005)

[347] Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC
3610 (Sep 2003), https://rfc-editor.org/rfc/rfc3610.txt

[348] Winternitz, R.S.: A secure one-way hash function built from DES. In: 1984

IEEE Symposium on Security and Privacy. pp. 88–88 (April 1984)

[349] Winternitz, R.S.: Producing a one-way hash function from DES. In: Chaum,
D. (ed.) Advances in Cryptology – CRYPTO’83. pp. 203–207. Plenum Press,
New York, USA, Santa Barbara, CA, USA (1983)

[350] Wu, H.: The stream cipher HC-128 (2004), http://www.ecrypt.eu.org/

stream/p3ciphers/hc/hc128_p3.pdf

[351] Wu, H.: ACORN: a Lightweight Authenticated Cipher (vs). https://

competitions.cr.yp.to/round2/acornv2.pdf (2015)

[352] Wu, H., Huang, T.: The JAMBU Lightweight Authentication Encryption Mode
(v2). https://competitions.cr.yp.to/round2/aesjambuv2.pdf (2015)

[353] Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm (v1).
https://competitions.cr.yp.to/round1/aegisv1.pdf (2014)

[354] peng XING, J., cheng ZOU, X., GUO, X.: Ultra-low power S-boxes architec-
ture for AES. The Journal of China Universities of Posts and Telecommu-
nications 15(1), 112 – 117 (2008), http://www.sciencedirect.com/science/

article/pii/S1005888508600722

[355] Yang, D., feng Qi, W., jin Chen, H.: Impossible differential attack on Qarma
family of block ciphers. Cryptology ePrint Archive, Report 2018/334 (2018),
https://eprint.iacr.org/2018/334

[356] Yang, D., Qi, W.F., Chen, H.J.: Impossible differential attacks on the SKINNY
family of block ciphers. IET Information Security 11(6), 377–385 (2017), https:
//doi.org/10.1049/iet-ifs.2016.0488

[357] Zhang, B., Shi, Z., Xu, C., Yao, Y., Li, Z.: Sablier v1. https://

competitions.cr.yp.to/round1/sablierv1.pdf (2014)

[358] Zhang, B., Xu, C., Feng, D.: Real time cryptanalysis of Bluetooth encryption
with condition masking (extended abstract). In: Canetti, R., Garay, J.A. (eds.)
Advances in Cryptology – CRYPTO 2013, Part I. Lecture Notes in Computer
Science, vol. 8042, pp. 165–182. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2013)

http://eprint.iacr.org/2004/199
https://rfc-editor.org/rfc/rfc3610.txt
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
https://competitions.cr.yp.to/round2/acornv2.pdf
https://competitions.cr.yp.to/round2/acornv2.pdf
https://competitions.cr.yp.to/round2/aesjambuv2.pdf
https://competitions.cr.yp.to/round1/aegisv1.pdf
http://www.sciencedirect.com/science/article/pii/S1005888508600722
http://www.sciencedirect.com/science/article/pii/S1005888508600722
https://eprint.iacr.org/2018/334
https://doi.org/10.1049/iet-ifs.2016.0488
https://doi.org/10.1049/iet-ifs.2016.0488
https://competitions.cr.yp.to/round1/sablierv1.pdf
https://competitions.cr.yp.to/round1/sablierv1.pdf


BIBLIOGRAPHY 247

[359] Zhang, L., Wu, W., Wang, Y., Wu, S., Zhang, J.: Lac: A lightweight
authenticated encryption cipher. https://competitions.cr.yp.to/round1/

lacv1.pdf (2014)

[360] Zhang, L., Wu, W., Sui, H., Wang, P.: iFeed[AES] v1. https://

competitions.cr.yp.to/round1/ifeedaesv1.pdf (2014)

[361] Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectan-
gle: a bit-slice lightweight block cipher suitable for multiple platforms. Sci-
ence China Information Sciences 58(12), 1–15 (Dec 2015), https://doi.org/
10.1007/s11432-015-5459-7

[362] Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary
diffusion layer. Cryptology ePrint Archive, Report 2017/188 (2017), http://
eprint.iacr.org/2017/188

[363] Zong, R., Dong, X.: Meet-in-the-middle attack on QARMA block cipher. Cryp-
tology ePrint Archive, Report 2016/1160 (2016), http://eprint.iacr.org/

2016/1160

[364] Zong, R., Dong, X., Wang, X.: MILP-aided related-tweak/key impossible dif-
ferential attack and its applications to Qarma, Joltik-BC. Cryptology ePrint
Archive, Report 2018/142 (2018), https://eprint.iacr.org/2018/142

https://competitions.cr.yp.to/round1/lacv1.pdf
https://competitions.cr.yp.to/round1/lacv1.pdf
https://competitions.cr.yp.to/round1/ifeedaesv1.pdf
https://competitions.cr.yp.to/round1/ifeedaesv1.pdf
https://doi.org/10.1007/s11432-015-5459-7
https://doi.org/10.1007/s11432-015-5459-7
http://eprint.iacr.org/2017/188
http://eprint.iacr.org/2017/188
http://eprint.iacr.org/2016/1160
http://eprint.iacr.org/2016/1160
https://eprint.iacr.org/2018/142

	Titlepage
	Titleback
	Declaration
	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Publications
	1.3 Thesis Structure

	2 Background
	2.1 Notation
	2.2 Modern Cryptography
	2.3 Symmetric Primitives
	2.4 Cryptanalysis
	2.5 Design Principles

	 Foundations
	3 Differential Cryptanalysis of Lightweight Block Ciphers
	3.1 Introduction
	3.2 Design Strategies for Lightweight Block Ciphers
	3.3 Finding Differential Trails Efficiently
	3.4 Analysis of the Gap in Lightweight Ciphers
	3.5 Experimental Verification and the Influence of Keys
	3.6 Conclusion

	4 Analysis of Low-Energy 4-bit S-boxes
	4.1 Introduction
	4.2 Design Considerations for Low-Energy
	4.3 Analysis of Optimal Low-Energy S-boxes
	4.4 Conclusion


	 Cryptanalysis
	5 Zero-Correlation Attacks on Tweakable Block Ciphers with a linear Tweak Schedule
	5.1 Introduction
	5.2 Preliminaries
	5.3 Zero-Correlation Linear Cryptanalysis for Tweakable Block Ciphers
	5.4 Application to Qarma
	5.5 Application to Mantis
	5.6 Application to Skinny
	5.7 Conclusion

	6 Cryptanalysis of the Tweakable Block Cipher Skinny-64/128
	6.1 Introduction
	6.2 Description of Skinny
	6.3 Related-Key Impossible-Differential Attack
	6.4 Related-Key Integral Attacks
	6.5 Conclusion

	7 Differential Cryptanalysis of Round-Reduced Sparx-64/128
	7.1 Introduction
	7.2 Description of the Sparx Family of Ciphers
	7.3 Differential Trails and Boomerang Distinguishers
	7.4 Truncated-Differential Attack on 16-round Sparx-64/128
	7.5 Rectangle Attack on 16-round Sparx-64/128
	7.6 Conclusion

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Open Problems and Future Work
	8.3 Personal Conclusions



