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Chapter 1

Introduction

1.1 Motivation

Although the total amount of car thefts and car burglaries are decreasing over the last decade,
the way of breaking into cars is changing. For the past years, car theft exposing weaknesses in
the keyless entry system has known a huge increase in numbers. The most popular method is
exposing cars equipped with Passive Keyless Entry (PKE) by performing a so-called relay attack.
In PKE systems, the car will automatically unlock its doors when the key fob is detected in close
proximity to the car (within 1 meter). By performing a relay attack, adversaries are able to extend
this limited distance to tens or even hundreds of meters. Doing so, they are able to unlock cars
without the physical key fob actually being in proximity of the car. Most cars equipped with PKE
also replace the traditional mechanical key to start the engine (Passive Keyless Entry and Start).
If the key fob is detected inside the car, the owner can push a button to start the engine. This
makes the relay attack even more worrying as it not only unlocks the doors but also allows the
adversary to drive of with the car.

The rise of these attacks has not gone unnoticed by the mainstream media. There are dozens of
news articles and TV-reports about car thefts exposing the weaknesses of PKE(S) systems using
such relay attacks [36] [57] [67] [7] [69]. According to Driver and Vehicle Licensing Agency (DVLA)
in the United Kingdom, car thefts by performing a relay attack has known an impressive grown
of 9.000 incidents in 2016 to 43.408 incidents in 2017 [58]. According to the Association of British
Insurers, a record of e309 million in theft claims was recorded solely in the United Kingdom in the
first nine months of 2018. Stichting Aanpak Voertuigcriminaliteit (STAVC) estimates that 40% of
the 64.000 registered car burglaries in 2018 in the Netherlands are due to relay attacks [11]. Car
thefts in the United States has known a decrease since 2004 (expect from 2012) [33]. However,
since 2015 the amount of cars stolen began to increase again. Around this time PKE(S) systems
started to commonly appear on lower-end cars instead of solely high-end luxury cars while the
relay attack started to appear more frequently. As the reports don’t give an official cause of this
increase, the increase of cars equipped with PKE(S) and the rise of these relay attacks might be
one of the reasons.

Although most media exposure and research is mainly focused on weaknesses in PKE(S) systems.
The traditional Remote Keyless Entry (RKE) system is not completely secure either. In RKE
systems, the car is (un)locked by pressing a button on the key fob. By executing a so-called replay
& jamming attack, adversaries are able to gain access to victim’s cars without physically having
the key fob. In contrast to relay attacks, there are no official statistics regarding car thefts or
burglaries by executing these replay & jamming attacks. Although the weaknesses of PKE(S)
systems are much more worrying since adversaries can not only gain access to the car but also
start it, the automobile industry have been using insecure RKE systems for decades.

7
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Figure 1.1: Car theft statistics from the United States (Numbers provided by [33]).

1.2 Research questions

The goal of this thesis is to provide an overview of the past and the present of keyless entry systems
in the automobile industry. We’ll implement a replay & jamming attack and relay attack against
respectively RKE and PKE systems and discuss their possible countermeasures. As keyless entry
protocols are not publicly published we’ll also dig into the art of reverse engineering to obtain
knowledge about these protocols used in RKE systems.

We can break up this thesis into 3 topics for which we present our research questions:

1. Exploitation of RKE systems (replay & jamming attack):

(a) What is the feasibility (success rate, difficulty, cost, ...) of implementing a replay &
jamming attack using software-defined radios? How can we reduce the cost of such
implementation?

(b) Is it possible to implement reactive jamming using software-defined radios taking into
account the delay introduced by processing and transferring of data?

(c) What are the possible countermeasures to prevent against these replay & jamming
attacks? What is the current state of these solution and are they currently used by car
manufacturers?

2. Exploitation of PKE(S) systems (relay attack):

(a) Is the delay introduced by processing and transferring of data using a software-defined
radio small enough to stay below the maximum delay threshold in order to successfully
perform a relay attacks?

(b) What are the possible countermeasures to prevent against these relay attacks? What is
the current state of these solution and are they currently used by car manufacturers?

3. Obtaining knowledge about the protocols used in RKE systems by reverse engineering the
radio frequency signals transmitted by the key fob:

(a) What does the physical layer (modulation, data encoding, ...) and MAC layer (message
format, data integrity, ...) of RKE protocols look like.
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(b) Do these protocols vary between different car manufacturers and different car models
from the same manufacturer?

In Chapter 2 we’ll provide a background on various topics regarding keyless entry systems. We’ll
start with Section 2.1 in which we’ll give a detailed explanation of how both RKE and PKE(S)
systems work. In Section 2.2 we’ll give a detailed explanation of how rolling code works, one of the
most import security components of RKE systems. Various exploitations of keyless entry systems
together with their possible countermeasures are explained in respectively Section 2.3 and Section
2.4. The research questions regarding countermeasures against both the replay & jamming and
relay attack are partially answered in Section 2.4. Next, we’ll extend our knowledge of how the
different car components communicate with each other through the Internal Automobile Network
in Section 2.5 followed by methods for manipulating the internal communication in Section 2.6.
We’ll end with section 2.7 in which we’ll dig into the art of reverse engineering and explain how it
is used to gain knowledge about the protocols used in keyless entry systems.

Before trying to gain knowledge about various keyless entry protocols and implement our own
attacks, we’ll need an introduction to digital signal processing. In Chapter 3 we’ll be going over
various modulation (Section 3.1) and data encoding (Section 3.2) techniques. In Section 3.3 we’ll
dig deeper in the theoretical part of digital signal processing followed by an introduction of various
hardware and software components used in digital signal processing.

In Chapter 4 we’ll implement and perform a replay & jamming attack against RKE systems. We’ll
implement 2 different methods: One using solely software-defined radios (Section 4.1) and one
cost-efficient method in which we’ll try to reduce the cost by replacing the transmitting software-
defined radio (Section 4.2). During testing of our implementation we found a vulnerability in the
RKE systems of a few cars which is explained in Section 4.3. In Section 4.4 we’ll try to improve
our implementation by using a technique called reactive jamming. In this chapter we’ll try to find
answers for our first set of research question.

In Chapter 5 we’ll implement and perform a relay attack against PKE(S) systems. We’ll start
in Section 5.1 by discussing various methods for relaying data and comparing them to each other
to find the most efficient method. In Section 5.2 we’ll discuss the required hardware and soft-
ware followed by an explanation of the implementation in Section 5.3. Last, we’ll evaluate our
implementation and discuss possible improvements in Section 5.4. In this chapter we’ll try to find
answers for our second set of research question.

In Chapter 6 we’ll try to obtain knowledge (physical and MAC layer) of the underlying RKE
protocols implemented by car manufacturers. In Section 6.1 we’ll explain the general process of
reverse engineering RKE protocols and use this process to reverse engineer 3 case studies found in
Section 6.2, Section 6.3 and Section 6.4. Besides reverse engineering different case studies, we’ll
also write automated real-time demodulators for each case study. In this chapter we’ll try to find
answers for our third set of research question.

In Chapter 7 we’ll conclude the thesis by summarising the answers of the research questions
provided in this section. We’ll also write a general conclusion of the current state of the automobile
industry regarding their keyless entry systems and what we can expect in the next years.
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Chapter 2

Background

2.1 Keyless entry systems

In the past, a mechanical key was required to lock or unlock the doors of a car. Nowadays, this
is no longer the case due to the invention of the keyless entry systems. A keyless entry system
replaces the mechanical lock with an electronic lock that is controlled remotely. This provides
convenience for the owner as there is no longer any physical contact required with the car. On
today’s market there are two main types of keyless entry systems:

• The traditional remote keyless entry (RKE) in which the door will (un)lock upon pressing
a button on a handheld device, called a key fob.

• A more modern and newer method called passive keyless entry (PKE) in which the receiver
automatically unlocks the door when detecting the key fob within a limited range from the
car, typically within 1 meter.

2.1.1 Remote keyless entry

The most common method of gaining access to a car is by pressing a button on the car’s key
fob. The RKE system using a handheld transmitter was first introduced by Renault in 1982 [56].
Renault used an in 1981 patented technology by Paul Lipschutz known as the “plip” or “plipper”. A
“coded pulse signal generator and battery-powered infra-red radiation emitter” was used along with
an infra-red receiver. Renault soon started their advertising campaign advertising the smart key
innovation on their new 1982 Renault Fuego (see Figure 2.1). The innovation was a huge success
and drivers liked the convenience of the new RKE technology. However, the new introduced
technology did not work as convenient as we know it today. As the keyless entry system was
based on the infra-red technology, it requires a line-of-sight communication between transmitter
and receiver (think of a typical television remote). Drivers owning the Renault Fuego called the
inconvenience the “plip dance” as the driver had to “shuffle” around the car to try and correctly
aim the transmitter at the receiver.

RKE systems we know today are no longer based on the infra-red technology but instead based
on radio frequency communication. A RKE system consists of a short-range radio transmitter
that produces a radio frequency (RF) signal used to communicate with the car. Pressing a button
on the key fob wakes up a microcontroller inside which computes and sends an encoded binary
data stream to the RF transmitter. The RF transmitter modulates the data and transmits it as
a RF signal. When in range of the car, typically 10 to 100 meters, the RF signal is received by
the receiver of the car. It demodulates the RF signal back to binary data and forwards it to the
microcontroller which decodes the data and executes the desired command [34] (see Figure 2.2).
The key fob is powered by a small coin cell battery while the receiver is powered by the car’s

11
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Figure 2.1: Advertisement for the Renault Fuego, the first ever model using keyless entry
technology. [48]
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Figure 2.2: Block diagram illustrating the structure of a RKE system. [34]

Figure 2.3: The process of generating a MAC. [66]

battery pack. For European car models the RKE system operates at a frequency of 433.92 MHz.
North-American and Japanese car models operate at 315 MHz.

Needless to say it is important that a key fob only communicates with one specific car as otherwise
anyone can (un)lock anyone’s car. This is achieved by sending an identifier that is synchronised
between the transmitter (key fob) and receiver (car). When the receiver’s unit captures a signal
with an unknown identifier, it ignores the signal. When the receiver’s unit captures a signal with his
specific synchronised identifier, it will execute the received command. The synchronised identifier
is used in combination with a technique called rolling code or hopping code. In this thesis we’ll be
using rolling code to refer to this technique. In short, rolling code ensures that each transmitted
signal by the key fob is unique and only valid once. This means that from the moment a car
receives a valid key fob signal, it will no longer accept a key fob signal with the same rolling
code. This prevents criminals from fraudulently gaining access to a victim’s car by capturing a
key fob’s signal and retransmitting it. However, recently an attack emerged in which an adversary
can prevent a signal from getting accepted by the car and at the same time capture and save the
signal. As the car did not correctly receive the key fob signal, the rolling code of the captured
signal is still valid. The adversary can later transmit the signal and unlock the victim’s car. This
specific attack is explained in a later stage of the thesis 2.2 together with an implementation of
the attack 4. A more detailed explanation on how the rolling code technique works is explained
in Section 2.2. Also in that section, a concrete example of a RKE protocol using rolling code is
illustrated and explained.

Additionally, a RKE system typically provides data integrity to make sure the data did not change
in transmit (=error detection). Data integrity is provided using a checksum. A checksum algorithm
takes the actual transmitted data as input and generates a sequence of numbers and letters of a fixed
length. There exist many different types of algorithms like a simple XOR, modulo or the two’s
complement algorithm. However, checksums can also be based on cryptographic hash function
(SHA-1, SHA-256, MD5, ...), fingerprints or Cyclic Redundancy Checks (CRC). Upon receiving



14 CHAPTER 2. BACKGROUND

Figure 2.4: A typical message format in RKE protocols.

a message, the receiver calculates the checksum (using the same algorithm as the transmitter)
and compares it with the received checksum. If both the values are identical, the receiver knows
the data is correctly received and did not change during transit. When the values are different, it
means that an error was detected and the original transmitted message is different from the received
message. The primary disadvantage of a checksum is that is does not protect against intentional
modification of the data. In other words, a checksum does not provide any message authenticity.
An intruder can intercept a message, change the data and calculate the new checksum. The only
requirement is that the intruder knows the algorithm used to calculate the checksum. However,
when having access to the data by which the checksum is calculated, it is not that hard to derive
the used algorithm (f.e. by bruteforce). For this reason, some implementation use a Message
Authentication Code (MAC) instead of a checksum. Besides data integrity, a MAC also provides
authentication of the message and therefore makes sure a message is not modified by a third party.
A MAC algorithm generates a short tag based on the message (or part of the message) and a secret
key [4] (see Figure 2.3). An example of a MAC algorithm is Keyed-hash Message Authentication
Code (HMAC). HMAC creates a hash of the message and the secret key (the secret key is not
used to encrypt the message or MAC). Because the adversary does not have access to the secret
key, he is unable to calculate a correct MAC and therefore unable to correctly modify a message.
The typical message format transmitted by a key fob is illustrated in Figure 2.4. However, each
car manufacturer implement their own message format which is typically different for each specific
model.

Typically, key fobs are also equipped with an immobiliser, known as the transponder key [21]. An
immobiliser is an electronic security component that prevents the car from starting its engine when
the original key fob is not detected. This means that when an adversary is able to bypass the lock
(by f.e. physically breaking in, copying the key fob or re-using a transmitted signal), he is not able
to start the engine even if he has an exact copy of the mechanical key. An immobiliser comes in
the form of a RFID chip that is detected when the key is inside the ignition. Only the paired RFID
tag is authorised to start the engine of the car. In RKE systems, the immobiliser is typically in
passive mode. This means that even when the battery of the key fob is dead, the car will still be
able to detect the RFID tag embedded inside the key fob. This is done via inductive coupling: The
car creates an electromagnetic field that powers the RFID tag and wakes up the microcontroller
inside the key fob. The microcontroller will compute the suited response and transmits it using
only energy from the RFID reader. The response is verified by the car and when valid it knows the
authorised key is used to start the engine. Since the key fob uses the energy of the car created by
the electromagnetic field, it requires the key to be in close proximity of the car (f.e. the ignition).
This method is also used in RKE systems equipped with a push to start button. By placing the
key close to the designated area, the RFID tag can be read by the car.

2.1.2 Passive keyless entry

A car equipped with a PKE system allows the owner to gain access to their car without having to
press a button on their key fob. A PKE system consists of two main components: the key fob and
the base station. The key fob is located inside the pocket or purse of the authorised user while
the base station is mounted inside a car. When the base station detects the authorised key fob in
close proximity, by broadcasting a signal and waiting for a response of the key fob, it automatically
unlocks the door. In addition to (un)locking a car without the need of pressing a button, most
PKE systems also replace the traditional mechanical key to start the engine. Systems containing
this feature are called Passive Keyless Entry and Start (PKES) systems. When the key fob is



2.1. KEYLESS ENTRY SYSTEMS 15

detected inside the car, the user is able to start (or stop) the engine without having to insert a
mechanical key into the car’s ignition. PKE(S) systems are no longer restricted to high-end luxury
cars but are available as an optional feature in multiple standard car models of multiple different
car manufacturers like Citroën [14], Hyundai [31], Ford [20], ....

PKE(S) systems work slightly different from RKE systems. In RKE systems the microcontroller
and RF transmitter only consumes battery power upon pressing a button on the key fob. This is
not the case in PKE(S) systems as the key fob is constantly listening for signals from the car’s base
station. This introduces a problem regarding the battery lifespan of the key fob. To minimise the
power consumption of the key fob, PKE(S) systems introduces a technique in which the key fob
is in a low-power listening mode until getting “woken up” by the car’s base station. This “wake-
up” message indicates that the base station will soon send a signal that requires computational
power (and battery power) from the key fob. This technique works as follows: Upon touching
the car’s door handle, the car’s base station broadcasts a low frequency (LF) “wake-up” message
(125 kHz) which, as the name suggests, wakes up a microcontroller inside a key fob [21]. The
“wake-up” message can be seen as a short, fixed and predefined data pattern, called a preamble.
When the key fob detects the preamble, the microcontroller inside the key fob is “woken up” and
sends an UHF (433 or 315 MHz) acknowledgement back to the car. In some PKE(S) systems, the
car’s base station generates a magnetic field which provides energy to the key fob (identical to the
immobiliser). This energy is than used to wake up the microcontroller.

Once the base station received the acknowledgement from the key fob, a Challenge-response pro-
tocol is used to authenticate the key fob. In a Challenge-response protocol one party presents the
other party with a question (=challenge) after which the receiver computes an answer (=response)
to the question to prove its identity. The calculation of the response is based on a secret key that is
known to the two communicating parties. Only the entity knowing the secret key can calculate the
correct answer to the challenge. By issuing a different challenge for each button press, an adversary
can’t simply capture the response to the challenge and retransmit it as each different challenge ex-
pects a difference response. In PKE systems, the base station transmits a LF challenge presenting
the key fob with a random number. The key fob encrypts the random number with its shared secret
key and transmits is back to the car’s base station. The base station encrypts the same random
number with the shared secret key and compares the result with the response received from the
key fob. Since the key fob and base station share the same secret key, the encrypted challenge
should be identical. When the encrypted challenge is indeed the same, the key fob is authorised
and the car unlocks the doors. To increase the security level some car manufactures implement a
bidirectional authentication in which the authentication is performed in both directions. Namely,
the key fob authenticates the car and the car authenticates the key fob. Two different PKE(S)
system protocols are shown in Figure 2.5: (a) illustrates the method explained in this paragraph
while (b) illustrated a method in which the challenge is transmitted together with the “wake-up”
message. Additionally, Section 2.3.3 explains the concrete PKES protocol used by Tesla.

Besides the optimisation to maximise the battery lifespan, the base station has to track down if
a key fob is located inside or outside the car. If the key fob is located inside of the car, the car
will enable the push to start button to start the engine. The position detection is accomplished
by the Received Signal Strength Indication (RSSI) measurement of the signals transmitted by the
LF antennas. The RSSI is calculated by the receiver and indicates the power or strength of the
received signal. Therefore, a higher RSSI value indicates a stronger signal. The power of a signal
corresponds to the distance to the source. The RSSI value is higher when close to the source
and lower when further away from the source of the transmitted signal. In PKE(S) systems, LF
antennas are strategically distributed inside and outside of the car [40]. The LF antennas generate
a magnetic field covering both the car’s interior as well as the vicinity in which a key fob can
be detected. The key fob measures the signal strength and calculates the RSSI value of the LF
signal during the communication with the car’s base station and transmits it back to the car. The
resulting RSSI value can then be used to calculate the distance of the key fob to the transmitter
(=car).
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Figure 2.5: Two examples of PKE(S) system protocols. a) The car wakes up the key
fob with a LF signal and receives a RF/UHF acknowledge response back from the key
fob. The car sends a LF challenge with car ID. Key fob computes a response and sends
a RF/UHF response back. b) Wake-up, car ID and challenge is send right away in each
periodic probe. [21]

2.2 Rolling code security

The very first key fobs in the early nineties made use of a static code system. While the identifier
transmitted by the key fob was unique for every car, the rest of the code was static. This means
that when pressing the same button, an identical signal is transmitted. When using a static code
system, it is easy to perform a replay attack. An adversary can simply capture the transmitted
signal from a victim’s key fob and unlock the doors by retransmitting the signal. To prevent these
attacks from happening, car manufactures implement an extra security measurement called rolling
code. Rolling code is a system whereby each transmitted signal is unique and only this specific
unique message is accepted by the receiver. This means that signals transmitted by the key fob
are only valid once, therefore previous transmitted signals can not be captured and retransmitted
to (un)lock the doors of the car.

There are multiple different implementations of a rolling code system depending on the manufac-
turers. In Subsection 2.2.1, a generic implementation of such rolling code system is explained which
means that it might vary depending on different manufacturers, but generally employ the same
techniques in a similar way. In Subsection 2.2.2, a concrete implementation of a rolling system
used by a vast amount of car manufacturers is explained.

2.2.1 Generic implementation

Typically, rolling code systems consist of a synchronised counter in both the transmitter (key fob)
and receiver (car). Each time a button is pressed on the key fob or a valid message is captured
by the car’s receiver the synchronised counter is incremented. When transmitting a signal, the
synchronised counter of the key fob is included inside the message. Upon receiving a signal, the
synchronised counter is extracted from the message and compared to the counter of the receiver.
Only when both the counters are equal, the car accepts and performs the captured command.
This method of using a synchronised counter ensures that a transmitted message is only valid once
because the synchronised counter of a retransmitted message differs from the synchronised counter
of the receiver and therefore makes the message invalid. However, when someone accidentally
presses a button on their key fob while out of range of the car, the key fob counter will increment.
Since the button is pressed out of range of the car, and therefore not received, the counter of the car
does not increment. Because the key fob and car no longer have the same counter, the car should
ignores new signals received from the key fob. To solve this problem, a typical implementation will
compare the next x (typically 128 or 256) counters with the received counter. When receiving a
counter within this range, the car accepts the message and sets its counter equal to the received
counter. When someone desynchronises or loses their key fob, the desynchronised or new key fob
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has to be resynchronised with the car’s receiver. Luckily, most car manufacturers provide a way for
the user to resynchronise their key fob with the car themselves. This is a sequence of actions that
has to be performed by the user to switch a car to its programming mode and resynchronise with
the key fob. A typical procedure is explained below [16] (example for certain Ford models):

1. Place the mechanical key inside the ignition.

2. Turn the ignition key on and off eight times in a row in less then 10 seconds to switch the
car’s system to programming mode. When successfully performed, the car should notify the
user by beeping or locking the doors to notify the user it switched to programming mode.

3. Press a random button on the key fob(s) that has to be synchronised with the car (typically
allows at most four key fobs).

4. Switch of the ignition.

Using a rolling code system based solely on a synchronised counter is not secure. An adversary
can easily capture a message and extract the counter. Since it is an incremental counter, it is not
hard to predict the next valid counter, namely the increment of the counter (or + a larger value as
long as it is within the valid range of the car’s synchronised counter). Therefore it is necessary to
encrypt the synchronised counter so adversaries are unable to correctly extract the counter from
a captured message. Using encryption, a secret key is shared between key fob and receiver. Only
the receiver possessing the secret key can correctly decrypt the encrypted data. As the adversary
has no access to this secret key (in case of secure cryptographic scheme), he is unable to correctly
decrypt the captured message and therefore unable to extract the synchronised counter. Even if
he knows the synchronised counter but does not know the secret key, he is unable to correctly
encrypt the data which leads to the receiver being unable to correctly decrypt the message.

Some implementations might replace the incremental synchronised counter by a pseudo-random
sequence of generated numbers [9]. A pseudo-random number generator (PRNG) generates a
sequence of random numbers depending on the initial seed. If two PRNGs are initialised with the
same seed, the PRNG will produce the same sequence of numbers. By using a shared secret seed
between the car and key fob, the generated numbers are identical. As for the incremental counter,
the car compares the received value with a certain amount of next pseudo-random generated
numbers to avoid desynchronisation by pressing a button out of range of the car. It is important
to initialise the PRNG with a secure seed. A commonly used technique for generating an initial seed
is using the state of the computer system (such as time). However, generating an initial seed using
only time is unsafe. Suppose an adversary knows at around which time the seed was initialised,
he can brute force the initial seed. For example when someone knows the exact date a car left
the manufacturer, he has a rough approximation of when the initial seed was generated (assuming
the initial seed was generated using the current time). Therefore, high entropy (=randomness) is
required to generate a secure seed. High entropy is often obtained from physical properties like
noise signals, thermal noise, clock drift, .... However, even a PRNG initialised with a high entropy
seed is not always cryptographically secure. A PRNG might be able to fool simple statistical
tests in thinking the outputs are completely random. However, When someone knows the previous
calculated random output values, it might be possible to find a correlation between the output
values and therefore predict the next “random” value. Ideally a cryptographically secure pseudo-
random number generator (CSPRNG) is used. a CSPRNG uses a high entropy seed and should
make it impossible for an adversary to predict next outputs even if the previous generated outputs
and used algorithm is known.

Figure 2.6 illustrates how a message is created by a key fob upon pressing a button. A shared
secret key is used by the encryption algorithm to encrypt the synchronisation counter. The size of
the encrypted result depends on the used encryption algorithm. In this case a block cipher with a
block length of 32 bits was used. The 32-bit encrypted message is transmitted together with the
button information and the unique identifier or serial number. Figure 2.7 illustrates the operations
of the generic receiver upon receiving a message. First the serial number is checked to ensure that
the received message is transmitted by the paired transmitter. When the received serial number
and the receiver’s stored serial number are equal, the encrypted data is decrypted using the shared
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Figure 2.6: Creation of a transmitted message. [45]

Figure 2.7: Basic operation of the receiver (decoder). [45]
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Figure 2.8: Microchip HCS201 encoder utilising KeeLoq code hopping technology.

Figure 2.9: Creation and storage of secret key during production. [45]

secret key. The resulting decrypted synchronisation counter is then compared to the receiver’s
synchronisation counter.

In principle, such rolling code systems should provide a suitable security level for access control.
However, rolling code systems are based on cryptographic schemes. Unfortunately, not all crypto-
graphic schemes are secure, causing researchers and criminals to break the rolling code and clone a
key fob. Besides breaking these cryptographic systems, there are other methods that don’t break
the rolling code cryptographic scheme but instead find a way to work around it. Various attacks
on both remote and passive keyless entry and their rolling code systems are explained in Section
2.3.

2.2.2 KeeLoq by Microchip Technology

KeeLoq by Microchip Technology is a hardware-dedicated block cipher used in the generation of
rolling code in keyless entry systems by various car manufacturers like Fiat, Honda, Jaguar, Toyota,
Volvo, Volkswagen, .... Microchip Technology currently offers 13 different encoder chips (installed
inside of a key fob) containing different additional features like low battery indicator, LED drive,
programmable time-outs, .... They also offer 3 decoder chips (installed inside receiver). In this
section the operations of the KeeLoq Code Hopping Encoder HCS201 will be explained in more
detail (Figure 2.8). The HCS201 encoder utilises the KeeLoq code hopping technology, a block
cipher based on a block length of 32 bits and a key length of 64 bits [45]. It is a cost-effective
solution for producing rolling codes as it only costs e0,66 per unit.

Before use, a shared secret 64-bit cryptographic key used by the KeeLoq encryption and decryption
algorithm has to be initialised. The secret key is generated by a specific 64-bit manufacturer’s
code and the transmitter serial number (unique for every encoder). The resulting secret key is
stored in the EEPROM array of the encoder chip together with the transmitter serial number and
synchronisation counter (Figure 2.9). Besides the generation of the 64-bit secret key, the receiver
has to be synchronised with the transmitter before use. Synchronising includes calculation of the
secret key and storing the transmitter serial number and synchronisation counter.

The message format created by the HCS201 consists of a 32 bits encrypted part and a 34 bits
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Figure 2.10: KeeLoq HCS201 generated message format. [45]

fixed code part. The encrypted data is generated from 4 button bits, 12 discrimination bits and
the 16-bit synchronisation counter. The discrimination value helps the post-decryption validation
check on the receivers side. Typically, the discrimination value is the 12 least significant bits of
the serial number. When the encrypted part of the message is decrypted, the discrimination value
is compared to the receiver’s serial number to verify if the decryption process was valid. The fixed
code data is made up by 2 status bits used to indicate if the battery is low, 4 button bits indicating
which button was pressed and the 28-bit unique identifier or serial number (Figure 2.10). The
combination of the encrypted data together with the fixed code data results in 7.38 ∗ 1019 unique
code combinations.

2.3 Exploitation of keyless entry systems

For a long time, users of keyless entry systems trusted in the security and liability of these systems.
Unfortunately, most keyless entry systems have weaknesses that can be exploited by criminals to
gain unauthorised access to others cars. These attacks can range from low-level cryptographic
attacks to high-level attacks that find ways to bypass rolling code. In this section we’ll explain
different attacks on both RKE and PKE(S) systems.

2.3.1 Replay & jamming attack

In a replay attack, the transmitted signal by the authorised key fob is captured by an adversary
and later retransmitted to fraudulently gain access to the victim’s car. As noted before, car
manufacturers use rolling code to make sure a signal transmitted by a key fob is unique and only
accepted once by the car’s receiver. This means that a retransmitted signal should be ignored in
case it was already accepted previously, preventing criminals from performing such replay attack.
For many years it seemed that secure rolling code systems solved the replay vulnerability until
in 2014 Spencer Whyte developed a proof of concept attack called “Jam Intercept and Replay
Attack” that was able to unlock virtually every car and garage door equipped with rolling code
security [71].

The key idea in this attack is blocking the car’s reception (=jamming) by transmitting random noise
or carrier signals to “confuse” the receiver. If successful, the receiver is unable to correctly distinct
the original transmitted signal from the jamming signal. Alternatively, a targeted carrier signal
can be transmitted that causes bits in the transmitted message to change. For example changing
bits in the data integrity field (checksum, MAC, ...) will cause the signal to be rejected by the
receiver. Jamming is known concept for performing diverse attacks, for example, interrupting
Wi-Fi or sensor network communication. In theory, all RF communication is prone to jamming.
There exist different methods of jamming [73]:

• Constant or continuous jamming: In constant or continuous jamming the adversary
continually transmits a jamming signal. In this method, the adversary needs little to no
knowledge of the target communication except from the transmit frequency. A disadvantage
of continually jamming is that it is easily detectable. It also causes all communication on the
specific targeted operating frequency to be jammed which is not always preferred.
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Figure 2.11: The car’s frequency passband when jamming. [70]

• Deceptive jamming: In deceptive jamming legitimate packets are transmitted to prevent
the targeted packet from getting received. An important application of deceptive jamming is
found in the military context. For example interrupting the communication between aircraft
and control post by providing the target with false information. A different case of deceptive
jamming is in devices that have a separated receive and send mode. By constantly trans-
mitting valid packets to the target, the device will stay in receive mode for as long as it is
receiving packets from the adversary. This causes the target device to never switch to send
mode and transmit any packets.

• Random jamming: Random jamming can behave like either a constant jammer or decep-
tive jammer. However, a random jammer will alternate between a jamming and “sleeping”
mode in which no packets/signals are transmitted. This method is mainly used for energy
conservation, especially for jammers without access to an unlimited power supply.

• Reactive jamming: In reactive jamming the target receiver is blocked for only a short
amount of time (milliseconds) to prevent a specific signal that is already “on the air” from
getting accepted. Alternatively, the adversary can transmit short bursts of data to make the
signal that is already “on the air” invalid (for example by changing 0’s to 1’s) In contrast to
the other methods, reactive jamming can be used to jam a specific target without interrupting
different communication on the same channel. It is also very hard to detect a reactive jammer
as it is only transmitting for a few milliseconds at a time. Later in this thesis we’ll further
touch upon the topic of reactive jamming (see Section 4.4).

For the following explanation, let’s assume we are using a constant or continuous jamming to block
the car’s reception. In a replay & jamming attack, a small part of the frequency passband of the
car’s receiver is jammed while simultaneously recording the signal transmitted by the key fob. The
frequency passband is a range delimited by a lower and upper frequency containing the range of
frequencies the device can receive. The frequency passband of a car’s receiver is typically larger
than the operating frequency of the key fob. By jamming a part of the frequency passband close
to the operating frequency of the key fob, the car’s receiver is effectively jammed and unable to
correctly receive the signal of a key fob (see Figure 2.11). By configuring a smaller frequency
passband that does not include the jamming frequency on the adversary receiver, he can correctly
capture the key fob signal without interference of the jamming signal. By doing this, the adversary
now has a valid signal from the authorised key fob that is not yet received by the car. He can now
transmit the signal using his own transmitter and unlock the victim’s doors.

Most cars will notify the user if receiving a signal from the key fob by for example flashing it
lights, closing or opening the mirrors, making a beeping sound, .... This means that the victim
will most likely notice that the car did not correctly receive the key fob signal making the attack
by Spencer Whyte unlikely to succeed in a realistic car theft. However, a year later Samy Kamkar,
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Figure 2.12: Diagram illustrating the replay & jamming attack.

a well known privacy and security researcher, created a $32 device that was based upon Spencer
Whyte proof of concept but solved the inconveniences of his attack. Samy Kamkar came up with
a scenario in which the victim won’t notice an adversary is blocking the car’s reception [38]. The
scenario is illustrated in Figure 2.12 and goes as follows:

1. The adversary starts jamming the car’s receiver while listening for the key fob signal outside
of the jamming frequency. The victim presses the unlock button on their key fob and notices
the doors did not unlock. The adversary at the same time recorded the signal and now has
its first valid signal.

2. The natural reason of the victim would be pressing the unlock button a second time since
the first try failed. The adversary keeps jamming and now records the second valid signal.

3. Immediately after receiving the second signal, the adversary stops jamming and transmits the
first captured key fob signal resulting in successfully unlocking the car. The victim now thinks
the second transmitted signal was correctly received by the car as it successfully unlocked the
doors. However, in reality the car did not unlock because of the second transmitted signal
but rather by the retransmitted first signal captured by the adversary. The adversary now
has valid key fob signal that is not yet accepted by the car.

Samy Kamkar’s explanation of the attack ends here. However, when performing the attack on the
unlock signal, the victim will drive off and arrive at the destination. He will lock the car causing
the rolling code to shift which makes the captured unlock signal invalid again. To prevent the
rolling code from shifting, the adversary has several options:

• Keep jamming after obtaining the second key fob signal: To prevent the rolling code
from shifting, the adversary has to keep jamming the victim’s car even after obtaining the
second key fob signal. There are a few possible options:

1. The adversary can follow the victim to their destination and start jamming when the
victim arrives forcing him to use the mechanical key to lock the car. This prevents the
rolling code from shifting and therefore the adversary still has a valid unlock signal that
he can use to gain access to the victim’s car.

2. Following the victim to their destination might be suspicious. Alternatively, the adver-
sary can work with a companion. If the adversary knows where the victim is heading,
the companion can go to the destination before the victim arrives and start jamming.

• Modifying the lock signal into an unlock signal: A more difficult way of performing
the attack is to capture the lock signal instead of the unlock signal. As the victim parks and
locks the car, the adversary no longer has to keep jamming to prevent the rolling code from
shifting. However, the adversary can’t unlock the car as he only captured the lock signal.
However, most key fob signals have the data field separated from the rolling code field.
Theoretically, if the adversary knows the next rolling code, he can change the lock command
bits to the unlock command bits resulting in a valid unlock signal. This method is rather
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complex since the adversary needs to capture, demodulate, decode and analyse the signal.
Once he analysed the signal and determined which specific bits are used for the command,
he has to modify the bits, encode and modulate the data back to the original format and
transmit it. Additionally, most key fobs manufacturers implement some sort of data integrity
used to validate that a signal is correctly received and/or did not get modified by a third-
party. Modifying the signal will cause the data stream to have an invalid checksum or MAC
and therefore get rejected by the car. Modifying the checksum is possible if the adversary
can derive the used algorithm from the data. However, when the manufacturer uses a MAC
instead of a simple checksum, the adversary is unable to change the MAC as he has no access
to the secret key used to generate the MAC.

• Placing battery powered device underneath car: An alternative way of performing this
replay & jamming attack is to attach a device underneath the car. This device continuously
jams the car while recording the key fob signals. This way the adversary does not have to
execute the attack himself. After placing the device on a parked car, he can come back a few
days later to retrieve the device with multiple valid lock and unlock signals stored on it.

2.3.2 Signal amplification relay attack

A signal amplification relay attack is a form of man-in-the-middle attack where the communication
range between transmitter and receiver is extended by amplification of the signal. Where the replay
attack in previous section is more relevant to RKE systems, this attack is especially interesting
for PKE(S) systems. As noted before, in PKE(S) systems a door is unlocked when the authorised
key fob is detected in close proximity to the car. A signal amplification relay attack extends this
limited range to, in theory, an unlimited range allowing the adversary to unlock and start the
victim’s car without having to physically carry the authorised key fob [21].

The attack is performed by two adversaries: The first adversary stands in close proximity to the
car while the other stands in close proximity to the key fob, illustrated in Figure 2.13. The first
adversary P1 triggers the LF “wake-up” message by pulling or touching the door handle of the car.
P1 captures the message using his own receiver and sends it to his companion P2 who is standing
in close proximity to the key fob. For example, this can be outside of the victim’s house in case the
key fob is located close to the outside walls or at a restaurant next to the victim. P2 carries a device
that receives the signal transmitted by P1 and transmits it to the key fob. If the key fob detects
the “wake-up” message, it wakes up the microcontroller, demodulates, decodes and interprets the
message. The key fob computes a response to the message and transmits it over an UHF channel
(typically 433.92 MHz). Since the key fob replies on an UHF channel (like a standard RKE key
fob) instead of a LF channel, the signal typically reaches the car without the use of any relay. In
case the UHF signal does not reach the car, the adversaries can opt for a second relay between P2
and P1. The UHF signal is received (either with or without relay) and verified by the car. In case
of a valid response, the car will unlock its doors thinking the key fob is in close proximity. In case
of a PKES system this routine is executed twice to start the car. The adversaries can now drive
away in the victim’s car. As the adversaries drive away, most cars will give a warning as they no
longer detects the key fob. For safety reasons a car’s engine won’t just shut off while driving. The
thieves can now drive the car until it is manually turned off by the adversary himself.

A proof of concept of such relay attack can already be achieved using 2 simple coils of wire. In a
Belgian reportage, the researcher was able to perform a relay attack by connecting an end of each
coil to each other [67]. One coil is placed close to the car’s transmitter while to other coil is placed
close to the key fob. The electromagnetic radiation transmitted by the car is captured by the first
coil and travels through the wire to the second coil. The second coil outputs this electromagnetic
radiation which is detected by the key fob. The key fob computes its response and transmit it to
unlock the car.

Relay attacks go beyond PKE(S) systems and can also be performed in almost all Near Field
Communication (NFC) systems for example contactless payment using NFC [42] [22]. An example
is the Ping.Ping payment system used in Belgian universities (including University of Hasselt)
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Figure 2.13: Diagram of a signal amplification relay attack on a PKE(S) system. [55]

and businesses in which a NFC card has to be placed in close proximity to a NFC reader. The
adversary holds a receiver close to the NFC reader that receives the LF signal transmitted by the
NFC reader. He relays the signal to a second device that is in close proximity to the NFC card of
the victim (f.e. the customer behind him in line). The device transmits the signal from the NFC
reader and captures the response of the NFC card. This response is captured by the device and
relayed back to the device located by the NFC reader. The NFC reader detects the NFC card of
the victim as it would be physically close to the reader. The purchases of the adversary are now
payed by the victim’s card.

The signal amplification relay attack is one of the most used attacks in modern car thefts. Devices
that can perform these relay attacks can be purchased online by anyone. However, due to the recent
rise of these relay attacks together with the intense media exposure, researchers are fully engaged
in finding solution to prevent relay attacks. One solution is using distance bounding mechanisms in
which the time delay between sending a challenge and receiving the response is used to determine
the distance between the car and key fob. Distance bounding mechanisms are explained in Section
2.4.3. However, a fully secure solution to prevent relay attacks need time to implement, test and
deploy. Additionally, existing cars equipped with a PKE(S) system require an update which is not
always trivial. Therefore we can conclude that relay attacks will probably remain a big problem
for the next decade.

2.3.3 Time-Memory Trade-Off attack

A Time-Memory Trade-Off (TMTO) attack is an attack which improves running time by using
more space (memory), commonly used in cryptographic attacks [60]. There are three parameters:
Space (=available data storage), time and data (=data available to the adversary during the
attack). As the name states it is a trade-off in which the adversary reduces one or two parameters
in favour of the others. A TMTO attack consists of two main phases:

1. Preprocessing phase: This phase can be seen as the preliminary work. An adversary explores
the cryptosystem by for example giving a random input and storing the output in a large table
or data structure. By analysis of results, different input and output values can be grouped
together. For example when multiple different input values result in the same output value,
these input values can be grouped together. This phase typically takes a long time since the
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adversary has to try and compute all possible values. The resulting data structure is later
used to look up results by inputting real-time data and can be up to a few terabytes.

2. Real-time phase: In this phase an adversary is granted actual data from the device he is
attacking which he uses to look up specific useful data in his preprocessed data structure
created in the preprocessing phase. For example by looking up the output value in the data
structure, a set of input values resulting in the same output can be found. Due to the large
amounts of preprocessed data, the “real-time phase” typically takes only a short amount of
time.

This attack was recently used by Wouters et al. in 2018 [43] to expose an insecure and outdated
cryptographic algorithm used for authentication in the keyless entry system of Tesla. Tesla uses
a PKES system similarly to the system explained in section 2.1.2. The Tesla PKES protocol is
illustrated in Figure 2.14. The car periodically advertises a “wake-up” message including its 2-byte
unique identifier. Once the key receives the “wake-up” message, it will transmit a response back to
car, signaling it is ready to receive the authentication challenge (1) (Challenge-response protocol).
The car verifies the response and transmits a 5-byte challenge to the key fob. The key fob uses a
DST40 compression function (more information follows in the next paragraph) to produce a 24-bit
response that is transmitted over an UHF channel (2). The car verifies the response and, if correct,
unlocks the doors. Next, the car and key fob engage in a keep-alive protocol to check whether
or not the key is still present in the car (3). This is accomplished by periodically advertising a
“wake-up” message and waiting for a valid response. To start the car, the driver presses down
on the brake pedal which initiates a second round of the Challenge-response protocol which uses
the same DST40 technique as described above with a different challenge (4). However, the used
Challenge-response protocol introduces some issues: Due to the lack of mutual authentication,
anyone who knows the car’s identifier, can get a response from a key fob. Because the identifier is
periodically advertised, therefore broadcasted by the car itself, the identifier is publicly available
and can be captured by anyone.

Besides the lack of mutual authentication, the system uses an insecure and outdated cryptography
cipher called DST40. DST40 transforms a 40-bit challenge into a 24-bit response using a 40-bit
secret key. Because the 24-bit response is smaller than the 40-bit challenge input, there will be
multiple secret keys that produce the same response to a given challenge. This insecurity can be
used in the preprocessing phase of the TMTO attack: Take a fixed 40-bit challenge and compute
the DST40 response for every possible value of the 40-bit secret key. All 40-bit keys that compute
the same 24-bit response are grouped in a single file and stored in a data structure. The lookup
table consisting of 224 files, each containing roughly 216 keys. (see Figure 2.15). The data structure
is computed two times using two different fixed 40-bit challenge. The second challenge-response
pair is required to determine the correct key out of the 216 potential keys obtained from the first
challenge-response pair. Once we have a complete data structures for all possible values of the
40-bit key, the preprocessing phase is complete.

Using the two data structures, we can now perform the interesting part of the attack and try and
unlock a Tesla without carrying the authorised key fob. The goal is to track down the shared 40-bit
secret key that is used by a specific key fob to compute the response on a given challenge. Since the
car’s identifier is publicly advertised we can impersonate the car and transmit any chosen challenge
to a key fob and observe the response. We start with obtaining the identifier of the victim’s car.
This is done by capturing the broadcasted “wake-up” message and extracting the public identifier.
Next, we impersonate the car using the captured identifier and transmit the fixed 40-bit challenge
used to create the preprocessed data structure to the key fob. We observe the response of the key
fob and can now recover the corresponding file containing 216 candidate keys. By sending a second
different 40-bit challenge, the response is used to find the specific 40-bit secret key among the 216

candidate keys. Once we obtained the 40-bit secret key, we can now impersonate the key fob and
unlock and start the car.
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Figure 2.14: Tesla’s PKES protocol used to unlock and start a car. [43]

Figure 2.15: Data structure grouping the keys with the same response to one file. [43]
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Figure 2.16: Hitag2 stream cipher structure consisting of a 48-bit LFSR and three non-
linear filter functions fa, fb and fc. [72]

2.3.4 Low-level cryptographic exploits against rolling code schemes

Since rolling code is generated using cryptographic schemes, it trusts on the reliability of these
schemes. Since 2006, several keyless entry related algorithms have been exposed to cryptographic
weaknesses resulting in breaking the rolling code. One such cryptographic breakable scheme is
called Hitag2, a stream cipher used in producing rolling code. A so-called correlation-based attack
performed by D.Garcia et al. in 2016 allows recovery of the secret key used to create the cipher. By
obtaining the secret key they were able to clone the remote control with only four to eight captured
rolling codes [24]. A correlation attack is used for breaking stream ciphers whose keystream is
generated by combining the output of several binary linear feedback shift registers (LFSR) using a
nonlinear boolean function [44]. These attacks are possible when there is a significant correlation
between the output of the individual LFSRs in the keystream generator and the output of the
nonlinear boolean function that combines the output of all LFSRs. The main idea of the attack is
to limit the exhaustive or brute-force search, and therefore fasten the process by identifying good
candidate keys with high correlation score. In Hitag2, the cipher consists of a 48-bit LFSR and
a nonlinear filter function f (which consists of 3 different circuits fa, fb and fc) (see Figure 2.16).
For each clock cycle, 20 bits of the LFSR are put through the filter function f that generates 1 bit
of the keystream. Next, the LFSR is shifted 1 bit to the left to introduce a new bit on the right.
D.Garcia et al. successfully verified their findings in practice on car models from Alfa Romeo,
Chevrolet, Citroen, Dacia, Fiat, Ford, Lancia, Mitsubishi, Nissan, Opel, Peugeot, Renault ranging
from year 2004 to 2016.

In 2008 a paper was released that presented a practical key recovery attack against KeeLoq based
on a slide attack and a novel approach to meet-in-the-middle attack [32]. KeeLoq is a block cipher
alternative to Hitag2 used in producing rolling codes in RKE systems. A slide attack focuses on
block ciphers consisting of multiple rounds of an identical key permutation. This attack deals
with the idea that increasing the number of permutations increases the strength of the cipher.
This results in the slide attack being independent of the amount of permutations of the cipher.
A meet-in-the-middle space-time trade-off attack which tries to reduce the time complexity of an
ordinary brute force attack in exchange of requiring memory storage (space). The attack requires
the encryption scheme to rely on a sequence of encryptions (f.e. 3-DES) and requires the adversary
to have access to both the plaintext and the ciphertext [41]. The adversary starts with calculating
all possible intermediate ciphertexts of the known plaintext using all possible secret keys. Next, the
adversary decrypts the known ciphertext with all possible secret keys resulting in the intermediate
plaintexts. The adversary tries to find blocks in which the resulting ciphertexts (from encrypting
the plaintext) and the resulting plaintexts (from decrypting the ciphertext) are identical (=meeting
in the middle). The keys used to encrypt the plaintext and decrypt the ciphertext are most likely
the encryption keys used for the block cipher. The attack requires 216 plaintexts and has a time
complexity of 244.5 KeeLoq encryptions. The fully implemented attack requires 65 minutes to
obtain the required data and 7.8 days of calculations on 64 CPU cores. However, an adversary
can purchase a cluster of 50 dual core computers for e10.000 and find the secret key in about two
days.

Keyless entry systems are extremely vulnerable to these cryptographic attacks. What makes these
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Figure 2.17: Dip switch remote control key fob.

attacks so efficient is the fact that breaking a single cryptographic scheme affects possible millions
of cars of multiple different manufacturers as seen in the Hitag2 attack. Updating those millions of
affected cars is a struggle (and most likely impossible) as the cryptographic schemes are integrated
in physical hardware chips inside the key fob and car.

2.3.5 Intermezzo: OpenSesame remote control garage door brute-forcer

RKE systems are not limited to the automobile industry. The second most known application is
remote control garage doors. Modern remote control garage doors utilise the same RKE technology
as used in the automobile industry. However, the adaption from insecure static codes to a “secure”
garage door system did not go as smoothly as in the automobile industry. On top of that, garage
doors typically last multiple decades in contrast to cars. A precise number on how many percent of
the garage doors still use static code is not available. However, because of the argument mentioned
above, there are most likely still a lot of static code garage doors operating today.

The first remote controlled garage doors used static code which means the remote control of a
garage door could open every other garage door from the same manufacturer. Soon arose the
inevitable problem that a person’s key fob could open the garage door of their neighbour. As this
might be inconvenient, the main problem was people breaking into others homes by exploiting
their static code garage doors. However, when the remote controlled garage doors became popular
around the world, manufacturers changed to a different approach. Instead of a transmitting a
static code, the garage door and key fob could now be synchronised to each other by matching
so-called binary dip switches (see Figure 2.17). This binary dip switch is typically 8 to 12-bit long
which means it provides respectively 256 (28) and 4096 (212) unique configurations. Let’s assume
we set a password that can contain upper- and lowercase letters, digits and 10 special characters.
This means we can choose out of 72 different characters. By only choosing a 2-character password,
we already have 5184 (722) different possibilities which is more than a 12-bit dip switch remote
control. This means that a 2-character password is harder to brute-force than a 12-bit dip switch
garage door system. As the dip switches solved the problem regarding neighbours controlling each
others garage doors, it did not change the essence of the problem.
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Figure 2.18: Overview of OpenSesame attack created by Samy Kamkar. [39]

In 2015, Samy Kamkar, created a device that could open almost every garage door using such
12-bit dip switches in less than 10 seconds [39]. To illustrate the attack, let’s assume we are
using a 3-bit dip switch remote control. A 3-bit dip switch has 8 unique codes. These 8 unique
codes consists of 3 bits which mean 24 bits have to be transmitted to brute-force the garage door.
Since the receiver does not know when a code is starting or ending, we have to introduce a wait
period of 3-bit in order to let the receiver know the received code has ended. This means that
instead of 24 bits, we now have to transmit 48 bits to brute-force the garage door (Figure 2.18 (1)).
However, Kamkar found out that most garage doors use a bit shift register. This means that when
receiving more than 3-bit, the most-significant bit is thrown away (=shifted) to make place for
the next bit. This means that garage doors using such bit shift register do not need a wait period
to distinguish different codes (Figure 2.18 (2)). On top of that, he used a De Bruijn sequence
to significantly reduce the amount of required bits. De Bruijn found an algorithm to create an
overlapping sequence of numbers that produces every possible permutation of these numbers. For
the 3-bit dip switch, there exist a De Bruijn sequence of only 10 bits instead of 24 bits (Figure
2.18 (3)). Let’s now assume we have a 12-bit dip switch garage door: There are 4096 12-bit unique
possibilities with a 12-bit wait period between each code. This results in 98304 (4096 ∗ 12 ∗ 2) bits
that has to be transmitted by the device to brute-force the garage door. Since most garage doors
use a bit shift register, we can remove the wait period which results in “only” half the required
bits. Finally, there exist a De Bruijn sequence of 4107 bits that represent the 4096 12-bit codes.
This means that instead of transmitting 98304 bits, using the OpenSesame attack, it is possible to
brute-force a 12-bit dip switch garage door by only transmitting 4107 bits.

2.4 Countermeasures

In this section, we’ll discuss different types of countermeasures against different attacks on keyless
entry systems. In the first 3 subsections, we’ll be explaining countermeasures against attacks on
PKE(S) system. we’ll start with the immediate countermeasures which requires only simple actions
from the user. In the second and third subsection, we’ll discuss countermeasures which require
software and/or hardware updates to the keyless entry system. In the final subsection we’ll talk
about a solution to prevent against replay & jamming attack on RKE systems
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2.4.1 Immediate countermeasures

Signal blocking pouch (=Faraday pouch): The simplest method for protecting against attacks
on PKE(S) systems is to block the communication to and from the key fob. This is achieved by
putting the key fob inside of a signal blocking or Faraday pouch which prevent it from receiving and
transmitting any signal. This prevents adversaries to perform a relay attack or any other attack in
which communication with the key fob is required (like the Tesla TMTO-attack in Section 2.3.3).
These cases are available on almost all popular online retail shops ranging from only e2 to e30.
Another way of blocking a key fobs signal is by putting it inside of a metal tin box (f.e. a cookie
box), wrap it in silver foil or put it inside the microwave or refrigerator. The metal contraption
serves as a signal blocking case for the key fob and is recommended when the key fob is not used
for example when at home.

Removing battery of key fob: A different countermeasure against attacks in which communi-
cation with the key fob is required is to fully disable the communication abilities of the key fob by
removing the battery [21]. This causes the key fob to be deactivated and therefore forces the car
owner to use the physical key (typically hidden inside the key fob). In PKES systems, this means
the car owner is also unable to start the car. However, most manufactures provide a “dead battery”
mode in which a car can still be started by placing the key fob very close to the predesignated
location in the car (e.g. the start button). The car then communicates with the key fob’s passive
LF RFID tag (immobiliser) using short-range communication.

Disabling PKE: A self-evident countermeasure against relay attacks is disabling the PKE system
of a car. In 2017 [26] and 2018 [49] (depending on the location), Tesla added the “Passive Entry”
function in their latest software update following the reports of a successful relay attacks against
Tesla. “Passive Entry” gives the owner the option to disable (or enable) the PKE system of the
car. If the owner disables “Passive Entry”, he can simply use his key fob as a traditional RKE key
fob. However, not all cars equipped with PKE have the option to disable their PKE. Providing
this option is up to the car manufacturer.

2.4.2 Motion sensor key fobs

One of the most recent countermeasures against relay attacks is the motion sensor key fob. A
motion sensor key fob will go into sleep mode if there is no motion detected for a short period of
time. Moving or picking up the key fob wakes it up and enables it to receive and transmit signals.
As the vast majority of car thefts exploiting the passive keyless entry system takes place when the
victim is not carrying their key fob, a motion sensor key fob seems to be valid countermeasure
against relay attacks.

Thatcham Research, a company focused on car safety and security, recently revealed their latest
car security ratings [51]: 10 out of 18 tested cars released in 2019 still failed to provide a valid
solution for relay attacks (Volvo V60, Toyota RAV-4, Mazda 3, Citro”en DS3 Crossback, Ford
Mondeo, Hyundai Nexo, Kia ProCeed, Lexus UX, Suzuki Jimny, Toyota Corolla Hybrid). As 8 of
the 18 cars were no longer vulnerable to a relay attack (BMW 7 series, BMW X7, Porsche 911,
Audi E-tron, Jaguar XE, Land Rover Evoque, Mercedes B-Class, Porsche Macan), it seems that
the automobile industry is learning and trying to solve the concerned problem. As they did not
reveal the exact countermeasure the car manufacturers implemented for all cars, they did however
for the BMW 7 Series, BMW X7, Porsche 911. These 3 cars recently scored top marks on their
security tests due to the fact they are using motion sensor key fobs. Also Ford announced that it
will be using “theft-proof keyless fobs” equipped with a motion sensor later this year.

As motion sensor key fobs seems to prevent the vast majority of car thefts using a relay attack,
it does not solve the essence of the problem. The problem occurs because passive keyless entry
systems only use distance to verify the authenticity of a key fob. By utilising motion sensor key
fobs, they provide a security measure on top of the underlying protocol while the protocol itself
is still vulnerable to relay attacks. Criminals can still gain access to a victim’s car while the key
fob is not stationary (f.e. doing groceries, eating at restaurant, ...). In the next section, we’ll
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Figure 2.19: Distance-bounding protocol against mafia frauds. [10]

discuss distance-bounding protocols that provide a permanent solution for relay attacks against
PKE systems.

2.4.3 Distance-bounding protocols

Distance-bounding is one of the most promising and effective countermeasures against relay attacks
on PKE(S) systems. Distance-bounding protocols allow an upper-bound on the distance between
the key fob and car by using the fact that signals travel at a fixed speed: The speed of light.
By measuring the Round-Trip Time (RTT) between a verifier (=car) and prover (=key fob) and
the assumption that signals travel at the speed of light, the distance between the two parties can
be calculated. Implementing distance-bounding in physical hardware is not easy as the slightest
processing delay will influence the calculated distance. A processing delay of just 1 nanosecond
causes a distance error of 30 cm (speed of light travels 30 cm in 1 nanosecond).

The first distance-bounding protocol was introduced in 1994 by Brands and Chaum [10]. Brand
and Chaum introduce 2 different type of protocols. The first protocol protects against so-called
mafia fraud (a.k.a. relay attacks). The second protocol protects against distance fraud. In a
distance fraud, the dishonest prover tries to mislead the verifier in thinking he is close in proximity
by for example sending a response in advance. By combining both the protocols, they protect
against both mafia and distance fraud. The first protocol works as follows (see Figure 2.19):

1. (Initialization phase) Verifier (V ) generates uniformly at random k bits αi, Prover (P)
generates uniformly at random k bits βi.

2. (Rapid-bit or low-level distance-bounding exchange phase) For i = 1, ..., k:

• V sends bit αi to P

• P sends bit βi to V (immediately after receiving αi)

3. (Signature phase) When all bits are exchanged, P concatenates the 2k bits αi and βi and
signs it with his secret key. The signature is send to V.

4. (Verification phase) V checks if the received signature from P is a correct signature (the
message is signed with the corresponding secret key and the message of concatenated bits
is correct). If it holds, V checks if the maximum delay times between sending a bit αi and
receiving a bit βi from P is within an acceptable range (a.k.a in proximity of V ).
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However, this protocol does not protect against distance fraud as the bits send by P do not have to
depend on the bits received from V. If P knows the rate at which V sends out bits, P can send out
bits before actual receiving them from V. Because the RTT is fraudulently lowered, P can mislead
V in thinking P is in close proximity. Brands and Chaum proposed two potential solutions: The
first solution consists of V sending out bits with randomly chosen delay times. P is unable to
predict the delay times and therefore is unable to send out bits in advanced (V will not accept
bits before sending them out). The second solution proposed ensures that the bits transmitted by
P depend on the received bits from V. One way of achieving this is by creating a concatenated
bitstring m1|...|mk of all bit values chosen by P (the mi bits are random and independent from
the received bits from V ). Upon receiving a bit from V, P sends out the bit βi = αi ⊕mi (XOR
operation). When all bits are exchanged V verifies whether the bitstring (α1⊕β1|...|αk⊕βk equals
the public bitstring of P. The concatenated bitstring m1|...|mk has to be committed to V using
a secure commitment scheme. A commitment scheme is a cryptographic scheme that allows P to
send the bitstring to V while keeping it hidden from others (including V ). When the exchange of
bits is complete, P can reveal the values to V. This ensure that others cannot change the value of
the bits before P reveals the values to V.

The combined protocols is shown in Figure 2.20 and goes as followed:

1. (Initialization and commit phase) V generates uniformly at random k bits αi. P gener-
ates uniformly at random k bits mi and commits the concatenated bitstring m1|...|mk to V
using a secure commitment scheme.

2. (Rapid-bit or low-level distance-bounding exchange phase) For i = 1, ..., k:

• V sends bit αi to P

• P sends bit βi = αi ⊕mi to V (immediately after receiving αi)

3. (Open commit and signature phase) When all bits are exchanged, P opens the commit-
ment by sending the appropriate information to V. P concatenates the 2k bits αi and βi and
signs it with his secret key. The signature is send to V.

4. (Verification phase) V verifies whether the bitstring (α1 ⊕ β1|...|αk ⊕ βk) equals those
committed by P (m1|...|mk). If this holds, V checks if the received signature from P is
a correct signature. If this is satisfied, V checks if the maximum delay time is within an
acceptable range (a.k.a in proximity of V ).

Through the years more and more different distance-bounding protocols arose. Another popular
distance-bounding protocol was proposed by Hanche and Kuhn [30] in 2005. This protocol is an
optimised version of the protocol proposed by Brands and Chaum. The protocol does not require
a final signature as the response bits in the rapid bit exchange are used as signature. The overall
quantity of the messages is also decreased which improves time efficiency. The protocol also handles
a certain amount of wrong response bits due to potential channel noise.

In 2016 A. Abidin et al. [2] proposed a quantum distance-bounding protocol. The advantage
of quantum-based distance-bounding protocols is that unlike regular digital bits, quantum bits
(=qubits) cannot be measured without modifying their state nor be decoded before fully receiving
them. Due to the fact that adversaries do not have access to qubits, one can only guess the qubits
that are being sent.

2.4.4 Time-based message protocol

RKE protocols do not provide any indication of the age of a message transmitted by the key fob.
The receiver has no knowledge about when the received message was created and therefore can’t
know if a message came from the authorised key fob or was retransmitted by an adversary at a
later moment in time. By implementing a time-based feature in the RKE protocol the receiver can
reject messages that are out-dated and therefore prevent against replay & jamming attacks.
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Figure 2.20: Combined distance-bounding protocols against mafia and distance fraud. [10]

As seen in Section 2.2.2, KeeLoq by Microchip Technology is one of the most popular hardware-
dedicated block cipher used to generate rolling codes in RKE systems. Recently, Microchip Tech-
nology introduced their new “Ultimate KeeLoq” technology that provided time-driven messages
as a counter-reaction against replay & jamming attacks [63]. In Ultimate KeeLoq, both the trans-
mitter and receiver are equipped with a timer. This timer is either crystal-driven or a counter
that counts the Watchdog Timer (WDT) periods. In a crystal-driven timer an electronic oscillator
uses the mechanical resonance of a vibrating crystal to create an electrical signal with a precise
frequency which provides a stable clock rate. A WDT is a timer that runs independent of the
CPU and is used to trigger interrupts or resets the CPU. In case of the KeeLoq microchip, the
WDT is mainly used to reduce power consumption. To reduce the power consumption the CPU
will constantly switch to sleep mode. The WDT wakes up the CPU at a timed interval to let it
perform some tasks before going back to sleep. The exact value of the time will differ between
the transmitter and receiver because they started running on different times. However, both the
timers will run at the same speed. When the receivers synchronises with the transmitter, he gets a
snapshot of the time of the transmitter. By calculating the difference between its own timer value
and the snapshot (=delta value) of the transmitter, he knows the different in time between its own
timer and the transmitter’s timer. This calculated delta value is then stored in memory by the
receiver.

Upon pressing a button on the key fob, the timer value of the transmitter is transmitted in
the encrypted section of the message. Upon reception of the message, the receiver will extract
the time-stamp and add the stored delta value. If the resulting value is inside the receiver’s
acceptance window, he accepts the message. For every valid received signal, the receiver will
update its delta value to stay synchronised with the transmitter (see Figure 2.21). However, it
is impossible to synchronise the timers forever. Every slight tolerance of the timers will cause an
error that accumulates over time. Therefore KeeLoq makes a distinction between short and long
periods of time in which consecutive signals are received. In short periods of time, the acceptance
window is very small as the timer errors are insignificant. However, in long periods of time (weeks
or months) the errors accumulate and the time difference is significantly larger. Therefore the
acceptance window is much larger than the acceptance window in short periods of time. The
boundary between a short and long period is set by the system designer himself together with the
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Figure 2.21: Graph illustrating the timer drift after synchronisation. [63]

maximum error limit.

2.5 Internal Automobile Network

2.5.1 Control Area Network

Nowadays, cars are no longer analog mechanical contraptions. This means that when stepping
on the gas pedal, it is not directly controlling the throttle valve of the engine. In modern cars, a
digital message is send to the engine module, telling it the driver wants to go faster. Every small to
fundamental function in a car is computerised. Therefore modern cars can been seen as a complex
network of computer systems. At the core of this network is the Control Area Network (CAN-
bus), the central nervous system of a car which different functions can use to communicate. Each
individual function is called an Electronic Control Unit (ECU) that can range from controlling
the windows, doors or mirror adjustments to controlling the transmission, power steering or hand
brakes [17]. The ECUs communicate with one another by broadcasting CAN packets on the CAN-
bus. Since a CAN packet is broadcasted, all components on the bus receive the packet and decide
whether it is intended for them or not.

The CAN-bus protocol was developed by Bosch in 1986 allowing ECUs to communicate with each
other without complex dedicated wiring in between (see Figure 2.22). Besides avoiding complex
dedicated wiring, the CAN-bus protocol has many other advantages [13]:

• Low cost: All ECUs communicate via the same CAN interface and are no longer sending
direct analogue signals to each other. Since one-to-one connections are no longer required, it
is a more cost efficient method for intercommunication between ECUs.

• Centralised: Since all communication is send over the same CAN-bus system, it allows for
a central error diagnosis and configuration across all different ECUs

• Robust: The system is robust toward failure of individual ECUs and electromagnetic inter-
ference making it ideal for the use in cars.

• Efficient: Some CAN messages are more important than others, therefore they can be
prioritised via IDs. The highest IDs are non-interrupted (f.e. the brake messages), while
messages controlling the entertainment system are likely less important and therefore have a
lower priority ID.

• Flexible: New ECUs can easily be added to the CAN-bus while existing ECUs can be
modified.
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Figure 2.22: The internal network of a car with and without CAN-bus. [13]

Figure 2.23: The OBD-II port in a Ford Focus.

2.5.2 On-board Diagnostics

Most cars have a direct interface to the CAN-bus called the Onboard Diagnostic (OBD-II) port [6].
In general, the OBD-II port is used for self-diagnostic and reporting of a car and gives the owner
or technician access to the status of various subsystems. CAN-bus traffic can be read directly
through the OBD-II port and enables the user to inject self-crafted CAN packets.

On most cars, the physical OBD-II port is located beneath the dashboard and can be access by a
pre-built or self-made OBD-II interface adapter (see Figure 2.23.

2.6 Manipulation of the Internal Automobile Network

Since there is no source identifier or authentication built into the CAN packets, it is possible to
both sniff the CAN network and inject self-crafted CAN packets. This enables an adversary to
control a car through manipulation of the Internal Automobile Network [15]. There are different
ways to gain access to a car’s internal network or CAN-bus. The simplest one is through the
physical OBD-II port as it is made to read CAN packets and inject diagnostic packets into the
system. In 2013 Charlie Miller & Chris Valasek wrote a paper on how to manipulate and control a
car through the physical OBD-II port [46]. They demonstrated this attack on a 2010 Ford Escape
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and 2010 Toyota Prius and were able to reverse engineer the CAN-bus communications of both
cars and inject self-created custom CAN packets. The research duo used two types of CAN packets
to manipulate the CAN-bus:

• Normal CAN-bus packets: Miller & Valasek were able to inject normal CAN-bus packets
that controlled the speedometer and odometer of both cars which enabled them to display
self-chosen values. It was possible to manipulate the on-board navigation but were unable
to directly control the brakes of both cars. However, in the Toyota, they succeeded in
manipulating the optional Pre-Collision System (PCS) used in Cruise Control mode. The
PSC monitors the state of objects ahead of the car and will determine if a driver is going to
collide with an object by analysing specific object distance data transmitted on the CAN-
bus. By injecting CAN packets telling the PSC that an object is real close, they were able
to slam the brakes of the car. They also found it is possible to overload the CAN network
of the Ford causing a denial of service (DoS) on the CAN-bus. In this state, different ECUs
act differently. For example, this causes the PSCM (Power Steering Control Module) ECU
to completely shut down resulting in no longer providing steering assistance. The wheel
becomes difficult to move and will not move further than 45% no matter how hard someone
pulls the wheel which makes the driver unable to take sharp turns.

• Diagnostic CAN-bus packets: Diagnostic packets are packets transmitted by diagnostic
tools used by mechanics to communicate with and interrogate an ECU. These packets can
typically directly control the more critical ECUs of the car like the brakes or engine. Since it
enables to control the critical ECUs, the user needs to authenticate. This is required so that
not everyone can just use these diagnostic tools but only mechanics with a specific certificate.
However, Miller & Valasek were able to extract the authentication keys by reverse engineering
the diagnostic software tool itself. Once they were able to authenticate, they could disable
the brakes and completely kill the engine while driving.

The OBD-II port is a physical port inside the car which makes the attack model rather unrealistic
as the adversary has to be connected to the OBD-II port when performing an attack. However a
wireless accessible OBD-II interface adapter can be connected to the port and later on be accessed
remotely. For example an adversary can use a previously explained relay or replay attack to gain
access to the car and connect his wireless OBD-II interface adapter. When succeeded the adversary
can leave the car without the car owner noticing someone broke into their car while still having the
OBD-II interface adapter connected to the port. An adversary also can break in physically by pick
locking the door or smashing a window making the victim think it was just a regular car burglary.
However, the adversary intentions are not to steal valuables but to connect the interface adapter
to the car’s OBD-II port. Since in most cars the port is located underneath the dashboard, the
victim will unlikely notice the adapter.

Modern cars have a wide variety of on-board wireless features like Bluetooth, Wi-Fi, UConnect,
DAB+, ... which makes it possible for someone to wireless connect to their car. Like other ECUs,
these features are also connected directly to the CAN-bus to communicate with one another.
Since these wireless features are connected to the CAN-bus, an adversary can expose potential
vulnerabilities to manipulate the CAN-bus through such features. CAN-bus manipulation through
OBD-II wasn’t seen as a great danger to car owners because of the physical boundary (the adversary
has to be connected to the OBD-II port or at one point has to break in the car to connect the wireless
OBD-II interface adapter). However, by exposing these wireless features, it makes it possible for
an adversary to remotely connect to a victim’s internal automobile network and therefore remotely
control a victim’s car.

In 2015 Charlie Miller & Chris Valasek made headlines again after successfully remotely exploiting
a 2014 Jeep Cherokee without the need for any physical access [47]. The duo used the on-board
connectivity feature UConnect, a system that controls the car’s infotainment, navigation, built-in
apps, and cellular communications. Miller & Valasek found an open port on the UConnect micro-
controller that allows any 3G device on the Sprint network (LTE Advanced) to communicate with
any UConnect-enabled car. The pair flashed the CAN-connected microcontroller in the UConnect
head unit with a new self-modified firmware version through the open port. The malicious firmware
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enabled them to send CAN messages to many different car components and control system. Now
that they were able to communicate with the CAN-bus, they could manipulate it as like they were
physically connected to the bus through the OBD-II port. During a press demonstration they were
able to remotely control the air conditioning, radio, wiper fluid, and many more. More worryingly,
they were able to disable the transmission and brakes of the car. The attack caused automobile
manufacturers to recall 1.4 million cars for a security update.

2.7 Reverse engineering

Reverse engineering or back engineering is the process by which a created man-made object is
taken apart to obtain knowledge from the object in order to duplicate, enhance or understand the
object. The process of reverse engineering applies to multiple different topics [12]:

• Software: Reverse engineering software can be used to extract design and implementation
information, find bugs, analyse the product’s security, recover the working of the software in
case the source code of the application has been lost, ....

• Integrated circuits/hardware: Reverse engineering an integrated circuit (or computer
chip) can be used to obtain a schematic of the hardware, duplicate the hardware, understand
the low-level working of the integrated circuit, ....

• Military applications: Reverse engineering for military purposes is mostly used in order
to copy other nations technologies like weapons, rockets, planes, navigation systems, .... A
different reason for reverse engineering military applications is discovering limitations and
weaknesses of the technology which can be exploited.

• Protocols: The main objective of reverse engineering protocols is to get a better understand-
ing of the protocol. An important sub-topic of reverse engineering protocols is the reverse
engineering radio frequency signals. A radio frequency signal can be reverse engineered
to identify protocol’s message format, the source of the signal, duplicate the transmitter,
discover utilised modulation and encoding techniques, .... Another application of reverse
engineering protocols is seen in Section 2.3.4. In Section 2.3.4 we talked about breaking
cryptographic schemes used for generating rolling codes. Before trying to find weaknesses
in the schemes, they had to understand the protocol that is used by the particular crypto-
graphic scheme. In this case reverse engineering is used as a preparatory step in breaking
cryptographic schemes.

In this thesis we mainly focus on the reverse engineering of protocols, more specific, radio frequency
signals transmitted by a car key fob. The main goal is to obtain the protocol’s message format and
extract the binary message from a captured radio frequency signal. Converting a radio frequency
signal to its binary format requires knowledge of the utilised modulation and encoding technique. A
common way of requiring this knowledge is by visually analysing a captured signal using dedicated
software. More information about modulation (Section 3.1) and encoding (Section 3.2) techniques
are explained in Chapter 3: Signal processing. Chapter 3 also touches upon the above mentioned
dedicated software (Section 3.3.3).

Around a decade ago, capturing radio frequency signals was only possible through expensive
special-purpose hardware that was only capable of capturing a limited bandwidth of the avail-
able spectrum. Because this hardware was so expensive, a common person interesting in signal
processing could not afford this hardware. The release of cheap software-defined radios (SDR)
caused a huge rise in the accessibility of knowledge regarding signal processing, more specifically
reverse engineering radio frequency signal (more information regarding SDRs follows in Section
3.3.1). Besides a SDR being very cheap, it is also capable of capturing a wide range of frequencies
(f.e. 30 MHz to 6 GHz). Reverse engineering radio frequency signals transmitted by a key fob
is typically only found in the form of blog posts. An example is the blog post of Nihal Pasham
who captured his car key fob with a cheap $40 SDR and manually analysed, demodulated and de-
coded it to find the corresponding binary message format [50]. A second example is from Bastian
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Blössl who wrote an automated script that demodulates and decodes a radio frequency signal in
real-time [8].

In Chapter 6, a process for reverse engineering radio frequency signals is explained. The chapter
explains the complete process from start to end including: Capturing the radio frequency signal,
discovering the modulation and encoding technique, obtaining the binary format of the radio
frequency message and discovering the corresponding message format of the protocol. Thereafter
we’ll apply this method to multiple case studies in order to obtain information about their RKE
protocol. In addition, automated demodulators and decoders were written for each specific key fob
that converts the radio frequency signal to its binary format instantly upon receiving it.



Chapter 3

Signal processing

In the following chapter we’ll give an introduction in the topic of digital signal processing. We’ll
start with explaining different modulation techniques (Section 3.1) and data encoding methods
(Section 3.2) related to keyless entry protocols. In Section 3.3 we’ll briefly touch upon the theoret-
ical part of digital signal processing followed by hardware, software and useful frameworks related
to digital signal processing.

3.1 Modulation

Modulation is the process of varying one or more properties of a carrier signal like amplitude,
frequency or phase, with a modulating or baseband signal that typically contains information to
be transmitted [62] (see Figure 3.1). The periodic waveform or carrier signal is typically gener-
ated using a radio frequency oscillator by converting a direct current (DC) supply voltage to an
alternating output signal (AC). The carrier signal and modulating or baseband signal is combined
into a new modulated signal and transmitted via an antenna or any other electrical cable that
transmits radio frequency signals (f.e. co-axial cable). When transmitting the modulated signal
via an antenna, the signal typically first passes through a radio frequency power amplifier to boost
the power of the signal. There are two main types of modulation: Analog modulation and digital
modulation.

3.1.1 Analog modulation

In analog modulation an analog baseband signal (f.e. voice or video) is transferred over a higher
frequency signal such as a radio frequency band [59]. The most popular analog modulation tech-
niques are frequency modulation (FM) and amplitude modulation (AM) used in radio broadcast,
both FM and AM transmit information in the form of electromagnetic waves. As the name states,
AM works by varying the amplitude of the carrier while the frequency remains constant. In FM,
data is transmitted through the changes in frequency while the amplitude is kept constant. A
comparison between AM and FM is given in Table 3.1 [61].

3.1.2 Digital modulation

Digital modulation is used to transfer digital data (f.e. bits) over an analog communication channel
(f.e radio frequency band). For example, a telephone line is designed to transfer analog electrical
signals. Computers, however, communicate with each other using binary data which can’t be send
directly over such telephone line. Therefore, the digital binary data has to be converted to analog
signals. A typical modem (abbreviation for modulator-demodulator) is used to modulate digital
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Figure 3.1: Modulation process.

Amplitude Modulation Frequency Modulation
Frequency allocationa 535 - 1705 KHz 88 - 108 MHz

Pros

Simple
Cheap
Long distance
Easy to detect

Better (audio) quality
Less prone to noise

Cons
Poor (audio) quality
Prone to noise

Complex
Expensive
Limited distance
Prone to physical objects

aThe transmission of AM and FM signals is (physically) not limited to these frequency ranges. However, due
to the huge demand on the frequency spectrum for various services the available frequency spectrum had to be
regulated. Therefore, each specific application or service has a specific allocated range in the frequency spectrum.
The regulation is controlled by various governmental and international organizations.

Table 3.1: An amplitude vs frequency modulation comparison table.
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Figure 3.2: Digital modulation schemes for ASK, FSK and PSK. [25]

outgoing data to analog data and demodulating analog incoming data to digital data. Another
example, more relevant to this thesis, is sending binary data through the air as radio frequency
signals. Key fobs generate binary data that is understood by a receiver. However, it is impossible
to transmit binary data through the air. Therefore, the binary data has to be first converted
to an analog waveform using digital modulation techniques. There are multiple different digital
modulation techniques but the most fundamental techniques are based on so-called “keying”. The
three most important modulation techniques which covers most of digital modulation techniques
used in key fobs are Amplitude-Shift Keying (ASK), Frequency-Shift Keying (FSK) and Phase-
Shift Keying (PSK) [65] (see Figure 3.2).

Amplitude-Shift Keying is a form of amplitude modulation in which the amplitude of the
carrier signal is changed according to the digital input signal. The simplest and most common
ASK technique is called On-off Keying (OOK) and represents a digital data at the presence or
absence of a carrier wave. The binary value of 1 is represented by the presence of a carrier while
the binary value 0 is presented by the absence of the carrier [37].

Frequency-Shift Keying is a form of frequency modulation in which the frequency of the carrier
signal varies according to the digital signal values. When the binary input data is 1, the modulated
wave is high in frequency while a binary 0 is low in frequency.

Phase-Shift Keying represents binary data by the change in phase of the carrier signal by varying
the sine and cosine at a particular time [53]. The two most popular PSK techniques are Binary
Phase-Shift keying (BPSK) and Quadrature Phase-Shift Keying (QPSK). BPSK is also called 2-
phase PSK or 2-PSK in which it takes two phases separated by 180◦ by changing the sine wave
carrier. BPSK is therefore able the transmit one bit per symbol (0, 1). QPSK or 4-PSK changes
the sine wave carries as well as the cosine wave carrier resulting in 4 different phases. Therefore,
QPSK can transmit two bits per symbol (00, 01, 10, 11) meaning it can double the data rate while
still using the same bandwidth as BPSK.
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Figure 3.3: Different data encoding techniques. [64]

3.2 Data encoding

It might seems obvious that a high signal equals a binary 1 and a low signal equals a 0. However,
most of the times, this is not the case. Typically data is encoded before being transmitted.
Encoding is the process of converting data or a given sequence of characters, symbols, alphabets
etc., into a specified format, for the transmission of data [64]. In data encoding, also called
line coding, various patterns of voltage or current levels are used to represent 1’s and 0’s of a
digital signal on the transmission link. The advantages of data encoding or line coding can be a
simplification of bit clock recovery, error detection capabilities, the possibility to transmit data at
higher rate, ... depending on which method is used. There exist multiple different data encoding
methods, the most common are illustrated in Figure 3.3.

Non-return-to-zero level (NRZ-L) is the most intuitive data encoding technique in which a
binary 1 is mapped to a logic-level high and a binary 0 is mapped to a logic-level low. A variant
on NRZ-L is the Non-return-to-zero inverted (NRZ-I) technique. In NRZ-I a specific binary
value forces a transition in state or level while the other binary value doesn’t change state or level
(keeps the previous level). NRZ-I refers to both NRZ-M, in which a binary 1 forces a transition,
or NRZ-S, in which a binary 0 forces a transition.

Bi-phase Manchester is one of the most commonly used line coding techniques available. While
transitions in NRZ techniques are done at the beginning or end of a bit-interval, Manchester coding
techniques forces a transition at the middle of the bit-interval [5]. Due to the frequent line voltage
transitions (at least once every bit), proportional to the clock rate, it allows the signal to be self-
clocking. This allows a receiver to easily synchronise with the sender while no longer needing an
external clock signal. A disadvantage of using Manchester coding over a NRZ coding is that twice
the bandwidth is required to achieve the same data rate due to the forced transition in the middle
of each bit-interval [35].

There are two variants of the Bi-phase Manchester coding: One in which a binary 1 is represented
by a high to low transition, while a binary 0 is represented by a low to high transition. The other
variant represents a binary 0 by a high to low transition, while a binary 1 is represented by a low
to high transition.

Differential Manchester is an expansion on the Bi-phase Manchester coding. A binary 1 makes
the first half of the bit-interval equal to the last half of the previous bit-interval. A binary 0 makes
the first half of bit-interval opposite to the last half of the previous bit-interval [3]. Therefore,
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a binary 1 can be indicated by a transition at the beginning of the bit-interval. Unlike with Bi-
phase Manchester coding, only the presence of a transition is important, not the polarity. This
makes differential coding schemes immune to inversion (wire swapped) since it doesn’t matter if
the transition is from low to high or high to low.

3.3 Digital signal processing

Analog signals transmitted via radio waves are often referred to as continuous-time signals. Continuous-
time signals can be defined and represented at any instant of time in the sequence. That is, the
sequence or interval of the signal is infinite or uncountable. Analog or continuous-time signals
observed “on the air” can be represented by a complex exponential using the Euler’s identity:
eiφ = cos(φ) + isin(φ). When an analog signal is represented using complex values (using Euler’s
identity) it is called a phasor or quadrature signal [52].

Before a signals can be (digitally) processed, the analog or continuous-time signal has to be con-
verted to a digital signal. A digital signal is often referred to as a discrete-time signal. A discrete-
time signal is defined at certain (discrete) time instants. Therefore, these signals can be represented
as a sequence of finite numbers. The Euler identity or quadrature signals are commonly used for
representing digital signals and are often called I/Q signals as it represents the in-phase (I) and
the quadrature (Q) components of the signal. The conversion from an analog to a digital signal
is done by sampling the continuous analog signal. This is done by an analog-to-digital converter
(ADC). By sampling a continuous analog signal we obtain a discrete-time digital signal. In the
digital signal processing world, the ADC is contained in a software-defined radio explained in the
next section. Once an analog signal is converted to a digital signal (f.e. I/Q signal), we can start
processing the digital signal to obtain another digital signal (=digital signal processing). One of
the goals of digital signal processing is to remove channel noise and demodulating and decoding
the signal in order to obtain higher-layer data like its binary form.

3.3.1 Software-defined radio

A SDR is a radio communication device where components that are typically implemented as
hardware components (mixers, filters, amplifiers, modulators, ...) are implemented in software. A
SDR enables the use of a general-purpose processor for processing signals while formally this was
done through special-purpose hardware (typically expensive). A common example of a SDR is a
sound card that is installed in almost all computers. Modern sound cards use a DAC to convert
digital audio into an analog format which can be listened to through headphones or speakers [74].
The SDR devices used for signal processing are devices that are capable of capturing and/or
transmitting radio frequency signals. This device consists of a RF front end (generally defined
as everything between the antenna and the digital baseband system) which can be seen as the
ADC.

Before converting the analog signal to a digital signal using an ADC, the SDR tunes the received
radio frequency signal to a baseband signal (signal centered around 0 Hz). This process is called
downconverting. The main advantage of downconverting a radio frequency signal is that the re-
quired sample rate to correctly represent the analog signal is significantly reduced. The sample
rate is the number of samples per seconds used to represent (or sample) an analog continuous
signal. According to the the Nyquist Theorem, also known as the sampling theorem, the minimum
sample rate to correctly represent an analog signal is twice the maximum frequency of the analog
signal. This means, when for example capturing a 433.92 MHz key fob signal without downcon-
verting, it would require a sample rate of 867.84 million samples per second (S/s). Capturing this
many samples per second is impossible for a standard-purpose computer. When transmitting, the
baseband signal is converted to a radio frequency signal (=upconverting).

Figure 3.4 illustrated how binary data is transmitted “on the air” from sender to receiver. A device
has some binary data that he wants to transmit using a Wi-Fi dongle. First, the binary data is
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Figure 3.4: Overview of the transmission of binary data over a wireless channel received
by a SDR. [52]

encoded (1) as explained in Section 3.2. Next, the encoded data is modulated (2) resulting in a
digital signal representation of the binary data as explained in Section 3.1.2. The digital signal is
converted to an analog signal using a digital-to-analog converter (DAC) and transmitted over the
wireless channel (3). While the signal propagates “on the air”, it is exposed to numerous different
factors causing interference (4). First, the wireless channel is shared by multiple transmitters
of many network related devices. Non-network devices like a microwave ovens can also interfere
with the radio frequency signals. Additionally, physical structures like concrete, brick or metal
walls, trees or large rocks can disturb wireless signals. Even the weather (wind, rain, snow, air
temperature, water content of the atmosphere, ...) can influence the propagation of signals through
the air. Therefore, the reception of wireless signals is typically seen as more complex compared to
transmitting signals due to interference when propagating “on the air”. Once the signal is captured
by the receiver the analog signal is converted to a digital signal using the ADC (5). The receiver
typically listens for a predefined sequence of bits (=preamble) present in the signal. A preamble
is used to synchronise the transmission between sender and receiver and to indicate the start of a
message. If the preamble is detected, the incoming signal is demodulated (6) and decoded (7) to
obtain the binary data generated by the transmitter (7).

There are multiple different types of SDRs ranging from a few euro’s to hundred of euro’s on
today’s market. One of the best known devices and utilised for the experiments in this thesis is
called a “HackRF One” [23] (see Figure 3.5). HackRF One by Great Scott Gadgets is a USB open
source hardware platform SDR capable of transmission and reception of radio signals from 1 MHz
to 6 GHz. It is a half-duplex system which means it cannot transmit and receive at the same time.
Therefore, a second SDR is used to transmit and receive RF signals simultaneously. This SDR is
a RTL-SDR dongle (RTL2832U) [54] which is limited to capturing signals between 500 kHz and
1766 MHz and unable to transmit (see Figure 3.6.

3.3.2 GNU Radio

GNU Radio is a free open-source software development toolkit that provides signal processing
blocks to implement software radios [28]. It can be used with external RF hardware to create
SDRs. Without any hardware it can be used in a simulation-like environment. By connecting
signal processing blocks, a processing flow is defined. That is a predefined sequence in which
a source signal is processed by multiple processing blocks. GNU Radio comes with a graphical
interface (GNU Radio Companion) which makes implementing software radios easier. Processing
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Figure 3.5: HackRF One by Great
Scott Gadgets.

Figure 3.6: RTL2832U RTL-SDR
dongle.

Figure 3.7: “Osmocom Source”
block.

Figure 3.8: “Band Pass Filter” block.

components (filters, mixers, ...) are represented by graphical block elements that can be connected
to each other via directed arrows. The graphical sequence of processing blocks is called a flow
graph. GNU Radio is compatible with most SDR hardware vendors including HackRF One and
RTL-SDR dongle.

There are multiple predefined signal processing blocks with different functionalities available in
GNU Radio. However, to configure and use most SDRs, an additional package gr-osmosdr has to
be installed which comes with additional blocks for GNU Radio. What follows is an explanation of
some of the most important blocks used in experiments related to the wireless security of keyless
entry systems in this thesis:

• Source block: A source block is used to generate a source signal or capture radio frequency
signals via a SDR. The “Osmocom Source” block (see Figure 3.7) uses a SDR to capture a
specific frequency spectrum and includes a wide range of configurable parameters like sample
rate, frequency (Hz), RF gain (dB), IF gain (dB), BB gain (dB), .... Besides source blocks
that use a SDR to capture signals, there are plenty other source blocks available in GNU
Radio like a “Signal Source” which generates a variety of signal types (Sine, Cosine, Square,
...) or a “Noise Source” that generates noise without the need of a SDR.

• Sink block: Sink blocks are output blocks that can be used to transmit signals (”Osmo-
com Sink“), visualise signals in real-time, listen to FM radio stations (”Audio Sink“) and
many more. There are multiple types of visualisation available in GNU Radio like waterfall,
frequency, histogram, ... (see Figure 3.9). With the use of visualisation blocks the user can
observe the configured frequency spectrum in real-time.

Another important sink block is a “File Sink” that writes a digital signal, captured with a
SDR or generated by a block, to a file. The saved signal can later be used as a source or can
be loaded by different programs.
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Figure 3.9: A waterfall and frequency sink block.

An import input parameter for source and sink blocks that capture or transmit signals using
a SDR is the sample rate. The higher the sample rate, the better the analog signal is
represented. The sample rate depends on the processing power of the computer and the
capabilities of the SDR. When the sample rate is too high and the CPU is unable to process
the samples in real-time, GNU Radio notifies the user that an overflow is detected (GNU
Radio outputs ’O’ to console) which results in a lost of samples. Each SDR is limited to a
minimum and maximum sample rate when capturing or transmitting signals. The HackRF
One is officially limited to a minimum of 2 million S/s (however, it will also work correctly
with a lower sample rate) and a maximum of 20 million S/s. Since signals are downconverted,
sample rates between 1 and 2 million S/s should be more than sufficient.

• Filter block: A filter block is used to pass signals with a frequency lower/higher than a
specific cutoff frequency and attenuates signals with a frequency higher/lower than the cutoff
frequency. Therefore they can be used to attenuates specific frequency ranges the user is not
interested in. GNU Radio provides 3 types of filter blocks: A “Low Pass Filter” in which
low frequencies are passed, a “High Pass Filter” in which high frequencies are passed and a
“Band Pass Filter” in which frequencies within a configurable range are passed (see Figure
3.8). To illustrate, an “Osmocom Source” block at 2 million S/s captures a frequency range
of [-1;1] MHz. Meaning that if a source has a center frequency of 433.5 MHz, it will capture
RF signals between 432.5 and 434.5 MHz. Key fob signals are typically transmitted at 433.92
MHz with typically a few kHz deviation, so there is no point for utilising a 2 MHz frequency
bandwidth. The unnecessary frequency ranges can be attenuated using a band pass filter.

• Custom blocks: Users can implement their own blocks or download blocks created by other
users in addition to the predefined blocks. The blocks are written in C++ or Python.

3.3.3 Inspectrum

Inspectrum is a Linux based signal analyser tool in which signals are visualised using a configurable
spectrogram [27]. The spectrogram visualises the signal in which the x-axis indicates the time and
y-axis indicates the frequency. Using Inspectrum, the user can obtain knowledge of the captured
signal like the operating frequency, symbol rate, modulation technique, data encoding method, ....
Users can manually configure the window size, zoom, ... of the spectrogram for better visualisation.
By “enabling cursors” the user can drag a grid over the signal to measure rate, period, symbol
period and symbol rate (see figure 3.10) which is typically used for demodulating and decoding the
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Figure 3.10: Signal analysis tool Inspectrum.

signal. In addition, the user can consult a sample, amplitude, frequency and phase plot depending
on what he needs. Besides Inspectrum, there exists multiple alternatives to visualise and analyse
RF signals. E.g Gqrx which is a Linux only SDR receiver powered by the GNU Radio framework
and the Qt graphical toolkit. Other examples include CubicSDR, SDR#, HDSDR, ...
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Chapter 4

Experiment: Replay & jamming
attack

In the following chapter we’ll be implementing a fully automated replay & jamming attack (ex-
plained in Section 2.3.1). We provide two different methods: The first method requires 2 SDRs,
one for transmitting signals, one for simultaneously capturing signals. The second method is an
implementation specifically for the Raspberry Pi. The main purpose of the second method is to
reduce the cost by replacing the transmitting SDR by the General Purpose Clock pin (GPIO4) of
a Raspberry Pi.

An advantage of implementing a replay & jamming using only SDRs is the fact that it is typically
easier than using dedicated hardware modules. Figure 4.1 shows the device called RollJam that
Samy Kamkar created to execute his replay & jamming attack. Executing the attack using dedi-
cated hardware modules requires knowledge about hardware (f.e. connecting them to each other),
low-level programming knowledge to control the microcontroller and modules and low-level signal
processing knowledge. Using SDRs, we can simply plug in the device into a computer via USB and
control it using the GNU Radio framework. The only requirements for this method is a limited
knowledge regarding digital signal processing and Python (or C++).

During testing of our implementation, we found a security vulnerability in the 2015 Ford Fiesta
and 2008 Mazda MX5 keyless entry system. This vulnerability is explained in Section 4.3 together
with methods for exploiting it. Last, we try to improve our implementation by using reactive
jamming which can be found in Section 4.4.

4.1 Method 1: HackRF One & RTL-SDR

For the first method we’ll be implementing the replay & jamming attack using SDRs. First, we’ll
talk about the required hardware and software followed by the problems that occurred during
implementation and testing (Section 4.1.1). Next, we’ll give a detailed explanation of the imple-
mentation (Section 4.1.2). Last, we evaluate the success rate of our implementation and see which
cars are vulnerable and which are not (Section 4.1.3).

4.1.1 Hardware & software

As noted before, this implementation requires 2 SDRs: One for transmitting the jamming signal
and transmitting the captured key fob signal, one for capturing the key fob signals. In this
experiment the HackRF One is used as the transmitter while the RTL-SDR serves as the receiver.
Alternatively, the attack can also be executed using a single SDR provided that it is a full-duplex
SDR capable of transmitting and receiving simultaneously.

49
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Figure 4.1: RollJam device created by Samy Kamkar used for performing replay & jamming
attack. [29]

The attack is implemented using GNU Radio Companion (Section 3.3.2). However, it is also
possible to execute the attack outside GNU Radio’s graphical interface by simply executing the
script using Python. Besides GNU Radio and Python, the gr-osmosdr package has to be installed.
This packages includes the “osmocom” blocks that allow GNU Radio to control and use different
SDRs including the HackRF One and RTL-SDR. The attack can be executed using a regular
laptop (preferably running a Linux distribution). However, it is also possible to perform the
attack using a Raspberry Pi. For testing purposes, running the attack using a laptop would be
sufficient. However, performing such attack in a real crime scenario is inconvenient and might draw
attention. Therefore, the Raspberry Pi can come in handy as it is a small, compact and cheap
computer.

Installing the required packages on Raspbian (Raspberry Pi’s operating system) and executing
the attack introduced some unexpected problems: As mentioned before, the “Osmocom Source”
and “Osmocom Sink” blocks are used to control the SDRs in GNU Radio. However, using these
blocks resulted in Python corrupted memory errors when initialising the block. Multiple different
type of errors occurred like “segmentation faults”, “corrupted double-linked list” and “memory
corruption”. The error was not related to invalid initialisation parameters as the script worked
perfectly fine on a computer running Ubuntu. After searching on multiple forums on the internet,
it seemed that all Raspberry Pi’s running Raspbian suffer from this exact error when using blocks
provided by the gr-osmosdr package. The problem was already mentioned 2 years ago on multiple
different forums. However, till this day there is not a single (working) solution provided on these
forums. After analysing the error using “coredumpctl” and “gdb” we were unable to find a solution
ourselves. Since it seems that the error only occurred on the Raspbian operating system, we
decided to install a different operating system on the Raspberry Pi. After installing Ubuntu Mate,
an Ubuntu distribution most suitable for the Raspberry Pi, the error disappeared and we were
able to use blocks provided by the gr-osmosdr package in our GNU Radio implementation.

The second problem that occurred was less related to the replay & jamming attack itself but will be
mentioned as one might experience the same problem. At random moments on boot the SD card
corrupted for no particular reason. Each time this happened, the SD card had to be flashed again
and the required packages had to be installed which can take a couple of hours. After searching on
online forums it seems that Ubuntu Mate had difficulties with specific SD cards. The SD card used
for our Raspberry Pi (Lexar High-Speed 8GB) was not listed as a “bad” SD card. However, after
changing to a different SD card (SanDisk Extreme 32GB), the problem was solved. A complete
installation guide for the required packages on Ubuntu Mate can be found in Appendix A.
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Figure 4.2: Replay & jamming attack flow graph in GNU Radio Companion.

4.1.2 Implementation

The resulting flow graph is shown in Figure 4.2. It starts with an “Osmocom Source” block that
is used to control the receiving SDR and capture signals. As key fob signals are transmitted at a
transmit frequency of around 433.92 MHz, the SDR is configured to capture at a center frequency
of 433.92 MHz. Next, The “Osmocom Source” block is connected to a “Band Pass Filter” block.
Using the band pass filter, the jamming signal is filtered by attenuating the frequency ranges that
contain the jamming signal (433.85 MHz). The frequencies passed by the band pass filter are 433.86
MHz to 433.98 MHz which contains the default transmit frequency of a key fob. The outgoing
signal from the “Band Pass Filter” block is duplicated (2 outgoing lines). One signal goes to the
signal detection blocks while the other goes to the “Custom File Sink” block.

We’ll start with the signal detection blocks: The “Complex to Magˆ2” block and the “Threshold”
block. The signal detection is based on the amplitude of each individual sample. The incoming
complex values from the “Band Pass Filter” block are converted using the function Re(in)ˆ2 +
Im(in)ˆ2 by the “Complex to Magˆ2” block. The result can be interpreted as the amplitude of a
sample. Samples containing a carrier frequency have a higher amplitude than samples without. The
converted values enter the “Threshold” block. The “Threshold” block outputs a 0 or 1 depending
on the input value. The output transitions from 0 to 1 when the power value of the input signal
transitions from below to above the “High” parameter. The output transitions from 1 to 0 when
the power value of the input signal transitions from above to below the “Low” parameter. This
means that the amplitude of a sample containing a carrier should output 1 while the amplitude of
a sample lacking a carrier should output a 0. The value of the threshold (100µ) is experimentally
chosen. The value is a consideration between detecting the key fob signal as far as possible while
not triggering the signal detection by random noise.

Next, we’ll explain our custom self-implemented file sink, the “Custom File Sink” block. The
block requires one parameter, the “sink” parameter. This parameter defines the location at which
the second captured key fob signal is saved. The second key fob signal can later be transmitted
to gain access to the victim’s car. The block requires 3 input streams. Starting from top to
bottom: The first input stream is the signal used for jamming the target. In our case we use a
“Signal Source” block that generates a carrier at a constant frequency specified by the “frequency”
parameter. In our case the frequency parameter is -70k (-70.000). Since we’ll transmit the key fob
signal at a frequency of 433.92 MHz, we set the frequency to -70k which results in the jamming
signal being transmitted at a frequency of 433.85 MHz. The next input stream is the captured
signal filtered by the “Band Pass Filter”. The input signal includes the key fob signals which are
saved to transmit later. The last input stream is provided by the signal detection blocks. When
the “Custom File Sink” block receives a 1 from the signal detection block, it will start saving
the incoming signal from the “Band Pass Filter” for 1 second. Initially, the implementation kept
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saving an incoming signal until it received a 0 (no signal detected) from the signal detection blocks.
However, some key fob implementations (f.e. key fob of 2015 Ford Fiesta) transmit multiple burst
of data separated with a short pause in where no carrier is transmitted. The short pauses between
bursts causes the signal detection blocks to output 0’s which falsely indicates the end of a signal.
To make the implementation work with as many different key fob protocols as possible without
having knowledge of the internal working of the protocol, the implementation will save incoming
signals for 1 second upon detecting a signal.

The “Custom File Sink” block has 1 output stream that goes the “Osmocom Sink” block. The
“Custom File Sink” block will provide the transmitting SDR with the jamming signal from the
“Signal Source” until it receives the second key fob signal. When the second key fob signal is
detected, the transmitting SDR has to stop jamming and instantly transmit the first captured key
fob signal. Initially we thought that the we had to stop jamming and transmit the key fob signal
after fully capturing the second key fob signal (after 1 second). This seems logical as if we stop
jamming to soon, the car will still correctly receive the second key fob signal. However, transferring
data over USB introduces a delay of around 900 milliseconds between giving the SDR the task of
transmitting the first captured key fob signal and actually transmitting the key fob signal. This
causes a total delay of almost 2 seconds (1s for capturing the signal + 0,9s transfer delay) between
the victim pressing the button on their key fob and the SDR actually transmitting the first key fob
signal. Therefore, the “Custom File Sink” block will provide the “Osmocom Sink” block with the
first captured key fob signal upon detecting the second key fob signal instead of upon receiving the
complete second key fob signal. More details about the delay caused by processing and transferring
the data follows in Section 4.4.

4.1.3 Evaluation

We were able to successfully perform the attack against 4 out of the 7 test cases (2015 Ford Fiesta,
2008 Mazda MX5, 2008 Mercedes-Benz B-Class, 2008 Mazda 2). 2 out of 3 test cases that were
resistant to our attack were two Ford models that used an almost identical implementation of
the RKE protocol. While the rest of the test cases utilise a single transmit frequency (or two in
case of a FSK modulation), both the 2018 Ford Focus and 2012 Ford C-MAX utilise 3 different
frequencies for each transmitted signal. The success of replay & jamming attacks lies in the fact
that most car’s receivers allocate a larger frequency passband than necessary. However, both the
key fobs of the Ford Focus and Ford C-MAX utilise the complete frequency passband to transmit
a signal (see Section 6.4). In this case both the key fobs transmit a burst at the lower boundary
of the passband, the center of the passband and the upper boundary of the passband. Because
they use the complete frequency passband, there is no available frequency to transmit the jamming
signal.

It seems that the replay & jamming attack can successfully bypass rolling code in most RKE
system that use a single transmit frequency. However for the 2018 Mazda CX5 we were unable to
successfully jam the receiver. Only when jamming on exactly 433.92 MHz, the car was unable to
successfully receive the signal from the key fob. But since the key fob transmits a 2-FSK modulated
signal that contains the 433.92 MHz frequency band, this implementation is unable to filter out the
jamming signal and therefore capture a valid key fob signal. Why exactly it is so hard to jam the
2018 Mazda CX5 is unclear. It might be possible that the receiver allocates a frequency passband
that is just large enough to capture the key fob signal. Alternatively, it might implement some
sort of noise filtering to cancel out the jamming signal.

As seen in this evaluation, it is not necessary to implement specific countermeasures like time-based
message protocols to prevent against most replay & jamming attack. One method is by using the
complete frequency passband of the car’s receiver (Ford Focus & C-MAX) or by allocating a as
small as possible frequency passband that just contains the operating frequency of the key fob.
Doing so, the adversary is unable to disturb the reception of the car while capturing a valid key
fob signal.
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4.2 Method 2: Rpitx & RTL-SDR

In this section we’ll demonstrate an alternative method specifically for the Raspberry Pi. As men-
tioned before, the main purpose of this method is to reduce the cost by replacing the transmitting
SDR by the General Purpose Clock pin of the Raspberry Pi. Since a SDR capable of transmitting
radio frequency signals are sold starting from around e200 - e300, the cost can be reduced signif-
icantly. Identical to the first method we’ll talk about the required hardware and software followed
by the problems that occurred during implementation and testing (Section 4.2.1). Next, we’ll give
a detailed explanation of the implementation (Section 4.2.2). Last, we evaluate the success rate of
our implementation and compare it to the first method (Section 4.2.3).

4.2.1 Hardware & software

Recently rpitx was released, a general radio frequency transmitter for the Raspberry Pi which
doesn’t require any other hardware to transmit radio frequency signals. Rpitx is compatible with
all Raspberry Pis (PiZero, PiA+, Pi2B, Pi3B ...) expect from the PiB which is partially supported.
As it turns out, the “General Purpose Clock” pin (GPIO4) of the Raspberry Pi which serves as
the GPU clock pin can be transformed into a transmitter that is capable of handling frequencies
from 5 kHz to 1.5 GHz. To amplify the transmitted signal, a simple wire, serving as an antenna,
can be connected to the GPIO pin. The transmit power is proportional to the length of the wire.
For capturing signals, we’ll use the RTL-SDR.

Implementing the automated replay & jamming attack did not go as smoothly as intended. During
implementation a lot of problems occurred. Additionally, the two experienced problems regarding
the Raspberry Pi described in Section 4.1.1 also apply to this method. However, using rpitx
introduced some additional problems:

• After installing rpitx on the Raspberry Pi (Ubuntu Mate), it did not transmit any signals.
Unfortunately, it neither displayed any error messages. As rpitx worked perfectly on Rasp-
bian, it seemed that this problem was related to Ubuntu Mate. After contacting the author
of rpitx, he hinted that the problem might be related to the GPU frequency value, which
indeed was the case. Rpitx comes with a install.sh script that automated the installation of
rpitx and other required packages. The script also changes the GPU frequency (“gpu freq”)
value in “/boot/config.txt” to 250. This is required in order to run rpitx properly. However,
The script failed to change the GPU frequency on Ubuntu Mate. Manually changing the
GPU frequency in “/boot/config.txt” to 250 fixed the problem.

• After capturing a signal using the RTL-SDR and transmitting it using rpitx, it seemed that
the car did not accept the transmitted signal. This problem was caused by the supported
sample rate ranges of the RTL-SDR and rpitx. As the max sample rate of rpitx is 200.000 S/s,
the sample rate of the RTL-SDR was tuned to 200.000 S/s. As the official documentation
of the RTL-SDR only states that the maximum sample rate is 3,2 million S/s, a sample
rate of 200.000 S/s should not be a problem. However, it was noted on unofficial RTL-SDR
forums that the RTL-SDR has two possible sample rate ranges: 225.001 S/s to 300.000 S/s
and 900.001 S/s to 3.200.000 S/s. When tuning the RTL-SDR to an invalid sample rate (f.e.
200.000 S/s) it will automatically change the sample rate to the default value of 1.000.000
S/s. As rpitx was transmitting a signal at a rate of 200.000 S/s that was captured at a rate
of 1.000.000 S/s, the signal was invalid. However, as the minimum sample rate of the RTL-
SDR is 225.001 S/s, there is still a difference of 25.001 S/s. To overcome this gap of 25.001
S/s, the RTL-SDR is tuned to 1.000.000 S/s and downsampled using a decimation value of 5
which results in 200.000 S/s ( 1.000.000

5 ). After transmitting the downsampled signal, the car
accepted the signal.

• The replay & jamming attack implementation includes an automated signal detection iden-
tical to the one in method 1. However, we have to take in consideration that the output of
the GPIO pin is more or less a square wave. A square wave is the sum of (theoretically)
infinite sine waves which are called harmonics. Lets assume we want to transmit a signal
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Figure 4.3: Noise comparison between transmitting carrier using HackRF One and Rpitx.

on a 10 MHz frequency: Ideally, we would only like a sine wave at 10 MHz. However, a 10
MHz square wave is the sum of sine waves at 10, 20, 30, 40, ... MHz. Therefore we’ll also
be transmitting signals at the other frequencies even though it is not intended. Additionally
rpitx transmits a lot of unintentional noise as the GPIO4 pin was not created with the pur-
pose of transmitting signals (see Figure 4.3). These harmonics and unintentional noise are
detected by the automated signal detection and therefore starts capturing a none existing
key fob signal. To reduce the noise and intensity of the harmonics we changed the length
of the attached wire (=antenna). Initially, a 20 cm wire was used. By cutting the wire to
approximately 5 cm, the signal strength reduced dramatically while still being able to jam
the car’s receiver. However, this did not completely solve the problem as sometimes the
noise or harmonics still triggered the signal detection. To solve this, we implemented some
thresholding to make the signal detection trigger less quickly. How exactly the thresholding
is implemented is explained in the following section.

4.2.2 Implementation

The main difference with the implementation compared to the first method is that we can’t di-
rectly control rpitx in GNU Radio as it is a command-line tool. To use rpitx together with GNU
Radio, a separated RPITX class was implemented to simplify the use of rpitx in Python. We use
“subprocess.Popen” to execute a child process, in our case transmitting a signal using rpitx. The
class provides 3 different functions: A function to start jamming (start jammer()), a function to
stop jamming (stop jammer()) and a function that transmits a signal from an input file passed in
the function parameter (transmit(file)). The start jammer() function calls the following command
via “subprocess.Popen”:

. / send iq −s 200000 −f 433 .8 e6 −t f l o a t − i jammer . raw − l

“-s” defines the sample rate, “-f” defines the transmit frequency, “-t” defines the IQ type, “-i”
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Figure 4.4: Replay & jamming attack flow graph in GNU Radio Companion.

defines the input file and “-l” tells rpitx to loop the input file. “subprocess.Popen” returns the
process object which is stored in a variable. The stop jammer() function kills the process using
“os.system” in Python with the pid provided by the stored process object.

os . system ( ‘ ‘ sudo k i l l −9 %s ’ ’ % ( pid , ) )

The third function transmit(file) is similar to the start jammer() function. The function transmits
a signal by passing the following command to “subprocess.Popen”:

. / send iq −s 200000 −f 433 .9 e6 −t f l o a t − i f i l e

The resulting flow graph (see Figure 4.4) is simplified version of the flow graph in the first method.
The first difference is the decimation parameter in the “Band Pass Filter” block. Besides atten-
uating specific frequency ranges, the “Band Pass Filter” block is also used to downsample the
incoming signal. As noted before, the maximum sample rate of rpitx is 200.000 S/s while the
minimum sample rate of the RTL-SDR is 225.001 S/s which causes a difference of 25.000 S/s. By
capturing samples at a rate of 1.000.000 S/s and decimating the sample rate by 5, the signal is
dopwnsampled to 200.000 S/s (1.000.000

5 ).

The second difference is the simplified version of the “Custom File Sink” block. Since we no longer
directly transmit signals via GNU Radio, the “Signal Source” and “Osmocom Sink” blocks are
removed. Due to the problem regarding the detection of noise and harmonics transmitted by rpitx,
a signal detection thresholding is implemented in the “Custom File Sink” block. in GNU Radio,
signals are passed to the next block in packets of multiple samples (max 4096 samples). The size
of a packet depends on the process capabilities of the block. Blocks that are computationally inex-
pensive are capable of processing larger packets than computationally expensive blocks. Initially,
the signal detection was triggered upon receiving a single “1” from the “Threshold” block which
introduced many false positives. The slightest noise or harmonics could trigger the automated
signal detection and start capturing a none existing key fob signal. By setting a minimum on the
amount of 1’s detected in a packet before triggering the detection of a signal, we could lower the
false positives drastically. However, after implementing the threshold the problem was not yet
fully solved and there were still some false positives making it through. Instead of implementing
thresholding limited to a single packet, an additional threshold was implemented covering multiple
packets. Instead of triggering the signal detection upon detecting a single valid packet (=surpass-
ing the minimum amount of 1’s), the signal detection is only triggered when 3 valid packets in a
row are detected. The combination of these 2 threshold ensures that the noise and harmonics did
not trigger the automated signal detection in most cases.

4.2.3 Evaluation

The success rate of the replay & jamming attack using rpitx seems to be very random. We can
successfully perform the attack 3 times in a row, however, the 4th time the jammer is unable to
jam the receiver. There is no logical reason for this phenomena since we are not moving the setup
between different runs.
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Like noted before, rpitx transmit a lot of unintentional noise and harmonics when transmitting
the jamming signal. We significantly reduced the false positives by implementing thresholding but
we were unable to completely eliminate them. Additionally, rpitx only has a fixed transmit power
which can not be configured. In method 1, we could increase the transmit power of the SDR in case
the jamming signal was not powerful enough to jam the car. In this method, we are restricted to
changing the length of the wire to increase or decrease the transmit power. However, increasing the
transmit power also increases the strength of the noise and harmonics. The antenna is real sensitive
as the position of the Raspberry Pi and antenna influences the strength of the transmitted signal.
When for exampling touching the antenna during transmission, the body acts as a transmitter.
By using the body as a transmitter, the signal is amplified as well as the unintentional noise and
harmonics.

While we were able to successfully perform the replay & jamming attack using rpitx on some
cars, the success rate is much lower compared to the first method. By changing the configurations
(antenna length, frequency passband, jam frequency, ...) for each specific car, we were able to
successfully perform the attack against 1 of the 7 cars (2015 Ford Fiesta). We were also able
to perform the attack against the 2008 Mazda MX5 and 2008 Mazda 2 after trying many times
changing the configuration and placement of the Raspberry Pi. However, performing the attack a
second time did fail again. As we were only able to perform the attack a few times against these
cars, we will not include them as successful test cases. The success rate of the attack is highly
dependent on the distance between the jamming frequency and the boundary of the frequency
passband of the adversary’s receiver. By jamming closer to the operating frequency of the key fob,
it is easier to jam the car’s receiver. Because of the noise we can not directly jam along side the
passband of the adversary as it triggers the automated signal detection.

To perform this attack in a real crime scenario, the adversary has to configure their setup (antenna
length, frequency passband, jam frequency, ...) according to the victim’s car to successfully perform
the attack. Manually configuring the setup for each individual car is in most cases impossible for
the adversary as he has no access to the key fob. We can conclude that using this method in a real
crime scenario is not recommended and in most cases even impossible.

A potential solution for reducing the noise and harmonics permanently is using a low pass filter to
ensure rpitx does not transmit signals above a certain boundary. Alternatively, we can change the
signal detection to detecting a specific preamble instead based upon the amplitude of a sample.
This way the noise and/or harmonics won’t trigger the signal detection. However, if we base the
signal detection upon a specific preamble, the attack will only work on the specific RKE protocol
that uses this exact preamble.

4.3 Findings: “Time-out” vulnerability

During testing of the replay & jamming attack, a security vulnerability was found in the RKE
system of both the 2015 Ford Fiesta and the 2008 Mazda MX5. After receiving a valid signal from
the key fob, the Ford Fiesta’s receiver ignores every rolling code for 30 seconds. In other words,
out-dated signals captured in the past are accepted by the car for 30 seconds upon receiving a valid
rolling code. A possible explanation for this vulnerability is the fact that the Ford Fiesta’s key fob
transmits 4 to 50 identical messages depending on the how long the button on the key fob is pressed
(see Section 6.2.1 for more information). Instead of verifying the rolling code for each burst. The
receiver will most likely only verify the first received burst. If the rolling code of that burst is
valid, it will ignore all rolling codes of the next bursts received within 30 seconds. However this
method makes no distinction between different individual signals. Therefore, when transmitting a
previous captured signal (with an expired rolling code), it handles the received bursts as messages
with a valid rolling code. This vulnerability can be exploited in various ways to gain access to the
car. For example: A victim parks their car (at home, work or at the mall) and locks the door. The
adversary now has 30 seconds to transmit a previous captured unlock signal to unlock the door.
A victim is most likely out of sight of their car in less than 30 seconds which means the adversary
can unlock the car without getting noticed.
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Figure 4.5: Reactive jamming flow graph.

This behaviour is also found in the Mazda MX5. However, for some unknown reason, the car
will only accept the 3rd transmitted signal. Also instead of 30 seconds, the car will ignore the
rolling code for 60 seconds. Another difference compared to the Ford Fiesta vulnerability is that
the 60 second “time-out” can be extended. When receiving a previous captured signal the 60
second “time-out” will renew. this “time-out” renewal introduces different attack possibilities. For
example, a transmitter can be installed beneath the car that keeps transmitting a signal. The 60
second “time-out” will keep getting extended which makes the car ignore rolling code completely
for as long the transmitter is alive.

The vulnerability was also tested on a 2018 Ford Focus, 2012 Ford C-MAX, 2018 Mazda CX5
and a 2008 Mercedes-Benz B-Class. However, it seems that these models did not suffer from the
vulnerability.

4.4 Reactive jamming

Both implementations use a näıve method of jamming in which the jamming signal is continuously
transmitted. Instead of continuous jamming, reactive jamming would be a better option. As
noted before, in reactive jamming the target is jammed for only a short amount of time to prevent
a specific key fob signal that is already “on the air” from getting accepted. This prevents the
adversary from continuously jamming all other cars surrounding the target and minimising the
risk of getting caught. When using reactive jamming, the time between pushing a button on
the key fob and transmitting the jamming signal should be as close to zero as possible since the
slightest delay could cause the key fob signal to be accepted by the car before the jamming signal
is transmitted.

Figure 4.5 shows an implementation of our attack using reactive jamming. The part of the flow
graph surrounded by the red rectangle handles the reactive jamming. Upon receiving a 1 from
the “Threshold” block (signal detection), the custom written “Stream switch” block will output
1’s for a short amount of time. This output is received by the “Multiply” block together with the
output of the “Signal Source” block used to generate the jamming signal. Multiplying an input
signal by 1 gives the same exact value, namely, the generated signal by the “Signal Source” block.
These values are passed to the “Osmocom Sink” block that transmits the jamming signal. When
no signal is detected the “Stream switch” will output 0’s. Multiplying the generated signal by 0
results in a signal made up of complex values with both the real and imaginary value 0. Therefore,
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Figure 4.6: Inspectrum spectrogram illustrating delay between capturing the key fob signal
and transmitting the jamming signal.

when no key fob signal is detected, no jamming signal is transmitted.

When testing our implementation using reactive jamming, we noticed that we were unable to start
jamming in time due to the delay caused by the processing and transferring of the signal. First,
the analog signal is captured by the receiver, converted to a digital signal and transferred to the
computer via USB 2.0. Next, the digital signal is processed by the flow graph in order to detect
the key fob signal. Upon detecting a key fob signal, the digital jamming signal is transferred to the
HackRF via USB 2.0, converted back to an analog signal and transmitted. The conversion from
analog to digital and vice versa, the actual processing of the digital signal and the transferring of
samples between the SDR and computer introduces a delay of almost 900 milliseconds between
capturing the key fob signal and transmitting the jamming signal (see Figure 4.6). This delay
causes the key fob signal that is “on the air” to be accepted by the car before a jamming signal
can be transmitted.

In 2016, Vo-Huu et al. stumbled upon the same problem when trying to implement jamming in
Wi-Fi networks [68]. Because of the delay introduces the SDR they were unable to jam the network
in time. To overcome this problem, Vo-Huu et al. modified the firmware of the HackRF such that
the required processing is performed by the HackRF’s microcontroller itself. This means that it
is no longer required to transfer any data between the HackRF and the computer. For additional
performance reasons, the jamming signal is not generated on the fly but instead a pre-generated
jamming signal is stored in the HackRF’s memory. By modifying the firmware of the HackRF they
were able to successfully interfere with the Wi-Fi communication using reactive jamming.



Chapter 5

Experiment: Signal amplification
relay attack

In the following chapter we’ll perform a self-implemented signal amplification relay attack (Section
2.3.2) against PKE(S) systems. In Section 5.1 we’ll explain the general concept of the attack and
compare different method for relaying data. Next, we’ll explain the hardware and software required
to perform the attack in Section 5.2. In Section 5.3 we’ll show and explain the implementation of
our attack. We end with an evaluation of our implementation and see if we were able to successfully
perform the attack against cars equipped with PKE(S) (Section 5.4).

5.1 Concept

Even though most PKE(S) systems do not yet use any distance-bounding protocols, the success rate
of the attack is highly dependant of the delay introduced by relaying the data. In 2011, Francillon et
al. experimented with relay attacks against various PKE(S) systems and measured the maximum
acceptance delay of 10 different car models [21]. As seen in Table 5.1 the maximum acceptance
delays are measured between 35 microseconds to 20 milliseconds. Francillon et al. were able to
achieve a minimum delay of 4 microseconds by modifying their USRP FPGA (field-programmable
gate array) to bypass communication with the computer. Doing so, they were able to unlock all
10 different car models. Using distance-bounding protocols these maximum acceptance delays can
be reduce to a few nanoseconds which makes it impossible to relay data in time.

There exist different methods for relaying the LF signal to the other relay device. We’ll list some
of the options below and compare them:

Car model Max. Delay
Model 1 500 µs
Model 2 5 ms
Model 3 -
Model 4 500 µs
Model 5 1 ms
Model 6 10-20 ms
Model 7 620 µs
Model 8 620 µs
Model 9 2 ms
Model 10 35 µs

Table 5.1: Maximum acceptance delay of 10 different car models [22].

59
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1. Relay-over-WiFi: Our initial idea was to relay the LF signal using a Wi-Fi network. The
simplest way of doing this is to connect the devices to an existing Wi-Fi network. However,
this requires the adversary to have access to the Wi-Fi network (in other words, know the
password). Since cars are generally located outside, it is likely that one or both devices are not
in range of any existing Wi-Fi networks. A more convenient way of ensuring that 2 devices
can communicate with each other is by setting up a standalone Wi-Fi network using one of
the 2 devices as an access point. For this experiment our 2 devices are Raspberry Pi’s as we’ll
be using rpitx to transmit signals. It is possible to create an access point from a Raspberry
Pi’s without requiring any additional hardware. By connecting the other Raspberry Pi to
the access point, the 2 devices can communicate with each other without having to rely on
any existing networks. A short guide on how to setup a wireless access point on a Raspberry
Pi running Ubuntu Mate is found in Appendix B.

When testing our implementation, we experienced some problems. Sampling analog signals
to obtain digital signals is a memory (and CPU) intensive process. Capturing signals at
a sample rate of 1 million S/s can take up to 8 Mb/s which has to be transmitted over
a TCP socket. After decimation by 5 (200.000 S/s) the data-transfer rate is reduced to
approximate 1.6 Mb/s. When testing the data throughput from Pi to Pi over our stand-
alone Wi-Fi network the max throughput we could achieve is 1.5 Mb/s. When running the
implementation, the TCP socket was unable to cope with these amounts of data which caused
overflow in the GNU Radio blocks.

2. Relay-over-cable: An alternative way of relaying data is via an Ethernet cable. The speed
of transmitting data over an Ethernet cable is typically faster and more reliable than over
Wi-Fi. By using this method, there is also no need for setting up a wireless access point. This
method can use the same implementation as the Relay-over-WiFi method as it independent
of the physical layer of the OSI-Model. However, using a physical Ethernet cable can be
inconvenient and might cause suspicion. Also, the presence of a wall or door can make a
relay attack over a physical cable impossible.

3. Relay-over-UHF-channel: In the two previous methods, we digitised the analog signal
and relayed the digital data to the other relay device over a higher-level transport protocol.
In this method we’ll be relaying the analog signal via an UHF channel without the need of
any other transport protocol. First, the LF signal is received by the SDR and downconverted
before obtaining the digital signal (see Section 3.3.1). This creates a baseband signal centered
around 0 Hz and therefore independent of the actual transmit frequency of the original signal.
We can now simply configure the transmitting SDR to the desired frequency (f.e. 2.5 GHz)
and transmit the signal. By amplifying the signal, the signal can travel significantly further
compared to the original LF signal transmitted by the car. The second adversary who is
in proximity of the key fob receives the signal, downconverts it to a baseband signal and
upconverts it back to the original LF signal (125 kHz). The signal is received by the key fob
and transmits its response at a frequency of 433.92 MHz.

Relaying messages over an UHF channel is significantly less complex than the two previous
methods. First, setting up a standalone Wi-Fi network is no longer required. Second, we
don’t have to use any higher-level transport protocols like TCP and therefore don’t have to
setup any connections/sockets which introduce extra delay, overhead and complexity. Relay-
over-UHF-channel should therefore have a smaller delay regarding relaying of the LF signal.

Since delay introduces by relaying is such an important factor for the success rate of a relay
attack, we’ll be implementing a relay-over-UHF-channel attack as it should have the least amount
of processing delay.

5.2 Hardware & software

A signal amplification relay is attack is performed by two adversaries and therefore requires a
separate device for each adversary. For this experiment we’ll be using 2 Raspberry Pi’s, 2 receiving
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Figure 5.1: GNU Radio flow graph
for relay device 1.

Figure 5.2: GNU Radio flow graph
for relay device 2.

SDRs (RTL-SDR), 1 transmitting SDR (HackRF One) and a single upconverter (Ham It Up v1.3).
Since we are capturing LF signals (125 kHz), our regular whip or telescopic antenna (suited for
capturing HF, VHF and UHF radio bands) was no longer able to optimally receive the LF signal.
Therefore we changed to a loop antenna specially tuned for receiving 125 kHz signals (ANT125K-
45). We also have to use an upconverter (Ham It Up v1.3) to lower the minimum receive frequency
of the RTL-SDR to 125 kHz (default minimum is 500 kHz). We’ll be using the GNU Radio
framework to control our SDRs and implement the attack. For transmitting the LF signal to the
key fob, we pipe the received data to rpitx.

5.3 Implementation

The GNU Radio implementation for performing the signal amplification relay attack is extremely
easy. The implementation for the device that captures the LF signals from the car consists of
only 2 blocks. First, the 125 kHz signal is captured using a “Osmocom Source” block. Since the
RTL-SDR is unable to capture a 125 kHz signal, we utilise an upconverter that uses a 125 MHz
oscillator. Therefore, we have to configure our “Osmocom Source” block at a receive frequency of
125.125 MHz to obtain 125 kHz signals. The source block is directly connected to a “Osmocom
Sink” block that transmits the signal using a 2.5 GHz frequency (see Figure 5.1). At the receiving
side we’ll be using a “Osmocom Source” block to capture the UHF signal. The source block is
connected to a “TCP Server Sink” block that sends the data to a local netcat client that pipes the
data to rpitx (see Figure 5.2). Rpitx transmits the signal at the original frequency of 125 kHz. To
open a netcat client that pipes the received data to rpitx, we have to run the following command
in the terminal of the device:

nc 1 2 7 . 0 . 0 . 1 8000 | sudo . / send iq −s 200000 −f 125 e3 −t f l o a t −i−

5.4 Evaluation

Due to problems regarding the shipping of the required 125 kHz loop antenna, we were unable to
test our implementation against cars equipped with PKE(S). However as noted before, the most
important factor in the success of this attack is the delay introduced by relaying the data. By
relaying a regular 433.92 MHz signal instead of the LF signal transmitted by the car, we can
measure the delay and conclude if the attack would successfully work in a real situation using a
PKE car by comparing it to the maximum delay thresholds seen in Table 5.1.

The delay introduced for this implementation is identical to the delay introduced when implement-
ing reactive jamming in Section 4.4. When doing the same experiment for this implementation we
measured a delay of 900 milliseconds. This is only the delay introduced by the first device that
captures the signal and transmits it over a 2.5 GHz channel. The second device will also need
to capture the UHF signal and downconvert it back to the original 125 kHz frequency (433.92
MHz in our case). This will introduce an additional delay of 900 milliseconds. Therefore the time
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between transmitting the LF signal by the car and receiving a response from the authorised key
fob will take around 2 seconds (900ms + 900ms + transferring time of signals over the air). As the
maximum acceptance delay in Table 5.1 is 20 milliseconds, it impossible to successfully implement
a signal amplification relay attack using out-of-the-box SDRs.

As mentioned in the beginning of this chapter, Francillon et al. were able to successfully perform
the attack against all 10 test models. However, they initially experienced the same problem in
which the delay introduced by transferring the data between the USRP and computer was too
high. By modifying the USRP FPGA, they were able to bypass the transferring of data between
the device and computer. Doing so, they were able to successfully perform the attack. As seen
in Section 4.4, Vo-Huu et al. experienced an identical problem when trying the manipulate a
Wi-Fi network by using reactive jamming. The introduced data transferring delay was too high in
order to jam the target in time. By modifying the firmware of SDR, they were able to eliminate
the transfer between the SDR and computer and successfully manipulate the network. As it is
impossible to perform the relay attack using an out-of-the-box SDR (or USRP), it is possible by
modifying the firmware of the device.



Chapter 6

Experiment: Reverse engineering
radio frequency signals

In the following chapter we’ll reverse engineer radio frequency signals transmitted by a key fob.
We introduce 3 case studies: The signal of a 2008 Mazda MX5, 2015 Ford Fiesta and 2018 Ford
Focus key fob. For each key fob, we’ll determine the modulation and data encoding technique
utilised to form the transmitted signal. Next, we’ll use these findings to demodulate and decode
the signals resulting in the corresponding binary data. For the demodulation and decoding of the
signals, custom real-time automated demodulators are written. Finally, the resulting binary data
is analysed to find the message format (f.e. unique identifier, command, sequence number, rolling
code, ...) used by the RKE protocol of each key fob.

6.1 The process of reverse engineering

More or less the same process can be used to reverse engineer any signal transmitted by a key
fob. This process contains of 6 steps: Capturing the key fob signal, signal analysis to determine
the signal properties (carrier frequency, symbol rate, ...), determining the modulation technique,
determining the data encoding method, demodulation and decoding of the signal and finally,
analysis of the resulting binary data. Using these 6 steps, it should be possible to reverse engineer
most RKE key fobs. For each step, we’ll be giving a detailed explanation:

1. Capture the key fob signal: Before we can analyse a radio frequency signal, we have to
capture it. We can capture a radio frequency signal by using a SDR and a program capable
of utilising the SDR f.e. GNU Radio, SDR#, Gqrx, .... Figure 6.1 shows a simple GNU
Radio flow graph that uses an “Osmocom Source” block to capture signals utilising through
the connected SDR. Since European car key fobs operate at a frequency of 433.92 MHz (or
315 MHz in North-America and Japan), the SDR has to be configured to capture a frequency
range including the frequency of 433.92 MHz. The SDR is configured at a rate of 2 million
S/s and a center frequency of 433.5 MHz. This means that the frequency range of 432.5 MHz
to 434.5 MHz is captured which includes the 433.92 MHz transmit frequency of a key fob.
The “Osmocom Source” block is connected to a “File Sink” block used to save the captured
signal. Optionally, a “Frequency Sink” or “Waterfall Sink” can be added to visualise the
frequency spectrum.

2. Signal analysis: In the signal analysis step we determine the signal properties by analysing
the transmitted signal using visualisation tools like Inspectrum. These properties are neces-
sary to help demodulating, decoding and analysing the binary data at a later stage. Examples
of such properties are:

• Symbol rate: The rate at which each individual symbol occurs
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Figure 6.1: GNU Radio flow graph that captures and saves a key fob signal.

• Carrier (or transmit) frequency: The frequency at which the signal is transmitted

• Signal length: The length of the signal (in symbols)

• ...

The symbol rate and signal length can be determined by using the “enabling cursor” func-
tionality of Inspectrum. When activating this functionality, a grid overlay divided in smaller
blocks will appear on top of the spectogram. The user can chose the amount of blocks
(“Symbols” parameter) and change the size of the blocks by increasing/decreasing the size
of the grid. When each individual block of the grid matches and covers a single symbol of
the signal, the symbol rate can be read directly from the interface 3.10). The signal length
can be determined by matching the amount of blocks with the symbols of the signal. The
carrier or transmit frequency can be read directly from the vertical axis in Inspectrum.

3. Determine modulation technique: In most cases the modulation technique can be iden-
tified by solely visual inspection of the signal. How exactly different modulation techniques
can be visually identified is explained in the case studies themselves. However, it is also
possible to automate the identification of a modulation technique. An example is DSpec-
trumGUI, a reverse engineering tool built on top of Inspectrum that aims to make it trivial
to demodulate radio frequency signals. This includes an automated detection of the modula-
tion and data encoding technique followed by automated demodulation and decoding of the
input signal. Unfortunately, DSpectrumGUI supports only a limited set of modulation tech-
niques: Pulse-Width Modulation, On-off Keying and Frequency-Shift Keying (2-FSK) which
is treated as an On-off Keying modulation. It is also limited to the detection and decoding
of the Manchester data encoding method. However, these are the most used modulation and
data encoding techniques and should cover a large amount of key fob signals.

4. Determine data encoding method: Similar to determining the modulation technique,
Inspectrum can help to resolve the data encoding method. However, determining the exact
data encoding method by solely visual observation of the spectrogram is not enough. Inspec-
trum can help in narrowing down possible data encoding methods. For example, variants
of the Manchester data encoding methods (explained in Section 3.2) can easily be recog-
nised visually. Manchester data encoding methods force a transition in the middle of each
bit which means there can’t be more than 2 high (or low) level symbols in a row (see Fig-
ure 3.3). Therefore, certain data encoding methods can be excluded and the possible used
data encoding methods can be narrowed down. However, there are different variant for the
Manchester coding method that can’t be distinguished visually. Finding the correct variant
of the used data encoding is a matter of trial-and-error and analysis the resulting binary
data. The correct data encoding variant can be identified by finding patterns in the binary
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data. An example of such patterns is a counter field that increases each time the key fob
button is pressed.

Alternatively, as mentioned in step 3, DSpectrumGUI can be used to automate the identifi-
cation of the used data encoding method. However, DSpectrumGUI is very limited as it can
only identify the Manchester data encoding method and is unable to distinguish different
variants of the Manchester data encoding method.

5. Demodulating and decoding the signal: When both modulation technique and data
encoding method are identified, the captured signal can be converted to actual raw binary
data by demodulating and decoding it. This can be done manually but is not recommended
as it is time consuming and the error rate is rather high as a single wrong demodulated
and/or decoded bit affects the entire binary data. A better way of demodulating and decod-
ing a signal is by automating it using software. Besides identification of the modulation and
data encoding method, DSpectrumGUI can demodulate and decode the input signal (if the
utilised modulation technique and data encoding method is supported). However, reverse
engineering a signal using DSpectrumGUI can still be time consuming as the input signal
has to be captured using a different program and signal properties has to be identified manu-
ally. Additionally, even when both the modulation technique and data encoding method are
supported, it is not always possible to correctly demodulate and decode the signal as we’ll
see in a case study.

A better and quicker way of demodulating and decoding a radio frequency signal is using a
real-time demodulator and decoder. This means that a signal is demodulated and decoded
instantly upon capturing it. In these case studies, the real-time demodulators/decoders were
created using GNU Radio.

6. Analysis of the raw binary data: After demodulating and decoding the signal, the raw
binary data is obtained. Since there is no standard message format for data transmitted by a
key fob, car manufacturers use a self-chosen format. In most cases, the message format evens
differs for each different model of the same car manufacturer. This means that for almost
every different car model available, a different message format is used. On top of that, the
used format is not publicly published by the manufacturers and therefore unknown to the
public. It is also not guaranteed that a result is found since some signals are fully encrypted
and therefore not possible to analyse.

A convenient method for analysing data is by capturing multiple consecutive signals from
a single command (f.e. unlock) and comparing them to each other to see which bits are
static and which vary. Static bits might indicate the unique identifier of the car or the
pressed command. The command bits can be confirmed by capturing signals from a different
command (f.e lock). If the assumed command bits of the lock signal are different from the
unlock signals but static for the same command, the bits are most likely used to indicate
the pressed command. Capturing consecutive signals can also identify potential counter
bits. Counter bits can be identified by searching bits that change their value (0/1) for every
consecutive transmitted signal. Bits which contain no noticeable pattern and seems random
for each transmitted signal can indicate the rolling code or potential data integrity bits
(checksum, CRC or MAC).

Alternatively, it is possible to obtain information about a specific radio frequency transmitter
by browsing the internet. In the United States it is obligated for the manufacturers to publish
information (user manual, specification, hardware, ...) for every radio transceivers in a public
database. The database is maintained by the United States Federal Communications Commission
and found on their website: https://fccid.io/. Each radio transceivers is identified by a FCC ID
written on the device (typically inside the casing). This ID can be used to lookup information about
the corresponding device. this information typically contains operating frequency, modulation, bit
encoding, ...

Unfortunately, Europe does not impose those obligation to manufacturers selling radio transceivers
in Europe. This means that there is no public database available in Europe. However, some

https://fccid.io/
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Figure 6.2: A single burst of the Ford Fiesta’s key fob.

European key fobs contain a US FCC ID that can be looked up on https://fccid.io/ as see in
the first case study.

6.2 Case study: 2015 Ford Fiesta

6.2.1 Reverse engineering

The user manual of the 2015 Ford Fiesta is available at [18] (FCC ID: KR55WK47899). As
the manual states, the radio frequency transmitter was created by Siemens VDO Automotive
AG. Additional information written in the user manual in described in the corresponding reverse
engineering steps themselves.

1. Signal analysis: Figure 6.2 shows a single burst transmitted by the key fob of the 2015 Ford
Fiesta. As we analyse the complete signal we see that 4 such bursts are transmitted for each
button press. After comparing the four bursts, we conclude that all four bursts are identical.
Each burst has the same random structure: A short predefined sequence of symbols, a short
pause in which no carrier is transmitted followed by a longer sequence of symbols. The first
short sequence of symbols is equal for each individual transmitted signal while the longer
sequence seems to vary. The first short sequence is therefore most likely the preamble while
the longer sequence is the actual data (command, rolling code, ...).

The signal properties of the 2015 Ford Fiesta key fob are shown below:

• Preamble length: 20 symbols

• Data Length: 160 symbols

• Transmit/carrier frequency: 433.937 MHz

• Symbol rate: 4 kHz

The user manual confirms the transmission of 4 identical bursts (named “telegrams”). How-
ever, it also states that the key fob can transmit up to 50 bursts depending on how long the
button is pressed. Additional information obtained from the user manual is that a single
burst (or telegram) consists of 52ms of data and 48ms of a pause.

2. Determine modulation technique: As seen in Figure 6.2, the frequency of the signal is
constant while the amplitude changes over time indicating that the signal is modulated using
the Amplitude-Shift Keying (ASK) modulation. The data is represented by the presence
or absence of a carrier wave which means the On-off Keying modulation (variant of
ASK modulation) technique is used. This is one of the simplest and most intuitive forms of
modulation in which the presence of a carrier wave represents a binary 1 while the absence of
the carrier wave represents a binary 0. The user manual found on https://fccid.io/ [18]
confirmed that the used modulation technique was indeed the On-off Keying modulation.

3. Determine data encoding method: The signal is built up from two possible lengths of
symbols: a short symbol and a longer symbol which length is twice the length of the short
symbol. As mention before, Manchester coding forces a transition in the middle of each
bit which means there can’t be more than 2 high level symbols in a row. This is exactly

https://fccid.io/
https://fccid.io/
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Figure 6.3: Message format for the Ford Fiesta key fob.

the case for our signal as the maximum length of a symbol is twice the length of a single
short symbol. This means that the data encoding method used must be a variant of the
Manchester data encoding method. However, we cannot yet conclude which exact variant
of the Manchester data encoding is used as this can only be determined by analysing the
demodulated and decoded raw binary data. Since we have access to the user manual we could
confirm that indeed a Manchester coding was used to encode the data. The manual [18] also
states that the Bi-phase Manchester coding was used. This eliminates the potential use of
a Differential Manchester coding method, however, it is still unknown which of the two Bi-
phase Manchester coding methods is used: One in which a binary 1 is represented by a high
to low transition, while a binary 0 is represented by a low to high transition. Or, one in
which a binary 0 by a high to low transition, while a binary 1 is represented by a low to high
transition.

4. Demodulating and decoding the signal: After determining the modulation technique
(On-off Keying) and data encoding method (Bi-phase Manchester coding), we can now create
a real-time demodulator/decoder using GNU Radio. The resulting On-off Keying demodu-
lator/decoder flow graph is shown and explained in Section 6.2.2.

5. analyse demodulated and decoded binary data: Figure 6.3 shows single bursts of
6 consecutive captured signals demodulated and decoded using our custom On-off Keying
demodulator/decoder shown in Section 6.2.2. We excluded the preamble since it is the same
for each transmitted signal. The first and second signal represents the unlock command, the
third and fourth signal represents the lock command and the last two signals represents the
trunk command. The different colors represents different fields in the message format. In
total, a single burst of data contains of 10 bytes (excluding the 10 bit preamble). Besides
the 10 bit preamble, there is a secondary 1 byte preamble (blue) that is the same for every
transmission. The next 7 bytes (red) is most likely the rolling code since they seem random
and there is no correlation between successive signals. The next 4 bits (green) corresponds to
the pressed button on the key fob. “0011” represents the unlock command, “0010” represents
the lock command and “0101” represents the trunk command. The following 4 bits (orange)
is used as a counter. As seen in the figure, the counter is incremented each time a button
is pressed. However, there seems to be a correlation between the 4 command bits and the
4 counter bits. The 4 command bits are actually also part of the counter. The 4 least-
significant bits (orange) are continuous and shared between different commands while the
4 most-significant bits (green) are unique for each command. When the 4 least-significant
bits (orange) reach the “1111” state, each individual command value (green) will increase on
the next button press. This makes the command bits variable and part of a 1 byte counter.
Finally, the last byte (yellow) seems to be random for every transmission. Since we already
identified the rolling code the last byte most likely serves as data integrity. After trying
to find the exact checksum/CRC algorithm by running brute-force scripts, no solution was
found. This is a strong indication that a Message Authentication Code (MAC) is used to
validate the message.

We did not yet identify the used variant of the (Bi-phase) Manchester coding method. The
above explained message format was decoded using the IEEE 802.3 Manchester coding in
which a low to high transition results in a binary 0 while a high to low transition results in
a binary 1. The identification of the counter strongly suggests that the used IEEE 802.3
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Figure 6.4: On-off Keying demodulator flow graph.

Figure 6.5: On-off Keying demodulator output of two received signals.

Manchester encoding method is in fact correct.

6.2.2 Implementation: On-off Keying demodulator

The custom written On-off Keying demodulator demodulates a signal based on the power value of
each individual sample. It uses the square of magnitude (results in the power value) of each sample
to determine if a carrier was detected or not. The presence of a carrier indicates the presence of a
high level signal which results in a higher power value. Therefore, the absence of a carrier results
in a lower power value.

First, we have to define some variables: Besides defining the number of samples taken per second
to represent the analog signal, the sample rate is later used to calculate the amount of samples per
symbol. By calculating the amount of samples per symbol, we can count them and distinguish high
and low-level symbols. Last, we have to define the symbol rate (symbol rate). The symbol rate
was already determined in step 1 (4 kHz) when we analysed the signal using Inspectrum.

The flow graph shown in see Figure 6.4 starts with an “Osmocom Source” block that listens for
signal at the center frequency of 433.5 MHz at a rate of 2 million S/s (the sample rate can be
chosen freely). Next, the captured signal is filtered by attenuating useless frequency ranges using
a “Band Pass Filter”. In this flow graph we pass the frequencies between 433.90 MHz and 433.96
MHz as the transmit frequency of the key fob is 433.937 MHz. For each sample we convert the
complex value to the square of the magnitude using a “Complex to Magˆ2” block. The resulting
value is served to the “Threshold” block. Identical to our replay & jamming attack, the threshold
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Figure 6.6: On-off Keying transmitter flow graph.

values are experimentally chosen. The value depends on the strength of the signal which is different
for each key fob. The strength of the received signal is also influenced by the distance between
the key fob and the SDR receiver. Last, we have our the custom written “OOK demod” block
that performs the actual demodulation and decoding of the signal. Dividing the sample rate by
the symbol rate gives us the amount of samples used to represent a single symbol. For example,
at a rate of 2 million per second and a symbol rate of 4 kHz, each symbol contains of 500 samples
( 2.000.000

4.000 ). This means that a binary 1 is represented by 500 consecutive 1’s while a binary 0 is
represented by 500 consecutive 0’s.

Besides demodulating the incoming signal, the “OOK demod” block also contains the Manchester
decoder. The decoder converts a high to low transition (10) to a binary 0 and a low to high
transition (01) to a binary 1. After decoding, the resulting binary data is printed to the console.
Alternatively, an output file (Sink File) can be specified in the block’s variables that outputs the
resulting binary data to a file. As mentioned before, a single button press transmits 4 identical
bursts. Therefore, the result of the GNU Radio demodulator outputs 4 identical binary strings
representing the 4 bursts. Since the first short sequence of symbols (preamble) is the same for
every transmission, it is not printed (see Figure 6.5).

6.2.3 Implementation: On-off Keying transmitter

In addition to the On-off Keying demodulator, an On-off Keying transmitter (+ Manchester en-
coder) was written for the Ford Fiesta. The On-off Keying transmitter synthesises (modulate and
encodes) an On-off Keying modulated signal from a binary input and transmit is using the con-
nected SDR. After serving the binary output data obtained from the demodulator to the On-off
Keying transmitter, we were able to successfully unlock the car without using the actual key fob
or a previous captured signal (after exploiting the 30 second security vulnerability explained in
Section 4.3).

The On-off Keying transmitter seen in Figure 6.6 is based on [19]. We begin with declaring some
variables: Like with the demodulator, the sample and symbol rate have to be defined. The sample
rate can be chosen freely depending on the processing power and supported sample rates of the
SDR. The symbol rate (4 kHz) is already determined in earlier stages. Next, we define the carrier
or transmit frequency at which the resulting signal should be transmitted. In case of the Ford
Fiesta, a carrier frequency of 433.937 MHz is defined. The bits per packet variable is related to
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the data encoding method, in this case Manchester data encoding. Since Manchester coding forces
a bit transition in the middle of each bit period, we can represent this by using 2 bits. In our case,
a binary 0 is represented by a high to low transition (10) and a binary 1 by a low to high transition
(01). The value of bits per packet is therefore 2. The last and most import variable is the binary
data itself. Besides 0’s and 1’s, the “packet” variable also allows 2’s to represent a period in which
no signal is transmitted. This is used to represent the short pause between the preamble and the
actual data (see Figure 6.2) as well as the pauses between the individual bursts.

We begin with a “Vector Source” block that iterates over each value in the “packet” variable.
Each value gets converted to a hexadecimal value using the “Map” block. 0 is converted to 0x02
(0000 0010), 1 is converted to 0x01 (0000 0001) and 2 is converted to 0x00 (0000 0000). Using
the “Unpack K Bits” block we take the K least-significant bits of the input value. In our case,
K is 2 (bits per pack) as we only need 10, 01 and 00 to represent our symbols. Next, we have to
upsample to our desired sample rate using the “Rational Resampler” block. As mention before in
Section 6.2.2, the amount of samples per symbol is calculated by dividing the sample rate with
the symbol rate. In this case we have a sample rate of 2 million S/s and a symbol rate of 4 kHz,
which means each symbol is represented by 500 samples (interpolation value). Next, we use the
“Moving Average” block to smooth out the signal. Finally, we transmit the signal at the correct
carrier frequency (433.937 MHz) using an “osmocom Sink”.

As we can transmit custom On-off Keying signals, we can use the transmitter to “play around”
with the key fob’s signal and observe the behaviour of the car. For example, how does the car react
when modifying the message? By taking the output of our On-off Keying demodulator, changing
a single bit in each burst (except from the last 8 data integrity bits) and transmitting it using the
On-off Keying transmitter, we noticed that the car still accepted the signal. From the moment
we change 2 data bits, the car ignores the received signal. However, when changing bits in the
data integrity field of the message, a single flipped bit causes the signal to be invalid. We also
validated if the 4 identical bursts transmitted for every button press were mandatory to assure a
valid signal. In other words: Are we able to create a valid signal by transmitting less than 4 bursts.
After transmitting different amounts of bursts, we concluded that the minimum amount of bursts
is 3. When we transmitted 4 bursts but make a single burst invalid (by changing 2 data bits or 1
integrity bit), the signal was still valid. This means that the car ignores the invalid burst and still
performs the command using 3 valid bursts. However, when we make 2 invalid bursts the signal
was no longer valid as expected. The fourth transmitted burst is probably present for redundancy
reasons in case a single burst is received with an error.

6.3 Case study: 2008 Mazda MX5

6.3.1 Reverse engineering

We were unable to find any documentation on https://fccid.io/. Therefore all statements made
in the following section are based solely on the analysis of the transmitted signal by the key fob
since we cannot compare them to any official documentation of the manufacturers.

1. Signal analysis: The key fob of the Mazda MX5 transmits one incessant burst for each
button press. For each transmitted signal, the same structure is used: A noticeable long
preamble followed by 3 successive identical sequence of symbols separated by a short preamble
(see Figure 6.7). As expected, the long and short preambles are identical for each transmitted
signal. The 3 successive identical sequence of symbols differ from each transmitted signals
which indicates this sequence is the actual data (command, rolling code, data integrity,
...). We also notice that two different frequencies are used to transmit the signal. This
is an indication of a specific modulation technique used (Frequency-Shift Keying) which is
explained in the next step.

After thoroughly analysing the signal, we notice that key fob uses 3 difference symbol rates:
One for the preamble, one for some unknown symbols in front of every preamble and one for

https://fccid.io/
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Figure 6.7: Signal structure for the Mazda MX5 key fob: A long preamble (only small part
visible in figure), 3 identical sequence of symbols separated by a short preamble.

the data symbols. The properties of the different type of symbols are shown below:

• Center frequency: 433.925 MHz (433.90 MHz & 433.95 MHz)

• First preamble:

– Symbol rate: 3.332 kHz

– Length: 697 symbols

• Preamble between data sequence:

– Symbol rate: 3.332 kHz

– Length: 8 symbols

• Data symbols:

– Symbol rate: 7.987 kHz

– Length: 144 symbols

• Unknown symbols in front of preamble:

– Symbol rate: 8.741 kHz

– Length: 3 symbols

2. Determine modulation technique: As mentioned in the previous step, the signal is
represented by 2 different frequencies that alter each other. This means that the transmitted
data is represented by the change of the carrier frequency and therefore means a Frequency-
Shift Keying (FSK) modulation is used. A symbol at the higher carrier frequency (433.95
MHz) represents a binary 1 while a symbol at the lower carrier frequency (433.90 MHz)
represents a binary 0.

3. Determine data encoding method: The signal transmitted by the 2008 Mazda MX5
key fob seems to use two different data encoding methods. For the actual data symbols, a
variant of the Manchester coding method is used. Using the same argument as for the
Ford Fiesta’s key fob, there are only two different lengths of symbols (for the data symbols):
A short symbol and a longer symbol which is twice the size of the shorter symbol. This
indicates that there is a forced transition in the middle of each bit causing there can never
be more than 2 high level symbols in a row.

Due to the fact that a single bit is represented by 2 different symbols (high to low or low to
high) in a Manchester data encoding, the length of symbols should always be even. However,
the length of the first preamble is 697 which is odd. This means that it is impossible that a
Manchester data encoding method is used to encode the preamble. Therefore, we believe that
a regular NRZ-L encoding is used (logic-level high represents 1, logic-level low represents 0)
to represent the preamble.

4. Demodulating and decoding the signal: Due to multiple different symbol rates and 2
data encoding methods, the demodulation and decoding of the Mazda MX5’s key fob is not
as trivial as for the Ford Fiesta’s key fob. Most Frequency-Shift Keying demodulators like
the “Quadrature Demod” block of GNU Radio or DSpectrumGUI expect a constant symbol
rate which is not the case for the Mazda MX5. It is also not common that two different data
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Figure 6.8: Message format for the Mazda MX5 key fob.

Figure 6.9: Frequency-Shift Keying demodulator for the Mazda MX5.

encoding methods are used in one signal, which makes the automated decoding way harder.
However, we were able to write a working real-time Frequency-Shift Keying demodulator and
decoder for the Mazda MX5 (explained in Section 6.3.2).

5. analyse demodulated and decoded binary data: After demodulating and decoding the
signal we obtain the raw binary data shown in Figure 6.8. Similar to the Ford Fiesta case
study, the first and second signal is the open command, the third and fourth signal is the
close command and the fifth and sixth signal is the trunk command. A single data sequence
consists of 9 bytes. The first byte (blue) in the data sequence indicates the pressed command.
“00001111” represents the open command, “00010111” represents the close command and
“00011011” represents the trunk command. For the next 8 bytes (red), we did not find any
correlation between consecutive transmitted signals as the bits seem to change randomly.
There are two possible explanations: The 8 bytes are rolling code or are just encrypted and
might contain different data fields like a counter, data integrity bits, rolling code, ... It is
also possible that the last 1 or 2 bytes are data integrity bits. However, due to the fact that
all 8 bytes seem to change randomly, we cannot separate different data fields.

Due to the lack of data fields like a counter, it is hard to define the used variant of the
Manchester data encoding method. Therefore we are unable to determine the exact variant
of the Manchester data encoding method. The signals are decoded using the IEEE 802.3
Manchester coding, G.E. Thomas Manchester coding and differential Manchester coding.
However, for none of the three variants a correlating data field was found (expect for the
command). Figure 6.8 shows the resulting binary data decoded using the IEEE 802.3
Manchester coding. However, it is possible that a different variant of the Manchester data
encoding was used.

6.3.2 Implementation: Frequency-Shift Keying demodulator

As mentioned before, the demodulation and decoding of the Mazda MX5’s key fob is not trivial
due to the variable symbol rates and different data encoding method used. However, we were able
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to create a Frequency-Shift Keying demodulator that can successfully demodulate and decode the
transmitted signal. Due to the variable symbol rates and different data encoding methods used
the demodulator will only work for signals with an identical structure. The means that it is most
likely only useful for this specific Mazda MX5 model.

The demodulator interprets the Frequency-Shift Keying modulated signal as an On-off Keying
modulated signal. The signal can be converted to an On-off Keying signal by ignoring the lower
frequency symbols. This can be achieved by a “Band Pass Filter” block used to attenuate the lower
carrier frequency (see Figure 6.9). As the signal is interpreted as an On-off Keying modulated
signal, it uses the same demodulation technique as in 6.2.2. However, we cannot completely re-use
the Ford Fiesta On-off Keying demodulator due to the variable symbol rates.

To solve the problem of the variable symbol rates, the symbol counts has to be included as an input
parameter to the demodulator block. The counts are used so the demodulator knows the current
symbol rate. The “FSK to bin” block first searches for 697 preamble symbols with a symbol rate of
3.331 kHz. When all 697 preamble symbols are detected, the demodulator expects 144 data symbols
with a symbol rate of 7.987 kHz. Next, the demodulator waits for 8 preamble symbols with a symbol
rate of 3.331 KHz. The 3 unknown symbols before each preamble are ignored as it does not serve
any purpose. This sequence is repeated until the complete signal is detected (144 data symbols at
7.987 kHz → 8 preamble symbols at 3.333 kHz→ 144 data symbols at 7.987 kHz).

6.4 Case study: 2018 Ford Focus

6.4.1 Reverse engineering

We were unable to find any documentation on https://fccid.io/. Therefore all statements made
in the following section are based solely on the analysis of the transmitted signal by the key fob
since we cannot compare them to any official documentation of the manufacturers.

1. Signal analysis: The first thing that immediately caught the eye when capturing the signal
and visualizing it using a “Frequency Sink” was the fact that each button press seems to
generate 3 different peaks in the frequency spectrum. After analysing the signal in Inspec-
trum, we notice that the key fob transmits 6 bursts on 3 different carrier frequencies. The
3 different carrier frequencies correspond to the 3 different peaks in the frequency spectrum.
The first and fourth burst is transmitted at a carrier frequency of 433.589 MHz, the second
and fifth burst is transmitted at a carrier frequency of 433.92 MHz while the third and sixth
burst is transmitted at a carrier frequency of 434.251 MHz. However, When we zoom in to a
single burst we notice that a single burst is transmitted using 2 different carrier frequencies
which alter each other. As for the Mazda MX5, this indicates the signal is modulated using
a Frequency-Shift Keying modulation.

Furthermore, we notice that the 6 bursts are not identical in length. The first 3 transmitted
bursts are noticeably longer than the last 3 transmitted bursts. When visually comparing
the long bursts with the short bursts, it seems that the short bursts contain the same amount
of data symbols as the long bursts. The only difference is the length of the preamble. The
preamble length of the long bursts is 1614 symbols while the short bursts only have a preamble
length of 64 symbols. Below a summary of the signal properties:

• Symbol rate: 15.72 kHz

• Long bursts (first 3 bursts):

– Preamble length: 1614 symbols

– Data length: 272 symbols

– Center frequency burst 1: 433.589 MHz (433.57 MHz & 433.61 MHz)

– Center frequency burst 2: 433.920 MHz (433.90 MHz & 433.94 MHz)

https://fccid.io/
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Figure 6.10: Single burst of the 2018 Ford Focus key fob visualised in Inspectrum.

– Center frequency burst 3: 434.251 MHz (434.23 MHz & 434.27 MHz)

• Short bursts (last 3 bursts):

– Preamble length: 64 symbols

– Data length: 272 symbols

– Center frequency burst 4: 433.589 MHz (433.57 MHz & 433.61 MHz)

– Center frequency burst 5: 433.920 MHz (433.90 MHz & 433.94 MHz)

– Center frequency burst 6: 434.251 MHz (434.23 MHz & 434.27 MHz)

2. Determine modulation technique: As mentioned in the previous step, for each burst, 2
different frequencies alter each other. This means that the transmitted data is represented by
the change of the carrier frequency and therefore means a Frequency-Shift Keying modulation
is used (see Figure 6.10).

3. Determine data encoding method: Just like in the 2 previous case studies, the data
encoding method is a variant of the Manchester data coding. Using the same argument
as for the Ford Fiesta’s and Mazda MX5’s key fob, there are only two different lengths of
symbols: A short symbol and a longer symbol which is twice the size of the shorter symbol.
This indicates that there is a forced transition in the middle of each bit causing there can
never be more than 2 high level symbols in a row.

4. Demodulating and decoding the signal: A custom Frequency-Shift Keying demodulator
and Manchester decoder is written to demodulate and decode the Ford Focus 2018 key fob
signal. In contrast to the previous case study, the symbol rate is constant which makes it
easier to create a demodulator/decoder. The Frequency-Shift Keying modulated signal is
interpret as an On-off Keying modulated signal by ignoring the lower frequency symbols.
Unlike the previous case study, we can re-use the On-off Keying demodulator block from the
Ford Fiesta demodulator 6.2.2. The complete demodulator including Manchester decoder is
explained in Section 6.4.2.

5. analyse demodulated and decoded binary data: Figure 6.11 shows the 6 bursts of 2
consecutive button presses. As mentioned before, the Ford Focus key fob transmits 6 bursts (3
long bursts followed by 3 short bursts) on 3 different carrier frequencies. However, the length
of the bursts is only affected by the length of the preamble. When excluding the preamble,
all bursts consists of 17 bytes of data. The first 7 bytes are equal for all transmitted bursts
and for each transmitted signal expect for 2 bits (blue). The fourth and fifth bit of the fifth
byte seems to change for each burst (bit 36 & 37). The fifth byte of the first, second and
third transmitted long burst are respectively “00000000”, “00001000” and “00010000”. This
sequence is repeated for the next 3 short bursts and the same for each transmitted signal.
In other words, the fifth byte seems to correspond to the carrier frequency used to transmit
the burst. As the first 7 bytes are static expect from 2 bits, it is most likely the unique car
identifier.
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Figure 6.11: Message format for the Ford Focus key fob.

The remaining 10 bytes are actually quite similar to the Ford Fiesta’s transmitted data. The
actual rolling code is represented by the first 7 bytes (red). Strangely, a signal consists of 2
different rolling codes. The rolling code represented in the first 3 long bursts is different from
the rolling code represented in the 3 short bursts. Why exactly the Ford Focus key fob uses
2 different rolling codes per transmitted signal is unknown. The next byte represents both
the command and a counter, just like for the Ford Fiesta. The 4 most-significant bits (green)
indicates the command but are at the same time part of the counter represented by the 4 least-
significant bits (orange). In other words, the 4 most-significant bits are part of the counter but
are different for each command while the 4 least-significant bits are shared between different
commands and incremented for each button press independent of the pressed button. When
the 4 least-significant bits reach the “1111” state, the next button press will increment all
command bits by 1 while the 4 least-significant bits go back to state “0000”. On top of that,
the 4th most-significant bit flips between the 3 long bursts and 3 short bursts (bit 116). The
last 2 bytes are different for each transmitted signal and each burst (yellow). We were unable
to find any correlation between the 2 remaining bytes. Therefore they are most likely used
for data integrity in the form of a Message Authentication Code (MAC).

Last, we tried to exploit our discovered vulnerability in which the car ignores all rolling code
for a certain amount of time upon receiving a valid signal (see Section 4.3). After testing
the exploit, it seems that the Ford Focus is not vulnerable. In addition to the car not being
vulnerable to the exploit, it seems there is a built-in defense against replay attacks. Upon
receiving a retransmitted signal with an invalid rolling code, the car will disable its RKE
system for 5 minutes. This means that new valid signals from the original key fob are also
ignored by the receiver’s unit and the only way to unlock the door is to use the actual
mechanical key. Also, it seems that the Ford Focus is not the only car in which the RKE
system temporally disables. After performing the exploit on a 2012 Ford C-MAX, it also
disabled the RKE system. However, after waiting for hours, it seemed that the car kept its
RKE system disabled. Only after unlocking the door with the mechanical spare key (not the
actual mechanical key of the primary key fob) the RKE system of the car was re-enabled.

6.4.2 Implementation: Frequency-Shift Keying demodulator

As mentioned before, we can demodulate the Frequency-Shift Keying modulated signal using an
On-off Keying demodulator. In contrast to the Mazda MX5, we can re-use the “OOK demod” block
from the Ford Fiesta case study since we have a constant symbol rate. However, we cannot re-use
the complete On-off Keying demodulator as the key fob transmits the signal on 3 different carrier
frequencies. A solution to this problem is using a separate block sequences for each carrier frequency
as seen in Figure 6.12. The “Band Pass Filter” block filters each individual signal transmitted on a
different carrier frequency and transforms the Frequency-Shift Keying modulated signal to an On-
off Keying modulated signal by attenuating the lower transmit frequency. Each frequency range
containing one of the 3 carrier frequencies passes through a separated demodulator/decoder block
that demodulates/decodes the signal and outputs the binary result. As the flow graph has to do
3 times the amount of work compared to the other demodulates/decoders, it might be possible
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Figure 6.12: Frequency-Shift Keying demodulator for the Ford Focus.

that the CPU cannot handle the work load. In case of the Intel Core i5-4210M CPU, it could not
handle 2 million S/s. After lowering the sample rate, the CPU was able to cope with the work load
and was able to successfully demodulate and decode incoming signals. For a complete explanation
of all the used blocks and defined variables, see Section 6.2.2.



Chapter 7

Conclusion

In this thesis we provided an overview of the past and the present of keyless entry systems in
the automobile industry. The main focus lies on various exploitations of both RKE and PKE(S)
systems. For decades it seemed that RKE systems were secure, until in 2014 the replay & jamming
attack was invented that made it possible to bypass rolling code. As seen in Section 4.2, we were
able to successfully implement a fully automated replay & jamming attack using software-defined
radios. The implementation was able to successfully bypass rolling code in 4 out of the 7 test
cars. We were unable to exploit 3 cars due to the implementation of their RKE system. In these
3 cases, the car’s receiver did not leave any available spectrum for adversaries to transmit their
jamming signal on. Therefore, adversaries are unable to disturb the car’s receiver while capturing
a valid signal themselves. This can be achieved by transmitting a signal that occupies the complete
frequency passband of the receiver (2018 Ford Focus & 2012 Ford C-MAX) or by allocating a very
small frequency passband that is just large enough to receive the signal of the key fob (2018 Mazda
CX5).

Implementing a replay & jamming attack using software-defined radios is typically more expensive
than using small dedicated hardware modules (f.e. the $32 device created by Samy Kamkar).
Therefore, we looked into ways for reducing the cost of the attack. The main cost comes from
the transmitting software-defined radio as they typically cost over e200. However it is possible
to replace this software-defined radio by utilising the General Purpose Clock pin (GPIO4) of the
Raspberry Pi using rpitx. As seen in Section 4.4, we were able to implement a replay & jamming
attack using rpitx. However, the success rate was significantly lower compared to using a dedicated
transmitting software-defined radio. Because the GPIO4 pin of the Raspberry Pi was not created
with the intention of transmitting radio frequency signals, it is not optimised for signal transmission
and therefore transmits a lot of unintentional noise. Due to transmission of the noise together with
harmonics caused by square waves, it is hard to correctly jam the car’s receiver while not triggering
the implementation’s automated signal detection. After implementing thresholding and manually
configuring the frequency passband, jamming frequency and length of the antenna, we were able
to successfully execute the attack against 1 out of 7 test cars. However, performing this replay
& jamming attack in a real crime scenario is not recommended and most likely impossible as the
adversary can not experimentally configure their implementation (frequency passband, jamming
frequency, length of antenna, ...) as he has no access to the key fob of the victim.

To improve our implementation we tried implementing reactive jamming. A requirement to suc-
cessfully perform reactive jamming is that the delay between detecting the target signal and trans-
mitting the jamming signal is as close to zero as possible. However, a disadvantage of using
software-defined radios is the fact that processing and transferring of data between the device and
computer causes a significant delay. In our implementation this delay could reach up to 900 mil-
liseconds which made it impossible to transmit the jamming signal in time. However, it is possible
to reduce this delay significantly by modifying the firmware of the software-defined radio. By
performing the signal processing on the software-defined radio’s microcontroller itself, the transfer
of data between the device and computer is eliminated.
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The main reason why most RKE protocols are vulnerable to replay & jamming attacks is because
they do not provide any information regarding the age of a message. However, at around the
same time the attack was invented, KeeLoq Technology, one of the most used hardware-dedicated
block ciphers in RKE systems released their new technology called “Ultimate KeeLoq”. Ultimate
KeeLoq is a time-driven keyless entry protocol that utilises time-stamps to provide the receiver
with information regarding the age of a message. Doing so, the receiver can reject out-dated
messages and therefore prevent against replay & jamming attacks. We tested 6 cars including 2
cars that were released after 2014 and came to the conclusion that none of the cars implemented
such time-driven protocol yet. Therefore, the vast majority of today’s cars on the road are most
likely still vulnerable. However as seen in the first paragraph, it is not necessary to implement
time-based messages in order to defend against replay & jamming attacks.

Next, we tried to exploit cars equipped with PKE(S) systems by implementing a signal amplifica-
tion relay attack. The main concern is the delay introduced by processing and transferring of data
between the software-defined radio and computer. As we compared different methods for relaying
data, we came to the conclusion that relaying the LF signal over an UHF channel will be the
most time efficient method as relaying it over Wi-Fi or an Ethernet cable introduced an additional
transport layer (TCP or UDP) causing extra delay. As noted in Section 5.4, we were unable to test
our implementation due to problems regarding the shipping of a required hardware component.
However, as the introduced delay by relaying the data is the most important factor in performing
a successful attack, we can measure the delay of our implementation using a regular 433.92 MHz
RKE key fob signal. The delay introduced by the first device (capturing the LF signal and trans-
mitting it over an UHF channel) is already 900 milliseconds. As the second relay device (located
close to the key fob) has to do the same process (capturing the 2.5 GHz signal and transmitting
it over a LF channel), an additional delay of 900 milliseconds is introduced. Taking the time into
consideration that is required to relay the signal “over the air”, we have a total delay of around
2 seconds. As Francillon et al. [21] tested 10 different car models in which the highest acceptance
delay was 20 milliseconds, it is impossible to perform our signal amplification relay attack using
out-of-the-box software-defined radios. However as Francillon experienced the same problem, they
were able to successfully perform the attack by modifying the FPGA of their USRP. This problem
is also related to the problem seen in Section 4.4 (Reactive jamming). By modifying the firmware
of the SDR, it is possible to eliminate the transfer of data between the SDR and computer and
therefore reduce the delay to under 20 milliseconds.

For the past years, media has covered dozens of stories regarding the vulnerabilities of PKE(S)
systems. Since then, car manufacturers are fully engaged in finding solutions and improving their
security. As noted in Section 2.4.2, 8 out of 18 tested cars released in 2019 implement extra security
measures that defend against relay attacks. As it is not revealed for all car models what exact
countermeasures they implement, 3 out of those 8 cars utilise a key fob equipped with a motion
sensor (the other car models might do as well but this was not disclosed). Motion sensor key fobs
are not a permanent solution against relay attacks as it does not solve the essence of the problem.
Nevertheless, it is a step in the right direction.

When relay attacks were first introduced to the automobile industry, the main proposal for solving
the problem was the implementation of distance-bounding protocols. Using distance-bounding
protocols, it is possible to precisely calculate the distance between the key fob and car using the
RTT and the transfer speed (speed of light) of the signal. However, we we’re unable to find any
information or statistics regarding the implementation of distance-bounding protocols in PKE(S)
systems.

Besides creating our own implementation for these attack, we tried obtaining a better knowledge
of how RKE protocols work. We tried to obtain knowledge of the physical (modulation, data
encoding, ...) and MAC (message format) layer of RKE protocols by reverse engineering radio
frequency signals transmitted by the key fob. We reverse engineered 3 case studies: A 2008 Mazda
MX5, 2015 Ford Fiesta and a 2018 Ford Focus. Additional to these 3 case studies we also visually
observed multiple other key fob signals (2012 Ford C-MAX, 2018 Mazda CX5, 2008 Mercedes-Benz
B-class, 2008 Mazda 2) to obtain knowledge about their physical layer.
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All 7 different car models expect from the 2008 Mazda MX5 and Mazda 2 use a different approach
to structure their signals. Both the 2012 Ford C-MAX and 2018 Ford Focus utilise the same
technique of transmitting signals at 3 different carrier frequency but their internal message structure
is different. Remarkable is the fact that the 2015 Ford Fiesta which was released between the Ford
C-MAX and Ford Focus did use a complete different modulation and structure compared to the 2
other cars. All key fobs modulated their data using Frequency-Shift Keying expect from the 2015
Ford Fiesta that uses an Amplitude-Shift keying modulation called On-off Keying. For encoding
their date, they all used a Manchester coding expect from some preambles using a different encoding
(typically a regular NRZ-L). The message format of the RKE protocols in our 3 case studies all
differed from each other. However for the 2015 Ford Fiesta and 2018 Ford Focus, we could see some
reoccurring data fields. For example the combined counter and command bits and the message
ending with a data integrity field.

The automobile industry is taking steps in the right direction to improve the security of their
PKE(S) systems. The intense media exposure forced the automobile industry to solve the concerned
problems as quickly as possible. As every year more and more cars are becoming resistant against
these relay attacks, it is most likely only a matter of time before all cars equipped with PKE(S)
are secure. However, because there is little to no media exposure regarding replay & jamming
attacks, there is little to no pressure on the automobile industry to improve their security of their
RKE systems. As there are already solution on the market (f.e. Ultimate KeeLoq), new security
protocols do not have to be invented from scratch. However, it seems that the automobile industry
is ignoring the fact that criminals can fraudulently gain access to cars by exposing weaknesses in
their RKE protocols.

Finding new exploitations in keyless entry systems and solving them will always be “a game of cat
and mouse” between hackers or security researchers and the automobile industry. There is little
chance that after solving the problem regarding these attack, both RKE and PKE(S) systems will
be secure forever. Hackers and security researchers will always actively search for vulnerabilities in
keyless entry systems in order to exploit them. However, this is not a bad thing as it puts pressure
on the automobile industry to keep doing research and improving their security.
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Chapter 8

Future work

As for the replay & jamming attack, we were unable to execute the attack using reactive jamming
due to delay introduced by processing and transferring of the data between the SDR and computer.
In order to reduce this delay, we have to modify the firmware of the SDR to perform the signal
processing on the device’s microcontroller itself. Doing so, the SDR and computer are no longer
required to transfer data between each other as the processing is done on the SDR instead of the
computer. Due to the limited time, we were unable implement a custom firmware for the HackRF
One.

We were able to reduce the cost of the replay & jamming attack by eliminating the transmitting
SDR by the General Purpose Clock pin of a Raspberry Pi using rpitx. However doing so, the
success rate dropped significantly compared to using a dedicated SDR for transmitting. This was
due to the noise and harmonics transmitted by rpitx. However, it is possible to attenuate the
noise and harmonics by using low pass filters. Alternatively, we can change the implementation of
the signal detection. Instead of triggering based upon the amplitude of a sample, we can base it
upon detecting a specific preamble. This way the noise and/or harmonics won’t trigger the signal
detection. However, the attack will only work on RKE protocols that use the exact preamble.

We were unable to successfully perform a signal amplification relay attack against PKE(S) systems.
PKE(S) do not yet implement any distance-bounding protocols. However, there is still a minimum
delay required in order to successfully perform the attack. Identical to reactive jamming in the
replay & jamming attack, the delay caused by processing and transferring of data between the
SDR and computer exceeded the maximum delay in order to successfully perform the relay attack.
This delay can significantly be reduced by modifying the firmware of the SDR to eliminate the
transfer of data between the SDR and computer.
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Appendix A

Raspberry Pi and GNU Radio
installation guide

This guide shows the installation of required packages on the Raspberry Pi in order to perform
the replay & jamming attack in Section 4 and signal amplification relay attack in 5. First we’ll
start with installing the Ubuntu Mate operating systems on the Raspberry Pi. Due to the Python
corrupted memory errors when using the “Osmocom” blocks on Raspbian cited in Section 4.1.1,
we’ll be using Ubuntu Mate as the operating system running on our Raspberry Pi’s. Ubuntu
Mate provides a specific version suited for the Raspberry Pi which can be downloaded on there
website https://ubuntu-mate.org/download/. Once the image is downloaded, we have to flash
the SD card. For flashing the Ubuntu Mate image to our SD card, we use Balena Etcher https:

//www.balena.io/etcher/. Balena Etcher is an open source tool which enables you to flash a SD
card with a single click and automatically validates the flashing.

We’ll be using apt-get for installing GNU Radio and other required packages. First start with
updating apt-get to get the latest version via sudo apt-get update. First we’ll be installing
GNU Radio via sudo apt-get install gnuradio (this can take some time). After installing
GNU Radio we have to install the required packages to enable the use of the RTL-SDR, HackRF
and the “osmocom” blocks (gr-osmosdr). Before building gr-osmosdr make sure that all the de-
pendencies you are intended to work with are properly installed. The build system of gr-osmosdr
will recognise them and enable specific source/sink components thereafter. In our case this is the
RTL-SDR and HackRF dependencies. Therefore, make sure to first install these dependencies
before building gr-osmosdr. Before installing we’ll first have to acquire some additional packages.
We’ll need git and cmake to download and build the RTL-SDR, hackRF One and gr-osmosdr git
packages. We also need some additional packages in order to correctly install gr-osmosdr. Note
that these packages are not listed as required in the official installation guide of gr-osmosdr. How-
ever, we were unable to correctly build gr-osmosdr without them. Install all required packages via
sudo apt-get install git cmake pkg-config libusb-1.0-0-dev libosmosdr-dev swig doxygen

(libusb-1.0-0-dev is required for RTL-SDR). First we’ll be installing RTL-SDR. Clone the RTL-SDR
git repository via git clone git://git.osmocom.org/rtl-sdr.git and build it via cmake:

cd r t l−sdr /
mkdir bu i ld
cd bu i ld
cmake . . /
make
sudo make i n s t a l l
sudo l d c o n f i g

Next, we’ll be installing the required HackRF package. Clone the HackRF git repository via
git clone https://github.com/mossmann/hackrf.git and build it via cmake in the same exact
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manner shown above (cd hackrf/host instead of cd rtl-sdr/).

When both the RTL-SDR and HackRF packages are installed, we can install the gr-osmosdr pack-
age. Clone gr-osmosdr via git clone git://git.osmocom.org/gr-osmosdr and build it using
cmake as shown above (cd gr-osmosdr/ instead of cd rtl-sdr/). When building gr-osmosdr, it
will output the enabled and disabled components. Make sure the RTL-SDR and HackRF are listed
as enabled components. If not, the build system was unable to detect the RTL-SDR and HackRF
dependencies.



Appendix B

Setting up wireless AP on
Raspberry Pi (Ubuntu Mate)

Setting up the access point is mainly based on [1]. Setting up and configuring an access point on
Ubuntu Mate is almost identical to Raspbian. The only difference is that Ubuntu version 18.04
started using Netplan as its network configurator instead of the static interfaces file (/etc/net-
work/interfaces). Netplan uses a YAML description for configuring the network interfaces. The
configuration file used to set up the access point is shown below:

# / etc / netplan/01−network−manager−a l l . yaml
network :

v e r s i on : 2
r endere r : networkd
e t h e r n e t s :

wlan0 :
dhcp4 : no
addre s s e s : [ 1 9 2 . 1 6 8 . 1 0 . 1 / 2 4 ]

This YAML file replaces the static network configuration originally used in Ubuntu Mate and
Raspbian:

# / etc /network/ i n t e r f a c e s
al low−hotplug wlan0
i f a c e wlan0 i n e t s t a t i c

address 1 9 2 . 1 6 8 . 1 0 . 1
netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
broadcast 192 . 168 . 10 . 255
network 1 9 2 . 1 6 8 . 1 0 . 0

We use “hostapd” to enable the Raspberry Pi’s network interface card to act as an access point.
Last, we use “isc-dhcp-server” which automatically assigns an IP address to the connecting devices.
For the complete configuration guide see [1].
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