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Three-terminal devices have been produced by self-assembly of chemically stabilized gold clusters of 5–7
nm in diameter in a nanogap between the source and drain electrodes on top of an electrostatic gate made of
oxidized aluminium. The conductivity of the devices with the agglomerates of clusters, self-assembled in the
gap, was modulated substantially by the electric field of the gate. The effect is attributed to the mechanical
deformation of the organic tunneling barriers between the gold clusters under the influence of Coulomb forces.
A peculiar interplay between the mechanical deformations caused by the gate and the source-drain voltages
leads to unusual current-voltage characteristics of the devices. A phenomenological theory based on these ideas
has been developed.
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I. INTRODUCTION

Self-assembly of clusters helps to produce new materials
with properties not previously observed in nature. Networks
of chemically stabilized metallic clusters have electrical and
optical properties that could be tuned through chemical con-
trol over cluster size and intercluster separation. Engineering
of macroscopic properties by nanodesign offers many poten-
tials for applications.

Tailoring the optical properties by nanodesign was dem-
onstrated by Gotschy et al.1 They studied the extinction
spectra of regular arrays of metallic clusters fabricated by
electron-beam lithography and demonstrated that the desired
spectra can be achieved with a proper choice of cluster size
and/or lattice parameter. Chumanov et al.2 replaced litho-
graphically defined structures with quasiregular two-
dimensional arrays of silver clusters prepared by adsorption
from colloidal suspensions. The extinction spectra were stud-
ied as a function of cluster-to-cluster distance which was
varied by deposition density.

Even more promising is adjusting the material properties
in situ by tuning the intercluster separation by mechanical
deformation. Collier et al.3 studied the optical response of
monolayers of organically functionalized silver clusters and
observed a dramatic effect of the surface pressure on the
reflectance.

Not much experimental work exists regarding the study of
electrical properties of self-assembled metallo-organic
nanoscale networks. The bulk samples are poor conductors
due to the hopping nature of intergrain electron transport,4

though the dc conductance can be studied locally with scan-
ning tunneling microscopy technique5 or in a submicron gap
between probe electrodes.6–8 This activity was, in part,
stimulated by a recent prediction of possible shuttle instabil-
ity in these materials.9

Here we report the conductance measurements in a three-
dimensional nanoscale network, self-assembled from chemi-
cally stabilized gold clusters in the nanogap between source

and drain electrodes. The third electrode—the gate—was
used to apply a static electric field. A giant field effect was
observed, which we attribute to an exponential response of
the tunneling conductance to the gate-induced mechanical
sample distortion.

II. EXPERIMENT

A. Nanogap fabrication

A schematic picture of the device before cluster deposi-
tion is shown in Fig. 1�a�. A planar gate electrode made of
250 Å aluminum covered by aluminum oxide was prepared
on a chip of oxidized silicon. A shadow mask made by
electron-beam lithography was used to deposit the 15-nm-
thick gold lead electrodes on top of the gate, with an ap-
proximately 10-nm gap between the electrodes. We used a
standard electrometric measurement scheme with a symmet-
ric bias of the tunnelling gap; gate voltages of ±5 V could be
applied without breakdown of the thin oxide layer on the
gate �Fig. 1�a��.

B. Deposition of clusters

We used two different techniques to fabricate two differ-
ent groups of self-assembled cluster devices. In the first
group, the gold electrodes have been functionalized by dip-
ping them in a neat 1,9 nonanedithiol. The clusters were then
deposited using the following procedure: rinse in Hexane,
dip in 1,9 nonanedithiol for 4.5 h, rinse in Hexane, dip in
6-nm thiol capped Au-cluster solution10 for 26 h, rinse in
Hexane. Clusters in these samples were linked to each other
and to the gold electrodes, creating a 100-nm aggregate be-
tween the source and drain electrodes �atomic force micro-
scope �AFM� image is in Fig. 1�. This assembly method
relies on using a large excess of dithiol linker molecules,
which ensures the spontaneous formation of a compact three-
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dimensional network of dithiol cross-linked gold nanopar-
ticles between source and drain electrode.

Samples of the second group have been prepared by func-
tionalizing the aluminum oxide surface on top of an alumi-
num gate, so that the clusters were attached to the substrate.

The oxide layer was functionalized with 3-mercapto-
triethoxypropylsilane by boiling for 15 min in 30 ml isopro-
panol containing �0.03 ppm of silane, followed by thorough
washing with isopropanol and curing in an oven for 5 min at
100 °C. The samples were then immersed in a solution of
bromide stabilized gold nanoparticles4 for 1–3 h. No thiol
layer was applied to these samples. The rationale of this
second assembly strategy was to achieve better control over
the amount of nanoparticles assembled between the source
and drain electrode. Ideally, the mercaptosilane forms a
monomolecular layer on the gate oxide to which the gold
nanoparticles would attach by binding to the terminal thiol
groups of the silane molecules and thus form a two-
dimensional assembly between the source and drain elec-
trode. In reality, however, silanization always leads to the
formation of some polymeric material bound to the treated
surface, so that three-dimensional growth of the nanoparticle
layer cannot be avoided in practice. For this reason, both
groups of samples show some structural and electronic char-
acteristics which have to be attributed to the presence of a

FIG. 1. �Color� �a� Three terminal measurement setup. �b� AFM
image of the self-assembled C12H26S-capped Au clusters. The gold
electrodes have been functionalized, so that the clusters are bonded
to each other and to the gold electrodes. �c� Same as �b�, but for the
tetraoctylammonium-bromide-capped Au clusters. The gate oxide
was functionalized, so that the clusters are bonded to the gate. Ar-
rows on �b� and �c� point to humps of clusters of 100 nm between
the source and drain electrodes.

FIG. 2. �Color� Sample A. Clusters are bonded to the gold elec-
trodes but not to the gate oxide. �a� A set of I�V� curves taken at
different gate voltages equally spaced in the range ±3.2 V. Curves
are shifted for clarity. �b� Differential conductance dI /dV plotted in
color scale in �V ,VG� plane. The contrast and tone curve are ad-
justed to highlight the crosslike structure formed by dI /dV minima.
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three-dimensional network of particles and cannot be ex-
plained by the notion of a well-defined monoparticle layer on
the substrate surface. In particular, the AFM images �Fig. 1�
illustrate this situation. In both cases, what is imaged has to
be interpreted as a three-dimensional aggregate of many par-
ticles between the source and drain electrode.

Below, we will present the data for two representative
samples. Sample A is representative of the first group and the
sample B of the second.11

C. Electrical measurements

All measurements have been performed at 4.2 K. Both
samples demonstrated strong conductance modulation by the
gate voltage. Properties of the sample A are summarized in
Fig. 2. A series of current-voltage characteristics is shown in
Fig. 2�a�. The conductance has a minimum at low gate volt-
ages, then rises significantly as the gate voltage increased,
being an even function of the gate voltage. Zero-bias con-
ductance of the sample is shown on a logarithmic scale in
Fig. 3. We see that the plot is linear with gate voltage; this
holds for a conductance variation of more than 100 times.
We also observed a weak nonlinearity of the current-voltage
characteristics—local depressions of the sample differential
conductance, which were symmetric in source-drain voltage.
This effect is shown in more detail in Fig. 2�b�, where the
color coded dI /dV is shown in the region of small gate volt-
ages. The figure shows that the positions of the depressions
in differential conductance form straight lines on the gate-
bias plane.

The properties of the sample B are shown in Fig. 4. It also
demonstrated strong modulation of the conductance by the
gate voltage. Obviously, the nonlinearities of this sample are
much more pronounced, as can also be seen from Fig. 4�b�,
where a set of dI /dV curves is shown for the range of gate
voltages equally spaced between 0 and 5 V. At zero gate
voltage, a single minimum of the differential conductance is

observed at zero source-drain voltage; this minimum is split
into two when a certain threshold in the gate voltage is over-
come. Beyond this threshold gate voltage, the zero-bias dif-
ferential conductance is increasing. The color coded dI /dV

pattern shows evolution of the peculiarities in differential
conductance lines on the gate-bias plane. A wide dark line
with a single dI /dV minimum is followed by V-shaped nar-
row dark lines corresponding to the splitted conductance
minima at higher and/or lower gate voltages. Since we used
a constant current measurement scheme, the voltage applied
to the high conductive sample was limited; black areas in the
plot of Fig. 4�c� correspond to the areas where data are miss-
ing.

III. DISCUSSION

A. General considerations

There are two important experimental observations: �i�
The exponential dependence of the zero-bias conductance G

as a function of the gate voltage VG �Fig. 3�

G�VG� � exp�VG/VG
* � . �1�

�ii� The differential conductance dI /dV demonstrates split-
ting of the conductance minimum at some critical value of

the gate voltage ṼG �Fig. 4�; this indicates that not only the
gate voltage VG, but also the source-drain voltage V affects
the differential conductance. The general form describing the

sample behavior in the vicinity of ṼG is given by

dI

dV
�V,VG� = a − b�VG − ṼG�V2 + cV4. �2�

We shall see that both observations can be explained well
by considering the mechanical deformations of cluster net-
works by Coulomb forces induced by the gate and source-
drain voltages. Let us estimate the forces experienced by our
cluster network at a typical voltage of 1 V applied to the
gate. The first two to three layers of the gold grains screen
the static gate potential, working together as a plate of a
capacitor; mostly, these interface layers will be affected by
the gate. With a gate oxide thickness of 5 nm, a metallic
cluster of 5 nm in diameter will get an induced charge of as
large as ten electrons and will be attracted toward the gate
with the force of �3 nN. The curvature of the gold cluster
concentrates this force on just a few molecules in the organic
shell, producing a pressure of a few GPa. This pressure is
strong enough to compress the shell noticeably, to change the
intergrain distances, and to affect the tunneling barriers trans-
parency. The described mechanism is the origin of the con-
ductance modulation described in this paper.12

General electrostatics predict that Coulomb forces depend
on a linear combination of VG

2 , V2, and VVG. While the first
term is responsible for the exponential increase of the zero-
bias conductance �1�, the interplay between the latter two
gives local dips in dI /dV.

Indeed, the term �V2 arises because the bias voltage cre-
ates the potential gradient across the medium and, therefore,
the grain-to-grain potential difference, which, in turn, leads

FIG. 3. Sample A. Zero-bias conductance dI /dV�V=0 as a func-
tion of the gate voltage VG. The conductance rises as exp�VG /VG

* �,
where VG

* �0.43 V.
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to the mutual attraction between the metallic grains. The
term �VVG accounts for the fact that the bias-induced lateral
electric field Ex�V applied to a gate-induced surface charge
�VG creates a sliding force �VVG �see Fig. 5�. The lateral
deformation always suppresses conductivity, and therefore,
at high enough VG, the differential conductance decreases
with the bias voltage, i.e., d2I /dV2�0. On the contrary, at
high enough biases, the V2 term always dominates VVG and
d2I /dV2�0. Altogether, this leads to bifurcationlike behav-
ior of the conductance �2�.

The mechanical properties of cluster networks are very
peculiar. While most solids exhibit a linear strain-stress rela-
tion at low stresses, the elastic properties of granular mate-
rials follow a more general stress�strain� law.15 This non-
linearity has a clear physical nature: When the solid grains
are pressed against each other, the contact area and, there-
fore, the number of organic molecules under stress increases
and the granular medium become more rigid.

The exponent � of the stress-strain relation can be ob-
tained from the zero-bias conductance plot in Fig. 3 assum-
ing that the sample conductance depends exponentially on
the strain caused by the electrostatic pressure �VG

2 . Since the
conductance logarithm is a linear function of VG in Fig. 3,
we conclude that �=2 �i. e. stress�strain2� in a wide range
of gate voltages.16

B. Model description of the device

To develop a quantitative theory, we will treat the granu-
lar material as a uniform medium where the local conductiv-
ity exponentially depends on the local strain due to the tun-
neling nature of the charge transport. More specifically, we
assume that the constant strain ex along, say, the x direction
results in a conductivity Gxx=G0 exp�Axex� where the con-
stant Ax is about d0 /� �d0�10 nm is grain-to-grain distance

FIG. 4. �Color� Sample B. Clusters are bonded to the gate oxide.
�a� A set of I�V� curves taken at different gate voltages equally
spaced in the range −5–2 V. Curves are shifted for clarity. An arrow
indicates a point on I�V� curve where dI /dV has a minimum. �b�
Differential conductance curves for the gate voltages equally spaced
in the range 2–−5 V. Note that at VG=0 differential conductance
has a single minimum at zero bias, while for VG�0.5 V, there exist
two minima on dI /dV curve. �c� dI /dV plotted in color scale in
�V ,VG� plane.

FIG. 5. �Color� �top� Three different groups of Coulomb forces.
White arrows—�gate induced charge� � �gate voltage� �VG

2 . Black
arrows—the lateral forces �gate induced charge� � �bias voltage�
�VVG. Blue arrows—the bias gradient leads to the mutual attrac-
tion between the gold grains, which is equivalent to a surface
pressure �V2. �bottom� The simplest model which leads to
stress�strain2 relation for the granular medium. The contact area
�the number of stressed organic molecules N� is proportional to the
strain �d /d. The gold clusters are nondeformable.
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and ��1 Å is characteristic tunnelling length of the
u�CH2�nu molecular chain17�.

In the same way, the ey strain increases Gyy exp�Ayey�
times �for an isotropic material Ax=Ay�. However, when the
gate voltage increases the surface conductance by two orders
of magnitude this symmetry is lifted, and we shall take the
strain-conductance relation in a more general form

Gij = G0e−�ekk+	�nikekj−nij�nklelk��, �3�

where nij �nin j and ni is the vector normal to the gate sur-
face. Note that � and 	 are of the same order of magnitude,
because even when the material strain increases conductance
100-fold, Gxx /Gyy is still in the range 0.5–2.18 Parameter � is
positive �under pressure the medium is more conductive�
while the sign of 	 is not defined.

Next, as discussed above, for small deformations, the ir-
regular granular network is mechanically isotropic, with a
stress tensor 
ij quadratic in terms of strain tensor compo-
nents eij


ij = − K�ekk�
2�ij − 2�ekk	eij −

1

3
ekk�ij
 �4�

�where both K and � are positive�. This is the most general
form, provided that the stress is zero for purely shear strain
with eii=0. We can also note that for given material param-
eters d0 and �, the strain is only a few percent even for
extreme conductance variations. Therefore, the form �4� is
adequate even for strongest achievable deformations.19

To find the deformation, we shall solve static balance
equations

�
ik

�uk

= − f i �5�

with electrostatic forces f�=�0��E� �E� �u� is a local medium
displacement�.

We assume that an electric field E� has the gate-induced
component Ey �VG and the bias-induced component Ex�V

�and Ez=0�. The y component is effectively screened within
a thin surface layer 


Ey�y� = Ey exp�− y/
� �6�

�see Fig. 5�,20 while the x component supports an electric
current and, therefore, is not screened: Ex�y��Ex.

Eventually, the balance equations take the form

�0



ExEye

−y/
 =
�

�x
��exx + eyy��aexx − beyy��

+ �
�

�y
��exx + eyy�exy� ,

−
�0



Ey

2
e−2y/
 =

�

�y
��exx + eyy��aeyy − bexx��

+ �
�

�x
��exx + eyy�exy� , �7�

where a= �K+4� /3� and b= �K−2� /3�.

We shall solve �7� for the following boundary conditions:
�a� 
yy�y=��= ���0�1−��� /2�Ex

2; this accounts for the fact
that a constant field Ex induces polarization, and therefore,
mutual attraction of metallic grains. This is equivalent to a
hydrostatic pressure �Ex

2 aplied to a free sample surface.21

The effective dielectric permittivity � is defined by
�=1+4�P /E, where P is an average polarization in a vol-
ume much higher than d0

3. �b� 
xy�y=��=0; there are no bulk
charges and, therefore, no shear forces far from the gate elec-
trode. �c� ux�x= ±L /2�=0; we take the simplest rectangular
form for the source and/or drain electrodes. �d� eyx�y=0�=0;
for the sample in Fig. 2, we assume that the granular medium
is freely sliding against the gate electrode. Or, alternatively,
�d�� ux�y=0�=0; for the sample in Fig. 4, we assume that for
all grains in the first layer the lateral displacement is zero.

For zero-bias voltage �Ex=0� Eqs. �7� have a trivial solu-
tion

eyy =
 �0

2a
Eye

− y


 , exx = exy = 0. �8�

We see that the strain is localized within a thin layer across
the medium-gate interface. For all but the smallest gate
voltages, the conductance of the surface 
-layer defines
the current. We also see that the zero-bias conductance
changes as �exp�Ey /E*�, where the characteristic field
E*=
2a / ��0�2�.

For nonzero bias, we look for a solution of �7� in the form

eij = − �iy
 �0

2a
�Ey

2
e−2y/
 + �0�� − 1�Ex

2� + ẽij ,

where ẽij satisfies the boundary conditions �b�–�d�/�d�� and
also �ã� ẽyi�y=��=o�e−y/
�.

Finally, we note that Ex /Ey �10−3

Ey = �Al2O3
VG/L � 1 V/nm � Ex = V/L � 1 mV/nm, �9�

and we can linearize equations for ẽij by disregarding the
terms O�Ex

3 /Ey
3�22

�

�y
e−y/
�2aẽyy + �b + a�ẽxx� + �e−y/
 �

�x
ẽxy = 0,

e−y/
 �

�x
�2bẽyy + �a + b�ẽxx� + �

�

�y
e−y/
ẽxy = −

2a

�


Ex

E*e−y/
.

�10�

The solution of �10� reads

ẽxx + ẽyy =
a

a + b

Ex

E*

x



, ẽxy = 0, �11�

for the sample in Fig. 2 with the boundary condition �d� �no
shear distortion for a free sliding sample� and
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ẽxx + ẽyy = 0, ẽxy =
2a

��

Ex

E* , �12�

for the sample in Fig. 4 with the boundary condition �d��
�shear distortion with zero dilatation�.23

Taking into account the fact that the current goes through
a thin layer with a thickness 
�L �i.e., that the y component
of the current density is negligible�, we have for an I�V�

I =
V

L−1�
−L/2

L/2

dx	Lz�
0

�

dy�xx
−1
−1 , �13�

where �xx��gij
−1�xx and Lz is the effective thickness of the

conducting layer in the z direction. After integration, we ar-
rive at

I = G�VG�Ve�
V2

VGVG
* ��s

l




V

VG
* sinh−1	�s

l




V

VG
* 
 �sliding sample in Fig. 2�

cosh−1	�g

V

VG
* 
 �nonsliding sample in Fig. 4�� , �14�

where G�VG� is zero-bias conductance for the gate
VG, VG

* =E*l /�Al2O3
, �= ���2��−1�� /�Al2O3

2 ��l2 /L2�, �g

= �	 /���� /�Al2O3
��l /L� and �s= �a / �2�a+b����� /�Al2O3

�.
From �14� one can see that zero-bias curvature of I�V�

curve, d2I /dV2, is positive for VG=0 and changes sign at

ṼG = VG
*�6��/�g

2��
/L�2 �sample in Fig. 2�

2��/�g
2� �sample in Fig. 4�

� . �15�

We note that the result does not depend on the sign of the
parameter 	 and � /�g

2= �� /	�2��−1�, where � /	�1 �see
discussion after formula �3��. To estimate the effective � for
the granular medium, we take ��−1����org−1�v�1, where
for self-assembled organic monolayer �org�3,24 and v�0.5
is the volume fraction occupied by the organic molecules
�note that the volume fraction occupied by the gold grains is
negligible�.

For a sample bound to the substrate the second formula in

�15�, therefore, gives ṼG�VG
* , i.e., the conductance mini-

mum splits into two minima approximately when the zero-
bias conductance increases e times, in a good agreement with
experimental data.25 This is a very general result, which does
not depend on the phenomenological parameter 
 and is
insensitive to the not-so-well-defined sample dimensions.

To estimate VG
* , we shall evaluate the material parameter

a for the granular medium in �8�. We take the next approxi-
mation and consider the organic interlayer as an array of
independent springs each following the Hook’s law. While
the elastic force from each spring is proportional to the dila-
tation �=eii, the number of springs within the contact area
also increases as �, so that the total force scales as �2. A
simple integration shows that


 =
�d0

2Lmol

Korg�2, �16�

which defines K in �4� in terms of the Young’s modulus Korg

for the uniform organic medium �Lmol=1.4 nm is the length
of the C12H26S molecule�. Taking Korg=3–5 GPa �a typical

value for organic materials28� and assuming that � is the
same order of magnitude as K, we arrive at VG

* =0.4–0.6 V,
which is in a good agreement with experimental data 0.43 V
�Fig. 3�.

For a free sliding sample, the first formula in �15� gives

ṼG�VG
* . For such small gate voltages, the condition that the

current mainly goes through a thin layer on top of the gate
electrode is not valid, i.e., the main assumption for �10�–�13�
does not hold. However, the result �15� ensures that for gate
voltages down to at least �VG

* the dI /dV has two minima.
To analyze what happens at lower gate voltages, we go

back to the balance equation �7� and note that it has a re-
markable scaling symmetry: When both Ex and Ey are scaled
k times, the deformation field eij also scales k times, i.e.,
eij�kV ,kVG�=keij�V ,VG�. On the other hand, for VG�V* the
deformation eij is so small that �3� reduces to32

Gij �G0�ij�1−�eii�, and we can write

Gij�kV,kVG� = G0�ij + Gij� �kV,kVG� = G0�ij + kGij� �V,VG� ,

�17�

where G� is the field-induced correction to the main conduc-
tance G0. As this correction is small, �18� is equivalent to a
scaling formula for the total current

I�kV,kVG� = kV/R + I��kV,kVG� = kV/R + k2I��V,VG� ,

�18�

where I� is nonlinear part of I�V� curve and R is the sample
resistance at zero bias. An immediate consequence of �18� is
��2I /�V2��kV ,kVG�= ��2I /�V2��V ,VG�, and we see that if
�I /�V has minima at some �V ,VG� point, it also has a minima
at �kV ,kVG�, i.e., on the V-VG plane, the minima shall be
positioned along the straight lines crossing at �0, 0� point,
exactly as in Fig. 2�b�.

To conclude, the difference in transport properties of the
two types of samples is due to the different strengths of
lateral deformation. The deformation is much stronger for
the samples with thiol-stabilized clusters, which are free to
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slide against the substrate. As a result, d2I /dV2�0,VG��0 for
all the gate voltages. In contrast, in the samples with
bromine-stabilized clusters �linked to the substrate�, the lat-
eral displacement starts to dominate over the bulk compres-
sion only at some critical gate voltage.

IV. CONCLUSION

In summary, we have demonstrated a significant conduc-
tance modulation in self-assembled nanoscale networks of
metallic clusters bridged by organic molecules. We argue
that the observed effects have nanoelectromechanical origin
and a theoretical model that can account for the most impor-
tant experimental observations is presented. The conductance

modulation based on the variation of the tunneling barrier
width promises successful device operation at room tempera-
tures. This self-assembled multicluster nanodevice is more
tolerant to variations in cluster position than the single elec-
tron transistor geometry, where a single cluster must be put
in the tunneling gap and, therefore, promises wider fabrica-
tion margins and higher yield in production.
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