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An introduction to the transport properties of graphene combining experimental results
and theoretical analysis is presented. In the theoretical description simple intuitive
models are used to illustrate important points on the transport properties of graphene.
The concept of chirality, stemming from the massless Dirac nature of the low energy
physics of the material, is shown to be instrumental in understanding its transport
properties: the conductivity minimum, the electronic mobility, the effect of strain, the

weak (anti-)localization, and the optical conductivity.
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I. INTRODUCTION

For a long time, theorists and experimentalists alike
have considered the existence of a true two-dimensional
(2D) material, having the thickness of a single atom —

a one atom thick membrane — to be impossible. The
reasoning behind this statement relies on the fact that
both finite temperature and quantum fluctuations con-
spire to destroy the otherwise perfect 2D structure of the
hypothetic material. These fluctuations, originated from
atomic vibrations perpendicular to the plane of the ma-
terial, would preclude the existence of a true flat phase
and concomitantly the existence of such a system.

monolayer
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Figure 1 (Color online) An optical image of a graphene flake,
obtained form the exfoliation of graphite, with an area of <1
mm?, on top of a silicon oxide wafer (courtesy of P. Blake).

Nevertheless, in 2004, a group led by A. K. Geim, from
the University of Manchester, U.K., isolated such a 2D
material (Novoselov et al., 2004, 2005b). Under the name
of graphene, this new material is an allotropic form of car-
bon, with the atoms arranged in a 2D honeycomb lattice.
The reason for the success lies on the isolation method.
The developed method permitted one to isolate the 2D
material on top of a 300 nm thick wafer of silicon oxide.
The weak van der Waals interaction induces adhesion
between graphene and the wafer, and once on top of the
wafer, it is possible to move about the 2D material, trans-
ferring it from one substrate to another, or even having it
suspended over a trench, supported from one side (Booth
et al., 2008). In the production method, graphite plays a
key role, since this 3D material is itself made of stacked



graphene planes (binded by van der Waals forces). The
ingenuity of the method was then to find a way of peel-
ing a single layer of graphene out of graphite (Novoselov
et al., 2004, 2005b). Up to this date, the exfoliation of
graphite can produce graphene crystallites as large as ~1
mm? (see Fig. 1). The study of graphene became, since
2004, an active field of research in condensed matter,
which holds many promises (Castro Neto, 2010; Castro
Neto et al., 2006; Fuhrer et al., 2010; Geim, 2009; Geim
and Kim, 2008; Geim and MacDonald, 2007; Geim and
Novoselov, 2007; Katsnelson, 2007; Peres, 2009; Service,
2009).

Being the first truly 2D material, it is natural to ask
how its properties differ from those of more conventional
systems, such as the 2D electron gas in the inversion
layer of an ordinary semiconductor. The current efforts in
graphene research have focused on the interplay among
elastic, thermal, chemical, and electronic properties of
the material, with a special emphasis on charge and heat
transport, and on optical properties. The need for a deep
understanding of the transport properties of graphene
is obvious, since the material is a potential candidate
for incorporating the future generation of nanoelectronic
and nanophotonic devices (Blake et al., 2008; Liao et al.,
2010; Lin et al., 2010; Mueller et al., 2010; Schwierz, 2010;
Xia et al., 2009). Also in biophysics, graphene is finding
new applications (Lu et al., 2010; Schneider et al., 2010;
Wu et al., 2010). Additionally, and of no less importance,
graphene provides a realm for the emergence of new and
exciting physics.

In the field of electronic applications, faster electron-
ics requires smaller devices, in particular because at the
nanoscale it may be possible for the electrons to travel
across some of the components of a device almost unim-
peded. In a normal conductor, one of the sources of elec-
trical resistance is scattering of electrons by impurities
and defects (and at room temperature, also by phonons).
A measure of the effect of impurities on the electronic
transport is the mean free path ¢ (the average distance
traveled by an electron between two consecutive colli-
sions), which in a material with high degree of purity
and with small dimensions can be larger than the typical
length of the system L, leading, in these circumstances,
to what is called ballistic transport (in this regime the
current becomes spatially non-uniform). It just happens
that in graphene ¢ can be as large as 1 um (Bolotin et al.,
2008a; Novoselov et al., 2004), putting graphene into to
the ballistic regime, since the typical size of graphene-
based field effect transistors is L, ~0.25-0.5 pym (Du
et al., 2008).

The first ground breaking publications of the Manch-
ester’s group (Novoselov et al., 2004, 2005b) not only
made the method of isolating graphene immediately pub-
lic, but also established the major relevant problems in
graphene transport: the ambipolar field effect (see Fig.
9), the independence of the electronic mobility upon the

gate voltage, the large electronic mean free path, the con-
ductivity minimum and the absence of Anderson localiza-
tion (Bardarson et al., 2007), the magneto-resistance and
the chiral quantum Hall effect (Novoselov et al., 2005a;
Zhang et al., 2005). These topics still orient much of the
research in graphene physics at present.

Since the publication of a comprehensive review on the
theoretical properties of graphene (Castro Neto et al.,
2009), there has been additional relevant contributions
to experimental and theoretical studies of its transport
properties. In this Colloquium, we present an update
on the experimental and theoretical developments in this
fast growing subfield of graphene research, at a level ap-
propriate to graduate students entering the field.

Il. THE ENERGY SPECTRUM OF GRAPHENE AND THE
EMERGENCE OF DIRAC ELECTRONS

As stated, graphene is a 2D material made solely of
carbon atoms, arranged in a hexagonal lattice such as
that shown in Fig. 2. There are five vectors represented
in Fig. 2: the three next-nearest neighbors vectors J;
(i = 1,2,3), and the primitive cell vectors a; and as.
We further note that the hexagonal lattice is made of two
inter-penetrating triangular Bravais lattices. Therefore,
the effective model describing the low-energy physics of
graphene has to keep track of the two atoms per unit
cell, characteristic of the honeycomb lattice. Electrons
in graphene can be described by a tight-binding Hamil-
tonian reading (spin index omitted)

H=-t> |A R,)(R,+6;B|+H.c., (1)

n,&,-

where |A, R,,) represents the Wannier state at the unit
cell R,,, and the equivalent definition holds for |B, R,, +
d;); t is the hopping energy. This Hamiltonian describes
the motion of electrons in the m—orbitals of the material,
made from the hybridization of the atomic 2p, orbitals,
and includes both low-energy and high-energy electron
states. The calculation of the electronic energy spec-
trum of graphene proceeds by introducing, in Eq. (1),
the Fourier representation of the Wannier states in terms
of the Bloch states of momentum k; the spectrum then
reads (Castro Neto et al., 2009; Wallace, 1947)

E(k) = £t]1 + etkar 4 eik'a"‘\ . (2)

It is immediately obvious that the band structure of the
m—electrons is composed of two bands, one at negative
energies (a hole band) and the other at positive ones (a
particle band). In the Brillouin zone there are two spe-
cial, non-equivalent (i.e. not connected by a reciprocal
lattice vector), wave numbers, termed K and K’, and
shown in Fig. 2. The transport properties of graphene
are mostly determined by the nature of the spectrum
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Figure 2 (Color online) Real space lattice and Brillouin zone
of graphene. Left: The hexagonal lattice of graphene, with
the nearest neighbor §; and the primitive a; vectors depicted.
The area of the primitive cell is A, = 3\/§a(2)/2 ~ 5.1 Az, and
ao ~ 1.4 A. Right: The Brillouin zone of graphene, with the
Dirac points K and K’ indicated. Close to these points, the
dispersion of graphene is conical and the density of states is
proportional to the absolute value of the energy.

around these two points. Close to K and K’ the disper-
sion, Eq. (2), is conical, and given by E(k) = tvphk,
with vp = 3tag/2h, where k is the momentum mea-
sured relatively to either K or K’, depending on the
position of the cone in the Brillouin zone. Using the
widely accepted value of t ~ —2.7 eV for the hopping
(in reality the values of ¢ vary in the literature, spanning
the interval from -2.7 to -3.1 €V) we obtain vp < 10°
m/s. The experimental studies are consistent in obtain-
ing vp ~ 1.1 x 10 m/s (Jiang et al., 2007; Novoselov
et al., 2005a; Zhang et al., 2008, 2005). A direct mea-
surement of the Dirac spectrum in graphene has recently
been obtained using angle-resolved photo-emission spec-
troscopy (Sprinkle et al., 2009). Since each carbon atom
(electronic configuration 1s2 2s? 2p?) hybridizes with its
three nearest neighbors according to the hybrid orbitals
sp?, there is one electron left in the p, orbital. Therefore,
the system is half filled, with the important consequence
that the low-energy physics is controlled by the spectrum
close to the K and K’ points. Many of the new and ex-
citing properties of graphene stem from this fact. The
vicinities of these two points are also referred to as the
two valleys of the electronic spectrum of graphene.

The spectrum E(k) = vphk is formally equivalent to
that obtained from solving the 2D massless Dirac equa-
tion. Indeed, it is easy to show (Castro Neto et al., 2009;
Semenoff, 1984) that close to the K point the effective
Hamiltonian for the electrons in graphene has the form

HK:UFU'p7 (3)

whereas close to K’, the Hamiltonian is obtained from
Eq. (3) by making the transformation Hg: = —Hk.
The operator o is written in terms of the Pauli matrices
as o = (04, 0y), and p is the momentum operator. Com-
puting the eigenvalues of the Hamiltonian (3), the conical
spectrum indicated above is immediately obtained. We
stress that o does not represent real electronic spin; it
is instead a formal way of taking into account the two

carbon atoms per unit cell in graphene, as we have an-
ticipated above. For this reason, o is termed pseudo-
spin. The density of states associated with the coni-
cal dispersion of electrons in graphene is computed by
determining the number of states per unit cell in the
Brillouin zone N(E) up to the momentum k. Taking
into account contributions from states near K and K’
points, we obtain N(E) = k?A./(2r), from which the
density of states p(E) per spin and per unit cell is given
by p(E) = dN(E)/dE = 2|E|/(mV/3t?), and the prim-
itive cell area, A., is defined in the caption of Fig. 2.
The linear dependence of the density of states on energy
is one of the fingerprints of massless Dirac electrons. For
neutral graphene, the Fermi energy is zero. Therefore,
the density of states vanishes in this case.

The electronic linear spectrum and the chiral nature
of the electron’s wave function (see below) make elec-
tronic behavior in graphene quite unique, and are re-
sponsible for the remarkable properties of this material.
Since o - p|y) = £p|v), then the operator h = o-p/p has
only two eigenvalues 1. The operator / is known as the
helicity operator, and has the following physical inter-
pretation: in an energy eigenstate, the pseudo-spin o is
either parallel or anti-parallel to the momentum p. In the
K valley, electrons have positive helicity and holes have
negative helicity; in K’ the opposite happens. The he-
licity (or chirality) of electrons in graphene is responsible
for the Klein tunneling effect (Beenakker, 2008; Cheianov
and Fal’ko, 2006; Katsnelson et al., 2006), observed re-
cently in graphene heterojunctions (Stander et al., 2009;
Young and Kim, 2009). We then see (and at odds to high-
energy neutrino physics) that massless Dirac electrons in
graphene come with both right and left chirality: parity
is a symmetry of graphene. In Fig. 3 we show, in sim-
ple terms, the origin of the Klein tunneling effect: the
probability of electronic transmission through a poten-
tial barrier is equal to 1, for head-on collisions; it is said
that backscattering is suppressed.

We should note that chirality is not, however, an exact
symmetry of the problem. This occurs because the spec-
trum of graphene is not exactly linear at all energies.
The deviation from the perfect massless Dirac behav-
ior is known as trigonal warping (McCann et al., 2006;
Narozhny, 2007), and starts playing a role for energies
E > 1 eV. We remark, however, that trigonal warping
might be important for observation of weak localization
at energies much lower than 1 €V (see Sec. V.B).

The solution of the eigenproblem Hgl|y) = E|y) is
easily obtained by recognizing its formal equivalence to
that of a real spin in a magnetic field (Castro Neto et al.,
2009), with the wave function reading

1 [ e—ib(k)/2

) = 5 ( L pi0k) /2 ) P = ug (k)™ (4)

and (k) = arctan(k,/k;). Since the eigenproblem we
have just solved is formally identical to a spin one-half
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Figure 3 (Color online) At the K valley, electrons have pos-
itive helicity, h = 1, whereas at the K’ one, the helicity is
negative (Q = K’ — K represents the transferred momentum
when a scattering event between the valleys takes place). In
a head-on collision of the electron on a potential barrier, the
backscattered electron has to change its momentum from ¢
to —q. For such a head-on collision (taken here along the
z—direction), h is a constant of motion, with eigenvalue +1,
but backscattering would imply a modification of this eigen-
value to —1. This, however, cannot be, because h is a con-
served quantity, then the transmission probability through
the barrier, for such type of collision, has to be one. Thus,
backscattering is suppressed for intra-valley scattering events.
On the other hand, electrons in the K’ and K valleys have
opposite chirality, thus inter-valley backscattering can take
place (if the potential is short range), since in this case the
eigenvalue of h does not change sign. This discussion will be
of importance for Sec. V.B.

in a magnetic field, the spinors change sign upon the
transformation 6(k) — 0(k) + 2w, as dictated by the
spin-statistics theorem.

The first strinking consequence of the chiral nature of
electrons in graphene was the observation of the chiral
quantum Hall effect (Novoselov et al., 2005a; Zhang et al.,
2005), where the Hall conductivity is quantized as o, =
2e2(1+2n)/h, with n = 1,2, ... (Gusynin and Sharapov,
2005; Peres et al., 2006). The quantization rule follows
from the nature of the Landau levels of Dirac electrons
(Johnson and Lippmann, 1949; Nieto and Taylor, 1985;
Peres and Castro, 2007; Rabi, 1928) combined with the
existence of the two valleys in graphene.

The application of the chiral quantum Hall effect to
metrology, in defining the resistance standard (Delahaye
and Jeckelmann, 2003), has clear advantages over the
usual quantum Hall effect in the 2D electron gas, since
the same experimental accuracy on the quantization of
the Hall resistance can be achieved at higher tempera-
tures (Giesbers et al., 2008; Poirier and Schopfe, 2010;
Tzalenchuk et al., 2010). At a temperature of 300 mK,
the accuracy of the quantum Hall resistance quantiza-
tion has been shown to be of 3 parts per billion, in
monolayer epitaxial graphene (Poirier and Schopfe, 2010;
Tzalenchuk et al., 2010). Also, the quantum Hall ef-
fect in graphene has been observed at room tempera-
ture (Novoselov et al., 2007) and recently in epitaxial
graphene as well (Wu et al., 2009), which can be pro-
duced in quasi-free standing form (Riedl et al., 2009).

Electron-electron interactions play no role in the half-
integer or chiral quantum Hall effect. On the other hand,
they are a crucial ingredient in the explanation of the
fractional quantum Hall effect. During the first few years
of graphene research, effects of electron-electron interac-
tions have been elusive, but the recent observation of the
1/3 fractional Hall plateau (Bolotin et al., 2009; Du et al.,
2009; Morpurgo, 2009), brings them to the forefront this
active research area. It is a remarkable experimental fact
that the fractional quantum Hall effect in graphene can
be observed at magnetic fields of 2 T and persists up to
a temperature of 20 K, for fields of 12 T.

Using the results introduced above, we proceed to the
discussion of several topics on electronic transport in
graphene.

I1l. CONDUCTIVITY AND CONDUCTANCE OF
GRAPHENE AT THE DIRAC POINT

As discussed in Sec. II, undoped graphene has its
Fermi energy at the Dirac point, where the material has
a vanishing density of states. This would naively sug-
gest that the conductivity of undoped graphene should
be zero. However, experiments challenge ones intuition
and show a finite conductivity at zero energy (i. e., at
the neutrality or Dirac point). An example of a conduc-
tivity curve of graphene is shown in Fig. 8, where we see
that the experimental conductivity minimum, at V, = 0,
is of the order of ~ 4e?/h (horizontal dashed line). Val-
ues of the conductivity minimum for several devices are
given in Fig. 5. The existence of a conductivity mini-
mum in graphene is also referred to as quantum-limited
resistivity.

A. Sources of disorder

As in any other metallic system, the electronic mobility
in graphene is hindered by disorder. The sources of dis-
order in graphene can vary, and can be due to adsorbed
atoms (for example hydrogen) or molecules (for example
hydrocarbons), extended defects, such as folded regions
(wrinkles), vacancies, and topological defects [such as of
Stone-Wales type, specially at the edges (Huang et al.,
2009)]. Interestingly enough, in some particular cases, an
extended defect in graphene can act as a 1D conducting
channel (Lahiri et al., 2010). In addition, the system has
a certain amount of rippling (random strain) (Katsnelson
and Geim, 2008; Meyer et al., 2007), so it is not a perfect
planar lattice, and it has rough edges, which can exhibit
scrolling (Fogler et al., 2010). We should note that, al-
though the formation of vacancies is energetically unfa-
vorable, the existence of adatoms and adsorbed hydrocar-
bons is likely, originating from the isolation method and
exposure to the environment. Such adsorbed atoms can



be imaged by transmission electron microscopy (Meyer
et al., 2008). Additionally, the electrostatic random po-
tential at the surface of the silicon-oxide substrate acts as
an additional scattering source, originated from charged
impurities (Zhang et al., 2009).

To a good practical approximation, an adsorbed hy-
drocarbon, when binding covalently to the 2p, orbital of
a given carbon atom of graphene, effectively removes the
2p, electron from participating in the electric transport,
by forming a o—bond. Since the electron wave-function
is spatially confined, the impurity can effectively act as
a vacancy. This latter type of defects induce resonant
states at, or close to, the Dirac point (see below).

Another way of looking at this problem is to con-
sider that, say, an hydrogen atom when binding cova-
lently (Katoch et al., 2010) to a carbon atom in graphene
changes locally the hybridization from pure sps to par-
tially sps and creates, as before, a resonant impurity at
that site (Castro Neto and Guinea, 2009; Robinson et al.,
2008). In this latter sense, both local potentials and
adatoms have a similar effect (Stauber et al., 2008a). The
change of the chemical bonds from pure sps to partially
sp3 adds an additional scattering effect originated from
the enhancement of spin-orbit coupling (Castro Neto and
Guinea, 2009).

Combined with charged scatterers, the resonant scat-
tering mechanism is currently ascending as one of the
dominant processes limiting the electronic mobility in
graphene (Ni et al., 2010).

The resonant scattering mechanism is easy to under-
stand by considering a simple model. We add to the
Hamiltonian (1) a contribution from an impurity bind-
ing covalently to a carbon atom at site R,, = 0. Such a
situation adds to the Hamiltonian a term of the form
Hys = (V|ad)(A,0| + H.c.) + eaqlad){ad|, where V is
the hybridization between the adatom (or a carbon atom
of a hydrocarbon molecule) and a given carbon atom of
graphene, €,q is the relative (to graphene’s carbon atoms)
on-site energy of the electron in the adatom, and |ad)
is the ket representing the state of the electron in the
adatom. Taking the wave function to be of the form |¢) =
Y onlA(Ry)|A Ry,) + B(R, + 62)|B, R, + 02)] + Cadlad),
the Schrédinger equation at the site R,, = 0 reads

EA(0) — VCaa = —t[B(8) + B(82) + B(83)], (5)
(E - Ead)cad = VA(O) . (6)

Solving for C,q, we obtain

2
~B(5) + B(&:) + B(6;)] = BA®) — w2 (7)
— €ad
The resonant effect is included in the last term of Eq.
(7), which represents a local potential of the form Veg =
V2/(E — €aa). Equation (7) contains two interesting
regimes: (i) when |E| < €,q4, the adatom acts as an ef-
fective local potential of strength gegr = V2/€aq. If gogr is

large, the adatom acts roughly as an effective vacancy; a
vacancy is characterized by gegr = 00; (ii) when F = €,q,
the hopping from the carbon atom at position R, = 0
to its nearest neighbors is suppressed [effectively we have
t = (E — €aq)t], and the adatom acts roughly and again
as an effective vacancy at energies close to €,q. Therefore,
either by inducing an effective local potential or by sup-
pressing the nearby hopping we see that such mechanism
increases the likelihood of an electron being trapped for a
longer time in the vicinity of the adatom, thus generating
a resonant state.

If €aq ~ 0, then the resonant states will be exactly
at the Dirac point, and this is expected to happen for
adsorbed hydrocarbon molecules. It is then the job of
quantum chemical calculations to determine the value of
the parameters €,4 and V' (Robinson et al., 2008; Wehling
et al., 2009, 2010). Recently obtained typical values are
V ~ 2t ~ 56V and €,q9 ~-0.2 (Wehling et al., 2010), lead-
ing to geg ~ 100 eV, a rather strong on-site potential.
Finally, the calculation of the transport properties for
such a model can be performed using the T'—matrix ap-
proach (Peres et al., 2007a, 2009b; Robinson et al., 2008).
Its derivation is elementary, using the simple model de-
scribed above. It is well known that the T matrix for
a local potential of intensity vy reads (Bena and Kivel-
son, 2005; Peres et al., 2006) T(E) = vo[1 —voGr(E)] L.
Then, for an adatom we must have

Vest V?
T(E) = = = _ . (8
( ) 1—‘/;HGR(E) E—Sad—VQGR(E) ( )
Using Eq. (8), it is simple to compute the transport

relaxation time 7(ep) at the Fermi energy ep using
h/7(er) = mn;|T(er)|>p(er), where n; is the concen-
tration of impurities per unit cell. From the knowl-
edge of 7(er), the conductivity of graphene follows
from Boltzmann’s transport equation (Ziman, 1979) (see
Sec. VLC). The function Gg(E) reads: Gr(E) =
ED~2In(E?/D?) —in|E|/D?, with D ~ 3t.

It has been theoretically predicted that, in addition
to their scattering effect, monovalent adatoms in diluted
concentrations can create a gap in graphene’s spectrum,
by a mechanism called sublattice ordering (Cheianov
et al., 2010). Superlattices of vacancies (or adatoms)
have the same effect (Martinazzo et al., 2010).

Midgap states (Jackiw, 1984) are also produced by
a model of pure vacancies (Pereira et al., 2006, 2008),
as shown in Fig. 4, and if a nearest neighbor hopping
(' ~0.4 eV) is included, the resonant states, while no
longer at exactly the Dirac point, remain at energies close
to it (Pereira et al., 2006, 2008).



B. Calculation of the conductivity minimum for bulk graphene
due to disorder

It is certainly difficult to model all the different types
of disorder just mentioned in a single calculation. We
for the moment ignore this complexity and assume that
electrons in graphene move in a random potential of the
form V(r) = v Zg;l d(R,, —7), where the position vec-
tors R, are random, vy is the strength of the potential,
and N; is the number of scattering centers. This model
can be seen in the worst case scenario as zero order de-
scription of the effect of impurities in graphene, although
it has recently been used widely (Ando and Nakanishi,
1998; Ostrovsky et al., 2006, 2007; Peres et al., 2006;
Suzuura and Ando, 2002; Zheng and Ando, 2002). In
fact, for large vy this model mimics the resonant scat-
terers physics. In what follows, we determine the conse-
quences of the above random potential on the minimum
conductivity of graphene.

The usual approach to the calculation of the conduc-
tivity uses the Kubo-Greenwood formula, obtained from
linear response theory (Mahan, 2000). The calculation
proceeds in two steps (Peres et al., 2006; Shon and Ando,
1998; Zheng and Ando, 2002): first, the single parti-
cle Green’s function in the presence of the disordered
potential is computed in a self-consistent manner; sec-
ond the current-current correlation function is obtained
in terms of the single particle Green’s function. This
method is known as the self-consistent Born approxima-
tion (SCBA). The final result of such calculation is a
simple expression for the conductivity o(er) at the Fermi
energy reading

4e?

EK(EF) ) (9)

oler) =
where K(er) is a dimensionless function (Peres et al.,
2006; Stauber et al., 2008a); Eq. (9) holds true both at
finite vg or when vy — 0o; from here on we consider this
latter regime only. Since we describe the transport at the
Dirac point, we need the value of K(er) at zero chemical
potential, which turns out to be K(0) ~ 1. This result
is essentially insensitive to the concentration of impuri-
ties n; = N;A./A (A is the area of the sample and n;
is the concentration of impurities per unit cell). The be-
havior of K(0) as function of n; is shown in the inset of
Fig. 4; as stated, its value is 1. We have, therefore, ob-
tained a universal value for the conductivity minimum of
graphene o, = 4€?/(mh) independent of the impurity
concentration, even if the concentration of impurities is a
small number. Many have reached the same result using
different approaches (Dora et al., 2008; Ziegler, 2007). A
question naturally arises: How does one understand the
result given by Eq. (9)? To that end, we compute the
density of states of disordered graphene.
We have compared a calculation of the density of states
as given by the SCBA with that given by an exact nu-
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Figure 4 (Color online) Numerically exact density of states
(solid lines), in the limit vy — oo, and the corresponding
SCBA calculation (dashed lines), for the same impurity con-
centrations n;. The maximum of the SCBA density of states,
at E = 0, follows the rule p(E) ~ 0.2,/n; eV~'. Inset: The
function K(0) is plotted for a range of impurity concentra-
tions spanning three orders of magnitude. (The numerically
exact calculations are courtesy of Vitor M. Pereira.)

merical method (Pereira et al., 2006, 2008). In Fig. 4
we show two sets of calculations for the density of states
close to the Dirac point (E ~0). Two features are clear
from these calculations. First, the disorder only affects
the DOS close to the Dirac point, rendering it finite; sec-
ond the SCBA introduces a smoothing of DOS around
E ~0, but its value essentially agrees with the exact one,
except at energies very close to E = 0. The finite den-
sity of states close to the Dirac point is due to the wings
of the resonant states forming at zero energy. The same
behavior is seen in the local density of states around a
single vacancy and in the corresponding scanning tun-
nelling microscopy current (Peres et al., 2007a, 2009b).

The above comparison shows that the SCBA gives a
reasonable description of the density of states close to
the Dirac point, and this gives us a certain amount of
confidence in the calculation of the conductivity o(er)
based on the same approximation. A comment on the
behavior of the numerical DOS close to zero energy is in
order: the sharp feature at precisely £ = 0 seen in the
exact numerical solution arises from the presence of zero-
energy quasilocalized modes, induced by the vacancies in
the lattice (Pereira et al., 2006, 2008). These localized
states are clearly not captured by the SCBA.

In short, the finiteness of the conductivity at the Dirac
point is a consequence of the finiteness of the DOS at
E ~0 due to disorder, even when the concentration of im-
purities is small, since K (0) is essentially constant over
several orders of magnitude of impurity concentration.
Furthermore, there is a strong criticism in the literature
regarding the application of the SCBA approach to de-



scribe the physics at ep ~ 0 (Aleiner and Efetov, 2006),
but not at finite ep, as long as weak localization effects
are not important (see Sec. V.A).
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Figure 5 (Color online) The conductivity of graphene at
the neutrality point. Left: conductivity minimum from the
Manchester’s group [Data from (Geim and Novoselov, 2007)].
Right: Conductivity minimum from the Columbia’s group
[data from (Tan et al., 2007)] as function of the mobility
of the devices. In both panels, several devices with differ-
ent mobilities ;1 were measured. The mobility is defined as
1 =o(er)/(en), where n is the electron density, and is a mea-
sure of the amount of disorder in the system. The constant go
stands for twice the quantum of conductance, 2¢*/h ~0.078
(kQ)™!, and is represented by the dashed line. The dash-
dotted line represents the value ¢ = omin, Obtained in Sec.
I11.B.

If one considers that the scattering centers are charged
impurities, the conductivity of graphene, at the neu-
trality point, acquires the form (Fogler, 2009) opin =
(e2/h)eL with ¢ = 0.5 £ 0.05 and £ the solution of
the transcendent equation £ = 1n(£/4agff), where a‘;ﬂ
is the effective fine structure constant of graphene (see
Sec. IV.C). This result for the conductivity minimum is
different from that obtained for strong short-range scat-

terers.

Finally, the measured conductivity minimum, as shown
in Fig. 5, has the same order of magnitude as that given
by Omin, but is larger than this value and has a finite
variance. It is important to note that the assessment of
the transport properties of graphene at the neutrality (or
Dirac) point can be strongly affected by the used probe
geometry, the use of invasive contacts, or the lack of ef-
fective control on the sample’s homogeneity (Blake et al.,
2009; Connolly et al., 2010). These effects are responsible
for the differences in the two sets of measurements given
in Fig. 5.

C. Calculation of the conductivity minimum for pristine
graphene ribbons

Graphene ribbons have been produced by different
methods: etching of exfoliated graphene (Han et al.,
2007), using chemical reactions (Jiao et al., 2010; Li
et al., 2008a), unzipping carbon nanotubes (Kosynkin
et al., 2009), and tailoring them by scanning tunneling
microscope lithography (Tapaszto et al., 2008). Much
of the experimental challenge regarding the production
of nanoribbons is related to the discovery of an experi-
mental procedure allowing, in a systematic way, the en-
gineering of ribbons with fixed widths and perfect edges,
together with a detailed characterization of their trans-
port properties (Han et al., 2010).

The previous section addressed the problem of the con-
ductivity minimum of graphene from the point of view of
disorder. Another relevant problem is that of the trans-
port properties of pristine ribbons, where electrons can be
in the ballistic regime. The problem we are about to dis-
cuss is a rather interesting one, since electronic transport
will proceed via evanescent modes, whereas in normal
metals charge transport is associated with propagating
states.

We show below, and also in this case, the system has
a finite conductivity, which in some conditions has the
same value we found in Sec. III.B, although the phys-
ical mechanism is different. The approach to the cal-
culation of the conductivity of ribbons in the ballistic
regime uses Landauer’s formalism (Nazarov and Blanter,
2009), where the relevant quantity to be computed is
the conductance of the system, which can formally take
into account quantum interference effects, absent from
the elementary Boltzmann’s transport theory (but see
Sec. V.A).

The measurements in bulk metals of dc-transport prop-
erties allows one obtain directly the resistance R of the
sample, from which the linear conductance G = 1/R can
be determined. In bulk metals, we can define a mate-
rial intrinsic quantity, the conductivity . Taking the
example of a 2D system, we have ¢ = GL,/L,,, where
L, and L, are the longitudinal and transverse dimen-
sions of the bulk sample, respectively. The conductivity
is a well-defined quantity whenever the system is large
enough, such that the electronic current is homogeneous
and insensitive to variations of the impurities’ position
from sample to sample. In this regime the transport is
well described by Boltzmann’s transport equation. The
validity of this equation assumes that (Ferry et al., 2009):
(i) the scattering process is local in space and time, (ii)
the scattering is weak and the electric field is small, and
(iil) the de Broglie wavelength of the electron at the Fermi
surface is much smaller than the distance between impu-
rities. The systems amenable to such description are said
to be self averaging. (In 2D, both ¢ and G have the same
units, 1/9.)



When the system’s size is reduced, we enter the realm
of mesoscopic physics. It is instructive to compute the
order of magnitude of the number of impurities in a
graphene flake with an area of A = L2, and L = 0.25
pm (see Sec. I). Taking N;/A = 5 x 10*! ecm™2 as a
typical impurities’ concentration in graphene (see Sec.
IV.B for understanding the origin of this number), we
obtain N; ~ 3 x 10? impurities. The typical distance
between impurities is d ~ /A/N; ~0.02 pm; a typi-
cal Fermi wave number for the electrons is graphene is
kp ~0.003 um~1! (see Sec. IV), from which follows that
de Broglie wavelength of the electrons at the Fermi sur-
face is Ap = 27 /kp ~0.02 pm, making d and A\r of the
same order of magnitude. In this regime, the current be-
comes non-homogeneous and sensitive to the position of
the impurities in the material. Then, the conductance
shows fluctuations from sample to sample, and the con-
cept of conductivity loses its meaning. Metallic systems
such as graphene are considered highly conducting but
disordered metals. The behavior of the electrons becomes
sensitive to the metal contacts, surfaces, and interfaces
as well and quantum mechanical interference effects be-
come important. Due to these interference effects, the
transport properties of mesoscopic systems in the ballis-
tic regime are better assessed by the Landauer’s formal-
ism (Ferry et al., 2009).

In calculating the conductance of pristine graphene rib-
bons, we assume a ribbon of length L, and width L, con-
nected to heavily doped (say, with electrons) graphene
leads (see Fig. 10 for the geometry of the device). The
doped graphene leads will act as electron reservoirs, and
the doping is modeled by gating the leads at a potential
Vg.

Since the leads are gated, there is a mismatch between
the longitudinal momentum k, of the electrons in the
leads and in the central part of the device, where the
undoped graphene ribbon lies; in the device electrons
have longitudinal momentum ¢,. The momentum k, is in
this case a conserved quantity. The problem is then that
of computing the transmission amplitude for an electron
coming from the left lead to emerge at the right one. The
energy of the electrons at the right and left leads is given

by E = —eVytup, [k2 + k%; in the central region the en-

ergy is given by E' = fvp,/q2 + k2. We further impose
periodic boundary conditions along the transverse direc-
tion, which gives k, = 2mn/L, with n = 0,£1,%2,....
Since we are interested in graphene’s transport properties

at the Dirac point, we have to consider the case of zero en-
ergy. For this energy, the solution of | /¢3 + k2 = 0 gives
gz = ik, and therefore the propagation of the electrons
in the central region proceeds by means of evanescent
waves.

The scattering problem requires writing the wave func-
tion on the left and right leads, and on the central region

(Katsnelson, 2006; Tworzydlo et al., 2006). In the left
lead, the wave function, up to a multiplicative factor of
ey reads

1 ikex 1 —ikyx
Yr(r) = (eiG(k) ) ettt ( _—it(k) ) e~ (10)

In the central region the wave function can be written as

Ye(r) = an < (1) ) e v b, ( (1) > ek (11)

Finally, in the right lead we have

1/JR(’I°) =1, < ei91(k) > etk (12)

The calculation of the transmission amounts to impos-
ing the continuity of the wave function at z = 0 and
r = L, and determining the transmission amplitude %,
from which the transmission associated to a given trans-
verse mode n is obtained as T}, = |t,|? (to each quan-
tized k, momentum corresponds a n transverse mode).
The final result for the total transmission at zero en-
ergy is (Katsnelson, 2006; Tworzydlo et al., 2006): T =
YouTn ~ > 1/cosh2(k:yLw). As stated, the conduc-
tance G is expressed in terms of the conductivity o as
G = 4e*T/h = oL,/L,. In the regime L,/L, > 1, cor-
responding to ballistic transport, we have T' ~ L, /(L,7),
and therefore 0 = oy, the same value obtained in Eq.
(9), due to disorder. We stress that, for graphene rib-
bons, only in the regime L, /L, > 1 is the conductivity
a well defined quantity, since only in this case is this
quantity independent off the aspect ratio of the ribbon.

The extension of this type of calculations to finite tem-
peratures is elementary, and it follows from the Lau-
dauer’s formalism as well. Such theoretical investiga-
tions were done and the results seem to be in qualitative
agreement with transport measurements made in high-
mobility suspended graphene (Miiller et al., 2009).

The conductance of ribbons, with aspect ratio
L,/L, > 1, was experimentally measured, and the value
0 = Omin was obtained (Danneau et al., 2008; Miao
et al., 2007) in agreement with the previous result. There
are, however, difficulties associated with measuring the
conductivity of graphene ribbons at the neutrality point
(Blake et al., 2009), since inhomogeneous samples tend
to overvalue the minimum of conductivity and two-probe
measurements are generally expected to undervalue it
(Blake et al., 2009). Due to these subtleties, there is some
reserve in the community (Blake et al., 2009) regarding
the measured conductances (Danneau et al., 2008; Miao
et al., 2007).

We note that the above result for o, being equal to
that computed in Sec. II1.B, has a different physical ori-
gin. The result obtained here is only valid in the regime
L,/L; > 1, when the system is in the ballistic regime.



However, one must recognize that the presence of the
evanescent modes in the above calculation produces a fi-
nite density of states at the Dirac point, precisely what
happens in the bulk disordered graphene calculation dis-
cussed in Sec. III.B. When the calculation just described
for graphene in ballistic regime (L, > L) includes the
effect of resonant scatterers, the conductance is corrected
by the value G = 40,y /7, per resonant scatterer (Titov
et al., 2010), that is, we have impurity-assisted tunneling
(Titov, 2007).

As a last comment, we note that the important top-
ics of edge disorder (Gallagher et al., 2010; Lewenkopf
et al., 2008; Mucciolo et al., 2009) and Coulomb block-
ade in graphene nanoribbons are not considered in this
Colloquium, since they have been considered elsewhere
(Dubois et al., 2009). A review on the effect of disorder
on the electronic transport in graphene nanoribbons is
also available (Mucciolo and Lewenkopf, 2010).

D. Puddles

We now address the fact that the model developed in
Sec. III.C for the conductivity of graphene at the Dirac
point is somewhat simplistic, since it assumes the possi-
bility to have graphene with exactly zero electronic den-
sity at £ = 0, the neutrality point.

The physics close to the Dirac point is different from
that at finite densities (to be discussed in Sec. IV) as sug-
gested by the data shown in Fig. 6. In Sec. IV we show
that the electronic density n can in graphene on top of
silicon oxide be externally controlled by a gate potential
V, and given by n ~ 7.2 x 10'% x V;, cm~2. According
to this equation, the electron density can be tuned all
the way down to zero by changing the gate potential.
However, in Fig. 6 we show that the absolute value of
the electron density never drops below its theoretically
predicted value for V, = 2 V. This experimental fact
hints for different physics close to the Dirac point, where
the system shows important charge-density fluctuations
caused by the random electrostatic potential due to sub-
surface charged impurities. We, however, stress that in
suspended annealed graphene the electronic density can
be made as low as ~ 108 cm™2, which corresponds to
about a single electron present in a micron size device.
Additionally, graphene’s topography shows corrugations,
which are probably due to roughness in the underlying
SiO4 surface and due to intrinsic ripples of the graphene
sheet.

As mentioned, the calculations in Secs. III.B and III.C
assume as the starting point that graphene is a perfectly
flat material, with null electronic density everywhere.
However, experiments using a scanning single-electron
transistor (Martin et al., 2008) found that the idealized
models of Secs. I1I.B and III.C do not hold. Those inves-
tigations (Martin et al., 2008) found undoped graphene

3x10"!

1x10"

electron density (1/cm2)

I
I
I
I
L L L L L L L PR - L
5 4 3 2 -1 0 1 2 3 4 5
gate voltage (V)

Figure 6 (Color online) Dependence of the absolute value of
electron density on the gate voltage V. In Sec. IV, we show
that the electron density n as function of the gate voltage
follows n = 7.2x10'°V, cm™2. Using this, the electron density
for V, = 3 V should be n ~ 2.2x 10" cm ™2 whereas for V, = 2
eV we should have n ~ 1.4 x 10"* cm™2. It is clear that for
V4 = 3 the electronic density is the predicted one; however n
never equals its predicted value for V; < 2 V. Note that the
vertical scale is logarithmic. (Data from M. Monteverde et al.
(Monteverde et al., 2010), courtesy of M. Monteverde.)

to be a non-homogeneous system, with electron and hole
puddles coexisting, with variations in the electronic den-
sity in the range n € [—1,1] x 10*! cm™2, which corre-
sponds to a spatial variation of the surface electrostatic-
potential in the range [—0.25,0.25] V, with a full width at
half maximum of 50 mV. The behavior shown in Fig. 6 is
an indirect signature of this experimental fact. The ex-
istence of puddles renders the descriptions of Secs. III.B
and III.C unsuitable.

Posteriorly, a scanning tunneling microscopy (STM)
study (Zhang et al., 2009) was able to provide detailed
information on the size and electronic density value of the
puddles. This study allowed one to characterize the pud-
dles with electron-density spatial resolution two orders
of magnitude higher than previous investigations (Mar-
tin et al., 2008). From the results of Sec. II, we can
write a relation between the electronic density and the
energy as n = E?/(mvZh?). Given the presence of the
puddles, the energy becomes function of position, as does
the electronic density. We thus have a relation between
the electronic density at the Dirac point and the energy,
reading

Ep(z,y)

1
v h? (13)

TL({E, y) =
The STM allows the determination of E%(z,y), from
which n(z,y) is obtained. These studies revealed that the
average lateral dimension of the puddles is of the order
of ~20 nm [a theoretical study (Rossi and Das Sarma,
2008) obtained a similar value|, and that each of these
puddles contains, on average, a charge of 0.3 & 0.2 elec-



tron. A Kohn-Sham theory of the carrier-density dis-
tribution of massless Dirac fermions in the presence of
arbitrary external potentials has also predicted the exis-
tence of the puddles (Polini et al., 2008). It was experi-
mentally determined that the topographical corrugations
in graphene are about an order of magnitude smaller
than the puddles’ size, and therefore cannot justify their
origin. Indeed, it was established that individual sub-
surface charged impurities are responsible for the forma-
tion of the puddles. It was estimated that the charge
fluctuations associated with a single of those impurities
is of the order of 0.07 & 0.03 electron. There is, there-
fore, a consensus that the physics of the puddles is due to
charged scatterers. The origin of such charged scatterers
is likely to be due to chemical species physisorbed onto
graphene, which have been trapped in between the sub-
strate and the graphene sheet during fabrication process
of the device.

From a theoretical point of view, graphene in the pud-
dles regime can be thought as a random resistor net-
work (Cheianov et al., 2007). Since Klein tunneling
(Beenakker, 2008) is exponentially suppressed if the bar-
riers are not perfect potential steps (Cheianov and Fal’ko,
2006), a large electronic transmission will not occur, ex-
cept for perfectly normal incidence [things are markedly
different for magnetic barriers as opposed to electrostatic
ones (Martino et al., 2007)]; the essential physics relating
the smoothness of potential barriers to the suppression
of Klein tunneling was studied in the early days of rel-
ativistic quantum mechanics, following a suggestion by
Bohr (Christillin and d’Emilio, 2007; Sauter, 1931). The
validity of the random resistor model depends on the
assumption that transport is incoherent at scales larger
than the puddle sizes. Due to Klein tunneling, massless
Dirac electrons cannot also localize (Anderson localiza-
tion) (Cheianov and Fal’ko, 2006; Katsnelson et al., 2006;
Lewenkopf et al., 2008; Mucciolo et al., 2009) under the
effect of the random electrostatic potential (long-range
scatterers) creating the puddles; this accounts for the
finite conductivity of graphene at the Dirac point. As
discussed in Sec. V.B, long range scatterers preclude the
possibility of weak localization effects, and since the elec-
trostatic potential variations can be attributed to charged
impurities, the description of transport at the Dirac point
based on such type of scatterers seems to be the correct
approach (Adam et al., 2007).

We note that intra-cone backscattering (see Sec. V.B)
has been shown to be present in graphene (Zhang et al.,
2009), which in view of Klein tunneling is a rather in-
teresting experimental fact. Finally, when strong inter-
valley scattering is present, electrons in graphene can lo-
calize.
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IV. THE TRANSPORT PROPERTIES OF GRAPHENE AT
FINITE ELECTRONIC DENSITY

In the previous section we discussed STM experiments
supporting the theory (Polini et al., 2008; Rossi and Das
Sarma, 2008) that charge scatterers dominate the elec-
tronic transport of neutral graphene. In the ensuing sec-
tions, we discuss transport in doped graphene, analyzing
the role that resonant and charged scatterers play in this
regime.

A. The dependence of the conductivity on the gate voltage

We now discuss the dependence of the conductivity
of graphene on the gate voltage, considering two differ-
ent types of scatterers: resonant scatterers (strong short-
range scatterers) and charged impurities. We shall not
discuss here scattering from random strain (Katsnelson
and Geim, 2008), which we defer to Sec. IV.D.

The electronic density in graphene can be controlled by
the back-gate of a device engineered as a plane capacitor
— a field effect transistor, made of silicon oxide (relative
permittivity e = 3.9), with a thickness b of ~300 nm.
According to elementary electrostatics, the electric field
in the dielectric is given by Egap = en/(ep€), with n the
surface electronic density of graphene, which acts as one
plate of the capacitor. The gate potential is related to
the electric field by Ec.p = V,/b, and so the density of
induced charge is n = €€V /(eb). Inserting the numerical
values of € and b, we obtain n = aV,, with a ~ 7.2 x 1019
V~l.cm™2. The Fermi momentum kp is obtained via
kr = \/anVy, a result derived by counting the states in
momentum space up to kp.

Ever since the original paper on graphene (Novoselov
et al., 2004), demonstrating the ambipolar field effect, it
became clear that the conductivity of graphene depends
on the gate voltage in some circumstances roughly as
o(er) o Vg; this is shown in Fig. 8, after some replotting
of the data (solid curve on the right panel). Experiments
also show conductivities presenting a sub-linear behav-
ior; see Figs. 7 (solid curves) and Fig. 8 (dashed curve
on the right panel). Mobilities, a measure of the qual-
ity of the electronic transport (see caption of Fig. 5 for
the definition of the mobility p), as high as u ~ 1 x 107
cm?-V~1.s71, have been indirectly measured by Landau
level spectroscopy (Li and Andrei, 2007; Li et al., 2009)
of graphene flakes on top of graphite (Neugebauer et al.,
2009), raising the question of how perfect can graphene
be (Neugebauer et al., 2009). Ultimately, the answer re-
quires the identification of the limiting sources of elec-
tronic scattering in graphene (among those listed in Sec.
IIL.A).

An approach combining Fermi’s golden rule, Boltz-
mann equation, the Coulomb potential created by
screened charged impurities, and a random phase approx-



imation calculation of the dielectric function of graphene
(Shung, 1986; Wunsch et al., 2006) gave a first good ac-
count of the observed o(ep) x V5 behavior for graphene’s
conductivity (Adam et al., 2008, 2007; Hwang and Das
Sarma, 2008). When graphene was doped with potassium
(Chen et al., 2008), the measured conductivity agreed
with the theory (Adam et al., 2007), as expected. [We
note that the conductivity of graphene covered by metal
clusters it is still far from being fully understood (Pi
et al., 2009).]

Using the same approach for a delta-function potential
(Adam et al., 2008, 2007; Hwang and Das Sarma, 2008),
the prototype of a short range scatterer, the computed
conductivity is a constant number, independent of the
gate voltage and of the dielectric constant of the medium.
In what follows, we argue that this result is inconsis-
tent. We note that an attempt to solve the Lippmann-
Schwinger equation for a delta-function potential showed
that this problem is ill defined (regularization of the prob-
lem is required in order to have a well-defined problem;
as usual, this procedure introduces a length scale. This
length scale is interpreted as the range of the short-range
potential), and therefore the first Born approximation
cannot be trusted. Indeed, exact numerical calculations
show that the first Born approximation is inadequate
to describe the role of strong short-range scatterers in
graphene (Klos and Zozoulenko, 2010). At the same
time, a numerical calculation using the Kubo-Greenwood
formalism (Nomura and MacDonald, 2007) showed that
o(er) x V, for charged impurities (the level broadening
due to scattering was however introduced by hand). The
same work (Nomura and MacDonald, 2007) also showed
that short-range impurities do produce a conductivity
that depends on the gate voltage, but in a sub-linear
manner. Also, previous calculations of o(er) based on
the SCBA showed that strong short-range scatterers, de-
scribed by delta-function potentials, do give rise to a
gate-voltage-dependent conductivity (Peres et al., 2006;
Shon and Ando, 1998), a result embodied in Eq. (9). A
similar conclusion was obtained from a semi-classical ap-
proach taking into account the chiral nature of massless
Dirac fermions (Trushin and Schliemann, 2008).

The two different results — those based on Fermi’s
golden rule, as opposed to those obtained from the
SCBA, for strong short-range potentials — are easily un-
derstood: the SCBA is a non-perturbative method, suit-
able for strong short-range potentials, which takes into
account the large deviation of the wave function, within
the potential range, from the usual plane wave used in
the first Born approximation, as pointed out by Peierls
(Peierls, 1979): indeed, the first Born approximation pro-
duces a large scattering cross section, whereas the exact
calculation gives a small value. Since the conductivity
depends on the scattering (transport) cross section, an
incorrect determination of it will give, at least, an incor-
rect value for the impurity concentration in the material.
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Unfortunately, the reliance on the result based on Fermi’s
golden rule is widespread in the community and is being
used to fit the experimental data (Hong et al., 2009), at
the same time that the resonant scattering mechanism
points toward the presence in the material of strong lo-
calized potentials (see Sec.IIL.A).

If it is certain that some amount of charged impurities
is present at the silicon oxide—graphene interface (respon-
sible for the electron and holes puddles), it is no less true
that experiments do not rule out other sources of scat-
tering. Indeed, recent experiments showed that both ad-
sorbed hydrogen and vacancies led to conductivity curves
indistinguishable in form from those of pristine graphene
(Chen et al., 2009; Elias et al., 2009). The presence of
these short-range scatterers — vacancies and hydrogen — is
signaled by a significant Raman D—band intensity (Chen
et al., 2009), since they couple electron states from the
K and K’ valleys (see Sec. V.B). By the same token, the
presence in pristine graphene of such D—band would be
the signature of the presence of short-range scatterers in
the material. Detailed Raman investigations in pristine
graphene have been carried out (Ni et al., 2010), showing
that, indeed, a small D—peak is present in the Raman
spectrum of the pristine material. Subsequent transport
experiments (Ni et al., 2010) support strong short-range
scatterers as the limiting source of scattering in graphene.

An experiment especially designed to address the
importance of charged impurities used devices with
dielectrics having high permittivity constants (Pono-
marenko et al., 2009). These experiments did not ex-
clude completely the contribution of this type of impu-
rities, but did challenge the idea that charged impurities
are the main source of scattering in graphene.

On the other hand, in another set of experiments, an
apparently similar investigation was done, but with ice
layers on top of graphene and reaching a different conclu-
sion. It was argued that the results were consistent with
charge scattering (Jang et al., 2008). There is, however,
at least one difficulty with the arguments developed in
that work: the number of ice atomic layers was at the
most six and therefore can hardly be considered an infi-
nite dielectric made of ice; the lines of the electric field
are essentially in the vacuum (Silvester and Ferrari, 1996;
Sometani, 2000).

A number of questions can still be asked (Monteverde
et al., 2010; Ponomarenko et al., 2009; Schedin et al.,
2007):

1. In a study of graphene’s sensitivity to gases
(Schedin et al., 2007) (NOg, H,0, and iodine acting
as acceptors, whereas NH3, CO, and ethanol act-
ing as donors), chemically-induced charge-carriers
concentrations as large as 50 x 10'° cm™? were

achieved. The induced chemical doping shifted

only the neutrality point of the conductivity curves,

without any significant changes either in the shape



of those curves or in the mobility of the devices; the
estimated concentrations of added charged scatter-
ing centers was high as 102 cm=2 (Schedin et al.,
2007). Why is it that no appreciable changes in
the mobility were measured in these experiments?
[One possible way out can be envisioned: the chem-
ical dopants may cluster, and this would reduce the
effectiveness of their scattering effect (Katsnelson
et al., 2009).] We also note that the definition of the
mobility used in the analysis of the data (Schedin
et al., 2007) has been criticized in the literature
(Hwang and Das Sarma, 2007).

2. In a study designed to test the prediction (Hwang
and Das Sarma, 2008) of the charge scattering
model for the ratio of the transport scattering time
7 and the elastic scattering time 7, for both mono-
layer and bilayer graphene, the experiments found
disagreement between the predicted behavior and
the measured data, for both graphene systems. The
measured deviations were found to be stronger for
bilayer graphene (Monteverde et al., 2010). Fur-
ther, it was found that the measured data agree
with the resonant scattering mechanism. How to
reconcile this set of measurements with models ex-
plaining the mobility of both monolayer and bilayer
graphene based on the charge scattering mechanism
(Zhu et al., 2009)7 [We mention that Monteverde’s
et al. results must be confronted with those of a
similar experiment (Hong et al., 2009), reaching dif-
ferent conclusions.]

3. Since screening is strongly dependent on the value
of the permitivity e of the surrounding medium,
why is the mobility almost insensitive to changes of
this parameter? For example, € for ethanol changes
from 25 to 55 as the temperature drops from 300
K down to ~160 K, but an experiment done in
ethanol showed no variation of graphene’s mobility.
We, however, note that in some experiments (Pono-
marenko et al., 2009) a certain amount of variation
in the mobility was measured in some devices upon
changing the dielectric constant. This result does
show that charged impurities play some role as scat-
tering centers but apparently not the limiting one.

The answers to the above questions remain debatable
to some extent. The clarification of some of these issues
could be taken to an ultimate test using a solid dielectric
with a high relative permittivity. It just happens that
strontium titanate (SrTiOs) has a relative permittivity
of about 10,000 below T" = 50 K, which suddenly drops
to 300 when the temperature rises above 50 K. A device
using such a dielectric would produce a dramatic change
of the mobility upon a drop in temperature below 50 K.

If we now refocus our attention on the role of strong
short range scatterers, we recall that both the linear
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and sub-linear behaviors can be accommodated within
a model based on what is now called resonant scatter-
ers dominated conductivity, giving rise to mid-gap states
(Basko, 2008; Robinson et al., 2008; Stauber et al., 2007;
Wehling et al., 2009, 2010), plus the additional effect of
charged impurities, which, however, do not play the cen-
tral role. On the other hand, the simplest model based
on short range scatterers, in which the effect of charged
impurities is ignored, does not account for the observed
dependence of the mobility on the dielectric constant of
the device, which has been shown experime