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We study the topological edge plasmon modes between two “diatomic” chains of identical plas-
monic nanoparticles. Zak phase for longitudinal plasmon modes in each chain is calculated analyt-
ically by solutions of macroscopic Maxwell’s equations for particles in quasi-static dipole approx-
imation. This approximation provides a direct analogy with the Su-Schrieffer-Heeger model such
that the eigenvalue is mapped to the frequency dependent inverse-polarizability of the nanoparticles.
The edge state frequency is found to be the same as the single-particle resonance frequency, which
is insensitive to the separation distances within a unit cell. Finally, full electrodynamic simulations
with realistic parameters suggest that the edge plasmon mode can be realized through near-field
optical spectroscopy.

I. INTRODUCTION

Topology band theory has explained many important
electronic phenomena in condensed matter physics, like
quantum hall effect, topological insulators, and edge
states of 2D graphenes1–5. Apart from electronic sys-
tems, the theory has recently enriched the physics of
some classical photonic systems6–11. It turns out that
classical topological modes can also be supported in plas-
monic systems in the nanoscale12. Recently, it is found
that topological Majorana-like plasmon modes can be
supported in a single chain of plasmonic nanoparticles13

even though the free-space environment is a pass band
for photons14. However, the toy model in the eigenvalue
problem of Ref.13 employed the pole approximation with
several fitting parameters.

One-dimensional chains of plasmonic nanoparticles
have been intensively studied in recent years because
of their abilities of guiding and confining light in the
nanoscale15–18 using less materials as compared to pho-
tonic crystals. The guided modes in chains of plasmonic
nanoparticles are due to the coupling of localized plas-
mons among plasmonic nanoparticles. In that sense,
each plasmonic nanoparticle plays a role of an “atom”
supporting nearly localized “orbitals” for photons. If we
consider a dimer made of two plasmonic nanoparticles
as a unit cell, an array of these dimers can be consid-
ered as a “crystal” domain (simply called a “diatomic”
chain). Here, we study the topologically protected local-
ized plasmon modes formed between the two domains.
The Zak phase and the edge mode frequency in “di-
atomic” plasmon chains are studied analytically with the
Drude material model and the quasi-static dipole approx-
imation for spherical nanoparticles, which is based on the
macroscopic Maxwell’s equations and is widely accepted.
We show that this approximation in classical electrody-
namics provides a direct analogy with the Su-Schrieffer-
Heeger (SSH) model19,20 for electrons except that the
eigenvalue is mapped to the inverse-polarizability of in-
dividual nanoparticles. Without any pole approximation
of the polarizability, we find that those localized plas-

monic modes are topologically protected and the mode
frequency is insensitive to the separation distances within
a unit cell. The edge state properties are further studied
by full electrodynamic simulations of the plasmon en-
hanced photon emission rate using realistic parameters,
which suggests a feasible way to realize the topological
plasmon mode21 through near-field optical spectroscopy.
The paper is organized as follows. We first describe our

eigenvalue problem for the plasmon modes and the map-
ping of the eigenvalues to the mode frequencies in Section
IIA. Then, a brief description of the calculation and in-
terpretation of Zak phase for the plasmonic “diatomic”
chain is given in Section II B. The numerical and analyt-
ical solutions for the plasmonic edge mode are provided
in Sections III. Results of full dynamic simulations are
discussed in Section IV.

II. PLASMONIC DIATOMIC CHAIN

We start by calculating the plasmon band dispersion
of an infinite “diatomic” chain of identical plasmonic
nanoparticles (see Figure 1). As long as the nanopar-
ticles are not too close together, we can model the elec-
tromagnetic response of the n-th nanoparticle by an elec-
tric dipole moment pn. The dipole moments satisfy the
self-consistent equation 22,23

α−1pn =
∑

m 6=n

Gnmpm, (1)

where α is the polarizability of one nanoparticle and
Gnm is the dyadic Green’s function24 representing the
coupling between the nth and the mth dipole moment.
Although Eq. (1) only forms a set of self-consistent equa-
tions for classical electromagnetic waves without showing
the Hamiltonian, we can construct a close analogy with
known electronic models. Here, we first ignore the long-
range couplings and retardation effect and only consider
the nearest-neighbor coupling. There are transverse (xy
component) and longitudinal mode (z component) in this
one-dimensional chain system. It has been shown that
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the nearest neighbor approximation is pretty good in the
longitudinal case22 because it is orthogonal to free trans-
verse photon mode propagating in the same direction.
For the longitudinal modes, the coupled dipole equation
is reduced to:

α−1pn =







2
4πǫ0

[

pn−1

(d−t)3
+ pn+1

t3

]

, for n is even

2
4πǫ0

[

pn−1

t3 + pn+1

(d−t)3

]

, for n is odd
, (2)

where ǫ0 is the permitivity of free space, t and d are geo-
metrical parameters defined in Fig. 1. It should be noted
that all nanoparticles have the same electric dipole polar-
izability α(ω), which depends on the angular frequency
ω.

A. Eigenvalue problem

Applying the Bloch’s theorem to the system, the dipole
moments can be written in the form

pn(k) =

{

pA(k)e
ik n

2
d, for n is even

pB(k)e
ik( n−1

2
d), for n is odd

, (3)

where k is the wave number of the guided plasmon mode.
Substituting the above into the coupled dipole equations
Eq. (2), we obtain a 2 level eigenvalue problem, in which
α−1 is treated as the eigenvalue:

(

0 a12(k)
a21(k) 0

)(

pA
pB

)

= α−1

(

pA
pB

)

, (4)

where a12(k) = 2/ (4πǫ0) {1/t3 + e−ikd/(d− t)
3} and

a21(k) = 2/ (4πǫ0) {1/t3 + eikd/(d− t)3}. Although the
2 × 2 matrix in Eq. (4) is not a Hamiltonian, Eq. (4) is
a Hermitian eigenvalue problem that is analogous to the
eigenvalue problem in the SSH model. In this case, the
inverse polarizability α−1 acts like the energy eigenvalue.
There is a mapping between the eigenvalue α−1 and the
plasmon frequency ω, depending on the materials of the
nanoparticles and the range of interest. Using the Drude
model22,25 for the dielectric function of the materials
ǫ(ω)/ǫ0 = 1−ωp

2/(ω2 + iω/τ) and the quasi-static parti-
cle polarizability26 α(ω) = 4πǫ0a

3[ǫ(ω)− ǫ0]/[ǫ(ω)+2ǫ0],
the mapping is then

α−1(ω) =

1
3 − ω2

ω2
p
− i( 1τ )(

ω
ω2

p
)

V ǫ0
. (5)

Here, ωp, τ , and V = 4πa3/3 are the plasma frequency,
electron mean free time, and volume of the sphere, re-
spectively. It should be noted that 1/τ is the damp-
ing coefficient which equals to the electron collision fre-
quency. The above mapping is also plotted in Fig. 2 for
clear illustration. With the above mapping between the
eigenvalue α−1 and frequency ω, the non-trivial solutions
of the eigenvalue problem in Eq. (4) gives the dispersion
relation

α−1(ω) = ±
√

a12(k)a21(k). (6)

t
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FIG. 1. Band dispersion of the longitudinal dipolar modes in
a “diatomic” chain of plasmonic nanoparticles. (a) Schematic
of the chain aligned in the z-direction. There are two spherical
metal nanoparticles in a unit cell, and are denoted by sphere
A and B. The length of unit cell, the separation between
spheres (within a unit cell), and the radii of the spheres are
denoted by d, t, and a respectively. The chain is embedded
in air. We use d0 ≡ d/2 as the reference length. This fig-
ure is drawn in scale such that a = 0.33d/2, and t = 0.8d/2.
(b) shows the longitudinal mode dispersion relation of the
diatomic chain. There are two non-degenerated longitudi-
nal bands (solid lines) as there are two atoms in a unit cell.
The dispersion of a monatomic chain is also plotted (dashed
line) for comparison. In that case, t = d/2, which means the
spheres are equally separated.

If we neglect the absorption by putting 1/τ = 0, then
we have two real dispersive bands for the system (See
Fig. 1). The − and + sign in Eq. (6) refers to the lower
and the upper band in the figure, respectively. We see
that there are two plasmon bands separated by a gap at
0.606ωp > ω > 0.547ωp, which is caused by the two types
of coupling between adjacent spheres27.
The advantage of reformulating the coupled dipole

equation in the form of Eq. (4) is that the equation is
still valid when there is material absorption. The matrix
is still Hermitian even when we have non-zero damping
coefficient. In this situation, the eigenvalue α−1 is real,
but the quasi-normal modes are having complex plasmon
frequency ω. The real and imaginary part of the mode
frequency are given by

Re(ω) =
√

ωp
2

3 − 1
4τ2 ∓ V ǫ0ωp

2
√

a12(k)a21(k),

Im(ω) = − 1
2τ ,

(7)

from which we see the real part will be lowered when
damping coefficient 1/τ increases slightly, in the case of
small damping.

B. Calculation of Zak phase

As an analogy of the Berry phase5, the Zak phase28

has been used to classify band topology for studying their
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FIG. 2. Mapping between plasmon frequency ω and the eigen-
value α−1 for Drude model of different damping coefficient
1/τ (see Eq. 5). The mapping is nearly linear in the range
of interested shown in Fig. 1 (b) (i.e., 0.64ωp > ω > 0.50ωp).
The real part decreases when one increases the damping co-
efficient.

edge states19,29. We now evaluate the Zak phase using
the nontrivial solutions of Eq. (4). Provided that t 6= d/2,
the solution is

(

pA(k)
pB(k)

)

=
1√
2

(

±eiφ(k)

1

)

, (8)

with φ(k) = arg[(d− t)
3
+ t3e−ikd]. The above solution

is not unique in general (up to a phase factor), which
is known as gauge freedom. Since the matrix equation
Eq. (4) is periodic in k, a natural choice is requiring that
pn(k) = pn(k + G), where G = 2π/d is the recipro-
cal lattice vector, and is known as a choice of periodic
gauge30. Equation (8) satisfies periodic gauge already,
and this gauge leads to a Z2 invariant in calculating the
Zak phase31:

γ = i
∫ π

d

−π
d

(

pA
∗ ∂pA

∂k + pB
∗ ∂pB

∂k

)

dk

= −φ(π
d )−φ(−π

d )
2

(9)

For example, if t < d/2, we have φ(π/d)− φ(−π/d) = 0.
On the other hand, if t > d/2, then φ(π/d)−φ(−π/d) =
−2π, see Fig. 3. Here, we have the same γ for both the
lower and the upper bands because the ± sign in Eq. (8)
for different bands are canceled when multiplying by its
conjugate. The Zak phase can be interpreted using the
winding number in this plasmonic system, as similar to
those in graphene20, see Fig. 3. From this we can classify
the system into two classes, one with γ = π and one with
γ = 0, see Table I. It should be noted that the choice
of unit cell would also lead to different Zak phases. For
example, if we shift the unit cell by half the period, the
separation between atoms within the unit cell will change
from t to d−t, and γ will change by π. The choice of unit
cell is arbitrary for an infinite chain but not a truncated
chain where the boundary conditions limit the choice.

O

Imaginary part

Real part

(d-t)3

t3e-ikd
( )kφ O

Imaginary part

Real part

(d-t)3

t3e-ikd
( )kφ

(a) (b)

FIG. 3. Representation of (d− t)3 + t3exp(−ikd) in complex
plane. The complex number evolves as kd changes from −π
to π for (a) t < d/2 and (b) t > d/2. In (b), winding number
is non-zero, which leads to non-zero Zak phase.

TABLE I. Zak phase γ of diatomic chains. The upper and
the lower bands share the same value of Zak phase.

sphere A and B as atoms in unit cell
upper band lower band

γ for t < d/2 0 0
γ for t > d/2 π π

III. PLASMONIC EDGE MODE IN

CONNECTED CHAIN

The Zak phase gives a simple topological classification
of the plasmon bands. If two chains with different Zak
phases are connected together to form a new chain, it
is expected that there exists an edge state localized at
the interface between the chains. To verify the existence
of such an edge state, we now consider two semi-infinite
diatomic chains connected together [see Fig. 4 (a)]. The
left and the right chains have the same lattice constant
d, and the separations between the two atoms in the unit
cell are t = tL and t = tR respectively.

A. Numerical solution for the edge mode

Here, we first consider a finite chain connected by two
“diatomic” chains with tL = 1.2d/2 and tR = 0.8d/2.
The left chain is from n = −61 to n = −1, and the right
chain is from n = 0 to n = 61. By adopting the loss-
less Drude model Eq. (5), we numerically solve the finite
coupled dipole equation Eq. (2) by rewriting ω2/ωp

2 as
eigenvalue. The plasmon frequencies of the eigenstates
are shown in Fig. 4(b). The results confirm that there is
a band gap in the region 0.606ωp > ω > 0.547ωp. The
figure also indicates a state within the band gap, with
ω = 0.577ωp. We show the dipole moments pn of the
system for three states in Figs. 4 (c) to (e). Figure 4
(c) and (e) show the states just above and below the
band gap while Fig. 4 (d) shows the edge state at the
interface of chains. The magnitudes of dipole moments
in Fig. 4 (d) decay away from the interface. The edge
state is neither symmetric nor antisymmetric about the
interface because the system has a broken inversion (and
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reflection) symmetry. We also verified numerically that
there is no edge state in between the chains when both
the left and right chains are sharing the same Zak phase.
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FIG. 4. Edge states between diatomic chains. (a) shows the
geometry of a connected chain system. Separation t = tL for
the left chain and t = tR for the right chain. The interface is in
between n = −1 and n = 0. (b) shows the plasmon frequency
obtained by solving eigenvalue problem of a connected chain
with 123 spheres. tL, tR, and a are set to 1.2d/2, 0.8d/2, and
0.33d/2. (a) is drawn in scale with these parameters. (c) and
(e) show the eigenstate of the connected chain just on top and
below the band gap. (d) shows the edge state at the interface.

Considering the same eigenvalue problem, we can show
the robustness of the edge state. The plasmon frequencies
of the system (123 spheres) with different tL and tR are
shown in Fig. 5. We first set tR = d− tL [See Fig. 5 (a)].
In this case, we see a single edge state at the interface
when tL 6= d/2. It is very interesting to note that the
state frequency is independent of tL. In Fig. 5 (b), we fix
tR = 0.9d/2 but varies tL. Similar to the case in Fig. 5
(a), a single edge state exists when tL 6= d/2 and the edge
state frequency is independent of the variable parameters
(although the band frequencies change a lot).

B. Analytical solution for the edge mode

In the following, with 1/τ = 0, we show explicitly
that there is always an edge state solution when the
two semi-infinite chains have different Zak phases, that
is tR < d/2 < tL or tR > d/2 > tL. The state is local-
ized at the boundary between the two chains and always
has frequency ω/ωp = 1/

√
3 (Fig. 5). Consider the case

tR < d/2 < tL as shown in Fig. 4(a). Dividing the con-
nected chain into two semi-infinite regions, the right and
the left chain, the plasmon wave vector k takes different
forms, k = π/d + iµR and k = −π/d − iµL, in the two
regions. Here µR and µL are real positive constants, and
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FIG. 5. Dependence of bands and edge state on tL. (a)
tR is set equal to d − tL. For example when tL = 1.1d/2,
tR = 0.9d/2. (b) tR is fixed and equals 0.9d/2. The frequency
of edge state does not vary with tL in both cases.

are related to decay length in different regions32. Substi-
tuting it into a12 and a21, and using superscript R and L

to denote the expressions for the right and the left chain,
we have

aR12,21 = 2
4πǫ0

(

1
t3
R

− 1
(d−tR)3

e±µRd
)

aL12,21 = 2
4πǫ0

(

1
t3
L

− 1
(d−tL)3

e∓µLd
)

In the above, a12 corresponds to upper sign while a21
corresponds to lower sign. It can be inferred from Eq. (4)
that non-trivial solution exists when

(α−1)2 = aR12a
R
21 = aL12a

L
21. (10)

For ω/ωp = 1/
√
3, Eq. (6) implies that α−1 = 0 (i.e.,

at least one of aR12 and aR21 is zero and at least one
of aL12 and aL21 is zero). When tL < d/2, the factor
1/t3R − e(−µRd)/(d − tR)

3 in aR21 will never equal zero as
µR varies. Therefore, in this case, aR21 6= 0 and aR12 = 0,
which implies eµRd = (d− tR)

3/(tR)
3. Similarly, we have

aL21 6= 0, aL12 = 0 and e−µLd = (d − tL)
3/(tL)

3 . Using
Eq. (4) with aR12 = 0 and aL12 = 0, the corresponding
solutions in the two regions are

(

pRA
pRB

)

=

(

0
1

)

and

(

pLA
pLB

)

=

(

0
1

)

. (11)

With pn
R and pn

L denoting, respectively, the solution
for the right and the left region, the edge state solution
is written in the form

pn =

{

Cpn
R, for n > 0 (right region)

Dpn
L, for n < 0 (left region)

, (12)

where C and D are constants to be determined by match-
ing with the interface equations:

{

4πǫ0α
−1p−1 = 2

(d−t0)3
p0 +

2
t3
L

p−2

4πǫ0α
−1p0 = 2

(d−t0)3
p−1 +

2
t3
R

p1
, (13)

in which t0 = (tL+tR)/2. With Eq. (3) and (12), we have
dipole moments near the interface (p−2, p−1, p0, p1) =
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(0, D, 0, C). Putting into Eq. (13), we have C/D =
−tR

3/(d− tL+tR
2 )3. Thus, the edge state solution is

pn =



















0, for n is even

(−1)
n+1

2 e
n+1

2
µLd, for n is odd and n < 0

(−1)
n+1

2
t3R

(d−(tL+tR)/2)3

×e−
n−1

2
µRd, for n is odd and n > 0

(14)
This shows that the edge state exist at a frequency of
ω/ωp = 1/

√
3 = 0.577. The presence of exponential fac-

tors in the edge state indicate dipole moments decay away
from the interface.
The edge state in Fig. 4(d) can be confirmed by putting

tR = d − tL in Eq. (14). In this case, we further show
that there is no edge state solution within band gap when
ω/ωp 6= 1/

√
3. By expanding expressions in Eq. (10), one

have µR = µL ≡ µ and α−1 6= 0, so the non-trivial state
for the two level problem is

(

pRA
pRB

)

=

(

aR12/α
−1

1

)

and

(

pLA
pLB

)

=

(

aL12/α
−1

1

)

. (15)

Normalizing factor in the above is absorbed to the tun-
ing constants C and D in the next step. Substituting
the above into Eq. (14), we have dipole moments near
the interface (p−2, p−1) = D

(

aL12/α
−1, 1

)

and (p0, p1) =

C
(

aR12/α
−1, 1

)

. Putting p−2, p−1, p0, and p1 into
Eq. (13), one can verify that C = D = 0, which means
there is no connected chain state whose frequency lies
inside the band gap but ω/ωp 6= 1/

√
3.

IV. EMISSION RATE

So far, our calculations are based on quasi-static ap-
proximations. Here, we verify the existence of the edge
mode calculated in section III by full-wave simulation us-
ing the finite-difference time-domain method. Lumerical
FDTD, a commercial-grade simulator, was used to per-
form the calculations33. To do this, we put a dipole emit-
ter inside one of the nanoparticles. Using mesh size = 1
nm, we simulated the connected chain with parameters
a = 25 nm, d = 150 nm, tL = 90 nm, and tR = 60 nm
(so tL = 1.2d/2 and tR = 0.8d/2). Material permittivity
is a Drude model with plasma frequency ωp = 1 × 1016

rads−1 and electron collision frequency 1/τ = 3 × 1014

rads−1. The left chain runs from sphere n = −13 to
n = −1, while the right chain runs from sphere n = 0
to n = 11. The dipole source is put inside the sphere
n = −1, as it will attain maximum dipole moment in the
edge state, and so we can have prominent results. Also,
we etched a hole with radius 6 nm in the sphere n = −1 to
avoid contact between the dipole source and the metallic
structures, which eventually leads to diverging numerical
errors.
We define an emission rate, which has a meaning sim-

ilar to the local density of states (LDOS), as the total

power flowing out of the metal nanoparticle divided by
the source power:

emission rate(ω) =
power flowing out(ω)

source power(ω)
, (16)

where ω is the dipole source angular frequency. Here, the
source power means the dipole emission power in free
space. The presence of a plasmon mode would result
in larger emission rate, which can help us to locate the
response and edge states. The rate is found by boxing
the whole sphere containing the dipole source with power
monitors. Let us first focusing on the emission rate for
the connected chain (contains 25 spheres) as shown in
Fig. 6 (a). We see that there are two “prominent hills”
peaked at 8.3 and 9.4 × 1014 Hz, and one “small hill”
peaked at 7.6 × 1014 Hz. The middle hill within the
band gap is due to the presence of the edge state, and
the right and the left hills are the responses of the upper
and the lower band. A comparison with a pure diatomic
chain (where we set both tL = tR = 60 nm, contains 24
spheres) is also shown in Fig. 6. In this case, there are
two prominent hills peaked at about 7.6 and 9.4 × 1014

Hz, which are corresponding to the upper and the lower
band. The valley in between, is noticed as a band gap.
It should be noted that the emission rate depends on

the source position. For the case of the connected chain
in Fig. 6 (a), the small hill at 7.6× 1014 Hz will become
prominent if we put the dipole source and measure the
emission rate of sphere n = −2 instead. The edge state
peak coincides with the the single sphere resonance fre-
quency 8.3 × 1014 Hz, which is consistent to the result
ω/ωp = 1/

√
3. In fact there is one more peak at a higher

frequency for the single sphere, as there are two metal-
dielectric surfaces34, but it is outside the frequency range
in the figure and so it is not shown here.
In Fig. 6 (b), we showed the emission rate for connected

chain with different tL = 1.05d/2, 1.10d/2, 1.15d/2, and
1.20d/2, where d/2 = 75 nm. Each curve contains an
edge state peak around 8.3 × 1014 Hz, which shows the
invariance of the edge state frequency. For the case tL =
1.05d/2, as it is close to a monatomic plasmon chain, the
band gap is no longer visible.
The presence of damping leads to broadening of res-

onant peaks. Here, we would like to show that the full
width half maximum(FWHM) Γ of the edge state in the
photon emission rate can be roughly estimated by con-
sidering damping the material model. Since the dipole
wave is in the form of pn(k) exp [−Im(ω)t] exp [iRe(ω)t],
the emission peak thus has a width of Γ = 2Im(ω)24.
Together with Eq. (7), we can estimate the width as
Γ = 1/τ = 3 × 1014 rad/s. In numerical simulation, it
should be noted that the edge state resonant peak and the
upper band can have overlap [see Fig. 6(a)], so FWHM
in the graph is roughly estimated by reading the trend of
edge state peak, which is about 0.7× 1014 Hz (4.4× 1014

rad/s) in length. Although the theoretical value is esti-
mated without consideration of radiation loss, the result
is still close to the value obtained from Fig. 6(a).
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FIG. 6. Photon emission rates in plasmonic nanoparti-
cle chains calculated by finite-difference time-domain simu-
lations. A dipole source is placed inside a particular sphere
with a small hole of negligible size, acting as an emitter. The
emission rate is defined by Eq. (16), which represents approx-
imately the local density of states (LDOS). (a) Emission rate
in single sphere, diatomic chain, and connected chain. The
last one reveals the existence of an edge state. Videos of cor-
responding time-domain fields are attached, in which longitu-
dinal component of electric fields are shown. Media 1: con-
nected chain; Media 2: diatomic chain; Media 3: monatomic
chain; Media 4: single sphere . (b) Emission rate for con-
nected case with different tL. d/2 = 75 nm and tR = d− tL.

V. CONCLUSION

To conclude, we studied the plasmonic topological edge
states between diatomic chains of plasmonic nanoparti-
cles by making an analogy with the Su-Schrieffer-Heeger
model such that the eigenvalue is mapped to the inverse-
polarizability of the nanoparticles. When two diatomic
chains with different Zak phases are connected, it is found
that a new localized plasmon mode appears at the do-
main boundary. Even though our analytical results are
calculated using quasistatic point dipole approximation,
they have correctly predicted the existence of the plas-
monic edge modes in full electrodynamic simulation with
Drude metal nanoparticles. Our results suggest a feasi-
ble way to realize the topological plasmon mode through
near-field optical spectroscopy.
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