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Discrete-time quantum walks allow Floquet topological insulator materials to be explored using controllable

systems such as ultracold atoms in optical lattices. By numerical simulations, we study the robustness of

topologically protected edge states in the presence of decoherence in one- and two-dimensional discrete-time

quantum walks. We also develop a simple analytical model quantifying the robustness of these edge states against

either spin or spatial dephasing, predicting an exponential decay of the population of topologically protected

edge states. Moreover, we present an experimental proposal based on neutral atoms in spin-dependent optical

lattices to realize spatial boundaries between distinct topological phases. Our proposal includes also a scheme

to implement spin-dependent discrete shift operations in a two-dimensional optical lattice. We analyze under

realistic decoherence conditions the experimental feasibility of observing unidirectional, dissipationless transport

of matter waves along boundaries separating distinct topological domains.
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I. INTRODUCTION

Topological insulators are quantum materials behaving

like an ordinary insulator in the bulk and yet allowing,

in two dimensions and above, matter waves to propagate

along their boundaries through a discrete number of edge

modes [1,2]. The distinguishing property of these materials

is the existence of so-called topologically protected (TP) edge

modes, which are robust against continuous deformations of

the material’s parameters, including spatial disorder, provided

the bulk remains insulating (i.e., no gap closing). In one

dimension (1D), a discrete number of TP edge states can

exist in the presence of special symmetries (e.g., particle-hole

symmetry in superconducting quantum wires), with their

energy being exactly pinned to the midpoint of the energy

gap. In two dimensions (2D), the most notable example of

a topological insulator is a two-dimensional electron gas in

a high magnetic field, where the transverse conductance is

found to be quantized in multiples of e2/h (integer quantum

Hall effect, IQHE) [3]. Over the years, this effect has been

verified by experiments to one part in 109 despite impurities

and other imperfections, which unavoidably occur in actual

physical samples [4]. Its robustness is today well understood

in terms of the topological structure of the Landau levels,

which form well-separated energy bands [5].

In general, the robustness of edge states in these insulating

materials results from energy bands with nontrivial topological

character. Topologically nontrivial bands are often related

to an obstruction to define the Bloch wave functions over

the whole Brillouin zone using a single phase convention

[6]. This obstruction to a global choice of the gauge can

be understood as resulting from a twist of the Bloch wave

functions, much as the twist in the Möbius strip represents

an obstruction to define an oriented surface. The twists of the

energy bands are quantified by topological invariants, which

are integer quantum numbers assigned to each isolated band of

*alberti@iap.uni-bonn.de

the bulk. These can be, for instance, winding numbers Z (e.g.,

for the Su-Schrieffer-Heeger model) or just Z2 numbers with

two possible values denoting trivial and nontrivial topological

phases (e.g., for particle-hole-symmetric quantum wires). The

characteristic of such invariants is that they are unchanged

under a continuous modification of the system parameters,

provided that the energy gap and the relevant symmetries are

preserved. In particular, two insulators are said to belong to

different topological phases if the sums of the topological

invariants of the occupied bands are different [7,8].

A topological argument with far-reaching physical implica-

tions, known as the bulk-boundary correspondence principle,

establishes a relation between the topological invariants and

the number of TP edge modes at the boundary between two

topological phases [9]. Simply stated, it predicts that any

spatial crossover region separating two bulks hosts a minimum

number of edge modes given by the difference of the bulk

invariants. These modes are topologically protected as they

cannot disappear by a continuous deformation of the system

parameters, including a deformation of the boundary’s shape.

In the IQHE, for instance, the number of current-carrying TP

edge modes is equal to the sum of the Chern numbers of the

Landau levels below the Fermi energy [10].

TP edge modes at the boundary of a 2D topological

insulator are immune to Anderson localization. Even if

we allow for local disorder (of any amount in the region

adjacent to the boundary), including shape irregularities,

topological arguments predict that TP edge states maintain

their metalliclike character notwithstanding the disorder, their

wave functions being fully delocalized around the whole length

of the insulator [9]. As a consequence, any wave packet formed

by a superposition of TP edge states propagates coherently

along the boundary, instead of being confined within some

region by the disorder. Moreover, transport along the boundary

is virtually immune to backscattering too [11], for the wave

packet would need to tunnel to the opposite edge of the

insulator material in order to couple to a counterpropagating

edge mode, a process that is exponentially suppressed with the

size of the sample.
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Besides being interesting per se, topological insulators

have stimulated great interest in the possibility to exploit TP

edge states for engineering ballistic electronic transport in

dissipationless solid-state devices and for enabling topological

protection of quantum information [12]. In recent years,

IQHE devices have attained an exquisite level of control,

which enabled the demonstration of quantum devices such

as an electronic Mach-Zehnder interferometer [13] and a two-

electron Hong-Ou-Mandel-like interferometer [14]. However,

these systems still require high magnetic fields on the order

of 10 T in order to make the energy gap between Landau

levels (i.e., the cyclotron frequency) larger than cryogenic

temperatures below 4 K. Larger gaps are obtained with

high-mobility graphene IQHE devices, which hold promise

to operate at room temperature, although still requiring high

magnetic fields [15]. In a different approach, the quantum

anomalous Hall effect avoids external magnetic fields by

exploiting a ferromagnetic topological-insulator state induced

by spontaneous magnetization, although demanding, in return,

cryogenic temperatures well below both the Curie point and

the magnetically induced energy gap [16,17]. The discovery

of the quantum spin Hall effect in HgTe/CdTe quantum wells

started the quest for topological insulators with a large gap that

do not rely on magnetic fields [18]. However, the gap size of

these novel materials still requires, at least so far, cryogenic

temperatures < 10 K to function [19].

Topological insulator materials are challenging to synthe-

size, and only a few topological phases have hitherto been

accessible with solid-state materials [20]. This has motivated

the search for topological phases in nonelectronic systems,

which also allow implementing the same wave-mechanical

principles underlying topological insulators. Because of their

high degree of control and flexibility, ultracold atoms trapped

in an optical lattice are ideal systems to shed new light on the

origin and dynamics of topological insulators. In particular,

these systems have enabled the direct measurement of the

Berry-Zak phase [21] and Wilson lines [22], the realization

of the Haldane model [23], the observation of the anomalous

transverse velocity [24], demonstration of the Thouless pump

mechanism [25,26], the realization of compacted artificial

dimensions [27,28], and the measurement of the Berry flux

[29] as well as Berry curvature [30]. Besides ultracold-atom

systems, TP edge modes have also been observed in microwave

photonic crystals [31], photonic quasicrystals [32,33], and

even mechanical spring systems [34,35].

Discrete-time quantum walks (DTQWs) with trapped ultra-

cold atoms [36] offer a versatile and highly controlled platform

for the experimental investigation of topological insulators.

We note that even a single atom coherently delocalized on a

periodic potential is sufficient to simulate topology-induced

transport phenomena, provided that the energy bands have

a nontrivial topological structure. In DTQW experiments,

an ultracold atom trapped in an optical lattice undergoes a

periodic sequence of internal rotations and spin-dependent

translations. This approach can be understood to fall under the

more general class of Floquet topological insulators, systems

that are periodically driven in time with a period T . After an

integer number of periods (i.e., steps), their quantum evolution

is reproduced by an effective (Floquet) Hamiltonian that is

topologically nontrivial [37]. Varying the protocol for the

DTQW is a way to engineer the effective Hamiltonian. In this

way, effective Hamiltonians from all universality classes of

topological insulators [7,8] can be realized by quantum walks

[38].

Floquet topological insulators are especially attractive

because of the possibility to control their topological prop-

erties via an external periodic drive [39,40] while avoiding

any external magnetic field. An optical analog of Floquet

topological insulators was demonstrated using an array of

evanescently coupled waveguides on a honeycomb lattice [41],

with the external periodic drive being effectively implemented

by a helicoidal deformation of the waveguides. DTQWs are

well suited for creating TP edge modes on the fly by locally

controlling the parameters of the external drive. Furthermore,

beyond simulating static topological insulators, DTQWs allow

us to explore the richer topological structure inherent to

Floquet systems, which is not entirely represented in the

effective Hamiltonian but instead rooted in the details of the

quantum walk sequence. For example, a 1D quantum walk can

host TP edge states between domains with the same effective

Hamiltonian [42]. Experimental evidence of this phenomenon

was shown in a photonic DTQW setup, although only with

a small number of steps [43]. In 2D, experimental proposals

based on periodically driven cold-atom systems have recently

put forward the idea to create boundaries between distinct

topological phases, for instance, in the quantum spin Hall

model using an atom-chip implementation [44] and in the

Haldane model using a brick-wall optical lattice [45]. These

proposals, as well as the optical experimental demonstration

in Ref. [41], rely on topological invariants derived from the

effective Hamiltonian, without studying in detail the whole

topological structure predicted by Rudner et al. [46] for 2D

Floquet topological insulators. Floquet topological invariants

play instead a central role in the cold-atom proposal in Ref. [47]

to implement the Rudner model, as well as in the present

work.

In our laboratory we choose a single massive Cs atom with

two long-lived hyperfine states as the quantum walker, which

we coherently delocalized in optical lattices over ten or more

lattice sites [48]. However, quantum superposition states in

such a large Hilbert space are always highly fragile because

they are subject to decoherence and dephasing mechanisms

arising from the openness of the quantum system. In DTQWs

decoherence leads to a quantum-to-classical transition of the

walk evolution dominated by the dephasing process affecting

the coherences in the coin degree of freedom, as we have shown

previously [48]. It is generally accepted that disturbances with

frequencies beyond the energy gap lead to the destruction

of the TP edge states. However, in most condensed-matter

systems, these effects are often suppressed by operating at

cryogenic temperatures [49]. In DTQWs, disturbances on the

coin operation, as well as spin dephasing, effectively act

with infinitely wide spectrum and therefore extend over the

whole band gap, so that we expect the loss of protection in

the long-time limit. In the 1D split-step walk, Obuse and

Kawakami [50] showed that while topological protection is

preserved under weak spatial disorder, temporal fluctuations of

the coin angles destroy it. However, a quantitative modeling of

decoherence effects, which is essential for future experiments,

is still missing.
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In this paper, we study how environment-induced dephasing

affects TP edge states in one- and two-dimensional quantum

walk setups and how diffusive spreading has an impact on the

existence and form of TP edge states in general. Moreover, we

formulate an experimental proposal under realistic conditions

on how to observe ballistic transport of quantum walks using

ultracold atoms in optical lattices.

This paper is structured as follows: In Sec. II, we introduce

DTQW protocols in one and two dimensions and provide a

short overview of their topological structure and corresponding

TP edge states. We discuss the arising edge phenomena and

analyze their robustness under spatial deformations of the

topological phase boundary. In Sec. III, we investigate how

the shape and evolution of the edge states are affected under

decoherence. Furthermore, we give insight into the limits

concerning the model of stroboscopic decoherence, which

was employed in Ref. [48]. The numerical simulations in this

analysis are carried out using realistic experimental param-

eters, which are chosen based on the experimental proposal

discussed in Sec. IV. In Sec. IV, we present an experimental

scheme to realize a two-dimensional spin-dependent optical

lattice and discuss the experimental requirements to create

spatial boundaries between Floquet topological phases as well

as to observe TP edge states under realistic decoherence

conditions.

II. TOPOLOGICAL PHASES IN DISCRETE-TIME

QUANTUM WALKS

A. The system

We consider a particle with two internal spin states, labeled

s ∈ {↑ , ↓}, that is positioned on a cubic lattice with lattice

constant a. We will specifically address the cases of N = 1

and N = 2 dimensions, which can be implemented in current

experimental apparatuses, as explained in detail in Sec. IV.

We label the nodes of the N -dimensional cubic lattice with

x = (x,y, . . .) ∈ Z
N . Thus, in the absence of decoherence,

the quantum state of the walker after n steps is a pure state

|ψn〉, which comprises a superposition of the basis states

|x,s〉.
The dynamics of the DTQW is defined by a sequence of

unitary operations (protocol), which can be of two types: the

coin-toss operation and spin-dependent-shift operations. The

coin toss is realized by a unitary rotation of the spin state into

superpositions of |↑〉 and |↓〉,

C(θ ) =
∑

x

|x〉〈x| ⊗ e−iσ2θ/2, (1)

where σi is the ith Pauli matrix. The coin angle θ determines

the amount of rotation of the spin state and is a function of the

lattice position x, θ = θ (x). The rotation axis is chosen to be

along the y direction of the Bloch sphere. Note that different

choices of the rotation axis in the x-y plane are equivalent up

to a unitary transformation of the spin basis vectors {|↑〉 , |↓〉}.

The spin-dependent shift operation Ss
d (s ∈ {↑ , ↓}, d ∈

{x,y}) is defined as

S
↑
d =

∑

x

|x + ed〉〈x| ⊗ |↑〉〈↑| + |x〉〈x| ⊗ |↓〉〈↓| , (2)

S
↓
d =

∑

x

|x − ed〉〈x| ⊗ |↓〉〈↓| + |x〉〈x| ⊗ |↑〉〈↑| , (3)

where ed denotes the unit lattice vector in the d direction. S
↑
d

(S
↓
d ) shifts the walker’s spin-up (spin-down) component in the

positive (negative) ed direction by one lattice site, while the

other spin component is unchanged.

The evolution of a pure state |ψn〉 in time is described by a

unitary walk operator W applied periodically at discrete time

steps t = n T , n ∈ N:

|ψn〉 = W n |ψ0〉 . (4)

Note that the quantum evolution of the walker is periodically

driven in time with a Floquet period T , which is the duration

of a single step.

In this work we focus on two DTQW protocols, which

allow us to study the most relevant physical properties of

topological phases of discrete-time quantum walks in one and

two dimensions. In a 1D lattice, we consider the so-called

split-step-walk protocol defined in Ref. [38] as

W1D = S↓
x C(θ2) S↑

x C(θ1), (5)

which consists of two spin rotations separated by spin-

dependent shifts in the x direction. In a 2D lattice, we study

the quantum walk defined by

W2D = S↓
y S↑

y C(θ2) S↓
x S↑

x C(θ1), (6)

where after each coin operation both spin states are shifted in

opposite directions [51]. Note that the shift operators commute,

[S
↑
d ,S

↓
d ] = 0.

B. Topological phases and symmetries

In the context of Floquet theory, the evolution of the

quantum state can be expressed by the action of a time-

independent effective Hamiltonian H , defined by W = e−iH

[52,53]. Due to the discrete spatial translational invariance

implied by the lattice, the corresponding eigenstates are Bloch

waves characterized by a quasimomentum k, which takes

values within the Brillouin zone (−π/a,π/a]N . Likewise, the

discreteness of the time evolution implies that the eigenvalues

of the effective Hamiltonian H are quasienergies, denoted by ǫ,

which in our notation take dimensionless values in the interval

(−π,π ]. Note that physical energy units can be restored

trough multiplication by the quantity �/T . In DTQWs, the

quasienergy spectrum reveals a band structure with two bands

resulting from the two internal states, as can be seen in

Fig. 1(a), where we provide the quasienergy spectrum for

the 1D split-step protocol with (θ1,θ2) = (π/2,0) (Hadamard

walk). For a generic choice of the coin parameters, these two

bands are gapped. The gapped spectrum relates quantum walks

to static systems like insulator materials. However, unlike in

static systems, the Floquet quasienergy spectrum can also have

a gap at ǫ = π since quasienergies ǫ = −π and ǫ = π are

identified. In addition, artificial electric [54,55] and magnetic
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FIG. 1. Topological twist in the 1D split-step quantum walk with (θ1,θ2) = (π/2,0) (Hadamard walk). (a) Quasienergy spectrum with two

energy gaps occurring at energy ǫ = 0 and ǫ = π . (b,c) The corresponding quasienergy eigenstates of the upper band in the two time frames,

Eqs. (7) and (8), displayed on the Bloch sphere. Chiral symmetry constrains the eigenspinors to lie in a plane, x = 0, while the quasimomentum

is varied across the Brillouin zone, performing a closed loop. The color gradient indicates the winding direction around the Brillouin zone.

The (signed) winding number associated with transformation differs in the two time frames, ν ′ = 1 in (b) and ν ′′ = 0 in (c). The topological

invariants of the bulk are given by the sum and difference of the two winding numbers, (ν0,νπ ) = (ν ′ + ν ′′,ν ′ − ν ′′)/2 + 1/2. See also Fig. 2(a)

for the related phase diagram.

fields [56,57] can lead to a higher number of bands, which can

possess nontrivial topological properties as well.

Adapting methods developed for static topological insu-

lators to the effective Hamiltonian H , Kitagawa et al. [38]

have shown that DTQWs can reproduce all ten classes of

nontrivial topological phases in one and two dimensions

for noninteracting particles [7,8]. Topological phases can be

assigned to different realizations of the effective Hamiltonian,

and the corresponding topological invariants occur in the form

of winding numbers of the Bloch energy eigenstates [1].

However, a closer inspection of DTQWs reveals that their

so-called Floquet topological phases exhibit an even richer

structure, which can only be accessed by analyzing the full time

evolution of the walk. This holds for both 1D and 2D DTQWs

[42,46,58]. For instance, the topological phases of the 1D split-

step protocol originate from a special symmetry of the walk

protocol, which is called chiral symmetry. A walk operator W

exhibits chiral symmetry if a unitary operator Ŵ exists, which

transforms it as follows: Ŵ W Ŵ† = W † ⇔ Ŵ H Ŵ† = −H .

Although the split-step walk operator W1D defined in Eq. (5)

does not have chiral symmetry, one can show that the two walk

operators

W ′
1D = C(θ1/2) S↓

x C(θ2) S↑
x C(θ1/2) , (7)

W ′′
1D = C(θ2/2) S↑

x C(θ1) S↓
x C(θ2/2) , (8)

obtained through a cyclic permutation of the single walk

operations, do exhibit chiral symmetry, with the symmetry

operator being Ŵ = σ1 [59]. The cyclic permutation has split

the coin operations into two parts, C(θi) = C(θi/2) C(θi/2),

i = 1,2. Since the walk operations repeat themselves period-

ically, a cyclic permutation of these operations corresponds

to a change of basis preserving the underlying topological

structure. Likewise, cyclic permutations allowed identifying

time-reversal symmetry in Floquet topological insulators [60].

Hence, the two walk operators in Eqs. (7) and (8) are chiral-

symmetric representations of the same walk but expressed in

two different time frames. It results from chiral symmetry that

each eigenstate at quasienergy ǫ has a chiral-symmetric partner

eigenstate at quasienergy −ǫ. In particular, if eigenstates

exist with quasienergy either ǫ = 0 or ǫ = π , these states

can be their own symmetry partners, i.e., be eigenstates of

the symmetry operator Ŵ. This characteristic ensures the

robustness of TP edge states in the 1D split-step walk (see

Sec. II C).

We obtain a geometrical representation of the topological

twist of the 1D split-step walk by displaying on the Bloch

sphere the eigenspinors of the two chiral-symmetric walk

operators defined in Eqs. (7) and (8). The eigenspinors ± n(k)

with quasimomentum k are determined by the translationally

invariant effective Hamiltonian, H =
∑

k ǫ(k) |k〉〈k| ⊗ n(k) ·
σ . It directly follows from chiral symmetry that the eigen-

spinors with quasienergy ǫ 
= 0, π lie in the plane x = 0.

This holds true, in particular, for the bulk eigenstates, whose

quasienergies lie outside of the gaps, as shown in Fig. 1(a).

Hence, if we vary the quasimomentum k across the whole

Brillouin zone, the eigenspinor rotates in the plane performing

a closed trajectory, winding a (signed) number of times around

the origin, as shown in Figs. 1(b) and 1(c). The difference

and sum of the signed winding numbers associated with the

two time frames yield a pair Z × Z of topological invariants

[42,61,62]. For the derivation of the winding numbers, the

reader is referred to Ref. [59].

These invariants classify the topological phases of the split-

step walk, and depend only on the coin angles (θ1,θ2), as

shown by the phase diagram in Fig. 2(a). In essence, the pair

of topological invariants (ν0,νπ ) counts the minimal number

of times the band gap closes at quasienergy ǫ = 0 and ǫ =
π , respectively, as the walk is continuously transformed into

the topological phase characterized by (0,0). Note, however,

that the topological protection of these states holds only for

perturbations that can be continuously contracted to unity. For

noncontinuous perturbations, instead, the topological phase

diagram relies on a single signed winding number, as recently

demonstrated in Ref. [63].

In two dimensions, a Floquet topological invariant Z,

the so-called Rudner winding number [46], identifies the

topological phases of the 2D DTQW protocol [64]. The

topological phase diagram is shown in Fig. 2(b) as a function
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FIG. 2. Topological invariants assigned to the coin angles of

(a) the 1D split-step walk and (b) the 2D protocol. Due to the form of

the coin operator C(θ ), the walk possesses a 4π periodicity in the coin

angles. At the phase boundaries, the gap closes at quasienergy ǫ = 0

(dotted), ǫ = π (dashed), or both at ǫ = 0 and ǫ = π (dash-dotted).

The coin angle pairs chosen in the numerical examples in this

work and the corresponding phase transitions defined in Eqs. (9)

and (10) are also displayed (line with stars). The 1D Hadamard

walk (θ1,θ2) = (π/2,0), which is discussed in Fig. 1, is also shown

(diamond).

of the coin angles. Remarkably, due to the Floquet character

of the DTQW protocol, nontrivial topological phases exist

even if the topological invariants assigned to the effective

Hamiltonian (i.e., the Chern numbers) are zero. Moreover,

we note that, unlike in one dimension, the 2D DTQW

protocol possesses nontrivial topological phases without need

for specific symmetries.

C. Topologically protected edge states

We consider a spatially inhomogeneous DTQW in which

the coin angles depend on the position. The coin angles

are allowed to assume any value inside a spatially confined

region at the interface between bulk regions, where the

coin angles are kept constant instead. When these bulk

regions are associated with different topological invariants,

TP edge states occur at energies lying in the gaps of the bulk

insulators. More precisely, the bulk-boundary correspondence

principle states that the minimum number of edge states

is equal to the algebraic difference (in absolute value)

between the topological invariants of the individual bulk

phases.

For the investigation of TP edge states in the 1D protocol,

we choose

(θ1, θ2) =
{

(−π/2, π/4) x ≪ 0,

(−π/2, 3π/4) x ≫ 0,
(9)

realizing two spatially adjacent topological phases with in-

variants (ν0,νπ ) = (0,0) for x ≪ 0 and (1,0) for x ≫ 0, as

delineated in Fig. 2(a). We thus expect a TP edge state with

quasienergy ǫ = 0 to be localized at the boundary around the

site x = 0. To account for realistic experimental conditions,

we considered a regular variation of the coin angles over

approximately two lattice sites, as displayed in Fig. 3(a),

without abrupt changes. The width of the transition is related to

the optical resolution of our experiment, introduced in Sec. IV.

Under these conditions, we studied the time evolution of a

walker initially prepared in the single-site state |ψ0〉 = |0, ↓〉.
The results for the ideal situation without decoherence are

presented in Fig. 3(b), where the spatial probability distribution

is shown as a function of position x and number of steps n,

P (x; n) =
∑

s∈{↑,↓} | 〈x,s|ψn〉 |2. Because the initial state has

a large overlap with the TP edge state (≃ 0.3 for the example

shown in Fig. 3), the walker is trapped at the boundary with a

high probability, yielding a peaked position distribution around

the origin even in the long-time limit.

In the 2D walk protocol, the boundary between two distinct

topological domains describes a 1D contour. Along this

boundary, which can have, in general, any shape, TP edge

states are expected to exist [65]. However, unlike in the 1D

split-step walk, the wave function of the TP edge states is

delocalized in space, extending along the whole length of the

boundary. As a result of that, a walker in a superposition of TP

edge states is no longer confined in the vicinity of the initial site

but can propagate along the whole boundary. We gather further

insight into the transport dynamics along edges by studying

the propagation of a wave packet along a straight boundary,

which we assume is oriented along, say, the x direction. The

flatness of the boundary ensures that the quasimomentum

in the boundary’s direction kx is preserved, so that it can

be used to derive the energy dispersion relation of the edge

modes. Figure 4 shows the quasienergies as a function of the

quasimomentum kx computed from the effective Hamiltonian

for the case of horizontal boundaries between topological

domains. The quasienergy spectrum shows edge modes present

in the gaps of the bulk phases. Recalling the expression of

the group velocity, vg(k) = ∂ǫ(kx)/∂kx , characterizing the

motion of a wave packet, we realize from the slope of the

dispersion relations that the TP edge modes transport currents

in a unidirectional manner. Moreover, for the specific situation

of a straight horizontal boundary as considered in Fig. 4, it

appears that the group velocity does not depend on k (i.e.,

dispersionless transport), being equal to ±1 site per step. We

remark that dispersionless transport is not a topological feature

but rather a quantum transport property of the specific DTQW

protocol defined in Eq. (6).

To give evidence of the robustness of TP edge modes against

deformations of the boundary’s shape, we have chosen the

boundary to form a closed topological island with a droplet

shape, with the coin angles being defined as

(θ1, θ2) =
{

(π/5, 4π/5) (x,y) ∈ inside,

(4π/5, π/5) (x,y) ∈ outside.
(10)

With reference to the phase diagram in Fig. 2(b), this choice

of angles is associated with Rudner invariants −1 inside

and +1 outside. We have chosen to add a sharp corner on

top of the topological island to test the robustness of the

TP edge modes against irregularities of the boundary. As

in the 1D case, we again consider a continuous variation

of the coin angle at the boundary. Angles at the crossover

between the inside and outside regions are varied along the

line marked in the phase diagram in Fig. 2(b). Figure 5(a)

shows the spatial probability density distribution P (x; n) as

a function of position x and number of steps n. We initialize

the walker in a single site near the boundary, so that its state

has a significant overlap with the TP edge states, leading to a

unidirectional propagation around the island. In the absence of
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FIG. 3. (a) Position dependency of the coin angle in the 1D split-step walk given by Eq. (9) realizing two spatially adjacent, distinct

topological domains with invariants (ν0,νπ ) = (0,0) for x ≪ 0 and (1,0) for x ≫ 0. We use a smooth crossover transition corresponding to

the diffraction-limited optical resolution of our imaging system (see Sec. IV for details). (b) Decoherence-free evolution of the spatial density

distribution P (x; n) as a function of the number of steps n for a walker initially prepared in the single-site state |0, ↓〉. The narrow peak located

at the boundary near x = 0 indicates the component of the walker populating the TP edge state. (c) The same walk is subject to pure spin

decoherence and pure spatial decoherence with increasing decoherence probabilities pS, pP. Insets: time dependence of the walker’s probability

P (x = 0; n) to be at the origin x = 0 in logarithmic scale. It exhibits an exponential decay for small amounts of decoherence but stays constant

for the decoherence-free evolution. The time evolution is calculated for a large number of lattice sites (201) to prevent the walker from reaching

the boundaries in the given maximum number of steps.

decoherence effects, we observe that the edge current persists

even after many revolutions around the island, indicating

the presence of metallic edge states delocalized along the

whole contour of the island. However, unlike for the straight

boundary discussed in Fig. 4, which exhibits dispersionless

transport, we observe for the droplet-shaped island that the

wave packet’s probability distribution spreads along the entire

border after several revolutions. We attribute the observed

dispersion to the short radius of curvature associated with the

border.

III. DECOHERENCE EFFECTS ON TOPOLOGICALLY

PROTECTED EDGE STATES

A. Stroboscopic decoherence model

Quantum superposition states are fragile against decoher-

ence, that is, disturbances caused by the surrounding envi-

ronment onto the quantum system. The effect of decoherence

on the quantum evolution can be effectively described as the

projection of quantum states onto a particular basis of so-called

pointer states [67], which are robust against decoherence. In
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with a horizontal strip geometry. The horizontal strip, 40 sites wide

along the y direction, is associated with Rudner invariant −1, whereas

the rest of the bulk has +1 [refer to Fig. 2(b) for the phase diagram].

Unidirectional edge modes are visible in the gaps (thick lines),

with blue and red denoting each edge of the strip. For any given

quasienergy ǫ in the gaps, two TP edge modes exist per edge,

as expected from the bulk-boundary correspondence principle. The

spectrum is computed numerically using 100 sites in the y direction.

quantum-walk experiments with neutral atoms, the pointer

states are the spin |s〉 , with s ∈ {↑ ,↓}, and the position

states |x〉 with x ∈ Z
N [48]. Assuming a small amount of

decoherence per step, we can approximate the continuous-time

decoherence process through a series of discrete measurement

operations, which are applied stroboscopically after each

unitary step of the walk. We assume that each measurement

only resolves the walker’s state with a certain decoherence

probability 0 � p � 1. The walk’s evolution is coherent for

p = 0, while it describes a classical random walk for p = 1.

Our model relies on the assumption of small decoherence to

be accurate, p ≪ 1. Henceforth, we denote by p = pS and

p = pP the decoherence probability related to the spin and

position states, respectively.

We follow Ref. [48] to describe the nonunitary time evo-

lution of the walker by means of the reduced-density-matrix

formalism. As the walker is initially prepared in a pure state

|ψ0〉, the initial density matrix is ρ0 = |ψ0〉〈ψ0|. The density

matrix ρn+1 describing the walker at time t = (n + 1) T

depends only on the state of the walker at time t = n T

(Markovian assumption). Hence, ρn+1 is obtained through

the repetitive application of the linear superoperator E , which

accounts for the effect of environment-induced decoherence at

each step [68]:

ρn+1 = En+1(ρ0) = E(ρn)

= (1 − p) W ρn W † + p
∑

i

Pi (W ρn W †) P
†
i , (11)

where i ∈ {↑ ,↓} for pure spin and i ∈ {x} for pure position

decoherence. The projectors Pi are defined as

Px =
∑

s

|x,s〉〈x,s| , Ps =
∑

x

|x,s〉〈x,s| . (12)

We found in a previous study that this simple model reproduces

in a satisfactory manner the effects of decoherence occurring

in our experiments with neutral atoms [48]. In particular,

our previous analysis revealed that spin decoherence is the

main mechanism responsible for the loss of coherence in the

current 1D quantum-walk setup. We therefore focus in this

work primarily on decoherence by spin dephasing. In addition,

our numeric analyses assume a conservative decoherence

probability of pS ≃ 0.05 per step, which is based on previous

experimental results [48]. However, the construction of a

new quantum-walk setup for 2D DTQWs is underway that

promises decoherence probabilities as low as pS < 0.01 owing

to a number of technical improvements, including, among

others, shielding of stray magnetic fields and suppression of

polarization distortions of the optical lattice laser beams.

B. Decoherence effects on TP edge states in 1D

We illustrate the effect of decoherence by analyzing the

walk evolution of a 1D DTQW with two adjacent bulks with

coin angles defined by Eq. (9). We again initialize the walker in

a single-site state |0, ↓〉 near the boundary, so that the walker

is able to populate the TP edge state.

In Fig. 3(c) we show the spatial probability distribution

P (x; n) =
∑

s∈{↑,↓} 〈x,s|ρn|x,s〉 obtained numerically using

Eq. (11). The resulting distribution of the walk reflects two

phenomena. First, the walker occupies the TP edge state,

resulting in a narrow probability peak located around the

crossover point at x = 0. Second, this peak stays nearly

constant in position and shape but decays over time with a

rate increasing with the decoherence strength p. On the other

hand, the component of the walker’s wave function that has no

overlap with the TP edge state expands in the bulk. For small

decoherence, the expansion preserves a ballisticlike behavior

for many steps, resulting in the characteristic distribution

with off-center peaks. The number of peaks and the direction

of propagation depends on the initial state of the walker.

For stronger decoherence, this expansion exhibits a diffusive

behavior [48], with a distribution centered around the starting

point, thus overlapping with the TP edge state. From our

simulations, it results that experiments must be conducted

under small-decoherence conditions, p < 0.05, in order for

us to be able to detect the persistence of a sharply peaked

distribution at the boundary, a signature of the TP edge state.

It should be noted that the decoherence rate determines the

point in time where the expansion changes from a ballistic

spreading on a short time scale to a diffusive behavior for

longer times [48].

The probability for the walker to remain in the origin,

P (x = 0; n), is an indicator of the robustness of the TP edge

state (see the insets in Fig. 3). It shows an oscillatory evolution

for a short transient due to the dynamics of the walker’s

component overlapping with the bulk states, which is free

to expand into the bulk. For longer times, the probability stays

constant for the decoherence-free evolution but decays nearly

exponentially for low decoherence rates. In the case of strong

decoherence, the population of the TP edge state deviates

from a simple exponential decay. In this regime, however, the

assumption underlying our stroboscopic decoherence model,

p ≪ 1, does not hold anymore (see Sec. III A). A more
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detailed discussion based on an analytic model is presented

in Sec. III D.

C. Decoherence effects on TP edge states in 2D

The evolution of the 2D walk revolving around the

droplet-shaped topological island in the presence of weak spin

decoherence is presented in Fig. 5(b). The probability current

along the boundary shows a slow decay over time. As an

indicator of the population of the TP edge modes, we study the

probability P (x ∈ F ; n) for the walker to be situated in a small

band F around the edge, as shown in Fig. 6(a). For an initial

transient period of ≃ 50 steps, the edge probability shows

a decrease which is nearly independent of the decoherence

probability and is attributed to the nonvanishing projection

of the initial single-site state onto the bulk states. For the

decoherence-free evolution, the probability tends, in the long-

time limit, to a constant value, P (x ∈ F ; n ≫ 1) = 0.53. It is

worth emphasizing that such a high probability is favorable

for future experiments, which aim to detect matter waves

trapped at the boundary. In the presence of decoherence,

instead, we observe an approximately exponential decay in

qualitative agreement with the results obtained in the 1D walk

(see Sec. III B).

While decoherence reduces the probability current, it has

no discernible effect on the propagation velocity of a wave

packet along the boundary. The comparison between Figs. 5(a)

and 5(b) shows, in fact, that the front of the wave packet

moves, in both cases, with a speed of approximately one lattice

site per step, regardless of whether the walker is subject to

decoherence. This velocity is also in good agreement with

that computed in Sec. II C from the energy dispersion relation

of a flat boundary. Interestingly, the propagation along the

boundary attains the highest velocity, one site per step, allowed

by the 2D quantum walk protocol defined in Eq. (6) (i.e., attains

the effective speed of light for the DTQW protocol).

(a)

L

-1

+1

-1

+1

p
ro

b
. P

(x
F

;n
)

P
(x

;n
)/

P
(x

F
;n

)

ps=0.00 
ps=0.05 

0.1

step n
200 400 1000600 800

5000 10000

0.2

0.7

0.5

(b)
F

1.5

FIG. 6. (a) Probability P (x ∈ F ; n) for the walker to be inside

the grayed region F as a function of the number of steps n in

logarithmic scale. (b) Probability P (x ∈ L; n) for the walker to

be inside the grayed region L near the lower half of the phase

boundary, normalized to the population probability P (x ∈ F ; n). The

probabilities are shown for the unitary walk evolution (dashed curves)

and for a decoherence rate pS = 0.05 (solid curves). Inset: close-up

view in the long-time limit for the evolution without decoherence.

To gain further insight into the dynamics of the walker

revolving around the island, we display in Fig. 6(b) the

probability P (x ∈ L; n) for the walker to be in the lower

half, L, of the boundary. This probability exhibits periodic

oscillations in time with a period that is independent of the

decoherence rate and approximately equal, in units of steps, to

the length of the contour of the topological island. The period,

in particular, corroborates our previous observation that the
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FIG. 5. (a) Color-coded spatial probability distribution P (x; n) of a decoherence-free two-dimensional DTQW. The coin angles depend

on the position as specified by Eq. (10), creating a droplet-shaped topological island with Rudner invariants −1 inside and +1 outside of the

island. The width of the transition is limited by the optical resolution of our experimental setup with Abbe radius RA ≃ 0.8a (see Sec. IV for

details). The walker is initially prepared in the single-site state |(x = −15, y = 0), ↓〉 near the phase boundary and shows a unidirectional

moving population of edge states around the boundary as time evolves. In (b) the same walk is subject to spin decoherence under realistic

experimental conditions (pS = 0.05), exhibiting a slow decay of the edge current over time. An animation showing the evolution over 1000

steps is provided in the Supplemental Material [66].
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wave packet moves unidirectionally along the boundary with

a velocity of nearly one site per step. We also observe that

the oscillation amplitude is damped after several revolutions.

We explain this damping as the result of the group velocity

dispersion of the TP edge states, which make the wave

packet spread along the entire boundary. In the presence of

decoherence, the damping occurs on a much shorter time

scale, presumably due to the walker’s component that is

diffused into the bulk but located inside the band L. For the

unitary evolution, however, oscillations persist with the same

periodicity for long times, as shown in the inset of Fig. 6(b).

The modulation of the oscillation amplitude over long time

scales is attributed to partial collapses and revivals since the

time evolution is unitary and the edge of the topological island

constitutes a finite Hilbert space with a discrete spectrum [69].

A detailed study of the residual oscillations would require

further investigation.

D. Analytical model of the decay of TP edge states

We consider the 1D split-step walk protocol to derive a

simple analytical model predicting the decay rate of TP edge

states in the presence of decoherence. Assuming that the

walker is initially in a TP edge state |E〉, we compute the

probability �(n) that it remains in the same state after n steps.

Due to decoherence, the walker’s wave function acquires a

nonvanishing overlap with the continuum of the bulk states.

In order to carry out the computation analytically, we assume

that the walker’s component coupled to the bulk rapidly leaves

the boundary because of the nearly ballistic expansion without

ever repopulating the TP edge state. Under this assumption,

which is well justified in the regime of weak decoherence

p ≪ 1, we find in the Appendix that the probability of

occupying the edge state is

�(n) = tr(|E〉〈E| ρn) ≃ (1 − γ )n, (13)

where the decay rate γ depends on |E〉 and is linear in p. For

pure spin decoherence, the decay rate is given by

γS = pS

⎡

⎣1 −
∑

s

(

∑

x

|〈x,s|E〉|2
)2

⎤

⎦. (14)

A similar expression for the decay rate γP for pure position

decoherence is provided in the Appendix. Moreover, the

expression in Eq. (14) can be written in a more compact form

as γS = pS (1 −
∑

s | 〈s|sE〉 |4) by exploiting the factorization

of 1D TP edge states into position and spin components, |E〉 =
|χ〉 ⊗ |sE〉, as ensured by chiral symmetry (see Sec. II B).

This simple model predicts an exponential decay of the

edge-state population, which agrees well with the numerical

simulations for short times and small decoherence, as shown in

Fig. 7. In addition, we attribute deviations from the exponential

decay model, observed for longer times, to a non-negligible

probability that decoherence transfers the walker from the bulk

states back to the TP edge state.

E. Limits of the stroboscopic decoherence model

In Sec. III A, we have modeled the effect of decoherence

through a single measurement operation of either the spin

or the position of the particle, applied after each coherent
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FIG. 7. Probability of populating a TP edge state as a function of

the number of steps n for different amounts of spin decoherence pS

(semilogarithmic scale). The data points are calculated numerically

for the 1D split-step walk with the coin angles as defined in Eq. (9)

and with the initial state being the TP edge state with quasienergy

ǫ = 0. The solid lines represent an exponential decay as predicted by

the analytical model in Eq. (13).

step of the walk W . This constitutes, in general, a good

approximation of the actual dynamics, provided that the

amount of decoherence is small (p ≪ 1), as is the case in

ultracold-atom experiments (see Sec. IV).

However, situations exist where the stroboscopic applica-

tion of decoherence can completely fail to describe the decay

of a TP edge state. We would like to caution the reader about

that by providing an explicit example, which is constructed ad

hoc to prove the existence of a TP edge state that is robust

against any amount of stroboscopic spin decoherence. Such a

situation can occur when the quantum walk possesses a special

symmetry (for example, chiral symmetry) that forces the spin

component of the TP edge state to be oriented along a given

direction, for example, along the z direction. It is evident in this

case that spin measurements in the z basis leave the TP edge

state unperturbed. This is confirmed by Eq. (14), predicting in

this case a decay rate γS = 0 for any pS.

This can be realized by considering a unitary transformation

of the walk operator in Eq. (7), W̃1D = C(π/2) W ′
1D C(−π/2).

This transformation is equivalent to a cyclic permutation, and

it does not change the walk evolution in the bulk as well as

the corresponding topological invariants. The chiral-symmetry

operator of the transformed walk is σz since σz W̃1D σz = W̃1D
†.

Since the TP edge states are eigenstates of the symmetry

operator (see Sec. II B), their spin must be either |↑〉 or |↓〉, and

projective measurements of the spin in the z basis leave the TP

edge state unaffected. We note that an analogous situation can

be reproduced in the Su-Schrieffer-Heeger topological model,

where it is known that the sublattice symmetry (tantamount to

chiral symmetry) forces the TP edge state to lie on either one

of the two sublattices [9]. Hence, a quantum nondemolition

measurement of the sublattice would leave, in like manner, the

TP edge state unaffected.

A remedy to avoid such seemingly paradoxical situations,

where TP edge states are left unmodified by environment-

induced decoherence, consists of modifying Eq. (11) to allow

the decoherence Kraus operators to act after each discrete

operation of the single step. Furthermore, identifying the exact
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operator-sum representation in terms of Kraus operators of the

decohered coin operation would ultimately provide the most

accurate modeling of decoherence effects [70].

IV. EXPERIMENTAL PROPOSAL WITH NEUTRAL

ATOMS IN OPTICAL LATTICES

A. Optical lattice experimental setup

We have shown in previous experiments [36] that an

atomic quantum walk can be realized employing a single

neutral cesium atom in an optical lattice at a specific wave-

length λL = 866 nm. The outermost hyperfine ground states,

|↑〉 = |F = 4,mF = 4〉 and |↓〉 = |F = 3,mF = 3〉, define

the pseudo-spin-1/2 states of the quantum walker. Due to their

different ac polarizabilities, each of these states experiences,

to a large extent, only the trapping potential of either one of

two distinct σ+- and σ−-circularly polarized optical lattices.

The setup for spin-dependent shift operations in one dimension

is depicted in Fig. 8(a), where two counterpropagating laser

beams of linear polarization form a 1D optical lattice along

the direction of the quantization axis. Spin-dependent shift

operations are then realized by controlling the polarization

and phase of just one of the two optical lattice beams (beam

1 in the figure). A rotation of its linear polarization, which is

achieved through a shift of the relative phase between circular

polarization components, displaces into opposite directions

the two circularly polarized optical lattices and thereby

atoms in different internal states. Previous implementations

[71,72] of this concept based on an electro-optic device suffer

from the shortcoming that shift operations are limited to a

maximum distance of about one lattice site at a time and,

most importantly, to only relative displacements between |↑〉
and |↓〉 spin components. Sole relative displacements are

not sufficient to realize the S
↓
x and S

↑
x operations, which are

required by the split-step walk protocol in Eq. (5). However,

we recently demonstrated a different technique for precision

polarization synthesis, which overlaps two fully independent

laser beams with opposite polarizations to form a beam of

arbitrary polarization and phase [73]. The new implementation

of spin-dependent transport allows us to independently shift

each individual spin component by an arbitrary distance,

ultimately limited by the Rayleigh length.

We propose to extend the concept of spin-dependent

transport, which has hitherto been demonstrated only in

one dimension, to a square lattice in two dimensions. We

employ three interfering laser beams with linear polarization,

as illustrated in Fig. 8(b). With reference to the figure,

the polarization of beams 1 and 2 can be rotated in time

by angles φ1 and φ2, respectively, employing our recently

developed polarization-synthesis setup for each of the two

beams. The polarization of beam 3 is instead fixed and

orthogonal to the quantization axis, which is chosen along

the direction of beams 1 and 2. In essence, a rotation of

the two polarization angles results in a spin-dependent shift

operation along one of the two diagonal directions, as shown

in Fig. 8(c). This experimental scheme allows the precise

control of discrete-time spin-dependent shift operations along

the two main directions of a square lattice. We note that our

scheme differs substantially from other experimental schemes

00
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FIG. 8. (a) One-dimensional lattice potentials created by two

linearly polarized beams. A polarization rotation by φ leads to

a relative displacement of the two optical potentials (orange and

blue curves), which spin-dependently trap atoms in either the |↑〉
or |↓〉 internal state. The vector B represents the direction of the

external magnetic field, which fixes the quantization axis. (b) Two-

dimensional lattice potentials created by three interfering laser beams

for spin-dependent transport on a square lattice. The polarization of

beam 3 points out of the plane, whereas the polarization of beams

1 and 2 can rotate, producing spin-dependent displacements along

two diagonal directions at ±45◦ relative to the quantization axis.

Two counterpropagating beams (not shown) orthogonal to the plane

provide the confinement in the third direction. (c) Potential depth of

the two spin-dependent optical lattices (orange and blue) for different

polarization angles, φ1 and φ2.

for continuous-time spin-orbit coupling, which are based on

either a dynamical rotation of the magnetic field (i.e., of

the quantization axis) [74] or a dynamical modulation of a

magnetic-field gradient [75,76].

The geometric arrangement of laser beams in Fig. 8(b)

increases the spacing between adjacent lattice sites by a

factor of
√

2 (thus, a =
√

2 λL/2) compared to the 1D

lattice presented in Fig. 8(a), constituting an advantage to

optically address each lattice site individually. In addition, the

concurrent interference of all three beams yields a trap depth

that is 3/2 times as deep as that obtained by a 1D lattice for

the same optical power.
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FIG. 9. The intensity of Raman lasers, utilized to implement

the coin operation, is modulated in space to give rise to sharp

topological phase boundaries. A spatial light modulator (SLM)

creates a structured intensity pattern, which is imaged onto the optical

lattice by a high-numerical-aperture (NA of 0.92) objective lens

mounted in a 4f optical system.

The construction of the experimental apparatus is currently

underway. An objective lens with large numerical aperture

(NA), which is placed 150 μm in front of the 2D lattice, allows

us to detect the location of atoms with single-site resolution

by fluorescence imaging on the D2 line at λf = 852 nm [77],

as well as to project a structured intensity pattern for local

optical control of the coin operation. The coin operation can

be implemented either through microwave radiation resonant

with the hyperfine splitting at 9.2 GHz or through a pair of

Raman laser beams with wavelength λC = 894 nm slightly

detuned from the D1 line. Microwave pulses are most suited for

driving coin operations with position-independent coin angles,

while Raman laser pulses allow spatial variations of the coin

angles by modulating their intensity. For the local control of the

Raman laser intensity with single-site resolution, we propose

the 4f optical system illustrated in Fig. 9. The coin rotation

angle at a certain lattice site depends linearly on the intensity

of Raman lasers illuminating that given site.

In the experiments, sharp crossovers between topological

phases are preferable because their TP edge states are strongly

localized in the proximity of the boundary, thereby avoiding

slowly decaying tails in the direction of the bulk. This ensures

a relatively high probability that an atom originally prepared

in a single lattice site next to the boundary populates the edge

state. Additionally, sharp boundaries make it less demanding

for experiments to realize coherence lengths [78] longer than

the size of TP edge states.

However, there is a limit on how sharp crossovers between

different topological domains can be, which is determined

by diffraction in the optical system. For diffraction-limited

optical systems, the sharpness of the phase crossover depends

on the NA of the objective lens, the lattice constant a, and

the wavelength λC of the Raman lasers. Mathematically,

the intensity profile experienced by atoms results from the

convolution of the profile generated by the spatial light

modulator (see Fig. 9) with the point-spread function (PSF)

of the imaging system [77]. In the numerical simulations

presented in this work, we approximated the experimentally

measured Airy-disk-like PSF with a Gaussian function with

standard deviation (
√

2/π )RA, where RA = λC/(2NA) is the

Abbe radius. Hence, the unit step profile with coin angles θL

for x � 0 and θR for x > 0, which we considered for the 1D

simulations, results, after the convolution, in

θ (x) = θL +
θR − θL

2

[

1 + erf

(

a π

2 RA

x

)]

, (15)

where erf is the Gaussian error function. The present 1D

quantum walk setup with NA = 0.22 [77] and a = λL/2

allows only moderately sharp boundaries, RA ≃ 4.8a. The new

2D quantum walk setup, instead, features an objective lens with

a higher numerical aperture, NA = 0.92, and a longer lattice

constant, a =
√

2 λL/2, resulting in RA ≃ 0.8a. This permits

nearly abrupt phase boundaries, where the coin angle is varied

across just approximately one lattice site.

B. Realization of topological phase boundaries

In order to obtain a quantitative relation between the optical

resolution of the optical system and the shape of TP edge

states, we numerically studied the phase crossover in the 1D

protocol as a function of the ratio a/RA. As shown in Fig. 10,

the size of the TP edge state decreases monotonically with

the optical resolution until it attains a constant value around

one lattice site. The figure also displays the probability Pinit =
| 〈E|x0,s0〉 |2 to populate the TP edge state |E〉 from the initial

state |x0,s0〉. In the experiments, it is important to maximize

this probability by choosing a sharp boundary and the initial

spin |s0〉 such that it coincides with the spin of the edge state at

position x0. The initial spin can be easily prepared by applying

a suitable microwave pulse.
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FIG. 10. Analysis of a TP edge state |E〉 in the 1D split-step

DTQW with coin angles given by Eq. (9) for different slopes of the

phase crossover, as determined by the diffraction parameter a/RA.

(a) RMS size of the TP edge state (black dashed line) and overlap

probability of the initial state |x = 0,sE〉 with the TP edge state

|E〉 = |χ〉 ⊗ |sE〉 (red solid line). The two vertical arrows indicate

the values corresponding to the 1D and 2D quantum walk setups.

(b) Coin angles θ2 (black circles) and position distribution
∑

s | 〈E|x,s〉 |2 of the TP edge state (red lines) computed for the

current 1D (left) and the new 2D experimental setups (right).
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V. OUTLOOK AND DISCUSSION

In this paper, we have studied the robustness of TP against

environment-induced decoherence, which causes dephasing

of the quantum walk states. We have analyzed the effect of

decoherence on the existence and form of TP edge states. We

have found that decoherence of spin and position states leads,

in both cases, to an approximately exponential decay of the

TP edge state into the bulk states. A study of phase coherence

properties of matter waves propagating along a quantum circuit

of TP edge states will be the subject of future work, similar to

that pursued in Ref. [79] with IQHE solid-state devices [13].

Our scheme for 2D spin-dependent transport combined with

Raman laser pulses to drive the coin operation will allow us to

realize arbitrary topological domains in 1D and 2D quantum

walks under realistic decoherence conditions. Owing to a

high numerical aperture, the diffraction-limited optical system

utilized to project the Raman pulses reduces the size of the

TP edge states to a minimum, yielding a high probability to

populate them from a single site.

Exploring the limits of the stroboscopic decoherence model

revealed that specific TP edge states can be unaffected by

decoherence. In the future, we plan to build upon this result

to construct Kraus operators that can pump the walker into a

TP edge state when applied periodically in time. This would

allow us to engineer dissipation to protect TP edge states not

only from static disorder but also from a weak amount of

environmental decoherence [80].

As yet, little is known about the role of interactions

in topological insulators [81,82]. While topological phases

of noninteracting systems are relatively well understood,

the classification of interacting topological phases is in its

infancy. The most promising direction of future quantum

walk experiments with neutral atoms consists of exploiting

the strong, controllable interactions between atoms in order

to understand topological phases with interacting particles.

Atoms have, in fact, the potential to shed new light on

topological phases with strongly correlated particles, which

go beyond a purely wave-mechanical picture such as that of

noninteracting topological phases [31,34,35].
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APPENDIX: ANALYTICAL DECAY MODEL OF THE TP

EDGE STATE UNDER DECOHERENCE,

EQUATIONS (13) AND (14)

We derive an analytical model describing the decay of the

TP edge state under pure spin decoherence. A model describing

the decay under decoherence affecting only the position states

can be derived analogously.

Let |E〉 be a TP eigenstate of the walk operator W with

quasienergy ǫ. The corresponding density matrix ρ0 = |E〉〈E|
is then invariant under application of the walk operator W :

W |E〉〈E| W † = e−iǫ |E〉〈E| eiǫ = ρ0. (A1)

We consider the 1D walk evolution of this state under spin

decoherence as defined by Eq. (11). After one step, the walker’s

state is described by

ρ1 = (1 − pS) ρ0 + pS

∑

s∈{↑,↓}

Ps ρ0 P
†
s , (A2)

where Ps is the projector onto the spin state s, as defined in

Eq. (12). The probability �(1) to find the walker in the same

state |E〉 is given by

�(1) = tr(|E〉〈E| ρ1)

= (1 − pS) tr(ρ0
2) + pS

∑

s

tr
(

ρ0 Ps ρ0 P
†
s

)

= (1 − pS) + pS

∑

s

∑

x,x′

〈x
′,s| ρ0 |x,s〉〈x,s| ρ0 |x′,s〉

= (1 − pS) + pS

∑

s

∑

x,x′

| 〈x,s| ρ0 |x′,s〉 |2

= (1 − pS) + pS

∑

s

(

∑

x

| 〈x,s|E〉 |2
)2

, (A3)

where we used the orthogonality of the basis states |x,s〉 as

well as the purity of the initial state, tr(ρ2
0 ) = 1. Hence, we

obtain

ρ1 = �(1) ρ0 + [1 − �(1)] ρ̃1, (A4)

where ρ̃1 describes a statistical mixture with no overlap with

the initial state, tr(|E〉〈E| ρ̃1) = 0. Assuming that |E〉 will

never be populated by the time evolution of ρ̃1,

tr[|E〉〈E| En(ρ̃1)] = 0 ∀ n > 0, (A5)

the probability �(n) to find the walker at time t = n T in the

initial state is given by

�(n) = tr(|E〉〈E| ρn) = tr[ρ0 E
n−1(ρ1)]

= �(1) tr[ρ0 E
n−1(ρ0)] + [1 − �(1)] tr[ρ0E

n−1(ρ̃1)]

= �(1)n tr
(

ρ2
0

)

= (1 − γS)n , (A6)

where the decay rate γS is defined as

γS = 1 − �(1) = pS

⎡

⎣1 −
∑

s

(

∑

x

| 〈x,s|E〉 |2
)2

⎤

⎦. (A7)

For pure position decoherence, one analogously obtains

�(n) = (1 − γP)n , (A8)

where

γP = pP

⎡

⎣1 −
∑

x

(

∑

s

| 〈x,s|E〉 |2
)2

⎤

⎦. (A9)
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[57] I. Yalçınkaya and Z. Gedik, Two-dimensional quantum walk

under artificial magnetic field, Phys. Rev. A 92, 042324

(2015).

[58] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological

characterization of periodically driven quantum systems, Phys.

Rev. B 82, 235114 (2010).
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