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Quantum quench dynamics and population inversion in bilayer graphene
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The gap in bilayer graphene (BLG) can directly be controlled by a perpendicular electric field.
By tuning the field through zero at a finite rate in neutral BLG, excited states are produced. Due to
screening, the resulting dynamics is determined by coupled non-linear Landau-Zener models. The
generated defect density agrees with Kibble-Zurek theory in the presence of subleading logarithmic
corrections. After the quench, population inversion occurs for wavevectors close to the Dirac point.
This could, at least in principle provide a coherent source of infra-red radiation with tunable spectral
properties (frequency and broadening). Cold atoms with quadratic band crossing exhibit the same
dynamics.

PACS numbers: 81.05.Uw,64.60.Ht,78.67.-n

Charge carriers in bilayer graphene (BLG), which con-
sists of two atomic layers of crystalline carbon, com-
bine non-relativistic ”Schrödinger” (quadratic disper-
sion) and relativistic ”Dirac” (chiral symmetry, unusual
Berry phase) features. Due to their peculiar nature, BLG
holds the tantalising promise of revolutionizing electron-
ics, since its band gap is directly controllable by a perpen-
dicular electric field over a wide range of parameters1–5

(up to 250 meV6), unlike existing semiconductor tech-
nology. Moreover, unlike monolayer graphene (MLG),
whose effective model (the Dirac equation) was thor-
oughly studied in QED and relativistic quantum mechan-
ics, understanding the low energy properties of BLG is a
new challenge.

Tuning the gap through zero in BLG in a time de-
pendent perpendicular electric field parallels closely to
a finite rate passage through a quantum critical point
(QCP): as the gap closes, activated behaviour and a fi-
nite correlation length give way to metallic response and
power-law correlations, as in a sweep through a QCP.
During the latter, defects (excited states, vortices) are
produced according to Kibble-Zurek theory7,8. When the
relaxation time of the system, which encodes how much
time it needs to adjust to new thermodynamic condi-
tions, becomes comparable to the ramping time close to
the critical point, the system crosses over from the adi-
abatic to the diabatic (impulse) regime. In the latter
regime, its state is effectively frozen, so that it cannot
follow the time-dependence of the instantaneous ground
states – as a result, excitations are produced. The the-
ory, general as it is, finds application in very different
contexts in physics, ranging from the early universe cos-
mological evolution7 through liquid 3,4He8,9 and liquid
crystals10,11 to ultracold gases12. The relative ease of
manipulating the gap – in particular in real time – via a
spatially uniform external electric field, which can there-
fore play the role of a (time dependent) control parame-
ter, establishes BLG as an ideal setting for the study of
quantum quenches with sudden, continuous or any other

sweep protocols13–15. This in turn leads to the question:
what might such states be useful for?
This complex of questions is addressed here. In partic-

ular, we compute the defect (excited state) density after
a slow, non-adiabatic passage through a quantum crit-
ical point via Kibble-Zurek7,8 theory, taking screening
between the layers into account. The presence of excited
states after such a quench leads to population inversion
for wavevectors near the Dirac point in BLG (see Fig. 1),
evidenced by the dynamic conductivity. This could in
principle provide a coherent source of infra-red radiation
with tunable spectral properties (frequency and broad-
ening), determined below in an idealised model. This is
tantalising as there are only few materials that generate
light in the infrared with tunable frequency, BLG with its
unique properties might represent the first step towards
new lasers for this regime.
We study the problem in a more general setting of

a general class of low energy Hamiltonians, comprising
mono- and bilayer graphene, which exhibit quantum crit-
ical behaviour, as

H =

(

∆ cJ(px − ipy)
J

cJ (px + ipy)
J −∆

)

, (1)

where J is a positive integer. The energy spectrum is
given by E±(p) = ±

√

∆2 + ε2(p) with ε(p) = cJ |p|J the

gapless spectrum, |p| =
√

p2x + p2y with spatial dimension

d = 2.
The critical exponents can straightforwardly be read

off. The correlation length follows from dimensional anal-
ysis: ξ ∼ ~(cJ/|∆|)1/J , defining ν = 1/J . The Hamil-
tonian contains the Jth spatial derivative (Jth power of
p), which leads to z = J . The resulting scaling relation
zν = 1 is in agreement with a linearly vanishing gap ∆.
We are interested in the quantum quench dynamics

when the gap varies as ∆(t) = ∆0t/τ (up to logarith-
mic corrections, as analyzed below) and t ∈ [−τ, τ ].
According to Kibble-Zurek scaling7,8, the resulting de-
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FIG. 1: Reversing the applied perpendicular electric field + ~E
in half-filled BLG (left) at a finite rate 1/τ leads to excited
states in the upper branch in accordance with the Kibble-
Zurek theory of non-equilibrium phase transitions (right).
The momentum distribution increases from red (0) to blue
(1) in the spectra. Realistic quenching times provide an effec-
tive population inversion with little effect on the layer charge
asymmetry.

fect (excited state in the upper branch) density is ρ ∼
τ−dν/(zν+1), which leads to

ρ ∼ (∆0/τ)
1/J

. (2)

The matrix structure of Eq. (1) allows us to connect
our problem to the Landau-Zener (LZ) dynamics16 by
analysing the solution of

i~∂tΨ(t) = HΨ(t), Ψ(−τ) = Ψ−, (3)

where HΨ± = E±Ψ±, and the quantity of interest is
Ψ(τ). The exact solution for the diabatic transition prob-
ability between final ground and excited states at mo-
mentum p for ε(p) ≪ ∆0 gives for the momentum distri-
bution of excited states in the upper branch (Fig. 1) and
and the resulting total defect density

Pp = exp
(

−πε2(p)τ/~∆0

)

, (4)

ρ =
Ac

(2π~)2

∫

dpPp =
AcΓ(1/J)

4Jπ~2

(

~∆0

πc2Jτ

)1/J

(5)

per valley, spin and unit cell, with Ac the unit cell area.
This agrees with Kibble-Zurek scaling in Eq. (2). How-
ever, the present approach also provides the explicit nu-
merical prefactor for arbitrary J , similarly to the quan-
tum Ising model17. Note that the bigger J , the larger
(and the more insensitive to τ) the resulting defect den-
sity, on account of the larger the number of low energy
states (ω2/J) within an energy window ω around the
Dirac point.
The J = 1 case with c1 = vF ≈ 106 m/s is realized in

MLG18, where the spinor structure encodes the two sub-
lattices of the honeycomb lattice. The control or even the

very existence of a gap there remains an open issue. Dirac
fermions with linear band-crossing can alternatively be
realized in optical lattices19, where the on-site energies
of different sublattices are under control, allowing for the
introduction of a time dependent mass gap.
The J = 2 case with c2 = 1/2m (m ≈ 0.03me) co-

incides with the low energy Hamiltonian of BLG20 for
energies below t⊥/4, with t⊥ ∼ 0.3 − 0.4 eV the inter-
layer hopping, and the spinor springs from the two lay-
ers. Keeping BLG at charge neutrality by either isolating
it from the rest of the world in a perpendicular electric
field, or by using a dual-gate structure3–6,21, a continuous
change of the gate voltage results in closing and reopen-
ing the gap, as the density imbalance between the layers
is inverted. However, screening due to electron interac-
tions becomes relevant in this case, and the induced gap
is related to the external potential, Uext as

2,22

2∆ = Uext +
e2dδn

2Acεrε0
, (6)

where δn =
∑

p(n1p − n2p) is the dimensionless density
imbalance between the two layers with nip the particle
density of state p on the ith layer. In equilibrium, to a
good approximation, the induced gap is given by1,2

∆ =

(

1 + λ ln

(

4t⊥
|Uext|

))−1
Uext

2
, (7)

and the density imbalance reads

δn = 4ρ0∆ ln (|∆|/2t⊥) , (8)

with λ = e2dρ0/Acεrε0 ∼ 0.1 − 0.5 the dimensionless
screening strength, d ≈ 3.3 Å the interlayer distance, ε0
the permittivity of free space and ρ0 = Acm/2π~2 the
density of states per valley and spin in the limit ∆ → 0.
For SiO2/air interface, εr ≈ 2.5 (εr = 25 for NH3, εr =
80 for H2O), which reduces the effects of screening.
In a quench of a time dependent external potential

in BLG, the induced gap couples the two-level systems
(stemming from the 2 × 2 structure of Eq. (1), labeled
by p) via the δn term in Eq. (6). The problem would
require the solution of a continuum of coupled differential
equations, which is not easy, even approximately. We
mention that the case of a single level (only one p mode),
in which case δn = n1p − n2p in Eq. (6), is known as
the non-linear LZ model23, and the resulting dynamics
differ qualitatively from the conventional one, possessing
nonzero transition probability even in the adiabatic limit
for strong non-linear coupling.
The analysis is simplified considerably by the observa-

tion that a single level cannot have a strong impact on the
dynamics of the others due to the large number of terms
in the sum for δn. Thus, it looks natural to replace the
non-linear term by an average density imbalance, inde-
pendent of the explicit time dependence of n1p(t)−n2p(t)
for a given p, hence decoupling the LZ Hamiltonians for
distinct p’s.
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When Uext changes fully adiabatically, the resulting
gap and density imbalance are given by Eqs. (7) and (8),
respectively. For slow, nearly adiabatic temporal changes
of the potential, only a small fraction of terms in the δn
sum is expected to behave truly diabatically (contribu-
tion from states nearest to the gap edges). Thus we as-
sume that the gap is still given by Eq. (7), and establish
self-consistency by verifying that the resulting density
imbalance satisfies Eq. (8). Although the usage of Eq.
(7) simplifies the picture, it still differs from the con-
ventional LZ form, i.e. subleading logarithmic terms are
inevitably present albeit with a reasonably small prefac-
tor λ. Fortunately, one can invoke the extension of the
Kibble-Zurek mechanism for non-linear quenches to esti-
mate the resulting defect density13,14 (note the difference
between a non-linear quench on the LZ problem13,14 and
the non-linear LZ problem23). The logarithmic terms in
Eq. (7) can be considered as ”zeroth” powers, therefore
the resulting quench is still ”linear”, with subleading log-
arithmic corrections.
The inset of Fig. 2 shows the density imbalance, ob-

tained from solving numerically the LZ problem (Eq. (3))
with the adiabatic screening potential (Eq. (7)) for BLG
with a linearly varying external potential,

Uext(t) = U0t/τ, t ∈ [−τ, τ ]. (9)

The numerical results are compared to those from
Eqs. (7) and (8); the imbalance is rather well described
by the equilibrium, fully adiabatic (τ → ∞) expression
(dashed-green line), therefore our decoupling of the cou-
pled non-linear LZ problem by the adiabatic potential
for slow enough quenches with Eq. (7) works satisfacto-
rily. This validates our average field decoupling proce-
dure. Note that to the density imbalance in Eq. (8) all
states up to the cutoff, t⊥, are contributing. On the other
hand, defect production occurs at very low energies, close
to the touching point of the gapless branches, whose con-
tribution to the imbalance is negligible in the limit of the
size of the initial gap, Eq. (7), ∆λ ≡ ∆|Uext=U0

≪ t⊥.
The number of defects (excited states in the upper

branch) created in an external potential, Uext(t) =
U0t/τ , t ∈ [−τ, τ ], follows Eq. (5) even in the presence
of screening as

ρ

ρ0∆0
=

1

2

√

∆λ

∆0

√

~

τ∆0
, (10)

where ∆0 = |U0/2|, ∆λ ≡ ∆|Uext=U0
. Eq. (10) to-

gether with Eq. (5) are the central results of our Kibble-
Zurek analysis. The numerical data fitted with ρ/ρ0∆0 =
C( ~

τ∆0

)α/2, and both the prefactor C and the exponent α

are compared to the expected values, namely
√

∆λ/∆0

for the coefficient and 1/2 for the τ exponent for vari-
ous values of λ, summarized in Table I, and shown in
Fig. 2. The agreement is indeed remarkable, the slight
mismatch in the exponent 1/2 being due to the sublead-
ing logarithmic terms in Eq. (7) for stronger screening.
Since ∆0ρ0 ∼ 10−3 for ∆0 ∼ t⊥/10, the resulting density

of defects per unit area (including spin and valley) falls

into the order of
√

~/τ∆0× 1012 cm−2, and can take the
value 3 × 109 cm−2 for quenching time τ ∼ 1 ns, cor-
responding to a ramping rate ∆0/τ ∼ 107 eV/s. Note
that this density corresponds to the electrons/holes in
the otherwise empty/occupied upper/lower branch, and
does not by itself imply any particular real space den-
sity modulation, since these states contribute negligibly
to the layer charge imbalance. A moderately slow quench
implies τ∆0/~ ∼ 10− 100 with ∆0 ∼ t⊥/10, translating
to τ ∼ 0.1 − 1 ps. Different non-linear sweep proto-
cols13–15 lead to similar conclusion: the steeper (more
non-adiabatic) the quench, the bigger the defect density
produced.

Our results are robust with respect to variations in
the band structure, e.g. extra hopping terms or large
asymmetry gap. The quadratic spectrum of BLG with
J = 2 changes to linear one (J = 1) at the vicinity of the
Dirac point (∼ 10 K range), which could affect the scaling
of the defect density (1/

√
τ → 1/τ) for slow quenches if

it was not masked by impurity effects even in the cleanest
samples.
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FIG. 2: (Color online) The density of defects created dur-
ing the quench per spin, valley and unit cell in BLG with
screening is shown for Uext = U0t/τ , t⊥ = 5U0, λ = 0 (blue,
circle), 0.1 (red, square), 0.2 (black, triangle) and 0.5 (green,
star) from top to bottom. The symbols denote the numerical
data, the solid lines are fits using ρ/ρ0∆0 = C

2
( ~

τ∆0
)α. The

inset shows the time dependent density imbalance of BLG
per spin and valley in a linear external potential with strong
screening (λ = 0.5) with τ∆0/~ = 1 (blue), 10 (red) and 100
(black) from top to bottom. The green dashed line shows the
fully adiabatic (equilibrium) result with τ → ∞, Eqs. (7)-
(8), which is approached fast with increasing τ . Given the
simplicity of our self-consistent average field procedure, the
agreement is excellent for slow quenches.

Having established the scaling properties of the de-
fect density in BLG, we turn to the determination of
the optical response of the excited state resulting from
the quench, whose momentum distribution is given by
Eq. (4); The occupation number in the upper and lower



4

λ 0 0.1 0.2 0.5
√

∆λ/∆0 from Eq. (7) 1.00 0.88 0.80 0.64
√

∆λ/∆0 from the fit 1.00 0.87 0.78 0.64

exponent (α) 0.50 0.52 0.53 0.55

TABLE I: The numerically obtained values of the coefficient,
√

∆λ/∆0 and the exponent 1/2 of the defect density from
Fig. 2 for t⊥ = 5U0, compared to the values based on Kibble-
Zurek scaling and Eq. (7).

branches of the spectrum is, respectively, f+(p) = Pp

and f−(p) = 1 − Pp due to particle-hole symmetry. For
momenta close to the K point, population inversion oc-
curs when f+(p) > f−(p), i.e. in the energy range

2∆λ < ~ω < 2∆λ

√

1 + (~ ln 2)/(π∆λτ), which translates
in the near adiabatic limit to

2∆λ < ~ω < 2∆λ +
~ ln 2

πτ
. (11)

The effect of a small ac electric field can be considered us-
ing Fermi’s golden rule, and the initial dynamic conduc-
tivity is related to the rate of optical transitions between
the two states with the same momentum, weighted by the
probabilities of occupied initial and empty final states, as

Γp(ω) = 2π
~
M2

p δ
(

~ω − 2
√

∆2
λ + ε2(p)

)

[f−(p) − f+(p)],

where Mp = |vx(p)eA| is the transition matrix element
between the higher and lower energy state, where vx(p) =
Ψ∗

+∂H/∂pxΨ− and A the vector potential. Thence, we
obtain the dynamic conductivity

σ(ω) = σ0

[

1− 2 exp

(

πτ

4~∆λ
(4∆2

λ − (~ω)2)

)]

×

× (~ω)2 + 4∆2
λ

(~ω)2
Θ(|~ω| − 2∆λ) , (12)

with σ0 = e2/2~ the ac conductivity of BLG24,25.
Both absorption and stimulated emission are taken

into account, and the negativity of the resulting conduc-
tivity indicates the dominance of the latter: this indi-
cates a phase coherent response, which is of course es-
sential for a laser. In addition, stimulated emission can

also win against spontaneous emission by increasing the
intensity of the incoming radiation field. If spontaneous
emission dominates (luminescence), the resulting radi-
ation will still be spectrally limited but without phase
coherence.

In the frequency range of Eq. 11, the dynamic conduc-
tivity is negative due to the population inversion26 (i.e.
the energy injected into the system during the quench
is released) as σ(~ω → 2∆λ) ≈ −2σ0. The region of
negative conductivity shrinks with increasing τ , without
influencing the amplitude of σ(ω) precisely at the gap
edge. This follows from Eq. (4), implying maximal pop-
ulation inversion at the Dirac point for arbitrary quench
time, i.e. Pp=0 = 1.

The typical lasing frequency lies in the close vicinity
of ∆λ (including the THz regime, wavelength of the or-
der of 10 µm), conveniently tunable by perpendicular
electric fields6. The relaxation times for intra- and in-
terband processes in MLG are estimated as 1 ps and 1-
100 ns26, respectively, which might be further enhanced
in BLG around half-filling27. Thus, the lasing is expected
to survive for quenching times in the ps-ns range even in
the presence of the above processes. Repeated quenching
(like optical pumping) between ∆ and −∆ is also linked
to the Kibble-Zurek theory28 with similar effects on the
population inversion.

Our results apply to other systems with a quadratic
band crossing, e.g. for certain nodal superconductors or
cold atoms on Kagome or checkerboard optical lattices29

at appropriate fillings, described by Eq. (1) with J = 2
at low energies. The momentum distribution, Eq. (4)
and the concomitant scaling of the defect density after
closing and reopening the gap would be direct evidence of
the quench dynamics. Particularly intriguingly, graphene
multilayers with appropriate stackings realize higher or-
der (J > 2) band crossings30,31.
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