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We study the robustness of the quantization of the Hall conductivity in the Harper-Hofstadter
model towards the details of the protocol with which a longitudinal uniform driving force Fx(t) is
turned on. In the vector potential gauge, through Peierls substitution, this involves the switching-

on of complex time-dependent hopping amplitudes e−
i
~
Ax(t) in the x̂-direction such that ∂tAx(t) =

Fx(t). The switching-on can be sudden, Fx(t) = θ(t)F , where F is the steady driving force, or more
generally smooth Fx(t) = f(t/t0)F , where f(t/t0) is such that f(0) = 0 and f(1) = 1. We investigate
how the time-averaged (steady-state) particle current density jy in the ŷ-direction deviates from
the quantized value jy h/F = n due to the finite value of F and the details of the switching-on

protocol. Exploiting the time-periodicity of the Hamiltonian Ĥ(t), we use Floquet techniques to
study this problem. In this picture the (Kubo) linear response F → 0 regime corresponds to the

adiabatic limit for Ĥ(t). In the case of a sudden quench jy h/F shows F 2 corrections to the perfectly
quantized limit. When the switching-on is smooth, the result depends on the switch-on time t0: for
a fixed t0 we observe a crossover force F ∗ between a quadratic regime for F < F ∗ and a non-analytic
exponential e−γ/|F | for F > F ∗. The crossover F ∗ decreases as t0 increases, eventually recovering
the topological robustness. These effects are in principle amenable to experimental tests in optical
lattice cold atomic systems with synthetic gauge fields.

I. INTRODUCTION

The quantization of the transverse conductivity σH in
the Integer Quantum Hall Effect1 (IQHE) is probably the
most famous manifestation of a topological invariant, the
first Chern number, in condensed matter physics2. In-
deed the celebrated TKNN paper3 showed that in the lin-
ear response regime, i.e. when the external electric field
is small, the Hall conductivity predicted by the Kubo
formula jey = σHEx is quantized and can be written as
the sum of the Chern numbers of the occupied bands and
therefore it must be an integer, in units of e2/h.

The extreme precision of the quantized Hall conduc-
tance revealed in the experiments1 suggests a remark-
able robustness of the IQH phase against many ingredi-
ents, notably the presence of impurities and interactions,
and the strength of the applied electric field. Concern-
ing the latter issue, the mathematical physics literature4

has shown that corrections to the Kubo formula vanish
in Quantum Hall systems to all orders in perturbation
theory.

Quite recently, the issue of the topological robustness
of a related phenomenon — Thouless pumping in one-
dimensional insulators5 — has been re-examined, show-
ing that the details of the preparation of the quantum
non-equilibrium steady-state and of the time-interval
in which the pumped charge is measured deeply influ-
ence how the topological τ → ∞ adiabatic limit is ap-
proached6. In particular, it was shown that the charge
pumped over a finite number of periods shows non-
analytic corrections — in the form of faster and faster
oscillations as ω = 2π/τ → 0 — when the periodic driv-
ing protocol is turned-on abruptly starting from an initial
uncorrelated insulating state6. Such a non-analytic ap-
proach of the adiabatic (topological) limit ω → 0 was

indeed predicted by Avron & Kons7 through rigorous
general arguments. What such rigorous arguments do
not tell is how the limit ω → 0 is approached when
one considers the asymptotic (steady state) single-period
pumped charge, where topological effects should most ap-
propriately looked for8, because this involves an infinite-

time limit. Remarkably, Ref. 6 shows that non-analytic
corrections present at finite-time turn into quadratic cor-
rections ∼ ω2 when the asymptotic pumped charge is
considered.

Modern realizations of the IQHE physics involve ar-
tificial gauge fields in cold atomic systems9–12. In the
light of the results of Ref. 6, these experiments raise
the non-trivial issue of the robustness of the quantized
Hall conductance against many details, including primar-
ily the preparation of the Quantum Hall state and the
ensuing turning-on of the constant field, as well as the
measurement of the transverse current. To set up and
state the problem we will address, let us assume that the
coherence-time9 of these cold atomic systems is so long
that it is legitimate to estimate the time-average trans-
verse current from its infinite-time limit

jy = lim
T→∞

1

T

∫ t0+T

t0

dt′ 〈ψ(t′)| ĵy|ψ(t′)〉 . (1)

Here ĵy is the space-averaged particle-current density op-
erator, and |ψ(t)〉 is assumed to evolve unitarily with

the system Hamiltonian Ĥ(t), including the external uni-
form force field Fx(t) in the x̂-direction, which we rep-
resent by an extra time-dependent vector potential Axx̂
with ∂tAx(t) = Fx(t). Furthermore, let us assume that
the external uniform force Fx(t) is switched-on in a time
t0 towards a stationary value F , i.e., Fx(t) = f(t/t0)F ,
where f(t/t0) is a switching-on function with f(0) = 0
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and f(1) = 1. The Kubo formula for the IQHE implies
that for small F :

jy = σyxF =
n

h
F , (2)

meaning that in the limit F → 0 the quantity jyh/F
is exactly an integer number n. A robust quantization
against the strength of F would appear, in this con-
text, as non-analytic corrections of the form jyh/F ≃
n+Ae−γ/|F |, while the presence of quadratic corrections,
jyh/F ≃ n+BF 2+o(F 2), would signal an ordinary per-
turbative response.
In this paper we investigate how the finite value of the

stationary driving force F and the details of the driving
protocol, encoded in t0 and in the switching-on function
f(s = t/t0), affect the precision of the measurement of
the transverse Hall response in cold atoms IQHE systems.
Our investigation focuses on the Harper-Hofstadter (HH)
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t

Figure 1: Possible schedules for the switching-on of the uni-
form driving force Fx(t). The sudden quench case Fx(t) =
θ(t)F , where θ(t) is the Heaviside step function, is recovered
for t0 → 0.

model13, a two-dimensional tight-binding Hamiltonian
for IQHE which is particularly relevant for experimental
realizations with optical lattices10–12, providing an excel-
lent tool to study QHE physics in a tunable and con-
trolled system. The techniques used involve quite stan-
dard Floquet tools to study the time-periodic dynamics
of the transverse current, which can be formulated as a
quantum pumping problem.
We will show that the main responsible for topological

robustness is the switching function f(t/t0). We ana-
lyze in detail three possible schedules: a sudden quench
Fx(t) = θ(t)F , a linear ramp Fx(t) = (t/t0)F and a
smoother ramp, as sketched in Fig. 1. We will show
that in the sudden case, Fx(t) = θ(t)F , the Hall re-
sponse of the system is perturbative, and F 2 corrections
to jyh/F are present. When the driving force is turned-
on linearly in a time t0, Fx(t) = (t/t0)F , we find two
distinct regimes: for a fixed t0 we observe a crossover
force F ∗(t0) between a quadratic regime for F < F ∗

and a non-analytic exponential e−γ/|F | for F > F ∗.

The crossover F ∗(t0) decreases as t0 increases, eventu-
ally recovering the topological robustness. Finally, if the
switching-on is smoother (with a continuous derivative),
Fx(t) = 1

2 (1− cos(πt/t0))F , we observe no qualitative
differences with the linear ramp case, suggesting the main
ingredient for the topological robustness seems to be the
continuity of Fx(t) and a suitably long t0.

The paper is organized as follows: in Sec. II we intro-
duce the Harper-Hofstadter and the quantum pumping
approach we used to study the non-adiabatic corrections
to the transverse response. In Sec. III we present our
results, along with a detailed analysis of the topologi-
cal nature of the pumped charge, highlighting the main
factors responsible for the correction to the quantized
transverse response. In particular, in Sec. III A we ana-
lyze the topological properties of the transverse current
carried by a Floquet state, in Sec. III B we describe the
response to the sudden quench of the external force and
in Sec. III C we discuss the continuous switching-on of
Fx(t). Conclusions and outlook are contained in Sec. IV.

II. THE HARPER-HOFSTADTER MODEL

Our starting point is the Harper-Hofstadter
Hamiltonian13, which describes a tight-binding system of
non-interacting spinless fermions on a two-dimensional
(2D) square lattice, pierced by a uniform magnetic field
B = Bẑ perpendicular to the lattice plane:

Ĥ = −J0
∑

l,m

[
ĉ†l+1,mĉl,m + e−i2παlĉ†l,m+1ĉl,m +H.c.

]
.

(3)
Here J0 is the bare hopping amplitude, and (l,m) are in-
tegers labelling the square lattice sites, rl,m = a(lx̂+mŷ),
with lattice spacing a, with boundary conditions to be
discussed later on. The magnetic field flux per plaque-
tte, in units of the flux quantum φ0 = hc/e, is here
α = a2B/φ0, and results in a complex hopping ampli-

tude through Peierls’ substitution, J0 e
−i e

~c

∫

r
′

r
A·dx, with

a Landau gauge choice for the vector potential A = Bxŷ,
breaking translational invariance along the x̂-direction.
In a condensed matter realization of this model Hamilto-
nian, with charged particles in real magnetic fields, one
would not be able to explore the full phase diagram of the
model for α ∈ [0, 1], since the flux per plaquette is too
small, even with large laboratory fields. In modern real-
izations with neutral cold atoms in optical lattices12,14,
on the contrary, synthetic gauge fields are used and all in-
teresting values of α are possible. Historically, as discov-
ered by Hofstadter13, the spectrum is extremely complex,
with rational values of α = p/q leading to q energy sub-
bands with gaps in between. The crucial realization, due
to Thouless and coworkers3, is that the insulating states
obtained when the Fermi energy lies inside the gaps be-
tween such sub-bands has a quantized Hall conductance
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σH = −e
2

h

occ∑

ν

∫

BZ

d2k

2π
Ων(k) = n

e2

h
, (4)

where Ων(k) = i
[
〈∂kx

uν,k|∂ky
uν,k〉 − 〈∂ky

uν,k|∂kx
uν,k〉

]

is the Berry curvature2 of ν-th occupied band, and uν,k
denote the periodic part of the Bloch wave-functions on
the (magnetic) Brillouin Zone (BZ) of the system. This
implies that a Hall current flows, for instance, in the y-
direction when an electric field Ex acts in the x-direction:
jy = σHEx. The robustness of this phenomenon is re-
markable: disorder and (weak) interactions do not alter
the result, thus providing an exceptionally precise mea-
surement1 of e2/h. A further remarkable robustness is of-
fered by the fact that the Kubo-formula, derived from lin-
ear response theory, seems to extend its regime of validity
well beyond linear response: as mathematically proven in
Ref. 4, and further discussed in Ref. 7, all power-law cor-
rections in the electric field can be shown, under suitable
hypotheses, to be missing.
The availability of new experiments employing syn-

thetic gauge fields12,14, directly sensitive to the time-
dependent transient leading to the transverse response,
calls for a further scrutiny of this issue. Experimentally,
the driving force Fx(t) in the x̂-direction can be turned
on, as a function of time, with some freedom, either
abruptly or in a more or less smooth fashion. On the the-
ory side, we can represent such a force in different gauges:
quite conveniently, for a finite-length system Lx with pe-
riodic boundary conditions (PBC) in the x̂-direction, we
can choose a vector-potential gauge in which the force is
represented by a time-dependent vector potential. The
minimal coupling requires, in a tight-binding scheme, the
Peierls’ substitution:

ĉ†l+1,mĉl,m −→ e−iaκx(t) ĉ†l+1,mĉl,m , (5)

where κx(t) determines the force Fx(t) acting in the
x-direction through Fx(t) = ~κ̇x(t), hence making the

Hamiltonian time-dependent, Ĥ(t). More in detail, we
chose Fx(t) = Ff(t/t0), where f(s = t/t0) is a switch-
on function interpolating between 0 and 1, i.e., such
that f(s ≤ 0) = 0 and f(s ≥ 1) = 1, and F is
the stationary value of the force, attained for t ≥ t0.

This choice leads to κx(t ≤ t0) = (t0F/~)
∫ t/t0
0

dsf(s)
and κx(t ≥ t0) = κx(t0) + F (t − t0)/~. The case of
a sudden switch-on of the force is recovered by taking
t0 = 0. Since κx(t) appears in the hopping as a phase-
factor, see Eq. (5), its linear increase for t ≥ t0 implies
that the Hamiltonian becomes time-periodic for t ≥ t0,
Ĥ(t+ τ) = Ĥ(t), with the period τ given by

τ =
2π~

aF
, (6)

which corresponds to a fundamental frequency ~ω = aF
entering the problem. These considerations clearly show

that the question of the validity of linear response in F
goes hand-in-hand with the issue of adiabaticity of Ĥ(t):
Kubo linear response is essentially obtained in the fully
adiabatic limit ω → 0.
To calculate the current, following Laughlin15, we use

PBC in the ŷ-direction as well, introducing a vector po-
tential, again with a minimal-coupling Peierls’ substitu-
tion:

ĉ†l,m+1ĉl,m −→ e−iaκy ĉ†l,m+1ĉl,m . (7)

The total current operator is obtained as a derivative of
Ĥ with respect to κy:

Ĵy =
1

~

∂Ĥ

∂κy

∣∣∣∣
κy=0

. (8)

The Hall response can now be seen as a non-vanishing

quantum average of Ĵy in presence of a force Fx, describ-
ing the transport of particles along ŷ-direction. We can
quantify this through the linear-density of transported
particles during the interval [t0, t] (dropping the initial
switching-on interval [0, t0]):

Qy(t ≥ t0) =

∫ t

t0

dt′ 〈ψ(t′)| ĵy|ψ(t′)〉 , (9)

where |ψ(t)〉 denotes the time-evolving state of the sys-

tem, and ĵy = Ĵy/(LxLy) is the space-averaged current
density. Notice that Qy, as defined, gives the number
of particles per-unit-length moving along the ŷ-direction
in the interval [t0, t]: we will often refer to it as pumped

charge, although the particles could be neutral.
We can ask for the charge pumped in the m-th period:

Qm = Qy(t0 +mτ)−Qy(t0 + (m− 1)τ) . (10)

We expect that the charge pumped in the initial periods
Q1, Q2, · · · might be affected by transient effects, depend-
ing on the details of the switching-on function f(t/t0) and
time t0. These transient effects are expected to decay for
m→ ∞, so that the infinite-time average

Q = lim
M→∞

1

M

M∑

m=1

Qm , (11)

should effectively capture the asymptotic (steady state)
single-period pumped charge, where topological effects
should most appropriately looked for8. The Floquet the-
orem enormously simplifies the calculation of the infinite-
time average Q. Indeed, the state of the system at any
time t ≥ t0 can be expanded in terms of Floquet modes
and quasi-energies16,17 as:

|ψ(t)〉 =
∑

ν

e−iǫν(t−t0)/~|uν(t)〉〈uν(t0)|ψ(t0)〉 (12)

where ǫν are the Floquet quasi-energies and |uν(t)〉 the
associated time-periodic Floquet modes, |uν(t + τ)〉 =
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|uν(t)〉. A rather standard derivation7,18 shows that the
infinite-time average pumped charge is dominated by the
Floquet diagonal ensemble value:

Q ≡ Qd =
∑

ν

nν

∫ t0+τ

t0

dt′ 〈uν(t′)| ĵy|uν(t′)〉 . (13)

where nν = |〈uν(t0)|ψ(t0)〉|2 is the “occupation” of the
ν-th Floquet mode. This clearly shows that the initial
preparation, with the transient loading interval [0, t0], is
all contained in the occupation factors nν .
So far, we have made use of time-periodicity, but not of

translational invariance. To proceed, we make a rational
choice of the magnetic flux, α = p/q with p and q co-
prime integers, which leads to an enlarged “magnetic”
unit cell of size qa in the x-direction. We now label the
sites in the x-direction with a cell-index j = 0 · · ·Nx − 1
and an intra-cell index b = 0, 1, · · · q−1, so that l = qj+b,
while m = 0 · · ·Ny − 1 labels sites in the y-direction.
Hence, Lx = Nxqa, and Ly = Nya. We then define
appropriate Bloch combinations of the form:





ĉ†
k,b =

1√
N

Nx−1∑

j=0

Ny−1∑

m=0

eia(kx(qj+b)+kym)ĉ†qj+b,m

ĉ†qj+b,m =
1√
N

BZ∑

k

e−ia(kx(qj+b)+kym)ĉ†
k,b

,

(14)

where k = 2π
a

(
nx

qNx
x̂+

ny

Ny
ŷ
)
, with nx = 0, · · · , Nx − 1

and ny = 0, · · · , Ny − 1, define the N = NxNy wave-
vectors inside the Brillouin Zone (BZ): [0, 2πqa ] × [0, 2πa ].

The Hamiltonian for the system can then be written in
the form:

Ĥ(t) = −J0
BZ∑

k

q−1∑

b=0

{
2 cos

(
aky + 2πp

q b
)
ĉ†
k,bĉk,b

+
[
e−ia(kx+κx(t))ĉ†

k,b+1ĉk,b +H.c.
]}

=

BZ∑

k

(ĉ†
k,0 · · · ĉ

†
k,q−1) ·H(k, t) ·



ĉ
k,0
...

ĉ
k,q−1


 ,(15)

i.e., effectively a q×q matrix problem H(k, t) for every k-
vector in the BZ. The total current operator has a similar
expression:

Ĵy =
2aJ0
~

BZ∑

k

q−1∑

b=0

sin
(
aky + 2πp

q b
)
ĉ†
k,bĉk,b

=
BZ∑

k

(ĉ†
k,0 · · · ĉ

†
k,q−1) · J(k) ·



ĉ
k,0
...

ĉ
k,q−1


 , (16)

where J(k) = (1/~)∂H/∂ky.

From now on, we will concentrate our study on the case
α = 1/3, where the Hamiltonian becomes a 3×3 problem
for every k. Exploiting the k-factorization of the initial
state |ψ(0)〉 and of the subsequent dynamics, using that

the space-averaged current density is ĵy = Ĵy/(LxLy),
and transforming the sum over k into an integral on the
BZ in the usual fashion for a large system, we can rewrite
the asymptotic pumped charge as:

Qd =
∑

ν

∫

BZ

d2k

(2π)2
nk,ν

∫ t0+τ

t0

dt′ 〈uk,ν(t′)|
1

~

∂H

∂ky
|uk,ν(t′)〉 ,

(17)
where

nk,ν =
∣∣〈uk,ν(t0)|ψk(t0)〉

∣∣2 . (18)

A generalization of the Hellman-Feynman theorem for
the Floquet case16 shows that the average current carried
by a Floquet mode is easily expressed in terms of the
quasi-energy velocity:

∫ t0+τ

t0

dt′ 〈uk,ν(t′)|
∂H

∂ky
|uk,ν(t′)〉 = τ

∂ǫk,ν
∂ky

. (19)

Hence Qd in Eq. (17) can be re-expressed as:

Qd =
τ

~

∑

ν

∫

BZ

d2k

(2π)2
nk,ν

∂ǫk,ν
∂ky

. (20)

Henceforth we will refer to the quantity defined in
Eq. (20) as the diagonal pumped charge. We should stress
that both the occupation factors nk,ν and the quasi-
energies ǫk,ν are dependent on the time-periodicity τ , or
the frequency ω, a dependence that we have not explicitly
indicated.
It is useful to make here the connection with the time-

averaged current density mentioned in the introduction,
Eq. (1). Using Eq. (11) and the fact that Q ≡ Qd, see
Eq. (13), it is straightforward to derive that

jy = lim
T→∞

1

T

∫ t0+T

t0

dt′ 〈ψ(t′)| ĵy|ψ(t′)〉 ≡
Qd

τ
. (21)

Hence, using the relationship (6) between the period τ
and the force F , it is simple to show that:

jy = σyxF =
aQd

h
F . (22)

Hence, the transverse Hall “conductance” is here given
by σyx = (aQd)/h. Its quantization, in units of 1/h,
would require that aQd = n, an integer.
A final comment concerning transient effects. To ap-

preciate them, the asymptotic pumped charge Qd should
be contrasted with the charge pumped in the m-th pe-
riod, which would read:

Qm =
1

~

∫

BZ

d2k

(2π)2

∫ t0+mτ

t0+(m−1)τ

dt′ 〈ψk(t
′)| ∂H
∂ky

|ψk(t
′)〉 .

(23)
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III. RESULTS

To illustrate the previous general considerations, let
us consider the case of a sudden switch-on of a constant
force Fx(t) = θ(t)F , which effectively amounts to taking
t0 = 0 in the previous expressions. The bands of the
unperturbed Hamiltonian are shown in Fig. 2 (top), for
Nx = 30, as a function of ky ∈ (−π/a, π/a]: we see q = 3
distinct bands, obtained by projecting the Nx different
values of kx. The initial insulating state is a Slater de-
terminant |ψ(0)〉 obtained by completely filling one such
band, for instance the lowest one. We then calculate the
charge pumped in the first period:

Q1 =
1

~

∫

BZ

d2k

(2π)2

∫ τ

0

dt′ 〈ψk(t
′)| ∂H
∂ky

|ψk(t
′)〉 . (24)

Fig. 2 (bottom) shows the value of Q1 as a function of
the driving F , expressed in terms of ~ω = aF . Notice
that for F → 0 we recover, as expected, a pumped charge
which is quantized to the integer Chern numbers (+3,-6
and +3) of the three completely filled bands. Deviations
from perfect quantization are clearly visible at finite ω:
the remaining part of the paper is precisely devoted to
understanding the nature and size of these deviations.

In order to proceed with the analysis of the deviations
from perfect quantization for small ω, we shift our atten-
tion to the infinite-time average of the pumped charge,
where the Floquet theory helps in elucidating the crucial
ingredients. Our starting point is hence Eq. (20), which
we rewrite below for convenience in a slightly different
form:

Qd =
1

~ω

∑

ν

∫

BZ

d2k

2π
nk,ν

∂ǫky,ν

∂ky
. (25)

In this re-writing we have used the trivial fact that
τ = 2π/ω and that the Floquet quasi-energies ǫk,ν depen-

dent only on ky: to appreciate the last fact, observe that
the dependence of the Hamiltonian, see Eq. (15), on kx
and t is all contained in the phase-factor e−ia(kx+κx(t)) =
e−iaκx(t0)e−iω(t−tx), with tx = t0 − akx/ω. Hence, differ-
ent values of kx effectively correspond to a shift in time
t0 → t0 − tx, which in turn amounts to a unitary trans-
formation on the Floquet operator Ûk(t0 + τ, t0), whose
eigenvector/eigenvalues are the Floquet modes/quasi-
energies:

Ûk(t0 + τ, t0)|uk,ν(t0)〉 = e−iǫk,ντ/~|uk,ν(t0)〉 . (26)

As discussed in App. B, the fact that the Floquet oper-
ators at different kx are unitarily equivalent implies that
their eigenvalues are kx-independent, i.e., e−iǫky,ντ/~.
Notice that, on the contrary, the Floquet modes |uk,ν(t)〉,
and hence the occupations nk,ν = |〈uk,ν(t0)|ψk(t0)〉|2, do
depend on kx.

-3

-2

-1

0

1

2

3

-π 0 π

E
k
/
J
0

kya

-6

-5

-4

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2

3
a
Q

1
~ω/J0

1st band
2nd band
3rd band

Figure 2: Top: Energy bands of the Harper-Hofstadter model
for α = 1/3 vs ky for Nx = 30. The dashed red lines repre-
sent the energy averaged over the phase kx + κx(t). Bottom:
Charge pumped in the first period in each magnetic cell, 3aQ1,
as a function of the driving field aF/J0, where ~ω = aF , af-
ter a sudden switch-on of the driving. For F → 0, 3aQ1 is
quantized to the first Chern number, respectively +3, -6, +3,
of the band in which the system is initially prepared. (The
simulation has been repeated by preparing the initial Slater
determinant insulating state to be one of the three completely
filled bands, in order to compute the Chern numbers.) The
first and the third band give exactly the same response. This
figure is essentially equivalent to Figure 1 of Ref. 7, where the
abscissa is 1/ω.

A. Pumping of Floquet states.

The first issue we address is what happens to the
pumped charge if the initial state |ψ(t0)〉 is precisely pre-

pared to be the νth Floquet state, i.e., such that nk,ν′ =
δν,ν′ . Then, the corresponding value of the pumped
charge is:

QF
ν =

1

3a~ω

∫ 2π
a

0

dky
∂ǫky,ν

∂ky
, (27)

where we eliminated the trivial integral on kx ∈ [0, 2π3a ].
To better understand the physical implications of this
formula, let us start from the extreme adiabatic limit
ω → 0, where the predictions of the adiabatic theorem
give us a 0th-order expression for the quasi-energies, in
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an extended Floquet BZ scheme17, in the form:

ǫ
(0)
k,ν =

1

τ

∫ τ

0

dt [Ek,ν(t)− i~〈φk,ν(t)|∂tφk,ν(t)〉]

= ǫd
k,ν + ǫg

k,ν . (28)

Here φk,ν(t) and Ek,ν(t) are the instantaneous eigen-

states/eigenvalues of Ĥ(t), while ǫd
k,ν and ǫg

k,ν denote

dynamical and geometric contributions2. These contri-
butions are in turn expressed as:

ǫdky,ν = a

∫ 2π
a

0

dkx
2π

Ek,ν(0)

ǫgky,ν
= −~ω

∫ 2π
a

0

dkx
2π

A(ν)
x (k) . (29)

where A(ν)
x (k) = i〈φk,ν(0)|∂kx

φk,ν(0)〉 is the Berry con-
nection of the ν-th band. In both terms, the time in-
tegral has been transformed into a kx-integral using the
fact that the dependence on t is through the variable
akx + ωt. As a consequence, both terms are functions of
ky only. The dynamical contribution is the kx-averaged
Bloch band, and is strictly periodic in ky of the BZ, see
dashed red line in Fig. 2. On the contrary, the geometric
term winds over the BZ, ending up acquiring an overall
integer equal to the Chern number of the corresponding
band:

ǫg2π
a ,ν

− ǫg0,ν = ~ωCν . (30)

This immediately leads to the expected integer quantiza-
tion

3aQ(0)
ν =

1

~ω

∫ 2π
a

0

dky
∂ǫ

(0)
ky,ν

∂ky
= Cν . (31)

We now consider finite-ω effects beyond the adiabatic
limit. Fig. 4 shows the Floquet quasi-energy bands for
~ω/J0 = 0.1, plotted versus ky in the region [0, 2π/(3a)],
due to a periodicity ǫky+

2π
3a ,ν = ǫky,ν discussed in App. B.

Notice that the quasi-energies are here naturally repre-
sented in the Floquet Brillouin Zone17 [−~ω/2, ~ω/2], as
they are obtained by a numerical diagonalization of the
Floquet operator. The thick line represents the quasi-
energy band emerging from the low-energy band of Fig. 3.
We observe two conspicuous features:

i) an apparent winding over the Floquet Brillouin Zone,
as a quasi-energy crossing ~ω/2 re-enters at −~ω/2
(and vice-versa). This is the winding expected from
the geometric contribution to the adiabatic quasi-
energies shown in Fig. 3. It would lead to:

1

~ω

∫ 2π
a

0

dky
∂ǫky,ν

∂ky
= Cν , (32)

where Cν is the Chern number of the ν-the band
(Cν = +3, for the thick band shown in Fig. 4).

-30

-20
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0
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20

30

0 π/3 2π/3 π 4π/3 5π/3 2π

ǫ(
0
)

k
/
~
ω

kya

+3

−6

+3

Figure 3: Adiabatic quasi-energies ǫ
(0)
ky,ν

in units of ~ω for

the three bands of the Harper-Hofsdtadter model. The fre-

quency is ~ω = 0.1J0. ǫ
(0)
ky,ν

is the sum of the kx-averaged

band, dashed line in Fig. 2 (upper panel), plus the geometric

contribution, giving rise to the loss of periodicity for ǫ
(0)
ky ,ν

in

the BZ: ǫ
(0)
2π
a

,ν
= ǫ

(0)
0,ν + ~ωCν , where Cν is the Chern number

of the ν-the band.

ii) an apparent crossing of quasi-energies belonging to
different Floquet bands.

The crossings between different Floquet bands can de-
velop very small anti-crossing gaps7,19, as indeed we find
at the points signalled by a square (see inset of Fig 4).
To better understand the nature of such anti-crossing
gaps, we reconsider again the adiabatic bands. The cen-
tral panel of Fig 4 shows a plot of the adiabatic bands

ǫ
(0)
ky,ν

folded back into the Floquet BZ: quite evidently,

they are a good approximation to the true quasi-energies
for such value of ω. Notice, however, that here all the
band crossings are genuine ones. The bottom panel of

Fig 4, finally, shows ǫ
(0)
ky,2

− ǫ
(0)
ky,1

, the energy difference

between the two lowest adiabatic bands, which clearly
suggests that the anti-crossing points — signalled by ver-
tical dashed lines — are associated to Floquet resonances

when ǫ
(0)
ky,2

− ǫ
(0)
ky,1

= m~ω. Surprisingly, not all possi-

ble resonances actually lead to the opening of an anti-
crossing gap, but only a sequence of them, here with
m = 29, 26, 23, 20. The periodicity of ∆m = 3 is likely
associated to our choice of flux α = 1/3, but the pre-
cise location of the resonance is not fully understood.
One thing that we can say, however, is that the res-
onances open up gaps20 in the quasi-energy spectrum
that are exponentially small in 1/ω. This makes such
gaps quite difficult to pin-point precisely, but our numer-
ical evidence is reasonably robust on that issue. Fig. 5
shows the deviation from integer quantization, 3−3aQF

ν ,
— calculated assuming nk,ν = 1 and using Eq. (17),
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-0.4

-0.2

0

0.2

0.4
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/
~
ω
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)
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/
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−

ǫ(
0
)

k
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)/
~
ω

0 π/6 π/3 π/2 2π/3
kya

(a)

(b)

(c)

Figure 4: (a) Floquet spectrum as a function of ky, for
~ω/J0 = 0.1. The squares signal the Floquet resonance
avoided crossings, the circle an ordinary avoided crossing.
Both are magnified in the top insets, where the size of the
points is proportional to the kx-averaged occupation nky,ν ,
see Eq. (33). (b) Floquet adiabatic quasi energies, Eq. (28),

folded in the Floquet BZ. (c) (ǫ
(0)
ky ,2

− ǫ
(0)
ky,1

)/~ω, the energy

difference between the two lowest adiabatic bands in the
extended-zone scheme, for ~ω = 0.1J0. The vertical lines

indicate the Floquet resonances, ǫ
(0)
ky ,2

− ǫ
(0)
ky ,1

= m~ω with

m = 29, 26, 23, 20, giving rise to the avoided crossing gaps of
panel (a).

which, as opposed to Eq. (27), avoids derivatives of nu-
merically determined quasi-energies — as a function of
J0/~ω: in the ω-region we plot, an overall exponential
decay is clearly visible for 3 − 3aQF

ν ∼ e−γJ0/(~ω), with

10−4

10−3

10−2

10−1

100

0 2 4 6 8 10 12 14

e−
γJ0
~ω

3
(1

−
a
Q

F ν
)

J0/~ω

Figure 5: The deviation of 3aQF
ν , Eq. (27), from integer

quantization, 3−3aQF
ν , for the lowest Floquet band, assuming

nk,ν′ = δν,ν′ , showing that the exponentially small gaps in the
quasi-energy spectrum at finite ω lead to exponentially small
deviations.

γ ∼ 0.5, superimposed on a saw-tooth behaviour due to
the sudden formation of larger gaps when two nearby
gaps coalesce together upon decreasing ω. Summariz-
ing, if the quasi-energy avoided-crossing gaps opening
were the main responsible for finite-frequency/field cor-
rections to the quantized pumped charge, such devia-
tions would be exponentially small in 1/ω ∝ 1/F : there-
fore non-analytic in the field strength7 and exceedingly
small for most practical purposes: for instance, in an
experiment in which ~ω = 10−2J0, we would estimate
3− 3aQF

ν ≈ 10−22.

B. Effect of the occupation factors: sudden

switch-on.

The second source of deviations from perfect quantiza-
tion arises from the fact that the prepared state |ψ(t0)〉 is
not precisely a Floquet state, i.e., that Floquet occupation
factors deviate from nk,ν′ = δν,ν′ . The inset of Fig. 4,
where the size of the dots is proportional to the Floquet
occupation, shows that sizeable deviations occur when-
ever ω > 0, even if small, at the quasi-energy avoided
level crossing. Indeed, for a quasi-adiabatic evolution,
the Floquet modes will be “close” to the eigenstates of
the Hamiltonian, to which they reduce for ω → 0. If
we initialize the system in an insulating phase by filling
the lowest-energy band, one of the Floquet occupation
number nk,ν will be close to 1 and much higher than the
others: the corresponding Floquet mode will be the main
one responsible for charge transport. In the following,
we will refer to such a state as adiabatic or lowest-energy
Floquet state: it is indeed the Floquet state which has
the largest overlap with the instantaneous Hamiltonian
ground state. This is highlighted in the Fig. 4, where the
Floquet spectrum is plotted vs ky with thickness propor-
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tional to kx-averaged occupation factor

nky,ν =
3a

2π

∫ 2π
3a

0

dkx nk,ν . (33)

Let us now focus on the occupation of such “adiabatic”
Floquet state. If the driving field is suddenly turned on
from Fx(t ≤ 0) = 0 to Fx(t > 0) = F , |ψ(t0 = 0)〉 coin-

cides with a Slater determinant Bloch eigenstate of Ĥ(0),
and nk,ν is given by the overlap of such a state with
the adiabatic Floquet state: nk,ν = |〈uk,ν(0)|φk,ν〉|2.
When ω is small, we can combine adiabatic perturbation
theory21 (APT) to obtain an approximate expression for
the Floquet modes |uk,ν(0)〉, see App. A for details. Fol-
lowing this approach nk,ν can be calculated to be:

nk,ν = 1−
(
~ω

2π

)2∑

µ 6=ν

∣∣∣∣
M

(k)
µ,ν

∆
(k)
µ,ν

∣∣∣∣
2

+O(ω3) . (34)

Here M
(k)
µ,ν and ∆

(k)
µ,ν are calculated from instantaneous

Hamiltonian eigenvalues/eigenstates, Ĥk(s)|φk,ν(s)〉 =
Ek,ν(s)|φk,ν(s)〉 where s = ωt is the rescaled time, as:

∆(k)
µ,ν(s) = Ek,µ(s)− Ek,ν(s) ,

M (k)
µ,ν (s) =

〈φk,µ(s)|∂sĤk(s)|φk,ν(s)〉
∆

(k)
ν,µ

. (35)

In Eq. (34) all quantities are evaluated at s = 2π, corre-
sponding to t = τ , a full period. Therefore, if the matrix
elements Mµ,ν are not all equal to zero, which in general
they are not, we expect to see power-law corrections to
the occupation number of the Floquet states, leading to
a similar behaviour for the pumped charge. Fig. 6 shows
the k-averaged occupation

nν = 3a2
∫

BZ

d2k

(2π)2
nk,ν , (36)

calculated numerically, compared to the perturbation
theory estimate in Eq. (34), as a function of ω: the ω2 de-
viation is quite clearly visible. This quadratic correction
to the occupation factors reflects itself into the pumped
charge, both the single-period charge Q1, Eq. (24), as
well as the infinite-time average Qd, Eq. (25), as seen
from Fig. 7. The faster-and-faster oscillations seen in
Q1 for ω → 0 originate from the essential singularity in
ω = 0 of the expectation value of the current operator7;
the oscillations are smeared in Qd, due to the infinite-
time average. This behaviour is very similar to that re-
ported in Ref. 6 for adiabatic quantum pumping in the
Rice-Mele model.

C. Effect of the occupation factors: continuous

switch-on.

The picture becomes richer if we switch-on the driving
in a continuous fashion, taking Fx(t) = Ff(t/t0) with a

10−4

10−3

10−2

5 10 20 30

0.08
(

~ω
J0

)2

1
−

n
ν

J0/~ω

Figure 6: Correction to the k-averaged adiabatic Floquet
mode occupation nν , Eq. (36), vs 1/ω, showing the good
agreement between the numerical data and the perturbation
theory prediction from Eq. (34).

2.98
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3
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3
a
Q

0.9
(

~ω
J0

)2

~ω/J0

Q1
Qd

10−4

10−3

10−2

10−1

100
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3
(
1

−
a
Q

)

J0/~ω

Figure 7: Pumped charge vs ω, both for one period (solid line)
3aQ1, Eq. (24), and in the diagonal ensemble (dashed line)
3aQd, Eq. (25). Notice the oscillations in Q1, signalling an
essential singularity in ω = 0. The inset shows the deviation
from the quantized value 3aQ1(ω → 0) = 3 vs 1/ω. For small
frequency this deviation is quadratic in ω.

suitably smooth function f(s = t/t0). The first obvious
choice is a linear switch-on, f(s) = s, with a fixed switch-
on time t0. As shown in Fig. 8, we now observe two
regimes: a first one, for relatively large ω, where the
corrections to the occupation nν of the adiabatic Floquet
band appear to be exponentially small in 1/ω, and a
second regime, for small ω, where the corrections are ∝
ω2:

1− nν ∼





A e−
γJ0
~ω for ω > ω∗

B
~4ω2

J4
0 t

2
0

for ω < ω∗
. (37)
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Figure 8: Correction to the occupation of the lowest en-
ergy Floquet band for different switch-on times t0. The inset
highlights the crossover form an exponential regime e−1/ω to
the quadratic one ω2 for finite ramp time t0. The solid lines

correspond to the functions 0.05e−
0.5J0
~ω and 0.002(~ω/J0)

2.

The two regimes have markedly different behaviours.
The non-analytic exponential observed at higher ω is uni-
versal — with γ ≃ 0.5 from our data, and at most a very
mild dependence of A on t0 — and, as we will argue,
it is directly related to the width of the resonances of
the Floquet spectrum. The power-law regime is non-
universal, with an amplitude decreasing as 1/t20: hence
the crossover frequency ω∗ between these two regimes,
which is approximately given by:

J0
~ω∗

≃ log

(√
A

B

J0t0
~

)
, (38)

is shifted towards smaller ω as t0 increases. Notice that

the crossover ω∗ exists only if J0t0
~

≥
√

B
A

e
4 ; indeed if t0

is too small, only the power law regime survives, leading
to the ordinary “perturbative response” observed for the
sudden quench case.
It is interesting to ask why the the continuity in time

of the force field Fx(t) is so important. As explained in
Sec. IIIA the topological properties at finite frequency
are related to the Floquet states, while the system is ini-
tially prepared in a state |ψ(0)〉 which coincides with the
Hamiltonian ground state. By switching on the driving
force in a continuous manner, Fx(t) = Ff(t/t0), the ini-
tial state is continuously deformed into a state which is
“closer” to the “lowest-energy” Floquet state at the final
frequency ω. Fig. 9 helps to illustrate what happens as
we turn on the driving frequency: as the instantaneous
ω(t) = aFx(t)/~ increases, each Floquet mode winds
around the expanding Floquet-Brillouine zone (FBZ) and
encounters a series of (avoided) level crossings in the
quasi-energy spectrum, with exponentially small gaps ∆.
Since the gaps ∆ are exponentially small, however, a fi-
nite value of t0 will lead the system to cross them diabat-

ically. The final Floquet state will show an occupation
which can be interpreted22 as the excitation probability

-0.1

-0.05

0

0.05

0.1

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

ǫ 0
,ν
/
J
0

-~ω/J0

Figure 9: Floquet quasi-energies in k = 0 as a function of
the frequency. The width of the line is proportional to the oc-
cupation of the state when the system is in the ground state
with filling factor 1/3. The inset zooms on a level crossing
to highlight the presence of gaps, showing also that the adi-
abatic band is the “excited” state after the avoided crossing.
The solid black lines are the boundary of the first Floquet-
Brillouine zone.

after many Landau-Zener23,24 events. Following Ref. 22,
at each avoided crossing we obtain a transition probabil-
ity

Pex(ω, t0) = e
−

∆2t0
4~2ζω , (39)

where we used the fact that the speed at which the gap
is crossed can be estimated as ∂t(ǫ2−ǫ1) ≃ ζ~ω/t0, ζ be-
ing the difference in slope between the two quasi-energy
bands as they wind around the Floquet BZ. Since the
gaps ∆(ω) ∼ J0e

−γJ0/~ω are the smallest quantities, it is
legitimate to expand the exponential in Eq. (39) to lowest
order in ∆2. A further simplification is due to the fact
that the dominant contribution to the sequence of LZ
processes comes from the largest gap encountered, which
correspond to the end of the ramp, when the frequency
is maximum. Hence we obtain the following estimate for
the corrections to nν

1− nν ∼ ∆2t0
4~2ζω

∼ J2
0 t0

4~2ζω
e−2γJ0/~ω . (40)

This rather crude estimate gives a hint on the physi-
cal mechanism behind the non-perturbative corrections
to the integer occupation of the Floquet mode observed
when the electric field is turned on at a finite rate 1/t0.
Incidentally, Eq. (40) also suggests that increasing the
ramp time t0 would lead to larger corrections to both
nν and Qd, although our numerical data do not show
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Figure 10: Correction to the occupation of the ν−th Floquet
mode compared with the prediction of Eq. (42) (solid black
lines).

this, possibly because of the limited range of t0 explored.
Indeed, at the level crossing, a larger t0 would increase
the adiabaticity of the process, therefore decreasing the
occupation of the lowest energy Floquet mode, which
corresponds to the “excited” state in the quasi-energy
spectrum, as shown in Fig. 9. An alternative explana-
tion is given in Ref. 25, where it is suggested that the
increasing deviations from the adiabatic preparation of
Floquet states for very large ramp times t0 is related to
the absorption of energy from the external field, leading
to heating of the system.
This picture breaks down for small ω, where the

crossover with the quadratic regime occurs. The observed
ω2 scaling suggests that a Floquet adiabatic perturbation
theory (FAPT)25–27 might be appropriate here. Unfor-
tunately, the standard framework of application of such
a theory is when the slowly changed parameters λ(t) do
not involve the crossing of Floquet resonances25, which
is certainly not the case for ω → 0. So, we construct here
a simplified version of FAPT which should capture the
ω → 0 regime. To do so, we start from an expansion of
the state |ψk(t)〉 in terms of instantaneous Floquet modes
|uk,µ(ω(t), t)〉 corresponding to a frequency ω(t) (which
is slowly evolving in time), with associated phase factor

given by the adiabatic Floquet quasi-energy ǫ
(0)
k,µ(ω(t)):

|ψk(t)〉 =
∑

µ

ck,µ(t)e
− i

~

∫ t
0
ǫ
(0)
k,µ(ω(t′))|uk,µ(ω(t), t)〉 .

(41)
Proceeding as in the standard APT, assuming that at
t = 0 we have ck,µ(0) = δµ,ν and keeping only the lowest-
order terms we end-up writing:

ck,µ 6=ν(t0) ≈ −
∫ ω

0

dω′ 〈uk,µ|∂ω′uk,ν〉e−
it0
~ω

∫ ω′

0
(ǫ

(0)
k,ν−ǫ

(0)
k,µ)

where we assumed a linear adiabatic switch-on, ω(t) =
(t/t0)ω, and changed variable to an integral over fre-
quency. Here |uk,µ〉 stands for |uk,µ(ω′, t(ω′)〉, where
t(ω′) = t0ω

′/ω. Noticing now that the adiabatic quasi-

energy differences (ǫ
(0)
k,ν − ǫ

(0)
k,µ) are large compared to ω′,

we integrate by part, as in standard APT, ending up
with:

ck,µ 6=ν(t0) ≈
i~ω

t0

〈uk,µ(ω′, t(ω′))|∂ω′uk,ν(ω
′, t(ω′))〉

ǫ
(0)
k,ν(ω

′)− ǫ
(0)
k,µ(ω

′)
e−

it0
~ω

∫ ω′

0
(ǫ

(0)
k,ν−ǫ

(0)
k,µ)

∣∣∣∣
ω′=ω

ω′=0

. (42)

Finally we compute the scalar products 〈uk,µ|∂ω′uk,ν〉
by using the expansion derived in App. A, in particular
Eq. A8, which allows us to write:

〈uk,µ|∂ω′uk,ν〉 =
M

(k)
µ,ν

∆
(k)
µ,ν

+O(ω′) . (43)

Substituting back into Eq. (42), we get an expression
that can be computed numerically. Once the projections
ck,µ 6=ν have been computed, the correction to the occu-
pation number of the “adiabatic” Floquet state reads

1− nν = 3a2
∑

µ 6=ν

∫

BZ

d2k

(2π)2
|ck,µ|2 . (44)

As shown in Fig. 10 this simplified FAPT describes quite

well the quadratic regime and its scaling with t0. We
observe that the accuracy of the approximation seems
to decrease as t0 grows, probably because non-adiabatic
corrections to the time-evolved eigenstates need to be
taken into account in computing Eq. (43).

As a final check, we have considered whether impos-
ing continuity also on the first derivative of ω(t) makes
any difference or not. Fig. 11 shows the occupation of
the “adiabatic” Floquet state when the frequency is in-
creased smoothly from 0 to its final value ω with a switch-
ing function f(s) = 1

2 (1− cos (πs)). Beside some small
numerical difference, the situation is qualitatively similar
to the one obtained with the linear ramp (Fig. 8), with a
crossover between an exponential regime for ω > ω∗(t0)
and a power law tail for ω < ω∗(t0). This suggests that
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Figure 11: Correction to the occupation number of the adia-
batic Floquet state, when the driving force is smoothly turned
on with the switching function f(s = t/t0) =

1
2
(1− cos (πs)).

Eq. (42), with a slight modification due to the different driving
schedule, still gives a good estimate of the quadratic regime
for small ω.

while a necessary condition — albeit not sufficient — to
obtain non-perturbative corrections is indeed the conti-

nuity of the force field Fx(t), its differentiability seems
not to be required.

IV. CONCLUSIONS

In this paper we investigated the robustness of the
quantization of the Hall conductivity beyond the validity
range of linear response theory (adiabatic limit), in the
Harper-Hofstadter model. This work was mainly moti-
vated by the possibility of realizing simple tight-binding
Hamiltonians, such as the HH one, in cold atoms ex-
periments with synthetic gauge fields, where the model
parameters can be easily fine-tuned. By employing Flo-
quet theory for time-periodic systems, we showed that
the quantization of the transverse pumped charge Qd de-
pends mainly on the occupation factor nν of the lowest
energy Floquet state. In particular, we found that a con-
tinuous and sufficiently slow switching-on of the driving
force is necessary to obtain corrections to the Kubo for-
mula which are non-analytic in the force amplitude F ,
scaling as e−γ/|F |. If the switching time t0 is too small,
or the force is turned on abruptly, corrections of the order
O(F 2) are always recovered when F → 0. A crossover
force amplitude F ∗(t0) between the quadratic and the
exponential regimes is clearly shown by our numerical
analysis for any finite switching time t0, and it would be
interesting to see if this crossover can be indeed be ob-
served in experimental realizations of IQHE or quantum
pumping in optical lattices experiments.
Future investigations could focus on how the robust-

ness of the topological phase and the crossover with a

perturbative regime are affected by the presence of dis-
order or dissipation. With regard to disorder, it is well
known that in solid state realizations of IQHE a certain
amount of impurities, with associated localized states,
are crucial to the robustness of the Hall plateaus. The
robustness of the topological state against disorder28 or
absence of translational invariance29 has also been tested
in simple tight-binding models: the crucial question, for
what concerns our story, is if disorder tends to increase
the “robustness” of the time response, as we have formu-
lated it, by increasing the extent of the region in which
non-analytic corrections to the Kubo formula dominate.
We observe that the dimensionality might play a role:
while for clean samples a two-dimensional (2D) lattice
model with a constant drift is essentially equivalent to a
one-dimensional (1D) chain with a time periodic driving,
such as the Rice-Mele model6, disorder could affect 1D
and 2D system in different ways.
Similar questions can be formulated concerning the

role of dissipation: while the linear response regime is
quite well understood30,31, the interplay between non-
adiabatic effects and the coupling with a thermal bath
still requires a precise characterization. Preliminary re-
sults on the effect of dissipation in the periodically driven
Rice-Mele model32 show that dissipation towards a low-
temperature bath can be beneficial in increasing the oc-
cupation of the lowest-energy Floquet states, thus mak-
ing the pumped charge closer to the Thouless adiabatic
limit.
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Appendix A: Adiabatic expansion of Floquet

eigenstates

In this appendix we derive an expansion in powers
of 1/τ for the Floquet modes, looking in particular for
their overlap with the Hamiltonian eigenstates. To ob-
tain this expansion, we first exploit adiabatic perturba-
tion theory21 (APT) to compute the Floquet operator
and then we use ordinary perturbation theory (PT) to
calculate the corrections to the Floquet modes.
Given a gapped periodic Hamitlonian Ĥ(t + τ) =

Ĥ(t), and Ĥ(t)|φν(t)〉 = Eν(t)|φν(t)〉 denotes instan-
taneous eigenstates/eigenvalues, the adiabatic theorem
states that, if the evolution is slow enough, we can
write the time evolved state |ψν(τ)〉 originating from
|ψν(t = 0)〉 ≡ |φν(0)〉, to 0−th order in 1/τ , as:

|ψν(τ)〉 ≈ |ψ(0)
ν (τ)〉 = e−iǫντ/~|φν(0)〉 , (A1)
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where

ǫντ =

∫ τ

0

dt
(
Eν(t)− i~〈φν(t)|∂tφν(t)〉

)
.

Hence, writing the Floquet operator as

F̂ (τ) ≡ Û(τ, 0) =
∑

ν

|ψν(τ)〉〈φν(0)| , (A2)

the adiabatic theorem tells us that it reduces when ω =
2π
τ → 0 to the expression

F̂ (0)(τ) =
∑

ν

e−iǫντ/~|φν(0)〉〈φν(0)| . (A3)

Notice that |φν(τ)〉 = |φν(0)〉 due to the time period-
icity of the Hamiltonian. Eq. (A3) means that in this
limit the Floquet modes |uν(0)〉 and the instantaneous
eigenstates |φν(0)〉 at the end of each period coincide.
To obtain finite frequency corrections, we need to write
|ψν(τ)〉 through an adiabatic perturbation series21

|ψν(τ)〉 =
∞∑

p=0

(
~

τ

)p

|ψ(p)(τ)〉 , (A4)

which leads to a similar expression for the Floquet oper-
ator

F̂ (τ) =

∞∑

p=0

(
~

τ

)p

F̂ (p)(τ) . (A5)

Now we assume that at t = 0 the system is prepared in
the ν−th eigenstate |φν(0)〉 of the Hamiltonian. From
Eq. (A3) we expect a single Floquet state to have a large
overlap with |φν(0)〉 if the period τ is large, and there-
fore its occupation number nν should be close to one.
We wish to exploit perturbation theory to compute the
lowest order corrections in 1

τ , to

nν = |〈φν(0)|uν(0)〉|2 = |〈φν(τ)|uν(τ)〉|2 . (A6)

As we will show in the following, the lowest order terms
are quadratic in 1

τ —or equivalently in ω— and they

originate from second order corrections due to F̂ (1)(τ).
Indeed first order corrections to a given eigenstate in
perturbation theory are always orthogonal to the unper-
turbed one and therefore F̂ (2)(τ) can only give contri-
bution of order O( 1

τ4 ). Thus we just neep to compute

F̂ (1)(τ). Before proceeding we define the following quan-
tities depending on a rescaled time s = t/τ

τǫν = τ

∫ 1

0

dsEν(s)− i~

∫ 1

0

ds〈φν(s)|∂sφν(s)〉 ,

∆ν,µ(s) = Eν(s)− Eµ(s) ,

where {Eν(s)} is the set of instantaneous eigenvalues of

Ĥ(s) and {|φν(s)〉} the corresponding eigenvectors. The

adiabatic expansion of the time evolved state ψν(t) will
be written in terms of

Mµ,ν(s) =
〈φµ(s)|∂sĤ(s)|φν(s)〉

∆ν,µ
,

Jµ,ν =

∫ 1

0

ds
|Mµ,ν(s)|2
∆µ,ν(s)

,

which again depend only on the instantaneous spectrum
of the Hamiltonian. Following Ref. 21 we can write the
first-order correction to the evolved eigenstate |ψν(τ)〉 as:

|ψ(1)
ν 〉 =i

∑

µ 6=ν

e−iτǫν/~Jµ,ν |φν〉+

i
∑

µ 6=ν

Mµ,ν

∆µ,ν

(
e−iτǫν/~ − e−iτǫµ/~

)
|φµ〉 ,

(A7)

where the s dependence is omitted since all quantities
are computed in s = 1. The “perturbation” of order 1/τ
to the Floquet operator consists in a diagonal part (first
term of the RHS in Eq. (A7)) and an off-diagonal part
(second term). The former acts only as a renormaliza-
tion of the eigenvalues (the Floquet quasi-energies) of the
operator but does not change the eigenvector, since it is
diagonal in the original basis. We can now apply pertur-
bation theory for linear operators to obtain the correction
to the Floquet modes. The first order term reads

|u(1)ν 〉 = ~

τ

∑

µ 6=ν

|φµ〉
〈φµ|F̂ (1)(τ)|φν〉

e−iτǫν/~ − e−iτǫµ/~

= i
~

τ

∑

µ 6=ν

Mµ,ν

∆µ,ν
|φµ〉 ,

(A8)

where the off diagonal elements of F (1)(τ) are obtained
by combining Eq. (A2) and Eq. (A7), leading to

F (1)
µ,ν(τ) = i

Mµ,ν

∆µ,ν

(
e−iτǫν/~ − e−iτǫµ/~

)
|φµ〉〈φν | . (A9)

Since we are interested in computing the projection
〈φν |uν〉, only the terms proportional to |φν〉 are needed.
Clearly Eq. (A8) gives no contribution — all terms
are orthogonal to |φν〉— but it can be used to obtain
the next order by imposing the normalization condition
〈uν |uν〉 = 1

|u(2)ν 〉 =− ~2

2τ2
|φν〉

∑

µ 6=ν

|Mµ,ν

∆µ,ν
|2

+ terms orthogonal to |φν〉 .
(A10)

Hence the occupation at finite frequency of the targeted
Floquet mode reads

nν =

∣∣∣∣∣∣
1− ~2

2τ2

∑

µ 6=ν

|Mµ,ν

∆µ,ν
|2
∣∣∣∣∣∣

2

+ o(1/τ2)

= 1− ~2

τ2

∑

µ 6=ν

|Mµ,ν

∆µ,ν
|2 + o(1/τ2) . (A11)
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Therefore, if the matrix elements Mµ,ν are not all equal
to zero, we expect to see power law correction to the
occupation number of Floquet modes, when the system
is prepared in the ν−th state |φν(0)〉 of Ĥ(t = 0).

Appendix B: Dependence on kx of Floquet

quasi-energies and occupations

Here we discuss the dependency of Floquet modes and
quasi-energies form kx and how the system can be ef-
fectevely described in only 1+1 dimensions (space +
time). The starting point is the block diagonal Hamilto-
nian in momentum space, which reads

Ĥk(t) = J0

q−1∑

b=0

{
2 cos

(
aky + 2πp

q b
)
ĉ†
k,bĉk,b+

[
e−ia(kx+κx(t))ĉ†

k,b+1ĉk,b +H.c.
]}

,

(B1)

where ĉ
k,q = ĉ

k,0 and aκx(t) = ω(t − t0) when the force

field F = ~ω
a is stationary. t0 is the initial time for which

the system is prepared with a non periodic driving. No-
tice that Ĥk(t) depends on kx and time only through the
phase akx+ω(t−t0). Hence we can define tx = t0−kx/ω,
so that the evolution operator over one period (the Flo-
quet operator) for a given t0 can be written as

F̂k(τ) = Ûk(τ + t0, t0) = Ûky
(τ + tx, tx) , (B2)

Here a subscript ky indicates that the associated quan-
tity is evaluated in k = (0, ky). By applying the com-
position property of evolution operator and exploiting
Floquet theorem in the form

Û(t0 + t+ τ, t0) = Û(t+ t0, t0)Û(τ + t0, t0) ,

one obtains

F̂k(τ) = Ûky
(tx, t0)F̂ky

(τ)Û†
ky
(tx, t0) , (B3)

which can be written explicitely as

F̂k(τ) =
∑

ν

e−iǫky,ντ/~|uky,ν(tx)〉〈uky,ν(tx)| , (B4)

since the phase factors arising from the action of

Ûky
(tx, t0) and Û†

ky
(tx, t0) exactly cancel each other.

Therefore the Floquet modes shifted along kx are

|uk,ν(t0)〉 = |uky,ν(t0 −
akx
ω

)〉

= eiǫky,ν(tx−t0)/~Ûky
(tx, t0)|uky,ν(t0)〉 ,

(B5)

i.e. the periodic part of the ν-th Floquet state in
k = (0, kx) evolved for a time tx − t0 < τ . Thus the
Floquet operator at any point in the k− space with
kx 6= 0 can be obtained by a unitary transformation ap-
plied on F̂ky

. The most important implication is that
the quasi-energies ǫk,ν = ǫky,ν are independent from kx.
The Floquet modes instead still depend on kx, because
of Eq. (B5). Hence when computing the infinite time
average pumped charge

Qd =
τ

~

∑

ν

∫

BZ

d2k

(2π)2
nk,ν

∂ǫky,ν

∂ky
, (B6)

the only remaining dependence on kx is in the occupation
number nk,ν = |〈ψk|uky,ν(tx)〉|2.
Another interesting property of the Hamiltonian as

written in Eq. (B1), is that the spectrum is invariant
for a discrete shift of the momentum in the ŷ) direction
ky → ky +

2πp
qa . Indeed this transformation is equivalent

to a shift of a in real space of the magnetic unit cell, lead-
ing to a simple relabelling of the internal index b→ b+1.
For the case under investigation (p = 1, q = 3), this prop-
erty is clearly shown in Fig. 2, where the invariance for
ky → ky + 2π

3a is evident. This symmetry in the Hamil-
tonian is inherited also by the quasi-energy spectrum,
which is also repeated three times inside the Brillouine
zone. This symmetry is nothing else than gauge invari-
ance: the spectrum must depend on the same way by kx
and ky, because the braking of translational invariance
along the x̂ direction is only due to the gauge choice,
which can not influence any observable. If we had chosen
A = −Byx̂, the magnetic unit cell would have consisted
of three sites along the ŷ direction and thus the first Bril-
louine zone would have been [0, 2πa ) × [0, 2π3a ), leading to

a periodicity of 2π
3a in ky.
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