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Abstract

By aregularization method, a topological charge density formula expressed by the form of Dirac delta
functions was derived. From this analytic approach, it will be easy to tell how topological charges are
related to zero-field points (or zero modes) and depend on the differential properties of the associated
vector field in the proximity of isolated zero modes. With this result, topological integrals (winding
numbers) can be turned into simple sums contributed by isolated zero modes. Through this method,
we investigated the physical features of zero modes for several cases including the integral form for the
Teo-Kane model in dimensional reductions, the case of Majorana zero modes bound to a vortex line
in a topological superconductor, the Bernevig-Hughes-Zhang (BHZ) and its extended (EBHZ)
models, an extended Haldane model, and the additivity of topological charges. In these systems, the
physical implications of zero modes which reflect their singular nature were also discussed. Without
advanced knowledge, we provide a handy formula for calculating topological numbers accompanied
by intuitive understandings of origins of topological charges which are identical to the zeros of the
vector field.

1. Introduction

Physicists can distinguish the existence of various ordered states of matter by symmetry-breaking, including
superconductors, Bose-Einstein condensation, ferromagnets, charge density waves, and many other systems.
These states can be explained by Landau’s theory of phase transitions of finite order which is related to a local
order parameter. However, in past decades, many new phases [1-5] of matter discovered in condensed-matter
physics, like the fractional quantum Hall states and Majorana fermion states, do not have alocal order
parameter. These give rise to newly found phases of matter with nonlocal order parameters, known as
topological phases. The phrase, topological phase, directs to the existence of a bulk invariant to distinguish trivial
and nontrivial phases of matter even though they have the same symmetry. These topological phases cannot be
identified by broken symmetries but by the topologies of the Hamiltonians of systems. In recent years, it was
realized by an enhanced band theory called topological band theory which takes account of the concepts of the
Berry connection and curvature in the Brillouin zone (BZ) [6]. The Chern number is defined as the integral of
Berry curvature [7]. Moreover, some discrete symmetries, like time reversal and charge conjugate, exist in some
certain topological insulating and superconducting phases. A topological number can classify these phases and
distinguish them from the trivial ones.

The integral of the Berry curvature due to its Berry connection originated from the Bloch function of the
Hamiltonian over the BZ is related to the Hall conductance of the insulator. It is identified as the Chern number
of the filled band. The Hall conductance of the Chern insulator can be identified as the coefficient of the Chern-
Simons action for an applied field [7]. If the Berry vector potential is globally well defined over the BZ, the Hall
conductance as well as Chern number will be null. Nonzero values of Chern numbers are consequences of the
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nontrivial structure of the Berry connection and there exist singularities of Berry curvature at some points in the
BZ. Therefore, it is necessary to calculate Chern numbers to distinguish if a TT is trivial or nontrivial.

Recently, tremendous interests have been raised by the studies of topological states of matter because of their
potential applications [8, 9]. Consequently, classifying physical systems in terms of their topological numbers
becomes a key practical task. To the best of our knowledge, the topological number for the TTand TS system with
Dirac-like Hamiltonian means the winding number of its field vector within a certain region. However,
sometimes it is not easy to obtain the topological numbers by directly calculating so complicated integrals,
especially over the BZ.

However, recent studies show that the zero-energy modes play crucial roles in determining the topological
numbers in the pure TI and TS systems [7]. Meanwhile, the topological defects such as magnetic vortex lines and
dislocations in crystals can provide a 7 flux to certain wave-number electronic states, and host the zero modes.
The interplay of topological defects and gapless modes was therefore investigated, which led to the emerging of
the periodic table for defect classifications [10-12].

There are other ways to link the topological number to zero modes, such as zero eigenvalues of electronic
local in-gap Green’s functions in the presence of impurities [ 10], and Majorana zero modes hosted by a vortex
line in a topological superconductor [13]. In addition, the topological line defects like dislocations in 3D TI can
serve as the probes of weak TT states [14, 15].

Here we took a different route to obtain the topological winding number by a topological charge density
formula through a special regularization method to regularize a vector field which exists zero-field points. From
the analytic form of the formula, it was easy to tell that topological charges are directly related to zero modes for
Dirac-like Hamiltonians and get intuitive understandings of the topological number.

In this paper, we would introduce an approach based on the regularization method to calculate topological
numbers. The approach was taken to regularize a vector field to obtain the topological charge density formula in
section 2. The formula was applied to various cases including the integral forms for the Teo-Kane model in
dimensional reduction, the case of Majorana zero modes bound to a vortex line ina TS, the BHZ and EBHZ
models, an extended Haldane model, etc in sections 3—7. Finally, section 8 is devoted to summary and
conclusion. Details of the revisit of the residue theorem by the regularization method are represented in
appendix A. Specially, caution is required in determining signs of the Jacobian at two of zero field points for the
EBHZ model, and the readers are referred to appendix B.

2. Topological number of N-dimensional vector field

In the study of topological properties for vector fields, it is often required to calculate the flux through a closed
boundary. Sometimes, it can be very difficult to integrate topological flux directly. In this section, we adoptd the
particular regularization method mentioned above to deal with topological vector field problems. Since this
method was inspired by observing the resemblance between the residue theorem and calculation of topological
numbers, it would be illuminating to revisit the residue theorem before investigating the calculation of
topological numbers. The details were left in appendix A.

We would like to derive the key formula to convert integrals of topological fluxes into those of topological
charges with delta function forms. Let X be an N-dimensional smooth manifold, and its local coordinate is
x"(p = 1,...,N). Assume a smooth mapping f: X — RN, leading to an N-dimensional smooth manifold
vector field, f* = f*(x), witha = 1,2, ..., N, where R Nis the real N-dimensional Euclidean space. The
normalized unit vector of f(x) is expressed as fanditsa-th component f = fa / |f], where [f| = /f*f*.For

simplicity, the partial derivative of f “ with respect to the local coordinate x* is denoted by Oy f “.The topological
flux density characterized by field f(x) can be expressed by f(x) as follows:

. 1 b fh ~dy 74 £a)
]/,1 = A(sN—l)(N - 1)!6/" /]\Eﬂ]---“Nf a#zf 8#Nf N, (1)

where A(SN 1) = 22N2/T(N/2) is the hypersurface area for an (N — 1)-dimensional unit sphere [16, 17], and
et~y and €, 4, are N-dimensional Levi-Civita symbols whose value equals 1 if their indices are an even
permutationof 1,2, ..., Nand equals — 1 if they are an odd permutation; otherwise, it equals zero® . Let Mbea
submanifold in X and M; be the neighborhood of the i-th zero-field point, then the generalized winding number
can be given by [16]

3 f] -dS = fV - JdVx o f(“l“"’Nfalmal\,ﬁmfal 8uNfaNdN = feal,,,u,\,amf“l GNN]MN dxtt A o A dxfN = ffﬂ]md,\,dful A A dfaN.
This metric-free form is independent of the choice of local coordinates, which reflects the nature of topological invariance.
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The divergence of the topological flux density (or topological charge density),

1 ~a ~a

VAI=0t = a0t O 3)

is the integrand in equation (2). It will vanish in the region where f ’s are well defined (or regular) [16]. However,
itis crucial to observe the fact that the direction of the vector field fis not well defined at the locations fbeing a
zero field. As we will show later, the singular behavior of these zero-field points will be connected to the rise of
topological charges. To capture this singular feature of the vector field near the zero-field points, we add an
infinitesimal quantity £ to the denominator of f* asa regulator and the regularized vector field

fe — fe / Jf? + €2, and its derivative can be written as

9 sa 9 fu B (fz + 62)6“b _ fafb
#fg -t \/m - (f2_|_52)3/2

Within this regularization scheme, the new version of equation (3) is expressed as

S’ (4)

1 Ady Ady

V)= metngy 0 B fo o O fo
] ASVHN —11C € e o O S,

(€))

We then substitute equation (4) into equation (5) and use the antisymmetry of e/ and the symmetry of 9,0,
when two indices are exchanged to simplify the expression and obtain:

f2 2\ Sapa Nfafa
! ful""umemaN @+ )0 N+2f f 8#1](“8#2](“2 a#NfuN' (©)

V= e S b (2 + ¢2)

The Jacobian of field components f v f 2. fN with respect to coordinates xhad L xNis symbolized as # (f|x),
and definedas e~ 7 (flx) = e/, f .. 0, f™or Z(f]x) = (1/N)etrtne, 0,0, f .. O fN.
Therefore, /1~ 0, f*0,, f* ... O, f in equation (6) can be replaced by € *2--% ¢ (f]x). By noting
€2 Ney 0oy = (N — D! 6,,and §,,6%* = N, equation (6) can be recast into
1 Ne?
R S
AT (2 + €2

It is apparent that the function Ne2/(f2 + €257 in equation (7) is nullif f = 0 and goes to infinity iff = 0.In
addition, its integration over the whole N-dimensional vector space fis easily found as A(S N- ). Therefore, as
¢ — 0, the function is reduced to a generalized function:

lim— N ANYsch, ®)

N+2

e—0 (f2 + gz)T
where §(f) = §(f)(f?)... 8(f Ny, Similarly, the limit of equation (7) is also a generalized function:

V.]= lirr(l)V Je = 60 7 (%), ©)
where the topological charge density formula was obtained and takes the form of delta functions by the
regularization method. From equation (3) to equation (9), we derived a relation:

1
ASNH(N = 1!

et N €ay...ay 8,Uqf/\al a/imf,\aN = (S(f)j(flx) (10)

Equation (10) was also found in a different approach [16]. However, the derivation here is more direct and
simpler. Details are provided in the Supplementary Material available online at stacks.iop.org/JPCO/2/
085014 /mmedia. As we mentioned before, V - J is always zero except for points at the locations f(x) = 0, where
topological charges are situated. The calculation of a topological number is related to the integral of the topological
field around a closed boundary and sometimes it is difficult to calculate directly. According to the divergence
theorem, the flux of the topological vector field through a closed hypersurface is equivalent to the topological
charge enclosed by the closed surface. In calculations of topological numbers, we can convert the associated
integrals to the sums of contributions from isolated zero-field points just like the residue theorem where the
contour integrals are changed into the sums of residues of isolated poles. In the following sections, this formula will
be applied to several cases to show that it is simple in calculations of topological numbers for various topological
systems and the physical implications of the zero modes seem clearer.
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Table 1. Partial derivatives of §* with respecttoq”.Here E = V1 — X>V1 — 12, E; = aE/i?/\, E, = 8E/01/,
F=+1—- Xuv, F, = 0F/9)\,andF, = 0 F/0v.

352 gl §2 gs §N+1 §N+2 §N+3 §2N+1
7 1 EF' Ek EkY i R f’ RN
7 0 EOk' EQ K’ BN 0 0 0
T 0 Eo,k' E,k E0,K" 0 0 0

N Not . ) . o N - ) . N N . N

q 0 Eonk Ednk Eonk 0 0 0
N 0 0 0 0 Fo,f' Fof’ Fouf"
N 0 0 0 0 Fo,f' Fo,f° Fo,fN
. . : : . : . A : I : AN
q 0 0 0 0 F(C)N,lf F@N,lf F8N,1f
N+ 0 Ek' Bk’ E kY R Ef’ BfY

3. Dimensional reductions of the integral form for the Teo-Kane model

In this section, we will demonstrate the application of equation (10) to the issue raised by Teo and Kane [18]
which concerned about Majorana fermionic excitations in the 3D Bogoliubov-de Gennes (BdG) Hamiltonians
with particle-hole symmetry in the presence of physical defects. For convenience, it is termed as the Teo-Kane
model here. The Hamiltonian of the system H (k, r) is a function of the wavevector k and the position vector r,
wherek s defined in a 3D BZ (a torus T° equivalent to S” in the sense of strong topology) and r is on a 2-sphere S°.
An adiabatic deformation H’(\, k, r) parametrized by A connects H(k, r) at A = 0 to a trivial Hamiltonian
independent of kand rat A = 1 and for more details the readers are referred to [ 18, 19]. The Hamiltonian of the
system can be expressed by

Hk, 1) = iv"0, + L f* (1), an

wherey?and ", are 8 x 8 Dirac matrices, f* is the a-th component of the vector field fand a = 1, 2, 3. These
Dirac matrices satisfy {T';, ', } = {77, fyb} = 26and {T',,v%} = 0, and should be arranged to make the
Hamiltonian possess particle-hole symmetry. The Hamiltonian H needs a six-component unit vector

d = (V1 — 12k, vf) on $° with the hedgehog configurations, where v ranges from 0 to 1 (or from —1 to 0). k
and f are the respective unit vectors of k and f. For general consideration, we focus on the case of higher
dimensions in which both k and fare N dimensions. With an extra parameter ), a unit vector field on $*N canbe
constructed as

gLk )=\ V1 — Xd) =\, V1 — BV — 2k, V1 — Nob), (12)

where d is a unit vector on $*N~1, Then, the topology of the Hamiltonian H is characterized by its integer-
valued N-th Chern character which is calculated as the volume on S~ swept out by §(A, k, r) [18]. As we have
mentioned in section 2, the N-th Chern number can be obtained from the generic formula equation (2). By
replacing the local coordinate x and vector field f with qand g, respectively, the Chern number of the Majorana
fermion (MF) system, Wyg, can be rewritten as

1

= Tt T O Dy §7 a3)

War

where q = (g%, g% ..., Nt = O\ KL K . kN, 0y, 0, ..., On_ 1, ) and 6 s are SN ! angular variables, and
the subscript MF describes the system of Majorana fermions. In order to simplify equation (13), the partial
derivatives of §%’s with respect to g*’s are listed in table 1. It is apparent to tell from table 1 that the nonzero
terms in the integrand should take the form of (9,8") (94,8" 00,8% .. Oa§™)(05,8"05,8% ... 05,8"),where

all the indices in the second parenthesis range from 2 to N + 1, and those in the last parenthesis from

N + 2t0 2N + 1. The corresponding Levi-Civita symbols are consequently reduced to the form of
(emmong, . N(ehMhOng, ). Besides, thereare CANTICIN CfY choices for selecting any one out of the
2N + lindicesin e #an+i for A, any N out of the left 2N indices for (k, k2, ..., k), and the rest for (6, 65, ...,
On_1, V) where C;, = n!/m!(n — m)!stands for combinations. Therefore, with expressions g in equations (12),
(13) can be rewritten as
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2N+1 2N ~N
_GTT GGy

A 2N
1 ~a ~a
x f dA f ke e, o (VT — N1 = 22N, " .. 9, k™ ]
-1
1 P b, b
x fo dv [ 40Oy b By, T = VN30 . 05,0 ™),
where all the indices, such as av;, 3;, ..., range from 1 to N, and 9,, stands for 9/0 k“ in the first square bracket, and

On = 0/0v,03=0/00sasB =1,...,N — linthelastone.
After integrating out the variables A and v, the integral is reduced to

1 ~a ~q
Wagp = dVkeor-ove, o DR B, kN)
MET AN (N — 1)!(f e v

x ( fs A6y ey [ O e O be).

By replacing f ‘ by k" and x" by k* in equation (10), the integration over k-variables can be performed as follows:

f dNker-we, o 9 k.. Du kN = ASNH(N — 1) f §A)dNk = AGSN-H (N — D)L,

Finally, we obtain the winding number as

1

- 15 fs A0y dOy sy [ O O (14)

WumEe

When Nis equal to three, equation (14) reduces to
W= [ Eof < a,fa0 ndo = [T 05 x Ok 4 det (15)
4r Js 8m J¢§?

By this method, the result is the same as described in [ 18]. For a nontrivial topological phase, the value of
equation (15) should be nonzero. Since the zero-field points of the f or f field exist in real space, Thus there will
be physical defects corresponding to zero-field points of the f field.

4. Majorana zero modes in a topological superconductor

Takahiro Fukui has studied aline defect in a 3D TS proposed by Teo and Kane which exists Majorana zero
modes. The Hamiltonian of the system takes the form of equation (11) and the field vector considered for the
system [13] is given by

f=(f% f2, 3 = (A(r)cos g6, A(r)singb, Z(z)), (16)

where A(co) = Ay > 0isrequired, qis vorticity of a generic vortex and the continuous function Z(z) is a

mass term controlling topological phase transition. Here we assume that the mass term asymptotically is
Z(+00) = my. Theline defect is a vortex line where the coordinates of zero modes satisfy A(r) = 0. For
simplicity, we adopt the same assumption in [13] and assume A(0) = 0 so that the core of the vortex is located
on the z-axis. To derive the topological character of the Hamiltonian 7, one can use equation (15) directly or the
method developed by Weinberg [20]. It has been shown that the topological index of the Hamiltonian H for the
system can be expressed as indH = —(1/2) fd3x8,-]i (x), where Ji(x) = (1/47r) 6ijk€abcfm8jfbakfc and f is the
unit vector of f. The details about ] '(x) can be referred to [13, 21]. It is straightforward to calculate the partial
derivatives of the topological field vector and derive 9] (x) = (1 / 47) ek e, 0; f u(‘?j f bak f ‘. Byletting N = 3in
equation (10), we obtain

indH = — f 5(6) 7 (1) Px. a17)

We calculate the Jacobian of f with respect to cylindrical coordinates directly and arrive at

Jfx) = o(f, f%, f7)/0(r, 0, z2) = AA,qZ,where A, = dA/dr, Z, = dZ/dz,and qis the degree of
mapping. In addition, 6(f) = S(A()S(O(0))6(Z(2))/ A(r), where ©(0) = g6. To make the mapping between ©
and 6 as a one-to-one mapping, © € (0, 27) is mapping onto 6 € (0, 27/|q|) and the integration range of ¢ in
polar coordinates can be divided into |g| branches. Therefore,
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2 27 2 x 2T 2T
5©)do = [" 5(q10)d0 " 5(1q10)d0 + ... 5(1910)do
[ s@ao= [ odaiorde + fﬁ (gl0)d0 + ..+ [ 60l

Il
_ 2m 6(9) _ 2m
=gl x fo o do = fo 5(0)do.

Itis straightforward to rewrite 6 (A(r)) = 6(r) /|A;land 6 (Z (2)) = 6(z — zy) /|Z,|, where we assume
that z is a single zero of Z. Putting all of them together and noting that A, > 0 near r = 0, we have ¢ (f) =
6(r)6(0)6(z — zp) /(AA,|Z,|). Then, we can obtain

' - 0 P 00 6(1‘)(5(0)(5(2 - ZO)
indr =~ [ " ar [ a0 [ dz AAjz)

= —sgn(Z;)q, (18)

where the symbol sgn(x) represents the sign function of x. In the presence of many zeros, the index of H will be
the sum of equation (18) over all individual zero modes. If the signs of 1, and m_ are opposite, there will be an
odd number of zeros of Z(z). In general, they are topologically equivalent to the system with a single zero because
the signs of Z, for any adjacent zeros are opposite and will be canceled in pairs. Similarly, if m, and m_ share the
same sign, there will be an even number of zero modes in the system and the ind H will be zero. Notice in passing
that Z’s asymptotical behavior can determine the sign of Z, at a single zero point zy. Therefore, in general, the
index for the system with Majorana zero modes can be rewritten as

indH = f%[sgn(er) — sgn(m_)]q. (19)

The resultin [13] is a special case of equation (19) and independent of the detailed structure of the profile
function. Itis evident that a defect is a point defect situated somewhere along the z-axis domain wall, where the
sign of mass profile Z(z) changes.

5. The BHZ and EBHZ models

Some kinds of topological systems, such as the 2D HgTc/CdTe quantum wells, respect time reversal symmetry
and realize a Z, TI [6, 22]. One can also add the next nearest neighbor (NNN) term into the BHZ model, which
becomes the EBHZ model. This model has been studied in [10] and [12] for the investigation of the space group
classification of the topological band-insulators.

Its reduced Hamiltonian determining the 7, topological charges can be expressedbya2 x 2 Hermitian
matrix as

Hk, M)=h - o
= {hgpz - o} + {haan - 0}
= {sink,01 — sink,0, + [M — 2B(2 — cosk, — cosk,)] o3} (20)

+ {cosk, sink,o; — sinky cosk, 0, — 4B(1 — cosk, cos ko3t 21)

where in equations (20) and (21) each Hamiltonian inside the first and second curly bracket represents the
Hamiltonian of the BHZ model and the NNN term, respectively. The topological vector field for the EBHZ
systemish = (h', h*, h’) = (sink, + cosk, sin ky, —sink, — sink, cosk,, M — 2B(2 — cosk, — cosk,) —
4B(1 — cosk, cos k,)) and o;’s are Pauli matrices. Here the vector h depends on three-dimensional coordinates
v = (k, M), wherek = (k,, k,) is momentum space and M is a mass coordinate and B, B,and M depend on
materials. The first Chern number of the system can be expressed as

1 . ran Pba e
Wipiy = ———— ik Oih DR O By = §(h) # (h[v)d, 22
iz A<sz>zszMf O OR O Py = [ s(h) s (hiv)dty 22)

where 57 M denotes the integration over the k-space and the mass coordinate, and h is the unit vector of h. The
Jacobian in equation (22) is directly calculated as # (h|v) = —cosk, cosk, + sink, sink,(cosk, + cosk,) +
cos?k, cos*k, — sin®k, sink,. For the EBHZ model, there are four zero-field points in the v-field:

{(0, 0, 0), (0, W, 4B + 8B), (m, 0, 4B + 8B), (m, 7, 8B)}. Let M; stands for the M value of the i-th zero-field
pointand zfor B/B,i.e. Mj = 0, M, = M; = 4B + 8zB,and M, = 8B. Therefore, we can rewrite

6(h) = X1 6(ky — ky )bk, — k) )6(M — M;) /1.7 (h|v)ly], where i stands for the i-th zero-field point.
Putting them together, we obtain
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1 )l
6(h h|v) = <L —— " 6(ky — ky)Oo(k, — k,)O6(M — M;
(h) 7 (h|v) ; L] ( )6k, — k)6 ( )
4
=> " sgn( £ hv)|,)6(v — ). (23)

i=1

Plugging equation (23) into (22) and integrating over the BZ, we finally get

4 M
Wonz =3 [ [ dkudk, [ dM'sgn(s Al 8k = k)6 (ky — k)8 @M = M)
i=1 o0

4 M
= f dM’ sgn(# (h[v)|)6(M' — M;). (24)
=1 ">

Here sgn(# (h|v)|,,) is the sign of the Jacobian at the i-th zero-field point. Theyare —1,1,1, —1fori = 1,2, 3, 4,
respectively. The determination for signs of the Jacobian at v; and v, requires more effort, and readers are
referred to appendix B for details.

We note in passing that the formalism from equation (22) to equation (24) is still valid for the BHZ
model, where the vector fieldh = (b, h% h*) = (sink,, —sin ky, M — 2B(2 — cosk, — cosk,)),and
S (hlv) = —cosk, cosk,. For this model, each zero-field point, as well as its sign of Jacobian, is the same as that
of the EBHZ model with z = 0. Apparently, the value of M will determine the number of the zero-field points
included in the integration range and therefore the value of the Chern number.

Inthecaseofz < 1/2,wehave M, < M, = M3 < M,. When M < M, no zero-field point is allowed and
Wiasl/? is zero. When M; < M < M, = Mj, only the first zero-field point is included and W57/ is negative
one. The rest W%/ may be deduced by the same way and the result is arranged as follows:

0 forM/B<0

Wwe<1/2) _ —1 for0 < M/B< 4+ 8z

EBHZ 1 for4+8z<M/B<S38
0 forM/B > 8.

Inthecaseofz > 1/2,wehave M; < My < M, = M;. Following the same reasoning in the preceding case, we
have the topological number WY/ as:

0 forM/B<0
We1/ —1 for0 <M/B <38
EBHZ —2 for8 < M/B < 4+ 8z
0 forM/B> 4+ 8z.

In particular, the phase with W>,/? = —2 is termed as the valley phase which possesses the trivial Z, invariant
and is protected by C, rotational symmetry [10].

The phase diagram of the BHZ model is the same as that of the EBHZ model when z = 0. In this regard, our
result is consistent with that of the two-band model [22]. The system can transit between different topology
phases by tuning M. There are topologically nontrivial Z, quantum-spin Hall phases with Wpy; = +1asM
varies from 0 to 8B. Outside this range, a trivial insulator phase exists. When M crosses one of endpoints of the
range, a band inversion occurs and the trivial phase becomes a nontrivial one.

6. An extended Haldane model (EHM)

In the late 1980s, Haldane imitated the integer quantum Hall effect expected in the Landau-level problem while
preserving the translational symmetry of the lattice [23]. He proposed a topological insulator on a hexagonal
lattice consisting of two inter-penetrating triangular sub-lattices. The Hamiltonian contains various hopping
terms In addition to a couple of hopping terms in the Haldane model, the EHM is investigated by considering
one more hopping term [22]. Up to a constant term, the Hamiltonian of the system can be written as

H = Y}_ Wo;, whereh 'is the i-th component of the vector field h over the first BZ with a parameter M defined
below. Here nearest-neighbor electron hopping with the hopping integral ¢;, next-nearest-neighbor hopping
integral t, with a phase term ¢, and next-next-nearest-neighbor hopping integral #; are taken into account, and
therefore the three components of the h field can be expressed as:

' =ti[cos(k - a;) + cos(k - ay) + 1] + tz{cos[k - (a; + ay)] + 2cos[k - (a, — ap)]},
h? =t[sin(k - a) + sin(k - a,)] + tzsin[k - (a; + a,)],
B=M + 24sin¢{sink - a) — sin(k - ap) — sin[k - (a; — ay)]},
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Table 2. Zero-field points and the signs of their Jacobians,
where b = cos7![(z — #)/(2t5)]and

m = 26 + 6)/61J1 - (4 — 6)/CB)E.

i vi = (kyp ky, M) sgn( 7 (h|v)|y,)
1 (—47/33, 0, 331, sin ¢) -
2 (—2b//3, 0, msin ¢) +
3 (b/~/3, —b, msin ) +
4 b/V3, b, m sin ¢) +
5 (2b//3, 0, —msin $) -
[ (=b/J3, b, —msin @) -
7 (=b/3, —b, —msin @) -
8 (47 /33, 0, —3/3 1, sin @) +

where M plays the role of an on-site inversion symmetry-breaking, and a; and a, are simply the Bravais lattice
vectors. When one vertex of a hexagonal lattice is chosen as the origin and the y-axis is assumed to be aligned
with the longest diagonal from the origin of the lattice, then a; = (v/3 /2, 3/2)and a, = (—+/3 /2, 3/2)in
units of the lattice constant (i.e. the hexagonal lattice edge length) are the other two diagonals from the origin. As
mentioned in the previous section, the vector field h is a function of three-dimensional coordinates v = (k, M).
We listed eight zero-field points v;when h = 0in table 2. It is straightforward to derive

8

6(h) 7 (hlv) = 3 sgn(f (h)[,)6 (v — ), (25)

i=1
where

33

S hlv) = 773{[1‘12 + 4t} cos(3k,)] sin(+/3 k)

~+ 2#t3 cos (%ky)[z sin(?kx) + sin(%kx)]}. (26)

The Chern number shares the same form of equation (22) with the expression of _# (h|v) in equation (26). After
integrating over the k-space, we obtain the Chern number for the EHM

8 M
Wenn =3 [ dM’sgn(7 @iw1)oM' = M. 27)
i=1%7%

The sign of # (h|v)|,, at the zero-field points can be found in table 2 and the system’s phase diagram of the EHM
is shown in figure B1. From the property of delta functions in equation (27), it is readily to see that the first zero-
field point v, lies on curve (i) where M — 3+/3t,sin ¢ = 0andso M; = 3+/3t, sin ¢. Similarly, points v,,vs and
v, share the same value of M and the three curves associated with them coincide with each other on curve (ii),
where M — m sin ¢ = 0. Therefore, the multiplicity of curve (ii) is 3. Likewise, vs, v and v; are on curve (iii)
and vg on curve (iv). The value of Chern number depends on the zero-field points within the integration range
which is determined by the upper limit M. For convenience, we define sgn(# (h[v)|s,) as the intersection number
of the curve associated with the points v;and a straight line with a constant ¢ value. Therefore, the intersection
number pertaining to curve (i) is —1 for sgn(# (h|v)|,,) = — 1. However, the intersection number pertaining to
curve (ii) is 3 rather than 1 since the sum of sgn(_# (h|v) y,), sgn(# (h|v)|,), and sgn(_# (h|v) ,,) is equal to 3.
Likewise, the intersection numbers of curves (iii) and (iv), should be —3 and 1, respectively. To find the Chern
number of an interested point in figure B1, we draw a line with a constant ¢ joining M’ = — o0 and this point.
Next, we can get the Chern number by adding up the intersection numbers of the curves with the line. For
instance, for the Chern number in the region between curves (i) and (ii) and —7 < ¢ < 0, the above-mentioned
line with one endpoint in this region will intersect with curve (i). The integration range only includes the first
zero-field point v; and the Chern number of the region is the intersection number of curve (i), which equals to
negative one. Similarly, in the region between curves (ii) and (iii) and —7 < ¢ < 0, the line intersects with both
curves (i) and (ii). Furthermore, the integration range includes points vy, v,, v3, v4, and the Chern number of this
region is the sum of the intersection numbers of curves (i) and (ii), which is two. Compared with the Haldane
model, the additional hopping term creates new nontrivial topological phases with high Chern number

Wenam = £2, which means the appearance of additional edge modes [22]. By extracting the information of zero
modes, it is straightforward to extend the calculation for systems with more hopping terms These systems have
more degrees of freedom in the parameter space and were led to the occurrence of high-Chern-number phases.

8
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7. Additivity of topological charges

Berry charges (Topological charges) due to the Berry vector potentials in the Hamiltonians of some
semiconductors are closely related to their Hall conductivities [24]. In this section, we would like to demonstrate
the additivity of topological charges exemplified by a bilayer graphene system and heavy holes in quantum wells.
These systems are not T1. Their Hall conductivities are not quantized but are still related to (or proportional to)
the topological charges of the systems.

Before discussing the additivity of topological charges, we first deal with a single charge system. The
electronic Hamiltonian of the combined Rashba-Dresselhaus (RD) system [24] with the out-of-plane
polarization induced by the electric field is given by

2.2

7%k
H =
RD =

- (aky + Bk oy + (aky + 5ky)02, (28)

where aand 3 are the respective spin—orbit coupling strengths, and (k,, k,) is the electron wavevector. Here the
Pauli matrices 0y, 0,, and o3 stand for the spin operators of electrons. The momentum dependent effective
magnetic field of the system can be written as

f= (aky + ﬁkx) —aky — ﬁky)

For |a| = |B],itis apparent that fhas an only zero-field pointatk = (k,, k,) = (0, 0), and Jacobian is

J (k) = o — 3% (29)
We then obtain
0 (k)6 (ky)
= 1 2y — VXN
80 = (M3 = L S (30)

Integrating the product of equations (29) and (30) over k-space, the topological charge of the system, Wxp,
becomes

Wip = f dk, f dk, sgn(a? — 32)6(k)6 (k,) = sgn(a® — 3). G1)

In the case of |a| = | ], the topological charge density in equation (9) is a zero generalized function because the
Jacobian vanishes. The result is related to the spin-Hall conductivity of the system [24, 25].

Now we turn to demonstrate the additivity of topological charges with following cases. First, the bilayer
graphene system [24] is modeled as two coupled monolayer graphene sheets, with each layer having two
inequivalent lattice sites. If the Bernal stacking configuration [26] is adopted, the Hamiltonian of the bilayer
graphene (BG) system can be written as

2
Hag = — [k ~ K)oy + 2keky ol 2
2m

in the low energy limit. The Hamiltonian operates on pseudospin wave functions, where the upper and lower
components describe electronic amplitudes on the B-site in the top layer and the A-site in the bottom layer
respectively. Only two possible ways of hopping via the dimer state are taken into account. The field vector of this
system [13] can be written as

f=(k; — k), 2kk,). (33)
For simplicity, we add a positive number 7 to equation (33) to split the multiplicities, hence it becomes
f, = (k} — k; + n, 2k.k,),

where 1 goes to zero, as f,, approaches f. It is apparent that f, has two zero-field points at k.. = (0, & /7). Here
F(f k) = 4(k? + kf) so that its sign is always positive. Therefore, we have

Finally, the topological charge of the system, Wy, is obtained as

Wig = lim ['dk, [k, 86 7 (0 = 2. (34)
n—

From the calculation, it is obvious that the topological charges are additive. As an alternative, the positive
number 1) can also be added to the second term of the field vector and the resulting Wy will still be two. Hence
the total topological charge is independent of this separation scheme of zero-field points.

The second example is the system of p-doped quantum wells in III-V semiconductors, the energy gap
between the light- and heavy-hole bands diverges with the reduction of well width. In a sufficiently narrow
quantum well with low doping densities and low temperature, only the heavy-hole band is occupied The

9
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effective Hamiltonian for heavy-holes in quantum wells (QW) [24] is

72k?
Haw = —— = Ak — 3klk)or + (k) — 3kek}))oal, (35)

where k, and k, are the components of wave vectors, and Ais the spin—orbit coupling strength [24]. The
corresponding field vector can be written as

f= (k) — 3kZky, kI — 3k.kD).

X

Both components of the vector fare zero at (k,, k,) = (0, 0). In order to split the multiplicities, we add a positive
number 7 to the field vector for simplicity:

£, = (k) — 3kik, + n, kI — 3k.k)).

When 7 is null, f, is the same as f. Then it is easy to see there are three zeros, k; = (0, —n! /3), ky =
(—~/303/2, n'/3/2), ks = (/31'/3/2, n'/3/2). Since Z(f,k) = 9(k? + kyz)z, its sign is always positive.
Therefore, we have

§(f) 7 (f)k) = 6(k)6(k, + ) + 6(kx + fn;)é(ky - %né) + 6(kx — fn;]é(ky - %n;),

where we break the product of a delta function and the Jacobian into the sum of three delta functions by the
regularization method. Then the topological charge of the system is

Waw = lim [ dke [dk,8(£) 7 (£l0 = 3, (36)
n—0

which comes from the contribution of three individual topological charges and is related to the spin-Hall

conductivity of the system. As we mentioned in the previous example, adding the positive number 7 to the

second term of the field instead of the first term will not change the result of equation (36) because the

topological charge is independent of the separation scheme of zero-field points.

8. Summary and conclusion

Calculation of topological numbers is crucial in identifying nontrivial phases of topological materials for
potential applications. In nontrivial topological phases, there are topological obstructions depicted by zero-field
points (charges), where the direction of an associated unit vector field is not well defined and singular. We have
developed a simple and systematical method for calculating topological numbers and investigated the physical
implications of zero modes by calculating topological numbers for systems of TS and T1. We used the
regularization method to deal with the singularity of zero-field points in the BZ of TI. Within the framework of
generalized functions, we obtained a topological charge density formula which can turn topological integral
problems into simple sums contributed by isolated zero modes, similar to the residue theorem.

Armed with this topological charge density formula, we explored the zero-mode features for various TS and
TI systems. Firstly, through this formula, the dimension of the topological integral in the Teo-Kane model was
lowered. This result of dimensional reduction indicates the fact that zero modes should be situated on the defects
in real low dimensional space () for nontrivial topological phases. Meanwhile, a generalized version of
dimensional reduction formula (from $*"Nto S™~") was also obtained for possible applications. Secondly,
Majorana zero modes in TS were identified as zero-field points in topological charge density formula. The zeros
are hosted by the flux line and the domain walls of the mass function profile Z(z). The topological number of this
system was obtained through the information of the identified Majorana zero modes and independent of the
detailed structure of the profile function. Through our calculation, it is straightforward to see that systems with
an odd number of zeros are topologically equivalent to one with a single zero and systems with an even number
of zeros are topologically trivial. For the EBHZ model, one more term (the NNN term) was added to the BHZ
model and an additional topological phase with a high Chern number was found which possesses the trivial Z,
invariant and is protected by C, rotational symmetry. When the NNN term was neglected, the BHZ results were
revisited. There are topologically nontrivial Z, quantum-spin Hall phases as the integration range of the mass
term includes an odd number of zeros otherwise the system is trivial. After that, we investigated the EHM with
more hopping terms which increases the complexity of the band structure and the possibility of zero-mode
creation. From the topological charge density formula, one can tell that the EHM will possess a high Chern
number for the presence of alarge number of zero modes. Finally, we demonstrated the additivity of topological
charges by exemplifying three various systems, including the combined Rashba-Dresselhaus system, bilayer
graphene system, and heavy holes in quantum wells. The BG system (or heavy holes in QW ) possesses a single
high topological charge which results from the additivity of separate unit charges. Moreover, the topological

10
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charge is independent of the separation scheme of zero-field points. The properties of Hall conductance are
related to the topological charges of the systems, even though they are not quantized.

In conclusion, we have investigated the physical implications of zero modes of TS and T systems as
summarized in the last paragraph. Through the regularization method we proposed, we applied the charge
density formula to the calculation of topological numbers for several various systems. This method facilitated
the calculation of the topological numbers compared to the conventional methods [18, 22]. Apparently, this
regularization method can greatly simplify the mathematical process and avoid complicated integrations.
Moreover, it offers a physical picture of zero modes playing in various topological systems. From the Teo-kane
model and the case of Majorana zero modes bound to a flux line, localization of zero modes may indicate that
they sitting on the defects or domain wall of the system. In a general sense, the edge can be treated like the
domain wall between the system and the vacuum. This result is related to edge-bulk correspondence. Besides, it
may be applied to other complicated topological systems.

Appendix A. Revisit of the residue theorem by the regularization method

As mentioned in section 2, it is illuminating to revisit the residue theorem before investigating the calculation of
topological numbers for the resemblance between the residue theorem and calculation of topological numbers.
In this appendix, we would like to use the regularization method to revisit the results of the residue theorem.
First, we demonstrate the usage of the regularization method by considering two complex functions with
different topological properties. According to the well-known residue theorem, if the integrand of a line integral
is analytic within and on a closed contour C except for a finite number of poles, its integral will be 27i times the
sum of the residues of the integrand at its poles within C. However, it is abstract to understand the sum of
residues. As an intuitive alternative, we would like to convert the contour integral into the surface integral with
Dirac delta functions originating from the regularization of the Pélya vector field associated with the integrand
[21]. Here Dirac delta functions are nonzero only at the poles of the original integrand. The derivation of their
integrals is usually much easier than calculating residues directly. When dealing with the topological properties
of avector field, it is often required to calculate an integral and poles in the integrand corresponding to zero-field
points in the vector field.

The regularization method is described as follows. Let us express the complex value zas x + iywherexand y
are real variables. A complex function F(z) can be constructed as u(x, y) + iv(x, y) where u(x, y) and v(x, y) are real
functions. The vector field of the complex mapping F(z) is defined as F = [u, v] T The Pélyavector field [21]
associated with F(z) is defined as the complex conjugate of the mapping F(z) and is denoted by F*(z) = [u, —v]'.
If F(z) is a complex function without poles, we can apply Green’s theorem to the complex integral of F(z) over a
closed contour Cand obtain

ygp(z)dz:ffR V x F*dxdy—kifj; V - Frdxdy, (A1)

where V x F* = —(0,v + 0,u), V - F* = Q,u — 0,v,and Ris the enclosed region bounded by C. In general,
F(z) has isolated finite poles within Cand Green’s theorem cannot be applied to the contour integral directly. In
order to make equation (A.1) applicable, we will first replace F(z) by a smooth function F.(z) characterized by a
small positive number ¢ called the regulator. Then we can apply equation (A.1) to F.(z) directly. After that, we
take the limit as ¢ tends to zero on both sides of the equation,

lim, _, ?5c E(z)dz = lim._q ffR (V x Ffdxdy + ilim. fj}; (V - F¥)dxdy. Then the order of the limit

and integral can be exchanged for generalized functions [27], and 5£C lim,_,¢E(z)dz = §I§C F(z)dz. Wethen
obtain

_ . * . . . *
512 F(z)dz = f j; m(V x FHdxdy + i f lim(V - F)dxdy. (A2)

e—0 Re—0

Next, we make use of equation (A.2) to demonstrate the regularization method by two examples. For
instance, when F(z) = 1/z = (x — iy)/(x* + y*), thereisa singularity at z = 0. To identify the nature of this
singularity, we introduce an infinitesimal quantity £ to its denominator, so that F. = (x — iy)/(x* + y* + £7),
whichisequivalentto B = [x/(x* + y* + €2), —y/(x*> + y* + €)]'. Then it is straightforward to calculate
V x Ff=0and V - Ff = 0.[x/(x? 4+ y? + €2)] — 9,[—y/(x* + y* + )] = 2e2/(x? + y* + €*)*.Inthe
limitof e — 0, the divergence of F goes to infinity at (x, ) = (0, 0) and is null elsewhere. Furthermore, the
integral of 22/ (x? + y* + €%)? over the xy-plane is 2. Therefore, V - F* will take the form of delta functions:

2
V. Ff=lmV - F* = lim 2

— 0 (2t g+ 22 216 (x)6(y). (A.3)

11
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Plugging equation (A.3) into equation (A.2), we get 92 1/zdz = 2mi when the contour Cincludes the polez = 0

and it is null otherwise. The value of ch 1/zdz is independent of the details of contour Cas long as the same pole
is encircled by the contour revealing the topological property of the integral. This is the same result as the one
from the residue theorem. With regularization, we calculate the integral of delta functions instead of the contour
integral on the left of equation (A.2).

In another case, we considered the function G(z) = i/zand its contour integral. It is apparent that there
isapoleatz = 0and G.(z) = (y + ix) /(x> + y* + €?).Readilywehave V - G = 0and V x G =
—2e%/(x* + y* + €?)%. Hence, V x G = —276(x)6(y) and yfc i/zdz = —2m. Itis straightforward to
generalize this regularization method to other complex functions with isolated poles.

The functions in the previous two examples, F(z) and G(z), represent curl-free and divergence-free vector
fields on the complex plane, respectively. We have shown the regularization method is a useful and effective tool
to derive the results of the residue theorem by replacing the residue calculation at the poles with two-
dimensional delta function integrals. The same approach could be adopted to regularize a vector field in the
derivation of a topological charge density formula. It can transform the integration of topological numbers into
the weighted sum over isolated zero modes. Similar to the residue theorem in complex variables, it simplifies the
calculation procedure.

Appendix B. Signs of the Jacobian at points I' and M for the EBHZ model

Conventionally, the four zero-field points (0, 0), (0, 7), (, 0), and (7, 7) are termed as points I, X, Y, and M,
respectively. For the determination of the signs of Jacobian at points I and M of the EBHZ model, we present
two different schemes to continuously deform its Hamiltonian by an insertion of a tuning parameter into the
topological vector field. From the expression of the Jacobian given in section 5, we have (_# (h|v)|,,) =
(J(wly,) = 0,and (7 (h|v)|y,) = (Z(h|v)|y,) = 2. Therefore, the signs of the Jacobian at points I" and M (or
v, and v, ) are uncertain and they will be remedied by introducing a tuning parameter into the EBHZ
Hamiltonian, whose physical properties include signs of the Jacobian will be treated as the physical properties of
the system in some parameter limit.

B.1. n-Hamiltonian approach
In the first approach, the EBHZ Hamiltonian is deformed into the 7-Hamiltonian by inserting a tuning parameter 7 in
the vector field components given by h711 = sink, + 7 cosk, sink,, h,f = —sink, — nsink, cosk,,and h,? =K.
The region of interest will be in the vicinity of 7 = 1. Twointervals I = (a~, 1)and IT = (1, a*) are noted. Here
botha™ anda™ are finite numbers and sufficiently close to 1. The expression of the Jacobian for the 7-Hamiltonian
is 7 (hylv) = —cosk, cosk, + 7 sink, sink,(cosky + cosk,) + n?(cos®k, cos’k, — sin® k, sin’ k).

The zero-field points of the n-Hamiltonian is obtained by letting h,ll = h,,? =0:

sink, + 1 cosk,sink, = 0 (B.1)
—sink, — nsink, cosk, = 0. (B.2)

By eliminating the dependence on sin k, in equations (B.1) and (B.2), we found sin k,, (1 — n* cos ky cosk,) = 0.
This means

sink, = 0 (B.3)

or

cosk, cosk, = Lz (B.4)
Ui

Equation (B.4) will not be fulfilled in the interval I. Thus, in this interval, four roots are located at points I, X, Y,
and M resulting from equation (B.3). From the expression of ¢ (h,|v), their sign values of the Jacobian are —1, 1,
1, and —1 respectively. Now we focus on the sign of Jacobian at point I'. We might simply take the limit sign of
Jacobian at point I as that of the EBHZ model. It will be sgn(n? — 1) in the limit of  — 1~, which is negative.

However, for consistency, we need to investigate the limit from interval II. From equations (B.1) and (B.3), it
is apparent that points I', X, Y, and M are solutions. In addition to these four points, there are two sets of zero-
field points of interest in interval I of 1), and each set contains two points. They can be found by recognizing the
fact cosk, = £1/1n deduced from equations (B.1) and (B.4). The first set is characterized by k,, = cos™!(1/n),
ky, = cos™'(1/n), ky, = sin"'(£4/1 — 1/7?),and k,, = sin~!(F/1 — 1/7?).Jacobians of both zero-field
points in the first set are —(n* — 1) /n*and thus negative in interval IT of 7. The Jacobian at point T', 7> — 1, is
positive in interval II. As ) goes to 17, both of the first set of points will merge with point I'. Thus the sum of
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Figure B1. Phase diagram for the extended Haldane Hamiltonian. Here the hopping integral t3 = 0.36f; and the Chern numbers are
denoted inside the respective regions.

Jacobian signs from these three points is — 1, which equals that from another side of the limit, 7 — 17. The
consistency of the two-sided limit for the sign of Jacobian at point I' is reached.
The same conclusion for point M in interval IT is made by considering the merge of point M with the second

set of points, characterized by k,, = cos™'(=1/7), ky, = cos™'(=1/n), ky, = sin"'(£/1 — 1/7?),

and k,, = sin"'(£1 — 1/n?).

B.2. A-Hamiltonian approach

Another scheme-consistency issue may be raised for the sign determination of points I and M. This part of the
appendix will address this issue by employing another scheme for deforming the EBHZ Hamiltonian into the
A-Hamiltonian.

In this scheme, a small parameter A is introduced into Kl ie. hi = sink; + cosk, sink, — A, and the other
two components remain intact, namely, i = h?,and b} = h*. The \-Hamiltonian Hy = h, - o, can be treated
as a continuous deformation of H,_,. Namely, the vector field of the EBHZ model, h, can be treated as the
limiting case ofh ) as A goes to zero. The zeros of h of the EBHZ model will also be these of h in the limit, A — 0.

Now we turn to find the signs of the Jacobian for the \-Hamiltonian. The null values of 1} and &} give
algebraic relations of k, and k,, of the zero-field points, expressed by:

sink, + tank, = 0, (B.5)
cosk, — seck, — A csck, = 0. (B.6)
By eliminating the dependence on k, in equations (B.5) and (B.6), we obtained

(1 — cos2k,)* 4 2Asin2k, + X (1 + cos2k,) = 0. (B.7)

At first, we seek for the determination for the sign of Jacobian at point I in the EBHZ model, and focus on
roots (or one root) of equations (B.5) and (B.6) near k, = 0and k, = 0 for a small value of . Through the
perturbative method, we found that there are two roots of equation (B.7) in the vicinity of k, = 0. Their leading
order expansion in thelimitof A — Oarek, ~ —\/2and k), ~ — /X, respectively (see Supplementary
Material). Substituting k,, into equations (B.5) and (B.6) gives sin k,, ~ \/2and cosk,, ~ —1. Therefore, the
value of k,, isaboutm — A/2, whichis close to 7. Thus, (ky,, k) is close to point Y as A approaches zero. It will
determine the sign of Jacobian at point Y for the EBHZ model, which is already known as positive one.

On the other hand, substituting the latter solution k, into equations (B.5) and (B.6) gets sin k, ~ X7/3and
cos ky, ~ 1, which renders k,, close to Y. Thus (kx, ky,)is close to point I'. The limiting behavior of this root
will decide the sign of Jacobian at point I for the EBHZ model. The expansion of the Jacobian around point I"
which is up to second order in k, and k, yields: ¢ (h|v) ~ (-1 / 2) (k2 + kf) + 2kik,. Thus with substituted

values of k,, and k, , the Jacobian at (k,,, k,,) is found as —3%/? as A — 0. Thusinboth limits, A\ — 0" and 0~
each limit sign valueat (k,, k,, ) exists and is —1, which gives the sign of Jacobian at point I in the EBHZ model.
The same fashion will also work for that at the point M.

To conclude, both schemes have their own consistent two-sided limit in the determining Jacobian signs at
points I' and M, and reach the same conclusion for sign values as well.
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