
Journal of Physics Communications

PAPER • OPEN ACCESS

Topological invariants from zero modes in systems
of topological insulators (TI) and superconductors
(TS)
To cite this article: Cheng-Hsiao Lin and Yan-Chr Tsai 2018 J. Phys. Commun. 2 085014

 

View the article online for updates and enhancements.

Related content

Index of Dirac operators and classification
of topological insulators
Ümit Ertem

-

Weyl-Majorana solenoid
P Baireuther, J Tworzydo, M Breitkreiz et
al.

-

Characterizations of topological
superconductors: Chern numbers, edge
states and Majorana zero modes
Xiao-Ping Liu, Yuan Zhou, Yi-Fei Wang et
al.

-

This content was downloaded from IP address 168.151.252.120 on 23/06/2019 at 13:11



J. Phys. Commun. 2 (2018) 085014 https://doi.org/10.1088/2399-6528/aad73d

PAPER

Topological invariants from zeromodes in systems of topological

insulators (TI) and superconductors (TS)

Cheng-Hsiao Lin1 andYan-ChrTsai2

1 Department of Electronic Engineering,National FormosaUniversity, Yunlin 632, Taiwan
2 Department of Physics, National ChungChengUniversity, Chiayi 621, Taiwan

E-mail: yctsai408@gmail.com

Keywords: topological insulator and superconductor, topological number, topological defects

Supplementarymaterial for this article is available online

Abstract

By a regularizationmethod, a topological charge density formula expressed by the formofDirac delta

functions was derived. From this analytic approach, it will be easy to tell how topological charges are

related to zero-field points (or zeromodes) and depend on the differential properties of the associated

vector field in the proximity of isolated zeromodes.With this result, topological integrals (winding

numbers) can be turned into simple sums contributed by isolated zeromodes. Through thismethod,

we investigated the physical features of zeromodes for several cases including the integral form for the

Teo-Kanemodel in dimensional reductions, the case ofMajorana zeromodes bound to a vortex line

in a topological superconductor, the Bernevig-Hughes-Zhang (BHZ) and its extended (EBHZ)

models, an extendedHaldanemodel, and the additivity of topological charges. In these systems, the

physical implications of zeromodes which reflect their singular nature were also discussed.Without

advanced knowledge, we provide a handy formula for calculating topological numbers accompanied

by intuitive understandings of origins of topological charges which are identical to the zeros of the

vector field.

1. Introduction

Physicists can distinguish the existence of various ordered states ofmatter by symmetry-breaking, including

superconductors, Bose-Einstein condensation, ferromagnets, charge density waves, andmany other systems.

These states can be explained by Landau’s theory of phase transitions offinite orderwhich is related to a local

order parameter. However, in past decades,many new phases [1–5] ofmatter discovered in condensed-matter

physics, like the fractional quantumHall states andMajorana fermion states, do not have a local order

parameter. These give rise to newly found phases ofmatter with nonlocal order parameters, known as

topological phases. The phrase, topological phase, directs to the existence of a bulk invariant to distinguish trivial

and nontrivial phases ofmatter even though they have the same symmetry. These topological phases cannot be

identified by broken symmetries but by the topologies of theHamiltonians of systems. In recent years, it was

realized by an enhanced band theory called topological band theorywhich takes account of the concepts of the

Berry connection and curvature in the Brillouin zone (BZ) [6]. TheChern number is defined as the integral of

Berry curvature [7].Moreover, some discrete symmetries, like time reversal and charge conjugate, exist in some

certain topological insulating and superconducting phases. A topological number can classify these phases and

distinguish them from the trivial ones.

The integral of the Berry curvature due to its Berry connection originated from the Bloch function of the

Hamiltonian over the BZ is related to theHall conductance of the insulator. It is identified as theChern number

of the filled band. TheHall conductance of theChern insulator can be identified as the coefficient of the Chern-

Simons action for an applied field [7]. If the Berry vector potential is globally well defined over the BZ, theHall

conductance aswell as Chern numberwill be null. Nonzero values of Chern numbers are consequences of the
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nontrivial structure of the Berry connection and there exist singularities of Berry curvature at some points in the

BZ. Therefore, it is necessary to calculate Chern numbers to distinguish if a TI is trivial or nontrivial.

Recently, tremendous interests have been raised by the studies of topological states ofmatter because of their

potential applications [8, 9]. Consequently, classifying physical systems in terms of their topological numbers

becomes a key practical task. To the best of our knowledge, the topological number for the TI andTS systemwith

Dirac-likeHamiltonianmeans thewinding number of itsfield vector within a certain region.However,

sometimes it is not easy to obtain the topological numbers by directly calculating so complicated integrals,

especially over the BZ.

However, recent studies show that the zero-energymodes play crucial roles in determining the topological

numbers in the pure TI andTS systems [7].Meanwhile, the topological defects such asmagnetic vortex lines and

dislocations in crystals can provide aπflux to certainwave-number electronic states, and host the zeromodes.

The interplay of topological defects and gaplessmodeswas therefore investigated, which led to the emerging of

the periodic table for defect classifications [10–12].

There are otherways to link the topological number to zeromodes, such as zero eigenvalues of electronic

local in-gapGreen’s functions in the presence of impurities [10], andMajorana zeromodes hosted by a vortex

line in a topological superconductor [13]. In addition, the topological line defects like dislocations in 3DTI can

serve as the probes of weak TI states [14, 15].

Here we took a different route to obtain the topological winding number by a topological charge density

formula through a special regularizationmethod to regularize a vector fieldwhich exists zero-field points. From

the analytic formof the formula, it was easy to tell that topological charges are directly related to zeromodes for

Dirac-likeHamiltonians and get intuitive understandings of the topological number.

In this paper, wewould introduce an approach based on the regularizationmethod to calculate topological

numbers. The approachwas taken to regularize a vector field to obtain the topological charge density formula in

section 2. The formulawas applied to various cases including the integral forms for the Teo-Kanemodel in

dimensional reduction, the case ofMajorana zeromodes bound to a vortex line in a TS, the BHZ and EBHZ

models, an extendedHaldanemodel, etc in sections 3–7. Finally, section 8 is devoted to summary and

conclusion.Details of the revisit of the residue theoremby the regularizationmethod are represented in

appendix A. Specially, caution is required in determining signs of the Jacobian at two of zerofield points for the

EBHZmodel, and the readers are referred to appendix B.

2. Topological number ofN-dimensional vectorfield

In the study of topological properties for vector fields, it is often required to calculate theflux through a closed

boundary. Sometimes, it can be very difficult to integrate topologicalflux directly. In this section, we adoptd the

particular regularizationmethodmentioned above to deal with topological vector field problems. Since this

methodwas inspired by observing the resemblance between the residue theorem and calculation of topological

numbers, it would be illuminating to revisit the residue theorembefore investigating the calculation of

topological numbers. The details were left in appendix A.

Wewould like to derive the key formula to convert integrals of topological fluxes into those of topological

charges with delta function forms. LetX be anN-dimensional smoothmanifold, and its local coordinate is

xμ(μ=1,K,N). Assume a smoothmapping f X R: N , leading to anN-dimensional smoothmanifold

vector field, f a=f a(x), with a=1, 2,K,N, whereRN is the realN-dimensional Euclidean space. The

normalized unit vector of f(x) is expressed as f̂ and its a-th component =ˆ ∣ ∣f f f
a a , where =∣ ∣ f ff a a . For

simplicity, the partial derivative of f̂
a
with respect to the local coordinate xμ is denoted by ¶m f̂

a
. The topological

flux density characterized by field f(x) can be expressed by (̂ )f x as follows:

 =
-

¶ ¶m m m
m m-( )( )!

ˆ ˆ ˆ ( )J
A S N

f f f
1

1
... , 1

N a a
a a a

1
...

...N
N N

N
1 1

1

1

2

2

whereA(SN−1
)=2πN/2/Γ(N/2) is the hypersurface area for an (N−1)-dimensional unit sphere [16, 17], and

 m m... N1 and a a... N1
areN-dimensional Levi-Civita symbols whose value equals 1 if their indices are an even

permutation of 1, 2,K,N and equals−1 if they are an odd permutation; otherwise, it equals zero3 . LetM be a

submanifold inX andMi be the neighborhood of the i-th zero-field point, then the generalizedwinding number

can be given by [16]

3
  ò ò ò ò=  µ ¶ ¶ = ¶ ¶m m

m m m m· · ˆ ˆ ˆ ˆx f f x f fJ S Jd d ... d ...N
a a

a a N
a a

a a...
... ...N

N N

N
N N

N1
1 1

1
1 1

1   =m mx xd ... d N1 ò  ˆ ˆf fd ... da a
a a

... N
N

1

1
.

Thismetric-free form is independent of the choice of local coordinates, which reflects the nature of topological invariance.

2
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The divergence of the topological flux density (or topological charge density),

  = ¶ =
-

¶ ¶m
m m m

m m-
·

( )( )!
ˆ ˆ ( )J

A S N
f fJ

1

1
... , 3

N a a
a a

1
...

...N
N N

N
1

1 1

1

is the integrand in equation (2). It will vanish in the regionwhere f̂ ʼs arewell defined (or regular) [16]. However,

it is crucial to observe the fact that the direction of the vector field f is not well defined at the locations f being a

zerofield. Aswewill show later, the singular behavior of these zero-field points will be connected to the rise of

topological charges. To capture this singular feature of the vector field near the zero-field points, we add an

infinitesimal quantity ε2 to the denominator of f̂
a
as a regulator and the regularized vector field

e= +ef̂ f f
a

a 2 2 , and its derivative can bewritten as

e

e d
e

¶ = ¶
+

=
+ -

+
¶m e m m

⎛

⎝
⎜

⎞

⎠
⎟ˆ ( )

( )
( )f

f f f
f

f

f

f
. 4

a a ab a b
b

2 2

2 2

2 2 3 2

Within this regularization scheme, the new version of equation (3) is expressed as

  =
-

¶ ¶e
m m

m e m e-
·

( )( )!
ˆ ˆ ( )

A S N
f fJ
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... . 5

N a a

a a

1
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...N
N N

N
1

1 1

1

We then substitute equation (4) into equation (5) and use the antisymmetry of òμν... and the symmetry of∂μ∂ν

when two indices are exchanged to simplify the expression and obtain:

 
e d

e
 =

-
+ -

+
¶ ¶ ¶e

m m
m m m- +·

( )( )!

( )

( )
( )

A S N
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The Jacobian offield components f 1, f 2,K, f Nwith respect to coordinates x1, x2,K, xN is symbolized asJ( ∣ )f x ,

and defined as J = ¶ ¶m m
m m( ∣ ) f ff x ...a a a a... ...N N

N
N1 1

1
1 orJ  = ¶ ¶m m

m m( ∣ ) ( !)N f ff x 1 ...a a
a a...

...N
N N

N1
1 1

1 .

Therefore,  m m... N1 ¶ ¶ ¶m m mf f f...a a a
N

N
1 2

2 in equation (6) can be replaced by J ( ∣ )f xaa a... N2 . By noting

  d= -( )!N 1aa a
a a a a a

...
...

N
N

2
1 2 1

and d d = Na a
a a

1
1 , equation (6) can be recast into

J
e
e

 =
+

e - +·
( )

( ∣ )
( )

( )
A S

N
J f x

f

1
. 7

N 1

2

2 2 N 2
2

It is apparent that the function e e+
+

( )N f2 2 2 N 2
2 in equation (7) is null if ¹f 0 and goes to infinity if f=0. In

addition, its integration over thewholeN-dimensional vector space f is easily found asA(SN−1
). Therefore, as

e  0, the function is reduced to a generalized function:

e
e

d
+

=
e

-
+

( )
( ) ( ) ( )

N
A S

f
flim , 8N

0

2

2 2

1
N 2

2

where δ(f)=δ( f 1)δ( f 2) ... δ( f N). Similarly, the limit of equation (7) is also a generalized function:

Jd =  =
e

e


· · ( ) ( ∣ ) ( )J J f f xlim , 9
0

where the topological charge density formulawas obtained and takes the formof delta functions by the

regularizationmethod. From equation (3) to equation (9), we derived a relation:

J  d
-

¶ ¶ =m m
m m-( )( )!

ˆ ˆ ( ) ( ∣ ) ( )
A S N

f f f f x
1

1
... . 10

N a a
a a

1
...

...N
N N

N
1

1 1

1

Equation (10)was also found in a different approach [16]. However, the derivation here ismore direct and

simpler. Details are provided in the SupplementaryMaterial available online at stacks.iop.org/JPCO/2/

085014/mmedia. Aswementioned before,∇ · J is always zero except for points at the locations f(x)= 0,where

topological charges are situated.The calculation of a topological number is related to the integral of the topological

field around a closed boundary and sometimes it is difficult to calculate directly.According to the divergence

theorem, thefluxof the topological vectorfield through a closedhypersurface is equivalent to the topological

charge enclosed by the closed surface. In calculations of topological numbers,we can convert the associated

integrals to the sumsof contributions from isolated zero-field points just like the residue theoremwhere the

contour integrals are changed into the sumsof residues of isolated poles. In the following sections, this formulawill

be applied to several cases to show that it is simple in calculations of topological numbers for various topological

systems and thephysical implications of the zeromodes seemclearer.
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3.Dimensional reductions of the integral form for the Teo-Kanemodel

In this section, wewill demonstrate the application of equation (10) to the issue raised by Teo andKane [18]

which concerned aboutMajorana fermionic excitations in the 3DBogoliubov-deGennes (BdG)Hamiltonians

with particle-hole symmetry in the presence of physical defects. For convenience, it is termed as the Teo-Kane

model here. TheHamiltonian of the system( )k r, is a function of thewavevector k and the position vector r,

where k is defined in a 3DBZ (a torusT3 equivalent to S3 in the sense of strong topology) and r is on a 2-sphere S2.

An adiabatic deformation l¢( )k r, , parametrized byλ connects( )k r, atλ=0 to a trivialHamiltonian

independent of k and r atλ=1 and formore details the readers are referred to [18, 19]. TheHamiltonian of the

system can be expressed by

 g= ¶ + G( ) ( ) ( )i fk r r, , 11a
a a

a

where γ a andΓa are 8×8Diracmatrices, f a is the a-th component of the vector field f and a=1, 2, 3. These
Diracmatrices satisfy {Γa,Γb}={γ

a, γ b
}=2δab and {Γa, γ

b
}=0, and should be arranged tomake the

Hamiltonian possess particle-hole symmetry. TheHamiltonian needs a six-component unit vector

n n= -ˆ ( ˆ ˆ)d k f1 ,2 on S5with the hedgehog configurations, where ν ranges from0 to 1 (or from−1 to 0). k̂

and f̂ are the respective unit vectors of k and f. For general consideration, we focus on the case of higher

dimensions inwhich both k and f areN dimensions.With an extra parameterλ, a unit vector field on S2N can be

constructed as

l l l l l n l n= - = - - -ˆ ( ) ( ˆ) ( ˆ ˆ) ( )g k r d k f, , , 1 , 1 1 , 1 , 122 2 2 2

where d̂ is a unit vector on -S N2 1. Then, the topology of theHamiltonian is characterized by its integer-

valuedN-thChern character which is calculated as the volume on S2N swept out by lˆ ( )g k r, , [18]. Aswe have

mentioned in section 2, theN-thChern number can be obtained from the generic formula equation (2). By

replacing the local coordinate x and vector field f̂ with q and ĝ , respectively, theChern number of theMajorana

fermion (MF) system,WMF, can be rewritten as

 ò= ¶ ¶m m
m m

+ +
+ +

+

( )( )!
ˆ ˆ ( )W

A S N
q g g

1

2
d ... , 13

N
N

a a
a a

MF 2
2 1 ...

...N
N N

N1 2 1
1 2 1 1

1
2 1

2 1

where l q q q n= ¼ = ¼ ¼+
-( ) ( )q q q k k kq , , , , , , , , , , , ,N N

N
1 2 2 1 1 2

1 2 1 and θiʼs are S
N−1 angular variables, and

the subscriptMFdescribes the systemofMajorana fermions. In order to simplify equation (13), the partial

derivatives of ĝ aʼs with respect to qμʼs are listed in table 1. It is apparent to tell from table 1 that the nonzero

terms in the integrand should take the formof ¶ ¶ ¶ ¶ ¶ ¶ ¶a a a b b b( ˆ )( ˆ ˆ ˆ )( ˆ ˆ ˆ )g g g g g g g... ...a a a b b b
1

1
N

N
N

N
1

1
2

2
1

1
2

2 ,where

all the indices in the second parenthesis range from2 toN+1, and those in the last parenthesis from
N+2 to +N2 1. The corresponding Levi-Civita symbols are consequently reduced to the formof
   a a a b b b( )( )a a a b b b

...
...

...
...

N
N

N
N

1 2
1 2

1 2
1 2

. Besides, there are +C C CN
N

N
N
N

1
2 1 2 choices for selecting any one out of the

+N2 1 indices in  m m +... N1 2 1 forλ, anyN out of the left N2 indices for ¼( )k k k, , , N1 2 , and the rest for (θ1, θ2,K,

θN−1, ν)where = -! !( )!C n m n mm
n stands for combinations. Therefore, with expressions ĝ in equations (12),

(13) can be rewritten as

Table 1.Partial derivatives of ĝ a with respect to qμ. Here l n l n= - - = ¶ ¶ = ¶ ¶E E E E E1 1 , ,2 2
1 2 ,

l n l= - = ¶ ¶F F F1 ,2
1 , and F2=∂ F/∂ν.

¶
¶ m

ĝ

q

a

ĝ1 ĝ 2 ĝ3 ... +ĝ N 1 +ĝ N 2 +ĝ N 3 ... +ĝ N2 1

q1 1 ˆE k1
1 ˆE k1

2
... ˆE k

N
1

ˆF f1
1 ˆF f1

2
... ˆF f

N
1

q2 0 ¶ ˆE k1
1

¶ ˆE k1
2

... ¶ ˆE k
N

1 0 0 ... 0

q3 0 ¶ ˆE k2
1

¶ ˆE k2
2

... ¶ ˆE k
N

2 0 0 ... 0
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qN+1 0 ¶ ˆE kN

1
¶ ˆE kN

2
... ¶ ˆE kN

N
0 0 ... 0

qN+2 0 0 0 ... 0 ¶ ˆF f1
1

¶ ˆF f1
2

... ¶ ˆF f
N

1

qN+3 0 0 0 ... 0 ¶ ˆF f2
1

¶ ˆF f2
2

... ¶ ˆF f
N

2

       
q2N 0 0 0 ... 0 ¶ -

ˆF fN 1
1
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ˆF fN 1
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where all the indices, such asαi,βi, ..., range from1 toN, and∂α stands for∂/∂ kα in thefirst square bracket, and

∂N=∂/∂ν,∂β=∂/∂ θβ, asβ=1,K,N−1 in the last one.

After integrating out the variablesλ and ν, the integral is reduced to

 



ò

ò q q

=
-
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´ ¶ ¶
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- --
⎜ ⎟
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N N

N
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By replacing f̂
a
by k̂

a
and xμ by kμ in equation (10), the integration over k-variables can be performed as follows:

 ò ò d¶ ¶ = - = -a a
a a

- -ˆ ˆ ( )( )! ( ) ( )( )!k k k A S N d k A S Nkd ... 1 1 .N
a a

a a N N N...
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1 1N
N N
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Finally, we obtain thewinding number as

ò q q= ¶ ¶
- - --( )

ˆ ˆ ˆ ( )W
A S

f f f
1

d ... d ... . 14
N S

N b b
b b

N
b

MF 1 1 1 ... 1 1
N N

N

1 1

1 2

WhenN is equal to three, equation (14) reduces to

ò òp
q f

p
= ¶ ´ ¶  = ¶ ´ ¶ q f

ˆ · ˆ ˆ ˆ · ˆ ˆ ( )W x xf f f f f f
1

4
d d

1

8
d d . 15

S S
j k

j k
MF

2 2

By thismethod, the result is the same as described in [18]. For a nontrivial topological phase, the value of

equation (15) should be nonzero. Since the zero-field points of the f̂ or ffield exist in real space, Thus therewill

be physical defects corresponding to zero-field points of the ffield.

4.Majorana zeromodes in a topological superconductor

Takahiro Fukui has studied a line defect in a 3DTSproposed by Teo andKanewhich existsMajorana zero

modes. TheHamiltonian of the system takes the formof equation (11) and thefield vector considered for the

system [13] is given by

q q= = D D( ) ( ( ) ( ) ( )) ( )f f f r q r q Z zf , , cos , sin , , 161 2 3

whereD ¥ = D >( ) 00 is required, q is vorticity of a generic vortex and the continuous functionZ(z) is a

mass term controlling topological phase transition.Herewe assume that themass term asymptotically is

¥ = ( )Z m . The line defect is a vortex line where the coordinates of zeromodes satisfyΔ(r)=0. For
simplicity, we adopt the same assumption in [13] and assumeΔ(0)=0 so that the core of the vortex is located
on the z-axis. To derive the topological character of theHamiltonian, one can use equation (15) directly or the

method developed byWeinberg [20]. It has been shown that the topological index of theHamiltonian for the

system can be expressed as  ò= - ¶( ) ( )d x J xind 1 2 ,i
i3 where  p= ¶ ¶( ) ( ) ˆ ˆ ˆJ f f fx 1 4i ijk

abc
a

j
b

k
c
and f̂ is the

unit vector of f. The details about J i(x) can be referred to [13, 21]. It is straightforward to calculate the partial

derivatives of the topologicalfield vector and derive  p¶ = ¶ ¶ ¶( ) ( ) ˆ ˆ ˆJ f f fx 1 4i
i ijk

abc i
a

j
b

k
c
. By lettingN=3 in

equation (10), we obtain

J ò d= - ( ) ( ∣ ) ( )xf f xind d . 173

Wecalculate the Jacobian of fwith respect to cylindrical coordinates directly and arrive at

J q= ¶ ¶ = DD( ∣ ) ( ) ( )f f f r z qZf x , , , , ,r z
1 2 3 whereD = D rd dr , =Z Z zd dz , and q is the degree of

mapping. In addition, δ(f)=δ(Δ(r))δ(Θ(θ))δ(Z(z))/Δ(r), whereΘ(θ)=qθ. Tomake themapping betweenΘ

and θ as a one-to-onemapping,Θä(0, 2π) ismapping onto q pÎ ( ∣ ∣)q0, 2 and the integration range of θ in

polar coordinates can be divided into ∣ ∣q branches. Therefore,
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ò ò ò ò

ò ò

d q d q q d q q d q q

d q
q d q q

Q = + + +

= ´ =

p p

p p

´

-

p

p

p

p
( ) (∣ ∣ ) (∣ ∣ ) (∣ ∣ )

∣ ∣
( )
∣ ∣

( )

(∣ ∣ )

∣ ∣

∣ ∣

∣ ∣

∣ ∣

q q q

q
q

d d d ... d

d d .

q0

2

0

2

1

2

0

2

0

2

q

q

q

q

2

2

2

2

It is straightforward to rewrite d dD = D( ( )) ( ) ∣ ∣r r r and d d= -( ( )) ( ) ∣ ∣Z z z z Zz0 , wherewe assume

that z0 is a single zero ofZ. Putting all of them together and noting thatΔr�0 near r=0, we have d =( )f
d d q d - DD( ) ( ) ( ) ( ∣ ∣)r z z Z .r z0 Then, we can obtain

 ò ò òq
d d q d

=-
-

DD
DD

=-

p¥

-¥

¥ ( ) ( ) ( )
∣ ∣

( ) ( )

r z
r z z

Z
qZ

Z q

ind d d d

sgn , 18
r z

r z

z

0 0

2
0

where the symbol ( )xsgn represents the sign function of x. In the presence ofmany zeros, the index ofwill be

the sumof equation (18) over all individual zeromodes. If the signs ofm+ andm− are opposite, therewill be an

odd number of zeros ofZ(z). In general, they are topologically equivalent to the systemwith a single zero because

the signs ofZz for any adjacent zeros are opposite andwill be canceled in pairs. Similarly, ifm+ andm− share the

same sign, therewill be an even number of zeromodes in the system and the indwill be zero.Notice in passing

thatZʼs asymptotical behavior can determine the sign ofZz at a single zero point z0. Therefore, in general, the

index for the systemwithMajorana zeromodes can be rewritten as

 = - -+ -[ ( ) ( )] ( )m m qind
1

2
sgn sgn . 19

The result in [13] is a special case of equation (19) and independent of the detailed structure of the profile

function. It is evident that a defect is a point defect situated somewhere along the z-axis domainwall, where the

sign ofmass profileZ(z) changes.

5. TheBHZandEBHZmodels

Some kinds of topological systems, such as the 2DHgTc/CdTe quantumwells, respect time reversal symmetry

and realize a 2 TI [6, 22]. One can also add the next nearest neighbor (NNN) term into the BHZmodel, which

becomes the EBHZmodel. Thismodel has been studied in [10] and [12] for the investigation of the space group

classification of the topological band-insulators.

Its reducedHamiltonian determining the 2 topological charges can be expressed by a 2×2Hermitian

matrix as

s
s s

s s s

=
= +
= - + - - -

( ) ·
{ · } { · }
{ [ ( )] } ( )

H M

k k M B k k

k h

h h

,

sin sin 2 2 cos cos 20x y x y

BHZ NNN

1 2 3

s s s+ - - -{ ˜( )] } ( )k k k k B k kcos sin sin cos 4 1 cos cos , 21x y x y x y1 2 3

where in equations (20) and (21) eachHamiltonian inside the first and second curly bracket represents the

Hamiltonian of the BHZmodel and theNNN term, respectively. The topological vector field for the EBHZ

system ish=(h1, h2, h3)= + - - - - - -( ( )k k k k k k M B k ksin cos sin , sin sin cos , 2 2 cos cosx x y y x y x y

-˜( ))B k k4 1 cos cosx y andσiʼs are Paulimatrices. Here the vector h depends on three-dimensional coordinates

v=(k,M), where k=(kx, ky) ismomentum space andM is amass coordinate and ˜B B, , andM depend on

materials. Thefirst Chern number of the system can be expressed as

J ò ò d= ¶ ¶ ¶ =
´ ´( ) !

ˆ ˆ ˆ ( ) ( ∣ ) ( )W
A S

h h h v vh h v
1

2
d d , 22

BZ M

ijk
abc i

a
j

b
k

c

BZ M
EBHZ 2

3 3

where ò ´BZ M
denotes the integration over the k-space and themass coordinate, and ĥ is the unit vector ofh. The

Jacobian in equation (22) is directly calculated asJ = - + + +( ∣ ) ( )k k k k k kh v cos cos sin sin cos cosx y x y x y

-k k k kcos cos sin sinx y x y
2 2 2 2 . For the EBHZmodel, there are four zero-field points in the v-field:

p p p p+ +{( ) ( ˜) ( ˜) ( )}B B B B B0, 0, 0 , 0, , 4 8 , , 0, 4 8 , , , 8 . LetMi stands for theM value of the i-th zero-field
point and z for B̃ B, i.e. = = = +M M M B zB0, 4 81 2 3 , and =M B84 . Therefore, we can rewrite

Jd d d d= å - - -=( ) ( ) ( ) ( ) ∣ ( ∣ )∣ ∣k k k k M Mh h vi x x y y i v1
4

i i i
, where i stands for the i-th zero-field point.

Putting them together, we obtain
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J

J

J
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d d d d

d
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= -
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=

( ) ( ∣ )
( ∣ )∣

∣ ( ∣ )∣ ∣
( ) ( ) ( )
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k k k k M Mh h v
h v

h v

h v v vsgn . 23

i

x x y y i

i

i

v

v

v

1

4

1

4

i

i

i i

i

Plugging equation (23) into (22) and integrating over the BZ, wefinally get

J

J

ò ò ò

ò

å

å

d d d

d

= ¢ - - ¢ -

= ¢ ¢ -

= -¥

= -¥

( ( ∣ )∣ ) ( ) ( ) ( )

( ( ∣ )∣ ) ( ) ( )

W k k M k k k k M M

M M M

h v

h v

d d d sgn

d sgn . 24

i BZ
x y

M

x x y y i

i

M

i

v

v

EBHZ

1

4

1

4

i i i

i

Here J( ( ∣ )∣ )h vsgn vi
is the sign of the Jacobian at the i-th zero-field point. They are−1, 1, 1,−1 for i=1, 2, 3, 4,

respectively. The determination for signs of the Jacobian at v1 and v4 requiresmore effort, and readers are

referred to appendix B for details.

We note in passing that the formalism from equation (22) to equation (24) is still valid for the BHZ

model, where the vector fieldh=(h1, h2, h3)= - - - -( ( ))k k M B k ksin , sin , 2 2 cos cosx y x y , and

J = -( ∣ ) k kh v cos cosx y . For thismodel, each zero-field point, as well as its sign of Jacobian, is the same as that
of the EBHZmodel with z=0. Apparently, the value ofMwill determine the number of the zero-field points

included in the integration range and therefore the value of the Chern number.

In the case of z<1/2, we haveM1<M2=M3<M4.WhenM<M1, no zero-field point is allowed and
<( )W z

EBHZ
1 2 is zero.WhenM1<M<M2=M3, only thefirst zero-field point is included and

<( )W z
EBHZ

1 2 is negative

one. The rest <( )W z
EBHZ

1 2 may be deduced by the sameway and the result is arranged as follows:

=

<
- < < +

+ < <
>

<

⎧

⎨
⎪⎪

⎩
⎪
⎪

( )W

M B

M B z

z M B

M B

0 for 0

1 for 0 4 8

1 for 4 8 8

0 for 8.

z
EBHZ

1 2

In the case of z>1/2, we haveM1<M4<M2=M3. Following the same reasoning in the preceding case, we

have the topological number >( )W z
EBHZ

1 2 as:

=

<
- < <
- < < +

> +

>

⎧

⎨
⎪⎪

⎩
⎪
⎪

( )W

M B

M B

M B z

M B z

0 for 0

1 for 0 8

2 for 8 4 8

0 for 4 8 .

z
EBHZ

1 2

In particular, the phasewith = ->( )W 2z
EBHZ

1 2 is termed as the valley phase which possesses the trivial 2 invariant

and is protected byC4 rotational symmetry [10].

The phase diagramof the BHZmodel is the same as that of the EBHZmodel when z=0. In this regard, our

result is consistent with that of the two-bandmodel [22]. The system can transit between different topology

phases by tuningM. There are topologically nontrivial 2 quantum-spinHall phaseswithWBHZ=±1 asM
varies from0 to B8 . Outside this range, a trivial insulator phase exists.WhenM crosses one of endpoints of the

range, a band inversion occurs and the trivial phase becomes a nontrivial one.

6. An extendedHaldanemodel (EHM)

In the late 1980s,Haldane imitated the integer quantumHall effect expected in the Landau-level problemwhile

preserving the translational symmetry of the lattice [23]. He proposed a topological insulator on a hexagonal

lattice consisting of two inter-penetrating triangular sub-lattices. TheHamiltonian contains various hopping

terms In addition to a couple of hopping terms in theHaldanemodel, the EHM is investigated by considering

onemore hopping term [22]. Up to a constant term, theHamiltonian of the system can bewritten as

s= å =H hi
i

i1
3 , where h i is the i-th component of the vector fieldh over the first BZwith a parameterM defined

below.Here nearest-neighbor electron hoppingwith the hopping integral t1, next-nearest-neighbor hopping

integral t2with a phase termf, and next-next-nearest-neighbor hopping integral t3 are taken into account, and

therefore the three components of theh field can be expressed as:

f

= + + + + + -
= + + +
= + - - -

[ ( · ) ( · ) ] { [ · ( )] [ · ( )]}
[ ( · ) ( · )] [ · ( )]

{ ( · ) ( · ) [ · ( )]}

h t t

h t t

h M t

k a k a k a a k a a

k a k a k a a

k a k a k a a

cos cos 1 cos 2 cos ,

sin sin sin ,

2 sin sin sin sin ,

1
1 1 2 3 1 2 1 2

2
1 1 2 3 1 2

3
2 1 2 1 2
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whereM plays the role of an on-site inversion symmetry-breaking, and a1 and a2 are simply the Bravais lattice

vectors.When one vertex of a hexagonal lattice is chosen as the origin and the y-axis is assumed to be aligned
with the longest diagonal from the origin of the lattice, then = ( )a 3 2, 3 21 and = -( )a 3 2, 3 22 in

units of the lattice constant (i.e. the hexagonal lattice edge length) are the other two diagonals from the origin. As

mentioned in the previous section, the vector fieldh is a function of three-dimensional coordinates v=(k,M).

We listed eight zero-field points viwhenh=0 in table 2. It is straightforward to derive

J Jåd d= -
=

( ) ( ∣ ) ( ( ∣ )∣ ) ( ) ( )h h v h v v vsgn , 25
i

iv

1

8

i

where

J =- +

+ +⎜ ⎟
⎪

⎪⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

⎫
⎬
⎭

( ∣ ) {[ ( )] ( )

( )

t t k k

t t k k k

h v
3 3

2
4 cos 3 sin 3

2 cos
3

2
2 sin

3

2
sin

3 3

2
. 26

y x

y x x

1
2

3
2

1 3

TheChern number shares the same formof equation (22)with the expression ofJ( ∣ )h v in equation (26). After

integrating over the k-space, we obtain theChern number for the EHM

Jòå d= ¢ ¢ -
= -¥

( ( ∣ )∣ ) ( ) ( )W M M Mh vd sgn . 27
i

M

ivEHM

1

8

i

The sign ofJ( ∣ )∣h v vi
at the zero-field points can be found in table 2 and the system’s phase diagramof the EHM

is shown infigure B1. From the property of delta functions in equation (27), it is readily to see that thefirst zero-
field point v1 lies on curve (i)where f- =M t3 3 sin 02 and so f=M t3 3 sin1 2 . Similarly, points v2,v3 and

v4 share the same value ofM and the three curves associatedwith them coincide with each other on curve (ii),

whereM−msinf=0. Therefore, themultiplicity of curve (ii) is 3. Likewise, v5, v6 and v7 are on curve (iii)

and v8 on curve (iv). The value of Chern number depends on the zero-field points within the integration range

which is determined by the upper limitM. For convenience, we define J( ( ∣ )∣ )h vsgn vi
as the intersection number

of the curve associatedwith the points vi and a straight line with a constantf value. Therefore, the intersection

number pertaining to curve (i) is−1 for J = -( ( ∣ )∣ )h vsgn 1v1
. However, the intersection number pertaining to

curve (ii) is 3 rather than 1 since the sumof J( ( ∣ )∣ )h vsgn v2
, J( ( ∣ )∣ )h vsgn v3

, and J( ( ∣ )∣ )h vsgn v4
is equal to 3.

Likewise, the intersection numbers of curves (iii) and (iv), should be−3 and 1, respectively. Tofind theChern

number of an interested point in figure B1, we draw a line with a constantf joining ¢ = -¥M and this point.

Next, we can get theChern number by adding up the intersection numbers of the curves with the line. For

instance, for theChern number in the region between curves (i) and (ii) and−π<f<0, the above-mentioned

linewith one endpoint in this regionwill intersect with curve (i). The integration range only includes the first

zero-field point v1 and theChern number of the region is the intersection number of curve (i), which equals to

negative one. Similarly, in the region between curves (ii) and (iii) and−π<f<0, the line intersects with both
curves (i) and (ii). Furthermore, the integration range includes points v1, v2, v3, v4, and theChern number of this

region is the sumof the intersection numbers of curves (i) and (ii), which is two. Comparedwith theHaldane

model, the additional hopping term creates newnontrivial topological phases with highChern number

WEHM=±2, whichmeans the appearance of additional edgemodes [22]. By extracting the information of zero

modes, it is straightforward to extend the calculation for systemswithmore hopping termsThese systems have

more degrees of freedom in the parameter space andwere led to the occurrence of high-Chern-number phases.

Table 2.Zero-field points and the signs of their Jacobians,
where = -- [( ) ( )]b t t tcos 21

3 1 3 and

= + - -[ ( ) ] [( ) ( )]m t t t t t t t2 1 22 1 3 3 1 3 3
2 .

i = ( )k k Mv , ,i x y ii i J( ( ∣ )∣ )h vsgn vi

1 p f-( )t4 3 3 , 0, 3 3 sin2 −

2 f-( )b m2 3 , 0, sin +

3 f-( )b b m3 , , sin +

4 f( )b b m3 , , sin +

5 f-( )b m2 3 , 0, sin −

6 f- -( )b b m3 , , sin −

7 f- - -( )b b m3 , , sin −

8 p f-( )t4 3 3 , 0, 3 3 sin2 +
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7. Additivity of topological charges

Berry charges (Topological charges) due to the Berry vector potentials in theHamiltonians of some

semiconductors are closely related to theirHall conductivities [24]. In this section, wewould like to demonstrate

the additivity of topological charges exemplified by a bilayer graphene system and heavy holes in quantumwells.

These systems are not TI. TheirHall conductivities are not quantized but are still related to (or proportional to)

the topological charges of the systems.

Before discussing the additivity of topological charges, we first deal with a single charge system. The

electronicHamiltonian of the combined Rashba-Dresselhaus (RD) system [24]with the out-of-plane

polarization induced by the electric field is given by

 a b s a b s= - + + +( ) ( ) ( )
k

m
k k k k

2
, 28y x x yRD

2 2

1 2

whereα andβ are the respective spin–orbit coupling strengths, and (kx, ky) is the electronwavevector. Here the

Paulimatricesσ1,σ2, andσ3 stand for the spin operators of electrons. Themomentumdependent effective

magnetic field of the system can bewritten as

a b a b= + - -( )k k k kf , .y x x y

For a b¹∣ ∣ ∣ ∣, it is apparent that f has an only zero-field point at k=(kx, ky)=(0, 0), and Jacobian is

J a b= -( ∣ ) ( )f k . 292 2

We then obtain

d d d
d d

a b
= =

-
( ) ( ) ( )

( ) ( )

∣ ∣
( )f f

k k
f . 30

x y1 2
2 2

Integrating the product of equations (29) and (30) over k-space, the topological charge of the system,WRD,

becomes

ò ò a b d d a b= - = -( ) ( ) ( ) ( ) ( )W k k k kd d sgn sgn . 31x y x yRD
2 2 2 2

In the case of a b=∣ ∣ ∣ ∣, the topological charge density in equation (9) is a zero generalized function because the

Jacobian vanishes. The result is related to the spin-Hall conductivity of the system [24, 25].

Nowwe turn to demonstrate the additivity of topological charges with following cases. First, the bilayer

graphene system [24] ismodeled as two coupledmonolayer graphene sheets, with each layer having two

inequivalent lattice sites. If the Bernal stacking configuration [26] is adopted, theHamiltonian of the bilayer

graphene (BG) system can bewritten as

 s s= - - +[( ) ] ( )
m

k k k k
2

2 , 32x y x yBG

2
2 2

1 2

in the low energy limit. TheHamiltonian operates on pseudospinwave functions, where the upper and lower

components describe electronic amplitudes on theB-site in the top layer and theA-site in the bottom layer

respectively. Only two possible ways of hopping via the dimer state are taken into account. The field vector of this

system [13] can bewritten as

= -( ) ( )k k k kf , 2 . 33x y x y
2 2

For simplicity, we add a positive number η to equation (33) to split themultiplicities, hence it becomes

h= - +h ( )k k k kf , 2 ,x y x y
2 2

where η goes to zero, as fη approaches f. It is apparent that fηhas two zero-field points at h=  ( )k 0, . Here

J = +h( ∣ ) ( )k kf k 4 x y
2 2 so that its sign is always positive. Therefore, we have

Jd d d h d d h= + + -h h( ) ( ∣ ) ( ) ( ) ( ) ( )k k k kf f k .x y x y

Finally, the topological charge of the system,WBG, is obtained as

Jò ò d= =
h

h h


( ) ( ∣ ) ( )W k k f f klim d d 2. 34x yBG
0

From the calculation, it is obvious that the topological charges are additive. As an alternative, the positive

number η can also be added to the second termof the field vector and the resultingWBGwill still be two.Hence

the total topological charge is independent of this separation scheme of zero-field points.

The second example is the systemof p-doped quantumwells in III–V semiconductors, the energy gap

between the light- and heavy-hole bands diverges with the reduction of well width. In a sufficiently narrow

quantumwell with lowdoping densities and low temperature, only the heavy-hole band is occupied The

9

J. Phys. Commun. 2 (2018) 085014 C-HLin andY-CTsai



effectiveHamiltonian for heavy-holes in quantumwells (QW) [24] is

 l s s= - - + -[( ) ( ) ] ( )
k

m
k k k k k k

2
3 3 , 35y x y x x yQW

2 2
3 2

1
3 2

2

where kx and ky are the components of wave vectors, andλ is the spin–orbit coupling strength [24]. The

corresponding field vector can bewritten as

= - -( )k k k k k kf 3 , 3 .y x y x x y
3 2 3 2

Both components of the vector f are zero at (kx, ky)=(0, 0). In order to split themultiplicities, we add a positive

number η to thefield vector for simplicity:

h= - + -h ( )k k k k k kf 3 , 3 .y x y x x y
3 2 3 2

When η is null, fη is the same as f. Then it is easy to see there are three zeros, h= - =( )k k0, ,1
1 3

2

h h-( )3 2, 21 3 1 3 , h h= ( )k 3 2, 23
1 3 1 3 . SinceJ = +h( ∣ ) ( )k kf k 9 x y

2 2 2, its sign is always positive.

Therefore, we have

Jd d d h d h d h d h d h= + + + - + - -h h ⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

( ) ( ∣ ) ( ) ( )k k k k k kf f k
3

2

1

2

3

2

1

2
,x y x y x y

1
3

1
3

1
3

1
3

1
3

wherewe break the product of a delta function and the Jacobian into the sumof three delta functions by the

regularizationmethod. Then the topological charge of the system is

Jò ò d= =
h

h h


( ) ( ∣ ) ( )W k k f f klim d d 3, 36x yQW
0

which comes from the contribution of three individual topological charges and is related to the spin-Hall

conductivity of the system. Aswementioned in the previous example, adding the positive number η to the

second termof the field instead of thefirst termwill not change the result of equation (36) because the

topological charge is independent of the separation scheme of zero-field points.

8. Summary and conclusion

Calculation of topological numbers is crucial in identifying nontrivial phases of topologicalmaterials for

potential applications. In nontrivial topological phases, there are topological obstructions depicted by zero-field

points (charges), where the direction of an associated unit vector field is not well defined and singular.We have

developed a simple and systematicalmethod for calculating topological numbers and investigated the physical

implications of zeromodes by calculating topological numbers for systems of TS andTI.We used the

regularizationmethod to deal with the singularity of zero-field points in the BZ of TI.Within the framework of

generalized functions, we obtained a topological charge density formulawhich can turn topological integral

problems into simple sums contributed by isolated zeromodes, similar to the residue theorem.

Armedwith this topological charge density formula, we explored the zero-mode features for various TS and

TI systems. Firstly, through this formula, the dimension of the topological integral in the Teo-Kanemodel was

lowered. This result of dimensional reduction indicates the fact that zeromodes should be situated on the defects

in real low dimensional space (S2) for nontrivial topological phases.Meanwhile, a generalized version of

dimensional reduction formula (from S2N to SN−1
)was also obtained for possible applications. Secondly,

Majorana zeromodes in TSwere identified as zero-field points in topological charge density formula. The zeros

are hosted by theflux line and the domainwalls of themass function profileZ(z). The topological number of this

systemwas obtained through the information of the identifiedMajorana zeromodes and independent of the

detailed structure of the profile function. Through our calculation, it is straightforward to see that systemswith

an odd number of zeros are topologically equivalent to onewith a single zero and systemswith an even number

of zeros are topologically trivial. For the EBHZmodel, onemore term (theNNN term)was added to the BHZ

model and an additional topological phase with a highChern numberwas foundwhich possesses the trivial 2

invariant and is protected byC4 rotational symmetry.When theNNN termwas neglected, the BHZ results were

revisited. There are topologically nontrivial 2 quantum-spinHall phases as the integration range of themass

term includes an odd number of zeros otherwise the system is trivial. After that, we investigated the EHMwith

more hopping termswhich increases the complexity of the band structure and the possibility of zero-mode

creation. From the topological charge density formula, one can tell that the EHMwill possess a highChern

number for the presence of a large number of zeromodes. Finally, we demonstrated the additivity of topological

charges by exemplifying three various systems, including the combined Rashba-Dresselhaus system, bilayer

graphene system, and heavy holes in quantumwells. The BG system (or heavy holes inQW ) possesses a single

high topological charge which results from the additivity of separate unit charges.Moreover, the topological
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charge is independent of the separation scheme of zero-field points. The properties ofHall conductance are

related to the topological charges of the systems, even though they are not quantized.

In conclusion, we have investigated the physical implications of zeromodes of TS andTI systems as

summarized in the last paragraph. Through the regularizationmethodwe proposed, we applied the charge

density formula to the calculation of topological numbers for several various systems. Thismethod facilitated

the calculation of the topological numbers compared to the conventionalmethods [18, 22]. Apparently, this

regularizationmethod can greatly simplify themathematical process and avoid complicated integrations.

Moreover, it offers a physical picture of zeromodes playing in various topological systems. From the Teo-kane

model and the case ofMajorana zeromodes bound to a flux line, localization of zeromodesmay indicate that

they sitting on the defects or domainwall of the system. In a general sense, the edge can be treated like the

domainwall between the system and the vacuum. This result is related to edge-bulk correspondence. Besides, it

may be applied to other complicated topological systems.

AppendixA. Revisit of the residue theoremby the regularizationmethod

Asmentioned in section 2, it is illuminating to revisit the residue theorembefore investigating the calculation of

topological numbers for the resemblance between the residue theorem and calculation of topological numbers.

In this appendix, wewould like to use the regularizationmethod to revisit the results of the residue theorem.

First, we demonstrate the usage of the regularizationmethod by considering two complex functionswith

different topological properties. According to thewell-known residue theorem, if the integrand of a line integral

is analytic within and on a closed contourC except for a finite number of poles, its integral will be 2πi times the

sumof the residues of the integrand at its poles withinC. However, it is abstract to understand the sumof

residues. As an intuitive alternative, wewould like to convert the contour integral into the surface integral with

Dirac delta functions originating from the regularization of the Pólya vector field associatedwith the integrand

[21]. HereDirac delta functions are nonzero only at the poles of the original integrand. The derivation of their

integrals is usuallymuch easier than calculating residues directly.When dealingwith the topological properties

of a vector field, it is often required to calculate an integral and poles in the integrand corresponding to zero-field

points in the vector field.

The regularizationmethod is described as follows. Let us express the complex value z as x+iywhere x and y

are real variables. A complex function F(z) canbe constructed asu(x, y)+iv(x, y)whereu(x, y) and v(x, y) are real
functions. The vectorfield of the complexmappingF(z) is defined asF=[u, v]T. ThePólya vectorfield [21]

associatedwithF(z) is defined as the complex conjugate of themappingF(z) and is denoted by * = -( ) [ ]z u vF , T .

IfF(z) is a complex functionwithout poles, we can applyGreen’s theorem to the complex integral ofF(z)over a

closed contourC andobtain

* *ò ò ò ò=  ´ + ∮ ( ) · ( )F z z x y i x yF Fd d d d d , A.1
C R R

where * ´ = - ¶ + ¶( )v uF ,x y * = ¶ - ¶· u vF x y , andR is the enclosed region bounded byC. In general,
F(z) has isolatedfinite poles withinC andGreen’s theorem cannot be applied to the contour integral directly. In

order tomake equation (A.1) applicable, wewillfirst replace F(z) by a smooth function Fε(z) characterized by a

small positive number ε called the regulator. Thenwe can apply equation (A.1) to Fε(z) directly. After that, we

take the limit as ε tends to zero on both sides of the equation,
* *ò ò ò ò=  ´ + e e e e e e  ∮ ( ) ( ) ( · )F z z x y i x yF Flim d lim d d lim d d

C R R
0 0 0 . Then the order of the limit

and integral can be exchanged for generalized functions [27], and =e e∮ ∮( ) ( )F z z F z zlim d d
C C

0 .We then

obtain

* *ò ò ò ò=  ´ + 
e

e
e

e
 

∮ ( ) ( ) ( · ) ( )F z z x y i x yF Fd lim d d lim d d . A.2
C R R0 0

Next, wemake use of equation (A.2) to demonstrate the regularizationmethod by two examples. For

instance, when F(z)=1/z=(x−iy)/(x2+y2), there is a singularity at z=0. To identify the nature of this

singularity, we introduce an infinitesimal quantity ε2 to its denominator, so that Fε=(x−iy)/(x2+y2+ε2),
which is equivalent to e e= + + - + +e [ ( ) ( )]x x y y x yF , T2 2 2 2 2 2 . Then it is straightforward to calculate

* ´ =eF 0 and * e e e e = ¶ + + - ¶ - + + = + +e· [ ( )] [ ( )] ( )x x y y x y x yF 2x y
2 2 2 2 2 2 2 2 2 2 2. In the

limit of e  0, the divergence of *eF goes to infinity at (x, y)=(0, 0) and is null elsewhere. Furthermore, the

integral of e e+ +( )x y2 2 2 2 2 2 over the xy-plane is 2π. Therefore, * · F will take the formof delta functions:

* *
e

e
pd d =  =

+ +
=

e
e

e 
· ·

( )
( ) ( ) ( )

x y
x yF Flim lim

2
2 . A.3

0 0

2

2 2 2 2

11

J. Phys. Commun. 2 (2018) 085014 C-HLin andY-CTsai



Plugging equation (A.3) into equation (A.2), we get p=∮ z z i1 d 2
C

when the contourC includes the pole z=0

and it is null otherwise. The value of ∮ z z1 d
C

is independent of the details of contourC as long as the same pole

is encircled by the contour revealing the topological property of the integral. This is the same result as the one

from the residue theorem.With regularization, we calculate the integral of delta functions instead of the contour

integral on the left of equation (A.2).

In another case, we considered the functionG(z)=i/z and its contour integral. It is apparent that there
is a pole at z=0 and e= + + +e( ) ( ) ( )G z y ix x y2 2 2 . Readily we have * =e· G 0 and * ´ =eG

e e- + +( )x y2 2 2 2 2 2. Hence, * pd d ´ = -e ( ) ( )x yG 2 and p= -∮ i z zd 2
C

. It is straightforward to

generalize this regularizationmethod to other complex functionswith isolated poles.

The functions in the previous two examples, F(z) andG(z), represent curl-free and divergence-free vector

fields on the complex plane, respectively.We have shown the regularizationmethod is a useful and effective tool

to derive the results of the residue theoremby replacing the residue calculation at the poles with two-

dimensional delta function integrals. The same approach could be adopted to regularize a vector field in the

derivation of a topological charge density formula. It can transform the integration of topological numbers into

theweighted sumover isolated zeromodes. Similar to the residue theorem in complex variables, it simplifies the

calculation procedure.

Appendix B. Signs of the Jacobian at pointsΓ andM for the EBHZmodel

Conventionally, the four zero-field points (0, 0), (0,π), (π, 0), and (π,π) are termed as pointsΓ,X,Y, andM,

respectively. For the determination of the signs of Jacobian at pointsΓ andM of the EBHZmodel, we present

two different schemes to continuously deform itsHamiltonian by an insertion of a tuning parameter into the

topological vector field. From the expression of the Jacobian given in section 5, we have J( ( ∣ )∣ )h v v1
=

J( ( ∣ )∣ )h v v4
=0, and J( ( ∣ )∣ )h v v2

= J( ( ∣ )∣ )h v v3
=2. Therefore, the signs of the Jacobian at pointsΓ andM (or

v1 and v4 ) are uncertain and theywill be remedied by introducing a tuning parameter into the EBHZ

Hamiltonian, whose physical properties include signs of the Jacobianwill be treated as the physical properties of

the system in some parameter limit.

B.1.η-Hamiltonian approach

In thefirst approach, theEBHZHamiltonian is deformed into theη-Hamiltonianby inserting a tuningparameterη in
the vectorfield components givenby h h= + = - -h hh k k k h k k ksin cos sin , sin sin cosx x y y x y

1 2 , and =hh h3 3.

The regionof interestwill be in the vicinity ofη=1.Two intervals = -( )I a , 1 and = +( )II a1, arenoted.Here

both a− anda+ arefinite numbers and sufficiently close to 1.The expressionof the Jacobian for theη-Hamiltonian

isJ h h= - + + + -h( ∣ ) ( ) ( )k k k k k k k k k kh v cos cos sin sin cos cos cos cos sin sinx y x y x y x y x y
2 2 2 2 2 .

The zero-field points of the η-Hamiltonian is obtained by letting = =h hh h 01 2 :

h+ = ( )k k ksin cos sin 0 B.1x x y

h- - = ( )k k ksin sin cos 0. B.2y x y

By eliminating thedependence on ksin x in equations (B.1) and (B.2), we found h- =( )k k ksin 1 cos cos 0y x y
2 .

Thismeans

= ( )ksin 0 B.3y

or

h
= ( )k kcos cos

1
. B.4x y 2

Equation (B.4)will not be fulfilled in the interval I. Thus, in this interval, four roots are located at pointsΓ,X,Y,

andM resulting from equation (B.3). From the expression ofJ h( ∣ )h v , their sign values of the Jacobian are−1, 1,
1, and−1 respectively. Nowwe focus on the sign of Jacobian at pointΓ.Wemight simply take the limit sign of

Jacobian at pointΓ as that of the EBHZmodel. It will be h -( )sgn 12 in the limit of h  -1 , which is negative.

However, for consistency, we need to investigate the limit from interval II. From equations (B.1) and (B.3), it

is apparent that pointsΓ,X,Y, andM are solutions. In addition to these four points, there are two sets of zero-

field points of interest in interval II of η, and each set contains two points. They can be found by recognizing the

fact h= kcos 1x deduced from equations (B.1) and (B.4). Thefirst set is characterized by h= - ( )k cos 1x
1

1
,

h= - ( )k cos 1y
1

1
, h=  -- ( )k sin 1 1x

1 2
1

, and h= -- ( )k sin 1 1y
1 2

1
. Jacobians of both zero-field

points in thefirst set are h h- -( )14 2 and thus negative in interval II of η. The Jacobian at pointΓ, η2−1, is
positive in interval II. As η goes to 1+, both of thefirst set of points willmergewith pointΓ. Thus the sumof

12
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Jacobian signs from these three points is−1, which equals that from another side of the limit, h  -1 . The

consistency of the two-sided limit for the sign of Jacobian at pointΓ is reached.

The same conclusion for pointM in interval II ismade by considering themerge of pointMwith the second

set of points, characterized by h= -- ( )k cos 1x
1

2
, h= -- ( )k cos 1y

1
2

, h=  -- ( )k sin 1 1x
1 2

2
,

and h=  -- ( )k sin 1 1y
1 2

2
.

B.2.λ-Hamiltonian approach

Another scheme-consistency issuemay be raised for the sign determination of pointsΓ andM. This part of the

appendixwill address this issue by employing another scheme for deforming the EBHZHamiltonian into the

λ-Hamiltonian.
In this scheme, a small parameterλ is introduced into h1, i.e. l= + -lh k k ksin cos sinx x y

1 , and the other

two components remain intact, namely, =lh h2 2, and =lh h3 3. Theλ-Hamiltonian s=l l ·H h , can be treated

as a continuous deformation ofHλ=0. Namely, the vector field of the EBHZmodel,h, can be treated as the

limiting case ofhλ asλ goes to zero. The zeros of h of the EBHZmodel will also be these ofhλ in the limit, l  0.
Nowwe turn tofind the signs of the Jacobian for theλ-Hamiltonian. The null values of h1λ and lh

2 give

algebraic relations of kx and ky of the zero-field points, expressed by:

+ = ( )k ksin tan 0, B.5x y

l- - = ( )k k kcos sec csc 0. B.6x y y

By eliminating the dependence on kx in equations (B.5) and (B.6), we obtained

l l- + + + =( ) ( ) ( )k k k1 cos 2 2 sin 2 1 cos 2 0. B.7y y y
2 2

Atfirst, we seek for the determination for the sign of Jacobian at pointΓ in the EBHZmodel, and focus on

roots (or one root) of equations (B.5) and (B.6)near ky=0 and kx=0 for a small value ofλ. Through the

perturbativemethod, we found that there are two roots of equation (B.7) in the vicinity of ky=0. Their leading
order expansion in the limit of l  0 are l~ -k 2y1

and l~ -k y2

3 , respectively (see Supplementary

Material). Substituting k y1
into equations (B.5) and (B.6) gives l~ksin 2x1

and ~ -kcos 1x1
. Therefore, the

value of kx1
is aboutπ−λ/2, which is close toπ. Thus, ( )k k,x y1 1

is close to pointY asλ approaches zero. It will

determine the sign of Jacobian at pointY for the EBHZmodel, which is already known as positive one.
On the other hand, substituting the latter solution k y2

into equations (B.5) and (B.6) gets l~ksin x
1 3

2
and

~kcos 1x2
, which renders kx2

close to l3 . Thus ( )k k,x y2 2
is close to pointΓ. The limiting behavior of this root

will decide the sign of Jacobian at pointΓ for the EBHZmodel. The expansion of the Jacobian around pointΓ
which is up to second order in kx and ky yields:J ~ - + +( ∣ ) ( )( )k k k kh v 1 2 2x y x y

2 2 . Thuswith substituted

values of kx2
and k y2

, the Jacobian at ( )k k,x y2 2
is found as l-3 23 as l  0. Thus in both limits, l  +0 and -0 ,

each limit sign value at ( )k k,x y2 2
exists and is−1, which gives the sign of Jacobian at pointΓ in the EBHZmodel.

The same fashionwill alsowork for that at the pointM.

To conclude, both schemes have their own consistent two-sided limit in the determining Jacobian signs at

pointsΓ andM, and reach the same conclusion for sign values aswell.

Figure B1. Phase diagram for the extendedHaldaneHamiltonian.Here the hopping integral =t t0.363 1 and theChern numbers are
denoted inside the respective regions.
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