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An introduction to the transport properties of graphene combining experimental results
and theoretical analysis is presented. In the theoretical description simple intuitive
models are used to illustrate important points on the transport properties of graphene.
The concept of chirality, stemming from the massless Dirac nature of the low energy
physics of the material, is shown to be instrumental in understanding its transport
properties: the conductivity minimum, the electronic mobility, the effect of strain, the
weak (anti-)localization, and the optical conductivity.
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I. INTRODUCTION

For a long time, theorists and experimentalists alike
have considered the existence of a true two-dimensional
(2D) material, having the thickness of a single atom –

a one atom thick membrane – to be impossible. The
reasoning behind this statement relies on the fact that
both finite temperature and quantum fluctuations con-
spire to destroy the otherwise perfect 2D structure of the
hypothetic material. These fluctuations, originated from
atomic vibrations perpendicular to the plane of the ma-
terial, would preclude the existence of a true flat phase
and concomitantly the existence of such a system.

Figure 1 (Color online) An optical image of a graphene flake,
obtained form the exfoliation of graphite, with an area of . 1
mm2, on top of a silicon oxide wafer (courtesy of P. Blake).

Nevertheless, in 2004, a group led by A. K. Geim, from
the University of Manchester, U.K., isolated such a 2D
material (Novoselov et al., 2004, 2005b). Under the name
of graphene, this new material is an allotropic form of car-
bon, with the atoms arranged in a 2D honeycomb lattice.
The reason for the success lies on the isolation method.
The developed method permitted one to isolate the 2D
material on top of a 300 nm thick wafer of silicon oxide.
The weak van der Waals interaction induces adhesion
between graphene and the wafer, and once on top of the
wafer, it is possible to move about the 2D material, trans-
ferring it from one substrate to another, or even having it
suspended over a trench, supported from one side (Booth
et al., 2008). In the production method, graphite plays a
key role, since this 3D material is itself made of stacked

ar
X

iv
:1

00
7.

28
49

v2
  [

co
nd

-m
at

.m
es

-h
al

l]
  1

5 
Se

p 
20

10



2

graphene planes (binded by van der Waals forces). The
ingenuity of the method was then to find a way of peel-
ing a single layer of graphene out of graphite (Novoselov
et al., 2004, 2005b). Up to this date, the exfoliation of
graphite can produce graphene crystallites as large as ∼1
mm2 (see Fig. 1). The study of graphene became, since
2004, an active field of research in condensed matter,
which holds many promises (Castro Neto, 2010; Castro
Neto et al., 2006; Fuhrer et al., 2010; Geim, 2009; Geim
and Kim, 2008; Geim and MacDonald, 2007; Geim and
Novoselov, 2007; Katsnelson, 2007; Peres, 2009; Service,
2009).

Being the first truly 2D material, it is natural to ask
how its properties differ from those of more conventional
systems, such as the 2D electron gas in the inversion
layer of an ordinary semiconductor. The current efforts in
graphene research have focused on the interplay among
elastic, thermal, chemical, and electronic properties of
the material, with a special emphasis on charge and heat
transport, and on optical properties. The need for a deep
understanding of the transport properties of graphene
is obvious, since the material is a potential candidate
for incorporating the future generation of nanoelectronic
and nanophotonic devices (Blake et al., 2008; Liao et al.,
2010; Lin et al., 2010; Mueller et al., 2010; Schwierz, 2010;
Xia et al., 2009). Also in biophysics, graphene is finding
new applications (Lu et al., 2010; Schneider et al., 2010;
Wu et al., 2010). Additionally, and of no less importance,
graphene provides a realm for the emergence of new and
exciting physics.

In the field of electronic applications, faster electron-
ics requires smaller devices, in particular because at the
nanoscale it may be possible for the electrons to travel
across some of the components of a device almost unim-
peded. In a normal conductor, one of the sources of elec-
trical resistance is scattering of electrons by impurities
and defects (and at room temperature, also by phonons).
A measure of the effect of impurities on the electronic
transport is the mean free path ℓ (the average distance
traveled by an electron between two consecutive colli-
sions), which in a material with high degree of purity
and with small dimensions can be larger than the typical
length of the system Lx leading, in these circumstances,
to what is called ballistic transport (in this regime the
current becomes spatially non-uniform). It just happens
that in graphene ℓ can be as large as 1 µm (Bolotin et al.,
2008a; Novoselov et al., 2004), putting graphene into to
the ballistic regime, since the typical size of graphene-
based field effect transistors is Lx ∼0.25-0.5 µm (Du
et al., 2008).

The first ground breaking publications of the Manch-
ester’s group (Novoselov et al., 2004, 2005b) not only
made the method of isolating graphene immediately pub-
lic, but also established the major relevant problems in
graphene transport: the ambipolar field effect (see Fig.
9), the independence of the electronic mobility upon the

gate voltage, the large electronic mean free path, the con-
ductivity minimum and the absence of Anderson localiza-
tion (Bardarson et al., 2007), the magneto-resistance and
the chiral quantum Hall effect (Novoselov et al., 2005a;
Zhang et al., 2005). These topics still orient much of the
research in graphene physics at present.

Since the publication of a comprehensive review on the
theoretical properties of graphene (Castro Neto et al.,
2009), there has been additional relevant contributions
to experimental and theoretical studies of its transport
properties. In this Colloquium, we present an update
on the experimental and theoretical developments in this
fast growing subfield of graphene research, at a level ap-
propriate to graduate students entering the field.

II. THE ENERGY SPECTRUM OF GRAPHENE AND THE
EMERGENCE OF DIRAC ELECTRONS

As stated, graphene is a 2D material made solely of
carbon atoms, arranged in a hexagonal lattice such as
that shown in Fig. 2. There are five vectors represented
in Fig. 2: the three next-nearest neighbors vectors δi
(i = 1, 2, 3), and the primitive cell vectors a1 and a2.
We further note that the hexagonal lattice is made of two
inter-penetrating triangular Bravais lattices. Therefore,
the effective model describing the low-energy physics of
graphene has to keep track of the two atoms per unit
cell, characteristic of the honeycomb lattice. Electrons
in graphene can be described by a tight-binding Hamil-
tonian reading (spin index omitted)

H = −t
∑

n,δi

|A,Rn〉〈Rn + δi, B|+H. c. , (1)

where |A,Rn〉 represents the Wannier state at the unit
cell Rn, and the equivalent definition holds for |B,Rn +
δi〉; t is the hopping energy. This Hamiltonian describes
the motion of electrons in the π−orbitals of the material,
made from the hybridization of the atomic 2pz orbitals,
and includes both low-energy and high-energy electron
states. The calculation of the electronic energy spec-
trum of graphene proceeds by introducing, in Eq. (1),
the Fourier representation of the Wannier states in terms
of the Bloch states of momentum k; the spectrum then
reads (Castro Neto et al., 2009; Wallace, 1947)

E(k) = ±t|1 + eik·a1 + eik·a2 | . (2)

It is immediately obvious that the band structure of the
π−electrons is composed of two bands, one at negative
energies (a hole band) and the other at positive ones (a
particle band). In the Brillouin zone there are two spe-
cial, non-equivalent (i.e. not connected by a reciprocal
lattice vector), wave numbers, termed K and K ′, and
shown in Fig. 2. The transport properties of graphene
are mostly determined by the nature of the spectrum



3

Figure 2 (Color online) Real space lattice and Brillouin zone
of graphene. Left: The hexagonal lattice of graphene, with
the nearest neighbor δi and the primitive ai vectors depicted.
The area of the primitive cell is Ac = 3

√
3a2

0/2 ≃ 5.1 Å2, and
a0 ≃ 1.4 Å. Right: The Brillouin zone of graphene, with the
Dirac points K and K′ indicated. Close to these points, the
dispersion of graphene is conical and the density of states is
proportional to the absolute value of the energy.

around these two points. Close to K and K ′ the disper-
sion, Eq. (2), is conical, and given by E(k) = ±vF~k,
with vF = 3ta0/2~, where k is the momentum mea-
sured relatively to either K or K ′, depending on the
position of the cone in the Brillouin zone. Using the
widely accepted value of t ≃ −2.7 eV for the hopping
(in reality the values of t vary in the literature, spanning
the interval from -2.7 to -3.1 eV) we obtain vF . 106

m/s. The experimental studies are consistent in obtain-
ing vF ≃ 1.1 × 106 m/s (Jiang et al., 2007; Novoselov
et al., 2005a; Zhang et al., 2008, 2005). A direct mea-
surement of the Dirac spectrum in graphene has recently
been obtained using angle-resolved photo-emission spec-
troscopy (Sprinkle et al., 2009). Since each carbon atom
(electronic configuration 1s2 2s2 2p2) hybridizes with its
three nearest neighbors according to the hybrid orbitals
sp2, there is one electron left in the pz orbital. Therefore,
the system is half filled, with the important consequence
that the low-energy physics is controlled by the spectrum
close to the K and K ′ points. Many of the new and ex-
citing properties of graphene stem from this fact. The
vicinities of these two points are also referred to as the
two valleys of the electronic spectrum of graphene.

The spectrum E(k) = ±vF~k is formally equivalent to
that obtained from solving the 2D massless Dirac equa-
tion. Indeed, it is easy to show (Castro Neto et al., 2009;
Semenoff, 1984) that close to the K point the effective
Hamiltonian for the electrons in graphene has the form

HK = vFσ · p , (3)

whereas close to K ′, the Hamiltonian is obtained from
Eq. (3) by making the transformation HK′ = −HK .
The operator σ is written in terms of the Pauli matrices
as σ = (σx, σy), and p is the momentum operator. Com-
puting the eigenvalues of the Hamiltonian (3), the conical
spectrum indicated above is immediately obtained. We
stress that σ does not represent real electronic spin; it
is instead a formal way of taking into account the two

carbon atoms per unit cell in graphene, as we have an-
ticipated above. For this reason, σ is termed pseudo-
spin. The density of states associated with the coni-
cal dispersion of electrons in graphene is computed by
determining the number of states per unit cell in the
Brillouin zone N(E) up to the momentum k. Taking
into account contributions from states near K and K ′

points, we obtain N(E) = k2Ac/(2π), from which the
density of states ρ(E) per spin and per unit cell is given
by ρ(E) ≡ dN(E)/dE = 2|E|/(π

√
3t2) , and the prim-

itive cell area, Ac, is defined in the caption of Fig. 2.
The linear dependence of the density of states on energy
is one of the fingerprints of massless Dirac electrons. For
neutral graphene, the Fermi energy is zero. Therefore,
the density of states vanishes in this case.

The electronic linear spectrum and the chiral nature
of the electron’s wave function (see below) make elec-
tronic behavior in graphene quite unique, and are re-
sponsible for the remarkable properties of this material.
Since σ ·p|ψ〉 = ±p|ψ〉, then the operator ĥ = σ ·p/p has
only two eigenvalues ±1. The operator ĥ is known as the
helicity operator, and has the following physical inter-
pretation: in an energy eigenstate, the pseudo-spin σ is
either parallel or anti-parallel to the momentum p. In the
K valley, electrons have positive helicity and holes have
negative helicity; in K ′ the opposite happens. The he-
licity (or chirality) of electrons in graphene is responsible
for the Klein tunneling effect (Beenakker, 2008; Cheianov
and Fal’ko, 2006; Katsnelson et al., 2006), observed re-
cently in graphene heterojunctions (Stander et al., 2009;
Young and Kim, 2009). We then see (and at odds to high-
energy neutrino physics) that massless Dirac electrons in
graphene come with both right and left chirality: parity
is a symmetry of graphene. In Fig. 3 we show, in sim-
ple terms, the origin of the Klein tunneling effect: the
probability of electronic transmission through a poten-
tial barrier is equal to 1, for head-on collisions; it is said
that backscattering is suppressed.

We should note that chirality is not, however, an exact
symmetry of the problem. This occurs because the spec-
trum of graphene is not exactly linear at all energies.
The deviation from the perfect massless Dirac behav-
ior is known as trigonal warping (McCann et al., 2006;
Narozhny, 2007), and starts playing a role for energies
E & 1 eV. We remark, however, that trigonal warping
might be important for observation of weak localization
at energies much lower than 1 eV (see Sec. V.B).

The solution of the eigenproblem HK |ψ〉 = E|ψ〉 is
easily obtained by recognizing its formal equivalence to
that of a real spin in a magnetic field (Castro Neto et al.,
2009), with the wave function reading

|ψ±〉 =
1√
2

(

e−iθ(k)/2

±eiθ(k)/2
)

eik·r ≡ u±(k)e
ik·r , (4)

and θ(k) = arctan(ky/kx). Since the eigenproblem we
have just solved is formally identical to a spin one-half
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Figure 3 (Color online) At the K valley, electrons have pos-
itive helicity, h = 1, whereas at the K′ one, the helicity is
negative (Q = K′ −K represents the transferred momentum
when a scattering event between the valleys takes place). In
a head-on collision of the electron on a potential barrier, the
backscattered electron has to change its momentum from q

to −q. For such a head-on collision (taken here along the
x−direction), ĥ is a constant of motion, with eigenvalue +1,
but backscattering would imply a modification of this eigen-
value to −1. This, however, cannot be, because ĥ is a con-
served quantity, then the transmission probability through
the barrier, for such type of collision, has to be one. Thus,
backscattering is suppressed for intra-valley scattering events.
On the other hand, electrons in the K′ and K valleys have
opposite chirality, thus inter-valley backscattering can take
place (if the potential is short range), since in this case the
eigenvalue of ĥ does not change sign. This discussion will be
of importance for Sec. V.B.

in a magnetic field, the spinors change sign upon the
transformation θ(k) → θ(k) + 2π, as dictated by the
spin-statistics theorem.

The first strinking consequence of the chiral nature of
electrons in graphene was the observation of the chiral
quantum Hall effect (Novoselov et al., 2005a; Zhang et al.,
2005), where the Hall conductivity is quantized as σxy =
2e2(1+2n)/h, with n = 1, 2, . . . (Gusynin and Sharapov,
2005; Peres et al., 2006). The quantization rule follows
from the nature of the Landau levels of Dirac electrons
(Johnson and Lippmann, 1949; Nieto and Taylor, 1985;
Peres and Castro, 2007; Rabi, 1928) combined with the
existence of the two valleys in graphene.

The application of the chiral quantum Hall effect to
metrology, in defining the resistance standard (Delahaye
and Jeckelmann, 2003), has clear advantages over the
usual quantum Hall effect in the 2D electron gas, since
the same experimental accuracy on the quantization of
the Hall resistance can be achieved at higher tempera-
tures (Giesbers et al., 2008; Poirier and Schopfe, 2010;
Tzalenchuk et al., 2010). At a temperature of 300 mK,
the accuracy of the quantum Hall resistance quantiza-
tion has been shown to be of 3 parts per billion, in
monolayer epitaxial graphene (Poirier and Schopfe, 2010;
Tzalenchuk et al., 2010). Also, the quantum Hall ef-
fect in graphene has been observed at room tempera-
ture (Novoselov et al., 2007) and recently in epitaxial
graphene as well (Wu et al., 2009), which can be pro-
duced in quasi-free standing form (Riedl et al., 2009).

Electron-electron interactions play no role in the half-
integer or chiral quantum Hall effect. On the other hand,
they are a crucial ingredient in the explanation of the
fractional quantum Hall effect. During the first few years
of graphene research, effects of electron-electron interac-
tions have been elusive, but the recent observation of the
1/3 fractional Hall plateau (Bolotin et al., 2009; Du et al.,
2009; Morpurgo, 2009), brings them to the forefront this
active research area. It is a remarkable experimental fact
that the fractional quantum Hall effect in graphene can
be observed at magnetic fields of 2 T and persists up to
a temperature of 20 K, for fields of 12 T.

Using the results introduced above, we proceed to the
discussion of several topics on electronic transport in
graphene.

III. CONDUCTIVITY AND CONDUCTANCE OF
GRAPHENE AT THE DIRAC POINT

As discussed in Sec. II, undoped graphene has its
Fermi energy at the Dirac point, where the material has
a vanishing density of states. This would naively sug-
gest that the conductivity of undoped graphene should
be zero. However, experiments challenge ones intuition
and show a finite conductivity at zero energy (i. e., at
the neutrality or Dirac point). An example of a conduc-
tivity curve of graphene is shown in Fig. 8, where we see
that the experimental conductivity minimum, at Vg = 0,
is of the order of ∼ 4e2/h (horizontal dashed line). Val-
ues of the conductivity minimum for several devices are
given in Fig. 5. The existence of a conductivity mini-
mum in graphene is also referred to as quantum-limited
resistivity.

A. Sources of disorder

As in any other metallic system, the electronic mobility
in graphene is hindered by disorder. The sources of dis-
order in graphene can vary, and can be due to adsorbed
atoms (for example hydrogen) or molecules (for example
hydrocarbons), extended defects, such as folded regions
(wrinkles), vacancies, and topological defects [such as of
Stone-Wales type, specially at the edges (Huang et al.,
2009)]. Interestingly enough, in some particular cases, an
extended defect in graphene can act as a 1D conducting
channel (Lahiri et al., 2010). In addition, the system has
a certain amount of rippling (random strain) (Katsnelson
and Geim, 2008; Meyer et al., 2007), so it is not a perfect
planar lattice, and it has rough edges, which can exhibit
scrolling (Fogler et al., 2010). We should note that, al-
though the formation of vacancies is energetically unfa-
vorable, the existence of adatoms and adsorbed hydrocar-
bons is likely, originating from the isolation method and
exposure to the environment. Such adsorbed atoms can
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be imaged by transmission electron microscopy (Meyer
et al., 2008). Additionally, the electrostatic random po-
tential at the surface of the silicon-oxide substrate acts as
an additional scattering source, originated from charged
impurities (Zhang et al., 2009).

To a good practical approximation, an adsorbed hy-
drocarbon, when binding covalently to the 2pz orbital of
a given carbon atom of graphene, effectively removes the
2pz electron from participating in the electric transport,
by forming a σ−bond. Since the electron wave-function
is spatially confined, the impurity can effectively act as
a vacancy. This latter type of defects induce resonant
states at, or close to, the Dirac point (see below).

Another way of looking at this problem is to con-
sider that, say, an hydrogen atom when binding cova-
lently (Katoch et al., 2010) to a carbon atom in graphene
changes locally the hybridization from pure sp2 to par-
tially sp3 and creates, as before, a resonant impurity at
that site (Castro Neto and Guinea, 2009; Robinson et al.,
2008). In this latter sense, both local potentials and
adatoms have a similar effect (Stauber et al., 2008a). The
change of the chemical bonds from pure sp2 to partially
sp3 adds an additional scattering effect originated from
the enhancement of spin-orbit coupling (Castro Neto and
Guinea, 2009).

Combined with charged scatterers, the resonant scat-
tering mechanism is currently ascending as one of the
dominant processes limiting the electronic mobility in
graphene (Ni et al., 2010).

The resonant scattering mechanism is easy to under-
stand by considering a simple model. We add to the
Hamiltonian (1) a contribution from an impurity bind-
ing covalently to a carbon atom at site Rn = 0. Such a
situation adds to the Hamiltonian a term of the form
Hrs = (V |ad〉〈A, 0| + H. c.) + ǫad|ad〉〈ad|, where V is
the hybridization between the adatom (or a carbon atom
of a hydrocarbon molecule) and a given carbon atom of
graphene, ǫad is the relative (to graphene’s carbon atoms)
on-site energy of the electron in the adatom, and |ad〉
is the ket representing the state of the electron in the
adatom. Taking the wave function to be of the form |ψ〉 =
∑

n[A(Rn)|A,Rn〉+B(Rn+δ2)|B,Rn+δ2〉]+Cad|ad〉,
the Schrödinger equation at the site Rn = 0 reads

EA(0)− V Cad = −t[B(δ1) +B(δ2) +B(δ3)] , (5)

(E − ǫad)Cad = V A(0) . (6)

Solving for Cad, we obtain

−t[B(δ1) +B(δ2) +B(δ3)] = EA(0)− V 2A(0)

E − ǫad
. (7)

The resonant effect is included in the last term of Eq.
(7), which represents a local potential of the form Veff =
V 2/(E − ǫad). Equation (7) contains two interesting
regimes: (i) when |E| ≪ ǫad, the adatom acts as an ef-
fective local potential of strength geff = V 2/ǫad. If geff is

large, the adatom acts roughly as an effective vacancy; a
vacancy is characterized by geff = ∞; (ii) when E ≈ ǫad,
the hopping from the carbon atom at position Rn = 0
to its nearest neighbors is suppressed [effectively we have
t → (E − ǫad)t], and the adatom acts roughly and again
as an effective vacancy at energies close to ǫad. Therefore,
either by inducing an effective local potential or by sup-
pressing the nearby hopping we see that such mechanism
increases the likelihood of an electron being trapped for a
longer time in the vicinity of the adatom, thus generating
a resonant state.

If ǫad ≃ 0, then the resonant states will be exactly
at the Dirac point, and this is expected to happen for
adsorbed hydrocarbon molecules. It is then the job of
quantum chemical calculations to determine the value of
the parameters ǫad and V (Robinson et al., 2008; Wehling
et al., 2009, 2010). Recently obtained typical values are
V ∼ 2t ∼ 5 eV and ǫad ∼ -0.2 (Wehling et al., 2010), lead-
ing to geff ∼ 100 eV, a rather strong on-site potential.
Finally, the calculation of the transport properties for
such a model can be performed using the T−matrix ap-
proach (Peres et al., 2007a, 2009b; Robinson et al., 2008).
Its derivation is elementary, using the simple model de-
scribed above. It is well known that the T matrix for
a local potential of intensity v0 reads (Bena and Kivel-
son, 2005; Peres et al., 2006) T (E) = v0[1−v0ḠR(E)]−1.
Then, for an adatom we must have

T (E) =
Veff

1− VeffḠR(E)
=

V 2

E − ǫad − V 2ḠR(E)
. (8)

Using Eq. (8), it is simple to compute the transport
relaxation time τ(ǫF ) at the Fermi energy ǫF using
~/τ(ǫF ) = πni|T (ǫF )|2ρ(ǫF ) , where ni is the concen-
tration of impurities per unit cell. From the knowl-
edge of τ(ǫF ), the conductivity of graphene follows
from Boltzmann’s transport equation (Ziman, 1979) (see
Sec. VI.C). The function ḠR(E) reads: ḠR(E) =
ED−2 ln(E2/D2)− iπ|E|/D2, with D ≃ 3t.

It has been theoretically predicted that, in addition
to their scattering effect, monovalent adatoms in diluted
concentrations can create a gap in graphene’s spectrum,
by a mechanism called sublattice ordering (Cheianov
et al., 2010). Superlattices of vacancies (or adatoms)
have the same effect (Martinazzo et al., 2010).

Midgap states (Jackiw, 1984) are also produced by
a model of pure vacancies (Pereira et al., 2006, 2008),
as shown in Fig. 4, and if a nearest neighbor hopping
(t′ ≃0.4 eV) is included, the resonant states, while no
longer at exactly the Dirac point, remain at energies close
to it (Pereira et al., 2006, 2008).
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B. Calculation of the conductivity minimum for bulk graphene
due to disorder

It is certainly difficult to model all the different types
of disorder just mentioned in a single calculation. We
for the moment ignore this complexity and assume that
electrons in graphene move in a random potential of the
form V (r) = v0

∑Ni

n=1 δ(Rn−r) , where the position vec-
tors Rn are random, v0 is the strength of the potential,
and Ni is the number of scattering centers. This model
can be seen in the worst case scenario as zero order de-
scription of the effect of impurities in graphene, although
it has recently been used widely (Ando and Nakanishi,
1998; Ostrovsky et al., 2006, 2007; Peres et al., 2006;
Suzuura and Ando, 2002; Zheng and Ando, 2002). In
fact, for large v0 this model mimics the resonant scat-
terers physics. In what follows, we determine the conse-
quences of the above random potential on the minimum
conductivity of graphene.

The usual approach to the calculation of the conduc-
tivity uses the Kubo-Greenwood formula, obtained from
linear response theory (Mahan, 2000). The calculation
proceeds in two steps (Peres et al., 2006; Shon and Ando,
1998; Zheng and Ando, 2002): first, the single parti-
cle Green’s function in the presence of the disordered
potential is computed in a self-consistent manner; sec-
ond the current-current correlation function is obtained
in terms of the single particle Green’s function. This
method is known as the self-consistent Born approxima-
tion (SCBA). The final result of such calculation is a
simple expression for the conductivity σ(ǫF ) at the Fermi
energy reading

σ(ǫF ) =
4e2

πh
K(ǫF ) , (9)

where K(ǫF ) is a dimensionless function (Peres et al.,
2006; Stauber et al., 2008a); Eq. (9) holds true both at
finite v0 or when v0 → ∞; from here on we consider this
latter regime only. Since we describe the transport at the
Dirac point, we need the value of K(ǫF ) at zero chemical
potential, which turns out to be K(0) ≃ 1. This result
is essentially insensitive to the concentration of impuri-
ties ni = NiAc/A (A is the area of the sample and ni

is the concentration of impurities per unit cell). The be-
havior of K(0) as function of ni is shown in the inset of
Fig. 4; as stated, its value is 1. We have, therefore, ob-
tained a universal value for the conductivity minimum of
graphene σmin = 4e2/(πh) independent of the impurity
concentration, even if the concentration of impurities is a
small number. Many have reached the same result using
different approaches (Dóra et al., 2008; Ziegler, 2007). A
question naturally arises: How does one understand the
result given by Eq. (9)? To that end, we compute the
density of states of disordered graphene.

We have compared a calculation of the density of states
as given by the SCBA with that given by an exact nu-

Figure 4 (Color online) Numerically exact density of states
(solid lines), in the limit v0 → ∞, and the corresponding
SCBA calculation (dashed lines), for the same impurity con-
centrations ni. The maximum of the SCBA density of states,
at E = 0, follows the rule ρ(E) ≃ 0.2

√
ni eV−1. Inset: The

function K(0) is plotted for a range of impurity concentra-
tions spanning three orders of magnitude. (The numerically
exact calculations are courtesy of Vitor M. Pereira.)

merical method (Pereira et al., 2006, 2008). In Fig. 4
we show two sets of calculations for the density of states
close to the Dirac point (E ∼0). Two features are clear
from these calculations. First, the disorder only affects
the DOS close to the Dirac point, rendering it finite; sec-
ond the SCBA introduces a smoothing of DOS around
E ∼0, but its value essentially agrees with the exact one,
except at energies very close to E = 0. The finite den-
sity of states close to the Dirac point is due to the wings
of the resonant states forming at zero energy. The same
behavior is seen in the local density of states around a
single vacancy and in the corresponding scanning tun-
nelling microscopy current (Peres et al., 2007a, 2009b).

The above comparison shows that the SCBA gives a
reasonable description of the density of states close to
the Dirac point, and this gives us a certain amount of
confidence in the calculation of the conductivity σ(ǫF )
based on the same approximation. A comment on the
behavior of the numerical DOS close to zero energy is in
order: the sharp feature at precisely E = 0 seen in the
exact numerical solution arises from the presence of zero-
energy quasilocalized modes, induced by the vacancies in
the lattice (Pereira et al., 2006, 2008). These localized
states are clearly not captured by the SCBA.

In short, the finiteness of the conductivity at the Dirac
point is a consequence of the finiteness of the DOS at
E ∼0 due to disorder, even when the concentration of im-
purities is small, since K(0) is essentially constant over
several orders of magnitude of impurity concentration.
Furthermore, there is a strong criticism in the literature
regarding the application of the SCBA approach to de-
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scribe the physics at ǫF ≃ 0 (Aleiner and Efetov, 2006),
but not at finite ǫF , as long as weak localization effects
are not important (see Sec. V.A).

Figure 5 (Color online) The conductivity of graphene at
the neutrality point. Left: conductivity minimum from the
Manchester’s group [Data from (Geim and Novoselov, 2007)].
Right: Conductivity minimum from the Columbia’s group
[data from (Tan et al., 2007)] as function of the mobility
of the devices. In both panels, several devices with differ-
ent mobilities µ were measured. The mobility is defined as
µ = σ(ǫF )/(en), where n is the electron density, and is a mea-
sure of the amount of disorder in the system. The constant g0
stands for twice the quantum of conductance, 2e2/h ≃0.078
(kΩ)−1, and is represented by the dashed line. The dash-
dotted line represents the value σ = σmin, obtained in Sec.
III.B.

If one considers that the scattering centers are charged
impurities, the conductivity of graphene, at the neu-
trality point, acquires the form (Fogler, 2009) σmin =
(e2/h)cL with c = 0.5 ± 0.05 and L the solution of
the transcendent equation L = ln(L/4αeff

g ), where αeff
g

is the effective fine structure constant of graphene (see
Sec. IV.C). This result for the conductivity minimum is
different from that obtained for strong short-range scat-
terers.

Finally, the measured conductivity minimum, as shown
in Fig. 5, has the same order of magnitude as that given
by σmin, but is larger than this value and has a finite
variance. It is important to note that the assessment of
the transport properties of graphene at the neutrality (or
Dirac) point can be strongly affected by the used probe
geometry, the use of invasive contacts, or the lack of ef-
fective control on the sample’s homogeneity (Blake et al.,
2009; Connolly et al., 2010). These effects are responsible
for the differences in the two sets of measurements given
in Fig. 5.

C. Calculation of the conductivity minimum for pristine
graphene ribbons

Graphene ribbons have been produced by different
methods: etching of exfoliated graphene (Han et al.,
2007), using chemical reactions (Jiao et al., 2010; Li
et al., 2008a), unzipping carbon nanotubes (Kosynkin
et al., 2009), and tailoring them by scanning tunneling
microscope lithography (Tapasztó et al., 2008). Much
of the experimental challenge regarding the production
of nanoribbons is related to the discovery of an experi-
mental procedure allowing, in a systematic way, the en-
gineering of ribbons with fixed widths and perfect edges,
together with a detailed characterization of their trans-
port properties (Han et al., 2010).

The previous section addressed the problem of the con-
ductivity minimum of graphene from the point of view of
disorder. Another relevant problem is that of the trans-
port properties of pristine ribbons, where electrons can be
in the ballistic regime. The problem we are about to dis-
cuss is a rather interesting one, since electronic transport
will proceed via evanescent modes, whereas in normal
metals charge transport is associated with propagating
states.

We show below, and also in this case, the system has
a finite conductivity, which in some conditions has the
same value we found in Sec. III.B, although the phys-
ical mechanism is different. The approach to the cal-
culation of the conductivity of ribbons in the ballistic
regime uses Landauer’s formalism (Nazarov and Blanter,
2009), where the relevant quantity to be computed is
the conductance of the system, which can formally take
into account quantum interference effects, absent from
the elementary Boltzmann’s transport theory (but see
Sec. V.A).

The measurements in bulk metals of dc-transport prop-
erties allows one obtain directly the resistance R of the
sample, from which the linear conductance G = 1/R can
be determined. In bulk metals, we can define a mate-
rial intrinsic quantity, the conductivity σ. Taking the
example of a 2D system, we have σ = GLx/Ly, where
Lx and Ly are the longitudinal and transverse dimen-
sions of the bulk sample, respectively. The conductivity
is a well-defined quantity whenever the system is large
enough, such that the electronic current is homogeneous
and insensitive to variations of the impurities’ position
from sample to sample. In this regime the transport is
well described by Boltzmann’s transport equation. The
validity of this equation assumes that (Ferry et al., 2009):
(i) the scattering process is local in space and time, (ii)
the scattering is weak and the electric field is small, and
(iii) the de Broglie wavelength of the electron at the Fermi
surface is much smaller than the distance between impu-
rities. The systems amenable to such description are said
to be self averaging. (In 2D, both σ and G have the same
units, 1/Ω.)
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When the system’s size is reduced, we enter the realm
of mesoscopic physics. It is instructive to compute the
order of magnitude of the number of impurities in a
graphene flake with an area of A = L2, and L = 0.25
µm (see Sec. I). Taking Ni/A = 5 × 1011 cm−2 as a
typical impurities’ concentration in graphene (see Sec.
IV.B for understanding the origin of this number), we
obtain Ni ∼ 3 × 102 impurities. The typical distance
between impurities is d ∼

√

A/Ni ∼0.02 µm; a typi-
cal Fermi wave number for the electrons is graphene is
kF ∼0.003 µm−1 (see Sec. IV), from which follows that
de Broglie wavelength of the electrons at the Fermi sur-
face is λF = 2π/kF ∼0.02 µm, making d and λF of the
same order of magnitude. In this regime, the current be-
comes non-homogeneous and sensitive to the position of
the impurities in the material. Then, the conductance
shows fluctuations from sample to sample, and the con-
cept of conductivity loses its meaning. Metallic systems
such as graphene are considered highly conducting but
disordered metals. The behavior of the electrons becomes
sensitive to the metal contacts, surfaces, and interfaces
as well and quantum mechanical interference effects be-
come important. Due to these interference effects, the
transport properties of mesoscopic systems in the ballis-
tic regime are better assessed by the Landauer’s formal-
ism (Ferry et al., 2009).

In calculating the conductance of pristine graphene rib-
bons, we assume a ribbon of length Lx and width Ly, con-
nected to heavily doped (say, with electrons) graphene
leads (see Fig. 10 for the geometry of the device). The
doped graphene leads will act as electron reservoirs, and
the doping is modeled by gating the leads at a potential
Vg.

Since the leads are gated, there is a mismatch between
the longitudinal momentum kx of the electrons in the
leads and in the central part of the device, where the
undoped graphene ribbon lies; in the device electrons
have longitudinal momentum qx. The momentum ky is in
this case a conserved quantity. The problem is then that
of computing the transmission amplitude for an electron
coming from the left lead to emerge at the right one. The
energy of the electrons at the right and left leads is given

by E = −eVg±vF
√

k2x + k2y; in the central region the en-

ergy is given by E = ±vF
√

q2x + k2y. We further impose

periodic boundary conditions along the transverse direc-
tion, which gives ky = 2πn/Ly with n = 0,±1,±2, . . ..
Since we are interested in graphene’s transport properties
at the Dirac point, we have to consider the case of zero en-

ergy. For this energy, the solution of
√

q2x + k2y = 0 gives

qx = iky and therefore the propagation of the electrons
in the central region proceeds by means of evanescent
waves.

The scattering problem requires writing the wave func-
tion on the left and right leads, and on the central region

(Katsnelson, 2006; Tworzydlo et al., 2006). In the left
lead, the wave function, up to a multiplicative factor of
eiyky , reads

ψL(r) =

(

1
eiθ(k)

)

eikxx+rn

(

1
−e−iθ(k)

)

e−ikxx . (10)

In the central region the wave function can be written as

ψC(r) = an

(

0
1

)

e−kyx + bn

(

1
0

)

ekyx . (11)

Finally, in the right lead we have

ψR(r) = tn

(

1
eiθ(k)

)

eikxx . (12)

The calculation of the transmission amounts to impos-
ing the continuity of the wave function at x = 0 and
x = Lx and determining the transmission amplitude tn
from which the transmission associated to a given trans-
verse mode n is obtained as Tn = |tn|2 (to each quan-
tized ky momentum corresponds a n transverse mode).
The final result for the total transmission at zero en-
ergy is (Katsnelson, 2006; Tworzydlo et al., 2006): T =
∑

n Tn ≃ ∑

n 1/ cosh
2(kyLx). As stated, the conduc-

tance G is expressed in terms of the conductivity σ as
G = 4e2T/h = σLy/Lx. In the regime Ly/Lx ≫ 1, cor-
responding to ballistic transport, we have T ≃ Ly/(Lxπ),
and therefore σ = σmin, the same value obtained in Eq.
(9), due to disorder. We stress that, for graphene rib-
bons, only in the regime Ly/Lx ≫ 1 is the conductivity
a well defined quantity, since only in this case is this
quantity independent off the aspect ratio of the ribbon.

The extension of this type of calculations to finite tem-
peratures is elementary, and it follows from the Lau-
dauer’s formalism as well. Such theoretical investiga-
tions were done and the results seem to be in qualitative
agreement with transport measurements made in high-
mobility suspended graphene (Müller et al., 2009).

The conductance of ribbons, with aspect ratio
Ly/Lx ≫ 1, was experimentally measured, and the value
σ = σmin was obtained (Danneau et al., 2008; Miao
et al., 2007) in agreement with the previous result. There
are, however, difficulties associated with measuring the
conductivity of graphene ribbons at the neutrality point
(Blake et al., 2009), since inhomogeneous samples tend
to overvalue the minimum of conductivity and two-probe
measurements are generally expected to undervalue it
(Blake et al., 2009). Due to these subtleties, there is some
reserve in the community (Blake et al., 2009) regarding
the measured conductances (Danneau et al., 2008; Miao
et al., 2007).

We note that the above result for σmin, being equal to
that computed in Sec. III.B, has a different physical ori-
gin. The result obtained here is only valid in the regime
Ly/Lx ≫ 1, when the system is in the ballistic regime.
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However, one must recognize that the presence of the
evanescent modes in the above calculation produces a fi-
nite density of states at the Dirac point, precisely what
happens in the bulk disordered graphene calculation dis-
cussed in Sec. III.B. When the calculation just described
for graphene in ballistic regime (Ly ≫ Lx) includes the
effect of resonant scatterers, the conductance is corrected
by the value δG = 4σmin/π, per resonant scatterer (Titov
et al., 2010), that is, we have impurity-assisted tunneling
(Titov, 2007).

As a last comment, we note that the important top-
ics of edge disorder (Gallagher et al., 2010; Lewenkopf
et al., 2008; Mucciolo et al., 2009) and Coulomb block-
ade in graphene nanoribbons are not considered in this
Colloquium, since they have been considered elsewhere
(Dubois et al., 2009). A review on the effect of disorder
on the electronic transport in graphene nanoribbons is
also available (Mucciolo and Lewenkopf, 2010).

D. Puddles

We now address the fact that the model developed in
Sec. III.C for the conductivity of graphene at the Dirac
point is somewhat simplistic, since it assumes the possi-
bility to have graphene with exactly zero electronic den-
sity at E = 0, the neutrality point.

The physics close to the Dirac point is different from
that at finite densities (to be discussed in Sec. IV) as sug-
gested by the data shown in Fig. 6. In Sec. IV we show
that the electronic density n can in graphene on top of
silicon oxide be externally controlled by a gate potential
Vg and given by n ≃ 7.2 × 1010 × Vg cm−2. According
to this equation, the electron density can be tuned all
the way down to zero by changing the gate potential.
However, in Fig. 6 we show that the absolute value of
the electron density never drops below its theoretically
predicted value for Vg = 2 V. This experimental fact
hints for different physics close to the Dirac point, where
the system shows important charge-density fluctuations
caused by the random electrostatic potential due to sub-
surface charged impurities. We, however, stress that in
suspended annealed graphene the electronic density can
be made as low as ∼ 108 cm−2, which corresponds to
about a single electron present in a micron size device.
Additionally, graphene’s topography shows corrugations,
which are probably due to roughness in the underlying
SiO2 surface and due to intrinsic ripples of the graphene
sheet.

As mentioned, the calculations in Secs. III.B and III.C
assume as the starting point that graphene is a perfectly
flat material, with null electronic density everywhere.
However, experiments using a scanning single-electron
transistor (Martin et al., 2008) found that the idealized
models of Secs. III.B and III.C do not hold. Those inves-
tigations (Martin et al., 2008) found undoped graphene

Figure 6 (Color online) Dependence of the absolute value of
electron density on the gate voltage Vg. In Sec. IV, we show
that the electron density n as function of the gate voltage
follows n = 7.2×1010Vg cm−2. Using this, the electron density
for Vg = 3 V should be n ≃ 2.2×1011 cm−2 whereas for Vg = 2
eV we should have n ≃ 1.4 × 1011 cm−2. It is clear that for
Vg = 3 the electronic density is the predicted one; however n
never equals its predicted value for Vg . 2 V. Note that the
vertical scale is logarithmic. (Data from M. Monteverde et al.

(Monteverde et al., 2010), courtesy of M. Monteverde.)

to be a non-homogeneous system, with electron and hole
puddles coexisting, with variations in the electronic den-
sity in the range n ∈ [−1, 1] × 1011 cm−2, which corre-
sponds to a spatial variation of the surface electrostatic-
potential in the range [−0.25, 0.25] V, with a full width at
half maximum of 50 mV. The behavior shown in Fig. 6 is
an indirect signature of this experimental fact. The ex-
istence of puddles renders the descriptions of Secs. III.B
and III.C unsuitable.

Posteriorly, a scanning tunneling microscopy (STM)
study (Zhang et al., 2009) was able to provide detailed
information on the size and electronic density value of the
puddles. This study allowed one to characterize the pud-
dles with electron-density spatial resolution two orders
of magnitude higher than previous investigations (Mar-
tin et al., 2008). From the results of Sec. II, we can
write a relation between the electronic density and the
energy as n = E2/(πv2F~

2). Given the presence of the
puddles, the energy becomes function of position, as does
the electronic density. We thus have a relation between
the electronic density at the Dirac point and the energy,
reading

n(x, y) =
E2

D(x, y)

πv2F~
2
. (13)

The STM allows the determination of E2
D(x, y), from

which n(x, y) is obtained. These studies revealed that the
average lateral dimension of the puddles is of the order
of ∼20 nm [a theoretical study (Rossi and Das Sarma,
2008) obtained a similar value], and that each of these
puddles contains, on average, a charge of 0.3 ± 0.2 elec-
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tron. A Kohn-Sham theory of the carrier-density dis-
tribution of massless Dirac fermions in the presence of
arbitrary external potentials has also predicted the exis-
tence of the puddles (Polini et al., 2008). It was experi-
mentally determined that the topographical corrugations
in graphene are about an order of magnitude smaller
than the puddles’ size, and therefore cannot justify their
origin. Indeed, it was established that individual sub-
surface charged impurities are responsible for the forma-
tion of the puddles. It was estimated that the charge
fluctuations associated with a single of those impurities
is of the order of 0.07 ± 0.03 electron. There is, there-
fore, a consensus that the physics of the puddles is due to
charged scatterers. The origin of such charged scatterers
is likely to be due to chemical species physisorbed onto
graphene, which have been trapped in between the sub-
strate and the graphene sheet during fabrication process
of the device.

From a theoretical point of view, graphene in the pud-
dles regime can be thought as a random resistor net-
work (Cheianov et al., 2007). Since Klein tunneling
(Beenakker, 2008) is exponentially suppressed if the bar-
riers are not perfect potential steps (Cheianov and Fal’ko,
2006), a large electronic transmission will not occur, ex-
cept for perfectly normal incidence [things are markedly
different for magnetic barriers as opposed to electrostatic
ones (Martino et al., 2007)]; the essential physics relating
the smoothness of potential barriers to the suppression
of Klein tunneling was studied in the early days of rel-
ativistic quantum mechanics, following a suggestion by
Bohr (Christillin and d’Emilio, 2007; Sauter, 1931). The
validity of the random resistor model depends on the
assumption that transport is incoherent at scales larger
than the puddle sizes. Due to Klein tunneling, massless
Dirac electrons cannot also localize (Anderson localiza-
tion) (Cheianov and Fal’ko, 2006; Katsnelson et al., 2006;
Lewenkopf et al., 2008; Mucciolo et al., 2009) under the
effect of the random electrostatic potential (long-range
scatterers) creating the puddles; this accounts for the
finite conductivity of graphene at the Dirac point. As
discussed in Sec. V.B, long range scatterers preclude the
possibility of weak localization effects, and since the elec-
trostatic potential variations can be attributed to charged
impurities, the description of transport at the Dirac point
based on such type of scatterers seems to be the correct
approach (Adam et al., 2007).

We note that intra-cone backscattering (see Sec. V.B)
has been shown to be present in graphene (Zhang et al.,
2009), which in view of Klein tunneling is a rather in-
teresting experimental fact. Finally, when strong inter-
valley scattering is present, electrons in graphene can lo-
calize.

IV. THE TRANSPORT PROPERTIES OF GRAPHENE AT
FINITE ELECTRONIC DENSITY

In the previous section we discussed STM experiments
supporting the theory (Polini et al., 2008; Rossi and Das
Sarma, 2008) that charge scatterers dominate the elec-
tronic transport of neutral graphene. In the ensuing sec-
tions, we discuss transport in doped graphene, analyzing
the role that resonant and charged scatterers play in this
regime.

A. The dependence of the conductivity on the gate voltage

We now discuss the dependence of the conductivity
of graphene on the gate voltage, considering two differ-
ent types of scatterers: resonant scatterers (strong short-
range scatterers) and charged impurities. We shall not
discuss here scattering from random strain (Katsnelson
and Geim, 2008), which we defer to Sec. IV.D.

The electronic density in graphene can be controlled by
the back-gate of a device engineered as a plane capacitor
– a field effect transistor, made of silicon oxide (relative
permittivity ǫ = 3.9), with a thickness b of ∼300 nm.
According to elementary electrostatics, the electric field
in the dielectric is given by Ecap = en/(ǫ0ǫ), with n the
surface electronic density of graphene, which acts as one
plate of the capacitor. The gate potential is related to
the electric field by Ecap = Vg/b, and so the density of
induced charge is n = ǫ0ǫVg/(eb). Inserting the numerical
values of ǫ and b, we obtain n = αVg, with α ≃ 7.2×1010

V−1·cm−2. The Fermi momentum kF is obtained via
kF =

√

απVg, a result derived by counting the states in
momentum space up to kF .

Ever since the original paper on graphene (Novoselov
et al., 2004), demonstrating the ambipolar field effect, it
became clear that the conductivity of graphene depends
on the gate voltage in some circumstances roughly as
σ(ǫF ) ∝ Vg; this is shown in Fig. 8, after some replotting
of the data (solid curve on the right panel). Experiments
also show conductivities presenting a sub-linear behav-
ior; see Figs. 7 (solid curves) and Fig. 8 (dashed curve
on the right panel). Mobilities, a measure of the qual-
ity of the electronic transport (see caption of Fig. 5 for
the definition of the mobility µ), as high as µ ∼ 1 × 107

cm2·V−1·s−1, have been indirectly measured by Landau
level spectroscopy (Li and Andrei, 2007; Li et al., 2009)
of graphene flakes on top of graphite (Neugebauer et al.,
2009), raising the question of how perfect can graphene
be (Neugebauer et al., 2009). Ultimately, the answer re-
quires the identification of the limiting sources of elec-
tronic scattering in graphene (among those listed in Sec.
III.A).

An approach combining Fermi’s golden rule, Boltz-
mann equation, the Coulomb potential created by
screened charged impurities, and a random phase approx-
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imation calculation of the dielectric function of graphene
(Shung, 1986; Wunsch et al., 2006) gave a first good ac-
count of the observed σ(ǫF ) ∝ Vg behavior for graphene’s
conductivity (Adam et al., 2008, 2007; Hwang and Das
Sarma, 2008). When graphene was doped with potassium
(Chen et al., 2008), the measured conductivity agreed
with the theory (Adam et al., 2007), as expected. [We
note that the conductivity of graphene covered by metal
clusters it is still far from being fully understood (Pi
et al., 2009).]

Using the same approach for a delta-function potential
(Adam et al., 2008, 2007; Hwang and Das Sarma, 2008),
the prototype of a short range scatterer, the computed
conductivity is a constant number, independent of the
gate voltage and of the dielectric constant of the medium.
In what follows, we argue that this result is inconsis-
tent. We note that an attempt to solve the Lippmann-
Schwinger equation for a delta-function potential showed
that this problem is ill defined (regularization of the prob-
lem is required in order to have a well-defined problem;
as usual, this procedure introduces a length scale. This
length scale is interpreted as the range of the short-range
potential), and therefore the first Born approximation
cannot be trusted. Indeed, exact numerical calculations
show that the first Born approximation is inadequate
to describe the role of strong short-range scatterers in
graphene (Kłos and Zozoulenko, 2010). At the same
time, a numerical calculation using the Kubo-Greenwood
formalism (Nomura and MacDonald, 2007) showed that
σ(ǫF ) ∝ Vg for charged impurities (the level broadening
due to scattering was however introduced by hand). The
same work (Nomura and MacDonald, 2007) also showed
that short-range impurities do produce a conductivity
that depends on the gate voltage, but in a sub-linear
manner. Also, previous calculations of σ(ǫF ) based on
the SCBA showed that strong short-range scatterers, de-
scribed by delta-function potentials, do give rise to a
gate-voltage-dependent conductivity (Peres et al., 2006;
Shon and Ando, 1998), a result embodied in Eq. (9). A
similar conclusion was obtained from a semi-classical ap-
proach taking into account the chiral nature of massless
Dirac fermions (Trushin and Schliemann, 2008).

The two different results – those based on Fermi’s
golden rule, as opposed to those obtained from the
SCBA, for strong short-range potentials – are easily un-
derstood: the SCBA is a non-perturbative method, suit-
able for strong short-range potentials, which takes into
account the large deviation of the wave function, within
the potential range, from the usual plane wave used in
the first Born approximation, as pointed out by Peierls
(Peierls, 1979): indeed, the first Born approximation pro-
duces a large scattering cross section, whereas the exact
calculation gives a small value. Since the conductivity
depends on the scattering (transport) cross section, an
incorrect determination of it will give, at least, an incor-
rect value for the impurity concentration in the material.

Unfortunately, the reliance on the result based on Fermi’s
golden rule is widespread in the community and is being
used to fit the experimental data (Hong et al., 2009), at
the same time that the resonant scattering mechanism
points toward the presence in the material of strong lo-
calized potentials (see Sec.III.A).

If it is certain that some amount of charged impurities
is present at the silicon oxide–graphene interface (respon-
sible for the electron and holes puddles), it is no less true
that experiments do not rule out other sources of scat-
tering. Indeed, recent experiments showed that both ad-
sorbed hydrogen and vacancies led to conductivity curves
indistinguishable in form from those of pristine graphene
(Chen et al., 2009; Elias et al., 2009). The presence of
these short-range scatterers – vacancies and hydrogen – is
signaled by a significant Raman D−band intensity (Chen
et al., 2009), since they couple electron states from the
K and K ′ valleys (see Sec. V.B). By the same token, the
presence in pristine graphene of such D−band would be
the signature of the presence of short-range scatterers in
the material. Detailed Raman investigations in pristine
graphene have been carried out (Ni et al., 2010), showing
that, indeed, a small D−peak is present in the Raman
spectrum of the pristine material. Subsequent transport
experiments (Ni et al., 2010) support strong short-range
scatterers as the limiting source of scattering in graphene.

An experiment especially designed to address the
importance of charged impurities used devices with
dielectrics having high permittivity constants (Pono-
marenko et al., 2009). These experiments did not ex-
clude completely the contribution of this type of impu-
rities, but did challenge the idea that charged impurities
are the main source of scattering in graphene.

On the other hand, in another set of experiments, an
apparently similar investigation was done, but with ice
layers on top of graphene and reaching a different conclu-
sion. It was argued that the results were consistent with
charge scattering (Jang et al., 2008). There is, however,
at least one difficulty with the arguments developed in
that work: the number of ice atomic layers was at the
most six and therefore can hardly be considered an infi-
nite dielectric made of ice; the lines of the electric field
are essentially in the vacuum (Silvester and Ferrari, 1996;
Sometani, 2000).

A number of questions can still be asked (Monteverde
et al., 2010; Ponomarenko et al., 2009; Schedin et al.,
2007):

1. In a study of graphene’s sensitivity to gases
(Schedin et al., 2007) (NO2, H2O, and iodine acting
as acceptors, whereas NH3, CO, and ethanol act-
ing as donors), chemically-induced charge-carriers
concentrations as large as 50 × 1010 cm−2 were
achieved. The induced chemical doping shifted
only the neutrality point of the conductivity curves,
without any significant changes either in the shape
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of those curves or in the mobility of the devices; the
estimated concentrations of added charged scatter-
ing centers was high as 1012 cm−2 (Schedin et al.,
2007). Why is it that no appreciable changes in
the mobility were measured in these experiments?
[One possible way out can be envisioned: the chem-
ical dopants may cluster, and this would reduce the
effectiveness of their scattering effect (Katsnelson
et al., 2009).] We also note that the definition of the
mobility used in the analysis of the data (Schedin
et al., 2007) has been criticized in the literature
(Hwang and Das Sarma, 2007).

2. In a study designed to test the prediction (Hwang
and Das Sarma, 2008) of the charge scattering
model for the ratio of the transport scattering time
τ and the elastic scattering time τe for both mono-
layer and bilayer graphene, the experiments found
disagreement between the predicted behavior and
the measured data, for both graphene systems. The
measured deviations were found to be stronger for
bilayer graphene (Monteverde et al., 2010). Fur-
ther, it was found that the measured data agree
with the resonant scattering mechanism. How to
reconcile this set of measurements with models ex-
plaining the mobility of both monolayer and bilayer
graphene based on the charge scattering mechanism
(Zhu et al., 2009)? [We mention that Monteverde’s
et al. results must be confronted with those of a
similar experiment (Hong et al., 2009), reaching dif-
ferent conclusions.]

3. Since screening is strongly dependent on the value
of the permitivity ǫ of the surrounding medium,
why is the mobility almost insensitive to changes of
this parameter? For example, ǫ for ethanol changes
from 25 to 55 as the temperature drops from 300
K down to ∼160 K, but an experiment done in
ethanol showed no variation of graphene’s mobility.
We, however, note that in some experiments (Pono-
marenko et al., 2009) a certain amount of variation
in the mobility was measured in some devices upon
changing the dielectric constant. This result does
show that charged impurities play some role as scat-
tering centers but apparently not the limiting one.

The answers to the above questions remain debatable
to some extent. The clarification of some of these issues
could be taken to an ultimate test using a solid dielectric
with a high relative permittivity. It just happens that
strontium titanate (SrTiO3) has a relative permittivity
of about 10,000 below T = 50 K, which suddenly drops
to 300 when the temperature rises above 50 K. A device
using such a dielectric would produce a dramatic change
of the mobility upon a drop in temperature below 50 K.

If we now refocus our attention on the role of strong
short range scatterers, we recall that both the linear

and sub-linear behaviors can be accommodated within
a model based on what is now called resonant scatter-

ers dominated conductivity, giving rise to mid-gap states
(Basko, 2008; Robinson et al., 2008; Stauber et al., 2007;
Wehling et al., 2009, 2010), plus the additional effect of
charged impurities, which, however, do not play the cen-
tral role. On the other hand, the simplest model based
on short range scatterers, in which the effect of charged
impurities is ignored, does not account for the observed
dependence of the mobility on the dielectric constant of
the device, which has been shown experimentally to be
present to some extent (Ponomarenko et al., 2009). In
Sec. IV.B we present the main results of such a simple
model, and in Sec. IV.C we include the role of charged
impurities, and an improved model taking into account
both types of scatterers is given. This latter model is
a simple combination of results already available in the
literature, albeit presented with a different emphasis.

We stress that from the analysis of the SCBA results
we see that features showing at energies close to the Dirac
point are all proportional to

√
ni (recall that ni is the

density of impurities per unit cell), as shown in Fig.
4. This introduces an energy scale ǫmin . ~vF

√
ni/a0,

below which electron scattering based on plane waves
breaks down, meaning that close to the Dirac point the
results of Secs. IV.B and IV.C are expected not to hold.

Both models based on mid-gap states or on charged
impurities, presented below, fail to give a satisfactory
account of the physics close to the Dirac point, since they
are based on the scattering of plane waves.

Finally, in suspended graphene (Bolotin et al., 2008a,b;
Du et al., 2008), where the material is hanging over
a trench, mid-gap states are expected to survive, since
some fraction of the corresponding scatterers will still be
present, whereas charged impurities are expected to be
absent. In the suspended situation, the mobility of the
material will be limited only by resonant scatterers plus
ripples induced by strain due to the electric field created
by the gate (Bao et al., 2009; Fogler et al., 2008).

B. Partial-wave description of resonant scatterers

We assume the presence of short-range scatterers,
which we model here as disks of radius R, and whose
origin was discussed in Sec. III.B. The effect of the scat-
terers is such that the electron wave function is zero for
r < R. The sizes of these disks are of the order of the size
of the primitive lattice vectors. The circular shape takes
the isotropy of the scattering process into a account, and
the boundary condition allows a simple analytical solu-
tion. A vacancy is one of the possible physical realiza-
tions of the model just introduced.

The Dirac Hamiltonian (3) in polar coordinates r and
ϕ reads (Hentschel and Guinea, 2007; Peres et al., 2009a;
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Recher et al., 2007)

HK = −ivF~
(

0 L−

L+ 0

)

, (14)

with L± = e±iϕ(∂/∂r±ir−1∂/∂ϕ). A particular solution
of Eq. (14) with eigenvalue vF~k has the form ψm(rk) ∝
(Jm(kr)e−imϕ,−iJm+1(kr)e

−i(m+1)ϕ)†, where Jm(z) is
the regular Bessel function of first kind and integer order
m. This solution corresponds to a partial wave in the
angular momentum representation of the plane wave. In
the presence of the potential created by the disk we write
the trial wave function as

ψ(rk) = A

(

Jm(kr)eimϕ

iJm+1(kr)e
i(m+1)ϕ

)

+B

(

Ym(kr)eimϕ

iYm+1(kr)e
i(m+1)ϕ

)

, (15)

where Ym(z) is the irregular Bessel function of first kind
and integer order m. We consider that at r = R the
wave function satisfies the zig-zag boundary conditions
(Akhmerov and Beenakker, 2008; Dominguez-Adamé,
1990), ψ1,m(kR)/ψ2,m(kR) = 0, where ψi,m(kr), with
i = 1, 2, is the i−component of the Dirac spinor. This
boundary condition makes sense since, as discussed in
Sec. III.A, a resonant scatterer can effectively behave
as a vacancy; in turn, a vacancy is a three-site zig-zag
edge. This boundary condition also represents the lim-
iting case where the electronic probability flux is zero
through the region where the potential is finite. The
phase shift δm(kR) of the m partial wave is given by
(Basko, 2008; Hentschel and Guinea, 2007; Katsnelson
and Novoselov, 2007; Stauber et al., 2007; Wehling et al.,
2009)

tan δm(kR) =
Jm(kR)

Ym(kR)
. (16)

The relative importance of the several phase-shifts to the
transport scattering cross section σT (kR) depends on the
value of kFR. In 2D, the differential cross section, σ(ϕ),
reads σ(ϕ) = |f(ϕ)|2, with f(ϕ) given by

f(ϕ) =

√

2i

πk

∞
∑

m=−∞

eiϕmeiδm(k) sin[δm(k)] . (17)

When kFR < 1, the s−wave phase shift δ0(kFR) is
the dominant contribution. Making use of the relation
1/τ(k) = nivFσT (kR)/Ac (Ziman, 1979), where τ(k) is
the transport relaxation time (see also Sec. V.A), and
since the total transport cross section σT (kR) is obtained
from

σT (kR) =

∫ 2π

0

dϕσ(ϕ)(1− cosϕ) , (18)

the conductivity σ(kF ) is given by (both spin and valley
degeneracies included)

σ(kF ) = e2v2F
τ(k)

Ac
ρ(ǫF ) = e2vF

ρ(ǫF )

niσT (kFR)
, (19)

with σT (kFR) = 4 sin2 δ0(kFR)/kF . Since we assume
kFR < 1, we also have 1/δ0(kFR) ≃ 2 ln(kFR)/π, and
the final result for the dc-conductivity is then

σ(kF ) = g0
3
√
3

4π

a20αVg
ni

ln2(
√

απVgR) . (20)

The result (20) for the conductivity holds as long as the
Fermi momentum is larger than kF & ǫmin/(~vF ) (re-
call previous discussion). The conclusion is that resonant
scatterers (strong short-range impurities), giving rise to
mid-gap states, give a conductivity that is gate voltage
dependent, with sub-linear or quasi-linear dependence on
Vg, depending on the size of the scattering disk R. Fur-
thermore, the conductivity (20) is not independent of Vg
even if we take R to be of the order of the carbon-carbon
distance, a0.

In the first experimental study of the conductivity of
suspended graphene (Du et al., 2008), it was shown that
this quantity is well described by fitting it to a model of
mid-gap scattering states, that is Eq. (20).

In Fig. 7, we fit the conductivity data of suspended
and non-suspended graphene using Eq. (20). In all cases
a good fit is obtained, using impurity densities ranging
from 1.3 × 1011 cm−2 for non-suspended samples down
to 0.7 × 1010 cm−2 for suspended ones. We note that
for the devices termed K17 and K12 in Fig. 7 the ni

values used are ni ≃ 0.8×1011 cm−2 and ni ≃ 1.3×1011

cm−2, respectively. The attempt to fit the same data
with charged scatterers (Adam et al., 2008, 2007; Hwang
and Das Sarma, 2008) gave concentrations of 2.2 × 1011

cm−2 and 4.0×1011 cm−2 for K17 and K12, respectively.
The two set of numbers for ni have the same order of
magnitude, but Eq. (20) gives a better fit to the data,
except for the measurements shown in the top left panel
of Fig. 7. For this particular device, made of suspended
graphene, the maximum of the measured conductivity is
about two times smaller than that measured in the other
suspended device, whose data are shown in the top right
panel of Fig. 7, suggesting that additional sources of
disorder may have been introduced during the fabrication
process. We stress that the fits done in Fig. 7, use the
density of impurities as the only fitting parameter since
R has to be of the order of a0 (Wehling et al., 2010);
changes of order one in the value of R give small changes
for the impurity concentration.

Some phenomenological approaches (Morozov et al.,
2008) have tried to reconcile the measured sub-linear
behavior of the conductivity of graphene with the lin-
ear behavior (upon Vg) predicted by the charge scatter-
ers model. In the case of the data given in the right
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Figure 7 (Color online) The conductivity of suspended and
non-suspended graphene as function of the gate voltage. Top
panels: Conductivity of suspended graphene from two dif-
ferent devices, after current annealing (ℓ ∼1 µm). The
top left panel corresponds to a device with µ ∼ 170, 000
cm2·V−1·s−1, at electronic density of n = 2×1011 cm−2 [data
from K. I. Bolotin et al. (Bolotin et al., 2008a), courtesy of
K. I. Bolotin]. The top right panel corresponds to a de-
vice with µ ∼ 200, 000 cm2·V−1·s−1, at electronic density of
n = 2 × 1011 cm−2 [data from K. I. Bolotin et al. (Bolotin
et al., 2008b), courtesy of K. I. Bolotin]. Bottom panels:
Conductivity of graphene on top of silicon oxide, correspond-
ing to devices with µ ∼ 10, 000 cm2·V−1·s−1 (Data from Y.-
W. Tan et al. (Tan et al., 2007), courtesy of P. Kim). In all
panels the fits use the model developed in Sec. (IV.B), with
ni as the only fitting parameter; R has to be of the order of
a0 (Wehling et al., 2010). In the legends, the concentration
of impurities is per unit cell.

panel of Fig. 7, a sub-linear behavior of the conduc-
tivity upon Vg (for graphene on top of SiO2) is evi-
dent. A linear behavior could be recovered by defin-
ing the measured resistivity ρmeasured as a sum of two
terms ρmeasured ≡ ρg + ρS , where ρS is a fitting param-
eter. The conductivity σsub = 1/ρmeasured is sub-linear
in Vg, whereas the conductivity σlin = 1/(ρmeasured− ρS)
shows linear behavior. The fitting parameter ρS was as-
sumed to be independent of Vg, and was attributed to
short-range scatterers. The discussion presented above
for strong short range scatterers showed that this type of
disorder does produce sub-linear behavior of the conduc-
tivity upon Vg, even in the case R ∼ a0, with the same or-
der of magnitude for impurity concentration as those pro-
posed by the charge scattering mechanism (Adam et al.,
2008, 2007; Hwang and Das Sarma, 2008). It is obvious
then that, using the curves calculated with the mid-gap
state mechanism, it is still possible to obtain a linear de-
pendence of the conductivity on Vg by assuming a ρS
fitting parameter as done in the phenomenological ap-
proach (Morozov et al., 2008). From the discussion in

this section it is fair to say that the origin of ρS still
needs clarification. Moreover, we can even ask the ques-
tion whether the parameter ρS is really needed for the
interpretation of the data.

Finally, we note that in our calculation we have not in-
cluded the effect of inter-valley scattering, which is known
to be present when the scatterers are short-range. If that
effect is included, a contribution to the conductivity of
the form given by Eq. (20) is found, albeit with a differ-
ent numerical prefactor (Ostrovsky et al., 2006).

C. Partial-wave description of Coulomb scatterers

We now derive the contribution to the conductivity
of graphene due to Coulomb scatterers. We can think
of three alternative scenarios for the origin of Coulomb
scatterers: either they exist independently of the reso-
nant scatterers, or the latter can themselves be charged,
carrying a fraction of the unit charge, or both cases can
coexist. Experiments aiming at studying in detail the
Raman D peak of pristine graphene, can also shed light
on this aspect, by studying suspended pristine graphene
before and after annealing.

The solution of the Dirac equation in 2D for the
Coulomb potential was obtained more than ten years
ago (Lin, 1999) for the sub-critical regime (see below),
and rediscovered in the context of graphene by different
groups (Novikov, 2007a,b; Pereira et al., 2007; Shytov
et al., 2007), who also solved the case of the super-critical
regime.

It was known for some time (Lin, 1997) that the
Coulomb problem in the 2D Schrödinger equation pro-
vides a total cross section which does not coincide
with the first Born approximation. The same happens
with the 2D Dirac equation (Lin, 1999; Novikov, 2007a;
Pereira et al., 2007; Shytov et al., 2007). The discussion
given above, restrains us from accepting results based on
the first Born approximation without a critical analysis.

For the Coulomb problem, the Hamiltonian has the
form H = HK+IZe2/(4πǫ0r) (I a 2×2 identity matrix)
and the solution is sought in the form

ψj(r) =
1√
r

(

fj(rk)e
iϕ(j−1/2)

±igj(rk)eiϕ(j+1/2)

)

, (21)

with j a half-integer number. When the trial wave func-
tion (21) is inserted into the Dirac equation we get

[

ǫ+ g/r −∂r − j/r
∂r − j/r ǫ+ g/r

] [

fj
±igj

]

= 0 , (22)

where j = m − 1/2, ǫ = E/(vF~), E is the energy, g =
Zαg, and αg = e2/(4πǫ0vF~) ≃ 2.2 is graphene’s fine
structure constant. The solution to Eq. (22) has been
obtained by several, and the central quantity is the phase
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shift of the j partial wave, as in the case of Sec. IV.B.
For this problem the phase shifts read

e2iδj(g) =
jΓ(s− ig)

Γ(s+ 1 + ig)
eiπ(j−s) , (23)

with the property δj(g) = δ−j(g), s =
√

j2 − g2, and
Γ(x) the usual gamma function; the sub-critical regime is
defined by the condition g < 1/2. Contrary to the short-
range scatterer problem, solved in Sec. IV.B, the phase
shifts (23) do not depend on the energy of the incoming
particle, but they do depend on the sign of the Coulomb
potential and on which type of particle, an electron or
a hole, is being scattered. The independence of δj(g)
on the energy is simple to understand from a straight-
forward argument based on dimensional analysis: on the
one hand, the Coulomb potential has no intrinsic length
scale, and on the other hand, the particle’s mass is null.
These two facts show that the problem as a whole has
no intrinsic length scale (some sort of Bohr’s radius, as
in the non-relativistic theory of the hydrogen atom) and
therefore dimensionless numbers involving the momen-
tum k cannot be formed, leading to the conclusion that
the dimension of the cross section (dimension of length,
in 2D) can only come from the momentum itself. That is,
we are then bound to have σT (k) ∝ 1/k, which gives the
linear dependence on the gate voltage. The electron-hole
asymmetry of the cross section can partially account for
the measured asymmetry of the conductivity curves. An-
other source of electron-hole asymmetry of the conduc-
tivity is originated in the metal contacts of the transistor
(Huard et al., 2008).

The above solution assumes that graphene is floating in
vacuum. In a real experiment, graphene is on top of a di-
electric, SiO2 being the most common. Other dielectrics
have also been used (Ponomarenko et al., 2009). In these
experimental conditions, the value of g is different from
that given above.

In the case Z = 1 and for graphene on top of a di-
electric, a charge e in between the dielectric (with rel-
ative permittivity ǫd) and graphene, behaves effectively
as a charge with a value (Landau et al., 1984; Slater and
Frank, 1969) of er = 2e/(1 + ǫd). Additionally, the rel-
ative pertimittivity of graphene due to electron-electron
interactions is renormalized to ǫr = 1 + 2παg/[2(1 + ǫd)]
(Adam et al., 2007; González et al., 1999; Shung, 1986).
These two effects combined give an effective fine struc-
ture constant for graphene of

αeff
g =

αg

ǫr

2

1 + ǫd
. (24)

Using the same procedure of Sec. IV.B, the conductivity
of graphene due to Coulomb scatterers reads

σ = e2vF
kF ρ(ǫF )

2niΛ(g)
= g0

3
√
3a20

8niΛ(g)
παVg , (25)

Dielectric ǫd αeffct.
g Λ(g) Λ(−g)

H2O 80 0.05 0.013 0.012
Ethanol (160 K) 55 0.07 0.027 0.022
Ethanol (300 K) 25 0.13 0.10 0.07

HfO2 25 0.13 0.10 0.07
SiO2 4 0.37 1.20 0.46

Table I Dependence of Λ(g) on the type of dielectric for both
electrons, g > 0, and holes, g < 0. The impurities are assumed
to have valence Z = −e. For ethanol, the dielectric function
depends on temperature, as indicated between braces. Since
graphene is in the ultra-relativistic limit, the value for Λ(g)
cannot be obtained from adding only few partial waves.

where Λ(g) =
∑∞

m=−∞ sin2(δm+1/2−δm−1/2). It is worth
stressing that Λ(g) is different for particles, g > 0, and
holes, g < 0, a behavior not captured by the first Born
approximation (Adam et al., 2007). In Table I we give
the numerical values for the quantity Λ(g), considering
graphene on top of or submerged in different dielectrics.

Figure 8 (Color online) Resistivity and conductivity of
graphene on top of silicon oxide. Top left panel: Raw data
of a measurement of the resistivity, ρmeasured, of an exfoliated
graphene sheet [data from S. V. Morozov at al. (Morozov
et al., 2008)]. Right panel: Fit of the conductivity using
Eq. (20) for the case where σsub = 1/ρmeasured, and using
Eq. (25) for the case where σlin = 1/(ρmeasured − ρS), with
ρS = 100 Ω [the value of ρS = 100 Ω is that used by S. V.
Morozov at al. (Morozov et al., 2008)]. Bottom left panel:
Data σlin = 1/(ρmeasured − ρS) fitted with the conductivity
formula given by Eq. (25) (squares). For comparison, we give
the theoretical conductivity curve (triangles) considering that
the experiment had been done using HfO2 as a dielectric. This
allows one to compare the modification of the numerical val-
ues of σ due to a substrate change. (Data from S. V. Morozov
at al. (Morozov et al., 2008), courtesy of A. K. Geim.)
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We have now developed all the tools needed to perform
the analysis of the data of Fig. 8. We start by fitting the
data using the two models presented above separately,
that is Eqs. (20) and (25). We must stress that each of
these two models have only one fitting parameter: the
concentration of impurities (in the model for resonant
scattering, the parameter R is fixed by the size of the
primitive cell). In the right panel of Fig. 8 we plot the
data σsub = 1/ρmeasured and σlin = 1/(ρmeasured − ρS)
using the raw data ρmeasured (given in the left top panel
of the same figure). In the case of σsub, the data can be
fitted using Eq. (20) for mid-gap states. A perfect fit
to both negative and positive gate voltages is not pos-
sible, since by construction the model developed in Sec.
IV.B preserves electron-hole symmetry; an improvement
which does not preserve electron-hole symmetry is easy
to develop by considering a large finite value (as opposed
to an infinite value) for the effective potential geff as dis-
cussed in Sec. III.A (see also (Araújo and Peres, 2006;
Stauber et al., 2008a)); we show below that charged scat-
terers can account for the loss of electron-hole symmetry
of the conductivity curves as well.

In the case of the data computed as σlin we fit the pos-
itive gate voltage region with Eq. (25) for charged scat-
terers. Note that since Λ(g) 6= Λ(−g) the computed con-
ductivity has no electron-hole symmetry, an effect seen
in the experiments (Chen et al., 2008). Nevertheless, al-
though Eq. (25) does break electron-hole symmetry, the
magnitude of the computed effect is far too strong, and
therefore Eq. (25) is not able to fit the data over the
negative and positive range of Vg, by assuming a single
concentration of charged scatterers. It is worth noting
that the concentration of impurities used to fit σsub and
σlin is essentially the same for both types of scatterers.
In the left bottom panel of Fig. 8 we depict the con-
ductivity values (triangles), had we performed the same
experiment using HfO2 as a dielectric. To understand
such a large change, we look at Table I, where we show
that Λ(g) can be reduced by one order of magnitude (pos-
itive g) from SiO2 to HfO2, leading to the large increase
in the conductivity shown in Fig. 8.

We now take into account, in a single model, the ef-
fect of both strong short-range and charged scatterers.
Computing the conductivity as σsub = 1/ρ, such that
(Matthiessen’s rule)

ρ =
1

σshort
+

1

σCoulomb
, (26)

and with σshort computed using Eq. (20) and σCoulomb

determined from Eq. (25), we can fit the data of Fig.
8 quite accurately, as shown in Fig. 9. In this figure,
the concentration of impurities leading to mid-gap states
used in the fit was nshort = 1.5 × 1011 cm−2 and that
for charged scatterers was nCoulomb = 2.4 × 1010 cm−2,
about seven times smaller than nshort (these two concen-
trations are, essentially, the only two fitting parameters

in the model). The combined contributions from reso-
nant scatterers and charged impurities allow one to fit
σsub over the whole Vg range, using a single value for the
impurity concentrations.

Figure 9 (Color online) The conductivity data σsub =
1/ρmeasured, also plotted in Fig. 8, but fitted using Eq. (26),
which combines the effect of resonant and charged scatterers.
In the legend, nshort and nColoumb refer to the concentration
of resonant and charged scatterers, respectively. The concen-
tration of impurities is the only fitting parameter used in the
theory. [Data from S. V. Morozov at al. (Morozov et al.,
2008), courtesy of A. K. Geim.)]

In conclusion, we made a thorough analysis of the role
of resonant scatterers (which give rise to mid-gap states)
and charge scatterers in the conductivity of graphene,
and showed that a coherent picture emerges from a scat-
tering analysis of the transport based on the exact cal-
culation of the phase shifts of scattered chiral Dirac
fermions, as opposed to a calculation based on the first
Born approximation.

Finally, we note that fine tuning details coming from
the dependence of the dielectric constant of graphene on
the wave vector (the polarization contributions) were not
included in our simple model, except for the important ef-
fect of the renormalization of the fine structure constant,
which corresponds to the large wave number limit.

Experiments will decide which scenario regarding the
limiting source of scattering in graphene actually pre-
vails.

D. Transport across a strained region: A way of generating a
transport gap

The main limiting factor of all graphene properties,
in what concerns its application to nanoelectronics, is,
most likely, the lack of a true band gap, as opposed to
the biased graphene bilayer (Castro et al., 2007; McCann,
2006; McCann and Falko, 2006). This fact can, however,
be overcome by creating a transport gap.

In nowadays nanotechnology, understanding the effect
of strain on the properties of devices is an essential step
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toward the improvement of their performance. For exam-
ple, characterizing how strain can improve the properties
of silicon-based devices is a mainstream research topic
(Hÿtch et al., 2008). As stated in Sec. III.A, both rip-
ples and wrinkles can act as scattering centers as they
effectively create random strain in the material, leading
to a modification of the hopping energy t. In what fol-
lows, we show that strain in graphene gives rise to a rich
structure in the electronic and transport properties of the
material.

Being a 2D flexible membrane (Booth et al., 2008; Kim
and Castro Neto, 2008), stretching (which in graphene
can be as large as 20%, being reversible) and bend-
ing graphene in a controlled way is feasible (Ferralis
et al., 2008; Kim et al., 2009; Mohiuddin et al., 2009),
with consequences to the electronic (Pereira et al., 2009)
and transport properties of the material (Fogler et al.,
2008; Guinea et al., 2010; Pereira and Castro Neto, 2009;
Teague et al., 2009). As we see below, strain can be
modeled by a fictitious gauge field (de Juan et al., 2007),
which can then act as an effective magnetic field. In some
circumstances, it was predicted that this effective mag-
netic field can have an intensity as high as 10 T (Guinea
et al., 2010), leading to a pseudo-magnetic quantum Hall
effect. The presence of such an odd quantum Hall ef-
fect can, in principle, be experimentally observed using
scanning tunneling microscopy, which is a direct mea-
sure of the density of states, and, therefore, sensitive to
the reorganization of the spectrum due to the presence
of the gauge field. Such type of experiments have been
performed (Levy et al., 2010) and found strain-induced
pseudo-magnetic fields greater than 300 T.

In the case of suspended graphene (Teague et al.,
2009) there are two sources of strain. One is induced
by the electric field produced by the gate, which pulls
the graphene membrane downwards. The solution of
the corresponding elasticity problem produces an effec-
tive model where the effective vector potential is constant
(Fogler et al., 2008; Pereira and Castro Neto, 2009), pre-
cisely the model we discuss below. The other source of
strain depends on the thermal properties of graphene.
Graphene’s thermal expansion coefficient is anomalously
large and negative (Bao et al., 2009; Faugeras et al.,
2010), a feature which can be exploited to induce 1D
and 2D ripples (with a periodicity of about 300 nm) pos-
sibly leading to novel strain-based engineered graphene
devices (Guinea et al., 2010; Pereira and Castro Neto,
2009).

Consider a graphene-based device where the central
part of the material, of length L, is a graphene rib-
bon under strain, with armchair edges oriented along the
x−axis, as shown in Fig. 10. The strained part is then
connected to two pristine leads. It is well understood that
the effect of strain can be included in the Dirac Hamilto-
nian in the form of a fictitious gauge field (Castro Neto
et al., 2009; Guinea et al., 2010). The emergence of the

Figure 10 (Color online) Scheme of a device made of strained
graphene. The central region is the strained part. In the as-
sumed model, the effect of strain is to modify the hopping
connecting a given carbon atom to its three neighbors in such
a way that two of the hoppings are equal. Shown is the mo-
mentum of the electrons in the leads and in the strained re-
gion.

fictitious gauge field is simple to understand. We assume
that the hopping along the armchair edge is modified rel-
atively to its pristine value t as t → t + ∆t [a detailed
study of how strain changes the value of the hopping was
done using ab initio methods (Ribeiro et al., 2009)]. This
adds a term to the Hamiltonian, Eq. (1), of the form

∆t
∑

Rn

(|A,Rn〉〈Rn + a0ux, B|+H.c.) . (27)

Passing from the tight-binding description to the contin-
uous model, the contribution from Eq. (27) has a finite
value at a given point in space. Since Eq. (27) couples
the sub-lattices A and B at the same point in space its
contribution to the effective Hamiltonian, Eq. (3), has
the simple form (Castro Neto et al., 2009)

A(x, y)σy = −θ(x)θ(L− x)
∆t

evF
uyσy , (28)

implying that the Dirac Hamiltonian maintains its orig-
inal form, but with p replaced p → (px, py + eAy).
Clearly, we have a new Hamiltonian where the electrons
now couple to a fictitious vector potential A through the
usual minimal coupling of electrons to an electromagnetic
field.

The question now is (Pereira and Castro Neto, 2009):
How are the transport properties of Dirac electrons
changed when transversing a region of strained graphene?
As usual, the answer to this question is obtained by com-
puting the transmission of the device by matching the
wave functions from the left and right leads to those of
the central region, at the positions x = 0 and x = L.
From the matching conditions we compute the total scat-
tering matrix of the system (Nazarov and Blanter, 2009),
relating the incoming and outgoing waves. The scatter-
ing matrix S is obtained easily from the total transfer
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matrix of the structure Ts using the same formalism in-
troduced in Sec. III.C. In this case, the transfer matrix
is given by

Ts =
1

D

[

u v

v∗ u∗

][

u∗e−iLqx −ve−iLqx

−v∗eiLqx ueiLqx

]

, (29)

where D = 4 cos θ cos θ̃, u = e−iθ + eiθ̃, v = e−iθ − e−iθ̃,
tan θ = ky/kx, tan θ̃ = (ky − δ)/qx, with ky, kx, and qx
the transverse momentum, the longitudinal momentum
in the leads, and the longitudinal momentum in the de-
vice, respectively, and δ = ∆t/(vF~). Finally, the energy

in the leads has the form ǫ =
√

k2x + k2y, and in the cen-

tral region ǫ =
√

q2x + (ky − δ)2. The last equation shows
that the effect of strain is to shift the position of the
Dirac point in the Brillouin zone, a crucial effect on the
explanation of the following results. Equation (29) was
derived for energies in the continuum (no bound states).
However, a fundamental property of the scattering ma-
trix (or the Ts matrix for this purpose) is that bound
states can also be obtained from the form derived for the
scattering states, by looking at the poles of the S ma-
trix. Since the S−matrix is obtained from the inverse of
the Ts matrix, its elements contain a factor which is the
inverse of the determinant of Ts. Additionally, the S11

element of the S−matrix (in this problem the S−matrix
is a 2 × 2 matrix, since we are working on the propa-
gating mode base) gives the amplitude of transmission
across the strained region, its value being

S11 =
4 cos θ̃ cos θ

cos(Lqx)(|u|2 − |v|2)− i sin(Lqx)(|u|2 − |v|2) .
(30)

From Eq. (30), we see that there are energies of perfect
transmission, when Lqx = nπ, with n = 1, 2, . . .. On the
other hand, considering the case ky = 0, corresponding
to normal incidence on the boundary, we obtain for the
transmission

T = |S11|2 =
ǫ2 − δ2

ǫ2 − δ2 cos2(Lqx)
, (31)

which is a number smaller than one, meaning there is
no Klein tunneling through strained graphene. At reso-
nances, Lqx = nπ, the transmission (31) is one, and for
energies in the range δ/2 < ǫ < δ, it decreases exponen-
tially with L, since qx becomes imaginary. In general,
for angles (between k and y−axis) satisfying the condi-
tion θf > arccos(−1 + δ/ǫ) the transmission, as com-
puted from Eq. (30), is shown to be strongly suppressed
for large L, an effect termed: transport gap formation
(Pereira and Castro Neto, 2009). True energy gaps can
also be created in graphene by choosing an appropriate
geometry of strain (Guinea et al., 2010). The reason be-
hind this transport gap mechanism is easy to understand
given the discussion in Sec. II; in the strained region the

electrons’ wave function are no longer eigenstates of the
helicity operator ĥ. Therefore, since the helicity is not
a constant of motion in this problem, Klein tunneling is
lost and backscattering is allowed.

Figure 11 (Color online) Resonances, bound states, and sur-
face states. Top panel: The parameters are L = 100 and
δ = 0.1. In the resonances region, ǫ > ky, the energy curves
corresponds to the momenta qx = nπ/L. The horizontal axis
refer to the transverse momentum ky, and the vertical one
to the dimensionless energy ǫ. Bottom panel: Representa-
tion in the plane energy versus ky of the five types of states
appearing in this problem. The two Dirac cones, that of the
contacts and that of the strained region, are represented for
kx = 0 and qx = 0, respectively. The off set of the apex of the
two cones is δ. All states with kx 6= 0 and qx 6= 0 lie above
the two respective cones.

As mentioned, the denominator of the S11 element of
the S−matrix is all that it is needed to look for bound
states in this system. We can imagine two different
types of bound states: those decaying exponentially in
the leads, but propagating inside the strained region and
those decaying exponentially in the three regions. The
latter states are edges states living at the boundaries be-
tween the leads and the strained region. Looking only
at the poles of S11 we can find that both types of bound
states exist (Pereira and Castro Neto, 2009). The rich-
ness of states in strained graphene is due to the breaking
of the chiral symmetry. In Fig. 11 we have represented
the energies at which the transmission is unity (called res-
onances), the energies of the bound states, and the energy
of the edge or surface states. The different types of states
are a result of the different shifts of the two Dirac cones
over the Brillouin zone (Hasegawa et al., 2006; Montam-
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baux et al., 2009), induced by the strain and governing
the vector potential of Eq. 28; the two apexes are shift
by δ due to strain, as seen above.

It was shown (Pereira and Castro Neto, 2009)that in
the problem under study there are in total five types of
states: (1) scattering states, (2) band states (states local-
ized in the junction along the x−direction) propagating
along the y direction (3) localized states at the bound-
ary of the junction, (4) filtered states, that is, scattering
states decaying exponentially inside the junction for cer-
tain values of the incoming angle θf , and (5) and states
such that the transmission occurs via evanescent waves
for any orientation of the incoming momentum – it is said
that all states are filtered. The regions in the energy ver-
sus ky plane where these type of states appear are shown
in the bottom panel of Fig. 11.

In conclusion, the example discussed shows that there
is plenty of room at the bottom of strained graphene for a
whole new sub-field of graphene research: that of strain-
based transport engineering or straintronics.

V. QUANTUM CORRECTIONS TO THE DRUDE
CONDUCTIVITY

Before discussing the quantum corrections to the
Drude conductivity, we introduce some key concepts on
electronic transport. Consider first the elementary trans-
port theory in a normal metal, where electrons have an
effective mass m∗. The velocity of the electrons at the
Fermi surface is given by vF = ~kF /m

∗, where kF is the
Fermi wave number whose value depends on the density
of electrons. Impurities in an otherwise perfect crystal
occasionally deflect electrons from free propagation, lead-
ing to the appearance of a mean free path l – the mean
distance to the next collision. Since the dominant contri-
bution to transport comes from electrons having veloc-
ity vF , we can introduce a phenomenological parameter,
the relaxation time τ , defined as τvF = ℓ; the elemen-
tary theory of transport then shows that the electronic
conductivity of the metal reads (Ziman, 1979) (no spin
or valley degeneracies included): σ0 = e2nτ/m∗. This
is a purely classical result, known as Drude’s formula,
and which assumes that, after each collision, the electron
looses memory of its previous linear momentum state.
The calculation of τ is usually obtained from Fermi’s
golden rule. The above description makes sense when
ℓ ≫ λF = 2π/kF (Ziman, 1979). If we now repeat the
same analysis for graphene, we obtain (Adam et al., 2008,
2007; Basko, 2008; Peres et al., 2007b; Stauber et al.,
2007): σ0 = 2e2τvF kF /h, where we have now included
the contributions of both spin and valley degeneracies.

It is also possible to view the conductivity problem as
a random walk. In this case, the conductivity is related
to the diffusion constant D throught Einstein’s relation
(Chakravarty and Schimd, 1986): σ0 = e2Dρ(ǫF ) (here

again no spin or valley degeneracies included), with ρ(ǫF )
the density of states per unit area, and the units of D
are those of area per time, in any spatial dimension. The
diffusion constant, for order of magnitude estimates, can
be taken as D ∼ vF ℓ.

A. Weak localization in a normal metal

Weak localization is a correction to the classical con-
ductivity of a disordered metal due to quantum interfer-
ence, and originates in the quantum mechanical super-
position principle. Electrons propagating in metals are
subjected to a number of scattering mechanisms that give
rise to a number of characteristic times.

The relaxation time τ due to elastic collisions with
static impurities is assumed to be the smallest scattering
time and describes a reversible process. Other scattering
mechanisms are irreversible in nature and lead to either
the loss of phase coherence or energy relaxation; for in-
stance, those caused by electron-electron and electron-
phonon interactions (excluding interactions with mag-
netic impurities). Contrary to τ , the phase relaxation
(or dephasing) time τϕ is temperature dependent and at
low temperatures is mainly due to electron-electron inter-
actions. In the presence of a magnetic field, a new time
scale τB appears, which is of the order of τB ∼ ℓ2B/D,
by simple dimensional analysis arguments, and where
ℓ2B = ~/eB is the magnetic length. We now proceed
to the discussion of the quantum interference effects us-
ing an intuitive approach (Abrikosov, 1988; Beenakker
and Houten, 1991), rather than a formal one, as seems
appropriate in the context of this Colloquium.

Figure 12 (Color online) Pictorial representation for two
types of scattering processes, whose physical interpretation
is given in the text. The presence a finite magnetic field is
represented by the flux Φ piercing the area defined by the two
time reversed trajectories.

Imagine an electron traveling from position A to B, as
shown in Fig. 12, and we denote by aieiφi the probability
amplitude for the electron to travel from A to B, along
trajectory i. Since there are many indistinguishable tra-
jectories, the total probability of traveling from A to B
is

PI(A→ B) =

∣

∣

∣

∣

∣

∑

i

aiφi

i

∣

∣

∣

∣

∣

2

. (32)

We now show that quantum interference effects are much
more important for what we call trajectories of type II,
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in Fig. 12, in which the initial and final points coincide
(A = B).

For type I trajectories (A 6= B), we have

PI(A→ B) =
∑

i

|ai|2 +
∑

i 6=j

aiaje
−i(φi−φj). (33)

Since the phases for different trajectories of type I are
uncorrelated, we assume that the second term averages
to zero, leaving us with the classical result, in which the
probability to go from A to B is just the sum of the
probabilities over all possible trajectories, that is,

PI(A→ B) =
∑

i

|ai|2 = P
(cl)
I (A→ B) . (34)

However, for trajectories of type II (the same initial and
final points), in the presence of time reversal symmetry,
the situation is quite different. In fact, time reversed
trajectories (going round the loop in clockwise and anti-
clockwise fashion), contribute to the sum of Eq. (33)
with the same amplitude, in both modulus and phase.
As a result, in the interference term,

∑

i 6=j

aiaje
−i(φi−φj) , (35)

when i and j denote time reversed trajectories, the phases
cancel, even before any averaging; this term gives a con-
tribution exactly equal to the first one, since for every tra-
jectory there is a time reversed pair. This then amounts
to a probability

PII(A→ A) = 2
∑

i

|ai|2 = 2P
(cl)
I (A→ A) . (36)

This effect of quantum interference therefore enhances
the probability of return, relative to the classical re-
sult, decreasing diffusion and, therefore, the conductivity
(Abrikosov, 1988; Beenakker and Houten, 1991); in other
words we have

σwl − σ0 < 0 , (37)

where σwl stands for the conductivity of the metal con-
sidering the enhanced backscattering effect, due to quan-
tum interference. It is the reduction in σwl relatively to
σ0 that is known as weak localization.

In the presence of a magnetic field B the relative phase
of the electron’s wave function, associated with the two
time reversed trajectories of type II, has the value δφ =
4πΦ/φ0 as given by the Aharanov-Bohm effect, where
Φ is the magnetic flux piercing the area defined by the
closed trajectory. Therefore, applying a magnetic field to
the system suppresses the interference effect (because it
changes the relative phase to a non-zero value) given by
Eq. (36), and the low-temperature conductivity of the

metal increases when the field is turned on; or, in other
words, we have

δσ(B)

σwl
≡ σwl(B)− σwl

σwl
> 0 . (38)

Using Eq. (38) we obtain experimental evidence of weak
localization effects in the conductivity of a disordered
metal.

If the spin-orbit interaction (Hikami et al., 1980) can
be ignored and there are no magnetic impurities in the
metal, the times τ , τϕ, and τB are the only relevant time
scales, and they control the behavior of the low temper-
ature conductivity.

We now extend the previous analysis to graphene.
Again, as expected, the chiral nature of the electrons (or,
equivalently, their non-trivial Berry’s phase) will play a
major role. As before, we keep the discussion as elemen-
tary as possible.

B. Weak localization in graphene

In graphene, the quasi-exact conservation of the chiral-
ity and the existence of two valleys have profound effects
in the low-temperature conductivity of the material. Be-
low, we present the general picture of the quantum cor-
rections in graphene, referring the interested reader to
the literature for the subtleties appearing under a de-
tailed analysis of this problem (Aleiner and Efetov, 2006;
McCann et al., 2006; Morpurgo and Guinea, 2006; Muc-
ciolo and Lewenkopf, 2010; Suzuura and Ando, 2002).

As shown in Sec. V.A, in a normal metal the only
elastic time is the relaxation time τ . In graphene the
situation is more complex. In order to understand the
complexity of the situation, consider two different matrix
elements of a potential created by a given impurity. We
assume the potential to have the form

V (r) =
u

r20π
e−r2/r2

0 . (39)

The range of the potential depends on the value of r0:
the larger r0, the larger the range. The effect of this
potential on electrons within the same valley (denoted
intra-valley scattering) is given by the matrix element

〈ψ+(k
′)|V (r)|ψ+(k)〉 =

u

8Ac
f(k,k′)e−q2r2

0
/4 , (40)

with f(k,k′) = cos[θ(k)/2 − θ(k′)/2] and q = |k − k′|.
If we take ǫF = 0.5 eV one obtains q ∼ 0.2/a, with
a =

√
3a0. The function f(k,k′) shows that the scatter-

ing is not isotropic in momentum space, a consequence of
the chiral nature of electrons in graphene. From f(k,k′),
we also see that the scattering amplitude for backscatter-
ing, f(k,−k), is zero, the fingerprint of Klein tunneling
(recall Fig. 3) for massless Dirac electrons (Beenakker,
2008).
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If the potential also couples electronic momentum
states from K and K ′ valleys (denoted inter-valley scat-
tering) the matrix element, using wave functions from
different valleys, reads

〈ψ+(k
′)|V (r)|ψ+(k)〉 =

u

8Ac
g(k,k′)e−Q2r2

0
/4 , (41)

with g(k,k′) = i sin[θ(k)/2 − θ(k′)/2] and Q ≃ |K −
K ′| = 4π/(3a). In this case, backscattering is permitted,
g(k,−k) 6= 0, since scattering couples states in the K

and K ′ valleys, which have opposite chirality (recall Fig.
3).

Equation (41) shows that only for very short-range po-
tentials, r0 . a, does intervalley scattering have a signif-
icant amplitude. For long range potentials, only intra-
valley scattering plays a role.

From the above discussion it follows that, in the case
of graphene, we need to define several elastic scattering
times (Aleiner and Efetov, 2006; McCann et al., 2006;
Morpurgo and Guinea, 2006):

1. τiv, representing inter-valley scattering, whose scat-
terers are very short-range potentials with range
r0 . a, such as some types of adatoms, adsorbed
hydrocarbons, or vacancies.

2. τs, representing intra-valley scattering, whose scat-
terers are long range potentials, such as ripples,
dislocations, and charged scatterers.

3. τw, representing also another contribution to intra-
valley scattering. This scattering time has its ori-
gin in the fact that chirality is not an exact sym-
metry of Dirac fermions in graphene (due to trig-
onal warping effects), therefore allowing for some
amount of backscattering within the same valley.
The importance of this scattering time grows as
the Fermi energy increases.

As long as the scattering potentials are long range,
inter-valley scattering is negligible and back-scattering
in graphene is absent, except from a small contribution
from τw. The effect just described is, at the more fun-
damental level, a consequence of the Berry’s phase (of
π) acquired by massless Dirac electrons when they per-
form a closed chiral orbit (Berry and Mondragon, 1987;
Mikitik and Sharlai, 1999). The Berry’s phase trans-
forms the constructive interference, we described above
for normal metals, into a destructive one, leading to weak
anti-localization. Under these circumstances, the inter-
ference effect seen in Sec. V.A for a normal metal cannot
exist in graphene, forward scattering is enhanced and one
should expect weak anti-localization effects to manifest
themselves, that is, if τiv ≫ τϕ we have (ignoring τw)
(McCann et al., 2006; Suzuura and Ando, 2002)

σawl − σ0 > 0 , (42)

where σawl represents the enhancement (anti-localizing
effect) of the conductivity over Drude’s result σ0 due to
Klein tunneling. If short range scatterers are present,
then inter-valley scattering plays a role, and since elec-
trons in the K and K ′ valleys have opposite chiral-
ity, back-scattering is present [see the function g(k,k′)],
and we expect weak localization effects, according to Eq.
37; detailed calculations confirmed this picture (McCann
et al., 2006; Suzuura and Ando, 2002). When the effect
of a magnetic field is included, the general rigorous ex-
pression for the weak localization corrections was derived
by two groups independently (Aleiner and Efetov, 2006;
McCann et al., 2006), and δσ(B) can be either positive or
negative depending on the relative values of the different
scattering times, including τB . For a comprehensive dis-
cussion of the interplay between the different scattering
times and the quantum corrections to the conductivity,
the interested reader is referred to the technical litera-
ture (Aleiner and Efetov, 2006; Kechedzhi et al., 2007;
McCann et al., 2006).

Figure 13 (Color online) The quantity δσ(B) is defined as in
Eq. (38). Left: Weak anti-localization behavior (the gate
voltage used was Vg . 1 V, corresponding to an electron den-
sity n . 7×1010 cm−2). Center: Weak localization behavior
(the gate voltage used was Vg = 11 V, corresponding to an
electron density n ≃ 8× 1011 cm−2). Right: Dependence of
δσ(B) on the electronic density (it grows from I to III), at
T = 27 K. A fit of the data must use the rigorous formula
derived in the literature (Aleiner and Efetov, 2006; McCann
et al., 2006). [Data from F. V. Tikhonenko et al. (Tikhonenko
et al., 2008, 2009).]

In the left panel of Fig. 13 we show, for small values of
the magnetic field, a weak localization dip (δσ(B) grows)
followed by, above a certain field value B∗, weak anti-
localization behavior of the conductivity, since δσ(B)
starts to decrease upon increasing the magnetic field over
B∗ (no saturation of δσ(B) is measured upon increas-
ing B, as in the weak localization case). In the central
panel of Fig. 13, we show weak localization behavior
in graphene, since the corrections δσ(B) never decrease
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upon increasing the magnetic field, and tend to satura-
tion. Since the electronic density in the central panel of
Fig. 13 is few times larger than that in the left one, it
seems that the effect of short-range scatterers is more ef-
fective at higher densities (Tikhonenko et al., 2009); at
lower densities long-range scatterers dominate. Indeed,
in the right panel of Fig. 13, we clearly see a crossover
from weak anti-localization to weak localization as the
electronic density increases from I to III, at a tempera-
ture of 27 K; considering important screening effects of
charged impurities at large electronic densities, such a re-
sult sounds reasonable. It is a remarkable experimental
fact that quantum interference effects just discussed can
be observed in graphene at temperatures as high as ∼200
K (Tikhonenko et al., 2009).

As stated, we expect that in graphene the presence
of different kinds of defects (in different concentrations)
will control whether weak localization or weak anti-
localization is observed. This depends on the relative
value of the different elastic times introduced above and
on the electron density. A detailed analysis of this point
is essential for a correct interpretation of the data, and
has been done in great detail (McCann et al., 2006; Mor-
purgo and Guinea, 2006). The numerical values for the
different scattering times can be obtained from the ex-
perimental data (Tikhonenko et al., 2008).

Finally, we note that the observation of quantum cor-
rections to the conductivity in graphene seems to de-
pend on the details of the fabrication process, which
determines the amount of rippling introduced in the
system (Morozov et al., 2006). Routes for suppression
of weak (anti-)localization effects have been considered
(Khveshchenko, 2006) and this effect was experimentally
observed as well (Morozov et al., 2006; Tikhonenko et al.,
2008). As in the case of strain discussed in Sec. IV.D,
ripples are equivalent to effective gauge fields which break
time reversal, leading to the suppression of weak localiza-
tion effects, within each valley. In the system as a whole
(both valleys considered) the full time reversal symmetry
is preserved.

VI. THE OPTICAL CONDUCTIVITY OF GRAPHENE IN
THE INFRARED TO VISIBLE RANGE OF THE SPECTRUM

In the ensuing sections we discuss the calculation of
the percentage of light transmitted by a graphene mem-
brane, when light shines from behind. This property is
controlled by the optical conductivity σ(ω) of the mate-
rial. We analyze how and why the experimental behavior
of σ(ω) deviates from the predictions of the independent
electron model.

A. Graphene as a transparent membrane

The calculation of light absorption by a given mate-
rial is equivalent to the calculation of the optical con-
ductivity. In general, such a calculation proceeds using
Kubo’s formula. In the case of graphene, it is possible
to use Fermi’s golden rule to obtain directly the fraction
of absorbed light, which turns out to be a much simpler
calculation than computing the optical conductivity first
(Kravets et al., 2010). The central quantity to be com-
puted is the transition rate of electrons excited from the
valence band to the conduction one, as shown in Fig. 14.

Figure 14 (Color online) Pictorial description of the optical
excitation of electrons in graphene. The absorption of a pho-
ton can only induce vertical inter-band transitions. From left
to right we have graphene doped with holes, neutral, and
doped with electrons.

In the presence of a vector potential A the Dirac
Hamiltonian has the form

HK = vFσ · (p+ eA) . (43)

We represent the electric field as E = −∂A/∂t and
choose the polarization of the field along the x−axis:
A = x̂A0(e

iωt + e−iωt)/2. The term vFσ · eA will be
taken as perturbation, and in the spirit of time depen-
dent perturbation theory, only the exponential with neg-
ative exponent is taken. The transitions induced by light
absorption are now controlled by the σx matrix. Clearly
the matrix element 〈ψλ|σx|ψλ〉 cannot contribute to the
conductivity, since light cannot induce transitions within
the same band, among states of equal momentum. The
only non-vanishing contributing matrix element is there-
fore 〈ψ1|σx|ψ−1〉 = − i

2vF eA0 sin θ(k). The transition
rate is then given by Fermi’s golden rule:

W1,−1(k) =
2π

4~
v2F e

2A2
0 sin

2 θ(k)δ(2vF k~− ω~) . (44)

The Dirac delta function in Eq. (44) enforces the condi-
tion that only electrons with energy ω/2 can be excited
to the conduction band. The transitions we are referring
to are shown in Fig. 14. To obtain the contribution from
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all states we have to integrate over the momentum and
multiply the result by four (two for spin times two for
valley). The calculations are elementary and the result
for the total transition rate per unit area is

1

τ
=
e2A2

0ω

8~2
. (45)

If light of frequency ω is shining upon a unit area of
graphene, the amount of absorbed power per unit area is
Wa = ~ω/τ . The energy flux impinging on graphene is
given by Wi = cǫ0E

2
0/2, with E0 = A0ω. Therefore the

fraction of transmitted light is (Nair et al., 2008)

T = 1− Wa

Wi
= 1− πα ≃ 0.977 , (46)

with α = e2/(4πǫ0~c) the fine structure constant. The
absorption of light is therefore independent of frequency
and given only by universal constants. The high trans-
mittance of graphene is shown Fig. 15; it is remarkable
that a one atom thick membrane can be seen by the naked
eye.

Figure 15 (Color online) An optical image of an aperture
partially covered with graphene and its bilayer (from left to
right: air/graphene/bilayer), taken in a light transmission ex-
periment (courtesy of A. K. Geim).

It follows from the previous analysis that the transmis-
sion at finite doping is given by

T (ǫF ) ≈ (1− πα)θ(ω − 2ǫF ) , (47)

where the Heaviside step function takes into account that
absorption can only occur for frequencies larger than
twice the Fermi energy, due to Pauli’s principle. The
result given by Eq. (46) is identical to the one given by
a rigorous calculation based on Kubo’s formula (Abergel
et al., 2007; Gusynin et al., 2007; Kuzmenko et al., 2008;
Peres et al., 2006; Peres and Stauber, 2008). The reason
why the perturbative calculation works so well is because
the final answer is controlled by the small dimensionless
parameter α. The reason why the transmission is con-
trolled by the fine structure constant originates in the

chiral nature of the electrons in graphene, a result exten-
sible to few-layers graphene (Min and MacDonald, 2009).

It is now a simple matter to include corrections to the
linear spectrum of graphene in the formalism (the conical
nature of the spectrum is valid for energies of the order
of . 1 eV). The addition of a next-nearest neighbor hop-
ping term can also be included and treated within this
formalism. The case of a next-nearest neighbor hopping
is actually trivial, being proportional to the identity ma-
trix its contribution is zero. In fact, it is proven in general
(Stauber et al., 2008b) that the contribution of the next-
nearest neighbor hopping only enters in the final result
as a renormalization of the energy spectrum.

As stated, the transmittance of light through graphene
can be computed from a previous knowledge of the op-
tical conductivity of the material. The transmittance is
calculated from the solution of Fresnel’s equations, read-
ing (Abergel et al., 2007; Blake et al., 2007; Pedersen,
2003; Stauber et al., 2008b)

T = |1 + σ(ω)/(2cǫ0)|−2 , (48)

where σ(ω) is the the optical conductivity (Falkovsky
and Pershoguba, 2007; Falkovsky and Varlamov, 2007;
Gusynin and Sharapov, 2005; Gusynin et al., 2007, 2009;
Peres et al., 2006; Stauber et al., 2008b) of graphene,
given, at zero temperature and within the independent
electron approximation, by (ǫF > 0)

σ(ω) = σ0θ(ω~− 2ǫF ) + iσ0
4ǫF
πω~

− i
σ0
π

ln
|~ω + 2ǫF |
|~ω − 2ǫF |

.

(49)
The quantity σ0 = πe2/(2h) is termed the ac universal
conductivity of graphene. Inserting Eq. (49) into Eq.
(48) and taking ǫF = 0 we obtain the result of Eq. (46).
Working the other way around, using Eq. (47) in Eq.
(48), we obtain for neutral graphene σ(ω) = σ0, in accor-
dance with Eq. (49). The fact that for neutral graphene
σ(ω) is given in terms of universal constants only, with
no reference to any of the material parameters, is a rare
result in condensed matter physics. If the intensity of
light impinging on graphene is large, then non-linear cor-
rections to T start to play a role, which is expected to
lead to an increase of the transmittance (Mishchenko,
2009; Rosenstein et al., 2010). The non-linear optical
susceptibility coefficients of graphene have recently been
measured using four-wave mixing (Hendry et al., 2010).

Due to its high transmittance, graphene can be used as
transparent conductive electrodes in solar cells and liquid
crystal devices (LCD) (Bae et al., 2010; Blake et al., 2008;
Wang et al., 2008).

B. The optical conductivity of neutral graphene

We now discuss the experimental results for the opti-
cal conductivity of neutral graphene and how those mea-
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surements deviate from the independent electron model
presented above.

Figure 16 (Color online) Transmittance of graphene. For pho-
ton energies below 1.2 eV, we plot data from reflectance mea-
surements taken by K. Fai Mak et al. (Mak et al., 2008); dif-
ferent curves correspond to different graphene devices (cour-
tesy of F. Kin Mak). For photon energies larger than 1.2 eV,
we plot data from two different types of measurements (Nair
et al., 2008): narrow bandpass filters, with a full band width
at half maximum of 10 nm, and standard spectroscopy mea-
surements. The dashed line is the result of Eq. (46). The solid
(green) line, to the right of 1.2 eV, is a plot of T obtained from
a calculation of the conductivity, including trigonal warping
corrections (Stauber et al., 2008b).

In Fig. 16 we show measurements from two differ-
ent groups (Mak et al., 2008; Nair et al., 2008) in two
different regions of the spectrum. For photon energies
Eγ below 1.2 eV (in the near infrared region), the data
were taken from reflectance measurements, at room tem-
perature. The absorbance of the different samples is
spectrally flat within a band of 10%. Roughly speak-
ing, the transmittance follows the value given by Eq.
(46). A more detailed analysis shows that the trans-
mittance below Eγ <0.5 eV increases over the universal
value, whereas closer to Eγ .1.2 eV it decreases slightly
from that value. According to Mak et al. (Mak et al.,
2008), and for energies Eγ <0.5 eV, both temperature
effects and some amount of variable extrinsic doping de-
crease the conductivity and therefore produce an increase
in the transmittance. In other words, if light absorp-
tion decreases, then the transmittance increases. This
effect is equivalent to a finite chemical potential (hav-
ing effectively a Pauli’s principle based blocking effect),
which contributes to an increase in the transmittance.
The temperature effect that they (Mak et al., 2008) used
in their argument, was predicted to be of importance at
room temperature and energies below 0.5 eV for undoped
graphene (Peres and Stauber, 2008), in agreement with
the experimental measurements. Additionally, this set
of measurements showed that the optical conductivity
of graphene can also be affected by unavoidable doping
and intra-band scattering. Indeed, a SCBA (Peres et al.,

2006) calculation of the conductivity of graphene at zero
temperature and zero doping showed that σ(ω) departs
from its universal value, σ0 = πe2/(2h), being strongly
reduced at low frequencies, due to disorder.

In conclusion, the deviation of the transmittance of
graphene from the universal value predicted for Dirac
fermions is a way of gaining insight on other electronic
effects present in the material (Li et al., 2008b).

Figure 16 also shows the transmittance of graphene in
the photon energy range 1.2–3 eV. The measured value
follows the prediction of Eq. (46), except at energies
around 3 eV, where absorption increases. Since at ener-
gies as large as 3 eV the electronic energy dispersion de-
viates considerably from the Dirac cone approximation –
an effect known as trigonal warping – a calculation tak-
ing into account trigonal warping corrections to the band
structure of graphene was performed (Nair et al., 2008;
Stauber et al., 2008b), and the result is given by the solid
line in Fig. 16. The calculation does predict an increase
in light absorption at energies around 3 eV (an effect
opposite to that discussed above for energies Eγ <0.5
eV), but falls short on accounting for the magnitude of
the effect. Within the independent electron model, the
computed enhancement of the conductivity is essentially
due to the increase in the density of states as the Van
Hove singularity is approached, which is located at the
energy of ∼2.7 eV. Thus, transitions between states lo-
cated at the Van Hove singularities of the valence and
the conduction bands require photons of energy ∼5.4 eV.
Optical experiments using photons of about this energy
have confirmed the strong enhancement of light absorp-
tion due to the Van Hove singularities (Kravets et al.,
2010).

Two possible additional causes for such an increase in
the absorption come to mind: contamination of the sam-
ple due to some organic residues (originated from the
exfoliation process) or/and many-body effects (Herbut
et al., 2008; Mishchenko, 2008). A recent calculation,
however, showed that electron-electron interactions cor-
rect the transmission (reducing it) by only 0.03− 0.04%
(Katsnelson, 2008; Sheehy and Schmalian, 2007, 2009).
On the other hand, in the regime of energies relevant
for the visible range of the spectrum, the fine structure
constant of graphene αg is a number of order 1, a fact
casting reasonable doubts on the validity of any pertur-
bative calculation.

A recent ab initio calculation (Yang et al., 2009) used
the Kohn-Sham eigenvalues and eigenvectors to compute
the optical conductivity of graphene from infrared to vis-
ible frequencies. This type of mean-field calculations
includes electron-electron interactions by means of the
exchange and correlation approximations. The optical
conductivity obtained does not fit exactly the data of
Fig. 16, since it predicts an absorption higher than what
is measured experimentally, in the full frequency range.
Nevertheless, the proposed excitonic effects (included via
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the solution of the Bethe-Salpeter equation) were shown
to account well for the experimental deviations (to lower
energies) in the enhancement in light absorption for pho-
ton energies associated with transitions between states lo-
cated at the Van Hove singularities of the valence and the
conduction bands (Kravets et al., 2010) relatively to the
predictions made by the non-interacting electrons the-
ory. Indeed, the elementary theory predicts an intense
absorption peak at about 5.2 eV, whereas the measured
data shows a red shift of the peak to 4.6 eV. The discrep-
ancy can be solved by considering the mutual attraction
of the electron-hole pair, created at the two Van Hove
singularities, when a photon of the right frequency is ab-
sorbed.

The energy red-shift mentioned is easy to understand
from the point of view of the mutual attraction of the
electron-hole pair (forming an exciton): since the electron
and hole have opposite charges, the effective energy seen
by the photon being absorbed is the non-interacting value
minus a positive correction coming from the electrostatic
attraction between the electron and the hole created by
the absorption of the photon.

C. The optical conductivity of gated graphene

Measurements of the optical conductivity of gated
graphene, in the far infrared region of the spectrum (Li
et al., 2008b), also show strong deviations from the sim-
ple theory given above, and expressed in concise form by
Eq. (49).

The deviations seen in the data (Li et al., 2008b), for
all values of the gate-voltage considered in the experi-
ment (ranging from Vg =10 to 71 V), are of five different
types: (i) finite absorption below 2µ, which is due to both
inter-band and intra-band elastic and inelastic scattering
processes; (ii) broadening of the absorption edge around
the energy threshold 2µ; (iii) an enhancement of the con-
ductivity above the universal value σ0 in the energy range
between 2µ and 2µ+E∗, where E∗ is a characteristic en-
ergy scale, (iv) a reduction of the conductivity bellow σ0,
at energies above E∗, with the conductivity as a func-
tion of frequency having a positive curvature, and (v)
the imaginary part of the conductivity is larger than the
value predicted by the non-interacting model for energies
~ω ≫ 2µ.

Additionally, we point out that the optical conductiv-
ity curves measured experimentally (Li et al., 2008b) col-
lapse on top of each other when re-plotted as function
of ω/µ, implying that the mechanism causing deviations
from the non-interacting approximation must be intrin-
sic.

To explain all measured deviations, it is necessary to
take into account disorder, temperature, electronic den-
sity inhomogeneities (Zhang et al., 2009), and electron-
electron interaction effects, of excitonic nature (Peres

et al., 2010). In Fig. 17 we show one set of the mea-
sured data (solid blue curve), together with calculations
using two models: (i) a model where the independent
electron theory is supplemented with the effect of dis-
order (computed with the two models discussed in Sec.
IV.A) and (ii) a calculation including excitonic effects on
top of model (i). It is clear that the first one, considering
only disorder, does not account for the five deviations
observed in the data, relatively to the independent elec-
tron model; it partially accounts for the enhancement
of the conductivity below 2µ. The additional optical
response observed in the data, in this frequency range,
must come from intra-band scattering processes (Grushin
et al., 2009), not included in model (i). Points (ii)–(v)
are all accounted for by including excitonic effects, that
is, model (ii). There is, however, the need to use in the
model a higher temperature, T = 120 K, than that mea-
sured experimentally by the finger of the cryostat, T = 54
K. This can be justified by recalling that graphene is a
system presenting small inhomogeneities of the electronic
density. This fact effectively smears the chemical poten-
tial and such an effect can be accounted for by consider-
ing an effective higher temperature, as was shown to be
the case in the interpretation of the optical response of
graphene’s bilayer (Kuzmenko et al., 2009).

Figure 17 (Color online) Optical conductivity of gated
graphene on top of silicon oxide, in units of σ0. The data
is given by the solid curve. The dashed curve is a calcula-
tion taking disorder into account, and the dot-dashed curve
is a calculation including disorder and electron-electron in-
teractions. The experimental curves refer to a gate voltage
of 28 V, which corresponds a Fermi energy of µ ≃ 0.18 eV.
The calculation took an effective temperature of 120 K. In
the left(right) panel we have the real(imaginary) part of the
conductivity. In the inset, the measured dc conductivity of
the device (solid curve) depicted together with a fit of σ(εF )
using Eqs. (20) and (25). The fit of the dc conductivity fixes
the concentration of impurities to the values of ni = 2× 1011

cm−2, for resonant scatterers, and ni = 1 × 1011 cm−2, for
charged ones (dashed curve). (Data from Z. Li et al. (Li
et al., 2008b), courtesy of Zhiqiang Li.)
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In the same set of measurements (Li et al., 2008b), an
increase in the Fermi velocity over the value 1.1 × 106

m/s was measured, upon diminishing the gate voltage.
The renormalized Fermi velocity, due to exchange, was
predicted to be (including the Thomas-Fermi screening
of the Coulomb potential)

vF = vbare +
e2

4πǫ0ǫd~

(

ln
2qc
9kF

− 1

3

)

, (50)

where vbare is the bare Fermi velocity, and therefore not
an observable parameter, qc ∼ 1 Å−1 a cutoff momentum,
and we have used the fact that the Thomas-Fermi screen-
ing momentum is for graphene on silicon oxide given by
qTF ≃ 2kF [we note that Eq. (50) is an extension, tak-
ing screening into account, of previous results (González
et al., 1996; Hwang et al., 2007; Polini et al., 2007)]. The
result (50) does show that vF increases upon decreasing
kF , but the formula fails to fit the data (Li et al., 2008b)
over the measured gate voltage range, especially for larger
Vg. Alternatively, phonons also seem to partially account
for the Fermi velocity renormalization seen in the exper-
iments (Gusynin et al., 2009; Peres et al., 2008; Stauber
et al., 2008a).

The renormalization of the Fermi velocity suggests
that contributions from many-body effects can be impor-
tant, but an experiment with a higher degree of accuracy
should be repeated, since cyclotron mass measurements
(Novoselov et al., 2005a) do not see deviations of the
Fermi velocity from vF ≃ 1.1×106 m/s upon varying the
electronic density.

Finally, we note that, as in the case of neutral graphene
discussed in Sec. VI.B, the electron-hole pair mutual-
attraction also induces a shift in the Fermi edge at ω = 2µ
toward lower energies (red shift effect), since, as before,
it renormalizes the non-interacting energies by adding a
negative number.

In conclusion, the optical response of graphene is a
property of the material where different kinds of quantum
effects seem to play an important role, all on equal foot-
ing. Exploring graphene for nanophotonic devices surely
requires a detailed understanding of its optical proper-
ties.

VII. CONCLUSIONS

We have given an introductory review on the transport
properties of graphene, touching the relevant aspects of
this topic. A survey of the literature was given along with
a discussion of elementary models, which, despite their
simplicity, are in good quantitative agreement with many
features of the data. Many of these models were discussed
in greater detail in the literature (to which due credit is
given), but using more formal methods. We hope that
the topics discussed in this Colloquium may contribute to

a wider dissemination of the physics of graphene among
the non-specialized audience.
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