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ABSTRACT: Block copolymer (BCP) melts are a paradigm for
pluripotent molecular assembly, yielding a complex and expanding
array of variable domain shapes and symmetries from a fairly
simple and highly expandable class of molecular designs. This
Perspective addresses recent advances in the ability to model and
measure features of domain morphology that go beyond the now
canonical metrics of D spacing, space group, and domain topology.
Such subdomain features have long been the focus of theories
seeking to explain and understand mechanisms of equilibrium
structure formation in block copolymer melts, from inhomoge-
neous curvatures of an intermaterial dividing surface to variable
domain thickness. Quantitative metrics of variable subdomain
geometry, or packing frustration, are central to theoretical models
of complex BCP phase formation, from bicontinuous networks to
complex (e.g., Frank−Kasper) crystals, and new experimental
methods bring the possibility of their quantitative tests into reach.
Here we not only review generic approaches to quantify local
domain morphologies that both connect directly to thermodynamic models of BCP assembly but also generalize to domains of
arbitrary shape and topology. We then overview experimental methods for characterizing BCP morphology, focusing on recent
advances that make accessible detailed and quantitative metrics of fine features of subdomain geometry. Beyond even the critical
comparison between detailed predictive models and experimental measurements of complex BCP assembly, validation of these
advances lays the foundation to “mold” morphology in BCP assemblies at ever finer subdomain scale, through controlled
architectures and processing pathways.

I. INTRODUCTION

Block copolymer (BCP) melts are a prototypical system for
understanding and exploiting self-assembly in soft matter. The
reasons for this are widely known and often celebrated. On one
hand, their molecular design is versatile and extendable to
seemingly limitless combinations of block chemistry, broadened
by an array of architectural variations, all made accessible by
advances in controlled polymerization techniques.1−3 At the
same time, the thermodynamics that drive their assembly into
fascinating and often useful nanostructured morphologies is
generic, pitting the entropy of random-walking chain config-
urations against generic enthalpic tendencies to microphase
separate unlike chemical units.4 Hence, a vast range of
chemically distinct BCP systems can all be effectively mapped
onto a common “universal” model whose equilibrium assembly
is characterized by a relatively small number of effective
parameters.5 The broad success of self-consistent-field (SCF)
theory in accurately modeling observed BCP assembly, when
combined with the array of experimental methods available for
characterizing morphologies on the typical length scales of
chains (∼10−100 nm) and the ability to create precise

nanoscale structures for a host of technological applications6−8

(e.g., membranes, batteries, and lithographic templates),
accounts in large part for the long-term and continuing research
interest in BCP9 as a “laboratory for self-assembly”.10

Much progress has been made in the past six decades to
understand the link between molecular structure and local
interactions to the equilibrium patterns of BCP domains. Some
of the earliest studies of BCPs11−17 used polarizing optical
microscopy (POM), small-angle Xray scattering (SAXS), and
transmission electron microscopy (TEM) to show the existence
of periodic nanostructured domains of alternating composition.
These observations focused on somewhat coarse descriptions of
the domain morphologies: their basic topologies and symmetric
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shapes of the intermaterial dividing surfaces (IMDS), i.e., the
canonical layer-, cylinder-, or sphere-like domains; and the
characteristic length scale of the alternating periodic pattern or
D-spacing.
Early theoretical work pioneered by Meier,18 and more

extensively by Helfand,19−21 developed statistical SCF ap-
proaches to probe the thermodynamics governing the selection
of the size and shapes of the three canonical microphase-
separated domains. These theories neglected, to a first
approximation, the thermodynamics that determine multi-
domain periodicity by, for example, assuming spherical domains
occupy perfectly spherical volumes irrespective of their periodic
arrangement, now known as the unit-cell approximation (UCA)
of domains. Theoretically, a major breakthrough came with
Leibler’s weak-segregation mean-field theory for diblock melts
near the order−disorder transition (ODT).22 Weak segregation
is defined by the condition that the product of the Flory−
Huggins parameter χ and degree of polymerization N is close to
the mean-field ODT value of 10.495. Sufficiently close to the
ODT, mean-field equilibrium morphologies are well approxi-
mated as superposed plane-wave modulations in compositions.
As a reciprocal space approach, weak segregation theory
provided a prediction of not only the optimal domain size and
topology but also the periodic supradomain symmetry. For
example, this theory predicts that 3D body-centered-cubic
(BCC) and 2D hexagonal lattices are the thermodynamically
stable arrangements of spherical and cylindrical domains,
respectively, for linear diblocks melts near the ODT. Notably,
this focus on the reciprocal space structure of domain
morphologies is well suited to small-angle scattering studies of
BCP morphologies. Indeed, comparing the ratios of the
wavevectors of the first few reflections in a radially averaged
scattering profile to what is expected for the radially averaged
Fourier transform of 1D layers, hexagonal cylinders, and BCC
spheres has become a primary, albeit indirect (and sometimes
erroneous), means to assess the domain topology and shape, in
the absence of direct real-space imaging.
The discovery of the bicontinuous double-diamond23 phase

(originally observed for star block copolymers and later re-
examined and found to be the double gyroid24) in the region of
the phase diagram intermediate to lamella and cylinders
complicated the overly simplistic picture of BCP morphologies
as standard lattice packings of spherical, cylindrical, and layered
objects. For one, the interpenetrating double-network topology
of bicontinuous network morphologiesdouble-gyroid (DG),
double-diamond (DD), and double-primitive (DP), the O70
and O5225,26is far more complex, with one domain (usually
the matrix) forming an undulating, saddle-like layer surface
“slab” that is interspersed between two intercatenated tubular
networks (usually composed of the minority component) that
meet in the n-valent connections (e.g., trivalent for DG). The
highly complex geometry and topology of these domains pose
challenges for properly identifying the morphology in SAXS and
TEM experiments. Likewise, the subtle structure of these
morphologies posed challenges to early theories that attempted,
for example, to compare the thermodynamic stability of DG to
DD.27−30

As we detail below, BCP morphologies can be decomposed
into a set of local molecular environments, each of which is
composed of a narrow wedge-like volume with a tapered
geometry, i.e., subdomains. Segregated blocks partition within
each wedge into subregions of like material divided by a local
patch of the IMDS, with the taper of wedge-like subdomains

reflecting the local curvature of the IMDS. Such wedge-like
regions become arbitrarily narrow with increasing segregation
strength (i.e., for large χN), which simultaneously drives down
the IMDS area per chain, while increasing the domain thickness.
Early theories treated the canonical morphologies in the
UCA,21,31 layers, and perfectly symmetric cylinders and spheres,
which can each be decomposed into a single subdomain shape.
Unlike this simplistic picture, network morphologies, like the
DG, cannot be described by a UCA and cannot be tiled by a
single local molecular motif. Or put another way, even at the first
level of approximation for network phases one necessarily needs
a set of wedge-like volumes, shapes, and extensions that vary
substantially within the domain in order that the structure
occupy volume at constant density throughout the phase. This
conflict between constant density and a thermodynamically
preferred local BCP “shape motif” is commonly known as
packing frustration.32−34

Based on a picture put forward by Matsen and Bates,32,35

packing frustration has been posited to be fundamental to
symmetry and topology selection of the bicontinuous network
phases (and indeed, to some extent, for all nonlamellar phases).
Specifically, it was proposed that the particular geometry of
chain packing at the center of the nodal junctions between
tubular domains in bicontinuous phases introduced regions of
especially high stretching of the minority blocks and, further,
that this degree of frustration can be intuitively connected to the
number of struts joining at a node. In this picture, it is not
possible to separate the effects of domain topology (i.e., 3-valent
nodes for DG vs 4-valent nodes for DD) and crystallographic
symmetry (i.e., body-centered cubic for DG vs primitive cubic
for DD).
Not coincidentally, the role of packing frustration to select

interdomain packing symmetry has also reemerged in the
context of the discovery of complex sphere phases of BCP.
Crystalline arrangement of space-filling BCP domains requires
them to deform away from simple, perfectly symmetric shapes
like idealized cylinders and spheres.36 Heuristically, this has
been pictured as domains that conform to lower-symmetry
polyhedral cells33,37,38 that can tile the lattice without gaps, e.g.,
the Voronoi cells of the BCC or face-centered-cubic (FCC)
lattice. It then becomes intuitive that BCP chains that stretch
toward the edges and vertices (corners) extend further than the
ones that stretch toward the faces of these polyhedral “cages”.
Optimizing the free energy cost of this packing frustration in
spherical domains has been linked to the stability of Frank−
Kasper (FK) phases over the canonical BCC sphere phase, as
observed in an ever increasing range of BCP systems.39−44 FK
phases were first observed in intermetallic A−B alloys,45,46 and
unlike the simpler BCC or FCC arrangements, these FK phases
include multiple populations of sphere domains, each of which
occupies a volume characterized by a distinct point group
symmetry.37 Theoretical models and SCF calculations predict
that sphere-like domains in FK phases of BCP are indeed
significantly warped away from spherical shape,38,47−50 leading
to pronounced variations in the IMDS shapes and volumes of
different domains. Crucially, much like arguments made for the
stability of DG phases over other bicontinuous networks,
theoretical arguments and models suggest that the optimal
selection among competing crystalline arrangements of sphere
domains can be cast in terms of minimization of the cost of
packing frustration.33,34,38

Packing frustration is intrinsic to structure and thermody-
namics of complex BCP phases like triply periodic, bicontinuous
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networks and low-symmetry sphere phases (not to mention the
plethora of phases present in terpolymers or othermore complex
multiblock architectures2). This argues that a key aspect of the
thermodynamic selection of the ordered BCP arrangement takes
place at what we define as the subdomain scale, which is
characterized by variations in the local shapes and thicknesses of
domains. Notwithstanding its importance to BCP thermody-
namics, packing frustration remains a somewhat poorly defined
concept and one that is rarely, if ever, quantified by direct
experimental study. This is all the more surprising since modern
techniques of SCF theory have made detailed predictions for the
spatial distributions of subdomain shape and shape variations of
BCP domains for several decades. Even so, it has remained
unclear precisely what are the essential metrics needed to
capture packing frustration at the intradomain scale and how
these might vary from one domain type to another (e.g.,
networks vs spheres). That is to say, for example, by what
measures is the DG morphology “less frustrated” than its
competitor the DD? And, even for a fixed domain topology like
DG, by how much can measures of packing frustration and
subdomain inhomogeneity vary with thermodynamic parame-
ters like segregation strength, block composition, and chain
polydispersity, not to mention nonequilibrium parameters like
thermal or solvent processing? Experimental BCPmorphologies
are difficult to achieve in strict thermodynamic equilibrium, and
the implications of nonequilibrium processing for the
comparison of experimental measurements to idealized
symmetries and shapes of equilibrium domains computed by
theory remain relatively poorly understood.
Even more problematic than this definitional ambiguity of

meaningful measures of frustration is the fact that most
experimental probes of BCP morphology are inadequate for
capturing structural variations at the subdomain scale needed to
connect to any theoretical definition. Characterization of
frustration and subdomain variation in complex phases requires
3D real-space data, with resolution on length scales smaller (by a
factor of about 5) than the domains themselves and is therefore
typically on the order of a few nanometers. Simultaneously, to
distinguish between intrinsic variation in an “ideally formed”
structure (i.e., as predicted by SCF) and inevitable spatial
fluctuations away from that ideal form requires experimental
characterization to be performed over statistically large and
meaningful sample volumes and without distortions that are
specific to its processing pathway.
In this Perspective, we revisit the concept of packing

frustration and the notion of subdomain morphology in BCP
assemblies more broadly. Our aim is, first, to describe recent
advances for defining generic and thermodynamically mean-
ingful metrics of subdomain morphology, which in principle
allow one to extract information about the distribution of
molecular environments in an arbitrary BCP phase. We focus on
features of the local shape of BCP packing, as characterized in
the surface geometry and topology of the IMDS, as well as
metrics of the domain thickness and corresponding chain
extension that quantify entropic costs of uniformly filling BCP
domains. Second, we aim to survey experimental approaches to
characterize BCP morphology and their ability to extract
quantifiable measures of packing frustration and subdomain
morphology at the level of resolution needed to compare to and
test theoretical models. The explosion of recent interest in
molecular shapes and packing mechanisms that promote FK
phases, as well as the long-standing interest in the factors that
give rise to bicontinuous networks in BCP and soft matter more

broadly, argues that a better, more quantitative, approach to
frustration may be the key to unlocking a host yet undiscovered
morphologies and engineering their features at an ever finer
subdomain size. For the purposes of clarity, most of the
discussion will focus on understanding subdomain consid-
erations for the simplest class of molecules, namely linear
diblock copolymers, although clearly extensions of these
concepts and methods have application to more complex
chain architectures and compositions, as we briefly highlight at
the end of this Perspective.
The remainder of this Perspective is organized as follows. In

section II, we give an overview of metrics of subdomain
morphology, focusing first on the measures of variable IMDS
geometry, and then approaches to quantify domain thickness
and chain extension. As examples, we will primarily illustrate
these metrics and their corresponding thermodynamic inter-
pretation using domain structure from SCF predictions, but we
will also give examples where the same metrics can be applied to
experimental data. In section III, we describe various
experimental approaches to quantifying subdomain morphol-
ogy, beginning with early characterization approaches to the
gross morphological signatures of BCP, and, in particular, focus
on recent advances and newly developing techniques for
capturing yet unmeasured aspects of chain packing in
experimental systems. In section IV, we discuss some key
challenges for quantifying and predicting morphological features
of BCP assembly at the subdomain scale. In section V, we
conclude with some remarks about frontiers for extending our
view of and control over of subdomain features of BCP
morphologies to an ever finer and quantitative scale. Finally, we
note that the Supporting Information provides a description of
algorithms used to compute local thicknesses via the medial
analysis described and implemented below for BCP data sets
(both computational and experimental), with the software
available at an online repository via 10.7275/vqe1-sm17.

II. METRICS OF SUBDOMAIN MORPHOLOGY AND
CHAIN PACKING

II.A. Subdomain Decomposition of Morphology:
Preliminaries. In this section we overview geometrical
concepts for measuring the morphologies of BCP assembly at
the subdomain scale. In particular, we focus on metrics of the
morphology that capture variation in the local packing
environment of different chains. While lamellar morphologies
permit uniform subdomain shapes, all other morphologies,
namely complex morphologies such as bicontinuous networks
and low-symmetry sphere packings, require variation of
subdomain motifs.34 For the purposes of clarity, we focus
primarily on the case of linear AB diblock copolymers (dBCP),
although, as we highlight in the conclusion, these concepts
generalize to the considerably larger class of phase morphologies
for more complex block andmultiblock architectures. Our aim is
to describe the key geometrical features of the BCP domain
shapes that carry information about the thermodynamics of their
melt assembly and the consequences of packing frustration.
Our perspective is largely informed by the strong-stretching

limit (SSL) of dBCP melts.31 This is a theoretical limit of the
SCF mean-field theory in which segregation strength is taken to
be infinitely large, or formally, it is an asymptotic limit of SCF as
χN → ∞.51,52 The SSL was developed by Semenov30,31,53−56

and advanced by Milner27,29,57 and others58 in its application to
BCP domains and polymeric brushes more broadly. It has the
great conceptual advantage of reducing the BCP thermody-
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namics to a largely geometric competition between two physical
effects: surface energy between unlike blocks and entropic costs
of chain stretching. In the SSL, the interfaces between unlike
domains, which we call intermaterial dividing surfaces (IMDSs),
become arbitrarily narrow in comparison to the domain size.
The relatively large cost of interblock repulsions in this limit
causes chains to crowd the IMDS at high density to reduce the
(lateral) area per chain exposure to unlike blocks.5 Because the
melt maintains a constant density, high areal density at the
IMDS leads to brush-like domains composed of highly stretched
blocks on either side of the IMDS. Analysis of the entropy of
these brush domains is simplified by large block extension
because it implies that, to a first approximation, fluctuations
around the statistically dominant configuration, the “classical
trajectory”, can be neglected.51 Likewise, the effect of inter-
penetration between the “tips” of opposing like-polymer brushes
on the SSL domain free energies can be ignored at this same level
of approximation.59 Of course, both approximations can be
relaxed, and their effects may be systematically incorporated as
one in a series of corrections to the SSL.51,52,54 A salient feature
of SSL is that it facilitates thermodynamically precise and
quantitative definitions of “chain packing”, which might
otherwise be considered vague, or purely heuristic, concepts.
While metrics of subdomain morphology are perhaps best

framed by the SSL theory of dBCP, in this discussion we aim to
present these geometrical measures in a way that applies to
realistic physical scenarios, notwithstanding the limiting and
often unrealistic approximations of this theoretical idealization.
Notably, we overview geometrical abstractions of the BCP
domains that can be applied to real systems, given morpho-
logical data at the suitable scale and resolution. In section III, we

will focus on the requirements needed and available
experimental techniques for acquiring such data. Our primary
assumption is that the microphase-separated melt morphology
can be characterized in terms of a set of composition fieldsϕα(x)
that describe the mean local volume fraction of monomer type α
at point x throughout the 3D volume of the melt (e.g., for linear
AB diblocks α = A or B). This type of data is readily available
from numerical SCF computations50,60 or suitably coarse-
grained simulations of chain models. Additionally, it can be
inferred to some extent frommeasurements of image contrast in
various electron microscopy techniques or other approaches
(see section III).
Before proceeding to describe metrics of subdomain

morphology, we first define the key terminology and geometric
objects that are used in our characterization. While notions of
“domain shape” and “packing frustration” are widely employed
in discussions of BCP morphology, they are typically invoked
somewhat vaguely and often in rather qualitative terms or
instead overly specific scenarios whose generalizations to other
situations (e.g., morphologies) remain unclear. For example,
what is meant when we describe the “thickness” of a domain in
the bicontinuous DG morphology? With this context in mind,
we define subdomain morphology in specific terms that (i) can,
in principle, be characterized quantitatively by physical
observables, (ii) provide a meaningful connection to the
underlying chain packing thermodynamics, and (iii) can be
generalized to morphologies of arbitrary shape and topology.
For the purposes of this discussion, we describe this analysis as

a subdomain decomposition of BCP morphology. This
decomposition is summarized schematically in Figure 1. The
essential idea is to divide up a physical configuration of

Figure 1. Domains and subdomains of BCP morphologies. The four most common domain topologies of AB diblock copolymers: lamella, cylinders,
spheres, and bicontinuous networks. Each topology is shown in terms of a spatially periodic pattern of compositions with red/blue highlighting spatial
regions where the local majority composition in A/B segment type, and boundaries between these A- and B-rich regions are separated by intermaterial
dividing surfaces (IMDSs), which also defines the positions of junctions between blocks. A single domain, the volume corresponding to chains that
associate to a common IMDS, is highlighted as an opaque region of each morphology. Each domain is further subdivided into a series of subdomains,
which correspond to the infinitesimal, wedge-like, volumes of chains that associate to a common point (or patch) of the IMDS, highlighted in white in
each case. The collection of subdomains are composed of brush-like domains extending away from the IMDS up to the terminal boundaries, surfaces
which delineate the contact between opposing domains (or subdomains). Although opposing brushes always interpenetrate to some degree, the
terminal boundaries can nevertheless be defined as 2D surfaces in terms of the boundaries of the association map that describes the probability of a
chain segment passing through a given point having its junction associated with points on the IMDSs.
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microphase-separated BCP melts into distinct and specific
regions (volumes), whose geometry can be analyzed via
quantitative metrics that correlate directly with the free energy
of chain packing in those structures and its local variation
throughout a givenmorphology. At the coarsest level, this begins
by dividing a BCP melt into distinct domains, a term which we
give a specific topological meaning. Domains are volumes
occupied by the dBCP chains (both components) that all
associate to a common IMDS. We then further refine this
definition to a pair of subdomains as the volumes occupied by
the respective dBCP blocks that associate to a specific point (i.e.,
an infinitesimal areal patch) on the IMDS.
Operationally, the subdomain decomposition can be

performed as follows. Given a microphase-separated BCP melt
within some predefined total volume V, the set of IMDSs of the
domains may be determined from the level sets of the
composition fields. Specifically, for an AB dBCP, these are the
2D sets of points Sd where the unlike composition fields are
equal, ϕA(Sd) = ϕB(Sd) = 1/2. While this condition strictly may
not be satisfied for extremely weakly segregated melts (e.g., for
which the notion of IMDS not well suited), it is achieved under
practically all experimentally relevant conditions where BCP
microdomains form. Depending on the assembly topology, e.g.,
whether cylinders, layers, spheres, or networks, these IMDSs will
split into a set ofM disconnected surfaces, Sd, which we then can
label with the domain index d = 1, ..., M, according to each
connected surface in V. Hence, there is one domain for every
sphere and cylinder in the assembly, while notably, each lamellar
“double layer” corresponds to two domains by this count. Given
the set of IMDSs, we can define volumes Vd,A and Vd,B associated
with A and B portions of domain d as follows (see Figure 1). The
domain volume Vd,i corresponds to the set of points such that
ϕi(x) > 1/2 (i.e., x is in a i-type “brush” region), and the AB
junctions of chains passing through x are the most likely to lie on
Sd among all IMDSs. In this sense, we refer to the points x∈ Vd,α

as associated to the common IMDS at Sd. The union of Vd,A and
Vd,B then defines the dth domain of the melt.
A subdomain can be defined by choosing a point xI,d ∈ Sd and

considering a local patch of the IMDS at of xI,d surface area dA of
domain d. The subdomains dVd,α are then defined as the
volumes of points in Vd,α, that associate to the IMDS at xI,d (i.e.,
these are points where chain junctions are closest to xI,d among
all IMDS points). Graphically, subdomains are wedge-like
volumes that extend away from the IMDS into the brush regions
on either side of the interface (see examples highlight in white, in
Figure 1). Notice that a subdomain is infinitesimal in lateral
width but extends to finite dimension along the chains. This is
motivated by the fact that in the SSL the area per chain and
extent of chain fluctuations transverse to its mean trajectory
become arbitrarily small when compared to the mean extension
as χN→∞.29,51 Therefore, from this SSL perspective, the finite
volume of entire domains should be considered to include a
collection of wedge-like subdomain volumes, each of which can
be thought to incorporate one (or more) BCP chain volumes.
Finally, we define the terminal boundaries Td,α as the surfaces

swept out by the “outer edges” of subdomains of both types. For
example, consider the points in dVd,A that extend away from the
IMDS of the lamellar domain in Figure 1. At its outer edge,
which we call the terminal boundary, dVd,A meets another
subdomain, say dVd+1,A, corresponding to the neighbor domain d
+ 1. The set of outer edges, or termini, of dVd,A forms the 2D
(generically nonplanar) terminal surface Td,A; in this example, it

constitutes the boundary between two like domains, Vd,A and
Vd+1,A.
Notice that this definition of terminal boundaries does not

require any specific assumptions about interpenetration of the
brushes. Instead, one can think of these terminal surfaces as
analogues to the continental divide along a ridge of the Rocky
Mountains. On either side of the ridge, rain and snowmelt flow
down toward distinct coasts of the North American continent.
Likewise, the terminal boundaries correspond to invisible
boundaries that divide opposing brush regions according to
the condition that it is equally likely that a chain at that point on
the terminal boundary associates to more than one IMDS
points. As we illustrate below, this definition provides a natural
and generic means to decompose a packing of compact domains
(e.g., spheres and cylinders) into cellular shapes that are
topologically equivalent to more familiar Voronoi tessellations
of crystal packings, but whose shapes reflect the actual physical
locations of chains and therefore differ substantially from those
cellular polyhedral (e.g., unlike strictly planar Voronoi cells,
terminal surfaces in general may have curved shapes). Crudely
speaking, we can think of the terminal points as labeling the
furthest reaches of chain stretching away from an IMDS.
Importantly, we note that in most (i.e., nonlamellar) domain

types there is an “inner” terminal surface, where the subdomain
termini contact other subvolumes from the same domain, but
those subdomains are associated with distinct points on the
same IMDS. As a natural example, consider the inner (core)
subdomain in the hexagonally packed cylinder phase, where it is
commonly assumed that the chain termini should bunch along
the 1D axis through the center of the domain. More generally,
this inner terminal surface will be also 2D, which is perhaps
easiest to envision supposing a distorted cylindrical domain,
whose IMDS cross section is elliptical rather than circular (see
discussion of Figure 8 below). In this case, one expects that the
inner terminal boundary will be a planar 2D strip. Crossing from
bottom to top, this strip delineates regions of the domain that
where chains associate to the bottom and top portion of the
IMDS. Below, we show that while this definition is quite natural
and generalizes to any domain shape, it leads us to revisit
previous assumptions about packing frustration in complex
domains like DG, where the geometries of both the “inner” and
“outer” terminal boundaries are far from intuitive. Crucially, the
inner terminal boundaries distinctly need not be limited to the
usually assumed points (spheres), straight lines (cylinders),
skeletal graphs (networks) or parallel planes (lamellae).
In summary, the subdomain decomposition results in the

following geometrical objects from a given BCP melt
configuration: (i) IMDS (Sd)a connected 2D surface for
each domain d = 1, ..., Nd in the melt; (ii) domain volumes
(Vd,i)connected volumes of like components, where chains
associate to a common IMDS (one per each material type i for
e a c h d om a i n d ) ; ( i i i ) s u b d om a i n v o l um e s
(dVd,i)(infinitesimal) wedge-like volumes of like components
for which chains are associated with a common point on a
common IMDS, xI,d∈ Sd (two component subvolumes per point
on each IMDS); (iv) terminal boundaries (Td,i)2D surfaces
(not necessarily smooth) swept out by the outer/inner edges
(termini) of subdomains and adjacent to at least one terminal of
distinct subdomain (two surfaces with points associated with
points on the IMDS xI,d ∈ Sd). With these specific definitions in
mind, we now proceed to describe examples for analyzing these
features and describing their connection to BCP assembly for
complex domains. We first focus on the surface geometry of the

Macromolecules pubs.acs.org/Macromolecules Perspective

https://doi.org/10.1021/acs.macromol.1c00958
Macromolecules XXXX, XXX, XXX−XXX

E



IMDS shape and then describe a generic approach to quantify
chain stretching via geometric proxies of the terminal boundary
geometry.
II.B. IMDS Geometry: Fingerprints of Surface Shape.

We now describe the metrics of IMDS shape and their
connections to BCP assembly thermodynamics. Our key focus
is on complex morphologies where these local motifs vary from
place to place at the subdomain scale, indicating packing
geometries of BCP chains which likewise vary throughout the
assembly.We begin with a general discussion of IMDS geometry
and its connections to BCP thermodynamics and packing but
then focus on the particular case of the bicontinuous DG
network as a salient example.
As a two-dimensional surface embedded in three Euclidean

dimensions, the IMDS can be characterized by a number of
quantities. Some of these are global quantities like the total area
or the surface topology (i.e., number of distinct domains and
genus), while other quantities of interest for subdomain
characterization are local,61,62 such as the local orientation of
the IMDS (its normal vector N̂) and its curvatures. The analysis
of 2D surface curvature is described elsewhere in much greater
depth. Here we overview its rudimentary features.
Consider a curve at given point x on a surface and in direction

v̂ tangent to the surface at that point (i.e., v̂⊥N̂). If rc is the radius
of the circle that just “kisses” this curve at its point of contact
with the surface, then the normal curvature along v̂ at x is κv̂(x) =
rc
−1. Because the IMDS is 2D, this curvature can be measured in

two independent directions at every point. Therefore, we can
consider a second direction û not only tangent to the surface but
also perpendicular to the initial direction v̂ with corresponding
curvature, κû. It can be shown that for every direction there is a
special set of directions, i.e., a choice of v̂ and û, such that the
curvatures κv̂ and κû are respectively maximal and minimal.
Those directions are known as the principal curvature
directions, and the curvatures, which we denote as κ1 and κ2,
are known as the principal curvatures (see Figure 2A). The
principal curvatures and directions fully characterize the local
shape of the surface, and these can be easily computed via a
range of numerical techniques, given either an analytical
representation of an IMDS shape or instead a discrete
approximation, e.g., a triangulated mesh of the ϕA(Sd) =

ϕB(Sd) = 1/2 isocontour from, for example, an experimental 3D
reconstruction of the IMDS. Physical properties of physical
interfaces, like the IMDS, depend on two rotationally invariant
measures of curvature, which are themselves derived from the
principal curvatures

κ κ
κ κ=

+
=H K

2
and1 2

G 1 2 (1)

where H and KG are known as the mean and Gaussian
curvatures. Note that the signs of principal and mean curvatures
are dependent on the convention used for defining the surface
normal, i.e., pointing “outward” or “inward”. Here, we take the
intuitive definition such that H > 0 for cylinders and spheres.
Examples of the local surface shape can be mapped on 2D plane
spanned byH andKG, where standard surface shapes, like planes
(H = KG = 0), cylinders (H > 0, KG = 0), and spheres (H

2 = KG),
can be visualized by locus of points in “curvature space” (see
Figure 2B). Bicontinuous network shapes like DG and DD are
characterized by regions of saddle-like surface shapes,
corresponding to principal curvatures of opposite sign and KG

< 0. Note that no surfaces exists where Gaussian curvature
exceeds the spherical limit, i.e., KG > H2.
For complex domain shapes and, most notably, for the

bicontinuous phases like DG and DD phases, IMDS shapes are
characterized by spatially varying patterns of curvature.63 As an
example, consider the basic unit of the DG IMDS shown in
Figure 3A, which envelopes a single node of one of the two
gyroid networks. There are 16 nodes per body-centered-cubic
unit cell, located at Wyckoff positions 16b of the Ia3̅d space
group,64 and each nodal region corresponds to a 3-connected
tubular IMDS region, as highlighted in Figure 3A. The IMDS of
one of the two gyroid networks can be constructed by
combinations of translation and rotation of this unit. This
basic nodal unit has a D3 (aka . 3 2 in Hermann−Mauguin
notation) point symmetry: one 3-fold axis along a ⟨111⟩
direction with three perpendicular 2-fold axes along ⟨11̅0⟩
directions. The 3-fold axes of these units are rotated by ±70.5°
between adjacent connected nodes. The nodal units of the
second network in the DG are generated by inversion, and thus
the two independent networks are enantiomorphic. Figure 3B,C
shows the spatial distributions of respective mean and Gaussian

Figure 2. Local metrics of surface shape. (A) Schematic of the local curvature measurement from a 2D surface, shown here as a saddle-like surface, with
discs highlighting the curvatures κ1 and κ2 measured in two perpendicular directions in the tangent plane of the surface. The orthogonal directions
corresponding to the maximal and minimal values of curvature are known as principal curvature directions, and the corresponding curvatures are the
principal curvatures of the surface at that point. (B) “Curvature space” of possible 2D surfaces in terms of the mean curvature and Gaussian curvature
(eq 1). The dashed lines highlight characteristic classes of shape: spherical, cylindrical, and minimal saddles (H = 0 and negative KG). No shapes exists
in the gray parabolic region bound by spherical geometry.
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curvatures on the nodal unit (within one of the two single gyroid
network domains) from a level set model of a 30% minority
volume fraction DG.65 The Gaussian curvature maps roughly
delineate two characteristic regions on the nodal unit: a nearly
planar region above and below the node centered about and
perpendicular to the 3-fold axis where KG nearly vanishes; and
three saddle-like regions in the “elbow joints” that connect pairs
of adjoining tubular struts where KG is most negative. This
general pattern of Gaussian curvature is largely preserved for
other realizations of IMDS shapes of DG, say, from SCFT
predictions, mathematical models, or experimental tomographic
reconstructions. Note that certain features of the curvature map
vary considerably, notably, the degree to whichH varies over the
surface and its correlation with local values of KG. We show
below that the spatial map curvature over this nodal unit serves
an important “morphological fingerprint” for comparisons
between theory and experiment.
How are these local measures of IMDS shape related to the

structure and thermodynamics of the underlying BCP chain
packing? Here, we review two heuristic concepts and their
connection to local curvatures: area-minimizing surfaces and

area distributions. In the regime of sufficiently strongly
segregated BCP domains, thermodynamics derives from two
dominant contributions: the enthalpic cost of interdomain
contact and the entropic cost of Gaussian chain stretching in the
brush domains.29,31 In well-segregated domains, the interfacial
region over which unlike monomers come into contact becomes
much narrower than the overall domain thickness, so that the
former cost takes the form of a surface energy per unit area γ ∝
kBTχ

1/2ρ0a, where ρ0
−1 and a are the respective statistical

volumes and lengths of segments in the melt.5 Momentarily
putting aside the cost of chain stretching, one might expect as a
first approximation that BCP morphologies correspond to
domains shapes that purely minimize the surface energy cost of
unlike domain contact

∑γ=F A

d

dint
(2)

where Ad is the area of IMDS of domain d. Hence, minimizing
the interaction energy corresponds to minimizing the areas of
IMDSs. Of course, the variation of IMDS shapes cannot be
arbitrary due to the brush-like domains on either side of the
interface. As a first approximation, one might expect to account
for this simply by considering only IMDS which fixes the
volumes of these domains on either side of the 2D surface, due to
the fixed volume fraction of unlike blocks composing those
domains. In this “unhooked chain” approximation, IMDS shapes
could be thought of as emulsions of unlike fluids, ignoring the
additional consideration of chain connectivity to the surface, and
mathematically, the volume constraint enters through a uniform
pressure difference ΔP acting across the interface. Optimal
shapes then correspond to the Young−Laplace law:

γ
=

Δ
=H

P
const

(3)

Thus, purely area-minimizing surfaces (subject to constraints on
total or relative volume) correspond to the condition of
constant-mean curvature (CMC). On the basis of the
thermodynamic cost of IMDS area, it was previously proposed,
therefore, that CMC surfaces should serve as natural models for
BCP morphologies.66 For example, neglecting any shape
perturbations introduced by anisotropic domain packings (see
section II.C), the IMDS shapes of the three canonical
morphologies (i.e., in the UCA) of spheres, cylinders, and
layers are all CMC surfaces. Beyond these phases, the CMC
model of IMDS shape was instrumental in early interpretations
of bicontinuous, triply periodic network morphologies like DD
and DG. Such network phases are associated with the cubic
minimal surfaces, the diamond (D) and gyroid (G) surfaces,67,68

which are surfaces that have H = 0 everywhere and partition
space into two interconnected “labyrinths” of equal volume.
Both the minimal D and G surfaces have an associated family of
CMC variants63,69−71 that enclose different volume fractions of
the two types of domains: a slab-like matrix phase surrounding
the undulating minimal surface and two interpenetrating tubular
networks, which meet at 3- or 4-coordinated junctions (nodes),
and remain as connected networks for a wide range of volume
fractions for the DG and DD morphologies, respectively.
Notably, these minimal surfaces belong to a much broader class
of triply periodic minimal surfaces (TPMS), including cubic and
noncubic surfaces. The area-minimization properties of TPMS
and their CMC cousins and their underlying connection to the
formation of associated sponge-like morphologies in a range of

Figure 3. Curvature maps on DG IMDS. (A) A nodal unit of a DG
domain, corresponding to a 3-fold IMDS region shown in opaque red,
excised from the semitransparent single-gyroid IMDS. Notably, the
complete cubic double-gyroid IMDS can be constructed from rotation,
translation, and inversion of the nodal unit. Here, one of the two gyroid
domains is shown, within the semitransparent blue region. (B, C)
Examples of the mean and Gaussian curvature distributions on the
nodal unit, whose shape is described by a level set model enclosing 30%
of the total volume. Clearly visible are nearly planar regions (H and KG

closest to zero) above and below the plane of 3-fold symmetry and the
saddle-like “elbow” (KG most negative) that adjoin neighboring struts
of network.
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lyotropic and liquid crystalline systems,72,73 are areas of long-
standing interest in self-assembling soft and biological materials
beyond BCP.
The existence of CMC surfaces with the correct topology and

variable volume fractions of bicontinuous networks morpholo-
gies of BCP likely would seem to imply that area minimization is
the prevailing thermodynamic drive that controls BCP
assembly.66 Of course, this heuristic picture does not account
for the competing effects of the entropic penalty of chains
extending away from the interface. Indeed, the role of the IMDS
shape on chain packing in the domain volumes underlies the
second heuristic conceptarea distributions of brush domains.
Next, we consider a subdomain volume associated with a
particular point on the IMDS, xI,d ∈ Sd, which is the location of
the interblock junction. The strong-stretching approximation
assumes that chain trajectories extend, on average, from the
junction point along straight lines away from that interface.29We
define the linear distance z of that trajectory of the i block away
from the IDMS, which spans from z = 0 at the IDMS to z= hi, the
total thickness, or “height”, of the subdomain volume. As shown
schematically in Figure 4A, the distribution of volume in this
subdomain can then be described by the volume element dz
dA(z) where dA(z) is the area of the wedge-like subdomain
transverse to the mean trajectory, and the total volume of the α
block portion of the wedge is simply the integration of this
volume element along z, dVα = ∫ 0

hαdz dA(z). The simplest, and
most commonly invoked, assumption of BCP chain packing
assumes normal stretching, that is, subdomains that extend
along the local IMDS normal N̂. Under this assumption of
normal extension, the area distribution in the subvolumes follow
a simple geometric form, known as Steiner’s formula,72,74 which
relates the area element at z to the area element at the IMDS dA0

= + +A z A Hz K zd ( ) d (1 2 )0 G
2

(4)

where H and KG are the mean and Gaussian curvatures of the
IMDS at the associating point xI.
Steiner’s formula provides a convenient and intuitive proxy for

comparing the distinct packing geometries of BCP domains,
purely in terms of local curvature measures of the IMDS.
(Although, it is important to clarify that this strict connection
holds only for normal extension, which need not be case for an
actual BCP domain.) ForH < 0 (H > 0) the geometry is concave
(convex), meaning that the available area to the chains in the

subdomain decreases (increases) with distance from the IMDS,
as on the inside (outside) of a sphere or cylinder. For cylinders,
the area varies strictly linearly, while for spheres, which have KG

= H2 > 0, the area increases quadratically from inside to outside
along the normal trajectory. The locally saddle-like shapes of the
tubular IMDS of the bicontinuous phases like DG and DD are
described by negative curvature KG < 0, leading to negative
quadratic term in dA(z). Hence, even for the convex, matrix
domain whereH > 0, the area of these “saddle wedges” increases
more slowly with z than cylinders of equivalent mean curvature,
and for wedges exceeding a height H/KG the area distribution
actually becomes nonmonotonic with distance from IDMS.
Figure 4B shows examples of the area distribution versus height.
A corollary of the Steiner formula for the area distribution is a

lesser known condition for the relationship between the
curvatures of a base surface and a surface of constant z, i.e.,
the surface “pushed out” by a constant thickness z along the
normals, sometimes called a parallel surface.62,75 The local
curvatures of this constant-z surface are simply
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+

+ +
=

+ +
H z

H K z
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2
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whereH0 and KG,0 are the mean and Gaussian curvature of the z
= 0 surface.
These formulas, in combination with the assumption of

uniform height in one of the blocks, provide an alternative
heuristic model for the IMDS shape distribution and one that
sharply contrasts to the CMC shapes for bicontinuous DG and
DD. Notably, it is commonly expected (though not strictly
proven) that the entropy cost of block extension should favor
uniform height, and the cost of any nonuniform extension
required by the domain geometry in combination with the
requirement for uniform melt density is associated with packing
frustration. In this context, Matsen and Bates32,35 suggested that
the complex network phases are most acutely frustrated in the
minority subdomains interior to the tubular IMDSs, based on
apparently nonuniform cross-sectional shapes (we return to
measures of subdomain thickness below). Following this line of
reasoning, assuming not only that the variation of the tubular
block height is unavoidable but also that the matrix block
nevertheless strongly favors uniform stretching, one arrives at
the so-called constant matrix thickness (CMT) model of IMDS

Figure 4. Area distribution and Steiner’s law. (A) Schematic of the area distribution corresponding local surface patches extended normally as distance
z away for a reference surface, here shown as a saddle-like surface. Steiner’s law (eq 4) relates the area of the surface patch at z, dA(z), to the area of the
reference patch at z = 0. (B) Plots of corresponding area distributions for reference surfaces characteristic of IMDSs of BCPmorphologies: planar (H =
0, KG = 0), cylindrical (H > 0, KG = 0), spherical (H

2 = KG > 0), and saddle-like (KG < 0). The regions of z > 0 give a model of outer, convex corona of
the curved domain, while the z < 0 describes its inner, concave core. Here, we plot cylindrical, spherical, and saddle surfaces with a common value of
mean curvature, highlighting differences due to Gaussian curvature.
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shape. In this model, matrix blocks are assumed to stretch along
the local normal to a constant height hCMT, and the surface swept
out by the matrix block subvolumes, i.e., the terminal boundary,
is assumed to be a triply periodic minimal surface (G or D) that
threads through the middle of the slab-like matrix domain. This
implies the terminal boundary of matrix block has zero mean
curvature (hCMT = 0), so from eq 5 we have the following linear
relationship between mean and Gaussian curvature for CMT
models of bicontinuous morphologies:

= −H K hG CMT (6)

As tubular interfaces are characterized by negative KG (except at
certain points), CMT shape implies variable mean curvature, in
direct contrast to the CMC canonical domain shapes for which
H is uniform and area is minimized for fixed volume (fraction). A
deviation of IMDS curvatures from CMC shapes is consistent
with SCFT studies of DG andDDmorphologies byMatsen,76 at
least for a limited range of intermediate segregation conditions
of linear AB diblocks.
To better visualize the complex curvatures of IMDS shapes for

complex morphologies, and following the experimental analysis
of Jinnai, Spontak, Hashimoto, and co-workers77 (see discussion
of IMDS shape characterization below), it is useful to analyze the
distributions of mean and Gaussian curvatures plotted in the H
and KG plane, as shown in Figure 2A. Notably, although
curvature distributions for IMDSs from complex bicontinuous
networks are necessarily variable, even in an ideal equilibrium
structure, the two heuristic models of CMC vs CMT shapes,
which represent optimal geometries for minimal IMDS areas vs
uniform matrix thickness, provide a simple way to frame and
interpret the curvature distributions. For CMC shapes,
curvature distributions belong to a vertical line of constant H
but with variableKG, while for CMT shapesH andKG fall along a
diagonal line KG ∝ −H.
Given the framing provided by these two heuristic models, we

then compare the curvature distributions extracted from SCF for
bicontinuous DG in Figure 5. The simple shapes of the CMC
versus CMT distributions in the H and KG plane provide a
graphical means by which one can assess whether the IMDS
shape is more CMC-like vs more CMT-like. For example, in
Figure 5A and in ref 78, we compared the curvature distributions
for increasing segregation strength, showing that at weak
segregation distributions tended more toward the CMC case,
whereas increasing to intermediate and eventually strong
segregation shows a tendency of these distributions to skew
toward a more diagonal distribution consistent with CMT-like
shapes. On the basis of the heuristic discussion above, this
suggests that a relatively weak segregation, the structure of the
diffuse IMDS is dominated by area minimization, and with little
perturbation due to chain entropy. The tendency toward more
CMT-like shapes at stronger degrees of segregation is consistent
with emergence of a thermodynamic balance between area
minimization at the IMDS and the countervailing forces of chain
stretching in the brush volumes.
In Figures 5B,C, we also show for a fixed (high) segregation

strength the effect of variable compositions f and for variable
conformational asymmetry, or the ratio of statistical segment
lengths ϵ = aA/aB, a complex spectrum IMDS “curvature
fingerprints”. That is, there is not a “standard” DG motif for
equilibrium BCP assemblies, but instead, each IMDS exhibits
variation at the subdomain scale whose details trace back to
underlying features of the molecular constituents. For this range
of conditions, the DG IMDS curvature distributions are

predicted to exhibit characteristic patterns which loosely
correspond to the two spatial regions highlighted in Figure
3B,C, i.e., the saddle-like elbows and the quasi-planar elements.
Roughly speaking, while the curvature distributions do not
follow strictly CMT or CMC distributions, they do tend to
localize along a 1D curve inH andKG space, which looks rather a
bit like a “hockey stick” pattern: two approximately linear
regions meeting at a common point. We note that flatter (KG→

0) regions follow the lower slope, diagonal relationship of the
CMT-like surfaces, while the saddle-like regions (more negative
KG) tend somewhat toward more H-vertical, CMC-like surfaces.
Furthermore, the tendency toward more CMT-like surfaces also
grows with volume fraction of the minority component f,
suggesting that as the matrix domain in the DG phase narrows
on average, the more it tends to resist thickness variations.
The apparent coexistence between more CMT- and CMC-

like regions on the same IMDS (e.g., ϵ = 1 and f = 0.3) implies
that thermodynamic tendencies of area minimization and
optimal chain packing need not be distributed uniformly for
complex domains. For the case of the DG phase, these patterns
suggest that the prerogatives of IMDS area minimization are
more operative in the saddle-like elbows of the nodal unite, while
the tendency toward CMT-like packing may be stronger in the
quasi-lamellar regions of the IMDS that run orthogonal to the 3-

Figure 5. Curvature fingerprints of BCP double gyroids (A−C) show
distributions of IMDS shape from DG domains of linear AB diblock
melts predicted by SCF, plotted in theH and KG curvature landscape of
Figure 2. Rows compare curvature distributions of systematically varied
parameters: (A) shows (left to right) increasing segregation strength
χN for fixed volume fraction and conformational symmetric; (B) shows
(left to right) segments shows increasing volume fraction f of the
tubular domain for fixed segregation strength and conformational
symmetric segments; and (C) shows (left to right) increasing
conformational asymmetry ϵ = aA/aB for fixed volume fraction and
segregation strength. For each case, we show the locus of curvature for
the constant mean curvature (CMC) surface and constant-matrix
thickness (CMT) surface of the same volume fraction as dashed red and
blue lines, respectively. Note the middle column of each row shows the
same reference conditions, f = 0.3, χN = 40, and ϵ = 1.
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fold axis of the node. To more directly assess how the
countervailing drives of chain stretching operating on either
side of the IMDS vary throughout the DG domain, we turn in
the next section to metrics of the thickness distribution in
nonuniform domains.
II.C. Terminal Geometry and Domain Thickness:

Where the Domain Ends. In the foregoing section, we
described the geometrical measures of IMDS shape and their
connections to the thermodynamics of microdomain formation.
We now turn to consider aspects of chain packing that are
“beneath the surface”, within the like-material component
regions of BCP domains away from the IMDS. Here, the central
questions to consider are, for a given morphology, what is the
physically meaningful notion of thickness of a domain that
describes how far chains reach into a domain and which
measures best capture variation of the thickness in complex
domain shapes and packings? Notably, the specific structure of
chains arrayed within these chemically homogeneous domains
are essentially invisible to the most common experimental
techniques (see discussion in section III). Although the specific
structure of chain packing is far less accessible to experiments
than the IMDS itself, it is no less critical to the thermodynamics
of the BCP assembly, particularly when it comes to predicting
and understanding why some complex morphologies appear and
others do not. Thus, we focus on measures of the domain
thickness and local extension of chains that can be inferred from
the composition field of unlike domains and the IMDS, i.e.,
without specific data on the chain configurations themselves.
To clarify our meaning of domain thickness, we return to the

terminology introduced above in section II.A, where sub-
domains describe the wedge-like volumes of chains that
associate to a particular point on a particular IMDS. On either
side of that IMDS, chains extend away from their interblock
junctions into brush-like domains of like material. If we imagine
following the extension of the chain along the contour of the
subdomain, we eventually encounter chains from an opposing
brush, i.e., chains that associate to some other distant point on an
IMDS (which could belong to the same or a different domain).
The point along the subdomain contour where its segments are
equally likely to belong to some other subdomain marks the
terminal boundary, essentially the geometric “end” of the

subdomain. We define the local thickness of this portion of the
domain (belonging to one of the polymeric blocks) as the
distance between the terminal point and its corresponding point
on the IMDS, where the chain junctions lie.
While chain ends are in fact distributed throughout the

volume of the subdomain and there is always some degree of
brush interpenetration even in well-segregated samples, such a
local thickness measure has the clear advantage that this quantity
enters directly in the SST description of BCP thermodynamics
in the leading order entropic cost of chain stretching in the
brushes. The coupling between entropy and 3D packing of
chains is arguably mademost transparent in what is known as the
parabolic brush theory79 for the entropy in the SSL, which takes
the form for the domain5,56
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whereNα and aα are the respective number and statistical length
of α-type segments, and ρ0

−1 is their (assumed) common
volume. In this formulation, the parabolic brush entropy
“measures” the mean-square distance along the trajectories
away from the IMDSs, averaged over the volumes of those brush
domains (of each block), up to its maximal distance, hd,α. Hence,
these heights hd,α, which we call the subdomain thicknesses, are
the most directly relevant measures of thickness from the point
of view of the SSL thermodynamics of chain packing. With this
in mind the natural question becomes given a set of BCP domain
shapes, specified by a set of corresponding IMDSs; how do we
extract subdomain thicknesses hd,α, i.e., without direct access to
the chain configurations themselves?
At first glance, the notion of subdomain thickness for BCP

seems fairly intuitive. On the inside of an IMDS (say for a
cylinder of spherical domain), chains extend some distance
toward the “center” or “midpoint” of that volume, while on the
outside chains stretch up to a “halfway” point between opposing
brushes meeting from two neighbor domains. Despite their

Figure 6. Centroidal vs medial thickness of ellipsoid. (A) An ellipsoidal model of an IMDS shape, which is partially cut away to reveal its inner medial
surface, a central disc normal to axis of revolution (semiminor axis). (B, C) Centroidal thickness and medial thickness, respectively, measured in the
cross section of the ellipsoid. In the former (centroidal) the thickness h is measured from the bounding surface (i.e., IMDS) to the centroid of the
volume, while in the latter (medial) the thickness extends normally away from boundary surface, up to the medial surface, a 1D line in section, shown as
black. (D) Comparison of the normalized distributions of centroid and medial thickness h for the ellipsoid. In (B) and (C), cartoons (red)
schematically depict the chain packing motifs associated with different thickness measures, suggesting a generically lower entropic cost for medial
stretching.
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intuitive appeal, these notions run into ambiguity as soon as one
tries to account for local variations of domain shape required
from space-filling BCP assemblies.
To illustrate this point, and to introduce a generic framework

for defining subdomain thickness from IMDS shapes, consider
the interior to an ellipsoidal domain shown schematically in
Figure 6A. This shape could approximate the oblate shape of
quasi-spherical domains in, say, a FK phase as we describe below,
but for now we simply ask the following question: given such a
convex, but anisotropic IMDS shape, how should one estimate
its thickness? As outlined above, the notion of domain thickness
depends on the location of the terminal boundary, that is, the
locus of points that define the furthest reaches of subdomains
extending away from the IMDS into the interior of this domain.
Arguably the simplest assumption for this terminal boundary,

and one that is often assumed for the interior of convex domains,
such as spheres and cylinders, is what we call the centroidal
ansatz.29,33 In this ansatz, the terminal boundary is the point-like
centroid of volume of convex domains (e.g., Figure 6B) or the
line-like centroid of cross-sectional area for quasi-cylindrical
domains. For perfectly symmetrical, spherical or circular, IMDS
shapes, this is quite reasonable as all chains would have to extend
the same distance to the central point or 1D axis from the IMDS.
However, constraints on the packing on spheroidal or cylindrical
BCP at constant density always require some perturbation from
perfect spherical or cylindrical IMDS symmetry. Moreover,

asymmetric IMDS shapes become a symptom, if not a feature, of
complex spheroidal phases such as FK phases. Hence, a realistic
description of chain packing in convex BCP domains must
account for anisotropic domain shapes that depart from
spherical or cylindrical. Considering the simple example of the
ellipsoidal domain, it is intuitive to see that the centroidal ansatz
would assume that subdomains must vary in their extension,
with relatively longer (shorter) thickness extending from the
high-curvature (low-curvature) points on the IMDS to the
center point, a distribution which corresponds to the yellow
thickness histogram in Figure 6D. It is also intuitive that the
more anisotropic the domain shape becomes, the more
pronounced is the asymmetry between the largest and smallest
local thickness value if the terminal boundary is fixed to the
centroid. From a thermodynamic point of view, such
asymmetric stretching becomes unfavorable relative to a more
uniform distribution of the chain entropy.
This dilemma motivates a second terminal packing motif,

which we denote as the medial ansatz. This ansatz is formally
connected to what is known as the medial set of a surface
(embedded in three Euclidean dimensions), a concept
developed in the field of computational geometry.80−83

Mathematically, the medial set (or sometimes it is called medial
skeleton or medial axis) is the set of points equidistant to two or
more points on a boundary surface (or set of bounding surfaces).
To visualize this, consider a point interior to the ellipsoidal

Figure 7. Skeletal vs medial thickness of tubular network domains. (A) A unit cell of the cubic DG, highlighting the skeletal graph (red line) of that
threads through one of the single gyroids, with a single nodal unit of the IMDS highlighted as in Figure 3. Here again, we consider the f = 0.3 level set
model of the gyroid IMDS. (B) Distribution of local skeletal thickness, h, measured from the IMDS to the closest point on the skeleton. The histogram
in (C) compares the thickness distributions from the skeletal ansatz for the inner domain (red) to the thickness distribution of the outer (matrix)
domain (blue), which in this plot is computed as a half the distance from a point on the IMDS to its closest point on the other IMDS. For comparison,
(D) shows the “medial web” corresponding to the interior medial surface (dark red) within the IMDS of the same single gyroid domain as (A). (E)
shows the medial thickness distribution from the IDMS to its corresponding point on the medial web, shown in (G). The color scale is shown via the
same scaled thickness in (B), (E), and (G), highlighting clearly that the largest skeletal thickness corresponding to the shortest medial thickness
regions. (F) plots the normalized medial thickness for inner (red) and outer (blue) domains. Comparison of (C) to (F) shows that medial thicknesses
are considerably less disperse and shorter, on average, than skeletal thicknesses.
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domain in Figure 6. The distance to the closest point on the
boundary surface extends along the normal of that surface at the
closest point. As we consider the points distributed along a
common normal vector, they all have to the same closest point
on the boundary surface, until we reach a point that is equally
distant to another point coming from the opposite side of the
boundary surface. For the oblate ellipsoid, as shown in the cross
section in Figure 6C, these points lie on the mirror plane that
bisects the ellipsoid (perpendicular to the semiminor axis), and
the set of those points constitute a flat 2D surfacea disk.
Notice that medial points corresponding to the high-curvature
rims of the ellipsoid occur where the local normals of the
boundary surface focus and intersect, forming a circular edge of
this medial set.
If we consider the distances from the boundary surface to the

medial surface of the ellipsoid, we find a medial thickness
distribution given by the orange histogram in Figure 6D.
Comparison to the (yellow) centroidal thickness distribution
shows the obvious conclusion that for each point on the IMDS
the medial thickness is strictly less than the centroidal thickness
for the same corresponding point. We further note that the
medial thickness is less than or equal to the so-called focal
thickness defined by the thickness hf, given by the height at
which according to Steiner’s law; dA(hf) = 0.74 It can be shown
that the medial set construction not only generates a local
thickness, but it also tessellates the entire domain into a set of
space-filling subdomains. That is, within the infinitesimal wedge-
like subvolumes that extend from the bounding IMDS along its
normal, all points up to themedial thickness are associated in the
sense that they are closest to the same point on the boundary.
Hence, we propose here that the medial mapping provides a

natural and generic model of chain stretching along the normal
on either side of an arbitrarily shaped IMDS. Schröder-Turk,
Hyde, and co-workers73,84 first proposed the medial thickness as
a physical metric of inhomogeneous thickness for low molar
mass lyotropic examples of the bicontinuous phases.85 Here, we
extend those insights to the asymmetric packing constraints in
multiple domain BCPmorphologies, for both network and non-
networkmorphologies. Indeed, since both centroidal andmedial
ansatzes provide space-filling motifs, it is straightforward to
argue that the entropic cost of stretching in the latter should be
generically lower than the former for the same domain shape.
That is, not only are medial chain packings possible for arbitrary
domain shapes, they very likely provide a more realistic
description of the optimal free energy configurations. Taken
together, this suggests that the medial thickness provides the
most natural and generic metric for chain packing in BCP
domains.
In the remainder of this section, we give two demonstrations

of the implications of medial geometry of BCP domains by
comparing it to other previously invoked and, while arguably
more intuitive, less physically realistic notions of domain
thickness. First, we consider how the medial geometry of
bicontinuous phases, like DG and DD, revises the heuristic
notion of packing frustration, principally for the blocks that
constitute the interior of the tubular network domains. Second,
we consider the medial geometry of the “outer blocks” in various
periodic packings of sphere-like domains and revise the standard
notion that each sphere-like domain occupies a polyhedral cell-
like volume. We refer the reader to the Supporting Information
where we present in some detail the workflow involved and
instructions to obtain prerequisite data structures necessary to
compute medial surfaces via two different algorithms starting

from either BCP composition fields or IMDS shape directly, as
input. It also contains links to source data repository where we
host our software used to compute medial surfaces for analysis
shown in Figures 7, 9, and 20.

II.C.1. Skeletal vs Medial Packing in Bicontinuous Tubular
Networks. Understanding the nature of chain packing in the
complex bicontinuous phases, like DG and DD, has been central
to rationalizing their thermodynamic stability in the BCP phase
diagram. Notwithstanding the near-optimal IMDS area proper-
ties of tubular DG and DD phases described above (or at least
for their CMC variants), a central question has been: how does
one deal with the inhomogeneous molecular environments
required by the complex geometry of these phases and the
constraints of uniform density?
To appreciate the problem of packing within tubular network

phases, it is useful to recall the anatomy of these phases. Here, we
focus our description on the DG phase (see Figure 7), but this
anatomy generalizes to other double network phases, such as the
DD and DP structures. On the basis of the definition of domains
given above, an infinite triply periodic (cubic) structure of DG
phase includes only two domains (see Figure 1). These domains
are separated by a saddle-like terminal surface that divides the
twomatrix blocks at contact between their opposing brushes and
confines the two independent minority domains into two equal
volumes. To a good approximation, this outer terminal surface
has the shape of the triply periodic G minimal surface. The
IMDSs within either domain have the form of two tubular
surfaces that interconnect in a network of 3-coordinated nodes.
These tubular surfaces have the same topology and general
shape as the CMC variants of gyroid surfaces.69 The topology of
each network can be abstracted to a skeleton of bonds (skeletal
graph) that thread within the tubular struts from the center of
one 3-coordinated node to the next.64,67The nodes (or vertices)
of each of the two skeletons, each a single gyroid (SG) network,
are situated at eight of the 16b Wyckoff positions of the Ia3̅d
cubic space group of DG (the other SG skeleton spans on the
other eight positions). This skeleton captures the topology of
the tubular domains of the DG in the sense that characterizes all
of the equivalent (noncontractible) loops that can be formed
while staying within the same tubular domain volume. For
example, the single gyroid skeleton is classified as (10,3)-a net in
terms of its smallest nontrivial loop, a 10-strut path from one 3-
valent node to the next. Likewise, the diamond network, which
composes the skeletons of the DD phase, is categorized as a
(6,4) net.86

Beyond this topological property, these skeletons have been
used for characterizing the packing geometry of the double
network morphologies, although it must be noted that they do
not strictly encode geometrical properties of the domains, so
that one should consider their use as morphological metrics with
care. The skeletons seemingly approximate the “centers” of the
tubular domains and therefore are often invoked to construct an
intuitive generalization of the centroidal ansatz of convex
domains, which we call here the skeletal ansatz,74 in which the
blocks extend from the IMDS to a terminal boundary that is
confined to this 1D graph (see Figure 7A−C). For example, SSL
calculations by Milner and Olmsted29 and Lihtkman and
Semenov30 consider the free energy of DG and DD
morphologies where subdomains of minor blocks terminate
on these skeletal graphs. Notably, these SSL calculations predict
that the free energies of the DG and DD phases always exceed
competitor phases (e.g., lamella and hexagonal cylinders) over
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the full range of conditions for diblock melts and are therefore
not equilibrium phases according to existing SSL theory.
The high free energy of the DG and DD phases based on this

skeletal ansatz is consistent with a heuristic picture that the
interior of the tubular domains introduces excess chain
stretching due to requirement of the chains to reach from the
IMDS all the way to the n-valent nodes where bonds of the
skeletal graph join. See, for example, Figure 7B which shows the
spatial distribution of distances from the IMDS to the skeleton
for the tubular block of DG (the figure shows the 3-fold nodal
unit of the IMDS in Figure 3). In Figure 7C, we compare the
skeletal thickness distribution of this tubular block to the matrix
block, which we measure as 1/2 of the distance from a point on
the IMDS to the closest point on the IMDS of the other network
(note that the midpoints between these IMDS to IMDS
separations roughly approximate the G minimal surface).
Indeed, the skeletal thickness distribution of the block within
the tubes is larger on average and more disperse than the matrix
thickness distribution of the block outside the IMDS, seemingly
confirming the idea that key “problem” for the DG is primarily
packing within the interior of the tubular junction, which is most
often (e.g., for linear AB diblocks) the minority component
block.
Employing the medial measurement of subdomain thickness

paints a qualitatively different picture of packing frustration in
bicontinuous network phases and one, which we argue, more
accurately reflects the physical constraints of chain packing and
thermodynamics of these phases. Figure 7D shows the medial
surfaces computed from the two IMDSs of the DG phase (from
a 30% minority level set model ). This includes the terminal
boundary of the matrix phase, which roughly follows the gyroid
minimal surface and divides the two domains at the extreme of
the outer brushes. The interior of each tubular (SG) network is
described by a medial surface that maps out the “midpoint” on
the interior of that domain. Notably, these are not 1D sets
(although the 1D skeletons lie within the medial surface), but a
2D, web-like surface that threads through each network. These
interior medial surfaces spread out into quasi-triangular “webs”
that span the plane of the 3-coordinated nodes of the skeleton
(see Figure 7G). Between two webs on adjacent nodes of the
single gyroid the tangent planes define a dihedral angle which
rotates by ±70.5° as one progresses along the skeletal graph,
where the rotation sense is constant for a given SG network and
defines its chirality.74

The web-like appearance of the medial surfaces interior to the
tubular IMDS encodes a simple fact: polymeric blocks need not
extend all the way to the 1D skeletons of the network, but
instead need only to extend to this medial web to fill the
“middle” of the tubular domains. The implications of this fact are
most easily seen by comparing the inner domain thickness
distributions of the skeletal graph vs the medial subdomains in
spatial maps of thickness in Figures 7B,E and corresponding
histograms in Figures 7C,F. Simply put, the medial measure of
subdomain thickness is reduced (relative the skeletal one) by a
large and substantive margin (20% for this particular
composition) leading to a far more comparable mean thickness
between the matrix and tubular domains in this medial ansatz.
This thickness reduction largely comes from the three saddle-
like regions of the IMDS that span between the quasi-cylindrical
shaped portions that enclose adjacent struts, since subdomains
need only to extend to the 1D edges of the triangular web of the
medial surface, as opposed to the full distance to the skeletal
node. In this way, surface regions of maximal thickness of the

skeletal ansatz actually correspond to the regions of minimal
thickness in the medial ansatz, and vice versa, as shown in the
spatial map of skeletal and medial thickness of the tubular
domain in Figures 7B,E.
The reduced chain stretching required for medial in

comparison with skeletal packing of BCP chains argues that
the former is far more likely to describe a thermodynamically
stable chain packing. Moreover, it suggests that previous
heuristic views, not to mention prior SSL calculations, have
significantly overestimated the cost of packing frustration in the
DG and other bicontinuous phases. It remains to be understood
how sensitive the predictions of the stability window of DG in
the limit will be to this more modest degree of chain stretching
suggestion by the medial thickness of tubular networks and, as
we address in section III, how experimental methods can
ultimately map the chain trajectories away from both sides of the
IMDS.

II.C.2. Voronoi vs Medial Cells of Sphere and Cylinder
Phases. For the bicontinuous phases packing frustration is most
commonly associated with minority blocks that compose the
interior of the tubular domains. Spherical or cylindrical volumes
cannot tile space without interstitial gaps. Hence, frustration in
these sphere and cylinder morphologies is heuristically
associated with the shape of the outer subdomain component
(most often themajority component), although as we see below,
the consequences of this frustration are distributed to the inner
domain packing as well. To maintain uniform polymer density,
the outer brushes of the domains must conform to lower than
spherical (or cylindrical) symmetry environments that derive
from their crystallographic packings. The shapes of the terminal
boundaries are most often approximated as the Voronoi cells
(VC) of points that define the particular crystal struc-
ture.29,33,37,87 These polyhedral volumes enclosed by VCs are
defined as the region closest to a given point, known as the
generators of the Voronoi cells.88 Intuitively, BCP chains are
frustrated by the fact that, unlike for an ideally spherical domain,
coronal blocks have to extend further into the corners of these
polyhedral regions than they do to reach the planar walls.
However, like the skeletal graphs of network phases, Voronoi
cells can correctly capture the topologies and gross shapes of
different sphere-like or cylinder-like domain packings but do
not, in general, offer an accurate model of variable subdomain
thickness in BCP domains, either core or coronal.
Voronoi cells are constructed from the set of perpendicular

planes that bisect any pair of generating points: the cell bounds
all points that are closer to its generating point than to any of the
other generating points sites in the set.88 This results in a convex
polyhedral volume whose bounds are defined by the
intersections of those planes surrounding the site. Note that
generating points of Voronoi cells need not be periodic. In the
context of equilibrium models of BCP phases, in which sphere-
or cylinder-like domains are arrayed periodically, generating
points are most often taken as point distributions that model a
given crystal structure. A simple 2D example of this is the
hexagonal cell of the hexagonal point lattice (see schematic in
Figure 8A), which creates a hexagonal Voronoi cell via the set of
edges separating the point from each of its six nearest neighbors.
An 3D example is a BCC lattice (Figure 8B). Here the Voronoi
cell is a 14-sided truncated octahedron: 8 (larger) hexagonal
faces from nearest neighbors along the ⟨111⟩ directions and 6
(smaller) square faces from next-nearest neighbors along ⟨100⟩
directions.
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It is commonly thought that distinct spherical BCP domains
are enclosed with the Voronoi cells of the corresponding crystal
structure.34,37 Specifically, in the nomenclature that we have
introduced above, this assumes faces of Voronoi cells define the
terminal boundaries of the corona domains, planar regions
where opposing brushes from neighbor sphere-like domains
meet. However, it is important to note that Voronoi cells define
only the volumes of space closest to a point (i.e., the generating
Wyckoff point of the cell) and as such encode no information
about the size and shape of objects packed at those points. The
Euclidean distance to the spherical domain centers (Wyckoff
sites), upon which the Voronoi−Wyckoff tessellation is derived,
is in general a poor proxy for this association to one domain or
another.
To illustrate this point, we consider a simple 2D examples of

two types of domains arrayed on a hexagonal lattice in Figures
8D and 8E, whose IMDS shapes are circular and elliptical,
respectively. The Voronoi cells associated the with the lattice
points at the centers of both types of domains, isotropic and
anisotropic, are identical honeycombs of regular hexagons, as is
Figure 8A. Hence, in the case of elliptical IMDS in Figure 8E, the
shape of the Voronoi cell does not reflect the anisotropic shape
of the domains packed at the lattice points (in general, these are
Wyckoff positions). This would be an unrealistic model of for
the terminal boundaries as it reflects no information about the
relative distance of points in the cells to the IMDS. In short,
Voronoi cells, which lack information about the relative volumes
and shape of the domains occupying different sites of the crystal
packing, in general provide an inaccurate model of boundaries
between neighboring coronal domain brushes in the matrix.

While the distance from the domain centers is insufficient to
define boundaries between them, we argue here that the distance
of points in the coronal domains to the IMDSs themselves
should be closely correlated to association to one domain over
another. This follows from the heuristic notion that for a chain
with a segment at given point entropy favors it to be associated
with the closest point on the nearest IMDS because this
presumably requires the least stretching. Those boundaries that
divide space into the volumes that are closest to the IMDSs of
distinct domains are precisely the medial surfaces of the coronal
domains of the lattice. Thus, we argue that the medial geometry
on the outside of convex domains, such as those of sphere and
cylinder phases, provides a more accurate physical picture of
chain packing, and a more meaningful measure of subdomain
thickness, than can be captured through the shapes of Voronoi
cells of the same lattice. Returning to our example of the 2D
domain packings in Figures 8D,E, we see that the medial cells
distort in shape to reflect changes in local distance from IMDS in
anisotropic elliptical domains.
Beyond this simplistic example, it is crucial to point out that

BCP domain shapes in these complex crystals are far from
spherical. In terms of the symmetries, the space group of a
crystalline model of BCP structure implies that objects at
occupied Wyckoff position conform to certain point group
symmetry (i.e., a set of symmetries from inversion, mirror,
rotation, and improper rotation). Provided that they conform to
these point symmetries, the shape of the IMDS and the
distributions of the underlying chains that occupy each position
are free to vary from spherical. Indeed, the IMDS of these
domains can be strongly warped away from spherical shape,
indicating that the association map (which describes the
probability of chains to associate their junctions to the IMDS)
are far from isotropically distributed around the domain center.
Where might the difference between the Voronoi cell vs

medial cell geometry be significant? Precisely when the domains
assembled at different sites in the crystal structure differ in size
(i.e., volume) and shape. This is the situation that arises in
Frank−Kasper (FK) phases of BCP, which have recently drawn
immense interest in BCP39,40,42−44 and other amphiphilic
assemblies.41,89−92 The spherical domains in canonical BCP
crystal phases, such as the BCC phase (space group Im3̅m with
Wyckoff site 2a occupied), sit at symmetry-equivalent positions
and are therefore described by identical copies of the same
convex domain, albeit with the IMDS warped somewhat into a
locally polyhedral shape commensurate with the particular point
group of the Wyckoff site. In contrast, FK phases possess
multiple, symmetry-inequivalent positions.46 For example, the
A15 phase (space group Pm3̅n) has two sets of occupied
positions per primitive cubic unit cell: one site at the corners and
another at the center of the unit cell (Wyckoff positions 2a) as
well as three pairs of points arrayed on the faces of the unit cell
(Wyckoff positions 6c). The Voronoi cells of A15 are shown in
Figure 8C. The structure of a particular FK phase (there are
many variants) is often classified in terms of the Voronoi cells of
theWyckoff sites (known as FK polyhedra93) and the number of
faces of the cell. In A15, one cell type (Wyckoff position 2a)
known as Z12 has 12 pentagonal faces and point group
symmetry m 3 . (blue cells in Figure 8C), while the second cell
type (Wyckoff position 6c), known as Z14, has 12 pentagonal
faces plus two hexagonal faces and has point group symmetry
4m̅.2. (green cells in Figure 8C). Given the rather different
shapes of these two local environments in A15, it should not be
expected that the quasi-spherical domains that occupy these

Figure 8. Cellular models of domain shapes (A) show Voronoi cells
from a generating set of hexagonal lattice points. (B, C) Voronoi cells
corresponding to cubic crystals, BCC and A15, respectively, formed by
sphere-like domains of BCP. While BCC possesses only a single cell
type, a 14-sided truncated octohedron, the Frank−Kasper A15 has two
symmetry-inequivalent cells, deriving from two distinct Wyckoff
positions: 12-sided cells (Z12) shown in blue, and 14-sided cells
(Z14) shown in green. (D, E) Medial surfaces for circular and elliptic
IMDSs shapes (shown as black lines), respectively, arrayed on a
hexagonal lattice. The inner medial sets are shown in dark red (a dot
and line for circular and elliptical domains, respectively), while the
outer “medial cells” are shown as dark blue. Notably, the medial cells of
circular domains are identical with Voronoi cells but significantly differ
from Voronoi cells for elliptical domains.
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distinct positions would be nearly identical, despite the fact that
thermodynamics favors a uniform local IMDS curvature and
domain thickness. Likewise, in the σ phase, where there are five
types of symmetry-inequivalent sites occupied in the P42/mnm
space group, each of those distinct sites must be occupied with
domains adhering to the requisite point group symmetry of the
site. Note that the difference in point group symmetry of these
occupied domains allows for some difference in the shapes of
those domains, but point symmetries do not place constraints on
the relative volumes of those domains
Indeed, previous theories and rationalizations have attempted

to relate the stability of distinct competing FK phases to the
shape asymmetry of the distinct positions, quantifying
asymmetry in terms of distinct geometric measures of the “cell
shapes” (e.g., area and second moment).37,47,94 However, it is
not entirely clear which cellular shapes to compare.95 Bates and
co-workers37 noted that (i) Voronoi−Wyckoff cells in
competitor BCP FK phases have unlike volumes at symmetry-
inequivalent sites and (ii) volume asymmetry may lead to
average measures of cell shape that are in fact more symmetric
equal volume cells. Thus, they conjectured that equilibrium FK
phases are facilitated by molecular exchange between distinct
sphere-like domains. Notably this is something that atomic
alloys can only do to a very limited extent, say, via electron
exchange.96 Indeed, SST calculations, based on the so-called
“diblock foam model”, have predicted that relaxation to
asymmetric volumes between cellular regions of symmetry-
inequivalent positions in FK phases leads to lower free energies

than for equal volume domains. Furthermore, these shapes are
even more asymmetric in volume than the Voronoi cells, by
roughly a factor of 2 throughout the competitor phases.38 This
enhanced volume asymmetry of symmetry-inequivalent spher-
ical domains of FK phases agrees quantitatively with SCFT
calculations. For example, volumes of the Z12 and Z14
Voronoi−Wyckoff cells of the A15 lattice differ by only 3%,
while the corresponding volumes of the equilibrium domains
according to the diblock foam model and SCFT have a larger,
nearly 15%, difference in volume. This tendency to “inflate” the
larger domains at the expense of the smaller ones is analogous
the coarsening of a dry foam, except in the diblock foam, larger
volume asymmetries are ultimately restrained by the entropic
penalty of chain stretching for fixed molecular weight with
increasing domain volume.
To compare the accuracy of themedial surfaces and to capture

the terminal boundary and domain thickness of sphere-like
domains, in Figure 9 we consider SCFT predictions of A15 and
C15, two types of FK phases, both with two different cell types.
The thermodynamic stability of FK phases relative to BCC in
diblock melts is understood to derive from large elastic
asymmetry between the different blocks,33,38,97 conditions that
can be achieved for diblock miktoarm (or “mixed arm”) stars
with more coronal block arms than core arms or instead for
conformationally asymmetric linear diblocks with shorter
segments in the coronal B blocks relative to core A blocks
(i.e., ϵ = aA/aB > 1). For each phase we consider, conditions of
conformationally symmetric and conformationally asymmetric

Figure 9. Medial decompositions of BCP Frank−Kasper phases. (A, B) The outer (blue) and inner (red) medial surfaces computed from IMDSs
(pink) of the A15 phases predicted by SCF, f = 0.29, χN = 40, and ϵ = 1. (D, E) The same for the C15 phase, at the same conditions. (A) and (D)
highlight the outer medial “cells” of one of each type of the inequivalent positions in both crystal structures, with 1D edges highlighted as white facets.
(B, E) Individual cell types partially cut through their centers to reveal the IMDS shapes interior to outer cells and then themedial sets interior to those
domains. All cells are cut along the ⟨100⟩ direction. (C, F) Histograms of medial thickness for domains in A15 and C15, respectively.
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diblocks to highlight the changes in subdomainmorphology that
accompany the change in thermodynamic stability. Medial
surfaces are computed from the IMDS shapes derived from
converged SCFT solutions via the methods summarized in the
Supporting Information (and supporting software).
In Table 1, we consider the relative volumes enclosed by the

different cells (i.e., Voronoi vs medial cells) and compare relative

volumes occupied by the inner A blocks at each Wyckoff
position computed for A15 and C15 for conformational
symmetric and asymmetric cases. For all cases, medial cells
better match the true volume occupied per spherical domain
and, as stated above, generically reflect the greater volume
asymmetry of those domains in comparison to the Voronoi cells
(e.g., Voronoi cells of A15 are only 3% different in volume, but
spherical domain volumes differ in excess of 20%). It is worth
noting, however, that while medial cell volumes track closer to
the true occupied domain volumes of C15 than Voronoi cells,
they still fall systematically below, indicating that medial sets are
really only a proxy for the terminal boundaries derived from

IMDS shape and do not strictly derive from consideration of
interdomain contact, as described at the start of this section.
For closer comparison on the changes in the cell geometry, we

superpose outer cell boundaries with the polar order parameter
pB of the segments of outer B block from SCF solutions A15
phase in Figure 10. This orientational order parameter gives the
mean vector orientation of B segments (with vectors pointing
from the “alpha” free end toward the junction to the “omega”
free end along the backbone) at every point in space. As this
orientational distribution derives from the distribution of chain
configurations itself, following ref 98, it can be directly
computed from mean-field SCF solutions for ordered BCP
phases. The terminal boundaries between adjacent cells
correspond to separatrices, that is, dividing boundaries in this
flux field, that delineate regions where chains associate to
alternate IMDSs. Figure 10 shows this order parameter map on a
cut through the Z12 and Z14 cells of A15. Notably, it is clear that
the flux trajectories through the walls of the Voronoi cells are
clearly nonzero (flowing from Z14 to Z12), implying that faces
of the Voronoi cells do not correspond well with the true
terminal boundary, whereas the medial cell boundaries line up
clearly with the boundaries between divergence regions of chain
flux at the interface between opposing brushes between Z12 and
Z14.
Lastly, we point out the subdomain thickness measures

provided by the medial surfaces. Notably, for conformationally
symmetric diblocks, the IMDS shapes of certain sphere-like
domains of FK phases become greatly distorted into highly
oblate, “discoidal”, shapes. For example, from the results shown
in Figure 9, the IMDS of the Z14 cells of A15 have roughly an
oblate discoidal shape with a semimajor/semiminor access ratio
of ∼1.5. For C15, the Z12 domains have similarly oblate IMDS

Table 1. Comparison of Volume Ratios in FK Domains to
Cellular Models

structure
(domain
ratio)

Voronoi
cells

medial
cells (SCF,
ep = 1)

occupied
vol (SCF,
ep = 1)

medial
cells (SCF,
ep = 3)

occupied
vol (SCF,
ep = 3)

A15 (Z14/
Z12)

1.03 1.27 1.27 1.17 1.19

C15
(Z16/
Z12)

1.23 1.25 1.33 1.33 1.42

Figure 10.Chain orientation in A15 cells. Schematics show the stream plot (yellow) of vector order parameter in a (100) face of the A15 unit cell from
SCF predictions at f = 0.29, χN = 40, and ϵ = 1. Vectors, computed by using methods of ref 98, indicate the mean orientation (in-plane components) of
chains at different positions (note that magnitude of polar order is not shown), while the color scale indicates the local composition field, with red and
blue regions corresponding respectively tomajority A and B segments. Superposed on vector order are the (outer) medial and Voronoi cells of one Z14
(lower left) and one Z12 (upper right), whose faces are shown as transparent white to allow for view of the underlying vector order. The highlight
region in the black rectangle is shown at a larger scale below each, highlighting the fact that the “flux” pattern of chain orientation terminates on the
medial cell walls between Z14 and Z14, but the flux pattern penetrates the walls of the corresponding Voronoi cells. The comparison highlights that
Voronoi cells poorly capture true terminal boundaries between distinct coronal domains, while medial surfaces defined with respect to the IMDS serve
as a much better proxy for the cellular volumes that enclose sphere-like BCP domains.
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shapes. This shape is not unlike the oblate ellipsoidal example
given in Figure 6, and indeed we find for these high aspect ratio
domains that the interior medial boundary spreads out in that
the domain as is visible for the respective Z14 and Z12 domains
shown for A15 and C15 in Figures 9B and 9D. This feature
indicates that these discoidal domains possess quasi-lamellar
regions surrounded by high-curvature, quasi-toroidal, rims. In
contrast, for the relatively spherical domains (e.g., Z12 of A15
and Z16 of C15) the inner medial surfaces bunch into fairly
compact regions near the domain center (though not strictly
points).
Hence, the medial perspective casts a wholly new light on the

nature of packing frustration in the FK phases of BCP, in which
the constituent domain shapes can be broken down into these
two crude categories of quasi-spherical vs quasi-discoidal
domains. The implications for this more complex subdomain
shape distribution on the thermodynamic stability of FK phases
(i.e., which of these competitor phases is stable; when and why
are they favored over the canonical BCC packing?) remain to be
explored.

III. MEASUREMENTS OF BCP MORPHOLOGY: FROM
SUPRADOMAIN PERIODICITY TO SUBDOMAIN
GEOMETRY

III.A. Early Observations of BCP Morphology. Anionic
“living” polymers were first synthesized by Szwarc, Levy, and
Milkovich in 1956, including the first block copolymers made by
using polystyrene (PS) and polyisoprene (PI).99 A few years
later, Richards and Szwarc synthesized hydrophobic−hydro-
philic BCPs based on PS and poly(ethylene oxide) (PEO).100

These BCPs displayed curious optical texture and solution
viscosity changes when a small amount of a nonsolvent for either
block was added to the initially homogeneous clear solution.
This prompted structural investigations of similar block
copolymers at the CNRS in Strasbourg, France, in the Skoulios
group starting in 1960.11−13These studies revealed the similarity
of lyotropic solutions of di- and triblock PS−PEO and PEO−
PS−PEO copolymers to those of other low molar mass
amphiphilic molecules under study at the CNRS.Morphological
characterization of the BCPs in concentrated solution by POM
and SAXS using both hydrophobic and hydrophilic solvents
showed that the gel-like samples had birefringent textures similar
to those known for lyotropic liquid crystals. SAXS revealed sets
of Bragg peaks quite analogous to those already known for both
lyotropic and thermotropic liquid crystals. The characteristic
Bragg peak sequences suggested that, depending on BCP
molecular weight (MW) and solution composition, periodic
structures of 1D lamellae, 2D hexagonally packed cylinders,12

and 3D (face-centered) cubic packed spheres14 could form.
Figure 11 is the first published schematic of a BCP domain
structure12 showing the imagined (since as yet there was no
direct structural observation at the required length scale)
domain structure for cylindrical and lamellar phases for a
concentrated PS−PEO diblock in either a PEO-preferential
hydrophilic solvent (left) or a PS-preferential hydrophobic
solvent (right). In the case where the solvent is entirely selective
to the PS block, the stereoregular and hence crystallizable PEO
block was found to undergo crystallization, and the proposed
domain structure was that of chain-folded PEO lamellae
alternating with noncrystalline solvent-swollen PS block layers.
These initial BCP structural investigations suggested that, as

was the case with soap amphiphiles, by appropriate choice of
preferential solvent(s) and concentration the sequence of

domain types from spheres to cylinders to lamellae to inverted
cylinders to inverted spheres could be accessed. Skoulios
suggested that BCPs could be thought of as “high molecular
weight liquid crystals”.101 The early PS−PEO BCPs were of low
MW and were studied in solution, enabling clear resolution in q
vector (SAXS) with multiple Bragg peaks from the good long-
range order. However, as of 1966, no one had directly observed
the actual shapes and sizes of the supposed block domains, only
inferring their presence, their mutual separation distances, and
their likely shapes based on the textures seen in POM and from
the sets of Bragg peaks observed in SAXS patterns.
With length scales of the domain dimensions and domain

periodicities in the range of tens to hundreds of nanometers,
optical microscopy could only detect the presence of
birefringence in the supposed hexagonal cylinder and lamellar
systems (and its absence in the hypothesized cubic sphere
systems) due to the optical anisotropy of the domains and
presumably also in part to the anisotropic orientation of the
chains within these domains. It was not until 1966 that Vanzo102

working at Dow employed TEM of chromium shadowed silicon
monoxide 2 stage poly(vinyl alcohol) surface replicas to
demonstrate direct evidence of a lamellar structure in a high-
MW polystyrene−polybutadiene (PS−PB) diblock (see images
in Figure 12). However, since the technique used could only
image the alternating layers at the sample surface and at
unknown viewing angles, it was not possible to positively
determine the individual layer thicknesses or the identity of a
particular layer.
Structure−property relations for much higher MW samples

that exhibited greatly enhanced mechanical properties were of
strong interest to industry (e.g., Dow, BASF, and Geon). Some
very high-MW samples also exhibited iridescent colors in
solution and in dried films, which were thought to be due to
some type of cholesteric liquid crystalline phase102 but later
understood to be an effect of a photonic crystal structure (see
e.g. ref 103). Shortly after Kato’s use of osmium tetroxide
(OsO4) to stain and fix PB latex particles,104 three research
groups published TEM micrographs of PS−PB block copoly-
mers by microtoming melt-pressed samples and preparing thin
solvent cast films.15−17 TEM images (see Figures 13A−D)
showed that a microphase-separated morphology was clearly
present as the high atomic number OsO4 strain rendered the PB
domains dark and the relatively unstained PS domains appeared
bright. In specimens made by melt pressing or rapid solvent

Figure 11. The first published BCP domain schematic (adapted from
ref 13). The A block is PS, the B block is PEO, and the solvent is
designated as S. (left) A hydrophilic solvent swells the B block and the A
blocks aggregate into cylindrical domains packed on a hexagonal lattice.
A hydrophobic solvent swells the A block, and the crystallizable B block
forms thin chain-folded lamellae alternating with solvent-swollen A
layers.
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casting, the domain ordering was generally poor, resulting in
highly overlapped 2D projections of irregularly shaped domains
in TEM images. The desirable optical transparency of PS−PB−
PS samples compared to the opaqueness of PS−PB blends of the
same composition was attributed to the small PB “islands” in a
PS matrix (Figure 13C). Very slow (28 days!) solvent casting of
a 60/40 composition PS−PB diblock resulted in several
micrometer diameter lamellar grains (Figure 13D).
Matsuo, Sagae, and Asai105 also used solvent processing

conditions that resulted in good long-range order, and their
TEM images allowed clear visualization of the spherical and
cylindrical domain interfaces (the IMDS) for the first time
(Figure 14). Thus, researchers were now able to “see” the actual
domain structure (composition distributions in real space) and
could correlate the sizes and shapes of the domains to the
particular block and its MW, noting that domain size increased
with increased MW.17 Rapidly thereafter, many groups around
the world conducted additional investigations to correlate the
strong dependence of mechanical properties on the volume
fraction, geometry, and topology of the BCP domains in a host
of BCPs with varying composition, MW, and block number
(diblocks, triblocks, and quatrablocks) and confirmed the three
distinct types of domain structures: the canonical spheres,
cylinders, and lamellae.101 These early studies suggested that it
was only necessary to perform SAXS on the solvent containing
or dry sample and TEM on a thin, dry piece of a specimen

(either a rapidly evaporated thin film or a slowly evaporated
thicker film followed by microtoming and staining a thin
section) to readily distinguish the domain shapes, periodicities,
and topologies (0D spheres, 1D cylinders, and 2D continuous
layers). The 3D domain shape was inferred via the TEM 2D
image projections. Hence, the stripe patterns which could be
interpreted either as lamellae or as transverse views of cylinders,
and likewise, circular patterns as either spheres or axial views of
cylinders were further identified by viewing many differently
oriented grains (both views of cylinders are evident in Figure
14B). The subsequent introduction of TEM goniometer sample
stages allowed analysis of a given region of the specimen at
multiple tilt angles allowing distinction between the possible
domain types.
The microtomed TEM sections as well as spin-coated solvent

cast films are typically 30−100 nm in thickness with lateral areas
spanning a grid square of perhaps 5000 μm2. The spatial
resolution (in x and y) of the TEM instruments available in the
1960−1980 time frame was a few Angstroms, more than
sufficient for domain visualization. Current TEM tools have
resolution less than an angstrom, but the practical lateral
resolution of TEM images is normally limited to ∼1 nm due to
several factors including the finite width of the IMDS, the
projection of the composition profile through the specimen
thickness, detrimental mechanical distortions from the micro-
toming process, preferential domain swelling via staining, and
electron beam damage (which causes mass loss and is another
source of dimensional changes of the specimen). With typical
domain sizes of BCP in the 2−100 nm range, lateral resolution is
still usually quite sufficient to assign a domain shape, but since
typical specimen thicknesses (along z) can contain a few or tens
of domains, the TEM images often display highly overlapped
and complex projections that are hard (or nearly impossible) to
uniquely interpret, let alone precise, the detailed IMDS
curvatures and intradomain features. The introduction of
TEM tomography (TEMT; see section III.C.2) enabled more
quantitative 3D visualization of the domains via the use of a large
number of 2D projections taken as a systematic function of
specimen tilt.
As researchers developed better sample preparation methods

(in particular by using a neutral solvent and very slow
evaporation, followed by high-temperature, long-time anneal-
ing; see section IV.A), this led to greatly improved long-range
domain order corresponding to larger grains and fewer defects.
Such samples enabled more quantitative SAXS studies from the
greater number of Bragg peaks, helping to quantify how lattice
periodicities and domain dimensions scaled with MW.17,106,107

Figure 12. Surface replica of dried PS−PB film with (left) parallel
lamellae showing growth spirals and surface steps and (right) edge-on
lamellae (adapted from ref 102).

Figure 13.The first published bright-field TEM images of BCPs. (A)Microtomed thin section and (B) solution cast thin film of a PS−PB−PS triblock
copolymer with 68% PS (adapted from ref 16). (C) Microtomed section of melt-pressed PSPBPS having PB “islands” in a 60% PS content (adapted
from ref 15). These samples only have short-range order and exhibit irregular domain shapes and significant overlap of structural features in the 2D
image projections, limiting interpretation (D).Microtomed section of very slow solvent cast high-MW (612 kg/mol) PS−PB lamellar film that showed
a blue color (adapted from ref 17).
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Combining TEM and SAXS became the “gold standard” for
identification of the morphology and quantification of its basic
structure (i.e., D-spacing) . Based on these approaches,
schematic views of bulk, solvent-free BCP domain morpholo-
gies, including spheres, cylinders, and layers (and even a report
of perforated layers “punched sheet”;105 see Figure 14C)
emerged by the late 1960s. While such idealized schematics did
not address interdomain order and intradomain variability, they
did envision several underlying concepts for subdomain chain
packing, such as the interfacial area per chain (see Figure 14E) in
analogy to the interfacial area per soap molecule, long
recognized as an important quantity determining the selection
of domain shape in lyotropic systems.
Scattering approaches, however, need samples possessing

excellent long-range structural order to provide a sufficient
number of Fourier components to distinguish the crystallo-
graphic space group and, in combination with recent develop-
ments of Fourier inversion (see section III.B), the detailed real
space structure of the domain shapes. For example, in the early
years, the 3D packing arrangement of spherical domains was
thought to be FCC based on the nondefinitive analysis of only
three relatively broad Bragg peaks (with q values in the ratio of
√3, √4, and √814) along with the intuitive notion that the
minority component would take on a sphere-like shape and
would likely assemble into a close-packed structure. Generally,
BCP samples with spherical domain morphologies had quite
poor long-range order, making a definitive assignment to a
specific crystalline packing arrangement rather problematic and
yielding no direct information about the precise IMDS shape.
Leibler’s weak segregation theory,22 and subsequent extension
to stronger segregation conditions by Ohta and Kawasaki,108

predicted BCC packing of spherical domains. In 1987, a tilt
goniometer stage equipped TEM and a very well ordered sample
of polystyrene-b-polybutadiene BCP36 allowed definitive
imaging data for a tilt series from the [100] to the [111] and

to the [110] projections, uniquely matching the expected
projected domain patterns and directions of tilt axes and degree
of tilt for a BCC packing with the Im3̅m space group with the
domain centers located on the two BCC lattice sites: Wyckoff
site 2a (0,0,0) and (1/2, 1/2, 1/2). Notably in this work,
heuristic arguments about the thermodynamics of packing
malleable spherical domains were put forward to rationalize the
selection of BCC over FCC and simple cubic lattices, which
were later substantiated by more detailed strong-segregation
theory27 and then extended to consideration of complex FK
phases.33,38,47 While the projected patterns in TEM satisfied
those expected from cubic symmetry of BCC packed spheres,
the precise 3D shape of the IMDS between domains was not
directly measurable in the projections.

III.B. Beyond the Classical Morphologies. While
exploring a series of PS−PI block copolymers with a novel
type of star diblock architecture, an entirely new, 3D
interconnected network microdomain morphology was discov-
ered.23,109,110 The 3D continuity of both components was
apparent not only from all the various TEM projections but also
from the high value of the elastic modulus (stemming from the
glassy PS subdomain continuity) and the high gas permeability
(arising from the PI subdomain continuity). The initial
publication described the structure as the ordered bicontinuous
structure (OBS) without being able to specify a precise domain
shape, unit cell, and space group.109

Furthermore detailed analysis of both the real space
projections and the reciprocal space scattering pattern suggested
that (again in analogy with lyotropic liquid crystals) the new
microdomain structure was based on the Pn3̅m cubic space
group (similar to the structural assignment of a bicontinuous
lipid−water phase based on characterization by SAXS).111

Evidence from the relative positions of the four low-q Bragg
peaks and especially from electron micrographs and their
associated (albeit crude due to limited computational power and

Figure 14. Bright-field TEM observation of ultrathin section solvent-free BCP with different domain morphologies with schematic diagrams of
morphologies (adapted from ref 105). (A) Sphere morphology in polystyrene-b-polybutadiene-b-polystyrene (SBS, S/B = 80/20, mole ratio). (B)
Cylinder morphology in polybutadiene-b-polystyrene-b-polybutadiene (BSB, S/B = 60/40, mole ratio). (C) Perforated layer morphology in an “ionic”
(i.e., random block) copolymer (S/B = 60/40, mole ratio). (D) Layered morphology in SBS (S/B = 40/60, mole ratio). (E) Schematic diagram of
effective area (L2) occupied by one block chain which protrudes through the surface of the sphere of SBS BCP in (A).
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modeling software at the time) computer-generated simulations
(see Figure 16A) pointed to two interwoven minority PS block

networks, each network having tetrahedrally connected PS units
in diamond symmetry, with the OBS now renamed the ordered
bicontinuous double diamond (OBDD).23 However, while the
matches in real and reciprocal space were seemingly quite close
to the experimental data, due to the limitation of SAXS peak
resolution using a 1D line-focus laboratory Kratky camera and as
a consequence of the similarity of high-symmetry projections of
a cubic tubular network structure, the published OBDD
structure, although based on both reciprocal and real space
data, turned out to bemisidentified.24The error in assignment of
the bicontinuous structure was not realized until about a decade
later with the discovery of another bicontinuous tubular network
structure occurring in a simple linear PS−PI diblock with similar
composition.112 This new phase, initially called the gyroid*, was
also bicontinuous, composed of two interpenetrating, trihedrally

connected minority component block networks with space
group Ia3̅d. The strong similarity of the high-symmetry TEM
images and the similar ratio of the first pair of allowed Fourier
peaks (OBDD: √3/√2 = 1.23 vs DG: √8/√6 = 1.15, a
difference of only 6%) of the new linear diblock DG phase to the
older star diblock OBDD phase suggested that the star diblock
structural assignment should be checked. A re-examination of
the original star diblock sample with a fine spot-focus X-ray
beam enabled superior resolution and showed the ratio of
Fourier peaks was a better match with the Ia3̅d space group
(DG) as opposed to the Pn3m space group (DD).24 An
improved domain structural model based on using the gyroid
TPMS as the terminal surface of the outer PI blocks with the PS
channel domains defined by constructing a constant thickness PI
majority subdomain structure is shown in Figure 15B. Image
simulations using TEMsim software developed at the MSRI in
Berkeley113 showed that the three highest symmetry exper-
imental TEM projections (the [100], [111], and [110])
corresponded well to those of the DG model, including the
characteristic “wagon wheel” pattern imaged when viewing
along the [111] direction (Figure 16).
The ambiguity in assigning the domain morphology of

bicontinuous cubic networks in BCP derives from not only just
the limits of the characterization methods but also the need to
rely on prior knowledge of the assumed phase structure, i.e., 3D
spatial models of the domain composition, since both the TEM
and SAXS data miss certain critical information about the 3D
composition profile. For TEM, this derives from the 2D
projection through a finite thickness of a 3D structure, while for
scattering, this derives from loss of phase information about the
interfering waves, the loss of wavevector direction uniqueness
(e.g., radial averaging from a polygrain sample), and damping of
Fourier amplitudes at higher wavevector (g*hkl which carry
information about the fine scale details of domain shape).With a
well-established prior model of the BCP morphology, it is often
possible to “fill in the gaps” from this missing structural
information, but this is obviously problematic for distinction
between similar structures and impossible to do for previously

Figure 15. The first schematic models of cubic tubular network phases of BCP. (A) The double-diamond structure with space group Pn3̅m is
composed of two interpenetrating diamond networks with tetrahedral nodes (adapted from ref 23). (B) The double-gyroid structure with space group
Ia3̅d is composed of two interpenetrating networks with trihedral nodes (adapted from ref 112). The schematic shows the G TPMS with a constant
matrix thickness (CMT) of the majority component. The two independent interpenetrating labyrinthine gyroid networks containing the minority
block are the empty channels.

Figure 16. Bright-field TEM images from three different PS−PI BCPs
taken along the [111] “wagon wheel” projection direction and
associated simulations. (A) Miktoarm star with 27 vol % PS using the
ASU Multislice model compared to OBDD structure by a set of six
equispaced points along [111] struts (adapted from ref 23). (B) 1988
diblock with 62 vol % PS comparison using TEMsim employing a DD
CMC surfaces (adapted from ref 66). (C) 1994 linear diblock with 33
vol % PS using TEMsim based on a CMT G TPMS model (adapted
from ref 112). Attribution of OBDD morphology in (A) and (B) was
later reevaluated and concluded to be DG.
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unknown morphologies. This points out the need for 3D
tomographic reconstruction of such complexmorphologies so as
to be able to unambiguously distinguish the detailed shapes,
topologies, and geometries of the domains.
Notably, the ambiguity in experimental assignment of DG as

the stable network morphology of diblocks nearly parallel the
theoretical understanding. After the apparent experimental
observation of OBDD, strong segregation theories were
constructed to consider the most favorable bicontinuous cubic
network,27,53 but did not consider DG as a candidate
morphology in the first such calculations, and hence initially
pointed to DD as most stable network morphology at the
boundary between cylinders and lamella. The equilibrium
stability of DG was not assessed until 1994 when Matsen and
Schick motivated by its recent experimental observation112 and
armed with a powerful spectral implementation of SCFT
demonstrated that DG was equilibrium network phase for linear
diblock melts at weak and intermediate segregation strength.60

Subsequent SSL calculations28,29,56 then reassessed the
bicontinuous morphologies and found that DG was the lowest
free energy among them, although the predicted free energy of
all bicontinuous phases exceeded classical morphology com-
petitors. The question of theoretical stability of the DG, or other
bicontinuous networks, in the χN→∞ limit remains a matter of
continued debate to this day.9,114

III.C. Methods for Precise 3D Structure Determination:
from Supradomain Symmetry to Subodomains. As we
have seen, the appearance of complex tubular network phases as
well as the Frank−Kasper sphere phases has made it imperative
to create a true 3D reconstruction of a periodic structure to
correctly and more fully understand the structure, especially
since we are interested in not just identifying the structure but
quantitatively addressing why a specific type of BCP molecule
assembles into a particular structure. Thus, further analysis of for
example, the distributions of curvatures over the IMDS and the
distribution of various measures of domain thickness are very
useful for critical comparison to and testing of various theoretical
models. Structural feature resolution in all of the experimental
characterization techniques depends on having excellent
specimen long-range order and hence the ability to reliably
measure and include the weaker higher order (high frequency)
reflections via improving signal strength by the contribution of
scattering from many coherent unit cells. The known physical
constraints for reconstruction include the electron density of
each component, molecular weight, and volume fraction of each
block. Presuming a very well ordered specimen, a precise 3D
experimental representation of the structure at the scale of 3−
100 nm can currently be accessed three ways: (1) by Fourier
inversion of the SAXS scattering pattern, (2) by “back-
projection” of a large set of systematic TEM 2D projections,
and (3) by registration of a stack of images obtained via
sequential ion beam slicing of the specimen and scanning
secondary electron beam imaging of each newly ion milled
surface. Next we highlight each of these approaches.
III.C.1. Small-Angle X-ray Crystallography. In recent years,

soft matter researchers have adopted the traditional approach115

of wide-angle X-ray crystallography via Fourier synthesis to
create 3D reconstructions of periodic soft matter structures,
where due to the increased length scales, small-angle rather than
wide-angle scattering data are acquired.116 Small-angle X-ray
crystallography (SAXC) normally uses a synchrotron X-ray
beam enabling a fine probe (∼100−500 μm diameter) along
with a multiaxis sample goniometer to obtain diffraction data.

There are two particularly useful types of samples: fine powders
and large single crystal grains. For an isotropic, fine grain size
polycrystalline powder sample, the spherically averaged 1D
scans of I(q) data include superposition of signals coming not
only from different peaks having the same or nearly the same |q|
vectors but also from unit cells in many grains having a wide
range of local environments which often leads to peak
broadening. Alternatively, employing a very small X-ray beam
along with a large single grain specimen and goniometer stage
enables quantitative measurements of each individual Bragg
peak. SAXS patterns are often recorded from samples having a
mixture of grain sizes and partial orientation and so exhibit
arced, spotty Bragg rings and include a strong asymmetric
scattering background arising from limited long-range order,
compositional fluctuations, and the presence of various types of
sample distortions and defects. The scattering pattern in
reciprocal space is the product of the Fourier transform of the
real space electron density composition and its complex
conjugate:

∫ ϕ= | |·
I Vq x( ) d e ( )iq x 2

(8)

A real space electron density map then requires “inverting”
I(q) to recover the real space composition field, ϕ(x). However,
while the scattering amplitude of a peak can be simply extracted
from the background corrected peak intensity, the information
about the phases of the scattered waves is lost. These phases
essentially have to be inferred; this is generally known as the
“phase retrieval” problem.117,118

To obtain a successful, high-fidelity reconstruction, SAXC
experiments need many well-resolved, independent reflections
to converge on a real space structure. Real space structures can
be obtained via many approaches. One method which depends
on prior assumption of a solution takes the direct measurement
of the Fourier component amplitude, Ahkl, from the square root
of the experimental intensities of the Bragg peaks and pairs each
peak with the phase of simulated peaks based on a numerical
Fourier transform of a hypothetical prior real space model(s).
Another more recent approach uses a computational algorithm
to confront the phase retrieval problem with reduced bias. Here
we focus on one such approach, called SUPERFLIP,116,119

which has recently been applied to complex sphere phases of
BCP.41−43,120

In this approach, peak amplitudes, widths, and q values of the
Fourier components are assigned again from the experimental
intensities. In applications to BCP structure, as well as similar
morphologies of soft lyotropic assemblies, the space group,
directions, and orientations of unit cell parameters are also
chosen as inputs based on agreement with the apparent set of
allowed peaks. Then the algorithm initially assigns random
phases to each peak, with families of peaks sharing the same
phase according the input space group symmetry. A trial real
space reconstruction is made by Fourier inversion, and in
locations where the electron voxel densities are unphysical (i.e.,
negative), the program flips the sign of the particular
reconstruction voxel. Next, this new electron density distribu-
tion is Fourier transformed back to q space, and the peak
amplitudes are compared against the experimentally extracted
values. A new reciprocal space representation of the structure
with the transformed phases and the original input Fourier
amplitudes is then again back-transformed to real space, and any
negative voxels are again flipped in sign. The process continues
until possible convergence. Typically, thousands of inputs are
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run, yielding ∼50−100 converged solutions, each of which has
the measured Fourier amplitudes and a set of phases whose real-
space structure has non-negative electron density. Note that the
phases of any given Fourier mode may not be identically
assigned in each of the distinct converged solutions.
An example of such a construction is shown Figure 17 for a FK

C15 phase formed in a blend of PS−PB BCP and PB
homopolymer.42 The SAXS powder pattern indicates the
sample consists of a nearly isotropic set of small grains. There
is strong diffuse scattering at low q between 0.02−0.03 Å−1. The
SUPERFLIP reconstruction was based on assuming the Fd3̅m
space group for the input peak amplitude data for most (but not
all) of the index peaks in the radially averaged synchrotron SAXS
pattern shown in Figures 17A,B. Isocontours of electron density
(90% of the maximum value) are shown as yellow and red
domains corresponding to the Z16 and Z12 sites of the FK C15
structure. The significant apparent size and shape asymmetry of
these domains are consistent with their attribution as the core
region of sphere-like domains, arrayed on the distinct Wyckoff
sites 8a and 16d of the Fd3̅m space group.
At present, these SUPERFLIP reconstructions are largely

used as “consistency checks” for the gross topology of BCP
domains, as opposed to quantitative metrics of subdomain shape
(i.e., distributions of domain thicknesses and IMDS curvatures).
While it may be possible to extend Fourier inversionmethods for
direct comparison with theoretical predictions, careful consid-
eration of the prior assumptions and the exclusion of incoherent
scattering contributions would need to be assessed.
III.C.2. TEM Tomography. The first transmission electron

microscopy tomography (TEMT) reconstruction of any BCP
structure was done by Spontak et al. in 1988 on hexagonally
packed cylinders.121ADG structure was first analyzed by TEMT
using a binary diblock blend, again by the Spontak group122 and
a triblock BCP melt in 1997.123 TEMT uses a series of 2D
projection images taken at various intervals of specimen tilt to
create a 3D reconstruction of the sample via a back-projection
algorithm without any prior assumptions on structural
symmetry.124 Details of this method relevant to soft matter are
given in a review by Jinnai, Spontak, and Nishi.125 The
reconstructions of the DG were unprecedented and broadly
confirmed the expected trihedrally connected interpenetrating
network morphology. Looking back at the first reconstructions,
one notices that apart from visualizing the network topology, the
technique, as practiced at that time, did not provide sufficient
fidelity to enable the extraction of subdomain information. This
was principally due to the use of large tilt increments between
images in the tilt series along with a limited tilt range. Such

limitations cause degradation of the reconstruction (principally
along the sample thickness direction) due to the information
that is not included in the back-projection algorithm, over-
sampling of low-frequency Fourier components, and under-
sampling of the higher frequencies.
A much improved DG reconstruction was done a few years

later by the Jinnai, Spontak, and Hashimoto team77,126 using
smaller increment tilt angles and a larger range of tilt. This 3D
reconstruction permitted, for the first time, measurement of the
IMDS curvature, node functionality, Euler characteristic, and
associated topological genus value. Since this pioneering work,
many other BCP structures have been investigated by TEMT,
including the rediscovery and validation of the OBDD (see
Figure 18) in a number of BCP systems including BCP blends127

as well as fascinating order−order thermotropic transformations
between the DD and DG in diblocks of polystyrene and
syndiotactic polypropylene.128,129

While current TEMT methodology can ascertain the 3D
connectivity of complex structures, there are limitations on the
fidelity of the reconstructed structure, particularly the detailed
shape of the IMDS and the associated subdomain thicknesses.
These limitations include the detrimental influence of the
“missing wedge” of information in the reconstruction due to the
inability to acquire 2D projections of the thin sample over the
full tilt angle due to the geometric limitations of the microscope
goniometer stage and multiple scattering at high tilt angles since
the beam path along the projection direction grows with tilt (i.e.,
as secant of angle). Additionally, as mentioned previously,
distortions occur due to microtoming of the thin section, and
there can be substantial electron beam specimen damage and
associated dimensional changes due to the requirement to
record hundreds of consecutive images of a single area. Because
of the thin sample and high magnification used, the statistical

Figure 17. 3D X-ray reconstruction of BCP crystal. (A) SAXS powder pattern for a PS−PB and hPB blend; (B) the circularly averaged radial I(q) vs q
plot. 10000 trial runs starting with randomphases and retaining the original amplitudes converged 70 times. (C) The 90% isosurface of theminority PB
domains for the assumed Fd3m space group of the Frank−Kasper C15 phase, from the “average Fourier image” of converged phase solution (figures
adapted from ref 42).

Figure 18. TEMT 3D reconstructions of the double-diamond
structure. (A) A syndiotactic PP−PS diblock with the 46% sPP block
comprising the two tetrahedral networks (adapted from ref 128). (B)
DD structure in a ternary blend of three PS−PI diblocks (adapted from
ref 127).
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sampling is limited since a volume typically containing only tens
to hundreds of unit cells is reconstructed. A comparison of
different experimental techniques used to measure the supra-
and subunit cell structural information (curvature of the IMDS)
to geometric models of DG (i.e., CMT vs CMC shapes) is
discussed in the next section (see Figure 21).
III.C.3. SVSEM Tomography. Another real-space approach,

which works very well for BCPs, that does not depend on phase
retrieval or suffer from loss of information in the “missing
wedge” is slice and view scanning electron microscopy
(SVSEM), also known as focused ion beam-scanning electron
microscopy (FIB-SEM). Here a dual ion beam, electron beam
instrument is used to alternatively slice a thin (e.g.,∼3 nm) slice
from a bulk specimen by using the ion beam, followed by using
the electron beam to capture a low voltage secondary electron
image of the near-surface region of the newly exposed sample
surface. The next image is made by again using the ion beam to
slice off a thin planar section and acquiring another secondary
electron image of the newly exposed surface region. The main
influence of the researcher on the data is only in the
segmentation (binarization) of the images which is constrained
by the known volume fractions of the two components.
Computer registration of a large number (hundreds to
thousands) of images results in a quite large volume 3D
reconstruction. For BCP structures with unit cells on scale of 50
nm or more with feature sizes >10 nm, the SVSEM technique
can provide excellent structural information for critical
comparison to theory.78,130,131

Figure 19 shows an example of a 3D SVSEM reconstruction
created by registration of a stack of 214 image slices of a
polystyrene−polydimethylsiloxane (PS−PDMS) that forms the
DD structure. The DD sample132 was cast from a PS−PDMS

(51 kg/mol for PS block and 35 kg/mol for PDMS block) 5 wt %
chloroform solution. The acquisition and SVSEM analysis of
DD follow the procedure reported in ref 78. An enlarged region
of the structure (Figure 19B) shows the fundamental 6−46
catenated loop structure of the two independent diamond
networks. Unlike in TEM, where each image is a projection
through the entire film thickness (∼100 nm) and for complex
3D network structures always involves substantial overlap of the
fine scale features, in SVSEM, by using a low keV electron beam,
each image approximates a near 2D slice of the 3D structure.
This allows very detailed comparison of data sets with 3D
models of a given structure made from SCFT computations,
level set, CMC, or CMT models of the structure based on the
known component volume fractions. Figure 19C shows the raw
SEM image and the corresponding level set model for a (110)
plane of the DD structure. Moreover, one can produce
synchronized systematic slice by slice sequences for critical
comparison of data and model not only for the fundamental unit
cell structure but also for defects, for example coherent growth
twin boundaries that occur in the DG phase.131

In the SVSEM reconstructions (Figure 19), the IMDS is taken
as the locus of points where the bright (PDMS) voxels meet the
dark (PS) voxels as determined by the image segmentation.
Importantly, ion and electron beam damage are minimal as a
given specimen region is only exposed once for slicing and once
for imaging. Furthermore, unlike scattering methods that
provide only Fourier component amplitudes (and need
assumptions on the phase information about a given hkl Bragg
peak), performing a 3D FFT of a reconstruction containing an
array of coherent unit cells directly yields both amplitude and
phase information about every peak as well as “off-peak”
scattering, which gives information about distortions of the
structure at the interunit cell scale. Furthermore, by appropriate
placement of a set of Bragg filters to select peaks, followed by
inverse Fourier transformation with both experimental
amplitude and phase information, an improved, higher
resolution 3D structure can be created with greater signal-to-
noise ratio due to the statistical averaging over a Nx × Ny × Nz

array of coherent unit cells. Notably the fidelity of this average
image is improved by the especially large volume of data
acquired with good long-range sample order. While the voxel
dimensions compared to that of the unit cell suggest a nominal
linear sampling rate of many tens of voxels per unit cell, Fourier
averaging effectively superposes the signals of the Nx × Ny × Nz

coherent cells into a single domain, enhancing the resolution in
the averaged structure. This same diffraction data can be used to
unambiguously determine the space group by using the
diffraction vectors, allowed peaks, and their phases. Moreover,
one can choose a single grain region of interest from within the
large reconstructed volume that excludes any defects. To
correctly compare the 3D FFT of the SVSEM reconstruction to
SAXS diffraction, the grayscale intensity of the 3D reconstruc-
tion needs to be linearly proportional to the electron density of
the sample. This reciprocal space information can also be
compared with Fourier information generated by using specific
theoretical models.
Bragg filtered SVSEM data can be used to analyze subdomain

morphological metrics of IMDS shape and domain thickness.
Figure 20 shows analyses of the DG morphology obtained as
described in ref 78. Notably, this method does not require any
prior assumptions about the space group, and in particular, it was
observed that the PS−PDMS DG studied in ref 78 exhibits a
triclinic variant of the idealized cubic DG morphology, which

Figure 19. Slice and view tomography of a 51−35 kg/mol PS−PDMS
DD. (A) Portion of the reconstruction containing ∼500 unit cells. (B)
A cropped region showing a portion of the two interpenetrating 6−46
networks. The PDMS tubular networks within the reconstruction are
rendered into color, and the PS matrix is rendered to be transparent. A
cropped tetrapodal node is shown at the upper right. (C) SEM image of
a (110) plane within the structure and the corresponding image based
on a level set model of the DD. The 40 vol % PDMS block is much
brighter than the dark PS block regions due to the increased secondary
electron signal from the Si and O atoms in PDMS.
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was attributed to stresses encountered during the non-
equilibrium process of domain ordering from solution casting.
Figure 20A shows the IMDS from multiple views of four

different 3-valent nodal regions from the triclinic DG in Figure
20B. SVSEM reconstruction captures both the alteration of the
periodicity at the unit cell repeats and local rearrangements of

Figure 20. Subdomain distortions andmorphological metrics from SVSEM experiments. IMDSs and associated skeletal graphs of four specific 3-valent
nodal regions from Bragg-filtered PD−PDMS DG SVSEM reconstruction (ref 78), shown in different viewing perspectives in (A). The first row
depicts the nodal region highlighted in (B), (D), and (E), and the remaining three rows depict the same features for its three neighboring nodes. The
triclinic DG unit cell from SVSEM is shown in (B) with only one PDMS tubular network IMDS (light red) and associated medial surfaces for tubular
subdomains (dark red) and matrix subdomain (light blue) and the IMDS nodal region from first row of (A), highlighted in dark red. Medial thickness
distribution (for the entire Bragg filtered reconstruction) in (C) highlights the subdomain inhomogeneity for both PS and PDMS domains. Local
variation medial thickness for PS and PDMS subdomains is depicted by coloring each pixel on IMDS at nodal region (D), while (E) shows the local
variation in mean and Gaussian curvature for the same region.

Figure 21. Gaussian (KG) and mean (H) curvatures of the IMDS and their respective probability functions of BCP DG reconstructions from TEMT
(A) and SVSEM (B). TEMT DG reconstruction is based on DG forming polystyrene-b-polyisoprene-b-polystyrene with polystyrene as the minority
tubular networks (volume fraction of 32%), the averaged unit cell parameterD1 = 74 nm (data from ref 77); SVSEMDG reconstruction is based onDG
forming polystyrene-b-polydimethylsiloxane with polystyrene as the minority tubular networks (volume fraction of 40%), the averaged unit cell
parameter D2 = 130 nm (data from ref 78).
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the shapes of the subdomains in the structure. Unlike the perfect
cubic DG, which contains two enantiomeric sets of equivalent
nodal regions associated with the Wyckoff 16b positions, in the
experimental triclinic DG nodal regions are no longer equivalent
and exhibit distinct and distorted shapes. Medial thickness
analysis (Figures 20C,D) shows variation in block stretching in
both PS and PDMS domains and spatial variations in curvature
(Figure 20E). While the gross patterns of negative curvature and
local thickness are similar to the idealized cubic models in
Figures 3 and 7, nodal regions of PS−PDMS DG exhibit spatial
fluctuations of shape far from the ideal . 3 2 point group
symmetry. Hence, SVSEM reconstruction provides avenues to
access and quantify variability of the subdomain shapes in a way
that captures the effects of distortion and domain malleability
intrinsic to BCP assembly.
Beyond the purely local mapping of subdomain shape, the

large volumes of SVSEM reconstruction make it possible to
analyze morphological features over statistically large sample
volumes. That is, in SVSEM quantitative structural information
is not obtained by measurements from just a handful of unit cells
in a thin TEM section but from 50−1000s of coherent unit cells
within a single grain. Because of the ability of SVSEM to image
over tens of cubic micrometers, data from many adjacent grains
can also be acquired, greatly improving the statistical
significance of the analysis while avoiding superposition of
data from different sample environments.
In Figure 21, we compare the distributions of mean and

Gaussian curvatures that can be measured from BCP DGs via
two different tomographic techniques: TEMT in (A) and
SVSEM in (B). Although there are differences in the
experimental conditions and polymer chemistries for the two
physical samples (i.e., the TEMT is from a OsO4 stained,
microtomed PS−PI−PS triblock, MW = 83 kg/mol with 0.32
volume fraction PI while the SVSEM sample is from a PS−
PDMS with MW = 72.5 kg/mol having 0.40 volume fraction
PDMS), normalization of the curvatures relative the unit cell
parameters provides a useful basis of comparison for curvature
measurement from two examples of nominally the same
experimental DG morphology. Among other differences, it can
be noted that curvature distributions measured by SVSEM
reconstructions are somewhat tighter than from TEMT. In
particular, the clustering of IMDS shape measurement around a
quasi-1D region in H and KG space is similar to what is found
from SCFT predictions in Figure 5, although it must be noted
that curvatures from SVSEM reconstructions show significantly
broadened distributions from theory. It remains how much of
the measured shape variability of this SVSEM can be attributed
to fluctuations and distortions in the particular experimental
realization of DG and how much can attributed to fundamental
limits of resolution of the 3D reconstruction itself (i.e., sampling
at finite voxel size over a finite 3D volume BCP sample).

IV. OUTLOOK AND FUTURE DIRECTIONS

In this Perspective, we have aimed to overview advances in the
ability to experimentally measure and to theoretically model
BCP morphologies at the subdomain scale and to connect the
characteristic structural features to the underlying thermody-
namic aspects of chain packing in complex phases. Largely for
the purposes of clarity, we have focused on the presentation of
the simplest of BCP designslinear AB architectures. Next, we
discuss some of the challenges and opportunities for extending
and applying these concepts andmethods to problems of current
and future research and ultimately for understanding their

implications for material performance. We start with the need to
improve processing of BCPs in 3D to achieve highly perfect
structures as has been already well accomplished by directed
self-assembly of thin (one domain thick films) in 2D.133−136

IV.A. Processing Pathways for Near-Equilibrium BCP
Morphologies. Similar to the situation in protein crystallog-
raphy, where the ability to grow large, distortion-free single
crystals is key to the successful high-resolution structural
determination, precise and accurate measures of the subdomain
features of BCP morphologies also rely on the growth of highly
perfect BCP crystals. With BCPs, the crystalline order (i.e., long-
range periodicity of the microdomains themselves) is strongly
processing-path-dependent, indicating that resultant morphol-
ogies are likely at least slightly out-of-equilibrium for almost all
BCP experimental systems at the point of measurement. The
physical origins of the nonequilibrium behavior of BCP
structures are well-known, stemming from the slow dynamics
of high-MW chains, which maybe be both highly entangled and/
or glassy at their final temperature and concentration, combined
with numerous energetic barriers and slow relaxation processes
associated with domain formation and rearrangement. Thus,
comparison to the equilibrium structure found by theoretical
computation is often (even, usually) problematic. Essential to
the success of future high-resolution 3D studies and their critical
comparison to computational results will be the ability to have
specimen processing and sample preparation methods for
morphological examination such that the structural information
collected is not biased by such factors as solvent shrinkage and
superposition of signals from multiple types of (variously
distorted and oriented) environments. However, as is evident
from most experimental studies, the high-MW specimens that
are investigated are inevitably strongly segregated and therefore
cannot be driven into a homogeneous disordered state by raising
the temperature above their ODT due to the onset of thermal
degradation. Thus, solvent casting is universally used to start
from a homogeneous (dilute solution) state and to greatly
accelerate the dynamics as BCP chains undergo domain
formation and ordering, although this process itself presents
additional challenges. First, as solvent is removed from the
system, it is preferable to maintain constant relative volume
fractions of the components once the system undergoes phase
separation so as to avoid the ensuing shifted domain structure
corresponding to alternative volume fractions, which requires a
neutral solvent for BCP components. Such a neutral solvent is of
course only possible for two component samples. Moreover, the
onset of the disorder to order concentration (ODC) is likely
preceded by the formation of molecular aggregates, in all
probability, micelles of some form. The subsequent details of the
nucleation and growth of the microdomain morphology from an
assembly of such aggregates are still relatively poorly understood
with most studies employing light scattering and SAXS vs
temperature and vs polymer concentration to detect changes in
the structures present in the solution. While an increase in the
small-angle scattering signals the onset of structure formation,
little can be inferred about the details of the structure(s) present
and how these entities combine and evolve with the extent of the
transformation from homogeneous solution to micellar fluid to
the long-range ordered (i.e., crystalline) solid. A useful way to
appreciate the various possible structural pathways is to view the
“block copolymer solution phase cube”137 that features three
orthogonal axes for the equilibrium temperature T (or χN) vs
BCP composition f vs BCP volume fractions ϕ, in the binary
solvent-BCP phase diagram, as shown in Figure 22.
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How the domains and ordered multidomain grains grow, for
example, by the addition of individual chains and/or by addition
of micelles or some type(s) of aggregate remains basically an
open question. As often occurs in phase transformations, the
kinetically most favored structures will likely form first and
become long-lived metastable structures or (partially) transform
to the more stable equilibrium structures. Low-MW and/or low-
χ systems can be taken into the homogeneous disordered melt
state thermally, and provided that the ordering transition is
above the higher glass transition temperature (Tg) component,
these systems can be studied at quasi-equilibrium without the
complication of the presence of solvent. For samples prepared
via the homogeneous melt route, if cooling is done slowly and
avoids strong gradients, then thermal stresses (and their effects
on domain morphology) can be mitigated.
Even if one can promote the correct phase (i.e., the phase that

corresponds to the equilibrium state at the final concentration
and temperature), distortions nearly always occur during self-
assembly and growth of BCP crystals,78,138−140 for two essential
reasons. First, unlike atomic and molecular crystals, structural
building units in periodic BCP are themselves composed of large
numbers of highly deformable collections of molecules. A typical
triply periodic BCP phase has a unit cell that includes thousands
of chains (each of which is high MW, so millions of atoms in
total). Second, sample preparation most commonly involves
casting a specimen from a room temperature solution, and the
formation of ordered phase(s) proceeds via nucleation of small
grains throughout the volume, growth of the grains along with
additional grain nucleation, until grain−grain impingement
forms grain boundaries. With most BCP samples, casting is in
the shape of a large area thin film, so solvent evaporation occurs
only in the vertical direction and generally the structure
maintains its area while decreasing its thickness. Thus, the
solvent-swollen structure experiences 1D shrinkage forces
primarily along the normal to the film surface. Depending on
the type of ordered phase and the particular local grain
orientation, these shrinkage forces occur along various crystal
directions. Film shrinkage can range up to the order of 500%.
And even if the experiment is conducted such that the local
structural relaxation time (i.e., the time required for motions of
BCPmolecules to adjust within their subdomain) is shorter than

the time required for the solvent to be removed, unless shrinkage
is isotropic or new unit cells are grown or dissolved to allow for
commensuration of the film dimensions and the evolving unit
cell parameters, stresses and domain shape distortions will
appear. In thicker samples, concentration gradients increase
across the film thickness as the near-surface region dries and
vitrifies. Because the domain structures are mechanically
anisotropic, the variously oriented regions respond differently,
leading to distorted unit cells having different lattice parameters
and, for the 2D and 3D ordered phases, variable angles between
the cell axes.
The common SAXS analysis protocol of spherical averaging of

scattering patterns often masks the anisotropy present. Also,
SAXS patterns are frequently only taken with the beam directed
along the normal to the film surface, that is, along the principal
shrinkage direction, such that often any anisotropy will not be
apparent in the 2D diffraction patterns (but space group
forbidden reflections of the ideal equilibrium structure can still
appear). Indeed, shrinkage-induced distortions to the structure
have causedmisidentification of the space group.138The original
phase assignment of a BCP sample to Schwarz’s P surface (space
group Pm3̅m) was in error due to the presence of the first five
forbidden Bragg peaks all induced by the solvent shrinkage
distortions to the double gyroid phase (space group Ia3̅d). Space
group symmetry forbidden reflections occur due to the
disruption of screw axes and glide planes. When distortions
occur that break such symmetries, then the strict cancellation of
phases for such peaks no longer holds, and the intensity at these
peak positions is evident and can be misinterpreted as resulting
from allowed Bragg peaks from an undistorted alternative space
group.
A suitable question then, is to ask, “how can one determine if a

BCP microdomain structure is truly indeed at equilibrium?”
This leads to two additional questions: (1) Is the observed phase
the correct equilibrium morphology? (2) Are the metrics of the
observed structure consistent with the symmetry of the unit cell,
and are these metrics isotropic with respect to location within
the sample (over large supra-unit cell dimensions)? The first
question can be addressed by exploring the stability of a given
phase to purposeful use of a preferential solvent for one block
along with rapid processing to force the occurrence of a
metastable phase, followed by annealing to see if the metastable
phase undergoes a transformation to the equilibrium phase. This
approach does not guarantee that one is studying the
equilibrium phase but if a BCP can be driven into different
structures by using preferential solvents for each of the blocks,
followed by annealing such that each of the two (different)
preferential solvent metastable structures reverts to the same
phase, which strongly suggests that the annealed structure is the
equilibrium one at the annealing temperature. The second
question can nowadays be addressed either by employing
microfocus X-ray beams and goniometer stages available at
synchrotron beamlines or by using slice and view SEM to create
3D reconstructions, followed by 3D Fourier transforms. Such
approaches create a 3D view of reciprocal space and permit
precise determination of the locations of Bragg peaks (and their
phases) for a set of single grain volumes. Only if the
measurements show equivalence of symmetry-related peaks
and grain independence of q vectors and peak intensities can one
be sure that the structure’s sub- and supraunit cell dimensions
are uniform and comparable to predicted equilibrium structures.

IV.B. Mapping Molecular Architectures to Multiscale
Morphologies. There continues to be rapid advances in the

Figure 22. Schematic illustration of the block copolymer solution phase
cube as a function of temperature (T), copolymer composition ( f), and
copolymer concentration (ϕ). The shaded plane corresponds to the
melt phase map (schematic adapted from ref 138).
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ability to synthesize well-defined BCP with evermore complex
architectures. The variable connectivity and additional compo-
nents in more complex architectures can lead to myriad possible
domain topologies, shapes and periodicities. The huge space of
chemical possibilities and morphological outcomes motivates
the need for rational principles that predictively map molecular
characteristics to target morphologies. Considerable guidance is
provided by the powerful SCFT approaches. For one, SCFT
provides a means of more rapidly screening a series of systematic
molecular designs (that are both synthetically accessible and as
experimentally straightforward as possible) onto a morphology
map, which in turn can be used to target desirable morphology
dependent properties. Additionally, SCFT predictions provide a
detailed “molecular microscopic” for equilibrium configurations
of BCP molecules within ordered domains. Arguably as, if not
more, powerful for directing the search for more interesting and
valuable molecular designs and assembled morphologies are the
physical principles that can be extracted from approaches like
SST, since these more directly link BCP chemical properties
(e.g., composition, segment−segment interactions, and archi-
tectures) to candidate morphologies via their subdomain
packing thermodynamics. Such theories have the potential to
identify and greatly simplify the search through multidimen-
sional molecular design space.
One successful example of this is Milner’s mapping57 of

conformational asymmetry (i.e., asymmetric statistical lengths
aA and aB for an assumed common volume) and architectural
asymmetry (i.e., asymmetric arm numberm and n) on to a single
elastic asymmetry parameter for AmBn “miktoarm” stars. This
parameter ϵ = (aA/aB)(n/m) characterizes the relative
magnitude of the entropic stretching from B-type to A-type
subdomains, in addition to their relative weighting at unequal
block volumes. Critically, for ϵ > 1, theory predicts that the SSL
phase boundaries are shifted away from symmetry about f = 0.5,
reflecting a thermodynamic preference of for domain curvature
toward the A block, by an amount that can be achieved equally
via aA > aB in linear diblocks and m > n for conformationally
symmetric miktoarm stars. This prediction has been widely

confirmed,97,141−145 and importantly, it paves the way to vastly
expanding the composition window for stable sphere and
cylinder phases via high-asymmetry architectures. Beyond
control of the domain topology, SST calculations lead to the
predictions that the thermodynamically stable arrangement of
spheres changes for large ϵ,33,38,97 from the canonical case of
BCC to more complex Frank−Kasper phases, like A15 and σ. It
was argued that the key factor driving this transition was the
change in relative stiffness of the outer (coronal) vs inner (core)
subdomains, which lead to an enhanced “warping” of subdomain
shapes at larger epsilon ϵ.33,97 SCFT studies first showed that
A15 becomes stable over BCC for architecturally asymmetric
BCP,47 which was consistent with the observation of A15 sphere
phases in branched dendron diblocks by Wiesner et al.39 More
recently, a slew of experimental observations,37,40,43 followed by
additional SCFT studies,49 have found that a stable window of
FK phases exists for conformationally asymmetric linear
diblocks as well, confirming the predicted equivalence between
architectural and conformation effects. Moreover, these studies
have shown that multiple sphere phases are stable at large
epsilon, leading to a generic sequence of observed phases in the
SSL with increasing f, BCC→ σ→ A15→ Hex. Notably, while
many aspects of the transition from stable BCC to stable FK
phase (σ or A15) have been rationalized, including through the
use of SST-based calculations, a complete understanding of the
evolution of subdomain morphology with elastic asymmetry and
its connection with this generic sequences of equilibrium phases
(for the Gaussian chain melt model) remains elusive.
Given the utility of capturing a large class of molecular

variation within a single (or even a few) molecular descriptor(s),
it remains desirable to expand the molecular to morphology
mapping provided by this SST subdomain packing perspective
to a much broader class of BCP architectures. This poses two
challenges, developing sufficiently accurate and flexible
approaches to account for changes in the entropic cost of
strongly stretched brushes beyond the simplest cases of
monodisperse linear blocks, on which the parabolic brush
theory is based. For example, Pickett has developed an extension

Figure 23. Subdomain geometries beyond linear diblocks. This figure illustrates 2D examples of subdomain geometries and their putative variation
with molecular architecture, illustrated to the right of each. In each, terminal boundaries are illustrated as solid colored lines of corresponding blocks,
and IMDSs are shown as black lines, with subdomains illustrated by regions bounded by white lines. On the left, “simple” subdomains, extend from one
inner terminal boundary through one or more IMDSs to other terminal boundary. In the middle, “compound” subdomains proposed from alternating
domain morphologies of AB terblocks, which extend straight from one terminal boundary (red) to an intermediate boundary (blue) where it bends
toward the IMDS (and terminal boundary) of the alternate domain (green). On the right, a “vertex-associated” subdomain proposed to 2D
Achimedean tiling morphologies of ABC miktoarm stars. Here, junctions are assumed to localize at the three-phase contact, and hence subdomains
radiate from this line to the terminal boundaries within each domain.
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of the parabolic brush theory to account for dendritic branching
of blocks and shown that it leads to qualitatively similar effects to
elastic asymmetry that drive IMDS curvature away from
branched domains,146 and in principle, this suggests a
generalization of the ϵ parameter which accounts for multiple
generations of branching.48 More broadly, the like-component
brush domains of complex BCP architectures include mixtures
of different “grafts”, for example, linear blocks with free ends in
the brush mixed with some fraction of loops that extend into the
brush but again terminate at the IMDS. SST extensions for
polydisperse brushes have been developed,147 but to date these
have not been exploited to study the effects of “mixed grafts” on
BCP morphologies and phases.
A second challenge derives from adapting the definition and

associated key “degrees of freedom” with the subdomain
volumes themselves to account for alterations of the molecular
designs and corresponding assembled morphologies. In Figure
23, we show schematically the classes of subdomain “types” that
have been explored for distinct BCP architectures thus far. The
primary focus of this Perspective has been on the simplest class
of subdomains, which extend in straight trajectories from one
“inner” terminal boundary through the IMDS(s) to an “outer”
terminal boundary. We have left out discussion of more subtle
issues associated with balance of volume fraction on either side
of these wedges and questions about alternate patterns of tilted
and/or kinked subdomains within this class.33 Instead, we
proposed that medial sets provide a generic (zeroth order) proxy
for terminal boundaries and subdomain distributions given a
known IMDS shape, features which are now measurable from
careful 3D reconstruction experiments. Understanding the
constraints of volume “balance” for this medial ansatz and
their impacts on BCP thermodynamics constitutes another open
question. Beyond details associated with variation along the
subdomain, we note that introducing multiblock architectures,
such as ABC terpolymers, may lead to morphologies with
“nonsimple” subdomains. For example, as shown in Figure 23,
alternating domains morphology of ABC triblocks have been
modeled by using “compound subdomains”,58 while Archime-
dean tiling phases (and even so-called “tricontinuous” net-
works148) of ABC stars have been described by “vertex
associated” subdomains,149−151 which junctions localized to
lines of three-phase contact. These examples illustrate that
notions of subdomain shapes and thicknesses are inextricably
linked to constraints imposed by the chain connectivity,
interdomain contact, and constant density of the melt. Hence,
both theoretical and experimental metrics of the 3D subdomain
morphology need to be suitably tailored to account how more
complex BCP architectures “fit” within more complex domain
patterns.
One possible hybrid approach toward that goal may be to

exploit the molecular distributions provided by SCFT to extract
directly the subdomain shapes. In principle, such distributions
could be extracted from the mean-field two-point correlation of
SCFT solutions98 or, alternatively, from the patterns of
“segment flux” provided from the orientational order parame-
ters, as implied by the comparison between medial and Voronoi
cells to vector order. This would obviate the need for any
geometric proxies, such as the medial surfaces of IMDSs, and
provide direct templates for subdomain shapes for the purposes
of SST analysis and potentially a detailed map for ultimate
experimental characterization that could determine the 3D
spatial distributions of BCP chains within complex phases. How
and whether such spatially resolved subdomain orientational

maps could be extended to experimental characterization remain
an open challenge.
Beyond variation of the controlled architectures in BCP for

single-component melts there remain unanswered questions
about subdomain packing for two experimentally important
class multicomponent BCP systems: polydisperse BCP and
blends of BCP with homopolymers. To begin with, polydisper-
sity is a realistic feature of any experimental BCP system. The
question of how different types of polydispersity (e.g.,
polydispersity in length vs composition, multimodal vs
continuous distributions) influences the assembly of BCP
melts is a long-standing one152 and has received considerable
study from the perspective of experiments106,153,154 and SCFT
computations.155−159 However, basic questions about how
different modes of dispersity alter the subdomain packing
characteristics remain largely open. From the point of view of
SST theory, polydispersity can be expected to alter two features
of BCP assembly relative to the ideal monodisperse limit. First,
dispersity of blocks within the alternate brush domains alters
that entropic costs of stretching in that domain. Extensions of
the parabolic brush theory for planar brushes,147 for example,
show that dispersity leads to segregation of relative short and
longer blocks into “proximal” and “distal” regions from the
IMDS. Perhaps more significant from the point of view of
thermodynamics, the local entropic costs of stretching are
reweighted in polydisperse brushes, with proximal and distal
zones respectively experiencing greater and lesser entropic costs
per unit volume filled in the brush.127 The implications of this
geometric reweighting of spatial regions near to and far from the
IMDS in nonlamellar morphologies remain to be understood.
Moreover, it can be intuitively expected that local variations of
nominal subdomain thickness of IMDS shape within a complex
morphology will tend to drive segregation of distinct species of
BCP distribution to regions of the complex morphology where
they “fit best”. While SCFT studies have demonstrated the effect
of different models of dispersity to substantially shift phase
boundaries and alter domain spacing relative to the mono-
disperse case,152,157,158 a detailed understanding of the
combined effects of these distinct mechanisms of subdomain
stratification to stabilize complex morphologies and alter details
of subdomain shapes is far from complete.
The effect of blending of homopolymers and BCP on the

subdomain packing and formation of complex phases is another
question of long-standing interest. Matsen and others argued
that the packing frustration within the minority (tubular) phase
of network-forming diblocks could be relieved by blending in
homopolymers of minority block type and enhancing their
stability by localizing to “hot spots” in the morphology.32,76 In
particular, it was suggested that high molecular weight
homopolymer will not mix in the tubular block but instead fill
the high-stretching interstices at the center of junctions.30,160

This idea is seemingly consistent with SCFT calculations,161−163

and subsequent experimental observation,164,165 which show
that blends with (∼10−20%) homopolymer of theminority type
stabilize network phases that are not equilibrium in pure
diblocks, including DD and DP networks. Recently, exper-
imental42 and SCFT166,167 studies of sphere-forming BCP
systems suggest analogous effects for Frank−Kasper sphere
phases. For example, blending (core block) homopolymer to
diblocks which otherwise from BCC or σ phases leads to the
formation of new phases, such as C14 and C15. Like the case of
networks, here it has been argued, and rationalized by SCFT,
that blend stability of novel sphere phase relies on inflating the
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cores of highly frustrated sphere domains (e.g., the Z12 domains
of C15) and relaxing the entropic costs of brush domains in their
cores. Beyond these heuristic pictures, key questions remain
about how blending influences subdomain packing. Foremost
among these perhaps a predictive framework to describe where
the “hot spots” with a complex morphology reside and how
subdomain shapes of BCP evolve as one progressive loads these
regions with soft guest molecules like high-MW homopolymer.
That is, can one predict and map the 3D shapes of terminal
boundaries that delineate between the homopolymer guests and
dry molten brushes in the blended complex phases? More
critical, it remains to be understood what are the geometric
features of certain complex phases that make them better “hosts”
than others (e.g., can these be extracted from medial analysis as
in Figure 9?). It is reasonable to expect that network
morphologies benefit from homopolymer loading into their
junctions if those regions are indeed a primary source of packing
frustration. But at present it is not yet clear why thenmight some
phases (e.g., DD and C14) apparently benefit more from hot-
spot filling such that they overtake the frustrated phases that
form in unblended state (e.g., DG and σ/BCC).

V. CONCLUDING REMARKS

In this Perspective we have overviewed advances in the ability to
measure and model the complex geometries of BCP assemblies,
in particular focusing on features of the morphology at the
subdomain scale. We conclude with a few remarks about the
prospects for resolution and validation of these “fine features” of
BCP morphology and their likely importance to future research.
First, we emphasized how addressing the open questions

about complex BCP structure formation presents both an
opportunity and a need to clearly define quantitative metrics that
capture the significant variability of subdomain shapes far
beyond the initial canonical domain shapes. On one hand, for all
phases but that of perfect lamellar order there is variability in the
packing environment of BCPs, and assessing proper metrics of
this packing, and specifically metrics that are directly comparable
between experimental and modeling approaches, is essential for
uncovering and refining the principles that explain how the
collective assembly of malleable BCP building blocks select
specific domain symmetries and topologies. Beyond the grand
challenge to design specific molecules for the purposes of
targeting and generating yet unrealized morphologies with
valuable and exotic functions (e.g., topological photonic
metamaterials168−171), BCP-based assembly remains critical as
a laboratory for understanding the principles of self-assembled
soft matter more broadly. Despite the relative simplicity of the
various molecular designs, BCPs exhibit assembly behavior that
is as rich in terms of the number of distinct phases as well as their
structural complexity as the ever-expanding zoo of supra-
molecular building blocks available to researchers, from shape-
defined liquid crystalline nematogens to synthetic biopolymer
hybrids.172,173 Yet, unlike nearly all other types of supra-
molecular building blocks, the BCP assembly has the unique
advantage that it is well described by broadly validated and
adaptable theoretical framework (i.e., SCFT) that can trace
changes in features of the molecular design to quantitative
thermodynamic and structural consequences for assembly.
Notably, the underlying reasons for broad success of SCFT
derive from the fact that as macromolecules, the intrachain
configurational fluctuations of the chains, which is readily
theoretically calculable, dominates the entropic contributions in
BCP, on one hand, and other hand, their effect is to “wash out”

much of the dependence of on fine chemical details of polymeric
components. In that way, SCFT is broadly adaptable to a nearly
limitless array of BCP architectures yielding complex and
detailed assembly predictions from a fairly simplified description
of molecular building blocks and their interactions. That means,
for example, detailed predictions are readily accessible for not
only how chain distributions in a self-assembled morphology
depend on the architecture and elastic asymmetry but also how
those configurations vary from place to place within a given
morphology as well as from one morphology to another (see e.g.
the discussion of packing in sphere-like domains at distinct
Wyckoff positions in complex phases). And while questions of
the role of packing frustration on the formation of complex
phase are not unique to BCP melts, the powerful lens provided
by SCFT (not to mention the array of particle-based simulations
and theories that complement it) arguably make these systems
especially valuable for careful, critical and quantitative testing of
the underlying mechanisms of complex morphology selection
and connecting those mechanisms to relevant design features of
the molecular building blocks.
Capitalizing on the unique potential of BCPs as a laboratory

for soft matter assembly will likely rely on two changes in our
approach to studying BCP morphology. This first, emphasized
in section II, is a shift toward more specific and quantified
metrics of morphology. As is the case in many subfields of soft
matter assembly, the packing geometry of BCPs is often viewed
and presented as a “fuzzy” concept. Indeed, the success of SCFT
for modeling BCP assembly derives essentially from the
fuzziness of molecular configurations themselves, which at first
glance might seem to make sharp and precise definitions of
subdomain packing impossible. Yet, we emphasize that this need
not be the case. While predictions of SCFT are statistical in
nature, due to the underlying configurational fluctuations of
chains, that does not mean it is impossible to make notions of
subdomain morphology geometrically precise, quantifiable and
fully generalizable to arbitrary domains. An example of this is the
concept of the association map, introduced in section II.A, that
divides volumes of space into distinct domains grouped together
by the likelihoods of chain association to its IMDS. Even though
chain ends are distributed throughout brush domains, and
opposing brush regions always interpenetrate to some extent,
that does not preclude definition of a sharp terminal boundary
that separates neighbor domains. Once formulated, a general
construction for such a boundary then leads us naturally to think
about how the 3D loci of “subdomain ends” change in more
complex phases. For example, this leads one to reconsider the
shapes of cellular volumes enclosing sphere-like domains in
complex crystalline packings (specifically those with multiple
symmetry-inequivalent Wyckoff positions), which are quite
distinct from the commonly invoked Voronoi cell models.
Understanding the implications of what might initially seem to
be subtle differences in these fine features of the morphology lies
at the heart of the thermodynamic tug of war that guides their
formation.
This example of terminal boundaries of BCP domains brings

us to the second imperative: closing the gap between
measurement and inference in complex BCP morphologies.
This theme was emphasized in section III, where we noted that
from the earliest days of BCP morphology characterization
researchers are led to “imagine” what is the actual arrangement
of molecules given what is rather limited data on the 3D
structure (i.e., SAXS and TEM measurements). In many ways,
the inferred “cartoon picture” about how the molecules pack in
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BCP domains has not changed much over the decades, although
it is important to note the methods to make morphological
measurements over multilength scales and in complex 3D
configurations have advanced considerably, to the point where
detailed and quantitative comparisons of the theoretical
predictions of the intrinsically variable fine features of
morphology are within reach. That said, there are still many
key attributes of BCP morphology that, while they are critical to
assembly, remain essentially “invisible” from an experimental
point of view.
Closing the gap between measurement and inference will

ultimately rely on new methodologies that not only image the
3D shapes of the composition of materials but also resolve the
distributions of constituent chains themselves within the
underlying morphology. Neutron scattering of deuterium or
heavy-atom-labeled BCP specimens has provided a powerful
lens into the arrangement of distinct chain portions (i.e., ends
and junctions) for lamellar phases.174,175 Notably for any
nonplanar morphology, this technique will have limited use due
to aforementioned unavoidable challenges posed by the phase
inversion problem of the scattering pattern (and the super-
position of signals from differently oriented labeled subdomain
environments). That means that when it comes to knowing
where the chain ends are in a complex BCP phase like the DG,
experimentalists are essentially in the dark. New real-space
methods that allow one to make detailed measurements of not
only the IMDS but also the currently hidden terminal
boundaries are needed for a critical test of principles that
connect complex and malleable BCP molecules to the complex
and malleable states of structure soft matter they form.
Continued advances in both spatial and temporal resolution of
an ever-enriched set of BCP structures in the coming years are
sure to come, bringing us closer to a direct and quantitative view
to imaging inhomogeneous, malleable yet nonetheless struc-
tured block copolymer chain configurations themselves hidden
beneath the surface.
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