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A lattice model of liquid crystalline m icrostructure has been developed. It pro­
vides the basis for the three-dim ensional solution of the Frank elasticity equations 
for given boundary conditions while, in addition, providing a m echanistic repre­
sentation of the development of tex tu re  as the m icrostructure relaxes w ith time. 
It is also able to represent disclination m otion and the processes associated with 
their interaction. In particular, it has been used to study (s =  ± | )  disclination 
loops, bo th  those described by a single ro tation  vector, 17, and those in which 
17 has a constant angular relationship w ith the  loop line and are equivalent to a 
point singularity a t a distance much larger th an  the loop radius. The application 
of the model to  disclinations of unit strength, which are unstable bo th  energet­
ically and topologically, has shown th a t the decom position into two |  strength  
lines of lower to ta l energy occurs much more readily than  topological escape in 
the th ird  dimension. The im plication for structures observed in capillary tubes 
is discussed. The influence on m icrostructure of a splay constant much higher 
than  th a t of tw ist or bend is explored in the context of m ain-chain liquid crys­
talline polymers, in particular, the  stabilization of tangential +1 lines under such 
conditions is predicted in accord w ith observed m icrostructural features.

1 . B a c k g r o u n d

The study of liquid crystals is a m ature science. For over 100 years the light mi­
croscope has been the prim ary tool for the observation of m icrostructural form 
in these m aterials. The literature  abounds with the rich variety of textures which 
have been reported. The analysis of m icrostructure stems from Lehm ann (1904), 
who first described a Schlieren tex tu re  and drew director m aps of w hat we now 
call disclinations. Friedel (1922) provided the m odern framework of structural 
understanding and much of the accepted nom enclature, while Zocher (1929) laid 
the basis for disclination analysis in liquid crystals which was extended and re­
fined by Frank (1958). More recently Kleman (1983) has interfaced the geometric 
understanding to algebraic topology. It is perhaps surprising th a t an area which 
has a ttrac ted  such quality a tten tion  over so many years should still be of interest. 
However, the recognition w ithin the last two decades of liquid crystallinity as a 
sta te  of m atter in synthetic polymers, has involved the identification of a number 
of new textures, some fine scale and very difficult to  interpret, others such as the 
banded textures, quite striking. The purpose of the work described in this paper
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is, through the  device of m icrostructural modelling, to  reinforce our geom etric 
appreciation of disclination organization in th ree  dim ensions, and to  do th is in 
a way which can sim ulate the evolution of m icrostructures and, eventually, the ir 

response to  complex boundary  conditions and applied fields.

W hile the new structu res seen in polym eric liquid crystals m ay be challenging 
to in terpret, there is a distinct experim ental advantage w ith  these m aterials. The 
observation of tex tures in small-molecule m esophases is stra igh tfo rw ard  in the  
case of light microscopy of th in  films contained betw een slides. However, it is not 
generally possible to quench-in the  liquid struc tu re , for when solidification occurs 
by v irtue of crystallization, the  struc tu re  is largely ‘rew ritten ’ as the  crystals form. 
On the o ther hand, in m ain-chain therm otropic  m aterials, such as those based 
on random  copolymers, the lim ited crystallization  which does occur (abou t 20%) 
does not appear to affect significantly the  s tru c tu re  which subsequently  freezes 
to a glass a t Tg. Hence, the  m icrostructu ral form of the  frozen m elt m ay be 
investigated for bulk specim ens in which the  influence of the  boundary  conditions 
is m inimal. Fractography is often rewarding. F igure la  shows the  local s tru c tu re  
in a sam ple of therm otropic copolyester as revealed on the  frac tu re  surface. The 
m aterial is fissile, w ith the  easy direction of fracture  corresponding to  the  local 
chain axis. Further confirm ation of th is relationship  can be achieved by lightly 
etching the fracture surface which reveals the  crystals as cross striations. T he 
p latelet form of the  crystals and the  fact th a t their th in  axis corresponds to  the  
chain axis have been confirmed by electron microscopy (Spontak  & W indle 1990; 
H anna et al. 1992). Figure lb  is a fractograph of a banded  struc tu re ; the  shear a
is horizontal and observation in tran sm itted  polarized light would reveal parallel 
bands norm al to this axis. T hin  sections of a bulk sam ple can also be prepared  
by grinding and polishing m ethods fam iliar to  petrologists. W hile it is im portan t 
to rem ain wary of any influence of crystallization on the  details of the  quenched 
m elt struc tu re , we are confident from bo th  the  appearance of the  struc tu res, and 
the m easurem ents of sim ilar orientation  functions for the  crystalline and liquid 
crystalline com ponents of the  diffraction p a tte rn , th a t  rap id  cooling enables one 
to  observe an accurate solid replica of the  liquid crystalline m elt.

A . H. W i n d l e , H .  E. Assend and  

2 . T h e  l a t t i c e  m o d e l

The initial stages of developm ent of the  lattice  m odel for liquid crystalline 
m icrostructure has been described in earlier publications (Bedford al. 1991; 
Bedford & W indle 1993). The model bears some relationship  to  th a t of K ilian & 
Hess (1989, 1990) and of earlier M onte Carlo based m olecular scale m odelling of 
Lebwohl & Lasher (1972). The m odel is sum m arized in figure 2. I t consists of a 
cubic array of cells, each of which is assigned a d irector orien tation  (figure 2a). 
The scale of the  model is such th a t each cell contains m any molecules and is 
characterized by a director defining their comm on orientation . In the  case of the  
work reported  here, the local molecular d istribu tion  is assum ed to  be uniaxial, 
although biaxial system s are possible and po ten tially  trea tab le  w ith  models of 
this type. The algorithm  is outlined in figure 2b. S ta rting  conditions are either 
random , the director of each cell being set in a random  orien tation  w ith  e ither free, 
fixed or periodic boundary conditions, or correspond to  a p articu la r arrangem ent 
which is w ritten  into the model before com m encem ent of relaxation. A cell is

Proc. R . Soc. L o n d . A (1994)
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75M odelling  o f  fo rm  in  therm otrop ic  po lym ers

F igure  1. (a) F rac tu re  surface revealing th e  local d irec to r o rien ta tio n  in a sam ple which w ould 
show a schlieren te x tu re  in tra n sm itte d  polarized  light. M ateria l: random  copolym er of 75% 
hydroxybenzoic acid and  25% hyd roxynaph tho ic  acid. M w  =  5800. C ourtesy , D r A. Anwer. 
(6) F rac tu re  surface th ro u g h  a th in  sam ple of th e  sam e polym er as in (a). I t has been sheared  

and  quenched and  shows a banded  te x tu re  in tra n sm itte d  polarized  light. T he frac tu re  p lane is 

parallel to  th e  shear p lane and  th e  shear d irec tion  is horizontal. C ourtesy, D r T . J. Lem m on.

Proc. R . Soc. Lo nd. A (1994)
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T h e  D I R E C T O R  is  th e  s y m m e t r y  d ir e c tio n  o f  in it ia lly  a r r a n g e d  a t 

th e  m o le c u le s  in  th e  c e l l  r a n d o m

(b)

is o t r o p ic

\
— /

\

y
m o n o d o m a in

/

/ / /

/

P ic k  a d ir e c t o r  a t  r a n d o m  fr o m  
th e  ar ra y

M o v e  th e  v e c to r  a s m a ll  
in c r e m e n t  d o w n  th e p a th  o f  
s t e e p e s t  g r a d ie n t  in  e n e r g y

S ta rt  w it h  a r a n d o m  a rr ay  o f  
u n i t  v e c t o r s  - th e  d ir e c to r  

la tt ic e

F igu re  2. (a ) T he  la ttic e  m odel. E ach  cell is ch a rac te rized  by a  d ire c to r , an d  is ta k e n  to  be  m uch  

larger th a n  m olecu lar d im ensions. (6) T h e  a lg o rith m  used. E ach  cell is v is ited  a t  ra n d o m , an d  

th e  o rien ta tio n  of its  d irec to r changed  on a p a th  w ith  will reduce  its  energy  w ith  re sp ec t to  th e  

o rien ta tio n  of th e  d irec to rs  of th e  six n ea re s t ne ig h b o u r cells.

selected at random  and its energy calculated by sum m ing the  individual energy 
contributions due to the  orientational d istortion  betw een it and  each of its six (in 
three dimensions) nearest neighbours. The o rien tation  of the  cen tral vector is then  
changed by a small am ount, one degree or less, down the  p a th  of steepest energy 
gradient. A nother cell in the model is then  chosen a t random  and the  process 
repeated, and so on. The evolving model tex tu re  is p rin ted  out as required.

The energy function which has been found to  be m ost successful is sin2(A <f>). 
The reasons for preference of th is harm onic function have been discussed (As­
sender & W indle 1994). In sum m ary, it has the  following a ttrib u te s:

1. It approxim ates t o E o c  A</>2 at low angles, which is the  assum ption  of the  
Frank equation for elastic energy.

2. The sum m ation of six energy functions corresponding to  the  surrounding  
cells corresponds to the sum m ation of six harm onic functions differing in phase 
and am plitude. The consequence is thus another harm onic function, sketched in 
term s of Euler angles in figure 3. It has the  advantage of a single m inim um , so 
th a t gradients a t all points on the  energy surface lead to  th is m inim um .

3. The lattice is invisible. This m eans th a t a sym m etrical field, as would for 
exam ple surround the centre of a singularity, would lead to  a com pletely flat 
energy-orientation  relationship for the central d irector irrespective of the  relative 
orientation  of the disclination and the  lattice.

Figure 4 illustrates the  model relaxing in three dim ensions. It is a series of sec­
tions (on the same plane) taken after the m odel had run  after various increasing 
intervals. The degree to which a director is angled out of the  plane is illu stra ted  
by shortening its length, so th a t directors exactly norm al to  the  section appear 
as points. The relaxation sequence can be followed as sm all regions sharing com­
mon orientation appear in ( b) w ith m any § streng th  dis
R elaxation continues through the apparent annihilation  of defects of opposite 
sign, although m three dimensions th is m ay sim ply be the  result of a d isclination 
loop moving out of the  chosen section. The m ovem ent of disclinations was not

Proc. R . Soc. L ond . A (1994)
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M odelling o f fo rm  in  therm otrop ic  po lym ers 77

F igure  3. T h e  energy of a  d irec to r as a  func tion  of its  o rien ta tio n  expressed as E u ler angles 

o b ta in ed  using th e  s in 2 A  0 function . T h e  six nearest neighbour cells have d irec to rs  chosen a t 

random . T h e  energy  surface has only a  single m in im um  and  tessella tes in 9 and  20.
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F igure  4. A cen tra l section  th ro u g h  an  equiaxial th ree-d im ensional la ttice  m odel of 15 625 cells. 

T he p a tte rn  of d irec to rs  in th e  section  evolves as th e  m odel relaxes. T he do ts a round  th e  outside 
signify free b o u n d a ry  conditions. D irectors are draw n as sh o rte r p ro jec tions as th ey  increasingly 
t i lt  o u t of th e  p lane. T he num ber of ite ra tio n s  per cell were: (a) in itia l condition , (6) 33, (c) 164, 

(d) 247, (e) 329 and  ( / )  1973. N ote th e  e lim ina tion  of a ± |  pair m arked  by arrow s.

achieved by Kilian & Hess in their model, at least in the absence of any external 
field (Kilian & Hess 1990). The sequence is completed as a monodomain with 
orientation unrelated to the lattice.

The questions arises as to the scaling of the model with respect to size, energy 
and time. The model operates w ithout assignment of quantities to any of these.

Proc. R . Soc. Loud . A (1994)
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It thus illustrates the evolution of p a tte rn , th rough  a cyclic sequence which m ay 
not be linear w ith tim e. There is a sm all size lim it a t which therm al fluctuations, 
brownian m otion, becomes significant. It is possible to  m odel such situa tions fol­
lowing the pioneering work of Lebwohl & Lasher (1972). Such work is in progress, 
bu t it is not a feature of th is paper. In fact, as will be discussed below, the  m odel 
does have another size constrain t in th a t the  tru e  energy of a disclination  line can 
only be determ ined by a model w ith  a resolution com parable to  the  d iam eter of 
the  core, a distance perhaps only an order of m agnitude grea ter th an  m olecular 
dimensions. Use of the  m odel to  represent s truc tu res on m uch larger scales m ust 
be m ade in the knowledge th a t disclination core energy is, in fact, being underes­
tim ated . If a size is fixed for the  cells, it is then  a com paratively  stra igh tforw ard  
m atte r to  feed in the m easured values of the  Frank elasticity  constan ts to  ob tain  
actual values for elastic energy. All the  m odelling described here up to  the  final 
section on polymers, is based on the assum ption th a t  the  th ree  elastic constan ts, 
K i  for splay distortion, K 2 for tw ist and iF3 for bend, are equal. T he m a tte r  
of linearity w ith tim e, and the  modelling of actual ra tes of relaxation  rem ains a 
fu ture objective. It will require knowledge of ro ta tiona l viscosities of the  m edium , 
and expression of the  energy gradients as torques.

78 A . H. W indle , H. E. A sse n d e r  and  M . S. L a v in e

3 . D i s c l i n a t i o n s  o f  s t r e n g t h  \

There are two lim iting types of disclination of s treng th  Those in which the  
ro tation  axis of the distortion, the  un it vector 12, is parallel to  the  disclination  
line, and those in which the unit vector is norm al to  the  line. T hey are referred 
to  as wedge and tw is t disclinations respectively. W edge disclination
described by Zocher (1929) and Frank (1958). F igure 5 illu stra tes the  two wedge 
disclinations of opposite sign, the local d irector ro ta tin g  in the  sam e direction  as 
the circuit around the line in the + |  case and in the  opposite direction  for — 
Tw ist disclinations are not as easy to  represent. T he ‘na il’ convention is used in 
the figure to illustra te  the ro ta tion  of the director abou t an axis lying parallel to  
the page. B oth positive and negative exam ples are shown, although in the  absence 
of nail heads, as in the  model representations used in th is work, they  cannot be 
distinguished. If one were to  equate the  12 vector w ith  the  un it B urger’s vector 
of a crystal dislocation, then  wedges would correspond to  screw dislocations and 
tw ists to  edge dislocations. As w ith crystal dislocations, disclinations can have 
mixed character lying betw een the  lim iting cases of wedge and tw ist.

W hile the  director m aps of Zocher and Frank b o th  tre a t disclinations of grea ter 
streng th  than  | ,  such higher order line singularities need to  be kept in perspec­
tive in th a t they are intrinsically unstable. It is well known (Frank 1958) th a t 
the  energy of a disclination (E )  is proportional to  the  s treng th  (s)  squared. A 
disclination of streng th  unity, for exam ple, will undergo the dissociation reaction:

5+i s +i/2 +  <5+1/2, E  —* +  \ E  —

This reaction can be viewed as a dissociation of the  +1  disclination followed 
by the elastic repulsion of the two | s  of like sign. M eyer (1973) po in ted  out 
th a t the m any observations of disclinations of integral streng th , particu la rly  ± 1 , 
from m icrostructural observations in fact represented point singularities of un it 
streng th  at the sam ple surfaces.

Proc. R . Soc. L ond . A (1994)
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w e d g e  tw is t

Q n o rm a l to  p a g e  ------- -------►

M odelling o f fo rm  in  th erm otrop ic  po lym ers

* = +1/2 5 = -1/2 +1/2 = —1/2

------- -  N  \  \  - ----------------------  |  |  I •  •

" " S  \  \ \ \  I I • • -
------ \ I I \    I 1 ■ - •
------------- - /  /  /  /  I I •  •  •

- - ^ /  / / /  I I i ■ •

Q -  r o tatio n  a x is

•  A  A -  m ark ers to  in d ic a te  c o r e  p o s it io n

F igu re  5. D iag ram  show ing th e  local d irec to r p a tte rn  su rro u n d in g  exam ples of pu re  wedge and

tw ist d isc linations of s tre n g th s  + 1 and  — | .

Dissociation behaviour has been modelled in two dimensions by setting up 
a +1 disclination as an initial starting  state , fixing the boundary conditions, 
and perm itting  the  model to relax. The model sections in figure 6 illustrate the 
decomposition. The two | s  repel until they are approxim ately equidistant between 
the centre and extrem ities of the model. The figure also shows sim ulated images 
as they would be seen between crossed polars. Note how the four-brush image 
is m aintained towards the  extrem ities of the model, even though the centre has 
split into two-brush contrast pa tterns centred on each of the disclinations. If the 
boundary conditions are free then the two |  disclinations move right out of the 
model.

4 . L o o p s  I  ( s in g le  Q  c la s s )

A disclination line of strength  |  separates regions of the m aterial differing in 
the rotational distortion of the director field by It is instructional to draw the 
disclination as a closed loop so th a t it bounds a region of 7r distortion within a 
monodomain. The f l  vector describes the orientation of the distortion and thus 
has the same orientation for the complete loop. Figure 7 shows two limiting 
cases of single f l  loops. Figure 7a, in which Q lies parallel to the plane of the 
loop, 7b in which it is norm al to the loop. In the first case the character of the 
loop changes as the line curves from being parallel to D, to being perpendicular, 
back to parallel and so on. This transition in character for constant f? was first 
pointed out by Bouligand et al. (1973), although it is a familiar property of a 
glissile dislocation loop in a crystal. There are four positions on the loop at which 
the disclination is either pure wedge or pure twist as marked, but in general it 
is of mixed character. We refer to the loop as a wedge-twist loop. Figure 7c 
shows diam etric cross sections through such a loop, one normal to D showing 
cross section through the pure wedge parts of the loop, + |  on the left, — |  on 
the right, the other showing the twist parts which again will be of opposite sign 
although the absence of nail heads on the diagram  makes this less than  obvious.

Proc. R . Soc. L ou d. A (1994)
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F igu re  6. D iag ram s of a tw o-d im ensional m odel in w hich all th e  d ire c to rs  a re  held  w ith in  th e

single p lane. T h e  + 1  d isc lina tion  is set up  as th e  in itia l con d itio n . As th e  m odel ru n s  to  s im u la te  

re la x a tio n  w ith  fixed b o u n d a ry  cond itions, th e  d isc lin a tio n  decom poses in to  tw o d isc lin a tio n s  

of s tre n g th  + |  w hich m ove a p a r t  u n d e r th e ir  m u tu a l repu ls ion  u n til reach in g  an  e q u ilib riu m  

position  a f te r 1890 ite ra tio n s  p e r cell. T h e  s im u la ted  o p tica l m ic ro g ra p h s  a re  by  co u rte sy  of J . 
H obdell.

The director field of the ‘wedge’ section has been described as a ‘p incem en t’. 
The second lim iting case in which 17 is norm al to  the  plane of the  loop bounds a 
region of tw ist distortion. As 17 is norm al to  the line a t all points, the  d isclination 
has tw ist character a t all points, and the  loop is referred to  as a tw ist loop. Two 
orthogonal cross sections of a tw ist loop are shown in figure Id .

A significant aspect of these class I loops is th a t  their expansion provides 
a mechanism  for the propagation  of ro tational d isto rtion  w ith in  the  m aterial, 
perhaps under the influence of the  ro ta tional com ponent of a sim ple shear field. 
The corollary to this sta tem ent is th a t the  loops, if pe rm itted  to  relax, will collapse 
and self annihilate  as the  diam etrically opposed com ponents which have opposite 
sign all m eet a t the centre. Figure 8 is a m odel relaxation  sequence showing 
the collapse of a w edge-tw ist loop (in wedge cross section). T he driving force 
for th is collapse has two com ponents: the elim ination of the  d isto rted  m ateria l 
bounded by the loop which could also be expressed as an a ttrac tio n  betw een the  
com ponents of the  loop of opposite sign; and the reduction  in the  length of the
loop itself, which m an analogous sense to  dislocations, can be expressed as a line 
tension.

The tw ist loop collapsed and was elim inated in the  sam e way.

Proc. R . Soc. L ond . A (1994)
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F igure 7. R ep resen ta tio n  of s  =  |  d isc lination  loops w hich are defined by a si

vector, 17. (a) Sketch of lim iting  case in w hich 17 is in th e  p lane of th e  loop w hich has w edge-tw ist 

charac te r. ( b ) Loop of case in w hich 17 is no rm al to  th e  p lane of th e  loop w hich is en tire ly  a  tw ist 
d isclination . (c) Tw o o rthogonal sections th ro u g h  a  m odel of a  w edge-tw ist loop. E ach section 
is no rm al to  th e  p lane of th e  loop. ( d ) Tw o sections, equivalent to  those  o

th ro u g h  a tw ist loop.

The energy per unit length (E / L ) of a disclination can be expressed as

E / L  =  7rK s2( ln ( R /r c) +  0.5),

where K  is the Frank constant (assuming =  =  R  the radius of
the surrounding volume of m aterial deemed to be associated with the line under 
consideration and r c the  core radius. The value of 0.5 for the core energy, while 
derived by setting the energy of the m aterial in the core volume equal to the 
energy density a t the radius r c bounding the core, is not often quoted as such. 
Meyer (1973) would appear to  choose 1 /V ,w hereas Cladis (1974) takes it to be 
unity.

For a loop we take the upper limit of integration about the line, J7, to be the

Proc. R . Soc. Lond. A (1994)
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F igu re  8. M odel sequence show ing th e  collapse an d  e lim in a tio n  o f a  w edge-tw ist loop. T h e  

d iag ram s co rresp o n d  to  equal m odelling  tim e  in terva ls: 0, 115, 230 an d  345 ite ra tio n s  p e r  cell 
respectively.

lo o p  d iam eter

F igu re  9. E nergy  values for a  co llapsing  w edge-tw ist loop d e te rm in e d  from  th e  m odel. T h e  en erg y  

u n its  are  a rb itra ry  and  th e  loop d iam e te r is expressed  in  m odel cell u n its . T h e  co n tin u o u s  cu rve

“ tt  l edel°pPoLTsrSy eqUati°D' aSSUming a C°re diam6ter °f

radius of the  loop Then

£ i =  27r2iT s2JR1(ln(i?1/ r c) +  0.5).

Figure 9 shows a plot of the energy of the model, in a rb itra ry  units, as a  function 
of the loop diam eter expressed as cells. The continuous plot is the  calculated  
energy of the  loop from the equation  above tak ing  the d iam eter of the  core to

Proc. R . Soc. L ond . A (1994)
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F i g u r e  1 0 .  L i m i t i n g  c a s e s  o f  s =  = b |  l o o p s  in  w h ic h  t h e  r o t a t i o n  v e c t o r ,  17, m a i n t a i n s  a  c o n s t a n t  

a n g u la r  r e l a t i o n s h i p  w i t h  t h e  l i n e  a s  i t  c u r v e s  a r o u n d  t h e  l o o p ,  ( a )  T a n g e n t i a l  l o o p  w i t h  £2 

p a r a l l e l  t o  t h e  l in e .  (6 )  R a d i a l  l o o p  w i t h  £2 n o r m a l  t o  t h e  l i n e  a n d  in  t h e  p l a n e  o f  t h e  l o o p ,  ( c )  

A  d i a m e t r i c  s e c t i o n  t h r o u g h  a  t a n g e n t i a l ,  s =  + |  d i s c l i n a t i o n

i d e n t i c a l  fo r  a n y  s u c h  s e c t i o n ,  a n d  t h e  m o d e l  c o r r e s p o n d s  e x a c t l y  t o  t h e  s e c t i o n s  m a r k e d  in  t h e  

c u b e s .  W h e n  t h e  m o d e l  w a s  r e l a x e d  t h e  l o o p  d id  n o t  m o v e .

be one cell. I t is scaled vertically  to  fit th e  m odel da ta . T he relationships are 
com parable. I t should be no ted  however, th a t  th e  m odel loop was collapsing 
quite  rap id ly  as th e  energy read-ou ts were taken, and  thus it is difficult to  be 
certa in  th a t  th e  su rrounding  vector field represented  a fully relaxed condition 
for any given loop d iam eter. For th is  reason we have refrained from  any m ore 
detailed  curve fitting  which, in principle, could give a  value for th e  effective core 
dim ensions of th e  model; a  m a tte r  which is addressed in m ore deta il below. It 
should be no ted  th a t  w hen a d isclination loop is of sufficient rad ius to  be visible 
in th e  light m icroscope, R i r c, a  value of 20 A  for r c having bee
(C ladis 1974).

5 . L o o p s  I I  ( v a r i a b le  f? c la s s )

For disclinations in a  elastic continuum  it is possible to  envisage loops in which 
the  f? vector m ain tains a constan t angular relationship  w ith  the  disclination line. 
Such loops are not possible for crystal dislocations, as the  B urger’s vector is a 
la ttice  vector and  thus cannot take on a  constan tly  varying orientation .

Two lim iting cases of such loops are draw n in figure 10a, b. In (a) the  f i  vector

P ro c. R . Soc . L o n d . A (1994)
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F igu re  11. P lo t of th e  energy, m easu red  from  re laxed  m odels, of a  ta n g e n tia l loop  as a  fu n c tio n  

of its d iam ete r . T h e re  is no observab le  d ep en d en ce  of energy  on d ia m e te r .

is tangential to  the loop, in ( b) it is norm al to  the  line and
The two loops will be described as ta n g en tia l and radial respectively.

Figure 10c shows cross sections th rough an exam ple of a tangen tia l loop based 
on a disclination which has + |  wedge character all the  way around. The m odel 
appears the  same in all cross sections norm al to  the  line of the  loop. Im agine the  
loop shown in section to  decrease in size. W hen it is sm all and central, the  dis­
to rtion  field is radial in three dimensions. We have a point singularity  of s tren g th  
+1 a t the  centre of w hat is known as a hedgehog  field, the  term inology stem m ing 
from transla tions of Russian work (Volovik & Larentovich 1983). In his classifi­
cation of point singularities, Poincare (1886) described th is type  as a noeud. If 
the  loop were to  expand and grow out of the  m odel, th en  the  hedgehog would 
be converted to  a m onodom ain w ith  a resu ltan t decrease in energy. It was ob­
served, however, th a t, when the m odel was perm itted  to  relax, the  loop neither 
collapsed nor grew. The exception was when it was w ith in  one or two cells of the  
boundary  of the  model, in which case it was ‘sucked o u t’ by im age forces to  give 
a m onodom ain.

It is in teresting to estim ate the  energy of such an arrangem ent as a function of 
the  radius of the  loop. Firstly, for a hedgehog point singularity, the  energy of an 
element of m aterial a t radius r  will scale as 1 / r 2, and thus the  to ta l energy of a 
shell of volume 47rr2 d r  will be independent of radius. Hence the  to ta l energy of 
a hedgehog field will be linearly dependant on its radius, , in fact it is given as 
(D ubois-V iolette & Parodi 1969):

Eh h  —

Figure 11 is a plot of energy m easured from relaxed m odels contain ing loops of 
different size. The energy of the  model appears to  be independent of the  radius 
of the  loop.

It is interesting to look at the  im plications of th is finding. If it is assum ed 
th a t the central sphere of m aterial exactly girdled by the  loop is essentially a 
m onodom ain set w ithin the hedgehog, then  the energy relaxed by the  presence 
of a loop of radius, R hwill be 8 t  t

distortion  energy, E d, associated w ith the  line of the  disclination loop, th a t  is 
2 n R xE . Note th a t bo th  energies scale linearly w ith R h bu t th a t  for them  to  be

Proc. R . Soc. L o u d . A (1994)
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Cb)

F ig u re  12. ( a )  M o d e l  s e c t io n  th r o u g h  a  — |  t a n g e n t i a l  lo o p  s e p a r a t i n g  a  c e n t r a l  h e d g e h o g  fie ld  

f ro m  a  m o n o d o m a in .  (6) T h e  lo o p  d u r in g  c o l la p s e . N o te  th e  p re s e n c e  o f  a  +  |  t a n g e n t i a l  lo o p  

w h ic h  a p p e a r s  to  h a v e  b e e n  d r a w n  f ro m  th e  c e n tr e  o f  th e  h e d g e h o g  b y  t h e  e n c ro a c h in g  — |  lo o p .
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in balance as suggested by the  model, must equal 4 i f , which is several tim es 
the value usually taken for the disclination core energy.

A tangential loop consisting of a — |  wedge disclination, would, if reduced to 
a point singularity, give w hat has been called a hyperbolic hedgehog. It is a lter­
natively known as a co/ or saddle point (Poincare 1886). As w ith the hedgehog 
its strength  is equal to  twice th a t of the tangential loop from which it can be 
generated; —1 in this case. Such an organization is not modelled further here.

Radial loops based on + |  or — |  tw ist disclinations would reduce to a point 
singularity, of strength  +1 or —1 respectively, with essentially twist distortion. 
Radial loops and their related point singularities are not described further here.

Returning to  a hedgehog field, it is possible to envisage such a point and its 
radial distortion field lying w ithin a monodomain if it is surrounded by a tangen­
tial loop of strength  — The starting  structure  is shown in figure 12a. W hen this 
arrangem ent is perm itted  to relax, the loop collapses elim inating the hedgehog. 
Figure 126 shows a later stage in the process. It is interesting th a t a + |  loop 
seems to have nucleated right a t the centre and is drawn outwards towards the 
incoming — |  one, although not exactly in the same plane. The cancellation of 
the +1 point in this way can be seen as the result of the superposition of a — 1 
point which would extend outwards from the — |  loop if it were present by itself. 

In energy term s, the balance which m eant th a t a + |  loop forming the core of a 
hedgehog would neither collapse or expand, at least in our model, does not per­
tain  to the inverse situation  of a +1 point surrounded by a — |  loop and thence 
a monodomain. In this case a reduction in loop radius will reduce the volume of 
m aterial containing hedgehog distortion as well as the length of the — |  line. The 
collapse observed in the model is to be expected. A local hedgehog field can be 
associated with the presence of an im purity particle which provides homeotropic 
boundary conditions. It can be made com patible with a surrounding monodomain 
through association w ith an encircling — |  tangential loop. The force of attraction  
between the particle and loop has been calculated (Terentjev 1987).

6 . E s c a p e

Observations of the structure  of nem atic liquid crystals entrained in capillary 
tubes (Meyer 1973; Anisimov & Dzyaloshinskii 1972; W illiams et al. 1972; Cladis

Proc. R . Soc. Loud . A (1994)
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l )rrrrrrrrrm

core radius log10(radius of tube)

simulations

two + l/2 s  

escaped

log10(radius)

F igu re  13. (a) R e p re sen ta tio n  of th e  escaped  con fig u ra tio n  w ith in  a  ca p illa ry  tu b e  t r e a te d  to  

ensu re  hom eotrop ic  b o u n d a ry  cond itions. ( b ) P lo t of energ

of a cap illa ry  ca lcu la ted  from  2 3 + 1 =  7 r K ( \ n ( R / r c ) +  1) an d  of th e  escap ed  co n fig u ra tio n  from  

E esc — 37 t K (C lad is 1974). (c) M odel ca lcu la tio n s of energ ies as a  fu n c tio n  of ca p illa ry  ra d iu s

R ,  for th e  following configurations: + 1  a long  axis; + 1  d isso c ia ted  in to  2 +  ax ia l lines; th e  

escaped  configuration . T h e  v ertica l dash ed  lines co rresp o n d  to  m odel sizes for w hich re la x a tio n  
sequences have been  run .

& K lem an 1972) have underlined another aspect of the  instab ility  of disclinations 
of integral strength . Not only can they  decom pose into two halves, b u t they  can 
escape into the th ird  dimension which effectively elim inates any line singularity  as 
illustra ted  in figure 13a. The capillary tube  experim ents have generally involved 
the  trea tm en t of the  inside of the  tube  so as to  ensure hom eotropic boundary  
conditions which would tend  to  induce a +1 radial line along the  axis of the  
tube. If th is unstable line were actually  to  form, it would have two options. It 
could, decompose into two halves which would repel each o ther tow ards the  walls 
of the  tube, or it could, term inated  by half a hedgehog, escape from the  nem atic 
m elt along the axial direction of the tube. Cladis (1974) has calculated  (for equal 
elastic constants) th a t a t a tube  radius larger th an  10 tim es the  core radius of the  
disclination, the  energy of the  escaped configuration, which is independent of the  
tube  radius, will be less th an  th a t of the  original +1 line. The plots of these energy 
functions are shown in figure 136. It can be argued th a t the  core radius should

Proc. R . Soc. L ond . A (1994)
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approach molecular dimensions, although for a +1 line (as opposed to a |  line) it is 
pu t as high as 0.2 /rm (Cladis 1974). Cladis does not consider in equivalent detail 
the case of dissociation into two halves as a com peting possibility. It is possible 
to model the different configurations and thus determ ine their relative energies. 
The 4-1 model was built exactly as such, the escaped and two | s  configurations 
were set as a starting  condition but perm itted  to relax before the energy was 
determ ined. The energies, in a rb itrary  units as a function of model diam eter are 
shown in figure 13c. It should be noted th a t the values towards the left-hand side 
of the diagram  correspond to  models of no more th an  about four cells in radius, 
and thus should be trea ted  w ith some circumspection. Hence, the extrapolation of 
the lines from larger model sizes are probably more reliable indicators of energies 
towards the left of the plot. At larger sizes of model there is a deviation of the 
energy plot for two ^s towards the  +1 line. This behaviour can be related to 
less than  perfect relaxation of the large models w ithin the com puting tim e-fram e 
available. Given these caveats, the model energies show a num ber of interesting 
features. The escaped energy, which as predicted, is independent of tube  radius, 
crosses the +1 line at a model of radius four cells. Comparison w ith figure 136 
would suggest th a t the model corresponds to a core diam eter of approxim ately 
one cell. One would expect a value of this order and it was previously assumed 
for the calculated plot of figure 9. This result has im portant im plication for the 
model in general in th a t it implies th a t it will only handle disclination core 
energies reliably when the  cell size approxim ates to the core size, possibly in 
the region of 10 tim es molecular dimensions. It has already been argued th a t in 
th is size range the  model should include therm al fluctuations of the directors, 
and thus would not be to ta lly  appropriate for this reason. The conclusion is th a t 
the model, at size scales appropriate to the optical observation of texture, will 
underestim ate disclination core energies, however, disclination processes which 
are dom inated by the interaction of the long range distortion fields will still be 
accurately modelled. Figure 13c implies th a t the minimum energy configuration 
for the +1 line boundary conditions will be two axial half disclinations for tube 
radii up to approxim ately 30 tim es the core radius, and thereafter, the escaped 
structure. For all practicable tube  radii, the minimum energy structure  will be 

the  escaped structure.
The model enables us to explore the development of escaped structures, and 

this has been done for the two radii indicated as vertical dashed lines on figure 
13c, one for which the minimum energy structure  would be two \  disclinations, 
the other, escape. Figure 14 shows th a t the final structure obtained from the 
model depends on the starting  configuration. For +1 line (14a) and random  (146) 
starting  conditions, the final structure  after relaxation (14c) is th a t of two half 
disclination lines approxim ately parallel to the tube axis, the structure predicted 
to have the m inimum energy for the tube diam eter modelled. If the starting  
structure  is an axial m onodomain (14d), then the final structure is the escaped 
one which is m etastable for this radius (14e). The implication of the model is th a t 
the final structure  obtained is influenced by the starting  conditions, a possibility 
already alluded to by those doing the capillary tube experiments (Williams et al. 
1973), in th a t the filling of the tubes with a nem atic liquid could induce axial 
flow alignment which might favour an escaped structure. It has been suggested by 
Friedel (1922) th a t the true homeotropy at the surfaces could be compromised by 
the field associated with capillary flow on filling. The issue of mechanism is also

M odelling o f fo r m  in  th erm otrop ic  po lym ers
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F ig u re  14. S ections th ro u g h  a m odel of a  cap illa ry  tu b e  w ith  h o m eo tro p ic  b o u n d a ry  con d itio n s. 

E ven th o u g h  a square  sec tion  has been  used in th is  m odel, th e  b o u n d a ry  co n d itio n s  a re  n o rm al 

to  a circle of ra d iu s  equal to  h a lf of th e  sq u are  edge, (a ) S ta r t in g  c o n d itio n s  se t for a  + 1  

d isc lina tion . (6) R an d o m  s ta r t in g  cond itions (n o te  fixed b o u n d a ry  s e ttin g s )  (c) T y p ica l re su lt 

of re la x a tio n  of m odels w ith  s ta r t in g  co n d itio n s (a ) o r ( ). T h e  + 1  d isc lin a tio n  h as  d ecom posed  

in to  tw o + ^ s  w hich have m oved a p a r t. ( d ) S ta r tin g  co n d itio n s 
R esu lt of re la x a tio n  of m odel (d) .  T h e  co n figu ra tion  has escaped .

highlighted in figure 15 which show struc tu res ob tained  for a larger tu b e  radius 
(identified on figure 13c). In figure 15a the  s ta rtin g  condition was the  +1  line, and 
the  m etastab le  struc tu re  seen after relaxation is th a t  of two halves. However, for 
random  sta rting  conditions, there is escape even though th is is far from perfect 
and the plan view of figure 155 shows four wedge disclinations, one of s treng th  
- |  and three of +  | .  It is possible th a t the  m odelling of yet larger radii, to  give 
situations in which the escaped struc tu re  is the  lowest energy by a significant 
factor will yield much b e tte r escaped structu res. However, increased size, as ever, 
brings w ith it increased com putational difficulties.

An integral disclination is inherently  unstab le  w ith  respect to  b o th  energy, 
as evidenced by dissociation into two half streng th  lines, and topology which 
provides the  possibility of escape. The m odel observation th a t  a + 1  disclination 
will split into halves w hether or not a escaped condition is overall of the  lowest

Proc. R . Soc. L o u d . A (1994)
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F igu re  15. R elaxed  m odels for cap illary  tu b es  of dim ensions co rresponding  to  th e  second 

(rig h t-h an d ) vertica l line on figure 13c. (a) M odel s ta r te d  from  an axial s =  + 1  disclination . (6) 

R an d o m  s ta r tin g  conditions.

energy, prom pts observation of a -hi line included w ithin the model and capped 
w ith two semi hedgehogs as shown in figure 16a, 6. This line can be viewed as 
a + 1  tangential loop compressed into a line. Once the model is perm itted  to 
relax, the line opens out into the loop, and sections such as figure 16c, d, show 
pairs of + |s .  The loop reached an approxim ately circular shape very quickly, 
bu t then showed no tendency to change further in diam eter or move out of the 
model. Escape would correspond to the loop being drawn out from the model 
by image forces, an occurrence which would require, at least, the loop to move 
from its sym m etrical position. It is also a process requiring much longer range 
cooperative m otion than  the original decomposition of the +1 line into the loop. 
It would thus appear th a t, in mechanistic term s, a +1 line is able to express is 
energetic instability more readily than  its topological instability.

There is ample experim ental evidence th a t the direction of escape changes 
at intervals along the tube  axis to give either +1 or - 1  points along the tube 
axis. Such a structure  was modelled in a previous paper using less fully developed 
algorithms, in which the orientational steps made in response to the local director 
field could be very large. ^Ve have been unable to repeat this result in the cuiicnt 
work. It is also apparent from comments made in the experim ental papers such 
as Cladis (1974), th a t these points are often seen to be associated with particles 
or small bubbles. It is possible th a t escaped structures within capillaries are 
facilitated by the presence of im purities which form point nuclei. Work to simulate 

the influence of such ‘im purity’ defects is in train.
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F igu re  16. A m odel of a  + 1  line w ith in  ra d ia l (h o m eo tro p ic ) b o u n d a ry  co n d itio n s . T h e  line is 

sh o rte r  th a n  th e  heigh t of th e  m odel along th e  Z  axis, an d  is te rm in a te d  by tw o sem i hedgehogs, 

(a) S ta r tin g  con figu ra tion  w ith  te rm in a tin g  regions on ly  ap p ro x im a te ly  m odelled . ( ) A fte r re ­

lax a tio n  for 164 ite ra tio n s  p e r cell. T h e  hedgehog fields a re  c learly  a p p a re n t,  w hile th e  + 1  line 
has opened  up  in to  a  + |  ta n g e n tia l loop.

7 . L iq u id  c r y s t a l l i n e  p o l y m e r s :  t h e  c a s e  o f  u n e q u a l  F r a n k  c o n s t a n t s

The adap ta tion  of the  model to  tre a t the  case of unequal constan ts has already 
been considered (Bedford & W indle 1993). Polym eric m ateria ls will tend  to  have 
a high splay constant in relation to tw ist and bend on account of the  necessity 
of chain ends to  com pensate for the change in density  w ith  position which would 
otherwise be a feature of splay. For high m olecular m ass polym ers where there  
is a paucity  of chain ends, splay, if it is not com pensated by equal and opposite 
distortion  in an orthogonal plane, will require m olecular diffusion to  achieve the  
required density of ends in the region of highest splay d istortion . N ot only will 
there be kinetic lim itations, bu t the special positioning of the  ends will m ean 
an entropic addition  to  the  to ta l energy. It should also be poin ted  out th a t  if a 
nem atic polym er molecule is capable of hairp in  bends, perhaps where it contains 
short flexible sequences of units, then  the hairp in  can play the  p a rt of a chain 
end as far as density com pensation in splay is concerned. F igure 17 shows the  
calculation of splay, tw ist and bend constan ts for a liquid crystalline polym er 
molecule of specific chem istry as a function of chain length. T he constan ts were 
determ ined using the equations due to  Odijk (1986) while the  values of persis­
tence length were determ ined by M onte Carlo m olecular m odelling procedures 
(Bedford et al. 1992). Both tw ist and bend constan ts depend on the  persistence 
length which tends to a constant value for molecules of sufficient length, while 
the splay constant is linearly dependant on the  contour length of the  chain. T he
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200

contour length / A
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F igure  17. C alcu la tions of th e  splay, tw ist and  b end  energies using th e  equations of O dijk  (1986). 

T h e  persistence leng th s  were de te rm in ed  by M onte C arlo  m odelling  (B edford et  al. 1992) T he 

m olecule is a ran d o m  copolym er of hydroxybenzoic and  hyd roxynaph tho ic  acids.
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F igure 18. D irec to r fields ca lcu la ted  w ith  th e  splay energy set to  100 tim es th a t  of b end  or tw ist: 
(a) A round  an  s  =  + |  wedge d isc lination  show ing th e  ‘archw ay’ form . ( ) A round  an  =  + 1  
line. A lthough  th e  m odel was p e rm itte d  to  relax  th e re  was no tendency  for th e  line to  d issociate 

in to  | s .  I t  can  be viewed as th e  to p  p a r t  of two ‘archw ays’ face to  face.

modifications of the director field around a disclination of strength |  as a result of 
unequal constants have already been well documented. The archway arrangem ent 
for the case of splay constant 100 tim es th a t of bend is shown in figure 18a. The 
d istorted part of this field is equivalent to one half of a +1 disclination line with 
the directors arranged to give concentric circles. The implication being tha t, in 
th is case, there would be no energy to be gained through the dissociation into two 
fs. Figure 186 is a fully relaxed model of such a +1 line for the splay constant set 
at 100 tim es th a t of bo th  tw ist and bend. There is no evidence of dissociation. 
The significance of this fact is th a t it provides a rationale for explaining evidence 
for this type of +1 line, as opposed to the radial form, seen on fracture surfaces 
of liquid crystalline polymers such as th a t shown in figure 19. This is a polymer 
w ith chains of uniform stiffness which are unlikely to be able to form hairpin 
defects within the mesophase.

W hile main-chain liquid crystalline polymers are likely to exhibit high splay

Proc. R . Soc. Lou d . A (1994)
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F igu re  19. A fra c tu re  surface  of a liqu id  c ry s ta llin e  p o ly m er (ran d o m  co p o ly es te r o f 75% hydrox- 

ybenzo ic  acid  an d  25% h y d ro x y n a p h th o ic  ac id ) of m o lecu lar m ass 5000. T h e  d ire c to r  tra je c to ry , 

as revealed  by th e  d irec tio n a l fissility, w ould suggest th e  in te rsec tio n  o f an  =  + 1  d isc lin a tio n  
w ith  th e  surface.

constants, the  opposite situation  of high bend constan ts is applicable to  sm ectic 
liquid crystals where the resistance to  splay deform ation betw een the  sm ectic 
layers effectively lim its bending along the  m olecular axis. T here is a repo rt (C ladis 
1974) for a sm ectic phase of an unescaped 4-1 disclination line along the  axis of a 
capillary tube  trea ted  to obtain  hom eotropic boundary  conditions. W h at is more, 
on heating  into the  nem atic, the  -I- 1 was observed to  split in to  two Is, arranged  as 
a double helix; there was no escape. It was fu rther noted  th a t the  o2nly conditions 
under which escape could be in itia ted  on heating  into the  nem atic  phase were 
those m which second phase particles were present to  nucleate point singularities.

8 . C o n c l u s i o n s

The m ajor focus of th is work has been the  developm ent of a la ttice  m odel for 
the  dynam ic sim ulation of disclination processes in liquid crystalline phases. In 
applying it to lecognized phenom ena, m any of which have been stud ied  experi­
m entally and trea ted  theoretically  in the  past, we continue to  gain confidence in 
it as a new tool.

The m odelling has em phasized the  fundam ental im portance of d isclination lines 
of streng th  ± § . W hereas loops defined by a single ro ta tion  vector, f t ,  will be the  
m eans of propagation or annihilation  of ro ta tiona l d istortion , loops in which the
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f l  vector follows the curvature of the line lead to director fields which assume the 
characteristic of a point singularity as the loop approaches zero radius. Modelling 
has shown th a t, in the size range treated , the energy of a + |  tangential loop 
w ithin a hedgehog field, is independent of its radius.

Modelling a +1 line, such as may be envisaged at the centre of a homeotrop- 
ically trea ted  capillary, has dem onstrated  th a t it will decompose into two + |  
strength  lines, even at a capillary radii where the escaped configuration is of low­
est energy. In m echanistic term s, the decom position of a +1 line as a result of 
its energetic instability  occurs more readily than  escape due to its topological 
instability, which is thus hindered.

The calculation of model energies for the several underlying configurations 
associated w ith topological instability  of a unit strength  line in a capillary tube, 
dem onstrates th a t the model will handle core energy exactly when the scale 
is such th a t the  core diam eter is equivalent to one unit cell, although therm al 
fluctuations will not then be negligible.

The work draws atten tion  again to the possibility th a t an essential role is played 
by im purity particles in establishing escaped structures in capillaries.

The application of the  model to situations in which the splay constant is much 
higher th an  either bend or tw ist, enables m icrostructures typical of main-chain 
liquid crystalline polymers to be sim ulated. In particular, the model observation 
th a t a +1 line based on bend distortion is no longer energetically unstable, is able 
to explain m icrostructural features seen in therm otropic random  copolyesters.

We th a n k  SER C  for funding  th is  work, th e  A thlone-V anier Society and  th e  C am bridge P hilo­

sophical Society  for S tu d en tsh ip s , and  E. M. T eren tjev  and  D. G. G ray  for s tim u la ting  d iscus­

sions. K elvin H aire, Jo h n  H obdell and  C ath erin e  R olland  are associa ted  w ith  th e  la ttice  m odel 
in different con tex ts , and  we are g ra te fu l for th e ir  very considerable help in p reparing  th is  paper.
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D iscu ss io n

A. D o n a l d  ( C avendish  Laboratory, U n iversity  o f  C am bridge, 
sible to  com pare your m odels w ith  experim ent and hence ex trac t the  relative 
values of the  elastic constraints.

A. H. W i n d l e . In principle yes. A lthough th is paper concentra tes on th e  
modelling aspects, it is clear th a t there  are m any features of the  observed m i­
crostructures of liquid crystalline polym ers which are not seen in sm all molecule 
mesophases. The modelling so far would indicate th a t some of these features, 
nam ely the fissile na tu re  of s truc tu res produced by shear, and the  absence of 
hedgehog type features in the  quiescent m icrostructures, would suggest the  pres­
ence of a high splay constant. W ork to  m easure the  tra jec to ries around \  discli­
nation  is in progress.

T . C. B. M c L e i s h  ( U niversity  o f Leeds, ). T he sim ulation  on the  disloca­
tion you called the hedgehog loop seemed to  show th a t these possessed a s tab ility  
independent of their size. This would be surprising from a theoretical po in t of 
view if the stab ility  were due to  the  cancellation of a repulsive and an a ttrac tiv e  
term  in the to ta l energy for the  loop, as these have different dependencies on the  
size of the loop. For exam ple, the  core energy would be linear in the  size of the  
loop, while the  far field Frank term s would be logarithm ic. Is it perhaps the  case 
th a t the approach to equilibrium  is in th is case much slower th an  the  tim escale 
of your sim ulations?
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A . H. W i n d l e . We are sure th a t the  apparent stability  of a hedgehog loop is 
not an artifact of the model. W edge-twist loops collapse to a m onodomain very 
rapidly, and a hedgehog loop w ritten  in too close to the  boundaries of the model 
rapidly expands outw ards under the influence of image forces to leave behind a 
perfect m onodomain. The prim ary difference between the wedge-twist loop and 
the hedgehog one is th a t if the former were to be induced to expand, then the 
line energy would increase w ith radius w ith an additional log term  dependant on 
the extent of the long range elastic field. In line w ith simple dislocation theory, 
one might take the extent of the elastic distortion to be equal to the radius of 
the loop. Such a loop will minimize its energy by shrinking, and self annihilating. 
On the other hand, the expanding hedgehog loop girdles volume, which approx­
imates to  a m onodom ain, hence its expansion can be seen as the elim ination of 
the hedgehog. Correspondingly, it is not obvious in this case how, if a t all, the 
range of the elastic d istortion  (th a t which influences the log term ) would vary 
with loop radius. The fact th a t bo th  the  recovered energy from the hedgehog to 
m onodomain conversion, and the to ta l core energy of the dislocation line, are pri­
marily dependant on the loop radius may point to a balance of energies. However, 
a loop energy independant of radius implies th a t the energy of the disclination 
line is of the order of 4A , where K  is the Frank elastic constant. It is interesting 
to speculate th a t a — |  wedge Class II loop, should collapse to form a hyper­
bolic hedgehog of its own accord, as the energy of th is point defect is 33% of 
the hedgehog (J.R . Hobdell, personal comm unications) on account of splay-splay 
com pensation.

W ith  respect to the  experim ental observation of the collapse of Class II loops 
into points; it is w orth nothing th a t points may well be associated, indeed stabi­
lized by, second phase particles, and th a t in any case the hedgehog is the highest 
energy point, for a given radius, even in the case of equal elastic contants.

E . L. T h o m a s  (M IT , Cam bridge, U .S .A .). We have shown (S. Hudson et 
M acrom olecules 26, 1270 (1993)) th a t it is possible to measure the Frank elastic 
contants from the variation of the director field about an isolated disclination 
using the lamellar decoration technique. Interestingly, if one measures the radial 
dependence of the variation of the director field, below distances of around 0.1 mm 
from the disclination the m easured apparent elastic anisotropy begins to depend 
on the radial distance from the defect core. This effect could be due to either a 
breakdown in Frank theory, since the distortions are growing as 1/4, and /o r a 
real m aterial property  effect due to variability of the liquid crystalline m aterial 
near the defect core, such as segregation of low molecular mass m aterial and /o r 
hairpins to alleviate the distortions. If heterogenieties in the LC m aterial are the 
source of the variation of the apparent elastic anisotropy, then an effect anal­
ogous to the ‘C ottrell-atm osphere’ in a m etal system, whereby im purity atoms 
are a ttrac ted  to dislocation core and influence subsequent dislocation motion, 
may occur. G. Mazelet &; M. Kleman (P o lym er  27, 714 (1986)) have previously 
commented on the different mobilities of + |  and =  — disclinations in a 
therm otropic LC polyester which could arise from such heterogeneities.

A. H. W i n d l e . The observation th a t the apparent elastic anisotropy around 
a disclination changes as the core is approached is especially intriguing. As with 
dislocations, the whole issue of core structure and energy is fraught with difficul­
ties. It may be th a t at a finite tem perature the quality of director alignment with

M odelling o f  fo rm  in  th erm otrop ic  po lym ers
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its im m ediate neighbourhood is lower, or p u t a different way th a t the  nem atic 
to isotropic transition  tem pera tu re  is lowered where the  d isto rtion  is significant. 
The m ost effective driving force for the  form ation of C ottre ll a tm ospheres would 
be splay d istortion  associated w ith polym ers. Is it possible to  rela te  the  observed 

change in anisotropy near to  the core w ith  a reduction  in the  splay com ponent of 
distortion? In the  exam ple of a high splay constan t polym er, one m ight expect 
to show up as a reduction in the  archway character of a + |  line defect.

E .  L. T h o m a s . If the  crystalline lam ellae th a t  grow and serve to  decorate the  
underlying glassy nem atic tex tu re  are held for long tim es a t tem p era tu res  ju s t 
below the  Tm, the significant reorganization of the  nem atic  tex tu re  by crystalliza­
tion does indeed occur, prohibiting valid observations of the  d irector field. Thus 
one needs to use a deep-quench to  nucleate cystals m assively so th a t  the  resu lt­
ing small crystals effectively decorate w ithout m ajor p e rtu rb a tio n  to  th e  glassy 
nem atic phase from which they  grow. A nother key variable in the  use of lam ellar 
decoration is the  influence of tem pera tu re  dependence of the  order p a ram eter 
which controls the tem pera tu re  dependence of the  elastic constan ts. Therefore, 
we are currently  a ttem p ting  to  quench sam ples from various tem p era tu res in the  
nem atic phase regime, in the hope th a t since therm al diffusivity g reatly  exceeds 
mass diffusivity, appropria te  rapid  quenching m ay be able to  reflect the  tem p er­
a tu re  dependence of the disclination near-core struc tu re .

A. H. W i n d l e . The crystallization th a t occurs in therm otrop ic  random  co­
polyesters raises m any issues, m ost of which are beyond the  scope of th is paper. 
However, the  degree to  which the  d irector field m ay be modified by the  form ation 
of crystallites during cooling is pertinen t to  any com parison betw een m odelling 
and experim ent. The first-order answer is th a t  the  crystallization  appears to  dec­
orate ra ther th an  ‘rew rite’ the  nem atic m icrostructure. C rysta llites in the  region 
of a boundary  of a th in  layer of the  polym er, where the  d irector field is changing 
m ost rapidly, are them selves curved. It is not possible to  say th a t  the  crystals 
have no influence on the  director field, b u t if it is present it is d istinc tly  a sec­
ond order effect. Furtherm ore we have not been able to  detect any difference 
in director m icrostructure betw een quenched sam ples and  those which have been 
annealed for several hours w hithin a few degrees of the  m elting point, a lthough in 
the la tte r case the  crystals them selves are b e tte r  formed. However, the  extrem ely  
rapid  form ation of crystals which do require some degree of longitudinal sorting  
of the  random  chains for their order, does seem surprising. Recent diffraction 
studies (S. H anna et al , N ature , Lond. 3 6 6 ,  546 (Dec 1993)) sh
regation is present in the m elt, which thus contains regions which should possibly 
be classified as sm ectic ra th e r th an  nem atic. C rystallization , as ind icated  by the  
solidification of the  polym er, a therm al transition , and the  developm ent of sharp  
interchain X-ray peaks, represents the  developm ent of la tera l order w ith in  the  
regions w ithin which the  chains were already longitudinally  m atched  in the  m elt. 
It is possible therefore th a t these presegregated regions have the ir own influence 
on the  director m icrostructure via the relative values of the  splay, tw ist and  bend 
constants.

96 A . H. W indle , H. E. A sse n d e r  and  M . S. L av ine
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