Modelling of form in thermotropic polymersf
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A lattice model of liquid crystalline microstructure has been developed. It pro-
Sides the basis for the three-dimensional solution of the Frank elasticity equations
gor given boundary conditions while, in addition, providing a mechanistic repre-
entation of the development of texture as the microstructure relaxes with time.
—gt is also able to represent disclination motion and the processes associated with
Htheir interaction. In particular, it has been used to study (s = i%) disclination
oops, both those described by a single rotation vector, {2, and those in which
82 has a constant angular relationship with the loop line and are equivalent to a
oint singularity at a distance much larger than the loop radius. The application
@f the model to disclinations of unit strength, which are unstable both energet-
Scally and topologically, has shown that the decomposition into two % str ength
ﬁmeb of lower total energy occurs much more readily than topologxcal escape in
‘Fhe third dimension. The implication for structures observed in capillary tubes
discussed. The influence on microstructure of a splay constant much higher
dhan that of twist or bend is explored in the context of main-chain liquid crys-
Salline polymers, in particular, the stabilization of tangential 41 lines under such
—sonditions is predicted in accord with observed microstructural features.
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1. Background

m https://roy

ér he study of liquid crystals is a mature science. For over 100 years the light mi-
Zroscope has been the primary tool for the observation of microstructural form
Tn these materials. The literature abounds with the rich variety of textures which
%mve been reported. The analysis of microstructure stems from Lehmann (1904),
%Who first described a Schlieren texture and drew director maps of what we now
call disclinations. Friedel (1922) provided the modern framework of structural
understanding and much of the accepted nomenclature, while Zocher (1929) laid
the basis for disclination analysis in liquid crystals which was extended and re-
fined by Frank (1958). More recently Kléman (1983) has interfaced the geometric
understanding to algebraic topology. It is perhaps surprising that an area which
has attracted such quality attention over so many years should still be of interest.
However, the recognition within the last two decades of liquid crystallinity as a
state of matter in synthetic polymers, has involved the identification of a number
of new textures, some fine scale and very difficult to interpret, others such as the
banded textures, quite striking. The purpose of the work described in this paper

1 This paper was produced from the authors’ disk by using the TEX typesetting system.
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is, through the device of microstructural modelling, to r_einforce our geomgtr'ic
appreciation of disclination organization in three dimensions, and to do this in
a way which can simulate the evolution of microstructures and, eventually, their
response to complex boundary conditions and applied fields.

While the new structures seen in polymeric liquid crystals may be challenging
to interpret, there is a distinct experimental advantage with these materials. The
observation of textures in small-molecule mesophases is straightforward in the
case of light microscopy of thin films contained between slides. However, it is not
generally possible to quench-in the liquid structure, for when solidification occurs
by virtue of crystallization, the structure is largely ‘rewritten’ as the crystals form.
On the other hand, in main-chain thermotropic materials, such as those based
on random copolymers, the limited crystallization which does occur (about 20%)
does not appear to affect significantly the structure which subsequently freezes
to a glass at T,. Hence, the microstructural form of the frozen melt may be
investigated for bulk specimens in which the influence of the boundary conditions
is minimal. Fractography is often rewarding. Figure la shows the local structure
in a sample of thermotropic copolyester as revealed on the fracture surface. The
material is fissile, with the easy direction of fracture corresponding to the local
chain axis. Further confirmation of this relationship can be achieved by lightly
etching the fracture surface which reveals the crystals as cross striations. The
platelet form of the crystals and the fact that their thin axis corresponds to the
chain axis have been confirmed by electron microscopy (Spontak & Windle 1990;
Hanna et al. 1992). Figure 1b is a fractograph of a banded structure; the shear axis
is horizontal and observation in transmitted polarized light would reveal parallel
bands normal to this axis. Thin sections of a bulk sample can also be prepared
by grinding and polishing methods familiar to petrologists. While it is important
to remain wary of any influence of crystallization on the details of the quenched
melt structure, we are confident from both the appearance of the structures, and
the measurements of similar orientation functions for the crystalline and liquid
crystalline components of the diffraction pattern, that rapid cooling enables one
to observe an accurate solid replica of the liquid crystalline melt.

2. The lattice model

The initial stages of development of the lattice model for liquid crystalline
microstructure has been described in earlier publications (Bedford et al. 1991;
Bedford & Windle 1993). The model bears some relationship to that of Kilian &
Hess (1989, 1990) and of earlier Monte Carlo based molecular scale modelling of
Lebwohl & Lasher (1972). The model is summarized in figure 2. It consists of a
cubic array of cells, each of which is assigned a director orientation (figure 2a).
The scale of the model is such that each cell contains many molecules and is
characterized by a director defining their common orientation. In the case of the
work reported here, the local molecular distribution is assumed to be uniaxial.
although biaxial systems are possible and potentially treatable with models of
this type. The algorithm is outlined in figure 2. Starting conditions are either
random, the director of each cell being set in a random orientation with either free,
fixed or periodic boundary conditions, or correspond to a particular arrangement
which is written into the model before commencement of relaxation. A cell is
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Figure 1. (a) Fracture surface revealing the local director orientation in a sample which would
show a schlieren texture in transmitted polarized light. Material: random copolymer of 75%
hydroxybenzoic acid and 25% hydroxynaphthoic acid. Mw = 5800. Courtesy, Dr A. Anwer.
(b) Fracture surface through a thin sample of the same polymer as in (a). It has been sheared
and quenched and shows a banded texture in transmitted polarized light. The fracture plane is
parallel to the shear plane and the shear direction is horizontal. Courtesy, Dr T. J. Lemmon.
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Figure 2. (a) The lattice model. Each cell is characterized by a director, and is taken to be much
larger than molecular dimensions. (b) The algorithm used. Bach cell is visited at random, and
the orientation of its director changed on a path with will reduce its energy with respect to the
orientation of the directors of the six nearest neighbour cells.

selected at random and its energy calculated by summing the individual energy
contributions due to the orientational distortion between it and each of its six (in
three dimensions) nearest neighbours. The orientation of the central vector is then
changed by a small amount, one degree or less, down the path of steepest energy
gradient. Another cell in the model is then chosen at random and the process
repeated, and so on. The evolving model texture is printed out as required.

The energy function which has been found to be most successful is sin®(Aa).
The reasons for preference of this harmonic function have been discussed (As-
sender & Windle 1994). In summary, it has the following attributes:

1. It approximates to E oc A¢? at low angles, which is the assumption of the
Frank equation for elastic energy.

2. The summation of six energy functions corresponding to the surrounding
cells corresponds to the summation of six harmonic functions differing in phase
and amplitude. The consequence is thus another harmonic function, sketched in
terms of Euler angles in figure 3. It has the advantage of a single minimum, so
that gradients at all points on the energy surface lead to this minimum.

3. The lattice is invisible. This means that a symmetrical field, as would for
example surround the centre of a singularity, would lead to a completely flat
energy-orientation relationship for the central director irrespective of the relative
orientation of the disclination and the lattice.

Figure 4 illustrates the model relaxing in three dimensions. It is a series of sec-
tions (on the same plane) taken after the model had run after various increasing
intervals. The degree to which a director is angled out of the plane is illustrated
by shortening its length, so that directors exactly normal to the section appear
as points. The relaxation sequence can be followed as small regions sharing com-
mon orientation appear in (b) with many 5 strength disclinations identifiable.
Relaxation continues through the apparent annihilation of defects of opposite
sign, although in three dimensions this may simply be the result of a disclination
loop moving out of the chosen section. The movement of disclinations was not
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It thus illustrates the evolution of pattern, through a cyclic sequence which may
not be linear with time. There is a small size limit at which thermal ﬂuc‘cpations,
brownian motion, becomes significant. It is possible to model such situations fol-
lowing the pioneering work of Lebwohl & Lasher (1972). Such work is in progress,
but it is not a feature of this paper. In fact, as will be discussed below, the model
does have another size constraint in that the true energy of a disclination line can
only be determined by a model with a resolution comparable to the diameter of
the core, a distance perhaps only an order of magnitude greater than molecular
dimensions. Use of the model to represent structures on much larger scales must
be made in the knowledge that disclination core energy is, in fact, being underes-
timated. If a size is fixed for the cells, it is then a comparatively straightforward
matter to feed in the measured values of the Frank elasticity constants to obtain
actual values for elastic energy. All the modelling described here up to the final
section on polymers, is based on the assumption that the three elastic constants,
K, for splay distortion, K, for twist and K3 for bend, are equal. The matter
of linearity with time, and the modelling of actual rates of relaxation remains a
future objective. It will require knowledge of rotational viscosities of the medium,
and expression of the energy gradients as torques.

3. Disclinations of strength ;

There are two limiting types of disclination of strength 1. Those in which the

rotation axis of the distortion, the unit vector (2, is parallel to the disclination
line, and those in which the unit vector is normal to the line. They are referred
to as wedge and twist disclinations respectively. Wedge disclinations have been
described by Zocher (1929) and Frank (1958). Figure 5 illustrates the two wedge
disclinations of opposite sign, the local director rotating in the same direction as
the circuit around the line in the 4 case and in the opposite direction for —1.
Twist disclinations are not as easy to represent. The ‘nail’ convention is used in
the figure to illustrate the rotation of the director about an axis lying parallel to
the page. Both positive and negative examples are shown, although in the absence
of nail heads, as in the model representations used in this work, they cannot be
distinguished. If one were to equate the {2 vector with the unit Burger’s vector
of a crystal dislocation, then wedges would correspond to screw dislocations and
twists to edge dislocations. As with crystal dislocations, disclinations can have
mixed character lying between the limiting cases of wedge and twist.

While the director maps of Zocher and Frank both treat disclinations of greater
strength than 3, such higher order line singularities need to be kept in perspec-
tive in that they are intrinsically unstable. It is well known (Frank 1958) that
the energy of a disclination (E) is proportional to the strength (s) squared. A
disclination of strength unity, for example, will undergo the dissociation reaction:

841 = Syu/2 T 5412, E—*iE+§E:%E.

This reaction can be viewed as a dissociation of the +1 disclination followed
by the elastic l'eplllSlOl.l of the two %s of like sign. Meyer (1973) pointed out
that the many observations of disclinations of integral strength, particularly +1,
from microstructural observations in fact represented point singularities of unit
strength at the sample surfaces.

Proc. R. Soc. Lond. A (1994)
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& Dissociation behaviour has been modelled in two dimensions by setting up
%ia +1 disclination as an initial starting state, fixing the boundary conditions,

‘=and permitting the model to relax. The model sections in figure 6 illustrate the
Zdecomposition. The two 1s repel until they are approximately equidistant between
) &l 7 ; : :

athe centre and extremities of the model. The figure also shows simulated images
zas they would be seen between crossed polars. Note how the four-brush image
-8is maintained towards the extremities of the model, even though the centre has
mspht into two-brush contrast patterns centled on each of the disclinations. If the
>b0undarv conditions are free then the two : disclinations move right out of the
Smodel.

<

'; 4. Loops I (single 2 class)

S

«= A disclination line of strength ! separates regions of the material differing in
A, g g

o the rotational distortion of the duector field by =. It is instructional to draw the
Sdisclination as a closed loop so that it bounds a region of 7 distortion within a
cmonodomam The 2 vector describes the orientation of the distortion and thus
%has the same orientation for the complete loop. Figure 7 shows two limiting
A cases of single 2 loops. Figure Ta, in which 2 lies parallel to the plane of the
loop, 7b in which it is normal to the loop. In the first case the character of the
loop changes as the line curves from being parallel to {2, to being perpendicular,
back to parallel and so on. This transition in character for constant {2 was first
pointed out by Bouligand et al. (1973), although it is a familiar property of a
glissile dislocation loop in a crystal. There are four positions on the loop at which
the disclination is either pure wedge or pure twist as marked, but in general it
is of mixed character. We refer to the loop as a wedge-twist loop. Figure 7¢
shows diametric cross sections through such a loop, one IlOI‘lIldl to 2 showing
cross section through the pure wedge parts of the loop +1 on the left, % on
the right, the other showing the twist parts which again will be of opposite sign
although the absence of nail heads on the diagram makes this less than obvious.
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Figure 6. Diagrams of a two-dimensional model in which all the directors are held within the
single plane. The +1 disclination is set up as the initial condition. As the model runs to simulate
relaxation with fixed boundary conditions, the disclination decomposes into two disclinations
of strength +% which move apart under their mutual repulsion until reaching an equilibrium

position after 1890 iterations per cell. The simulated optical micrographs are by courtesy of J.
Hobdell.

The director field of the ‘wedge’ section has been described as a ‘pincement’.
The second limiting case in which {2 is normal to the plane of the loop bounds a
region of twist distortion. As (2 is normal to the line at all points, the disclination
has twist character at all points, and the loop is referred to as a twist loop. Two
orthogonal cross sections of a twist loop are shown in figure 7d.

A significant aspect of these class I loops is that their expansion provides
a mechanism for the propagation of rotational distortion within the material,
perhaps under the influence of the rotational component of a simple shear field.
The corollary to this statement is that the loops, if permitted to relax, will collapse
and self annihilate as the diametrically opposed components which have opposite
sign all meet at the centre. Figure 8 is a model relaxation sequence showing
the collapse of a wedge-twist loop (in wedge cross section). The driving force
for this collapse has two components: the elimination of the distorted material
bounded by the loop which could also be expressed as an attraction between the
components of the loop of opposite sign; and the reduction in the length of the
loop itself, which in an analogous sense to dislocations, can be expressed as a line
tension.

The twist loop collapsed and was eliminated in the same way.
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Figure 7. Representation of § = % disclination loops which are defined by a single rotation
vector, §2. (a) Sketch of limiting case in which 2 is in the plane of the loop which has wedge-twist
character. (b) Loop of case in which 2 is normal to the plane of the loop which is entirely a twist
disclination. (¢) Two orthogonal sections through a model of a wedge-twist loop. Each section
is normal to the plane of the loop. (d) Two sections, equivalent to those of (¢), but in this case
through a twist loop.

The energy per unit length (E/L) of a disclination can be expressed as
E/L = nKs*(In(R/r.) + 0.5),

where K is the Frank constant (assuming K; = K, = Kj), R the radius of
the surrounding volume of material deemed to be associated with the line under
consideration and r. the core radius. The value of 0.5 for the core energy, while
derived by setting the energy of the material in the core volume equal to the
energy density at the radius r. bounding the core, is not often quoted as such.
Meyer (1973) would appear to choose 1/7, whereas Cladis (1974) takes it to be
unity.

For a loop we take the upper limit of integration about the line, R, to be the

Proc. R. Soc. Lond. A (1994)
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F}gure 8. Model sequence showing the collapse and elimination of a wedge-twist loop. The
diagrams correspond to equal modelling time intervals: 0, 115, 230 and 345 iterations per cell

respectively.
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Fxgure 9. Engrgy values for a collapsiug wedge-twist loop determined from the model. The energy
units are arbitrary and the loop diameter is expressed in model cell units. The continuous curve

is determined from the loop energy equation, assuming : i
. rgy e 10n, assuming a core diameter of one cell. :
vertically to fit the model points. e

radius of the loop R;. Then
By = 2#21§'.92R1(111(R|/7'r) -+ 05)

‘Figure 9 sh(?ws a plot of the energy of the model, in arbitrary units, as a function
of the loop dmmetgr expressed as cells. The continuous plot is the calculated
energy of the loop from the equation above taking the diameter of the core to
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igure 10. Limiting cases of s 5 lo()ps in which the rotatlon vector, {2, maintains a constant
ngular relationship with the lme as it curves around the loop. (a) Tangential loop with 2
arallel to the line. (b) Radial loop with 2 norma] to the line and in the plane of the loop. (¢)
diametric section through a tangential, s = +1 disclination loop. The director field will be
entical for any such section, and the model correspouds exactly to the sections marked in the
‘ubes. When the model was relaxed the loop did not move.

typublishing.org/ on 20 February 2022

gal,éqms

tps://ro

he one cell. It is scaled vertically to fit the model data. The relationships are
%omparable. It should be noted however, that the model loop was collapsing
Hjuite rapidly as the energy read-outs were taken, and thus it is difficult to be
@ertain that the surrounding vector field represented a fully relaxed condition
For any given loop diameter. For this reason we have refrained from any more
'aletailed curve fitting which, in principle, could give a value for the effective core
alimensions of the model; a matter which is addressed in more detail below. It
Rhould be noted that when a disclination loop is of sufficient radius to be visible
in the light microscope, R, > r., a value of 20 A for r. having been suggested
(Cladis 1974).

5. Loops II (variable (2 class)

For disclinations in a elastic continuum it is possible to envisage loops in which
the {2 vector maintains a constant angular relationship with the disclination line.
Such loops are not possible for crystal ‘dislocations, as the Burger’s vector is a
lattice vector and thus cannot take on a constantly varying orientation.

Two limiting cases of such loops are drawn in figure 10a, b. In (a) the 2 vector
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Figure 11. Plot of the energy, measured from relaxed models, of a tangential loop as a function
of its diameter. There is no observable dependence of energy on diameter.

is tangential to the loop, in (b) it is normal to the line and parallel to the radius.
The two loops will be described as tangential and radial respectively.

Figure 10c shows cross sections through an example of a tangential loop based
on a disclination which has +1 wedge character all the way around. The model
appears the same in all cross sections normal to the line of the loop. Imagine the
loop shown in section to decrease in size. When it is small and central, the dis-
tortion field is radial in three dimensions. We have a point singularity of strength
+1 at the centre of what is known as a hedgehog field, the terminology stemming
from translations of Russian work (Volovik & Larentovich 1983). In his classifi-
cation of point singularities, Poincaré (1886) described this type as a neud. If
the loop were to expand and grow out of the model, then the hedgehog would
be converted to a monodomain with a resultant decrease in energy. It was ob-
served, however, that, when the model was permitted to relax, the loop neither
collapsed nor grew. The exception was when it was within one or two cells of the
boundary of the model, in which case it was ‘sucked out’ by image forces to give
a monodomain.

It is interesting to estimate the energy of such an arrangement as a function of
the radius of the loop. Firstly, for a hedgehog point singularity, the energy of an
element of material at radius r will scale as 1/, and thus the total energy of a
shell of volume 477* dr will be independent of radius. Hence the total energy of
a hedgehog field will be linearly dependant on its radius, R, in fact it is given as
(Dubois-Violette & Parodi 1969):

E[”[ = 8KmR.

Figure 11 is a plot of energy measured from relaxed models containing loops of
different size. The energy of the model appears to be independent of the radius
of the loop.

It is interesting to look at the implications of this finding. If it is assumed
that the central sphere of material exactly girdled by the loop is essentially a
monodomain set within the hedgehog, then the energy relaxed by the preseilce
of a loop of radius, Ry, will be 87K R,. This energy will be offset by the extra
distortion energy, E,, associated with the line of the disclination lc;op. that is
2m R\ E. Note that both energies scale linearly with R, but that for them to be

Proc. R. Soc. Lond. A (1994)
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Figure 12. (a) Model section through a —} tangential loop separating a central hedgehog field
grom a monodomain. (b) The loop during (‘olldpse Note the presence of a +1 tdngcntml loop
whuh appears to have been drawn from the centre of the hedgehog by the encroa(hmg —= Ioop

ruary.

’én balance as suggested by the model, E4; must equal 4K, which is several times
othe value usually taken for the disclination core energy.
A A tangential loop consisting of a —1 wedge disclination, would, if reduced to
point singularity, give what has been called a hyperbolic hedgehog. 1t is alter-
atively known as a col or saddle point (Poincaré 1886). As with the hedgehog
its strength is equal to twice that of the tangential loop from which it can be
generated; —1 in this case. Such an organization is not modelled further here.
Radial loops based on +l or —5 twist disclinations would reduce to a point
singularity, of strength +1 01 —1 respectively, with essentially twist distortion.
adial loops and their related point singularities are not described further here.
Returning to a hedgehog field, it is possible to envisage such a point and its
gradial distortion field lving within a monodomain if it is surrounded by a tangen-
Stial loop of strength —3. The starting structure is shown in figure 12a. When this
Oarrangement is permltted to relax, the loop Colldpseb eliminating the hedgehog
\Flgure 12b shows a later stage in the process. It is interesting that a +% loop
ESseems to have nucleated right at the centre and is drawn outwards towards the
Sincoming —% one, although not exactly in the same plane. The cancellation of
gthc +1 point in this way can be seen as the wqult of the superposition of a —1
“_;pomt which would extend outwards from the —2 loop if it were present by itself.
LIn energy terms, the balance which meant that a ++ loop forming the core of a
ohedgehog would neither collapse or expand, at least in our modol does not per-
"Etain to the inverse situation of a +1 pomt surrounded by a —3 loop and thence
oa monodomain. In this case a reduction in loop radius will reduce the volume of
material contalmng hedgehog distortion as well as the length of the —3 L line. The
collapse observed in the model is to be expected. A local hedgehog held can be
associated with the presence of an impurity particle which provides homeotropic
boundary conditions. It can be made Compa.til,)le with a surrounding monodomain
through association with an encircling —3 tangential loop. The force of attraction
between the particle and loop has been Calculdtcd (Terentjev 1987).

r:g/ on

hingp

uplis

ciet}f_lg

1

6. Escape

Observations of the structure of nematic liquid crystals entrained in capillary
tubes (Meyer 1973; Anisimov & Dzyaloshinskii 1972; Williams et al. 1972; Cladis
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Figure 13. (a) Representation of the escaped configuration within a capillary tube treated to
ensure homeotropic boundary conditions. (b) Plot of energies of: +1 disclination along the axis
of a capillary calculated from Eyy = 7K (In(R/r.) + 1) and of the escaped configuration from
Eese = 37K (Cladis 1974). (¢) Model calculations of energies as a function of capillary radius,
R, for the following configurations: +1 along axis; +1 dissociated into 2 + % axial lines; the
escaped configuration. The vertical dashed lines correspond to model sizes for which relaxation
sequences have been run.

& Kléman 1972) have underlined another aspect of the instability of disclinations
of integral strength. Not only can they decompose into two halves, but they can
escape into the third dimension which effectively eliminates any line singularity as
illustrated in figure 13a. The capillary tube experiments have generally involved
the treatment of the inside of the tube so as to ensure homeotropic boundary
conditions which would tend to induce a +1 radial line along the axis of the
tube. If this unstable line were actually to form, it would have two options. It
could decompose into two halves which would repel each other towards the walls
of the tube, or it could, terminated by half a hedgehog, escape from the nematic
melt along the axial direction of the tube. Cladis (1974) has calculated (for equal
elastic constants) that at a tube radius larger than 10 times the core radius of the
disclination, the energy of the escaped configuration, which is independent of the
tube radius, will be less than that of the original +1 line. The plots of these energy
functions are shown in figure 13b. It can be argued that the core radius should

Proc. R. Soc. Lond. A (1994)
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approach molecular dimensions, although for a +1 line (as opposed toa 3 line) it is
put as high as 0.2 pm (Cladis 1974). Cladis does not consider in equxvalent detail
the case of dissociation into two halves as a competing possibility. It is possible
to model the different configurations and thus determine their relative energies.
The +1 model was built exactly as such, the escaped and two %s configurations
were set as a starting condition but permitted to relax before the energy was
determined. The energies, in arbitrary units as a function of model diameter are
shown in figure 13c. It should be noted that the values towards the left-hand side
of the diagram correspond to models of no more than about four cells in radius,
and thus should be treated with some circumspection. Hence, the extrapolation of
Qthe lines from larger model sizes are probably more reliable indicators of energies
Stowards the left of the plot. At larger sizes of model there is a deviation of the
Zenergy plot for two 1s towards the +1 line. This behaviour can be related to
Sless than perfect relaxation of the large models within the computing time-frame
oavallable Given these caveats, the model energies show a number of interesting
featureb The escaped energy, which as predicted, is independent of tube radius,
Ncrosses the +1 line at a model of radius four cells. Comparison with figure 13b
\owould suggest that the model corresponds to a core diameter of approximately
sone cell. One would expect a value of this order and it was previously assumed
bobfor the calculated plot of figure 9. This result has important implication for the
Smodel in general in that it implies that it will only handle disclination core
wenergies reliably when the cell size approximates to the core size, possibly in
—Dthe region of 10 times molecular dimensions. It has already been argued that in
Q-'chJs size range the model should include thermal fluctuations of the directors,
oand thus would not be totally appropriate for this reason. The conclusion is that
8the model, at size scales appropriate to the optical observation of texture, will
—underestimate disclination core energies, however, disclination processes which
Eare dominated by the interaction of the long range distortion fields will still be
\accmately modelled. Figure 13¢ implies that the minimum energy configuration
cufor the +1 line boundary conditions will be two axial half disclinations for tube
<= radii up to approximately 30 times the core radius, and thereafter, the escaped
£ structure. For all practicable tube radii, the minimum energy structure will be
& the escaped structure.
8 The model enables us to explore the development of escaped structures, and
3 "2 this has been done for the two radii indicated as vertical dashed lines on figure
= 13¢, one for which the minimum energy structure would be two 1 disclinations,
3 the other, escape. Figure 14 shows that the final structure obtained from the
A model depends on the starting configuration. For +1 line (14a) and random (14b)
starting conditions, the final structure after relaxation (14c) is that of two half
disclination lines approximately parallel to the tube axis, the structure predicted
to have the minimum energy for the tube diameter modelled. If the starting
structure is an axial monodomain (14d), then the final structure is the escaped
one which is metastable for this radius (14e). The implication of the model is that
the final structure obtained is influenced by the starting conditions, a possibility
already alluded to by those doing the capillary tube experiments (Williams et al.
1973), in that the filling of the tubes with a nematic liquid could induce axial
flow alignment which might favour an escaped structure. It has been suggested by
Friedel (1922) that the true homeotropy at the surfaces could be Compromlscd by
the field associated with capillary flow on filling. The issue of mechanism is also
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Figure 14. Sections through a model of a capillary tube with homeotropic boundary conditions.
Even though a square section has been used in this model, the boundary conditions are normal
to a circle of radius equal to half of the square edge. (a) Starting conditions set for a +1
disclination. (b) Random starting conditions (note fixed boundary settings) (c) Typical result
of relaxation of models with starting conditions (a) or (b). The +1 disclination has decomposed
into two +3s which have moved apart. (d) Starting conditions with a an axial monodomain. (e)
Result of relaxation of model (d). The configuration has escaped.

highlighted in figure 15 which show structures obtained for a larger tube radius
(identified on figure 13¢). In figure 15a the starting condition was the +1 line, and
the metastable structure seen after relaxation is that of two halves. However, for
random starting conditions, there is escape even though this is far from perfect
and the plan view of figure 15b shows four wedge disclinations, one of strength
- 5 and three of +3. It is possible that the modelling of yet larger radii, to give
situations in which the escaped structure is the lowest energy by a significant
factor will yield much better escaped structures. However, increased size, as ever,
brings with it increased computational difficulties. ‘

An integral disclination is inherently unstable with respect to both energy,
as evidenced by dissociation into two half strength lines, and topology which
provides the possibility of escape. The model observation that a +1 disclination
will split into halves whether or not a escaped condition is overall of the lowest
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nergy, prompts observation of a +1 line included within the model and capped
fith two semi hedgehogs as shown in figure 16a,b. This line can be viewed as
+% tangential loop compressed into a line. Once the model is permitted to
grelax, the line opens out into the loop, and sections such as figure 16¢, d, show
Epairs of +%s. The loop reached an approximately circular shape very quickly,
gbut then showed no tendency to change further in diameter or move out of the
Lgmodel. Escape would correspond to the loop being drawn out from the model
8by image forces, an occurrence which would require, at least, the loop to move
'gfrom its symmetrical position. It is also a process requiring much longer range
Scooperative motion than the original decomposition of the +1 line into the loop.
§It would thus appear that, in mechanistic terms, a +1 line is able to express is
Qenergetic instability more readily than its topological instability.

There is ample experimental evidence that the direction of escape changes
at intervals along the tube axis to give either +1 or —1 points along the tube
axis. Such a structure was modelled in a previous paper using less fully developed
algorithms, in which the orientational steps made in response to the local director
field could be very large. We have been unable to repeat this result in the current
work. It is also apparent from comments made in the experimental papers such
as Cladis (1974), that these points are often seen to be associated with particles
or small bubbles. It is possible that escaped structures within capillaries are
facilitated by the presence of impurities which form point nuclei. Work to simulate

the influence of such ‘impurity’ defects is in train.
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Figure 16. A model of a +1 line within radial (homeotropic) boundary conditions. The line is
shorter than the height of the model along the Z axis, and is terminated by two semi hedgehogs.
(a) Starting configuration with terminating regions only approximately modelled. (b) After re-
laxation for 164 iterations per cell. The hedgehog fields are clearly apparent, while the +1 line
has opened up into a +'§ tangential loop.

7. Liquid crystalline polymers: the case of unequal Frank constants

The adaptation of the model to treat the case of unequal constants has already
been considered (Bedford & Windle 1993). Polymeric materials will tend to have
a high splay constant in relation to twist and bend on account of the necessity
of chain ends to compensate for the change in density with position which would
otherwise be a feature of splay. For high molecular mass polymers where there
is a paucity of chain ends, splay, if it is not compensated by equal and opposite
distortion in an orthogonal plane, will require molecular diffusion to achieve the
required density of ends in the region of highest splay distortion. Not only will
there be kinetic limitations, but the special positioning of the ends will mean
an entropic addition to the total energy. It should also be pointed out that if a
nematic polymer molecule is capable of hairpin bends, perhaps where it contains
short flexible sequences of units, then the hairpin can play the part of a chain
end as far as density compensation in splay is concerned. Figure 17 shows the
calculation of splay, twist and bend constants for a liquid crystalline polymer
molecule of specific chemistry as a function of chain length. The constants were
determined using the equations due to Odijk (1986) while the values of persis-
tence length were determined by Monte Carlo molecular modelling procedures
(Bedford et al. 1992). Both twist and bend constants depend on the persistence
length which tends to a constant value for molecules of sufficient length, while
the splay constant is linearly dependant on the contour length of the chain. The
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Figure 18. Director fields calculated with the splay energy set to 100 times that of bend or twist:
(a) Around an s = +1 wedge disclination showing the ‘archway’ form. (b) Around an s = +1

O line. Although the model was permitted to relax there was no tendency for the line to chsqocmte
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into 25 It can be viewed as the top part of two ‘archways’ face to face.

modifications of the director field around a disclination of strength ; as a result of

£ unequal constants have already been well documented. The archwav arrangement

for the case of splay constant 100 times that of bend is shown in figure 18a. The
distorted part of this field is equivalent to one half of a 41 disclination line with
the directors arranged to give concentric circles. The implication being that, in
this case, there would be no energy to be gained through the dissociation into two
—s Flgure 18b is a fully relaxed model of such a +1 line for the splay constant set
at 100 times that of both twist and bend. There is no evidence of dissociation.
The significance of this fact is that it provides a rationale for explaining evidence
for this type of +1 line, as opposed to the radial form, seen on fracture surfaces
of liquid crystalline polymers such as that shown in figure 19. This is a polymer
with chains of uniform stiffness which are unlikely to be able to form hairpin
defects within the mesophase.

While main-chain liquid crystalline polymers are likely to exhibit high splay
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3

30 um |
L.

Figure 19. A fracture surface of a liquid crystalline polymer (random copolyester of 75% hydrox-
=07

ybenzoic acid and 25% hydroxynaphthoic acid) of molecular mass 5000. The director trajectory,
as revealed by the directional fissility, would suggest the intersection of an s = +1 disclination
with the surface.

constants, the opposite situation of high bend constants is applicable to smectic
liquid crystals where the resistance to splay deformation between the smectic
layers effectively limits bending along the molecular axis. There is a report (Cladis
1974) for a smectic phase of an unescaped +1 disclination line along the axis of a
capillary tube treated to obtain homeotropic boundary conditions. What is more,
on heating into the nematic, the +1 was observed to split into two 1s, arranged as
a double helix; there was no escape. It was further noted that the only conditions
under which escape could be initiated on heating into the nematic phase were
those in which second phase particles were present to nucleate point singularities.

8. Conclusions

The major focus of this work has been the development of a lattice model for
the dynamic simulation of disclination processes in liquid crystalline phases. In
applying it to recognized phenomena, many of which have been studied experi-
mentally and treated theoretically in the past, we continue to gain confidence in
it as a new tool.

The modelling has emphasized the fundamental importance of disclination lines
of strength + % Whereas loops defined by a single rotation vector, 2. will be the
means of propagation or annihilation of rotational distortion, loops in which the
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2 vector follows the curvature of the line lead to director fields which assume the
characteristic of a point singularitv as the loop approaches zero radius. Modelling
has shown that, in the size range treated, the energy of a +l tangential loop
within a hedgehog field, is independent of its radius.

Modelling a +1 line, such as may be envisaged at the centre of a homeotrop-
ically treated capillary, has demonstrated that it will decompose into two +3%
strength lines, even at a capillary radii where the escaped configuration is of low-
est energy. In mechanistic terms, the decomposition of a +1 line as a result of
its energetic instability occurs more readily than escape due to its topological
instability, which is thus hindered.

o The calculation of model energies for the several underlying configurations
Qassociated with topological instability of a unit strength line in a capillary tube,
%“demonstrates that the model will handle core energy exactly when the scale
Els such that the core diameter is equivalent to one unit cell, although thermal
sfluctuations will not then be neghglblo

o The work draws attention again to the possibility that an essential role is played
Nbv impurity particles in establishing escaped structures in capillaries.

\o The application of the model to situations in which the splay constant is much
°°h1gher than either bend or twist, enables microstructures typical of main-chain
wllquld crystalline polymers to be simulated. In particular, the model observation
.Ethat a +1 line based on bend distortion is no longer energctlcally unstable, is able
-Zto explain microstructural features seen in thermotropic random copolyesters.
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Discussion

A. DoNALD (Cavendish Laboratory, University of Cambridge, U.K.). Is it pos-
sible to compare your models with experiment and hence extract the relative
values of the elastic constraints.

A. H. WINDLE. In principle yes. Although this paper concentrates on the
modelling aspects, it is clear that there are many features of the observed mi-
crostructures of liquid crystalline polymers which are not seen in small molecule
mesophases. The modelling so far would indicate that some of these features,
namely the fissile nature of structures produced by shear, and the absence of
hedgehog type features in the quiescent microstructures, would suggest the pres-
ence of a high splay constant. Work to measure the trajectories around 1 discli-
nation is in progress. g

T. C. B. McLE1sH ( University of Leeds, U.K.). The simulation on the disloca-
tion you called the hedgehog loop seemed to show that these possessed a stability
independent of their size. This would be surprising from a theoretical point of
view if the stability were due to the cancellation of a repulsive and an attractive
term in the total energy for the loop, as these have different dependencies on the
size of the loop. For example, the core energy would be linear in the size of the
loop, while the far field Frank terms would be logarithmic. Is it perhaps the case
that the approach to equilibrium is in this case much slower than the timescale
of your simulations?
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A. H. WINDLE. We are sure that the apparent stability of a hedgehog loop is
not an artifact of the model. Wedge-twist loops collapse to a monodomain very
rapidly, and a hedgehog loop written in too close to the boundaries of the model
rapidly expands outwards under the influence of image forces to leave behind a
perfect monodomain. The primary difference between the wedge-twist loop and
the hedgehog one is that if the former were to be induced to expand, then the
line energy would increase with radius with an additional log term dependant on
the extent of the long range elastic field. In line with simple dislocation theory,
one might take the extent of the elastic distortion to be equal to the radius of
the loop. Such a loop will minimize its energy by shrinking, and self annihilating.

QDn the other hand, the expanding hedgehog loop girdles volume, which approx-
Amates to a monodomain, hence its expansion can be seen as the elimination of

e hedgehog. Correspondingly, it is not obvious in this case how, if at all, the

Fange of the elastic distortion (that which influences the log term) would vary

"avith loop radius. The fact that both the recovered energy from the hedgehog to
dunonodomain conversion, and the total core energy of the dislocation line, are pri-
‘znarily dependant on the loop radius may point to a balance of energies. However,
Q loop energy independant of radius implies that the energy of the disclination
Etine is of the order of 4K, where K is the Frank elastic constant. It is interesting
Dobo speculate that a —% wedge Class II loop, should collapse to form a hyper-
Solic hedgehog of its own accord, as the energy of this point defect is 33% of
Zhe hedgehog (J.R. Hobdell, personal communications) on account of splay-splay
Sompensation.

With respect to the experimental observation of the collapse of Class II loops
Qnto points; it is worth nothing that points may well be associated, indeed stabi-
dized by, second phase particles, and that in any case the hedgehog is the highest
=nergy point, for a given radius, even in the case of equal elastic contants.

E. L. THOMAS (MIT, Cambridge, U.S.A.). We have shown (S. Hudson et al.,
“Macromolecules 26, 1270 (1993)) that it is possible to measure the Frank elastic
ontants from the variation of the director field about an isolated disclination
cusing the lamellar decoration technique. Interestingly, if one measures the radial
Sdependence of the variation of the director field, below distances of around 0.1 mm
~from the disclination the measured apparent elastic anisotropy begins to depend
Son the radial distance from the defect core. This effect could be due to either a
Shreakdown in Frank theory, since the distortions are growing as 1/4, and/or a
§rea] material property effect due to variability of the liquid crystalline material
Snear the defect core, such as segregation of low molecular mass material and/or
hairpins to alleviate the distortions. If heterogenieties in the LC material are the
source of the variation of the apparent elastic anisotropy, then an effect anal-
ogous to the ‘Cottrell-atmosphere’ in a metal system, whereby impurity atoms
are attracted to dislocation core and influence subsequent dislocation motion,
may occur. G. Mazelet & M. Kléman (Polymer 27, 714 (1986)) have previously
commented on the different mobilities of § = +1 and § = —; disclinations in a
thermotropic LC polyester which could arise from such heterogeneities.

A. H. WINDLE. The observation that the apparent elastic anisotropy around
a disclination changes as the core is approached is especially intriguing. As with
dislocations, the whole issue of core structure and energy is fraught with difficul-
ties. It may be that at a finite temperature the quality of director alignment with

typ
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its immediate neighbourhood is lower, or put a different way that. thfe ngmatic
to isotropic transition temperature is lowered where the distortion is significant.
The most effective driving force for the formation of Cottrell atmospheres would
be splay distortion associated with polymers. Is it possible to relate the observed
change in anisotropy near to the core with a reduction in the splay component of
distortion? In the example of a high splay constant polymer, one might expect
to show up as a reduction in the archway character of a +% line defect.

E. L. THOMAS. If the crystalline lamellae that grow and serve to decorate the
underlying glassy nematic texture are held for long times at temperatures just
below the T}, the significant reorganization of the nematic texture by crystalliza-
tion does indeed occur, prohibiting valid observations of the director field. Thus
one needs to use a deep-quench to nucleate cystals massively so that the result-
ing small crystals effectively decorate without major perturbation to the glassy
nematic phase from which they grow. Another key variable in the use of lamellar
decoration is the influence of temperature dependence of the order parameter
which controls the temperature dependence of the elastic constants. Therefore,
we are currently attempting to quench samples from various temperatures in the
nematic phase régime, in the hope that since thermal diffusivity greatly exceeds
mass diffusivity, appropriate rapid quenching may be able to reflect the temper-
ature dependence of the disclination near-core structure.

A. H. WINDLE. The crystallization that occurs in thermotropic random co-
polyesters raises many issues, most of which are beyond the scope of this paper.
However, the degree to which the director field may be modified by the formation
of crystallites during cooling is pertinent to any comparison between modelling
and experiment. The first-order answer is that the crystallization appears to dec-
orate rather than ‘rewrite’ the nematic microstructure. Crystallites in the region
of a boundary of a thin layer of the polymer, where the director field is changing
most rapidly, are themselves curved. It is not possible to say that the crystals
have no influence on the director field, but if it is present it is distinctly a sec-
ond order effect. Furthermore we have not been able to detect any difference
in director microstructure between quenched samples and those which have been
annealed for several hours whithin a few degrees of the melting point, although in
the latter case the crystals themselves are better formed. However, the extremely
rapid formation of crystals which do require some degree of longitudinal sorting
of the random chains for their order, does seem surprising. Recent diffraction
studies (S. Hanna et al., Nature, Lond. 366, 546 (Dec 1993)) show that the seg-
regation is present in the melt, which thus contains regions which should possibly
be classified as smectic rather than nematic. Crystallization, as indicated by the
solidification of the polymer, a thermal transition, and the development of sharp
interchain X-ray peaks, represents the development of lateral order within the
regions within which the chains were already longitudinally matched in the melt.
It is possible therefore that these presegregated regions have their own influence
on the director microstructure via the relative values of the splay, twist and bend
constants.
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