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Abstract 
In this thesis, the correlation between the optical properties and the local morphology of 

supported silver nanoparticle ensembles and MgO thin films deposited on Mo(001) systems is 

explored by means of Photon-STM. In the first section, dome and disk shaped Ag nanoparticle 

ensembles with increasing density on an alumina film on NiAl(110) were analyzed as well as 

ordered and disordered ensembles of Ag nanocolloids on HOPG. The aspect ratio of the Ag 

nanoparticles was found to have a significant influence not only on the Mie plasmon resonance 

of a single particle, but also on the electromagnetic coupling within the nanoparticle ensembles. 

The Mie resonance in the ensemble of dome shaped Ag nanoparticles shows a strong 

dependence on the interparticle distance, where it shifts to higher energies with increasing 

particle density, due to destructive interference effects. In the disk-like Ag ensembles, however, 

the plasmon energy is independent of particle-particle separation. The long-range lateral 

ordering of size-selected Ag nanocolloids is found to induce a high dipole-dipole coupling 

within the ensemble. This is mainly reflected by the enhancement of the spectral intensity of the 

in-plane Mie mode, due to constructive coupling. However, ensembles with either well-ordered 

or disordered arrangements reveal no important difference in their optical properties, reflecting 

the weak influence of the long-range order in the particle ensemble. Thin MgO films with 

different thicknesses were grown on a Mo(001) surface. The stress resulting from the 5.3% 

lattice mismatch between the MgO(001) and the Mo(001) lattice parameters is found to control 

the surface morphology of the MgO film until thicknesses of around 25ML at which flat and 

defect-poor films are obtained. The relaxation of the stress induces a periodic network in the 

first 7ML of the MgO film, consisting of alternated flat and tilted mosaics. The presence of 

screw dislocations, steps oriented along the MgO<100> directions, and tilted planes is observed 

when the MgO films are approximately 12ML thick. In addition, an increase of the MgO work 

function around these new surface features is revealed from STM spectroscopy. The photon 

emission induced by field-emitted electron injection from the STM tip into the MgO films is 

dominated by two emission bands located at 3.1eV and 4.4eV. To check the origin of these 

bands, further experiments, namely, nucleation of Au particles and creation of F-centers on the 

MgO surface, have been performed. The nucleation of Au particles at the low coordinated sites 

is found to quench the MgO optical signal, while the creation or annihilation of F-centers does 

not alter the MgO emission bands. The 3.1eV and the 4.4eV bands are therefore assigned to the 

radiative decay of MgO excitons at corner and kink sites, and step sites, respectively. Besides, 

spatially resolved optical measurements in the tunneling mode of the STM revealed different 

light emission mechanisms. These radiative processes are mainly related to tip-induced 

plasmons that form between the tip and the Mo support and to electron transitions between field-

emission-resonance states in the STM tip-MgO film junction. The signal from exciton decays at 

corners and kinks of the MgO surface is however only observed at excitation conditions where 

the spatial resolution is already strongly reduced.  



ii

Zusammenfassung 
In der vorliegenden Arbeit wurde mit Hilfe eines Photon-STM die Korrelation zwischen 

optischen Eigenschaften und der lokalen Morphologie an zwei unterschiedlichen Systemen 

untersucht. Hierfür wurden zum einem oxidgetragene Ensemble von Silber-Partikeln präpariert, 

wobei sowohl die Partikelform (Kuppel- und Scheibenform) als auch die deponierte 

Partikeldichte variiert werden konnte. Neben der Präparation solcher Partikel auf Al10O13/NiAl, 

konnten sphärische Silber-Kolloide geordnet, als auch ungeordnet auf HOPG aufgebracht und 

untersucht werden. Dabei zeigte sich, dass das Verhältnis von Höhen zu Breiten nicht nur einen 

signifikanten Einfluss auf die Mie-Resonanz des einzelnen Partikels hat, sondern auch die 

elektromagnetische Kopplung der Partikel in einem Ensemble stark kontrolliert. Die 

energetische Lage der Mie-Resonanz zeigt im Fall der kuppelförmigen Ag-Partikel eine starke 

Abhängigkeit vom Intepartikel-Abstand, was sich in einer Verschiebung zu höheren Energien 

für eine steigende Partikeldichte äußert. Eine solche Abhängigkeit konnte bei den Ensembles der 

scheibenförmigen Partikel nicht beobachtet werden. Des weiteren zeigte sich, dass, verglichen 

mit den ungeordneten Ensembles, die selbstorganisierte langreichweitige Ordnung der Silber-

Kolloide auf HOPG nur einen schwachen Einfluss auf die energetische Position der Mie 

Resonanz hat.Das zweite hier untersuchte System sind dünne MgO Filme unterschiedlicher 

Dicken auf einem Mo(001) Substrat. Diese zeigen ein reichhaltiges Wachstumsverhalten, 

welches durch eine Differenz in den Gitterkonstanten von 5.3% begründet ist und erst ab etwa 

25 ML zu einem flachen und defektarmen Film führt. Die so induzierte Spannung relaxiert bis 

zu einer Dicke von etwa 7 ML in einer periodischen Überstruktur die aus abwechselnd flachen 

und verkippten Ebenen an der MgO-Mo Grenzschicht hervorgeht. 

Für MgO Filme mit einer Dicke von etwa 12 ML werden dann Schraubenversetzungen, 

ausgedehnte verkippte Ebenen und Stufenkanten mit einer Orientierung entlang der <001> 

Richtung beobachtet. Die optische Charakterisierung durch Feldemission von Elektronen aus 

der STM-Spitze in den MgO-Film wird dominiert von zwei Emissionsmaxima bei Energien von 

3.1 eV und 4.4 eV. Die kontrollierte Nukleation von Gold Partikeln und die Erzeugung von 

Farbzentren im MgO Film erlaubten eine Zuordnung dieser Emissionen zu strahlenden Zerfällen 

von Exitonen an Ecken, Kinken bzw. Stufen des Magnesiumoxids. Solche Emissionsprozesse 

konnten allerdings nur unter Einstellungen beobachtet werden, bei denen ein gleichzeitiges 

Rastern der Oberfläche unmöglich ist. Bei moderaten Einstellungen war auch eine 

ortsaufgelösten Spektroskopie möglich, wobei dann neue Emissionsmechanismen beobachtet 

wurden. Dabei sind zwei Prozesse wesentlich; zum einen die Ausbildung von sog. Spitzen-

induzierten Plasmonen im Bereich zwischen Spitze und dem Mo-Substrat, zum anderen 

strahlende Elektronenübergänge zwischen sog. Feldemissionsresonanzen, die sich im 

Spitze/MgO-Film System ausbilden. 
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Introduction and Motivation 

 

 

In the last few years, a great development in the research tools to study optical materials 

on the nanoscale has been achieved, allowing a more detailed knowledge on their local optical 

properties. This progress in the optical measurements was possible thanks to the large 

advances in the laser technology, electronics, and computers on one hand [1], and in the use 

of new analysis techniques characterized by high spatial resolution, such as, the scanning 

probe microscopy, on the other hand [2,3,4]. 

Optical spectroscopy with the STM has evolved into a powerful tool to measure optical 

properties of a sample surface with nanometer spatial resolution [3]. It allows direct 

correlation between the optical characteristics and the structural properties of the studied 

material. This is in contrast to classical optical spectroscopy methods, where the extracted 

information is averaged over macroscopic areas, and often exhibit broadening effects due to 

sample inhomogeneity. In terms of spatial resolution and versatility, optical emission 

spectroscopy with the STM competes only with a few other local optical methods, like the 

scanning near-field optical microscopy (SNOM) and related methods [4,5]. Consequently, an 

STM-based approach has been selected to explore the optical properties of individual species, 

selected from an ensemble of metal particles [6], semiconductor quantum dots [7] or 

molecules [8,9,10].  

Using such an STM approach, the relationship between the surface optical and structural 

properties of two optically active systems is investigated in this PhD work.  

The first system concerns noble metal nanoparticles, which are particularly interesting 

optical objects [11]. Their optical properties exhibit distinct extinction bands induced by 

strong plasmon resonances in the visible spectrum [11,12]. The corresponding optical 

response can be understood in terms of the classical Mie theory [12], using most of the time 

simple quasi-electrostatic models of the particle polarizability and bulk dielectric functions 

[12]. This is in contrast to optical spectra of molecules and semiconductor quantum dots, 

where the interpretation often requires quantum mechanical calculations [13]. Furthermore, 

the nanoparticles play a crucial role in various applications, such as, in optical filters [14], 

plasmon wave-guides [15,16], Surface-Enhanced Raman Spectroscopy (SERS) [17], and 

photochemistry [18,19]. However, there is a strong relationship between the geometry and 

spatial arrangement of particles and their optical behavior. The plasmon resonance energy can 

considerably shift due to changes in the shape of a metal particle and its surrounding medium, 
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and it can also be affected by the particle density and arrangement within an ensemble [12]. 

Hence, the optimal performance of devices based on particle plasmon excitations can only be 

ensured when this relationship is fully established. In this thesis, a detailed investigation of 

the influence of particle shape, density, and lateral arrangement on the optical behavior of 

ensembles of supported silver nanoparticle is presented (chapter 3). 

The second system under investigation is a wide-gap insulator, namely MgO films on 

Mo(001). Also in this example, the application of local techniques is desirable to explore the 

optical properties of oxide materials. Metal oxide surfaces have been subject to a growing 

interest over the last few years, because of their importance in different applications, 

especially in the field of heterogeneous catalysis [20,21]. The optical response of wide 

bandgap oxides is strongly related to the presence of imperfections in the crystal lattice, e.g. 

defects or low coordinated sites [22,23,24] and should exhibit pronounced spatial variations 

across their surface. Structural defects act as trapping centers for electron-hole pairs 

(excitons), which then decay via the emission of photons with trap specific energies [25,26]. 

Thus far, correlation between the various defect types on the surface (vacancies, corner or 

step sites) and their optical signature is only based on a combination of non-local optical 

spectroscopy and model calculations, and relies on the comparison of measured and 

calculated photon energies. To verify this assignment on a purely experimental base, local 

structural and optical information have to be acquired from the insulator surface, which is in 

principle feasible using light emission spectroscopy with the STM. Such experiments are now 

discussed in chapter 4. The investigation reveals a correlation between the surface 

morphology and optical properties of differently thick MgO films grown on a Mo single 

crystal at the local scale. 

 

In the first part of this manuscript (chapter 1), a brief overview over the theory and the 

working principle of the scanning tunneling microscope is presented. In addition, mechanisms 

that govern light emission from different STM-sample junctions are described. Special care 

has been taken to update the available knowledge on photon-emission mechanisms in the 

STM and connect it with the results of this study. The details of the experimental setup, 

including the different stages of sample preparation and analysis, are given in chapter 2. In 

addition, the main technical information about the STM head as well as the optical detection 

system are specified. At the end of the chapter 2, a number of upgrades on the experimental 

setup made during my PhD period are presented. The experimental results discussed in 

chapters 3 and 4 are followed by a summary and outlook section. 
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Chapter 1 

1. Theoretical Considerations

I. Scanning Tunneling Microscopy (STM) 

I.1. Introduction 

Since the advent of quantum mechanics in the early years of the 20th century, the 

tunneling effect of a quantum particle through a potential barrier is recognized. The 

exploitation of this effect led in 1981 to a revolutionary invention, the “STM” [ 2]. Scanning 

tunneling microscopy is one of the most fascinating scientific techniques for the analysis of 

solid surfaces as it permits the exploration of the surface in real space and at the atomic scale. 

The two inventors of the STM, Binnig and Rohrer, have been awarded with the Nobel Prize in 

physics in 1986 [27].  

The large potential of the STM induced an avalanche of new applications and innovative 

ideas [28,29]. Besides being a tool to image the atomic structure of surfaces, the STM became 

a device to locally probe other properties, such as, the local density of states (LDOS) by 

means of Scanning Tunneling Spectroscopy (STS) [28,30,31], optical properties by Photon-

emission STM (PSTM) [3,32,33], magnetic properties by Spin-Polarized STM (SP-STM) 

[29,34,35,36], and vibrational properties of single adsorbed molecules by means of Inelastic 

Electron Tunneling Spectroscopy (IETS) [37]. Recently, the combination of STM with a 

Laser source has resulted in a powerful instrument for Raman spectroscopy of single 

molecules employing Tip-Enhanced Raman Spectroscopy (TERS) [38,39], as well as for 

optical spectroscopy in the femtosecond timescale [4]. 

The diversity of functions and the possibility to perform measurements in vacuum, liquid, 

and ambient environments at various temperatures made the STM a valuable technique in a 

variety of research fields. STM is widely used for instance to investigate quantum effects on 

surfaces [40,41,42], to identify active centers in heterogeneous catalysis [43,44,45], to 

characterize in situ the surface of electrodes in electrochemistry [46,47,48], and to study the 

properties of biological molecules like DNA [49,50,51]. Furthermore, STM is, nowadays, a 

potent tool for the development of future electronic devices. These promising devices are 
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based on atomic and molecular electronic switches as STM permits the manipulation of atoms 

and molecules on different surfaces [52,53]. 
 

I.2. Operation principle 

The idea of scanning tunneling microscopy is based on the exploitation of the exponential 

dependence of the transmission coefficient of electrons through a potential barrier (the tunnel 

current) on the thickness of the barrier. Thereby, a small variation of the barrier thickness 

results in a dramatic change in the tunnel current. So practically, if an atomically sharp 

conductive tip is brought near to the surface of a conductive sample, and if the gap distance 

between the tip and the surface is very small (few Å), electrons can tunnel from (to) the tip to 

(from) the surface. By applying a bias to the tip-sample junction, the direction of tunneling is 

chosen according to the sign of the bias. In a simplified description, electrons tunnel between 

the top atom of the sharp tip and the counter atoms in the surface. The tunneling current is 

therefore sensitive to the position of the tip and will vary when the tip is on the top of a 

surface atom or in between two atoms. Thus, by scanning the surface with the tip and 

measuring the tunneling current, an atomically resolved picture of the sample surface is 

produced. 

The STM is basically composed of the following parts: (1) A sharp conductive tip, (2) 

scan system that operates in three dimensions, (3) a power supply, (4) a current amplifier, (5) 

an electronic feedback loop, (6) a computer for data processing, and (7) a damping system to 

suppress external vibrations. Figure 1.1 presents a schematic setup of an STM.  

The scan control works with piezoelectric ceramics so that the tip can move with a 

precision better than 0.01 Å. While x and y piezos are responsible for the lateral scan, the z 

piezo is responsible for the tip-sample separation d and is under control of the feedback loop.  

The microscope can operate in two modes: (1) Constant current mode, where the 

tunneling current I is set to a fixed value. The feedback loop guarantees a constant I by 

controlling the z piezo and therefore the distance d. The control signal of the Z-piezo is 

recorded and translated into an image of the surface. The image contains topographic and 

electronic information. (2) Constant height mode, where d is fixed and I variations are 

recorded. 
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Figure 1.1: Schematic representation of an STM setup 

 
 

I.3. Theoretical approach 

With an STM, atomic scale images of different surfaces can be produced. However, the 

understanding of what is seen on these images and its connection to the real atomic 

configuration of the probed surfaces is not straightforward and is in many cases rather 

complicated. The complexity comes from the fact that the contrast as well as the lateral 

resolution of the images depend on the applied bias, the tip material, and the tip-sample 

distance. In other words, STM imaging depends on the tip-sample interaction defined by the 

degree of overlap between electron wave functions and their symmetry on both sides of the 

tip-sample junction. Therefore, theoretical modeling of the tunneling process in an STM 

junction is necessary to enable the interpretation of STM images.  

Before the invention of the STM, the tunneling phenomenon was already observed in 

metal-insulator-metal tunneling junctions (MIM) [30]. The most used model to understand 

MIM junction is Bardeen’s model [30,54]. Using Fermi’s golden rule, Bardeen calculated the 

elastic tunneling current based on the overlap of the wave functions in the two electrodes of a 
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MIM junction. In case of a tip-sample junction, the tunneling current flowing between the tip 

and the sample at positive sample bias V is written as [30]: 

 

[ ] dEM)EE()EeVE()EE(f)EeVE(f
e

I TSFSFTFF

24 ++−+−+−= ∫+∞

∞−
ρρπ

h
 (1.1)

Here f(E) is the Fermi-Dirac distribution, and ρT(E) and ρS(E) are the local density of 

states (LDOS) of the tip and the sample, respectively. M is the tunneling matrix element and 

is defined by the integral over a surface of separation S: 

 

∫ Ψ∇Ψ−Ψ∇Ψ=
S

TSSTTS dS
m

M )(
2

**  
h

 (1.2)  

S is an arbitrary surface anywhere between the tip and the sample and covers the region of 

significant overlap of the wave functions.  

A good evaluation of the MTS matrix needs a good description of tip and sample wave 

functions. However, the unknown structure of the tip apex makes the modeling of STM 

images difficult. To circumvent this problem, Tersoff and Hamann modeled the tip apex as a 

spherical potential well [55,56]. They assumed the resulting eigen wave functions to be only 

s-like wave functions at the center r0 of the tip apex curvature. The form (1.1) of the tunneling 

current is then simplified. At low bias, the tunneling current is only proportional to the Fermi-

level LDOS of the sample at the center of tip curvature r0 [30]: 

 

),(. 0 FS EreVI ρ ∝  (1.3)

Equation (1.3) permits an easy interpretation of STM images by neglecting tip properties 

and assuming that an STM image is the Fermi-level LDOS representation of the bare surface.  

 

Despite the successful application of the Tersoff and Hamann model in many cases, it 

failed in predicting the observed high corrugation amplitude in STM images of close packed 

metal surfaces [30]. Chen [57] attributed this artifact to the restriction to s-like tip wave 

function. He successfully improved the model by assuming localized tip orbitals oriented 

towards the sample, such as the dZ
2 orbital of a tungsten tip. Subsequently, depending on the 

tip material, an appropriate tip orbital is chosen and a suitable model is generated, which then 

reproduces the experimental resolution. 
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Besides, based on the WKB (Wentzel–Kramers–Brillouin) semiclassical approximation, 

an alternative description of the tunneling current is obtained using the tunneling transmission 

probability T(E,eV,Z) between two planar electrodes at temperatures close to 0K and bias 

voltages lower than the work function of both tip and sample [58]: 

 

dE).Z,eV,E(T).EE,r().EeVE,r(I FSFT ++−∝ ∫+∞

∞−
ρρ (1.4)

where 

 

⎟⎟⎠
⎞

⎜⎜⎝
⎛ −++−= E

eVmZ
exp)Z,eV,E(T TS

22

22 φφ
h

(1.5)

 

φS and φT are sample and tip work functions, respectively, while Z is the tip–sample 

distance. 
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II.  Image potential and field emission resonances in the STM 

junction 

II.1.  Introduction  

Creating a surface in a crystal induces a modification of the electronic structure in its 

vicinity, due to the interruption of the periodic potential of the solid. Hence, new electronic 

states appear. These states have no equivalent in the bulk band structure. The corresponding 

wave functions are peaked at the surface plane and their amplitudes decay when going from 

the surface towards the bulk and the vacuum. When such a surface state has a continuation 

into the extended bulk states, the state is a surface resonance. When the energy position of the 

state is in the forbidden region of the projected bulk structure, it is a bound surface state 

[59,60].  

In this thesis, such surface states, namely image-type surface states, are observed in STM 

measurements performed over a wide-gap metal oxide (chapter 4). In the following 

paragraphs, a brief introduction to image potential states and field-emission resonances is 

given.  

 

II.2.  Image potential states 

Image potential states are localized states in the vacuum region near the surface. They 

belong to the category of bound surface states and are typical for metal surfaces presenting a 

bandgap around the vacuum level [60]. These states were first predicted by Cole and Cohen 

[61], then treated in more details by Echnique and Pendry [62], and finally observed 

experimentally by means of LEED [63] and IPES [64,65]. The nature of image potential 

states is rather simple: An electron in front of the surface induces a local positive charge in the 

crystal, i.e., an image charge, figure 1.2.  
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Figure 1.2: An electron in front of the surface at distance z creates a positive charge (mirror image) 
at -z with respect to the surface. The Coulomb interaction between the two different charges defines 

the image dipole potential. 

 

 

The situation can be described as a particle in quantum well, where the particle can 

occupy only discrete energy levels. In the image-potential case, the electron is trapped at 

approximately one Bohr radius from the surface by his own induced potential [59].  

The image potential is described by: 

z

e
zU

4

1

4
)(

0

2

πε−=  (1.6)

where z = 0 marks the image plane (plane of the surface).  

 

As presented in figure 1.3, the potential resembles a central well. The solution of the 

Schrödinger equation of the system is more complex than for the standard case of a 

rectangular well. The system is treated in analogy to the hydrogen atom with an orbital 

quantum number l=0  [59]. Like the Rydberg states, the energy eigenvalues are given by: 

( ) m

k

an

eV
EE vacn 2

 85.0 2
//

2

2

h++−=   (1.7)

n is the quantum number; a is a correction that accounts for the influence of the surface 

potential. It allows a better description of the resonant levels (0 ≤ a ≤ 0.5) [59,62,66]. 
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Figure 1.3: Representation of the image potential form U(z)∝ -e2/z (dashed line) and the surface 
electronic structure of a metal crystal having a band gap around Evac. The first three energy levels are 

also drawn.  

 

 

In opposite to box-like quantum wells, here the energy eigenvalues converge 

asymptotically to the continuum at the vacuum level, i.e., the separation between the quantum 

levels gets smaller when approaching the Evac, following the -1/n2 term. The last term in 

equation (1.7) describes the free electron-like behavior of the bound electron in the plan 

parallel to the surface. In this picture, the bound states are standing electron waves 

perpendicular to the surface resulting from the interference of waves reflected at the surface 

potential step on one side and the image potential wall at the other side. In this picture, the 

bandgap in the metal is needed to ensure a high reflectance at the surface side [59,60].  

Typical examples for metal surfaces presenting a bandgap in the surface-projected bulk 

band structure around Evac are low index surfaces of noble metals, such as the Cu(100), and 

Cu(111) surfaces [67] (see figure 1.4).  
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Figure 1.4: Energy of the electronic states of Cu(111) and Cu(100) surfaces, as a function of the 

electron momentum parallel to the surface (k//). Evac is here the energy reference, EF is the dashed line. 
The area in white represents the projected forbidden states [67]. 

 

 

However, even for metal surfaces where no bandgap exists, the image potential states are 

observed. The modulation of the crystal potential due to the ion cores is found to induce a 

sufficient electron reflectivity on the crystal side [68].  

Image states exist for semiconductor and insulator surfaces as well [59]. In this case, the 

static dielectric constant ε is taken into account and the potential (1.6) becomes: 

z

e
zU

4

1
  

4
  

1

1
)(

0

2

πεε
ε

+
−−=  (1.8) 

The image potential states are intrinsically empty due to their position above EF. They are 

typically probed by IPES [64,65], 2PPE [66,69], or STM [70] techniques. However, with 

STM, the applied electric field between the tip and the sample induces a Stark shift and the 

expansion of the states, and therefore, an alteration of the fundamental spectrum of the image 

potential states [70]. The case of image potential states in STM junctions is treated in the next 

section. 

It should be mentioned that since the image potential states are dependent on the Evac, any 

perturbation that induces a change in the work function, such as deposition of atoms, 

molecules or thin atomic layers, results in a shift of the states following the shift of Evac. 

Therefore, by probing the image states an estimation of work function changes can be 

deduced. 
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II.3.  Field emission resonances (Gundlach oscillations) 

The field emission resonances (FERs) are electronic states, which especially occur in 

STM geometries where an electric field across the STM junction is applied. They are 

considered as the result of the shift and expansion of the image potential states due to the 

presence the electric field. The shifted positions can be therefore theoretically calculated by 

adding field-related correction terms to formula (1.7) [70,71]. In the following, an alternative 

approach to the FERs, based on other consideration than image potential states, shall be 

discussed.  

 

The FERs are variations in the tunneling conductance between two electrodes of a 

tunneling junction when voltages higher than the work function of the electrodes are applied 

(figure 1.5). In 1966, K.H. Gundlach made the first prediction of such oscillations by 

considering a more realistic potential barrier in the tunneling junction and calculating the 

transmission coefficient and the tunneling current as a function of the applied bias. He 

connected the conductance variations to the interference of electron waves reflected in the 

classical part of the junction between the two electrodes [72]. 

  
Figure 1.5: Example of conductance measurements dI/dV within a STM junction as a function of 

applied voltage [73].  
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The phenomenon could be described as follows (figure 1.6): (i) For high biases V, 

electrons with energies E bigger than the work function φt of the electrode (the tip) have a 

certain probability D(E,V) to tunnel to the classical turning point z0. Once they access the 

classical part of the barrier (shaded area in figure 1.6), they are accelerated by the applied bias 

towards the counter electrode (the sample). The regime at which such electron emission is 

obtained is called the Fowler-Nordheim Field-Emission regime, after R.H. Fowler and L. 

Nordheim who first established a theory describing and calculating the electron field-emission 

from metal surfaces [74].  

 

 

 
Figure 1.6: Schematic representation of the formation of Field Emission Resonance states in a STM 

junction (Sample held at positive bias). The FERs are formed in the classical part of the barrier 
(Shaded area) between the linearly decreasing part of Evac (dashed line) and the surface potential step 
at z=d. φt, φs are the work functions of the tip and the sample. z0 is the classical turning point, where 
the energy of the electron is equal to the potential barrier. n denotes the number of the FERs level.  

V is the applied bias. E.g.: for e⋅V = E2, the electron energy is in resonance with the second FER level 
n=2. The thick dark line delimits the trapezoidal potential barrier. The gray dashed line represents the 

form of the barrier when the image potential effect is considered. 
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The probability D(E(z),V) expressing the electron transmission through the potential 

barrier is written as [72, 75]: 
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If the integration under the exponential term is calculated and under the condition that 

only electrons near EF participate in the tunneling, D is written in the Fowler-Nordheim form 

as [72,75]: 
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F is the electric field between the electrodes, F ∼ V/d; d is electrode-electrode distance. 

 

The field-emission current density, also called tunnel current density, is determined at low 

temperatures (∼0K) by the following expression [73]: 
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After calculating the integral, the well-known Fowler-Nordheim equation is obtained [74,75]: 
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(ii) Up to this point, only the electron transmission through the potential barrier, i.e., from 

z=0 to z=z0, was considered and not through the whole junction since the classical part, from 

z=z0 to z=d (shaded area, figure 1.6), is not taken into account. Gundlach has considered the 

electron transport behavior inside the second region too. He calculated the total transmission 

coefficient D through a trapezoidal potential barrier (figure 1.6) after solving the Schrödinger 

equation for the z < 0, 0 < z < d, and z > d regions.  

The resulting total D shows a sinusoidal behavior [72]. The corresponding current density 

can be written as [73]:  

( )( ) ( )⎥⎥⎦
⎤

⎢⎢⎣
⎡ +−

++−−
+= BA

eV

eVEE

eV

eVE
JJ

s

FtsF

s

F
FN sin

 

2

1
1  2/5φ

φφ
φ  (1.13) 



Chapter 1 

 

15

where 
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The electrical conductance dJ/dV between the two electrodes at voltages higher than their 

work functions is [73]: 
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Equation (1.14) reflects clearly the oscillations in the conductance (the cosine term). This 

variation is attributed to electron wave interference between z=z0 and z=d. The electrons in 

the classical part of the junction are partially reflected at the counter electrode (z=d), due to 

the sharp potential change at the surface1, and at z=z0 by the potential barrier. 

So, the electron waves interfere with each other when reflected back and fourth at both 

sides of the barrier. At certain conditions where the distance d-z0 (where z0 = z0(V)) is equal to 

an integer number times half of the electron wavelength, constructive interferences occur and 

standing waves are formed. This coincides with high electron transmission, i.e., resonance 

conditions. The Gundlach oscillations are therefore more commonly called Field Emission 

Resonances (FER). The FERs could not be predicted using the WKB (Wentzel-Kramers-

Brillouin) approximation, which neglects the partial reflectance at the surface when 

calculating the electron transmission coefficient across the potential barrier [72,76]. 

The positions of FER levels En=eVn (n = 1, 2, 3…,) are deduced from the condition where 

the term under the cosine in equation (1.14) is: 
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⇒ By supposing (n + 1/2)2/3 ≈ n2/3 one gets the simplified formula: 
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1 Even though there is no potential barrier at energies higher than the work function of the electrode, an electron 
in this energy regime has still a finite probability to be reflected when leaving the region of potential barrier or 
arriving to it, as quantum mechanics predicts. The reflectance decreases exponentially with increasing electron 
energy. 
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The substitution of En in equation (1.14) for the condition that the cosine terms are equal 

to -1 gives:  
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 (1.17)

Equation (1.17) describes the evolution of maximum amplitudes of the conductance as a 

function of n. A plot of equation (1.17) is presented in figure 1.7. Here, the electric field F is 

supposed to remain constant, as typically assumed for STM measurements in the constant 

current operation mode. 
 
 

 
Figure 1.7: Amplitude of the conductance maximum of an STM junction plotted as a function of the 
number of the FER level n. The evolution is shown for three different sample work functions. Plot 

parameters: EF=5eV, φt=4.5eV, F=1V/Å. 
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From figure 1.7, the fast decrease of the amplitude of the conductance oscillation with 

increasing voltage is easily recognized (as depicted in figure 1.5). 

The drop of the conductance amplitude is related to the exponential decrease of the partial 

electron reflectance at z=d with increasing energy. Additionally, it signifies that the electrons 

are not as many times reflected in the higher FER levels and the resulting electron lifetime in 

these levels is shorter. The electron lifetime can be estimated using Heisenberg uncertainty 

principle Δt ≈ h/ΔE, where ΔE is the FWHM of the conductance peak, and h Planck’s 

constant. Δt is typically in the order of femtosecondes (10-15 s). 

 

 

II.4.  Image potential effect on FERs 

Experimentally measured positions of FER levels in an STM can be fitted using equation 

(1.16) with a very good agreement for the higher FER levels (n ≥ 2). Hence, a good 

estimation of the work function of the sample can be achieved [77]. However, for low FER 

levels, the experimental data deviate strongly from the theory. The deviation is due to the 

image potential effect, which is not considered in the above calculation. The presence of the 

image potential causes a distortion of the trapezoidal potential barrier near the tip and sample 

surfaces, as shown by the gray dashed line in figure 1.6. This results in an over estimation of 

the first FER position when using equation (1.16) [73,77]. 

 

 

II.5.  Tip shape influence on FERs in STM 

When introducing the image dipole effect and the effective tunneling area A, the Fowler-

Nordheim field emission current becomes [75,78]: 
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where ⎟⎟⎠
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⎛ ×−= −
t

F

φα 2/1
4108.31 is image effect correction factor. 

As it can be seen in equation (1.18), the most important tip-dependant factors are those 

within the exponential factor, i.e., the field F and tip work function φt. So, any change in F 

and/or φt modifies the form of the trapezoidal potential barrier and therefore causes a shift of 

the FER positions. 
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φt changes can be induced by adsorption of contaminants probably from transfer of 

sample material onto the tip. The field required to draw the same field emission current is then 

[78]: 
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 (1.19) 

Tip sharpness plays an important role as well. The electric field F at the apex of the tip 

can be written as a function of applied bias V and tip apex curvature r as [75]: 

kr

V
F =  (1.20) 

k is a geometric factor (k ≈ 5). From this simplified model it becomes obvious that a 

presence of a small bump of the tip apex can induce a considerable change of the field, and 

therefore, of the FER positions. 
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III.  Light emission from a STM  

III.1.  Introduction 

One of the innovative applications of the STM is the ability to analyze optical properties 

of surfaces [3,32]. The advantage of the STM here resides in the possibility to perform 

electronic and optical spectroscopies with high lateral resolution, which allows, local 

investigations of optical properties on the nanometer scale (single atoms and molecules) 

[79,80]. Indeed, light emission from a STM junction was observed in different experiments. 

However, it was realized that the emitted light, its spectral distribution, and its intensity 

depend not only on the properties of the sample, as for classical optical techniques, but also 

on the material and the shape of the STM tip as well as on the operation conditions of the 

STM. In the following paragraphs, the different origins of light emission from a tip-sample 

junction are briefly discussed. 

Light emission from an STM junction is mediated by tunneling electrons, which loose a 

part of their energy within the junction. There are two possible mechanisms for a tunneling 

electron to cause photon emission: (1) Inelastic tunneling (IET), where the energy of the 

electron is released in the region between tip and sample, and (2) hot electron decay (HE), 

where the photon is emitted due to electron recombination just after of the tunneling process, 

i.e., inside the sample, see figure 1.8 [3]. 
 

 
Figure 1.8: Two possible mechanisms for photon emission from a STM junction. IET: Inelastic 

tunneling, HE: Hot electron decay [3]. 
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The probability of IET and HE processes in the STM junction can be determined by the 

intensity and quantum yield of the emitted radiation (between 10-3 and 10-5 photon/tunneling 

electron [3,81]) using theoretical models. The underlying inelastic currents make only a very 

small contribution to the total tunneling current and are therefore difficult to detect. The 

photon yield also depends on the degree of coupling between the two mechanisms mentioned 

above to radiative processes, which are governed by the dielectric properties of the tip and 

sample materials. Whereas IET is predominant in metal-metal junctions where excitations of 

the free-electron gas take place, HE decays are found to be responsible for light emission 

from semiconductor and oxide surfaces as well as from single molecules [3].  

 

 

III.2.  Tip-metal junction 

III.2.1.  Tip-induced plasmons (TIP) 

A basic understanding of the photon emission from STM measurements on a metal 

surface could be derived from theoretical models developed mainly by Johansson et al. 

[81,82]. In these models, the presence of a metallic tip in close vicinity of a metal surface 

results in a strong electromagnetic coupling between the free electron gases in the tip and the 

sample across the STM junction. This coupling influences the tunneling of electrons and gives 

rise to an inelastic current, which interacts and excites collective-electronic modes (plasmons) 

in both sides of the cavity. This phenomenon is called Tip-Induced Plasmon (TIP). The 

plasmon generated in such inelastic tunnel processes can then decay radiatively. 

The total radiated power (intensity of photon emission) per unit solid angle Ω and unit 

photon energy is defined as [81]: 
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and ε0 and c are the dielectric function and the light velocity in vacuum, respectively. 

 

Equation (1.22) [81,82] describes the radiated electric field Eif (r,ω) at position r and 

angle θ of the detector (figure 1.9). It is derived from two contributions: (i) The inelastic 
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current due to electronic transitions from an initial state | i 〉 in the tip with energy Ei and wave 

function iψ  to a final state in the sample | f 〉 with energy Ef and wave function fψ . (ii) The 

field enhancement factor G(θ,r´,ω) which describes the strength of the tip-sample 

electromagnetic coupling. 

 

 

 

Figure 1.9: Geometric representation of a STM junction. εtip, εsample, are the tip and sample dielectric 
functions. The shape of the tip here is described by its aperture given by the angle φ and the curvature 
of its apex given by the ratio b/d. Jif and Eif denote the current density and the radiated electric field at 

position r and angle θ, respectively [82]. 

 
 
 

The tunneling current density Jif(r´,ω) is defined by the equation [81]: 
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with ź  being the point where the inelastic process occurs [82].  
 

The enhancement function G(θ,r´,ω) depends strongly on the dielectric functions of the 

tip and the sample and on the geometry of the junction. The energy dependence of G is 

obtained by solving Laplace’s equation for the electrostatic potentials induced at the tip and 

the sample surfaces using the appropriate boundary conditions [81,82].  

 



Theoretical Considerations 
 

 

22 

 

Figure 1.10a presents the calculated enhancement factor G for a junction, which consists 

of an iridium tip and a silver sample for different tip radii. The Ir tip is modeled by a sphere 

[81]. It is shown that the factor G increases for bigger tip radii. This is attributed to the 

increase of the polarizability of the cavity. The drop in the enhancement just above 3.5eV 

reveals the decoupling of the tip and sample electron gases. At this energy, where the real part 

of the dielectric function of silver is equal to -2, the condition for the plasmon resonance in an 

Ag sphere is reached in the quasi-static regime (sect. III.2.3) [12]. In other words, the Ir 

sphere decouples from the Ag sample surface, and the coherent collective electronic 

excitations in the cavity vanish. This fact demonstrates the predominant influence of the Ag 

sample on G, since ε1 = -2 for Ir is reached at around 6eV. In general, the structure of G is 

dominated by the complex dielectric function ε of the material with smaller imaginary part 

(lower damping), which is usually the case for the noble metals [3]. 
 
 

 
Figure 1.10: Photon emission characteristics for an Ir tip–Ag sample junction as calculated in [81] 

where the tip is modeled by a sphere. Emission angle θ  is 45°. (a) The absolute value of field 
enhancement factor G just below the Ir tip for different tip radii. (b) Differential radiated power for 

various sample bias. Tip radius 300Å, tunneling current I = 300nA. 

 

 

From figure 1.10b, which depicts calculated emission spectra for different sample bias Us, 

one remarks that the spectral distribution reproduces the behavior of G in this energy range. 

Note that the maximum energy of emitted photons is limited by the energy of the highest 

initial state of electrons in the tip above the EF of the sample, and therefore by eUs. The 

emitted light encloses, however, all possible radiative transitions between energy levels in the 

window range given by Ei = EF + eUs and Ef = EF (equation (1.21)). The fast increase of the 

light intensity when Us is between 1.5V and 3.5V (figure 1.10b) is explained by the increasing 
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number of decay channels involving transitions at around 2.5eV where G has a maximum. For 

Us higher than 4V, the intensity decreases again because the tip-sample distance enlarges in 

order to keep a constant tunneling current. This reduces the electromagnetic coupling across 

the junction and therefore reduces G, which roughly follows the inverse of tip-sample 

distance [81].  
 

In conclusion, the photon emission from metal-metal junctions involving TIP is mainly 

governed by three factors: First, the density of states of tip and sample determining the 

inelastic tunneling current, second, the dielectric function of tip and sample materials 

providing the field enhancement, and third, the geometry of the junction where the tip shape is 

the decisive factor. 

From the third point, it becomes apparent that including more details on the tip shape in 

the calculations leads to a better estimation of the radiation characteristics of an STM cavity. 

In reference [82], the authors use the boundary charge method, which calculates induced 

charge density at the interfaces, and describe the tip shape with a hyperbolic geometry (figure 

1.9). Hence, more information about the tip influence is accessible. The aperture of the tip is 

found to control the overall shape of the emission spectrum, while the curvature of the apex 

affects the intensity. Based on the simulation of the electromagnetic coupling within a tip-

metal junction, experimental investigations are well reproduced for different tip and sample 

material [3,83], and different tip shapes including even multiple tips [84,85]. Also, the local 

electronic structure related to a distinct sample topography and the different chemical 

composition of the sample surface is found to be responsible for the emission behavior, as 

seen in atomically resolved photon emission measurements [3,79,80]. Besides, the large field 

enhancement associated with TIP is exploited to considerably enhance the Raman signal from 

supported molecules on metal substrates in Tip-Enhanced Raman Spectroscopy (TERS) 

experiments [10]. 

TIPs are also observed when the sample bias exceeds the sample work function [86]. The 

TIP-induced photon emission in this bias regime is mediated by the field emission resonances 

(FERs) (sect. II.3) between the tip and sample surface, see figure 1.11.  

Finally, it should be mentioned that light emission from flat metal junctions can have 

other sources than the TIP. A good example are the radiative electron transitions between 

quantum well states formed in a metal thin film [87]. 
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Figure 1.11: (a) Differential conductance and (b) intensity of photons with 2.1eV energy measured as 

a function of sample bias for a W-Cu(111) tunnel contact. FERs positions and maxima in photon 
intensities are offset by ~2.1eV. (c) Energy diagram depicting inelastic tunneling involving TIP 

radiation mediated by FERs. The final state Ef in the IET process is a FER state [86]. 

 

 

 

 

III.2.2.  Tip-metal particle junction 

 

Persson and Baratoff [88] compared possible mechanisms for light emission in the STM 

by estimating the probabilities of competing radiative and non-radiative processes involving a 

metal particle in the junction. Two major mechanisms between the tip and the metal particle 

are taken into account, namely, inelastic tunneling and hot-electron decay. Both mechanisms 

have certain probabilities to excite either dipolar plasmons or electron-hole pairs. In addition, 

plasmon has two ways to decay, namely radiative decay and creation of an electron-hole pair. 

The calculated probabilities for each of theses processes are summarized in figure 1.12. Even 

though, this model does not describe the spectral and the angular distributions of the emitted 

light in a realistic manner, and does not consider an eventual electromagnetic coupling 

between tip and sample, like in the case of TIP, the estimated photon emission yield is in 

reasonable agreement with experimental photon yield for Ag granular films [3,88]. Whereby, 

the model considers a large dominance of plasmon decays in the emitted radiations. 
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Nevertheless, in other works [6,89], the presence of the tip strongly influences the 

plasmon resonance in the metal particles. This fact is attributed to the increased particle 

polarizability caused by the coupling with the free-electron gas of the tip in close vicinity. 

 

 

 

 
Figure 1.12: Picture presenting branching probabilities for processes involving excitation of dipolar 
plasmons and electron-hole pairs via (a) inelastic tunneling or (b) hot electron decay. The probability 

of radiative decay is indicated by the letter P. The dependence of the various probabilities on the 
particle radius R is shown in addition. The plasmon frequency is designated by Ω. Radiative and non-

radiative decay of the plasmon are schematically represented by dotted and dot-dashed lines, 
respectively. The relatively high probability of inelastic tunneling process results from the large 

magnitude of the dipole moment associated with plasmon that facilitates dipolar excitations [88]. 
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III.2.3.  Plasmons in metal particles 

Metal nanoparticles exhibit special optical properties compared to the one of the bulk. 

These properties originate from collective oscillations of conduction electrons inside the 

particle, the so-called Mie plasmons [12]. Depending on the particle size, two regimes of the 

particle interaction with electromagnetic waves are defined. The quasi-static regime, which is 

of interest in this study, is defined by the condition that the excitation wavelength is much 

smaller than the particle radius (λ/2 >> R). In this case, the particle responds to a 

homogeneous polarization of its volume during excitation. The particle experiences only the 

time dependence of the field but not the spatial one. The plasmon mode excited at this 

condition has a dipolar character. In the regime where λ/2 ≤ R, the modulation of the 

electromagnetic fields occur within the particle. This results in multipolar polarization and 

retardation effects of the electromagnetic fields and leads to the excitation of higher plasmon 

modes [12].  

The optical response of small metal particles in the quasi-static regime is well described 

by the Mie Theory [90,12]. It provides an accurate description of the optical extinction 

spectra of a single sphere of arbitrary material. The theory gives a complete solution of the 

Maxwell’s equations with appropriate boundary conditions, taking into account the size and 

shape of the particle, its dielectric function ε(ω) as well as the one of the embedding medium 

εm.  

For the simplest case of a spherical particle with radius R, the polarizability is defined as 

[12]: 

m
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where αst is the classical static polarizability of a metal sphere: 

3
04 Rcl πεα =  (1.25)

The optical extinction cross section ϑext for metal particles in the quasi-static regime can 

be related to their polarizability via [11]: 

{ } 2
4

6
Im απαϑ k

kext +=  (1.26)

where k is the wave vector (k = 2π/λ), Im{α} and |α|2 denote the imaginary part and the 

square modulus of α, respectively.  
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The first term of equation (1.26) is related to light absorption (it describes electron energy 

losses, such as in EELS measurements, as well [12]). The second term describes losses due to 

scattering. The dipolar Mie plasmon is associated with the electromagnetic frequency at 

which the strongest absorption loss is observed, i.e., when ε/εm = -2 [12]. ε(ω) is a complex 

function and primarily only εreal is considered for the resonance condition of the Mie plasmon. 

The isotropic polarizability of a spherical particle (equation (1.24)) results in a single 

optical absorption peak, which expresses the three-fold degeneracy of the corresponding Mie 

mode. However, in certain cases, the particle looses its isotropic behavior and the degeneracy 

is lifted. A supported spherical particle on a substrate is a good illustration of such a behavior 

(figure 1.13). The Van der Waals-like coupling between the polarized sphere and its induced 

image dipoles in the substrate induces an anisotropy of the polarizability. Along the z axis, the 

coupling is different from the one in the (x,y) plane. While the dipole-dipole interaction 

parallel to the substrate plane is destructive, it is constructive along the z axis (figure 1.13a). 

Thus, such a coupling reduces the polarizability of the particle parallel to the substrate plane 

and increases the perpendicular one. This results in two different Mie plasmon modes where 

the in-plane mode is two fold degenerate. These two plasmon modes are defined as (1,0) and 

(1,1) modes according to (L,m) description, where L is the order of multipoles (L = 1 for 

dipole modes). There are L +1 eigenmodes distinguished by the value of m [12]. The (1,0) and 

(1,1) are ascribed as vertical and planar modes, respectively. An approximate idea on the 

inverse relationship between the plasmon resonance ωp and the particle polarizability can be 

obtained from the simplified equation (1.27) [12].  

cle
p m

Ne

αω 2
2 =  (1.27)

where N denotes the total number of conduction electrons in the sphere and me is the electron 

mass. 

 

Thus, according to equation (1.27), the (1,0) and (1,1) modes in a supported particle are red- 

and blue shifted with respect to the fundamental Mie plasmon of an isolated sphere, 

respectively (figure 1.13b).  
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Figure 1.13: (a) Representation of the interaction between (1,0) and (1,1) dipole modes and their 

induced image dipoles in the substrate (dotted arrow). Whereas the interaction strengthens the (1,0) 
mode which increases the polarizability, it weakens the (1,1) mode resulting in smaller polarizability.  
Field lines for both dipole modes are drawn with weaker lines. (b) Optical absorption cross section 
plotted for an isolated and a supported spherical particle with arbitrary radius showing the red- and 
the blue-shift of (1,0) and (1,1) modes due to the presence of substrate. To emphasize the degeneracy 

of plasmon modes, artificial absorption amplitudes are drawn.  
 
 

However, in most cases, the substrate provokes particle-wetting effects, which give rise to 

complex particle shapes. To estimate the resulting changes in polarizability, the particle is 

considered to have an ellipsoidal or truncated ellipsoidal shape (oblate/prolate) [91]. The 

extracted polarizability for an ellipsoidal particle along its principal axes (i= a,b,c) is 

described by [12]: 

 

( )( ) particle
imm

m
i V

L][0 εωεε
εωεεα −+

−=  (1.28)

V is the particle volume, V=(4π/3)abc. The depolarization factor Li is determined by the 

particle shape, where ∑Li = 1. The depolarization factors of a sphere are identical (La = Lb = 

Lc = 1/3).  

 

As seen from equation (1.28), the response to an incoming electromagnetic wave is 

strongly dependent on the angle formed between the polarization vector of the wave and the 

principal axes i. The aspect ratio2 (c/a, where a = b > c, or a = b < c for an oblate or a prolate 

                                                 
2 In the literature, the aspect ratio is defined either as c/a or as the reverse quantity a/c. 
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shape, respectively) characterizes the polarizability of diverse particles with different shapes. 

This fact is related to the dependence of the depolarization factor along the principal axes on 

the aspect ratio [92]. For instance, a decrease of the aspect ratio when going from a sphere to 

an oblate particle leads to the increase of Lc and the decrease of La and Lb. Thus, the (1,0) and 

the (1,1) plasmon modes of such a particle are blue- and red-shifted compared to the mode of 

a sphere (figure 1.14). This mode shift follows the same direction with a further decrease of 

the aspect ratio. Note that the mode-shifts induced by the image-dipole coupling with the 

support and by the aspect ratio decrease are in opposite directions. 

 

 
Figure 1.14: Strength of the (1,0) and (1,1) dipoles in an oblate particle compared to those of a 

spherical particle with identical volume (dotted lines). The decrease of the aspect ratio c/a induces a 
variation of the particle polarizability. The polarizability increases along the particle principle axes a 

and b, and decreases along the c axis. This results in the blue- and the red-shift of the (1,0) and the 
(1,1) modes, respectively. 

 

Furthermore, when a spherical particle is present in an ensemble of particles, additional 

effects on the plasmon positions are observed. These effects originate from the interparticle 

dipole-dipole interaction, which strongly depends on the interparticle distance. As shown in 

figure 1.15, coupling along and normal to a chain of particles gives rise to two different 

polarizabilities. The polarizability increases along the particle-connection line and decreases 

perpendicular to it. Such a coupling results in two energetically different (1,0) and (1,1) 

plasmon modes [12].  

In general, in order to interpret the observed optical behavior of a particle ensemble all 

the different interaction mechanisms cited above have to be taken into account in addition to a 

realistic description of the particle shape. Furthermore, the effects induced by the spatial 

distribution of particles as well as the properties of the surrounding medium have to be 

considered. To fulfill this purpose, several models, such as the Maxwell-Garnett model, have 

been already established enabling rather good interpretation of the optical behavior of the real 

systems [11,12]. 
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Figure 1.15: Illustration of the two different dipolar couplings in a chain of particles. While the (1,0) 

experience destructive coupling (a), the interaction along the chain is constructive (b). The white 
dotted arrow represents the dipole strength for the isolated particle. The resulting total polarizabilities 

lead to a shift of the (1,0) mode to higher energy and of the (1,1) mode to lower energy. 
 

 

 

 

III.3.  Tip–bandgap material junctions 

 

Light emission is also observed for materials without pronounced plasmon modes. STM-

induced luminescence from bandgap materials is mainly attributed to intrinsic electronic 

transitions involving interband and excitonic recombinations in the sample. While in case of 

tip-induced plasmons the photon emission takes place in the region of the tip-metal junction, 

the luminescence from tip-semiconductor configuration relates to intrinsic properties of the 

sample and no dominant influence of the STM tip is revealed [3,93]. The relevant 

mechanisms for STM-induced luminescence from semiconducting surfaces are schematically 

summarized in figure 1.16. They can be organized in five categories, which depend primarily 

on the polarity of the applied bias and its value with respect to the band-edges and the Fermi 

level position within the bandgap of the sample. In the first category (figure 1.16a), a fraction 

of tunneling electrons with energies slightly exceeding the conduction band-edge recombine, 

ones in the sample, with holes in the vicinity of the valence band-edge. The recombination 

results in light emission with photon energies corresponding to the substrate bandgap [3,94]. 

In the second category, photons are emitted at tip voltages equal or larger than the threshold 

energy for electron-hole pair creation. This energy can be estimated using the 3(Ec-Ev)/2 rule, 

which implies that the energy needed to create an electron-hole pair by impact ionization is 

1.5 times higher than the size of the bandgap [95]. The mechanism of this category is a two-

step process (figure 1.16b). The hot electron injected from the tip creates an electron-hole pair 
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by impact ionization. The pair relaxes by giving rise to band-edge luminescence before the 

hole recombines with another electron in the valence band [96]. If the injected electron energy 

is twice the threshold energy, the probability to get the same luminescence is multiplied by 

two, i.e., every tip electron can stimulate two electron-hole pairs simultaneously in the sample 

material [96].  

 

 

 
Figure 1.16: Band diagrams and mechanisms for tunneling-induced luminescence in several band-
gap materials. (a) GaAs: A tunneling electron from the tip to the conduction band-edge recombines 

radiatively with an existing hole at the valence band-edge (near the Fermi level) [94]. (b) CdS: When 
an injected electron from the tip to the sample carries enough energy, it can create by impact 

ionization an electron-hole pair across the bandgap, which then relaxes by emitting a photon [96]. (c) 
CdS: At positively biased tip, light can be emitted via the recombination of an electron from the 

conduction band-edge (near the Fermi level) with the hole left by an electron that has tunneled to the 
tip [96]. (d) p-Si or n-Si: Hot electrons 1 and 2 are injected from the tip. Electron 1 undergoes an 
Auger transition creating and electron 1' and a hole 1'p. Electron 2 radiatively recombines with 1'p 

which may have drifted to the accumulation zone [93]. (e) p-Si: At negatively biased tip, Zener 
tunneling of electrons 1 and 2 occurs. Electron 1 undergoes an Auger transition creating and electron 
1' and a hole 1'p. Electron 2 radiatively recombines with 1'p or with a hot hole 3p tunneled from the tip 

(dotted arrow) [93]. The figures were adapted from the sited references. 
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The light emission in the third category occurs when the tip bias is lower than the valence 

band-edge of a semiconductor having the Fermi level near the conduction band-edge (figure 

1.16c). In other words, the emission process takes place when the absolute value of the tip 

bias V is approximately equal to (Ec-Ev)/e. Here, holes are created by electron tunneling from 

the valence band of the sample to the tip. Electrons from the Fermi level can then recombine 

with the created holes leading to photon emission [96]. 

The two remaining categories are characterized by the formation of the electron-hole 

pairs via an Auger-like excitation. The radiative recombination involves more electrons and 

holes than in the previous categories [93]. Figure 1.16d describes the mechanism where 

electrons injected from the negatively biased tip have energies high enough to induce Auger 

ionization processes. The hole resulting from this process recombines radiatively with a 

second injected electron from the tip. Finally, the mechanism depicted in figure 1.16e 

concerns only p-doped semiconductors. For a positively biased tip, the energy bands of such 

semiconductors are strongly bend. As a consequence, the Zener effect or tunneling of 

electrons from the valence band to the conduction band becomes possible. Ones in the 

conduction band, these electrons gain energy when moving towards the junction. A hole can 

be created when one of the energetic electrons undergoes an Auger transition. A second Zener 

electron can then recombine radiatively with the created hole. Besides, light emission can 

alternatively be generated by the recombination of a Zener-tunneling electron with a hole, 

which has tunneled from the tip (figure 1.16e) [93]. In the fourth and the fifth categories, 

figure 1.16d and 1.16e, respectively, the radiative processes involve a set of electron 

transitions leading to high-energy light emission in the ultraviolet range [93]. 

 

In other photon emission processes from semiconducting surfaces, the STM tip is found 

to be implicated. For example, at certain operation conditions, different than those for 

luminescence excitations, the decay of localized plasmons excited below the tip is found to be 

responsible for the detected light from Si(111)-(7×7) reconstructed surface [97]. In other 

experiments, the emission of linear polarized light from a STM junction made of a tungsten 

tip and a Si(100) surface is observed. The light is emitted via direct electron transition 

between tip states and localized states of the sample in an inelastic manner. [98,99].  

All the mechanisms described above can, in principle, apply for STM tip–oxide junctions, 

where particularly electron-hole pairs (excitons) could play an important role for the observed 

optical activity (see chap. 4, sect. III.3). 
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Chapter 2 
 

2. Experimental Setup 

 

I. The UHV system 

The UHV system of the Photon-STM consists of two chambers, the preparation chamber 

and the STM analysis chamber. The two chambers are separated by a gate valve (figure 2.1).  

 

II.  The preparation chamber 

In the preparation chamber, all tools to manipulate and clean the sample are available. A 

vacuum of ~5x10-10 mbar is ensured by a turbo-molecular pump (pumping speed 150 liter/s). 

The sample surface can be cleaned by argon-ion sputtering and annealing cycles, and/or by 

flashing to high temperatures. Since all parts in the high temperature heating stage are made 

from molybdenum, the sample can be flashed to temperatures as high as 2500K. The heating 

is realized by electron bombardment: The sample is held at a high bias (from 100 V to 2000 

V) and a tungsten filament, heated by a current of ~1.5A to stimulate thermal electron 

emission is placed near to its backside. The quality of the sample surface in terms of cleanness 

and long-range order of the crystal structure is checked by means of Low Energy Electron 

Diffraction (LEED). There are several additional facilities in the preparation chamber to 

control the sample properties. For film deposition, two electron beam evaporators are 

available as well as leak valves to introduce reactive gases. Thus, different compound 

materials with varying stoichiometries can be prepared. The thickness of deposited films is 

controlled via evaporation rate and exposure time. Sample preparations at temperatures 

between 100K and 600K can be performed when the sample is located on the copper head of 

the manipulator. This temperature range is reached either by liquid nitrogen cooling or 

heating with a tungsten filament. The temperature is measured by a chromel (NiCr 

alloy)/alumel (NiAl alloy) thermocouple (Type K). For higher temperature preparations, the 

sample is put in the high temperature heating stage. Temperature measurements in this stage 

are done with a pyrometer. To allow the preparation and the analysis of different samples 

without breaking the vacuum, a sample garage able to store at maximum five samples is 

available.  
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Figure 2.1: Schematic representation of the experimental setup 
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III.  The photon-STM chamber 

This chamber contains the STM head and the optical detection system. 

III.1.  The Microscope 

The STM head is realized as a Besocke or beetle-type STM [100]. It consists of four 

piezo-ceramic tubes. Three piezos are responsible to (i) carry the sample and its molybdenum 

holder, (ii) to approach and withdraw the sample from the STM tip, and (iii) for the lateral XY 

motion. The fourth piezotube carries the tip. The motion of this piezo is restricted to the Z 

direction. As depicted in figure 2.1, the Z piezo is placed in the center, and, the three outer 

piezos form an equilateral triangle around the central one. The tip–sample approach and 

withdrawal is realized by turning the sample plate via a coordinated motion of the three outer 

piezos. Three ramps on the lower side of the sample plate transfer the turning into a linear 

motion and the tip–sample distance decreases or increases depending on the turning direction 

(figure 2.1). The electric contact to the sample is made through stainless steel balls (radius = 

1mm) located at the top side of the outer piezos. To avoid contact with the inner electrode of 

the piezos, a circular sapphire disk is put between the balls and the piezos. Only one ball is 

connected through the piezo-tubes to the sample bias output of the STM electronics. The two 

other balls are disconnected. The isolation of the STM from acoustic and mechanical 

vibrations is based on (i) a spring suspension coupled with an eddy-current damping system 

and (ii) a rigid STM head built on a heavy base plate (~1kg). This vibrational isolation system 

is sufficient to achieve high stability during STM measurements [30]. The reduction of the 

electronic noise is achieved by a good electric shielding of all STM connections as well as all 

electronic control devices, and by avoiding electrical ground loops. 

The STM head can be cooled down to ~100K via a liquid-nitrogen flow-cryostat, which 

surrounds the whole microscope. The temperature is measured with a Pt100 sensor. The 

working pressure in the Photon STM chamber is in average below 2x10-10mbar.  

The STM images are recorded and treated using the WSxM software [101]. 
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III.2.  The optical system 

The ability to tune the tip-sample distance in this STM setup allows two modes of light 

excitation in the sample: (1) The tunneling mode, where relatively normal tunneling 

conditions (voltages up to 10V and currents below 5nA) are used to induce photon emission 

from local surface regions (1×1nm2). (2) The field-emission mode, where the tip-sample 

distance is enlarged to some hundred nanometers and a bias ranging from 25V to 250V is 

applied to the tip to adjust a current of around 1nA. The field-emitted electrons bombard the 

sample with high energy inducing a number of phenomena, among them, characteristic 

radiative excitations of the sample. Depending on the tip-sample distance, the information 

obtained in this second mode results from a larger excitation area (up to 1×1μm2). 

To collect the emitted photons from the tip-sample junction, the STM head is surrounded 

by a parabolic mirror (mirror I), with the tip–sample junction adjusted in the focal point. 

Mirror I directs the emitted light to a second parabolic mirror (mirror II) outside of the UHV 

chamber through a quartz window. The light is then focused on either a spectrograph coupled 

with a liquid-nitrogen-cooled charge-coupled device (CCD), or, on a photomultiplier tube. All 

emitted photons in a solid angle of ~3sr, delimited by emission angles between 0° and 60° 

with respect to the sample surface, are collected. Mirror I is made of an AlMg3 compound, 

which has a very low thermal expansion coefficient, coated with an aluminum film. The 

optical reflectivity of the Al coating varies from 85% near the UV region to 92% in the visible 

region [102]. The spectrograph (PI/Acton SP-2156) is a grating dispersion device. Two 

gratings with 150 grooves/mm each and blazed at 300nm and 500nm can be used. The CCD 

chip (PI/Acton Spec-10:100) is characterized by a resolution of 1340x100 pixel, with a pixel 

size of 20x20μm2. The sensitivity throughout the optical system covers the wavelength range 

between 200nm to 1000nm (1.2eV to 6eV). The sensitivity curves of the optical system are 

shown in figure 2.2. The photomultiplier tube is a side-on type (Hamamatsu R2949). It covers 

the spectral window between 185nm and 900nm with a maximum response at 400nm. Its 

sensing area is a multialkali photocathode of 8×6mm2 size. The amplification system is based 

on a circular arrangement of 9 dynodes resulting in a gain of 107. The R2949 is characterized 

by a low dark current (2nA) and an ultra-fast response (2.2ns).  
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Figure 2.2: Measured sensitivity curves of the optical system of the photon-STM for the two different 

gratings in the spectrograph 

 

 

 

IV.  Upgrade of the experimental setup 

The Photon-STM chamber used for my experiments was built by Dr. Niklas Nilius during 

his PhD work (2001) [102]. During my PhD (2004-2008), several improvements have been 

made on the experimental setup, such as: 

 

• Completion of the optical detection system with a photomultiplier, which allows 

photon detection simultaneously with topographic scanning with high sensitivity 

(Photon-mapping) (see figure 2.3). For this purpose, the sample is scanned with 

reduced speed (~20nm/s) and enabled feedback loop and the photo-multiplier signal is 

detected at each pixel of the STM image. To increase the signal to noise ratio, the 

photon signal is low-pass filtered with a time constant of 10ms before read into the 

STM controller.  

Furthermore, it is possible to conduct two complementary measurements from the 

same surface area by just turning the mirror II and switch from the spectrograph to the 
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photomultiplier. Such combined measurements allow optical spectroscopy and spatial 

localization of the optical sources on the surface via photon-mapping.  

• Operating the liquid-nitrogen cooling system of the STM head in a continuous manner 

to enable standard STM measurements at ~100K.  

• Improvement of the vibrational isolation system of the STM by adding an eddy-

current damping system to the previous spring suspension,  

• Construction of a high temperature heating stage to prepare samples out of refractory 

metals,  

• Improvement of the protection of the optical system against external shay light,  

• Construction of a simple electronic device to control the sample bias and generate 

voltage pulses to prepare the STM tip in a more controlled way. 
 

 
 

 

 
Figure 2.3: First combined imaging/photon-mapping measurements performed with the photon-STM. 
On the left side, STM topography image of supported silver particles on a thin alumina film; on the 

right side, the corresponding photonmap recorded simultaneously. Image size 50×50nm2.  
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Chapter 3  
 

3. Geometry Effects on Optical Properties of Ag 

Nanoparticles 

 
 

I. Introduction 

Metal nanoparticles can be prepared by several techniques [11]. The choice of a suitable 

preparation method is often crucial for the fabrication of ensembles with well-defined 

properties. In order to accomplish a detailed investigation of the influence of particle shape, 

density, and lateral arrangement on the optical behavior, supported silver nanoparticle 

ensembles have been prepared using two different techniques: (i) Vapor deposition of Ag on 

an alumina film grown on NiAl(110), and (ii) chemical synthesis of Ag nanoparticles 

followed by a deposition on HOPG. The vapor deposition has the advantage that it enables a 

good control of the shape, size, and density of the particle ensembles, but the disadvantage 

that preparation of ensembles with regular particle arrangements and small size distribution is 

difficult. On the other hand, the rather new concept of making metal particles in a colloidal 

solution, successfully enabled the formation of a large regular network of particles. In fact, 

Professor Pileni from the University of Paris has first demonstrated the possibility to self-

assemble colloids into ordered 2D and 3D particle structures [103,104]. However, the inter-

particle distance is hardly tunable in this approach and requires the recourse to polymer 

substrates to be controlled [105]. Furthermore, the optical properties are altered by the ligand 

shells around the particles compared to pure particles prepared by vapor deposition. 

Nevertheless, a reliable comparison between results from particle ensembles prepared by the 

two approaches can be made.  

Our study on density effects on the optical properties covers Ag particle densities ranging 

between 0.5×1011cm-2 and 11×1011cm-2, while keeping the particle shape and size relatively 

constant. The dependence of the electromagnetic coupling in ensembles with either round or 

flat particles on the interparticle distance is investigated. Besides, the influence of the long-

range order on the optical properties of dense ensembles of spherical Ag particles is explored 

as well. The combination of scanning tunneling microscopy and photon emission 

spectroscopy, as possible with the Photon-STM, was particularly suited for simultaneous 

topographic and optical characterization of the particle ensembles. 
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II.  Shape and density effects 

II.1.  Particle support: The alumina film  

As support material for the bare Ag particle, a well-ordered alumina film has been used. 

The alumina film is formed by oxidizing the surface of a clean NiAl(110) crystal following 

the recipe given in [106]: Prior to film growth, the NiAl surface is cleaned by 

sputtering/annealing cycles, and its quality is checked by means of LEED. The NiAl(110) 

surface is then exposed to 1200 Langmuir of O2 at a temperature of 550K, and annealed at 

1000K for 5min. This simple procedure results in a well-ordered and atomically flat alumina 

film with a thickness of ~5Å. Due to the two fold symmetry of the NiAl(110) surface, the film 

grows in two domains (A and B) rotated by 48° against each other and by ±24° with respect to 

the [ 011 ] direction of the support. Hence, two kinds of defect lines are observed on the 

surface of an alumina film: (i) Anti-phase domain boundary (APDB) between identical 

domains, and (ii) reflection domain boundaries (RDB), which separates domains with 

different orientation, as shown in figure 3.1. The exact stoichiometry of the alumina film is 

not Al2O3 but rather Al10O13 [107]. 
 
 

 
Figure 3.1: 80×80nm2 STM topographic image of an alumina film grown on a NiAl(110) surface 
[ 108]. On the image, two domains tilted by 48° against each other can be distinguished from the 

direction of the characteristic line structure. The arrows indicate reflection domain boundaries (RDB) 
and anti-phase domain boundaries (APDB). 
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The anti-phase domain boundaries have a well ordered atomic structure, resulting from 

the insertion of a row of O and Al atoms in the topmost layer between two neighboring unit 

cells of the alumina film. The row is inserted either along the short principal vector or along 

the diagonal of the alumina unit cell. This causes the formation of straight or zigzagged 

boundaries, respectively [109]. The APDB appear bright in the STM topographic images 

(figure 3.1) at positive sample bias. This bright appearance of the APDB is caused by the 

existence of defect-induced energy states in the bandgap, which originate from a deviation of 

the film stoichiometry along these defect lines [110]. 

 

II.2.  Ag particle deposition on the alumina film 

II.2.1. Experimental aspect 

The Ag particles were deposited on the alumina film by thermal sublimation of pure 

silver (99.95%) using an electron beam evaporator available in the preparation chamber 

(chap. 2, sect. II). During the evaporation process of silver, only neutral Ag atoms are created 

since its sublimation energy (~280 kJ/mol) is much lower than the ionization energy (~731 

kJ/mol). However, in order to monitor the outgoing atomic flux, a fraction of Ag+ ions is 

artificially created inside the evaporator by intersecting the Ag flux with energetic electrons. 

Based on our own measurements, the atomic flux arriving at the sample surface contains 

~99.5% neutral Ag atoms plus ~0.5% of Ag+ ions. The Ag coverage was calibrated by dosing 

Ag on clean NiAl(110), where it grows in a layer-by-layer fashion and the amount of 

deposited Ag can be directly estimated from STM images. 

A typical STM topographic image after Ag deposition is shown in figure 3.2. As reported 

previously [6], Ag particles are inhomogeneously distributed on the alumina surface and 

mainly nucleate at defect lines leaving the rest of the surface almost uncovered. This results in 

a high local particle density and the formation of particle chains decorating the defect lines.  
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Figure 3.2: 200×200nm2 STM topographic image of Ag particles supported on Al10O13/NiAl(110). The 
typical defect lines present in the alumina film act as nucleation sites for Ag particles (inhomogeneous 

nucleation). 

 

 

  

II.2.2. Control of particle shape 

The shape of a supported metal nanoparticle on an oxide surface depends on the 

thermodynamic growth mode of the metal on this particular surface. The different growth 

modes are governed by the surface free energies of the oxide support γo, the metal γm, and the 

metal-support interface γi, and can be differentiated into the Volmer-Weber mode (3D 

aggregates) and the Frank van-der Merwe mode (2D, layer by layer growth). Whereas the 

metal grows into 3D aggregates for γi +  γm > γo, 2D growth occurs if γi +  γm ≤ γo [43,111]. 

Silver growth on the alumina follows the 3D growth mode, as its surface free energy is higher 

than the one of the oxide, and as its adhesion to the alumina surface is low [112]. Using the 

Young-Dupré equation  

 

)cos1( θγ += madhE  (3.1)

which connects the adhesion energy Eadh of the metal to the support to γm [43,111], an 

evaluation of the contact angle θ of an Ag particle on Al2O3 can be made (figure 3.3). With 
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Eadh of Ag/Al2O3 equal to 323×10-3 J/m2 and γAg between 814×10-3 J/m2 and 926×10-3 J/m2 

[112], the calculated θ has a value of ~127°, which is compatible with the formation of rather 

dome-like aggregates with a large height to diameter ratio. The prediction is verified by the 

experimental results, for instance, by topographic STM images [6]. The value of γAlumina is in 

the range 650-925×10-3 J/m2 [112], and therefore usually lower than those of metal surfaces. 

 

 

 

Figure 3.3: Schematic representation of a metal particle on a flat surface. γo , γm , and γi represent 
surface free energies of the support, the metal, and the metal-support interface, respectively.θ is the 

contact angle. 

 

 

Apart from dome-shaped Ag particles, Ag particles with a disk-like shape are prepared 

under defined deposition parameters. In this experiment, the shape of deposited Ag particles is 

controlled via the sample potential (Vs) with respect to the potential of the Ag crucible in the 

evaporator (Vc). It was found that when Vs is equal to Vc, dome-like particles are formed, 

whereas at a negative Vs potential with respect to Vc the formation of disk-like particles is 

observed. Figures 3.4a and 3.4b show a dome-like and a disk-like Ag particles deposited on 

Al 10O13/NiAl(110), respectively. Here, the two types of particle shape were prepared 

following the same deposition procedure except for the Vs. For the dome-like preparation Vsc 

was set to 0V (Vsc = Vs - Vc), and for the disk-like ones Vsc was -800V. The height profiles of 

the two particles presented in figure 3.4c clearly demonstrate the shape difference. 
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Figure 3.4: 25×25nm2 STM topographic images of (a) a dome-like and (b) a disk-like Ag particles on 
alumina film on NiAl(110). (c) Corresponding height profiles of both particles. The measured widths 

are not corrected for tip convolution effect. 

 

The dependence of particle shape on the bias difference Vs is rationalized as follows: At 

Vsc = 0V, the Ag+ ions land on the alumina surface only with their thermal energy, as the 

neutral Ag atoms, and have no obvious effect on the growth of the Ag particles. At Vsc = -

800V, the positive ions are accelerated towards the support and hit the sample with high 

energy. The impact of ions has two effects which lead to the formation of disk-like particles: 

(1) Local destruction of the alumina surface structure inducing new nucleation sites with a 

larger Ag–Al10O13 adhesion energy [113]; (2) creation of holes and structural damage in the 

already existing particles. During the restructuring process of the Ag deposit, the holes are 

filled with material from higher-lying particle regions causing a flattening of the particle.  
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II.2.3. Control of particle density 

 

The second issue in this experiment is to vary the particle density while keep the particle 

size and shape constant. For this purpose, we controlled the particle density by tuning the Ag 

deposition temperature, modifying the density of nucleation sites, and in the support adjusting 

the evaporation flux of Ag. While samples with low particle densities are prepared at 

temperatures of up to 500K, the ones with high densities are obtained by cooling the sample 

to temperatures below 200K. Additionally, new nucleation sites were created via 

bombardment of the oxide surface with energetic Ar+ ions (500eV) prior deposition. Suitable 

combinations of the different deposition parameters allowed a density variation in steps of 

around 1.0×1011cm-2.  

Figure 3.5 shows a set of STM topographic images of Ag particle ensembles supported on 

an Al10O13/NiAl(110) film depicting samples with different particle densities. Whereas 

particles in figures 3.5a to 3.5f have dome-like shapes, those in figures 3.5g to 3.5i are rather 

disk-like. The particle density varies between 1.0×1011cm-2 and 8.0×1011cm-2 in the 

preparations (a) to (f), and between 3.5×1011cm-2 and 10.0×1011cm-2 in (g) to (i). Due to the 

presence of additional nucleation sites by Ag+ ions during the preparation of disk-like 

particles, densities lower than 3.0×1011cm-2 could not be achieved. 

 

From the STM topographic images taken for the different preparations, we made number 

of observations concerning arrangement, shape, and density of the particles. First of all, no 

ordered arrangement of particles is found on the surface. Disk-like particles exhibit large 

[111] top facets, which is the one with the lowest surface energy for Ag (fcc crystal) and the 

crystallographic plane is deduced from the hexagonal Wulff shape of particles (see figure 

3.5g) [43,111,113,114].  
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Figure 3.5: 100×100nm2 STM topographic images of dome-like (a–f) and disk-like (g–i) Ag particles 
on Al10O13 with increasing density. The densit y varies from 1.0×1011 to 8.0×1011 cm-2 and 3.5×1011 to 

10.0×1011 cm-2 for (a) to (f) and (g) to (i) preparations, respectively. 
 (Scanning conditions: Usample = 1V, I = 0.05nA, PtIr tip) 
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The procedure, aiming to keep the density the only varying parameter in all different 

preparations, led to satisfactory results, especially for dome-like particle ensembles. In figure 

3.6, a summary of measured heights and diameters of dome-like and disk-like particles in the 

different preparations is presented. 

 

 
Figure 3.6: Average particle height and diameter for different particle densities. Closed and open 

symbols assign to dome-like and disk-like particle shapes, respectively. The solid lines are guides to 
the eye. Whereas the heights were directly measured from STM topographic images, the diameters 

were derived assuming ellipsoidal particle shape (see the text). 

 

 

Each data point in this figure is an average of approximately 25 single-particle height 

measurements. Since the height, the particle density, and the total Ag coverage are known, the 

diameter could be deduced by assuming an ellipsoidal particle shape. From figure 3.6, the 

dome-like particles have a rather regular size for the different densities, while for the disk-like 

ones, the size distribution is comparatively large. Nevertheless, the particle aspect ratio 

(height/radius) remains relatively constant for the two different shapes over the full density 

range. The dome-like and the disk-like particles are characterized by an aspect ratio of ~0.55 

and ~0.3, respectively. 
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II.3.  Optical properties 

In order to analyze the effect of particle-particle interaction on the optical properties of 

dome-like and disk-like Ag particle ensembles, optical measurements were performed in the 

field-electron-emission regime of the STM (chap. 2, sect. III.2) with the tip bias and the field-

emission current set to -240V and 1nA, respectively. At these conditions, the tip-sample 

distance is adjusted to ~300nm and the field-emitted electrons spread over a surface area of 

about 100.000nm2, i.e., ~6×104 electrons/nm2 impinge on the surface every second. Typical 

photon emission spectra recorded from ensembles of dome-like and disk-like particles with 

different densities are presented in figure 3.7. A pronounced emission line between 330nm 

and 350nm dominates the spectra. This photon emission is attributed to the radiative decay of 

Mie-plasmon in the Ag particles excited by the field-emitted electrons (chap. 1, sect. III.2.3).  

Even though the radiative response has the same origin in dome-like and disk-like 

ensembles, the energy of emitted photons is different. Furthermore, with increasing the 

density of dome-like particles from 0.5×1011 to 10×1011cm-2, the Mie energy shifts from 

3.50eV ± 0.02eV (354 ± 2nm) towards higher energies and reaches 3.66eV ± 0.02eV (338 ± 

2nm) as depicted in figure 3.7a. For disk-like particles, the corresponding plasmon peak is 

around 3.75eV ± 0.02eV (330 ± 2nm), which is higher in energy compared to the dome-like 

ensembles. However, no apparent peak shift is revealed when increasing the particle density 

in this case (figure 3.7b). 
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Figure 3.7: Normalized optical spectra of Ag particles on Al10O13/NiAl(110). The spectra are 

presented as a function of increasing particle density from the top to the bottom, (a) from 0.5×1011 to 
10× 1011 cm-2 for dome-like particles and (b) from 3.5×1011 to 11× 1011 cm-2 for disk-like particles. 
Increasing particle density leads to a blue shift of the characteristic emission line for dome-like 
ensembles, but does not affect the peak position in case of disk-like ensembles. The measurement 

conditions were Utip= -240V, I= 1nA, accumulation time= 60s. 
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The difference in the optical response for the different preparations is better seen in figure 

3.8. The figure describes the evolution of the Mie resonance position for both particle shapes 

as a function of particle density. The indicated energy positions were determined by fitting the 

peak in the optical spectra with a Gaussian curve for all the different preparations.  

 

 

 
 

 
Figure 3.8: Evolution of the energy of the (1,0) plasmon mode as a function of particle density for 

dome-like (closed squares) and disk-like (open squares) Ag particles. The dotted line represents a fit 
with a power low dependence between the energy shift and the interparticle distance d. The shift 

results from the dipole-dipole interaction and is found to be proportional to d-1.8(see text). The fit was 
performed after converting the measured densities to interparticle distances assuming a square 

network of particles. Dashed and dotted lines show the simulated behavior of the plasmon energy with 
density as calculated with the GranFilm program [115]. 
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II.4.  Discussion 

As the mean size and shape of Ag particles were kept approximately constant when 

increasing the particle density, the blue shift of the plasmon energy for dome-like preparations 

is mainly attributed to the electric dipole-dipole interactions, i.e., the coupling between the 

plasmon dipoles in the Ag particles. 

Increasing the particle density is equivalent to a decrease of the inter-particle distance and 

hence a strengthening of the dipole-dipole coupling. The blue shift of the Mie resonance 

observed for dome-like particles results from a destructive dipole-dipole coupling that 

enhances when the dipoles approach each other. This behavior is typical for the interaction 

between the (1,0) Mie modes in neighboring particles (Chap. 1, sect. III.2.3), thus providing a 

clear indication that the measured photon emission in the spectra is due to the radiative decay 

of the (1,0) Mie mode. The latter conclusion is supported by the following observations as 

well: (i) The disk-like particles are characterized by a smaller aspect ratio than the dome-like 

ones. The energy of the (1,0) mode for flatter particles is expected to be higher than for round 

ones (Chap. 1, sect. III.2.3). This is in agreement with the observation in this experiment 

(figure 3.8). (ii) The field-emitted electrons from the tip impinge perpendicular to the 

substrate plane and thus preferentially excite the (1,0) mode. The in-plane oscillations are 

primarily excited by secondary processes, e.g., hot electron thermalization, and the excitation 

cross-section is much lower. (iii) The photon detection system in the experimental setup is 

more sensitive to light emitted from the (1,0) mode, as the corresponding radiative decay 

results in a photon emission parallel to the substrate plane. The decay of the (1,1) mode, on 

the other hand, results in a photon emission normal to the substrate surface and is therefore 

mainly blocked by the STM head. 

The energy increase of the (1,0) mode for dome-like particles is caused by the additional 

energy due to the dipole-dipole interactions between the (1,0) plasmons as the interparticle 

distance decreases. In the general case, the interaction energy between two identical dipoles at 

a distance d from each other is proportional to p2.d-3, where p is the electric dipole moment. 

However, when assuming a square particle network, the fit of the measured increase of the 

plasmon energy reveals a dependence according to d-1.8 for dome-like particles (figure 3.8, 

dotted line). Thus, in a 2D network of Ag particles, the dipole-dipole interaction energy 

increases slower than for two isolated dipoles as a function of distance d.  

For disk-like particles, a blue shift of the (1,0) mode with increasing density is expected 

as well. However, no shift could be resolved most likely due to the weaker coupling. As the 

average height of disk-like particles is ~30% smaller than that of the dome-like ones, the 
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corresponding p of the (1,0) mode is, substantially, smaller too. Consequently, the energy of 

dipole-dipole interaction is almost two times smaller than for the round particles of 

comparable densities. In addition, the recorded Mie resonance is situated near 3.76eV, which 

corresponds to the surface plasmon resonance in a continuous Ag film, i.e., as d approaches 

zero. This energy marks therefore the upper limit of plasmon excitations in silver surfaces 

[12,116]. Besides, the absence of a shift could be related to the slightly increasing aspect ratio 

measured for increasing densities (figure 3.6), which lowers the Mie (1,0) energy and thus 

compensate the shift due to the dipole-dipole interaction. 

The blue shift of the (1,0) and the red shift of (1,1) plasmon modes with increasing 

particle density have been observed before for lithographically fabricated particle ensembles 

[117,118,119]. Whereas the large particle sizes and the interparticle distances in those 

experiments needed an interpretation of the optical data within the framework of retardation 

and multipole effects [43,118], a treatment within the dipole approximation was sufficient in 

ref.[119]. In our experiment, the particles have smaller sizes compared to the emitted photon 

wavelengths. Therefore, the system is viewed in the quasi-static regime and only the dipolar 

effects have to be considered. 

Our interpretation of the experimental results is supported by model calculations for the 

optical properties of dome-like and disk-like particle ensembles, as performed with the 

GranFilm program [115]. The code permits the determination of the polarizability of 

supported particles. The basic idea of the calculation method is to consider truncated spheres, 

oblate or prolate spheroids as geometries of the supported particles, and solve the Laplace 

equation for the electrostatic potential in the quasi-static regime. The mathematical form of 

the potential is described as a series expansion in a multipolar basis in either spherical or 

spheroidal coordinates to account for different particle shapes [115,120].  

We computed the plasmon energies of Ag particle ensembles on a bulk Al2O3 substrate 

by calculating the absorption coefficient for varying densities using experimentally 

established bulk dielectric functions [121], and neglecting the NiAl substrate. As no specific 

lateral arrangement of the prepared particles was observed on the substrate, the mean field 

approach was chosen to describe their inhomogeneous lateral distribution. The particles were 

modeled as truncated spheroids determined by a perpendicular (r⊥) and a parallel (r⎪⎢) radius 

corresponding to the experimental particle height and radius, respectively. Hence, the dome-

like particles are characterized by r⊥ > r⎪⎢ and the disk-like particles by r⊥ < r⎪⎢.  
Several combinations of radii were tested in order to reproduce the experimental results. 

However, optimum agreement was achieved only for a narrow range of radii. In figure 3.8, 

two curves are shown representing the calculated evolution of the plasmon energy with 

particle density for the dome-like (dashed line) and the disk-like (dash-dotted line) particles. 

The theoretical curves describe the measured data rather well, and thus, illustrating the 
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dominant role of the dipole-dipole interaction in the experiment. The experimental data point 

at a density of 1.31×1011cm-2 deviates to higher energies from the calculated evolution for 

round particles. This emphasizes the increased particle-particle coupling due to the high local 

density, as the Ag particles preferentially nucleate along the defect lines of the alumina 

surface (figures 3.2 and 3.5). 

The optimal input values of particle radii were r⊥ = 46Å, r⎪⎢ = 32Å, and r⊥ = 27Å, r⎪⎢ = 

40Å for round and flat particle shapes, respectively. The calculated values of r⊥ overestimate 

the measured heights by almost a factor of two. This means larger dipolar moments are 

needed to reproduce the experimental energy positions of the (1,0) plasmon. This effect is 

attributed to the neglect of the NiAl support below the Al2O3 film in the calculations. 

Therefore, the induced image dipoles in the NiAl were not taken into account. As the image 

dipole couples constructively with the driving (1,0) dipole in the particle, it enhances the total 

polarizability of the system (Chap. 1, sect. III.2.3). To judge the importance of this effect, we 

simulated the case of Ag particles deposited directly on a NiAl support. Fitting this model to 

the experimental dependence of the plasmon energy on the density leads to a much better 

agreement between calculated und measured shapes. It results in an r⊥ = 33Å for the round 

and r⊥ = 20Å for the flat particles, which are comparable with the heights deduced from the 

measurements. However, computed line widths and energy positions of the Ag Mie plasmon 

deviate more strongly from the experimental results for a NiAl support compared to Al2O3 

surface. This underlines the combined influence of the oxide film and the metal substrate on 

the optical properties of the supported Ag particles. 
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III.  Effect of long-range order  

III.1.  Ag nanoparticle synthesis 

The silver nanoparticles used to fabricate long-range ordered ensembles were prepared in 

the research group of Professor Pileni at the University of Paris. The nanoparticles were 

synthesized in a chemical approach using the reverse micelle technique. The reverse micelles 

are water droplets stabilized in oil by means of a surfactant. They are used as micro-reactors 

to realize the synthesis of silver nanoparticles via chemical reduction. The synthesis procedure 

is described in references [122,123]. It can be summarized as follows: Two micellar solutions 

of surfactants/isooctane (C8H18) and water having the same molar ratio W = 

[H2O]/[surfactant] = 40 are mixed together. One solution contains 30% Silver-bis(2-

ethylhexyl)sulfosuccinate (known as Ag(AOT) or C20H37O7S-Ag) and 70% Sodium-bis(2-

ethylhexyl)sulfosuccinate (known as Na(AOT) or C20H37O7S-Na) as surfactants. The second 

solution contains 100% Na(AOT) and a sufficient amount of hydrazine (N2H4) solved in 

water. The role of hydrazine is to reduce the Ag+ cations and break the bonding to the AOT. 

Silver reduction is achieved during the collisions between different micelles, which permit the 

exchange of their aqueous nuclei. The procedure results in the formation of Ag nanoparticles 

with an average diameter of 5nm and a size distribution of about 43%. To extract the 

particles, dodecanethiol (C12H25SH) is added just after the particle formation. Because of the 

strong affinity of their SH head-group to silver, the dodecanethiol chains attach to the particle 

and form a monolayer around it. The surfactant is afterwards removed by precipitation in 

ethanol. Repeated size-selective precipitation processes followed by centrifugation yield a 

size distribution about 8%. The particles are afterwards dispersed in hexane C6H14 and a 

homogeneous colloidal solution is obtained. 

 

 

III.2.  Ag nanoparticle deposition 

The deposition of the Ag nanoparticles was done in ambient conditions. A few micro-

liters of low concentrated colloidal solutions were dropped onto the surface of HOPG (Highly 

Ordered Pyrolytic Graphite) surface. Prior to deposition, the HOPG was prepared by stripping 

off the upmost graphite layers with adhesive tape. In figure 3.9, a STM topographic image of 

a clean HOPG surface is presented.  
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Figure 3.9: 100x100nm2 STM topographic image of the HOPG surface prepared by peeling off the 

surface and introducing it into the UHV chamber. The image describes the morphological state of the 
HOPG surface after its preparation. The surface is characterized by flat and large terraces separated 

by randomly oriented step edges caused by surface peeling. US = 0.4V, I =0.35nA, PtIr tip. 

 

 

Two different colloidal solutions, extracted before and after the size-selective 

precipitation processes, were analyzed. The corresponding particle size distributions in the 

solutions are therefore 43% and 8%, respectively. The samples are introduced into the 

vacuum 1h after the deposition, so that the hexane evaporates outside the vacuum chamber. 

Figures 3.10a and 3.10b show TEM (Transmission Electron Microscopy) images of a 

monolayer of poly- and mono-dispersed Ag particles deposited on HOPG. Whereas no long-

range order is observed in figure 3.10a, a hexagonal 2D superstructure is noticed in figure 

3.10b. This self-organization of particles is induced by the small size distribution. The TEM 

observations are confirmed by STM measurements, as illustrated in figures 3.10c and 3.10d. 

The preparations shown in figures 3.10a and 3.10c are named disordered ensembles in the 

following, while the ones in figures 3.10b and 3.10d are termed ordered ensembles.  
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Figure 3.10: (a and b) 300x300nm2 TEM images of a monolayer of Ag nanoparticles synthesized by 

the reverse micelle technique deposited on HOPG with (a) 43% and (b) 8% size distribution. (c and d) 
75x75nm2 STM topographic images of similar preparations as in (a) and (b), respectively. US =0.4V, 
I=0.5nA, PtIr tip. The drawn hexagon in (d) emphasizes the hexagonal network with a 7nm lattice in 

which the particles arrange themselves.  

 
 

The hexagonal organization of the particles in the ordered ensemble is characterized by a 

lattice constant of 7nm (figure 3.10d) and a mean particle density of about 23.5×1011 2cm− . 

This organization is induced by the presence of the dodecanethiol chains attached to the 

particles, as the surrounding hydrocarbon chains protect the particles from surface wetting and 

coalescence, and preserve their shape and size even at the highest density. Hence, as modeled 

in figure 3.11 [124], the Ag particles keep their spherical shape, which is important for their 
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optical properties. Furthermore, the dodecanethiol chains of adjacent particles imbricate and 

ensure a minimum separation between the particles of about 2nm. This value plus the particle 

diameter (5nm) fixes the lattice constant of the Ag particle network on the HOPG support to 

7nm, and also determines the interparticle separation normal to the surface in case of a 

multilayer deposition. The rather big Ag particle-HOPG spacing leads to a weak coupling 

between the particles and the support. This effect is also experienced during the STM 

measurements where imaging was only possible for optimized tunneling conditions. 

Although, the ligand shell present an additional difficulty for tunneling, due to their insulating 

character and their swaying movement. 

 

 
 

 
Figure 3.11: Schematic model of Ag colloids on HOPG 
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III.3.  Optical properties 

As in case of Ag particles prepared by vapor deposition on alumina (sect. II), the optical 

properties of ordered and disordered Ag nanoparticle ensembles on HOPG were analyzed by 

bombardment with field-emitted electrons from the STM tip. In order to investigate the effect 

of the lateral size of the excited ensemble on the optical response, the field-emission bias was 

varied from -90V to -160V for a current adjusted to 1nA. This is achieved by setting the STM 

tip-sample distance to values between ~100nm and ~250nm, so that the analyzed area varies 

roughly between ~10.000 nm2 and ~70.000 nm2. No electron-induced damage is noticed in 

STM images taken after each spectroscopic measurement. The recorded optical spectra are 

presented in figure 3.12. The spectra were fitted with two Gaussians to determine the 

respective peak positions and intensities. The emission spectra from the ordered ensemble are 

characterized by a maximum at 3.6eV ± 0.02eV (345nm ± 2nm) and a shoulder at around 

2.47eV ± 0.02eV (500nm ± 2nm) (see figure 3.12a). The full-width-at-half-maximum 

(FWHM) of the high-energy peak is approximately three times smaller than the one at low 

energy. The total emission yield increases exponentially with electron energy, but no obvious 

change of the spectral shape and peak positions is observed. Thus, no effect related to the size 

of the ensemble is seen in the optical response within the analyzed area range. For the 

disordered particle ensembles, the optical measurements show a qualitatively similar behavior 

compared to the ordered ensemble (figure 3.12b). The most pronounced difference is the 

reduced intensity of the low energy shoulder. For the ordered ensembles, the intensity ratio 

between low energy and high-energy peaks is found to be 0.45. The equivalent ratio drops to 

0.35 for the disordered ensemble. Furthermore, the high-energy peak for disordered 

ensembles is slightly blue shifted to 3.65eV ± 0.02eV (340nm ± 2nm) and slightly more 

intense. 
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Figure 3.12: Photon emission spectra of (a) an ordered and (b) a disordered 2D monolayer of Ag 

particles on HOPG. The particles were excited in the field-emission regime with different tip voltage. 
The current was adjusted to 1nA for 60 seconds recording time. 
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III.4.  Discussion 

The photon emission from both ensembles is assigned to the radiative decay of the Mie 

plasmon in the metal particles3. The plasmons are excited by the field-emitted electrons 

injected into the sample surface with high kinetic energy (chap. 1, sect. III.2.3). Apparently, 

the plasmon is split into two modes separated by an energy gap of about 1.1eV. Using 

equation (1.24), the position of the Mie resonance in a single spherical silver particle can be 

estimated when taking into account the presence of dodecanethiol shell. Assuming a dielectric 

function of the surrounding medium of εm= 2 [124], the calculated fundamental Mie mode is 

found to be at 3.2eV. This position is red-shifted compared to the calculated Mie position for 

the same particle in vacuum (3.5eV), emphasizing the role of the dodecanethiol shell that 

increases the particle polarizability. 

Since the Ag colloids do not wet the HOPG substrate and remain spherical, a splitting of 

the fundamental Mie mode into the (1,0) and (1,1) modes due to particle shape anisotropy can 

be neglected. In addition, the interaction of the Ag particles with the image dipoles (chap. 1, 

sect. III.2.3) in the HOPG substrate is weak and leads to a splitting of the Mie Mode of only 

some meV [125]. However, the close packing of the particles, especially for the ordered 

ensembles, is undoubtedly the origin of strong dipole-dipole interactions in the ensemble 

layer. This results in two Mie modes, namely the (1,0) and (1,1) modes, which are blue- and 

red-shifted with respect to the fundamental plasmon in an isolated sphere, respectively (see 

chap. 1, sect. III.2.3). Therefore, we assign the high-energy photon-emission peak observed 

here to the (1,0) mode, and the shoulder at low-energy to the (1,1) mode. This conclusion is 

supported by the high intensity of the out-of-plane (1,0) mode at 3.6eV, since it is 

preferentially excited in the experiment (sect. II.4).  

The peak assignment to the different Mie modes can be verified experimentally by 

analyzing the polarization of the emitted light, as shown for the ordered ensembles in figure 

3.13a. The experiment was done by placing a Glan-Thompson polarizer at the entrance slit of 

the spectrograph. The emission peak at 3.6eV shows the expected intensity variation for linear 

polarized light as a function of the polarization angle φ [126]: I(φ)= I 0 sin2φ (figure 3.13b). 

The maximum intensity is found when the polarization angle is around 90°. According to the 

geometry of our optical setup, the only light able to pass the polarizer at 90° is p-polarized 

light resulting from an emission involving the (1,0) plasmon, which oscillates perpendicular 

to the surface. The small emission yield of the low-energy peak and background intensity in 

this energy range prevented similar investigations for the (1,1) mode.  
 
 

                                                 
3 Except the Bremsstrahlung radiation observed around 250nm in the spectra. 
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Figure 3.13: (a) Polarization angle dependence of the light emission from an ordered monolayer of 

Ag colloids on HOPG excited by field-emitted electrons from the STM tip. Tip bias and electron 
current were set to -220V and 1nA. The background independent of the polarization is subtracted. 

Peak positions are slightly red-shifted due to a geometrical effect caused the presence of the polarizer 
at the spectrograph entrance. (b) Intensity variation of the main peak in (a) as a function of 

polarization angle.  

 

 

Experimental and calculated reflectivity spectra performed for an ordered network of Ag 

nanoparticles on HOPG, revealed observations comparable to ours [124,127]. Herby, the 

calculated positions for low- and high-energy peaks were found to be at 2.38eV and at 

3.34eV, respectively, while the experimentally revealed peak positions are at 2.15eVand 

3.50eV. The second peak appeared only when the incoming angle of the p-polarized 

excitation light is suitable to excite the perpendicular plasmon mode in the particles. The 

discrepancy between measured and calculated results in [124,127] is attributed to the 

inappropriate description of the polarizability of the single particle on the HOPG, which treats 

the environment as a homogeneous medium and neglects the real stacking of the dielectric 

layers. An additional deviation could arise from the use of simplified dielectric functions for 

the ligand shell. 

No pronounced effect of the regular versus disordered arrangement of particles on the 

optical properties could be established from our experimental data. Apparently, the splitting 

of the fundamental Mie plasmon is a subtle indicator for changes in the particle density, but is 
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less sensitive to the long-range order in the particle ensemble. The average inter-particle 

distance was found to be comparable in ordered and disordered ensembles, which might 

explain the similar plasmon energies observed for both preparations. On the other hand, small 

variations in the plasmon position are likely to be covered by the large FWHM of the 

experimental peaks. The absence of long-range order in the disordered ensembles is, however, 

reflected in the intensity loss of the low-energy shoulder. In a perfect hexagonal network, the 

(1,1) mode gains intensity with respect to the (1,0) mode, because of the constructive 

coupling, and therefore the enhancement, of the in-plane oscillations. The out-of-plane modes, 

on the other hand, experience a destructive coupling. In assemblies with broader size 

distribution, this effect is partly suppressed due to a detuning of the plasmon energies and 

hence a reduced coupling efficiency between neighboring particle dipoles. Consequently, the 

energy splitting as well as the intensity ratio between the (1,1) and the (1,0) emission peaks 

decrease in ensembles without long-range order. This is in agreement with the experimental 

results (figure 3.12b).  

The rather large FWHM of the emission peaks of the Ag nanoparticles on HOPG is 

mainly attributed the dodecanethiol environment, which decreases the plasmon lifetime by 

inducing an additional damping [6,12,124,128]. This fact becomes apparent when comparing 

a spectrum of an ordered ensemble of Ag colloids with a one of bare Ag particles vapor 

deposited on an alumina film (sect. II.2). Such a comparison is presented in figure 3.14, where 

a normalized spectrum from an ordered Ag colloidal ensemble with a particle density of 

23.5×1011cm-2 is shown next to spectrum of a dense round Ag particles on alumina (density 

10.12×1011cm-2) (sect. II.3). Regardless the differences in particle size, shape and density 

between the two samples, the FWHM of the (1,0) peak for the Ag colloids is found to be 

bigger by a factor of three with respect to the bare particles.  

Another obvious difference in figure 3.14 resides in the absence of the (1,1) mode in the 

spectrum of Ag/Al10O13/NiAl(110). This underlines again the strong influence of the dipole-

dipole coupling in the dense well ordered Ag particle layer, which leads to a huge 

amplification of the photon emission yield from the (1,1) plasmons. The corresponding 

spectral peak becomes therefore visible in the spectra despite the unfavorable detection 

symmetry as well as the small excitation cross-section of the (1,1) mode in our optical system. 
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Figure 3.14: Comparison between normalized emission spectra from a monolayer of ordered Ag 

colloids on HOPG and a dense Ag particle ensemble supported on alumina. The fitting of a Gaussian 
curve to the (1,0) peaks gives a FWHM of ~58nm for the colloids and ~20nm for the bare particles. 

The appearance of the (1,1) peak in the top spectrum emphasizes the strong interparticle dipole-dipole 
coupling in the ordered and close packed particle layer, which render its detection possible. 

 
 

In the light of the above results, we discuss the optical response from a single particle and 

a 3D structure consisting of a multilayer of Ag colloids on HOPG in the following 

paragraphs.  

An optical spectrum of a single Ag particle within an ordered ensemble is presented in 

figure 3.15a. It was measured with a low excitation bias (15V) and a rather high current 

(5nA). The high current was required to increase the emitted-photon yield from the single 

emission center above the optical detection limit. At these conditions, structural damage 

cannot be excluded. The spectral characteristics are similar to the particle ensemble spectra 

obtained at higher electron energy. Here, the two peaks are at 3.18eV ± 0.02eV (390nm ± 

2nm) and at 2.1eV ± 0.02eV (590nm ± 2nm). Whereas, the high-energy peak is attributed to 

the (1,0) mode, the origin of the low-energy feature is unclear although its position would 

correspond to the (1,1) mode. As discussed above, photon emission from the (1,1) of a single 
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particle is not expected to be detected. Therefore, the low-energy peak (2.1eV) is, more likely, 

the result of a coupled electromagnetic mode between the tip and the sample (tip-induced 

plasmon (TIP), see chap.1 sect. III.2.1) and does not represent an intrinsic excitation of the Ag 

particle. The position of (1,0) plasmon is red-shifted by 0.42eV with respect to the spectra 

obtained from the Ag ensemble, but it is similar to the calculated position for a single particle. 

Nevertheless, the particle cannot be considered as isolated, since it is within the ordered layer, 

and therefore it should undergo coupling-effects with the image dipoles induced by its (1,0) 

mode in the neighboring particles. However, the small change of the (1,0) peak position 

compared to an isolated particle reveals the weak coupling with the induced images diploes. 

This is in contrast with the simultaneous excitation of an ensemble of ordered particle, where 

the (1,0) mode of every particle experiences an efficient destructive coupling with the dipoles 

of the neighboring particles. On the other, also the presence of the metallic tip near the 

particle might influence the polarizability of the system [12,89].  

 
 

 
Figure 3.15: Photon emission spectrum of (a) a single Ag particle within an ordered layer of Ag 
nanoparticles and (b) a multilayer of size-selected Ag nanoparticles, on HOPG. The spectra were 
obtained after particle excitation in (a) the tunneling regime (Utip=15V, I=5nA), and (b) the field 

emission regime. 

 
 

 

Multilayer samples were prepared by dropping a highly-concentrated colloidal solution 

on the HOPG support. Based on the concentration required for the deposition of one 

monolayer, the thickness of the multilayer film was estimated to be between 5 to 10 layers. 

The insufficient conductance of the thicker film prevented the recording of STM topographic 
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images. However, as shown in figure 3.15b, optical measurements were possible due to the 

increased mean free path of the energetic field-emitted electrons. The optical response is 

characterized by a red shift of the two emission peaks as well as by an intensity increase by a 

factor of 25 compared to the monolayer films. The elevated intensity reflects the increased 

number of photon emission centers. The high- and the low- energy peaks in the multilayer 

sample are detected at 3.06eV ± 0.02eV (405nm ± 2nm) and at 2.21eV ± 0.02eV (560nm ± 

2nm). The red shift of the (1,0) mode is found to be 0.55eV, which is more pronounced than 

the shift of the (1,1) mode (0.3eV). This effect is mainly attributed to the additional 

electromagnetic coupling induced by the particle over layers. Thereby, the (1,0) and (1,1) 

modes experience coupling effects that are opposite to the ones in the monolayer. Plasmon 

modes of particles in different layers couple constructively for the out-of-plane modes and 

destructively for in-plane modes. In other words, in an infinite 3D particle ensemble, the 

coupling effects should be compensated and therefore only one peak is expected to show up in 

the optical emission. Indeed, the energy separation between the two plasmon modes decreases 

from 1.1eV in the monolayer to 0.85eV in the film of 5-10 layers. Apparently, since for a 5 to 

10 layers thick film an energy gap between (1,0) and the (1,1) modes still exists and much 

higher thickness are required to converge the two modes into a one single mode. 

The plasmon energy of an infinite 3D particle agglomeration can be estimated using the 

following formula, deduced from Maxwell-Garnett’s effective medium theory [12]:  

 

( ) ( )( )ω
ωεωε Λ−

Λ+=
f

f
meff 1

21
 (3.2)

hereby f is the filling factor defined as filmparticles VVf =  with V is the volume, and 

mεεωα 03)(=Λ . εm is the dielectric function of the surrounding medium, εeff is the effective 

dielectric function, and α(ω) the polarizability of an isolated single particle. The Maxwell-

Garnett’s effective medium theory is only valid for small f.  

For the given parameters f = 0.27 (only the metal part of the colloid is considered) and εm 

= 2, the calculated plasmon position for an infinite multilayer of Ag ordered nanoparticles is 

found to be 2.9eV which is 0.3eV lower than for an isolated particle.  
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IV.  Conclusion 

We have studied the influence of the geometrical configuration of supported silver 

nanoparticles on their optical behavior. The effect of aspect ratio, density, and lateral 

arrangement of the particles in the ensemble were investigated by the photon-STM technique. 

Hence, a direct correlation could be made between the imaged topography of the particle 

ensemble and its optical spectrum obtained via excitation with field-emitted electrons from 

the STM tip. Dome and disk shaped Ag particles on Al10O13/NiAl(110) with increasing 

particle density were prepared. The respective particle aspect ratios were in average ~0.55 and 

~0.3. To account for lateral arrangement effects, Ag colloidal ensembles with a spherical 

particle shape were deposited on HOPG substrates. The size-selected Ag colloids self-

assemble on the HOPG surface and form a close-packed hexagonal network.  

The recorded optical spectra were dominated by the (1,0) Mie plasmon excitations. The 

resonance position of the observed Mie mode is found to be strongly dependent on the 

electromagnetic coupling between the plasmon dipoles in particles with high aspect ratio. The 

strength of the coupling turned out to be governed by the interparticle distance only in the 

dome-like particle ensemble. For the disk-like particles, no evident effect on the optical 

spectra is remarked when varying the particle density. This marks the reduced influence of the 

dipole-dipole interaction between extremely flat particles. On the other hand, the regular array 

of Ag nanoparticles is found to induce a high dipole-dipole coupling within the ensemble. 

This leads to the enhancement of the spectral intensity of the (1,1) Mie mode, due to the 

constructive in-plane coupling. However, ensembles with either well-ordered or disordered 

arrangements exhibit in general a similar optical spectral distribution and reveal no important 

difference, which reflects the weak influence of the long-range order of in particle ensembles.  
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Chapter 4 
 

4. Morphological and Optical Properties of MgO 

Thin Films on Mo(001) 

 
 

I. Introduction  

Magnesium oxide is considered as a prototype material for wide band-gap insulators 

[129,130]. The reason is its simple atomic configuration consisting of two atoms in the unit 

cell of a cubic structure (figure 4.2). This quality makes it easier to be studied both 

experimentally and theoretically, and therefore, develop a good starting point to approach the 

more complex systems. In addition, magnesium oxide is gaining more and more attention in 

fields like heterogeneous catalysis as bare oxide [131,132,133] or as support for metal 

particles [134,135,136,137], and in the field of photocatalysis [138]. It is also considered to 

be a very good insulator barrier in the high-performance magnetic tunnel junctions used in 

spintronic devices [139,140,141,142].  

The properties of MgO, such as optical performance and chemical reactivity, are mainly 

determined by the type of defects present in the surface [21,143]. The nature of these defect 

sites on MgO single crystal and film surfaces is already probed using different techniques, 

namely, electron-energy-loss spectroscopy (EELS) [144,130], infrared spectroscopy (IR) on 

adsorbed molecules [145,146], metastable impact electron spectroscopy (MIES) [147], 

scanning tunneling microscopy and spectroscopy (STM/STS) [156], electron paramagnetic 

resonance (EPR) [148], and by cathodoluminescence and photoluminescence spectroscopy 

[149,150,151].  

The analysis of the MgO surface on thin MgO films deposited on metal substrates has the 

advantage of avoiding electrical charging encountered during the experiments on single MgO 

crystals [20]. The ideal preparation technique should produce films with a similar surface 

structure as for a single crystal. However, the preparation of such films is not an easy task, 

since many parameters have to be controlled [152]. The main issue is to use a metal substrate 

that is characterized at the same time by (i) a small lattice mismatch with the MgO film to 

avoid strain effects, (ii) a high melting temperature that allows high-temperature annealing to 

improve film quality, and (iii) a low affinity to oxygen.  
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MgO thin films were deposited mainly on Ag(001) [153,154,155,156], Fe(001) 

[140,157], and Mo(001) [158,159,160] substrates, resulting in lattice mismatches of 3.0%, 

3.7% and 5.3%, respectively. Ag(001) seems to be the most suitable substrate. However, this 

is only the case for very thin MgO films (3ML to 8ML [161]). The low Ag melting point 

prevents from annealing thicker films and improving the film structure. The molybdenum 

substrate is in this case better suited.  

Theoretical as well as experimental studies showed that MgO thin-films exhibit the same 

chemical features as single MgO crystals [162], but they differ in certain properties (like the 

CO binding energy on the surface), due to the high concentration of defects in the films [163]. 

However, despite the possibility to treat the MgO films at high temperatures on Mo substrates 

and reduce the number of defects, the properties of the MgO/Mo system have not been 

extensively studied in the past.  

Our work represents the first investigation of the optical properties of extended- as well as 

local-areas of MgO thin films with different thicknesses deposited on Mo(001). Moreover, 

using the photon-STM, a correlation between the optical behavior and the morphology of thin 

MgO films could be made.  

In this chapter, we first discuss the evolution of the MgO/Mo(001) film morphology as a 

function of thickness. Thereby, Low Energy Electron Diffraction (LEED) and Grazing 

Incidence X-ray Diffraction (GIXD) techniques are used to analyze the film crystallographic 

structure, while STM is employed to depict the local topography of the film surface. 

Afterwards, the optical characteristics of the MgO film is explored for various film 

thicknesses. The optical activity of MgO films is stimulated by electron injection from the 

STM tip in both the field emission and tunneling modes (chap.2, sect. III.2). By performing 

field-emission excitations, the sites responsible for the optical activity of MgO are identified 

using two complementary approaches: (i) A direct correlation of the optical response with the 

features visible in surface imaging. (ii) Analysis of the nucleation behavior of gold particles 

on MgO films and its effects on the intrinsic MgO light emission. The exploration of the Au 

nucleation behavior provides not only information about the optically active MgO center, but 

at the same time, enables to link these centers to the preferential nucleation sites of Au on 

MgO.  

Besides, by performing STM measurements in the tunneling mode, we explore the 

possibility to locate the optically active centers in the MgO surface by simultaneous 

topographic and optical measurements. 

In the following, a short introduction into the general MgO properties shall be given. 
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I.1. Magnesium oxide (MgO): Bulk vs. Surface 

In the calculated phase diagram of the magnesium-oxygen system, shown in figure 4.1 

[164], magnesium oxide with a stoichiometry of Mg1O1 (or MgO) is the only stable phase. 

Other phases with higher oxygen content exist, but are only stable in a tight temperature range 

(see Table 4.1) [165,166,167]. An experimentally determined phase diagram of the system is 

so far not established.  

The magnesium oxide in its stable MgO phase is one of the most abundant oxides in 

earth’s crust. It is known in mineralogy under the name “Periclase”. It is found to be 

structurally stable up to pressures as high as 227GPa [168], which makes it a model system 

for the research on materials at ultrahigh pressures, both experimentally and theoretically 

[169].  

 

 
Figure 4.1: Calculated phase diagram of the Mg-O system [164]. The pure magnesium has an hcp 

structure, a melting point at 923K, and a boiling point at 1373K. L1 assigns to liquid magnesium, L2 
to liquid MgO, and G to the gas phase. The gas phase is assumed to consist of Mg, Mg2, MgO, O, O2 

and O3 species [166]. 
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Table 4.1: The different magnesium oxide phases at atmospheric pressure [165,166,167,170] 

 

MgO is a highly ionic compound. The difference in electronegativity between the 

magnesium (1.32) and oxygen (3.44) atoms, as related to the electronic configurations of 

Mg(1s22s22p63s2) and O(1s22s22p4), results in a strong ionic bound: The two electrons from 

the Mg 3s orbital are transfered to the O 2p one. The radii ratio between O2- (1.26Å) and Mg2+ 

(0.86Å) ions favors the Mg2+ ions to be accommodated in an octahedral site between six O2- 

ions, i.e., leading to their arrangement in a rocksalt (NaCl type) structure (figure 4.2). The 

rocksalt configuration allows an optimum interaction between the magnesium and oxygen 

ions, where every cation/anion is coordinated with six neighboring anions/cations.  

 
 

 
Figure 4.2: Crystallographic structure of bulk MgO. The interstitial octahedral sites of an fcc (face-
centered cubic) network of O ions are occupied by Mg ions forming a rocksalt structure. The bold 

lines delimit the unit cell of the fcc structure. The center of the fcc unit cell constitutes an interstitial 
octahedral site. 
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With a bulk bandgap of 7.9±0.7eV at 0K [171], the MgO is a very good insulator [21]. 

The low- and high-energy edges of the bandgap are dominated by the oxygen 2p and the 

magnesium 3s states, respectively. The analogue to the bandgap in electron excitation 

processes in MgO is the interatomic charge transfer energy, which locally transforms the bond 

Mg2+–O2- into Mg+–O- [21]. In figure 4.3, experimental as well as calculated energy diagrams 

of bulk MgO are presented. 

As summarized in figure 4.3a, the MgO bandgap and the energy positions of the valence 

and the conduction band-edges can be derived from a simple ionic picture [172]. The model is 

mainly based on the calculation of the Madelung potential for each ion type with respect to 

the vacuum level. This calculation results in a bandgap of about 24eV, which is, however, far 

higher than the real value (7.9eV). The Madelung potential as defined in equation (4.1) 

describes the Coulomb force experienced by an Mg2+ or an O2- ion due to the presence of all 

neighboring ions in a NaCl-type network.  
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thereby, z is the ion charge; e, the elementary charge; r0, distance to the closest ion; M, the 

Madelung’s constant; and r i, distance to the i ion. For a NaCl-type structure M ≈1.74758.  

 

In the above estimation of the Madelung potential, the ions were taken as point charges, 

i.e., there is no spatial distribution of the charge within the ions. However, the charge 

distribution around each ion is delocalized and can be polarized with respect to a free ion, as a 

reaction to the electric fields of neighboring ions. This polarization of the charge cloud 

reduces the Coulomb forces compared to a point-charge field. As a result, the Madelung 

potential, and therefore the calculated bandgap, decreases. However, despite this correction, 

the experimental value of the MgO bandgap is still overestimated. A better approached is 

obtained when the effect of the overlap between the orbitals is taken into account (figure 4.3a) 

[172].  
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Figure 4.3: (a) Derivation of the valence and conduction band energies in MgO [172]. In comparison 
with the original figure [172], the reference on the energy scale is shifted from the vacuum level to the 
valence band edge by about 7.8eV. (b) An approximate energy-level diagram of MgO based on XPS 

(X-ray Photoemission Spectroscopy) measurements [144]. (c) Calculated band structure of bulk MgO 
along high symmetry lines in the Brillouin zone [173]. (d) Calculated partial and total density of 

states of bulk MgO [ 174]. 
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Because of the high ionicity of MgO, there are strong Coulomb forces aiming to maintain 

local charge neutrality in the bulk and the surface. Therefore, the most stable surface is the 

non-polar surface, where each plane has zero net charge [60]. This is the case for the low 

index (001) surface. The (001) surface is charge neutral and has no net dipole moment in any 

direction, since it is atomically flat and contains an equal number of Mg and O ions. The ions 

of the (001) surface are fivefold coordinated (5C), which is lower than in the bulk (6C). 

Nevertheless, their oxidation state is found to be nearly the same as in the bulk, i.e., Mg2+ and 

O2- [21,144]. However, the (001) surface is characterized by a decrease of the energy gap, 

which becomes 6.2eV [144,154]. This fact is attributed to a balance between a reduction of 

the Madelung potential near the surface, differences in the Mg2+–O2- charge transfer for 

surface and bulk ions, and the polarization of the wave functions of the surface ions towards 

the vacuum [144]. The (110) surface is charge neutral as well. It is constituted of alternating 

rows of magnesium and oxygen ions in the [11 0] direction. However, it is less stable than the 

(001) surface because the ions are only fourfold coordinated (4C) and because of existing 

dipole moment perpendicular to the atomic rows. The high stability of the (001) surface has 

been proven experimentally. Burning magnesium in air produces MgO smokes, which are 

small sized (<0.5μm) single-crystal cubes, exhibiting mainly {100} faces [175,176]. 

 

 

II.  Morphology of MgO thin films on Mo(001) 

II.1.  MgO film preparation 

Before MgO deposition, the Mo(001) single crystal is prepared by repeated cycles of 

annealing at 1300 K in an O2 atmosphere and flashes to 2300K in UHV. This produces a 

sharp p(1x1) LEED pattern of the bcc Mo(001) and a surface with large terraces delimited by 

monatomic steps (figure 4.4). A clean Mo(001) surface can also be obtained by performing 

sputter – anneal cycles followed by flashes to 2300 K. However, while the first method of 

surface cleaning is found to be suitable when the Mo crystal is freshly introduced into the 

UHV, the second way is very efficient to take away deposited material and retrieve a clean 

Mo(001) surface. In the literature, epitaxial growth of MgO is realized over a wide range of 

oxygen pressures and substrate temperatures [177]. Epitaxial MgO films have been achieved 

using techniques such as pulsed-laser deposition [178], molecular beam epitaxy of evaporated 

MgO [179], and magnetron sputtering of MgO or Mg targets [180]. The growth from an Mg 

metal source is found to require low background pressure due to the strong affinity of Mg to 

oxygen [177].  
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In our experiment, MgO films with different thickness are grown at room temperature by 

reactive deposition of evaporated Mg in an O2 partial pressure of 1×10-7mbar. Magnesium is 

thereby evaporated from a crucible heated by electron bombardment (chap. 2, sect. III.2). 

After deposition, the sample is annealed for 10min at 1100K to improve the crystallinity of 

the film. The nominal thickness of the MgO film is defined as the product of the MgO 

deposition rate and exposure time. The deposition rate is determined from sub-monolayer film 

preparations, where the MgO coverage is directly deduced from STM images. 

 

 

Figure 4.4: 250×250nm2 STM topographic image of a clean Mo(001) surface and its corresponding 
LEED pattern (120eV) obtained after surface cleaning, as described in the text. 

 

 

 

II.2.  Structural and topographical characterization 

II.2.1. Results  

Figure 4.5 shows a series of LEED patterns of MgO films with increasing thickness. In all 

cases, the patterns show broad spots having a square (1×1) structure, and a high spot intensity-

to-background ratio. The (1×1) structure indicates the nearly-identical size of the primitive 

cells of the clean Mo substrate and the MgO film. This results from an epitaxial growth of 

MgO, where the MgO(001) plane grows parallel to the Mo(001) surface, and the MgO〈110〉 
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direction aligns with Mo〈100〉. Such an epitaxy is favoured by the small mismatch (5.3%) 

between the Mo-Mo (3.147 Å) and O-O (2.98 Å) distances in the (001) plane and along the 

Mo〈100〉 and MgO〈110〉 directions, respectively. For the sake of clarity, all crystallographic 

directions in the following paragraphs are given with respect to the MgO.  

 
 

 
Figure 4.5: LEED patterns of MgO films on Mo(001) for a primary electron energy Ep=55eV: (a) 

1.5ML, (b) 3ML,(c) 6ML, (d) 12.5ML, and (e) 50ML. The dotted white arrow in (a) marks a spot of a 
p(2x1) superstructure. The indicated crystallographic orientations are given with respect to the MgO.  

 

The structure change of the LEED spots as a function of the film thickness can be 

classified in three thickness regimes. The first range is between 0.85ML and 6ML. Here, the 

spots show an anisotropic broadening along the [100] direction due to the presence of 

satellites. The size of the fundamental spots decreases by almost a factor of three when 

increasing the film thickness from 1.5ML to 6ML. Besides, at low coverage (figure 4.5a) a 

p(2x1) superstructure is observed. This structure is tentatively attributed to the formation of 

an Mg-Mo interface-layer.  

Additional observations are made on the spot characteristics when changing the electron 

beam energy (figure 4.6): (i) The distance of each satellite from the central spot stays 

unchanged on the LEED screen. (ii) The central spots of the reflexes appear or disappear 

depending on film thickness. (iii) When the film is around 3ML thick (figure 4.6a), distinct 
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additional satellites become visible along the 〈110〉 direction at high electron energy (140eV) 

that are inside the square formed by the 〈100〉 satellites. It has to be noticed that all the 

observed LEED spots follow the same described behavior, and the (0,1) spot, shown in figure 

4.6, is only chosen for its clarity on the LEED images.  
 
 

 
Figure 4.6: Behavior of the (0,1) LEED spot as a function of electron primary energy from MgO films 

with (a) 3ML and (b) 6ML. 

 

A second category of the LEED spots starts to be observed when the film thickness 

reaches approximately 10ML. At this thickness, the size of the typical LEED spots seen for 

the thinner films becomes so small that the satellites become undistinguishable from the 

central spot. On the other hand, an anisotropic broadening of the spots start to appear along 

the 〈110〉 direction. The broadening evolves to clear shoulders for thicknesses around 12ML 

(figure 4.5d). With further increasing of the thickness, the shoulders move towards the central 

spot and finally disappear at around 23ML. Neither the shoulder to central spot distance, nor 

the structure of the reflexes –unlike for thinner films– is affected by the variation of the LEED 

electron energy. Finally, for films consisting of more than 23 layers a sharp (1x1) pattern 

appears in LEED, indicating a flat and defect-poor surface structure (figure 4.5e).  

The STM analysis of the evolution of the MgO film morphology as a function of 

coverage revealed a rich behavior. This evolution is summarized in figure 4.7, where 

topographic STM images of six typical film morphologies are presented. Figure 4.7a shows 

that a film with a coverage of 0.85ML exhibit squared islands of different lateral sizes and 

shapes and with edges oriented along the 〈100〉 direction. With increasing the coverage by 

about a factor of two, the film morphology changes from an island-like configuration to a 

more or less closed film exhibiting few rectangular holes. The holes are confined by non-polar 
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Figure 4.7: 100×100 nm2 STM images elucidating the evolution of the morphology of deposited MgO thin films on Mo(001) as a function of 
coverage. (a) 0.85 ML (I = 0.05nA, U = 2.7V). (b) 1.75 ML MgO (I = 0.06 nA, U = 3.0V). A zoom of the dashed square is presented in figure 4.8 . 

(c) 3.75 ML MgO (I =1.26 nA, U = 3.5V). (d) 6 ML (I = 2.0nA, U = 3.6V. (e) 70×70 nm2, 12.5ML (I = 0.6nA, U = 4.8V). (f) 30ML (I = 0.15nA, U = 
12.5V). Annealing temperature: (a) 1000K, (b)– (f)1100K. The dashed and the dotted arrows indicate screw dislocations and a tilted region, 

respectively. The bold solid arrows indicate the MgO〈100〉 direction. 
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〈100〉 edges (figure 4.7b). In addition, a checkerboard pattern formed of bright and dark 

rectangles with a periodicity of approximately 80Å along MgO〈100〉 (or 55Å along 

MgO〈110〉) is discernable on the film. The sides of the checkerboard pattern are oriented 

parallel to the 〈100〉 directions (figure 4.7b). For MgO coverage of around 4ML, a regular 

square pattern aligned with the 〈110〉 direction, and with the same size as the checkerboard 

structure, becomes visible on the almost closed film (figure 4.7c). Figure 4.8 illustrates a local 

transition from the checkerboard structure to the square pattern after an increase of the MgO 

thickness by 1ML. The visibility of the square structure is apparently enhanced by an 

electronic effect, as large topographic contrast is only obtained for sample voltages around 

3.5V. The images of 4ML thick films also reveal the presence of irregularly oriented defect 

lines between large islands of the film (the dark lines in the image). These lines are named in 

the next paragraphs as domain boundaries. The 6ML film exhibit the same square network as 

observed at 4ML, however, here the contrast between the bright and the dark areas forming 

the network is less pronounced even at optimum scanning conditions (figure 4.7d). At this 

coverage, the film is completely closed and free of uncovered areas. Furthermore, unlike for 

the 4ML films, most of the present dislocation lines align along the 〈100〉 directions. In 

addition, screw dislocations are observed at some parts of the film (dashed arrow in figure 

4.7d). The periodic structures seen from 1ML to 6ML thickness are found to be perturbed and 

discontinuous when going from an island to another across the domain boundaries.  

The next typical morphology of the MgO film is observed for coverages around 12ML 

(figure 4.7e). Here, the square pattern is not distinguishable anymore, apart from few 

exceptions when it faintly appeared. The defect concentration decreases dramatically and the 

domain boundaries are now all oriented along the 〈100〉 directions. Particularly, screw 

dislocations are recognized at almost every starting point of a defect line (see dashed arrow in 

figure 4.7e). This is accompanied by a clear tilting of corner regions along the 〈110〉 
directions. Above 12 ML film thickness, the oxide gradually starts to flatten and the global 

roughness starts to decrease. The STM image of a 30ML thick film (Figure 4.7f) shows rather 

flat area separated by trenches oriented along the 〈100〉 directions. However, due to the 

vanishing conductivity of the thick oxide films, STM experiments are rather difficult and are 

performed at high sample bias, where electrons are injected ballistically into the MgO 

conduction band and propagate in the tip-induced electric field towards the Mo support. 

According to the STM observations, the growth of the MgO film undergoes the following 

steps: (1) Nucleation of MgO islands; (2) closing of the film and formation of a wetting layer; 

and (3) growth following a layer-by-layer-like fashion. It has to be noticed, however, that the 

layer by layer growth is not perfect. Some lower planes remain incomplete although the next 

layer starts to nucleate already (figure 4.9). 
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Figure 4.8: 19×19nm2 zoom of the indicated area in figure 4.7. The figure shows a part of a 1.75ML 
MgO film. It illustrates the local transition from a checkerboard-like to a square network for an 

increase of the local thickness by 1ML. The perpendicular arrows indicate the MgO〈100〉 directions. 

 

 

Figure 4.9: 180×180nm2 STM topographic image of a Mo(001) substrate covered with 6ML of MgO, 
(I = 0.4nA, U = 3.7V). 
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In order to obtain more details on the evolution of the MgO film structure as a function of 

thickness, we have performed Grazing Incidence X-ray Diffraction (GIXD) analysis4 on the 

MgO/Mo(001) system. Figure 4.10 shows a series of GIXD curves recorded for several MgO 

films having different thickness. The GIXD measurements have been performed using a 

photon energy of 18keV. The incidence angle was 0.166° with respect to the sample surface. 

The GIXD data provide a quantitative description of the relaxation of the MgO lattice 

parameter with film thickness (figure 4.10b). Already at 1ML MgO, the lattice parameter is 

found to be larger only by ≈1.6% (smaller by ≈3.7%) than the bulk MgO (Mo) parameter. The 

lattice then relaxes rapidly towards the bulk MgO the lattice constant with increasing the 

thickness from 2ML to 7ML. Between 15ML and 25ML the relaxation proceeds slower. At 

25ML the MgO lattice parameter is still not completely relaxed, since it remains around 0.5% 

larger than for bulk MgO (figure 4.10b). Furthermore, a satellite peak appears on the GIXD 

curves between the MgO and the Mo Bragg peaks (figure 4.10a), denoting the presence of a 

periodic structure of the same period as the Moiré structure of the MgO(001)/Mo(001) 

system. 

 

 
Figure 4.10: (a) GIXD spectra of MgO/Mo(001) thin films with increasing thickness. The spectra 

represent radial scans along the (h,0,0.03) direction around the (200) molybdenum Bragg peak (r.l.u. 
states for reciprocal lattice units). The satellites indicate the presence of a periodic structure of the 

same size as the one observed with STM. (b) Evolution of the MgO lattice constant along the 
MgO〈100〉 direction with film thickness. The lattice constant is extracted by fittings of the Mo and the 

MgO peaks with Gaussian curve. 

 

                                                 
4 The GIXD experiments were done at the ESRF in Grenoble at the beamline BM32, in collaboration with the 
groups of Prof. S. Valeri (University of Modena-Italy) and Prof. G. Renaud (ESRF, Grenoble-France). 
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II.2.2. Discussion  

Schematic superposition of a MgO(001) layer (a = 4.213Å) on top of a Mo(001) surface 

(a = 3.147Å) with MgO〈100〉//Mo〈110〉 results in a square coincidence structure, a so-called 

Moiré pattern. In this structure, the oxygen atoms of the MgO layer and the Mo atoms sit on 

top of each other every 19 oxygen or 18 Mo atoms according to the 5.3% lattice mismatch 

(figure 4.11). Thus, the Moiré pattern has a periodicity equal to 19×4.213Å = 18×4.45Å ≅ 

80Å along the MgO〈100〉 direction or equal to 19×2.98Å = 18×3.147Å ≅ 56.6Å along 

MgO〈110〉.  
 

 
Figure 4.11: Atomic representation of a MgO(001) layer with the bulk lattice parameter on top of a 

Mo(001) substrate. (a) A top view, (b) a cross section view along the (100) plane (dashed line in (a)). 
The atomic periodicity of the surface is modulated by a larger periodicity of 80Å along the 〈100〉 

direction corresponding to the Moiré pattern. The Mg atoms are hidden in (a) in order to increase the 
contrast of the Moiré structure. 
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In a LEED analysis, a Moiré pattern would result in additional diffraction spots, or 

satellites, around the main MgO and Mo reflexes [181]. The positions of these spots on the 

LEED screen follow the same energy-dependence as the main spots, whereby the distance 

ratio between the (0,0) to (0,1) and (0,0) to the Moiré spot remains constant with energy. In 

other words, the Moiré LEED spots have a constant position in the surface Brillouin zone as a 

function of the LEED primary energy. However, in our analysis, the LEED satellites of the 

MgO film in the thickness regime between 0.85ML to 23ML do not follow the expected 

behavior of a Moiré pattern. Indeed, the satellite positions move inside the Brillouin zone and 

depend linearly on the primary electron energy, as shown in figure 4.12. This behavior is 

typical when the film comprises tilted mosaics [182]. Thus, the prepared MgO films with 

coverages smaller than 23ML contain mosaics tilted along the 〈100〉 for 1ML to 10ML and 

along the 〈110〉 direction for 10ML to 23ML thickness (figure 4.12). The tilting angles are 

easily extracted from the variation of the satellite spot position in the Brillouin zone with 

respect to the corresponding LEED energy (⇔ ⊥ΔΔ=α K/Ktan // ,α the tilting angle). The 

extracted tilting angles for the different film thicknesses are indicated on figure 4.12. The 

calculation of α is done by considering the Brillouin zone of the reciprocal lattice of the 

Mo(001) surface.  
 

 
Figure 4.12: Measured positions of the satellites of the (0,1) LEED spot with respect to the Brillouin 

zone shown as a function of the Ewald’s sphere radius ( h/2mEK =⊥ , E: LEED primary electron 

energy). The considered satellites are those along the 〈100〉 direction for a MgO coverage of 1.5ML, 
3ML, and 6ML, and the ones along 〈110〉 for a 12.5ML film. The lines are linear fits to the data and 

yield the tilting angles with respect to a flat (001) surface.  
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Similar LEED patterns were reported earlier for MgO/Ag(100) [183] and MgO/Fe(100) 

[184] and were assigned to the formation of tilted mosaics as well. The tilted mosaics form 

between a dislocation network in order to release the stress induced by the lattice mismatch. 

This mechanism to release the misfit-induced stress is not only observed for MgO thin films, 

but a general phenomenon of thin epitaxial films [185,186,187]. With the STM, the presence 

of tilted regions in the MgO films is verified only for coverages higher than 10ML (figure 

4.7e). The measured tilting angles from STM images of a 12.5ML thick film range from 1.7° 

to 2.7°, which is in a good agreement with the results obtained by the LEED. For example, the 

tilted plane indicated in figure 4.7e is inclined by about 1.9°, since its corner is 0.4nm higher 

than the point where it starts to be flat being 12nm away. Besides, the tilting angle along the 

MgO〈100〉 and along the MgO〈110〉 is found to decrease with increasing MgO film thickness 

from 0.85ML to 6ML and from 10ML to 23ML, respectively (figure 4.12). This observation 

is also noticed in references [182-185]. The flattening of the tilted mosaics with increasing 

coverage is attributed to the weakening of the strain field with the distance from the interface 

where the strain is generated [184]. Hence, the MgO film on the Mo(001) gradually relaxes 

with thickness. This conclusion is validated by the obtained GIXD data (figure 4.10b).  

STM imaging of a Moiré structure, as shown in figure 4.11, would result in alternating 

bright and dark areas having the same periodicity as the Moiré unit cell [77,71]. However, 

even if such a periodic structure is observed in the STM images (Figures 4.7b,c,d), it cannot 

be easily related to the simplified Moiré model. The Moiré presented in figure 4.11 results 

from a coincidence between a MgO layer having the bulk lattice parameter and the Mo 

substrate. Yet, it is found that the first MgO layers do not have a bulk lattice constant (figure 

4.10b). The MgO bulk lattice parameter is reached only for coverages higher than 15ML. So, 

the observed periodic network in the thin MgO films has to be explained by a more refined 

model. It is rather interpreted as periodic domains induced by a regular distribution of the 

strain fields, which are generated by the lattice mismatch. To describe this distribution, a 

structure model is needed. We propose in figure 4.13 a model, which schematizes the 

relaxation of the MgO film for thicknesses between 1ML and 4ML. As a first approximation, 

the mismatch in the thermal expansion coefficients between the Mo and the MgO, and the 

elastic properties of the Mo are ignored. Also, it is supposed that the Mo structure at the 

interface stays unchanged and all deformations induced by the strain occur in the MgO film. 

The model is based on a strain balance, in every unit cell of the network, between: (i) A strain 

driven by the Mo affinity to oxygen which tends to induce a pseudomorphic growth of MgO 

(18 MgO over 18 Mo cells). (ii) A counter strain exerted by the intrinsic Mg-O bonds to have 

the bulk binding distance and construct 19 MgO over 18 Mo cells. By considering the scheme 

in figure 4.11, the one or the other strain type dominates, depending on the relative position of 
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the O atoms with respect to the Mo ones. Thus, when the O atoms are at the atop sites, the 

bonding to the Mo is high. This results in a reduced Mo-MgO separation distance and a 

stretched MgO lattice. In the opposite, at the hollow site regions, the bonding to the substrate 

is weaker. Therefore, the Mo-MgO separation is slightly bigger and the Mg-O bond length is 

shorter than at the atop sites. Such a dependence of the interfacial distance between an 

epitaxial film and the substrate on the registry between film and support atoms has been 

already discussed for NaCl/Ag(001) [71] and Pd/MgO(001) [188] systems.  

 

 
Figure 4.13: Schematic description of the relaxation in MgO/Mo(001) thin films as a function of the 

thickness. The relaxed MgO films are formed of alternating high and low flat areas, with a periodicity 
of 80Å along the 〈100〉 directions, separated by tilted regions (mosaics). With increasing film 

thickness, the mosaics decrease in inclination and increase in size. (a) Atomic representation of the 
cross section view along the 80Å long dashed line in (b). (b) Top view depictions of an 160×160Å2 

area of 1ML, 2ML and 3ML films. 

 

 

 



Chapter 4 

 

85

 

The intermediate regions between the hollow and atop sites are now subject to tilting with 

respect to (001) plane as a result of the changed interface distance between atop and hollow 

sites. Also, these regions experience an in-plane strain caused by the enlarged Mg-O bond 

distance in the atop regions, which compresses the hollow areas. Thus, the tilting might 

increase to release this stress. This induces a further lengthening of the MgO-Mo separation in 

the hollow region. The weaker MgO adhesion to the Mo in the hollow regions with respect to 

the atop ones therefore results in high and low areas corresponding to hollow and atop 

regions, respectively. These areas are separated by tilted planes (figure 4.13). 

The tilt is considered to be only along the 〈100〉 directions, as the LEED measurements 

imply it for thinner films (figure 4.12). Nevertheless, this preferential tilt orientation can have 

as origin the elastic anisotropy of the MgO. The Young’s modulus5 of bulk MgO along the 

〈100〉 direction is 27% and 40% lower than along 〈110〉 and 〈111〉 directions, respectively 

[189]. Accordingly, an anisotropic stress relaxation is more likely to happen. The relaxation 

then occurs along the <100> directions where the MgO film has the smallest stiffness. 

Considering only tilted areas along the <100> directions leads to square shaping of the high 

and the low areas, as observed in STM and shown in figure 4.13b. 

The experimentally observed decrease of the tilting angle with film thickness (0.85ML to 

6ML) is also pointed out in the model (figure 4.13). We presume that the weakening of the 

strain with increasing film thickness induces the flattening of tilted mosaics, which is 

accompanied by an adaptation of the lattice parameter in atop and hollow regions [184]. This 

results in a continuous increase of the lateral size of the tilted mosaics while they flatten until 

a complete flattening of the whole film surface. The relaxation model presented above (figure 

4.13a) is also in accordance with the measured tilt angles from LEED (figure 4.12). For 1ML 

thick films, the tilt of 5.2° involves a mosaic of 10.52Å (two and a half MgO unit cells). This 

results in a height difference of 0.95Å between the atop and the hollow areas. Besides, this 

height difference could also induce a variation of the work function between the two areas 

[71]. This could be responsible for the enhanced STM topographic contrast observed at a 

certain sample bias (sect. II.2.1). As the positions of the field emission resonances (FER) 

depend on the sample work function (chap. 1, sect. II.3), a resonant state on top of one of the 

two areas could be hit at this bias6, which then provokes an increase of the STM-junction 

conductivity. In addition, the difference in the real topographic height, out of FER conditions, 

is possibly enhanced by the difference in the electronic distribution in the two areas. 

                                                 
5 MgO Young’s modulus is equal to 248.17GPa, 316.36GPa, and 348.92GPa along the <100>, <110>, and 
<111> directions, respectively [189]. GPa for Gigapascal. 
6 More likely, the resonance is reached in the high regions; otherwise, the topography contrast would have been 
compensated.  
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Figure 4.13b presents top views of the MgO film for thicknesses of 1ML, 2ML, and 3ML 

according to the relaxation model. It also aims to give a better understanding of the STM 

topographic images taken for approximately the same thicknesses. A simple simulation of the 

STM image of figure 4.8, using the 1ML and the 2ML top view images of figure 4.13b, is 

shown in figure 4.14. A better modeling of the MgO surface than in figure 4.14b would 

require the consideration of the electronic structure of the oxide surface and the bias 

dependence of the contrast. 

 

 

 

Figure 4.14: (a) An enlarged area from the STM image in figure 4.8 presenting the coexistence of the 
checkerboard-like (left) and the square-like (right) structures. (b) Simulation of the structures in (a) by 

using the 1ML and the 2ML images of figure 4.13b.  

 

 

For the sub-monolayer films, the superstructure periodicity was not observed on the STM 

images (figure 4.7a), since the average terrace width of the formed MgO islands is smaller 

than the superstructure period. On the other hand, it is remarked that the maximum lateral size 

of the small square-shaped islands is around 40Å×40Å. Yet, this is the size of a square area of 

the checkerboard superstructure without tilted mosaics around it. Therefore, this size 

maximum reflects the size limit of MgO pseudomorphic growth on the Mo substrate. The 

〈100〉 oriented edges of these islands reflect the dominance of non-polar step edges [21]. 

 

After the identification of the stress release in the MgO/Mo(001) films for low coverages 

(1ML to 6ML), the stress relaxation for a further increase of the thickness can be understood 

as follows. The top layers of thicker films are getting flatter and flatter and the stress-induced 

periodic structure will always be located at the first interface layers. This explains why the 

periodic structure remains visible in the GIXD analysis for all coverages (figure 4.10), thanks 
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to the large penetration depth of the X-ray radiation. With the STM, the periodic structure was 

barely seen at coverage of 12.5ML. In addition, the screw dislocations, which start to be 

observed at around 6ML coverage and became clear for the 12.5ML thick films (figure 4.7), 

are rather interpreted as being the result of the accommodation of phase-misfit between 

merging strain-relaxed MgO islands having different superstructure phases [190]. The 

accommodation of the phase-misfit takes also place in the thinner films (1ML to 6ML), but in 

a different manner. As they are characterized by a smaller stiffness than the thick ones [191], 

the merging thin islands are able to relieve the misfit from the border side into the volume. 

This may explain the observed perturbation of the periodic superstructure in the STM images 

across the domain boundaries (figures 4.7c and d). As the stiffness increases, the relaxation of 

the misfit between the islands is more and more concentrated around the domain boundaries, 

and the screw dislocations are more probable to appear. The stiffness behavior is also 

reflected by the random alignment of the domain boundaries along non-polar and polar 

directions in the thinner films (1ML to 4ML). The existence of polar edges can also be 

favored by a stabilization role played by the metal support [192]. The stiffness increase and 

the decoupling from the metal substrate, which become more efficient with the film thickness, 

force the edges of the domain boundaries to orient along the non-polar directions, which are 

the 〈100〉 (figures 4.7d and 4.7e).  

The above interpretation of the strain relaxation behavior of the MgO/Mo(001) films 

should be, in the future, checked by an experimental investigation of the elastic properties of 

the films and by a suitable theoretical treatment. 

 

In the next paragraph, the LEED pattern behavior shown in figure 4.6 is discussed in the 

light of the relaxation model presented above.  

Figure 4.15 shows a two-dimensional fast Fourier transformation (2D-FFT) of an ordered 

network of points on the top of which a checkerboard pattern is superimposed. The orientation 

and the periodicity of the model structures in figure 4.15a correspond to the atomic 

configuration of an MgO monolayer and the strain-induced periodic superstructure, as 

presented in figure 4.13. The 2D-FFT picture (figure 4.15b) simulates the LEED pattern from 

the proposed relaxation model, without taking into account the 3D character of the surface.  
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Figure 4.15: (a) Outline representation of the atomic and strain-induced structures in a 1ML thick 

MgO film according to the relaxation model. (b) 2D-FFT of image (a). Figure (b) represents a LEED 
simulation of (a). 

 

 

At the first glance, the superstructure periodicity present on the FFT image seems to do 

not exist on the recorded LEED patterns of figure 4.6. This would mean that the periodic 

network observed on the STM images at low coverages, as well as from GIXD measurements, 

does not produce any structure in LEED. However, a careful examination of the LEED 

patterns challenges this statement. A superposition of a point array corresponding to the 

superstructure periodicity on the experimental LEED pattern reveals that every LEED reflex 

might be formed by a number of superstructure spots (figure 4.16). The remark is valid for the 

LEED patterns with different primary energies and from different MgO thicknesses (figure 

4.16). So, the periodic network observed on the STM images at low coverage contributes to 

the LEED pattern. Nevertheless, despite the concordance of the last conclusion, two 

phenomena, which depend on the film thickness and LEED energy, still need to be clarified: 

(i) The unexpected presence of superstructure spots with high diffraction-order (up to the 3rd 

order with respect to the main reflexes), figure 4.16c. Generally, the convolution between the 

diffraction intensity due to an atomic arrangement and a superstructure (like in figure 4.15a) 

makes only the two first orders of the superstructure appearing on the LEED screen [193]. (ii) 

The absence/presence of some superstructure spots along the 〈110〉 directions.  
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Figure 4.16: (a) and (b), superposition of a periodic structure on top of the LEED patterns of a 3ML 
thick MgO/Mo(001) film taken at (a) 50eV and (b) 140eV electron energy. The superposed structure 
has the same periodicity and the orientation of the strain-induced checkerboard-like structure (figure 
4.13). The white straight lines delimit the surface Brillouin zone. (c) On the left side, zooms into the 

areas framed with white dotted lines in (a) and (b). For the sake of clarity, schematic reproductions of 
the zoom-figures are presented on the right side. The gray regions represent the illuminated areas in 

LEED. (d) Similar treatment of (c) made on the LEED patterns of a 6ML MgO/Mo(001) film. The 
identical shape of the spot profiles of the 3ML film at 50eV and of the 6ML film at 140eV indicates 

alike scattering conditions. The maximum order of diffraction spots due to the superstructure 
increases with LEED energy and decreases with film thickness. 
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The first fact can be understood by considering the presence of tilted mosaics. As 

discussed above, these mosaics generate diffraction satellites at fix positions on the LEED 

screen for different LEED energies (figures 4.6 and 4.12). Thus, more high-order LEED spots 

of the superstructure might be fed by the intensity of the satellites with increasing energy. 

Furthermore, since the satellite positions move towards the fundamental spots with increasing 

film thickness (figure 4.12), the maximum order of the observed diffraction spots becomes 

lower for thicker films. 

The second phenomenon is rather complex and is still under investigation. However, it 

may be understood as follows: The appearance and disappearance of LEED spots with 

varying the primary energy could be due to the known variation of the LEED spot intensities 

versus incident electron energy (so-called I(V) curve), as induced by single and multiple 

electronic scattering in the film [194]. In this case, the I(V) curve of an MgO film modulated 

by the strain-induced superstructure has to be calculated and compared to the experience. On 

the other hand, when only the single scattering of the electrons is considered, the presence of 

a regular height variation on the surface induces in-phase and out-of-phase interferences of 

the scattered electrons at different energies [193]. In the out-of-phase conditions, every 

fundamental spot splits into two spots along each direction of height variation (figure 4.17). 

Hence, according to the relaxation model (figure 4.13), the periodic distribution of high and 

low areas along the 〈100〉 directions in the MgO thin films would lead to the splitting of every 

fundamental LEED spot into four spots (two spots along the [100] and two others along the 

[010]) at the out-of-phase condition. So, if we consider the (0,1) spot of the LEED pattern 

from a 3ML MgO film (figure 4.16), then the missing central intensity at 50eV might be 

related to an out-of-phase scattering of the electrons. The in-phase condition could now be 

reached at 140eV, when the central intensity appears. The in-phase and the out-of-phase 

conditions correspond to scattering phases7 S = n and S = n ± 1/2 (n: integer), respectively. 

Taking S = 1/2 for 50eV and S = 1 for 140eV results in a height difference of about 1Å. In 

other words, the average height difference between the low and the high areas in the 3ML 

MgO film is 1Å. Performing the same height calculation for the 6ML film, and taking S = 1/2 

for 140eV, gives an average height difference of about 0.5Å. Theses heights are in a good 

agreement with the proposed relaxation model (figure 4.13). 

  

 

                                                 
7 S = π⋅ ⊥ 2Kd , d regular distance between the atomic planes,⊥K perpendicular momentum of the electrons. In 

the actual case, d represents the step height. 
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Figure 4.17: (a) A cross section of a surface consisting of a regular step array, and (b) the 

corresponding 2D reciprocal lattice with the Ewald sphere. With the shown position of the Ewald 
sphere, the (0,0) reflects the in-phase condition, and the (1,0) the out-of-phase condition between 

adjacent terraces. Figure reproduced from [193]. 
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III.  Optical properties of MgO/Mo(001) thin films 

III.1.  Electroluminescence of MgO films  

III.1.1.  Results 

Electroluminescence measurements are performed on thin MgO films grown on Mo(001). 

The photon emission is excited via electron injection from the STM tip into the MgO surface 

in the field-emission regime (chap.2, sect. III.2). Emission spectra are acquired for electron 

energies ranging between 40eV and 200eV. Hereby, current and acquisition time are limited 

to 1nA and 60s, respectively, to reduce electron-induced damage of the film [195]. With 

increasing electron energy, an exponential increase of the photon yield is observed. However, 

the spectral characteristic of the emission remains unchanged. Figure 4.18a presents a series 

of photon emission spectra taken at –200V tip bias for MgO films with increasing thickness. 

Spectra excited with lower electron energies (40eV) are qualitatively similar, but show 

reasonable signal to noise ratios only for extended accumulation times (figure 4.18b). In 

almost all spectra, two emission bands are identified, located around 280nm (4.4eV) and 

400nm (3.1eV), respectively. With increasing film thickness, both bands gain intensity, 

whereby the low-energy band at 3.1eV is more affected. Saturation of the total emission yield 

as a function of film thickness is observed for films thicker than 40ML.  

As geometric and electronic tip properties slightly vary from one experimental run to 

another, the set-up does not allow for a quantitative comparison of the emitted light intensity. 

This means, identical bias/current conditions might yield different emission cross-sections.  

Besides, the Bremsstrahlung created by the injection of high-energy electrons into the 

sample has to be taken into account as additional source of high-energy photon emission. The 

cut-off of the optical system (chap.2, sect. IV) creates an artificial maximum between 250nm 

and 270nm that might contribute to the 280nm band. The effect is strongest for thin MgO 

layers, because the Bremsstrahlung is more effectively produced by electron injection into the 

underlying metal support.  
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Figure 4.18: Photon emission spectra collected from (a) MgO films with increasing thickness for a 

constant excitation bias (Utip= -200V), (b) a 100ML thick MgO film (Utip= -40V). All the spectra were 
taken for a field emission current of 1nA and an accumulation time of 60s. 

 

 
 

III.1.2.  Discussion  

Optical measurements of a freshly cleaved MgO(001) single crystal reveals no photon 

absorption and low reflection in the visible and the near ultraviolet range, and the optical 

activity starts only when the energy of the exciting photons/electrons is close to the MgO 

bandgap, where excitonic processes start to take place [196]. However, measurements from 

high-surface-area MgO samples, such as powders [22] and smokes (nanocubes) [176], reveal 

a luminescent spectrum, when excited by UV light with energies, much lower than the 

bandgap of the bulk solid. These new luminescence bands are traced back to local surface 

states induced by the presence of surface point defects, which locally modify the electronic 



Morphological and Optical Properties of MgO Thin Films on Mo(001) 
 

 

94 

charge distribution. The most important point defects on an MgO(001) surface can be 

classified into three types [143]: (i) Ions with reduced coordination, (ii) ion vacancies, and 

(iii) adsorbed species (e.g. hydroxyl groups, impurity atoms). 

The first category concerns the sites where the ions are no longer fivefold coordinated 

(5C) but in low coordination. These sites are encountered along edges (4C), steps (4C), at 

corners (3C), and kinks (3C) (figure 4.19). The typical steps on MgO(001) surface align most 

of the time with the 〈100〉 direction, which is the most stable direction, since the ion 

coordination is reduced as little as possible, and the stoichiometry of the crystal is maintained 

along it, resulting in a zero dipole moment [21].  

 

 

 
Figure 4.19: Model surface showing the different low-coordinated ion sites and a neutral F center on 

an MgO(001) surface. 
 

 

 

The second category of defects refers mainly to single oxygen vacancies, which are 

usually called color centers or F centers (F assigns to Farbe, a German word meaning color). 

The F center can exist as neutral one, where two electrons reside at the defect site, or as 

charged center having one or zero electrons. In the last two cases, the defect has a net charge 

of +1 or +2, [21], and is denoted F+ or F2+ center, respectively. 
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The creation of an F center in the MgO lattice is accompanied by a relaxation of the 

lattice aiming to maintain local charge neutrality [21,143]. An F center can be created at 

different oxygen sites in the MgO; therefore, it can be 6C, 5C, 4C, or 3C coordinated as well. 

The local alteration of the surface electronic structure as induced by the presence of the defect 

generates new energy states inside the bandgap. Figure 4.20 shows calculated energy states of 

F and F+ centers as well as of excitonic states located at terraces and corners of the MgO 

surface [197]. 

 

 

 
Figure 4.20: Diagram showing ab-initio calculated energy positions of different defect states in the 

MgO surface. IP (Ionization Potential). Figure reproduced from [197] 

 

 

 

Based on this theoretical modeling, the recorded photon emission (figure 4.18) can be 

attributed to two processes, which involve either low coordinated sites or F centers. The first 

step in both processes is the formation of surface excitons created from the interaction of O2- 

ions with the impinging electrons. Thereby, electron transition from the O2- ions (Valence 

band) to the neighboring Mg2+ ions (Conduction band) takes place. The excitons are 

dominantly excited at terrace sites (5C sites), which represent the most abundant surface sites. 

The created excitons on the MgO surface are mobile and can diffuse away from their 

excitation points in a random-walk type of motion [25]. The diffusion stops when the 

electron-hole pair is trapped at a defect site. The trapping occurs because of the locally 
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reduced bandgap and the resulting enlarged exciton binding energy at the defect [25]. The 

defect sites are therefore preferential recombination centers for surface excitons and dominate 

the emission characteristics of MgO. In some photoluminescence measurements on defect-

poor MgO nanocubes, two emission bands have been identified at 3.84eV and 3.2eV and 

assigned to the radiative recombination of excitons at 4C edge and 3C corner sites, 

respectively [25,23]. This interpretation is in accordance to previous data on MgO smokes 

[150] and theoretical calculations [25,197]. Slightly different results were reported by other 

groups, with emission bands somewhat red-shifted to 3.2eV for the 4C and 2.7eV for the 3C 

emission centers [22,133]. On the other hand, an emission band at 3.2eV detected for MgO 

single crystals was claimed to originate from an emission mechanism involving F+ centers 

[198,199]. 

During our spectral acquisition, an area of around 1μm2 is exposed to 1nA flux of field 

emitted electrons. It results in an electron exposure of about 500 electrons per surface oxygen 

atom every second. For a tip bias at -200V, oxygen atoms are highly probable to desorb from 

the MgO surface, creating color centers in an Auger-like process [200]. Yet, if the observed 

photon emission (figure 4.18) involves F and F+ centers, the emission intensities should 

increase rapidly during the acquisition time. However, none of the MgO recorded 

electroluminescence spectra shows such a behavior. The photon yields as well as the spectral 

characteristics of the MgO emission were found to be constant over the acquisition time. 

Moreover, at low tip bias (e.g.: -40V), the cross section for F center creation is small [200], 

and in spite of this, clear characteristic spectra could be obtained (figure 4.18b). Furthermore, 

the intentional creation or annihilation of F centers in the whole surface does not produce any 

change which could relate exciton decay at those centers. Indeed, as presented in figure 4.21, 

color centers have been intentionally created into the MgO surface by exposing the film 

during 10 minutes to a flux of energetic electrons (1mA/300eV). Compared to the spectrum 

taken before electron bombardment, the emission intensity from the bombarded film is found 

to be smaller. This points to a minor role of surface color centers in the emission process 

detected here. The reverse approach, namely the removal of potential colour centers by 

healing MgO films in 1x10-7 mbar oxygen, led to a similar conclusion, as the emission yield 

was not completely quenched even after prolonged O2 exposure (figure 4.18b). All these 

observations suggest that F centers formed during spectral acquisition are not the main cause 

of the light emission, and thus, they are ruled out as the dominant source for light emission 

observed in this experiment from the MgO surface.  
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Figure 4.21: Photon emission spectra from a 30ML thick MgO film (Utip= -240V, I =1nA). The 

experiment is performed to check the role of color centers in the electroluminescence of MgO films. 
Upper curve: As prepared film, central curve: After electron bombardment (1mA/300eV/10min) to 
create color centers, and lower curve: After exposure to 45 Langmuir O2 to annihilate the color 
centers. Neither the changes in the spectral shape nor the intensity variation correspond to an 

electroluminescence mechanism that involves color centers.  

 

The two bands in the optical emission spectra are therefore interpreted as signature of 

radiative exciton decays at low-coordinated MgO sites. The emission peak at 3.1eV agrees 

well with the main feature detected in previous photoluminescence experiments on cube-

shaped MgO nano-crystals [133,25,201]. Based on model calculations, this band has been 

assigned to emission centers located at 3C corner sites in the MgO surface [25]. The second 

peak measured at 4.4eV in this experiment is interpreted as an emission pathway involving 

higher coordinated sites. Similar bands in photoluminescence spectra have been attributed to 

emission from 4C anion sites located at MgO step edges before [25,201]. An unambiguous 

assignment of the optical pathway is not possible here due to the less-regular film morphology 

compared to the well-defined MgO nanocubes.  

MgO luminescence peaks observed in our experiment are generally red-shifted with 

respect to earlier photoluminescence data. A number of reasons might be responsible for this 

discrepancy. The limited thickness of the MgO film supported by Mo(001) crystal might 
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enable interactions between electron-hole pairs in the oxide and their image in the highly 

polarizable metal support, which could lead to reduced excitation energies.  

Finally, the observed dependence of the emission yield on the film thickness is connected 

to the probability for a surface exciton to reach a low-coordinated step or corner after 

activation on a distant terrace site. This probability depends on the lifetime of the electron-

hole pair and the surface morphology. In the case of ultra-thin MgO films on Mo(001), the 

exciton lifetime is governed by the presence of non-radiative decay channels provided by the 

metal support (Landau damping). The exciton lifetime, and therefore its probability to 

undergo radiative recombination, increases when the MgO surface is spatially decoupled from 

the Mo substrate via a thick oxide spacer. This behavior is reflected in our observation where 

the emission yield initially increases with film thickness but saturates for higher MgO 

coverage. The influence of the metal support apparently vanishes for films containing more 

than 40 layers, which enables a rough estimation of the interaction length between MgO 

surface excitons and electronic excitations in the Mo support. 
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III.2.  Au deposition and MgO optical behavior 

III.2.1.  Au particle deposition 

The Au particles are prepared via vapor deposition from the gas phase onto MgO films 

held at room temperature. To identify the nucleation sites of the Au particles, two deposition 

schemes are employed: (i) Au evaporation with a negative potential of –800eV applied 

between sample and gold doser (referred to as ‘sputtered sample’) and (ii) deposition with 

doser and sample hold at the same potential (referred to as ‘non-sputtered sample’). In the 

first procedure, a small amount of Au+ ions formed in the evaporation process (≈0.5%) is 

accelerated towards the MgO surface and creates additional defects, acting as potential Au 

nucleation sites (chap.3, sect. II.2.2). In the second case, nucleation takes place exclusively on 

the pre-existing adsorption sites of the oxide film. The amount of deposited Au on MgO was 

varied between 0.06ML and 2.50ML. The Au coverage is calibrated via Au deposition onto 

clean NiAl(110), where gold grows in a layer-by-layer fashion. The coverage is then directly 

determined from STM images via the size of the 2D Au islands. To explore the influence of 

the MgO thickness on the Au nucleation behavior, Au deposition is investigated on 12.5ML 

and 25ML thick MgO films. 

Figure 4.22 shows a series of STM topographic images of MgO films after deposition of 

Au with increasing coverage. The figure reveals that already a deposition of small amounts of 

Au onto the MgO surface (0.06ML) leads to the formation of aggregates. The Au particle 

density is rather similar for sputtered and non-sputtered samples in this growth stage. 

However, the particle arrangement distinctively differs for the two Au deposition procedures: 

the Au particles are nearly homogeneously distributed on the steps, corners, and terraces of 

the MgO surface when Au is sputter-deposited. On the non-sputtered samples, Au exclusively 

nucleates along step edges and at corner sites, while almost no particles nucleate on the 

terraces. The difference can be attributed to the presence of artificial surface defects that are 

created by the impact of energetic Au+ ions during sputter-deposition of Au. On non-sputtered 

samples, heterogeneous nucleation takes place at the low-coordinated sites that exist on the 

as-prepared MgO surface (sect. II.2). The absence of Au particles on the MgO terraces 

suggests that point defects are either not available or unimportant for the Au nucleation at 

room temperature. Besides, no obvious effects of the MgO thickness on the nucleation of Au 

particles are noticed on these non-sputtered films.  
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Figure 4.22: 23×23nm2 STM topographic images of MgO films grown on Mo(001) after deposition of 
Au with a coverage, from left to right, of 0.06ML, 0.6ML and 2.5ML (US = +3.0 V, I = 0.05nA). The 
MgO films are 12.5ML thick in (a-f), and have a thickness of 25ML in (g-i). While particles in (a-c) 
are prepared by a sputter deposition of Au, they are grown in thermodynamic equilibrium in (d-i). 
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From the STM measurements, the density, shape, and size of the deposited Au particles 

are found to be dependent on the Au coverage, on the deposition procedure, and on the MgO 

thickness. The evolution of the structural properties of the differently deposited Au particles is 

reported on figure 4.23. The figure shows that at low Au coverage (around 0.06ML), the Au 

atoms assemble into small, flat islands, indicating enhanced metal-oxide adhesion as induced 

by the Mo support below the oxide [202]. Extended 2D islands, as in case of Au on a 3ML 

thick MgO film on Ag(001) [161], are not detected here. This deviation is attributed to the 

larger thickness of our MgO films with respect to the cited experiment, which reduces the 

influence of the metal support.  

When 0.5ML to 1.0ML Au is deposited, the aggregates quickly thicken to compact three-

dimensional particles. These particles are characterized by a height to radius ratio of around 

0.5 and 0.7 for non-sputtered and sputtered samples, respectively (figure 4.23c). Following 

the Wulff construction principle, the aspect ratio decreases with increasing adhesion at the 

metal-oxide interface [111,114]. Therefore, the lower aspect ratio observed on non-sputtered 

samples indicates relatively strong Au-MgO interactions at steps and corners, while the 

binding of particles to artificial defects is comparatively weak. The more prominent difference 

between sputtered and non-sputtered samples is the drastic change in particle density (figure 

4.23a). For the sputtered samples, the density sharply increases with metal exposure and 

peaks at approximately 65x1011cm2. For non-sputtered samples, the nucleation density rises 

only slowly and levels out at a value of 15x1011cm-2, which is four times smaller than for 

sputtered samples. 

For an Au coverage larger than 1ML, a third growth regime becomes noticeable. The 

particles develop into large crystallites with hexagonal or polygonal shapes, indicating the 

formation of (111) oriented facets. In addition, the particle density starts to decline again as a 

result of coalescence between neighboring aggregates on the surface (figure 4.23a). The 

coalescence is also responsible for a gradual reduction of the particle’s aspect ratios (figure 

4.23c). Due to intergrowth, the lateral particle dimension drastically increases while their 

height stays approximately constant. The difference between sputtered and non-sputtered 

samples is less apparent in the high-coverage regime, which indicated that the morphology is 

not influenced by details of the nucleation behavior anymore.  

The effect of MgO thickness for non-sputtered sample on Au particle geometry can be 

rationalized as follows: Au particles on thick layers (25ML) exhibit larger aspect ratios (more 

3D-like), than those grown on thinner films (12.5ML) (figure 4.23c). This observation is 

attributed to a slight increase of the Au-MgO binding strength on thinner films due to a 

residual influence of the Mo support which induces a flattening of the particles according to 
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Wulff’s principle [111,114]. With increasing oxide thickness, the Mo contribution vanishes 

and Au particles grow with 3D shapes as expected for Au on bulk MgO [111]. 
 

 

 

 

Figure 4.23: (a) Particle density, (b) averaged particle height, and (c) aspect ratio of Au particles on 
12.5ML and 25ML thick MgO films. The particles are either prepared by sputter- or non-sputter 

deposition of Au. These data are derived from STM measurements as shown in figure 4.22. The lines 
are guides to the eye. 
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III.2.2.  Au-dependent evolution of MgO optical behavior  

Figure 4.24 presents typical optical spectra of MgO thin films after exposure to increasing 

amount of Au following the two different manners discussed before. The optical emission 

from MgO films was stimulated by injection of field-emitted electrons from the STM tip. The 

spectra were recorded using a grating spectrograph blazed at 500nm, unlike the data shown in 

figure 4.18 and 4.21, where a blazing of 300nm was used (chap.2, sect. III.2). As the optical 

sensitivity of the 500nm grating is highest between 500nm and 700nm and declines around 

400nm (chap.2, sect. III.2), the spectrum of bare MgO exhibits an asymmetric emission line 

with a weak shoulder around 550nm. Also, the position of the intrinsic MgO emission from 

the corner sites is systematically shifted from 400nm (3.1eV) to about 420nm (2.95eV), and 

the typical luminescence at 280nm (4.4eV) from edge sites is almost completely suppressed. 

The use of the 500nm blazed grating is motivated by its high optical sensitivity between 

600nm and 650nm range, where the position of the optical response of the Au particles is 

expected; while the sensitivity of the 300nm blazed grating is comparatively small in this 

range (chap.2, sect. III.2). 

It becomes clear from figure 4.24, that the emission spectrum of MgO is considerably 

altered upon gold deposition. Already in the low-coverage regime, a new emission line 

emerges in the wavelength region between 600nm and 650nm (2.0eV to 1.9eV). With 

increasing Au exposure, this peak gains intensity with respect to the MgO related feature and 

finally dominates the optical spectra for 2.5ML nominal Au thickness. The new emission line 

is attributed to the radiative decay of Mie plasmons, excited in the Au particles by the electron 

injection (chap.1, sect. III.2.3). The emission here corresponds to the (1,0) Mie plasmon 

mode, because electron injection from the tip exclusively excites this mode. The plasmon 

energy of a spherical Au particle can be estimated for a given dielectric surrounding using 

formula (1.24). Assuming an Au particle environment composed from 30% MgO (ε MgO = 3.2) 

and 70% vacuum, the plasmon energy computes to 2.2eV, which is in reasonable agreement 

with the peak position observed in the optical spectra. The assignment of the new emission 

line to Mie-plasmon excitations in Au particles is corroborate by the observation of similar 

features in the optical response of Au particle ensembles on various dielectric supports 

[203,204]. In this section of this chapter, the focus is mainly on the influence of nucleation 

and growth of Au particles on the optical activity of MgO films. It is not aimed to discuss the 

evolution of the Mie energy position of the Au particles as the function of their aspect ratio 

and density for the different preparations (figure 4.23c). The effects of the morphology of the 

particle ensemble on the Mie plasmon energy have already been discussed in details for 

similar systems in the previous chapter (chap.3). 
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Figure 4.24: Normalized photon emission spectra recorded for MgO thin films covered by an 
increasing amount of Au. (a) Sputter-deposition of Au onto a 12.5ML thick MgO film. (b) Non-sputter 
deposition of Au onto a 25ML thick film. The spectra were taken for a field emission current of 1nA 

and tip bias of Utip = -200V with an accumulation time of 60s. The spectra are fitted with an 
asymmetric and a symmetric Gaussian to account for the MgO and the Au contribution, respectively 
(as shown for the central spectrum). The large triangles mark the maximum position of the respective 

fits in all spectra. 
 

 

The general evolution of the MgO luminescence with increasing Au exposure, where the 

Au Mie plasmon radiation gains intensity with the detriment of MgO emission line, is rather 

similar for sputtered and non-sputtered samples. Nevertheless, a more careful evaluation of 

the spectra provides valuable insights into the growth characteristics of gold in both cases. 

The analysis is performed by the deconvolution of the emission spectra into intensity 

stemming from low-coordinated MgO sites and intensity related to Au Mie plasmon 

resonance. To model the MgO contribution, the photon emission of the bare oxide is 



Chapter 4 

 

105

described by an asymmetric Gaussian peaking at 420nm. This spectral shape is kept constant 

during the following fitting procedure, modifying only position and intensity of the peak as a 

function of Au load. A Gaussian curve with adjustable height, width and energy position 

(confined to a range between 500nm and 700nm) is used to account for the Au spectral 

contribution. The sum of both components reproduces the experimental spectra and allows a 

separation of the total photon response into a MgO and an Au portion. The fitting procedure 

of the optical spectra revealed a red shift of the MgO emission line from 420nm for bare MgO 

to 455nm for films covered with 2.5ML of Au. The shift indicates changes in the dielectric 

environment and the local electronic structure of the MgO emission centers during Au 

exposure. This provides a first evidence for the strong interaction between the optically active 

MgO sites and the Au deposits. Also, the Mie-plasmon energies change considerably with 

increasing Au coverage. For non-sputtered samples, the plasmon shifts from 2.0eV to 1.85eV 

with increasing Au coverage, due to the initial increase and then the relative stabilization of 

particle aspect ratio as seen in figure 4.23c. For sputtered samples, the Mie energy is around 

2.0eV at low and high Au coverage, but runs through a minimum of 1.8eV at approximately 

0.5ML Au thickness. The decrease of the plasmon energy is connected to the formation of Au 

particles with large aspect ratios (∼0.7) in this intermediate growth stage (figure 4.23c).  

To quantify the evolution change of the MgO emission intensity as a function of Au 

coverage, the relative intensities of the fitted Au and MgO peak areas (AAu, AMgO) are plotted 

in figure 4.25. The relative intensity Irel is defined as the ratio between AAu or AMgO and the 

integral intensity (AMgO+AAu), i.e., IAu
rel = AAu / (AMgO+AAu) and IMgO

rel = AMgO / (AMgO+AAu). 

Since the sum of IAu
rel and IMgO

rel is equal to 1, the plots in figure 4.25 follow a mirror-like 

fashion. 

Figure 4.25 shows that the MgO intensity follows the same general trend for sputtered 

and non-sputtered samples as well as for thin and thick MgO films: The MgO-related signal is 

reduced more or less rapidly from 1.0 for bare MgO to ~0.4 for an Au coverage of 2.5ML. 

The non-zero MgO signal even at high coverage indicates that a fraction of optically active 

centers survives between the particles. The quenching rate of the MgO signal is, however, 

rather different for the various preparation procedures. The fastest decay is observed for thick 

MgO films and a non-sputter deposition of gold, where the intensity decreases roughly 

exponentially with Au coverage (figure 4.25, dotted line). For thin films and sputtered 

samples, the intensity declines more gradually and follows a nearly linear dependence on the 

Au load (figure 4.25, dashed and solid lines). This difference is easily understood on a 

qualitative base: For Au deposition in thermodynamic equilibrium (non-sputtered sample), the 

particles nucleate at intrinsic MgO binding sites (heterogeneous nucleation) (sect. III.2.1). 

These nucleation sites are apparently identical to the optically active centers in the oxide 

surface, as manifested by the rapid decay of the MgO emission intensity during Au 
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deposition. So obviously, the characteristic MgO emission centers are located at edge, corner, 

and kink sites, and seem to play an important role in the Au nucleation process on the MgO 

surface. 

 

 

Figure 4.25: Relative contributions of the MgO and Au-derived photon signals to the integral 
emission intensity as a function of Au coverage. The open symbols depict the relative MgO intensity 

and the closed symbols are for the Au values. The lines are guides to the eye. As the Au coverage 
increases, the MgO emission is quenched. The light emitted from MgO reduces most rapidly for thick 

MgO films, where Au particles nucleate exclusively at edge, corner, and kink sites. This behavior 
confirms the location of the optically active centers on these low-coordinated sites. 

 

For thinner MgO films, the Au nucleation characteristic is altered by the influence of the 

Mo support and the resulting increase of the Au-MgO adhesion. As a consequence, the 

nucleation process is not exclusively governed by low-coordinated sites any more, but also 

takes place at MgO terraces [202]. As five-fold coordinated terrace sites are not relevant for 

the emission properties of MgO, the optical response declines less rapidly with increasing Au 

load than on thick films. This trend is further amplified for a sputter-deposition of Au onto the 

MgO films. The impact of high-energy Au+ ions creates new binding sites in the oxide 

surface, which compete with the intrinsic nucleation centers and diminish their importance in 

the particle formation process. Consequently, low-coordinated MgO sites remain empty even 

for higher Au loads and continue to contribute to the optical signal, thus leading to the slower 

decline of the MgO emission signal.  



Chapter 4 

 

107

The reason for quenching the MgO photon emission for increasing Au coverage might be 

related to (i) an opening of non-radiative decay channels for trapped excitons involving the 

Au particles, or to (ii) a change in the electronic configuration of low-coordinated MgO sites 

covered by the Au preventing trapping of excitons. Exciton decays involving the Au particles 

is the more plausible process and could even explain the relatively strong Mie-plasmon 

emission detected from rather small particles. In this scenario, excitonic modes trapped at 

particle binding sites could enhance the excitation cross-section of the Mie plasmon. A 

possible influence of Au deposits already in the creation process of excitons is excluded here, 

because MgO terrace sites governing the exciton formation are only sparsely covered with 

particles. The second possibility would infer that the excitons created at the terraces should 

decay with energies that are higher than from the 3C and 4C sites. In this case, a blue-shifted 

of MgO emission line should be observed. As the blue-shifted emission is in disagreement 

with the obtained results (figure 4.24), the possibility (ii) is discarded. 

The Au nucleation behavior on MgO/Mo(001) deduced from the present experiments is in 

general agreement with earlier experimental and theoretical studies. Heterogeneous nucleation 

was observed for various metals on the MgO surface, indicating the dominant influence of 

oxide defects in the initial adsorption process [111,205]. For thin MgO films on Ag(001), the 

defect-assisted nucleation of Au was directly derived from the quenching of the paramagnetic 

F+ defect signal in MgO with increasing Au load [206]. The importance of oxygen vacancies 

and low-coordinated edge and corner sites for the adsorption of metal atoms has also been 

predicted by theory and traced back to a strong increase of metal-oxide interactions at surface 

defects [136,207]. 
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III.3.  Photon mapping and local spectroscopy with the STM 

In order to localize the light emission-centers on the MgO surface, we have performed 

spatial-resolved optical analysis while imaging the surface topography of a 12.5ML thick 

MgO film using the photon-STM. In the next two sections, we have carried out this 

measurement by using two different STM tip materials, Au and Ag. The study includes 

photon mapping as well as optical spectroscopy of the MgO surface. The STM tips were 

obtained by electrochemical etching of Au and Ag wires. All the data presented below were 

obtained at liquid nitrogen temperature. 
 
 

III.3.1.  Au tip–MgO junction 

Optical maps of the MgO film taken with a gold tip for increasing sample bias are 

presented in figure 4.26 together with their corresponding topographic images. Intensive light 

emission starts to be detected when the sample bias reaches about 4.5V and stays detectable 

until 7V. The spatial distribution of the emitted light on the MgO surface strictly depends on 

the bias, i.e., the optical activity of a defined area is controlled by the sample bias. In the low-

bias regime, the emission is spatially confined to the center of large oxide terraces. The 

optically active area increases with sample bias until the whole top-most MgO layer appears 

bright at around 5V. Further increase of the voltage causes a rapid decrease in the emission 

intensity at the upper oxide terraces, while areas around the dislocation step regions become 

bright. These dislocation steps are induced by the formation of screw dislocations at MgO 

grain boundaries that are typical for MgO/Mo(001) films with thicknesses around 12ML (see 

sect. II.2). Around 6V, light emission is restricted only to the edge lines. The spectral 

distribution of the emitted light is found to be independent of the STM tip location on the 

MgO surface and of the sample bias. The emitted light is not compatible with the intrinsic 

emission properties of the MgO surface, as illustrated by figure 4.27. The emission spectra 

obtained at 5V to 7V sample bias peak at around 750nm-800nm (~1.6eV), which is strongly 

red-shifted compared to exciton decay at corner (3.1eV) and step sites (4.4eV) (see sect. 

III.1.2). 

In addition to the light emission contrast, the MgO surface topography is found to exhibit 

strong bias dependency (figure 4.26). Whereby, at the light emission onset in the photon maps 

an artificial increase of the topographic height is observed in STM imaging. The same 

observation is made when light intensity drops-off.  
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Figure 4.26: 40×40nm2 topographic images and corresponding photon maps of a 12.5ML thick MgO film for different sample bias taken 
with Au STM tip. The tunneling current was set to 2nA 



Morphological and Optical Properties of MgO Thin Films on Mo(001) 
 

 

110 

 

 

 
Figure 4.27: Typical photon emission spectrum from Au tip-MgO/M0(001) junction measured while 

tunneling with 5V sample bias and 2nA current. The MgO thickness amounts to 12.5ML. 
 

 

The contrast variation in the MgO surface topography as a function of sample bias and at 

different place on the MgO surface (figure 4.26) is attributed to spatial variation of the 

conductivity of the STM junction. Furthermore, after depositing more than 2ML of MgO on 

the Mo(001) surface, the work function of the Mo reduces from 4.53eV to 2.5eV [208]. Thus, 

the used sample bias to excite light emission is higher than the MgO/Mo(001) work function. 

At this condition, the electron transport from the STM tip to the sample most likely involves 

field-emission resonance states (FER) (see chap.1, sect. II.3). Such resonances are 

characterized by a high electron transmission probability and carry a large portion of the 

electron current at elevated voltages. The bias position of FERs can be determined from 

distance-versus-voltage spectra (dz/dUS) taken with enabled feedback loop. Thereby, sharp 

augmentations in the conductance induce sudden changes in the tip-sample separation (z), 

which cause then pronounced maxima in the dz/dUS spectra. Figure 4.28a shows typical 

dz/dUS curves measured on flat MgO terraces and on dislocation step regions. The FERs on 

the different places of the MgO surface are clearly revealed by the oscillatory behavior of the 

conductance. The spectra obtained from both places are similar; however, the FER positions 

are shifted against each other by ~0.5eV in the presented spectra. As FER energies are 

sensitive to the work function (see equation 1.16), these shifts indicate a spatial modulation of 

the work function on the MgO surface. When going from a terrace to a dislocation step 

region, the work function seems to higher by ~0.5eV.  
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Figure 4.28: (a) Conductance of the Au–MgO tunneling junction (dz/dUs) as a function of the sample 
bias measured at a terrace and in a dislocation step region on the surface of a 12.5ML thick MgO 

film. z is tip–sample distance in the STM. A current of 20pA was stabilized by the feedback loop during 
spectral acquisition. The height signal was numerically differentiated. Maxima in the dz/dUs spectra 

correspond to field emission resonances. (b) Photon intensity versus bias plot acquired with a 
photomultiplier tube. Light emission maximum at each probed position occurs around the energy of 

the second FER level. 

 

 

In general, the work function is found to decrease at steps, as observed for metal surfaces 

[209]. This variation is attributed to the smoothing of the charge distribution around the step, 

inducing a dipole moment directed inwards the surface which reduces the work function 

(Smoluchowski smoothing [210]). However, the variation in the local work function at defect 

regions might have different origins. On n- and p-doped semiconductor surfaces, work 

function changes are traced back to the appearance of surface states within the bandgap that 
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are localized exclusively at the step edges [211,212,213]. Whereas for n-type semiconductors 

the charges in these states induce band bending towards higher energies which results in an 

increase of the work function, for the p-types the work function decreases, as the band 

bending occurs towards lower energies [211,212,213]. The increase of the work function at 

steps on n-GaAs surface is found to be 0.45eV with Kelvin probe spectroscopy [213], which 

is in agreement with the measurements on the MgO surface (figure 4.28a). However, filled 

surface states have not been detected on the MgO surface so far.  

Alternatively, the presence of negative charges on MgO dislocation step regions would 

also provide a conclusive explanation of the local work function increase. Such excess 

charges induce a local dipole moment that hampers electron extraction from the film. These 

charges could exist as non-compensated charges related to oxygen excess either in the screw 

dislocation cores or along the grain-boundary steps (see figure 4.29). Such a non-

stoichiometry at defect regions have been observed for oxide crystals having a strong ionic 

character, like the α-Alumina [109,110,214,215,216]. The existence of such localized charges 

on the MgO dislocation step regions is, however, not verified; therefore, the precise reason for 

the local work function increase at the MgO/Mo(001) surface is not clear yet.  

 

 
Figure 4.29: Illustration of the work function increase at screw dislocation cores and dislocation 

steps at a grain boundary of the MgO surface. The sketch is made in the (100) plane, which 
corresponds to the slip plane of the screw dislocations for a 12.5ML thick MgO film on Mo(001). The 

represented negative excess charges are related to a local non-stoichiometry characterized by 
magnesium deficiency. 
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When correlating the bias-dependence of the Au tip-MgO conductance and the observed 

light emission intensity, as shown in figure 4.28, it appears that the maximum of emitted 

photon yield is obtained when the bias is around the second FER level. Furthermore, the 

separation between the first and the second FER levels is found to fairly correspond to the 

energy of emitted photons. Therefore, the detected light emission is attributed to radiative 

electron transitions from the second to the first FER level. The MgO film gives rise to FERs 

with long electron lifetimes, due to the small penetration probability of electrons from the 

FERs into states of the insulating oxide and the limited number of alternative propagation 

channels. As a result, radiative transitions of electrons between FER levels become possible 

and contribute to the photon response from the MgO surface. This mechanism is comparable 

to the light emission observed from quantum well states in a Na overlayer on Cu(111) [87], 

but it is rather untypical for metal junctions, due to the presence of efficient non-radiative 

recombination channels. In a strictly 1D picture, this radiative transitions between FERs are 

dipole forbidden. The dipole selection rules are however softened by the influence of the tip 

and the resulting 3D character of FER levels in front of the sample. Neverthess, as it is 

performed in case of Na thin film on Cu(111) [217], these radiative transitions and the 

resulting emission yield need to be verified by quantitative calculations in the future. 

The exact position of FERs depends on tip shape and tunneling current and can vary by 

several tens of an electron-volt in different experimental runs (chap.1, sect. II.5). Therefore, 

the photon energy from transitions between FERs in figure 4.28 does not exactly correspond 

to the level separation deduced from dz/dUs spectroscopy. 

The spatial dependence of the light emission from the MgO surface in the photon maps 

(figure 4.26) can now be traced back to the dependence of the FERs on the work function 

variation across dislocation step regions. With increasing sample bias, radiative electron 

transitions initially occur in the center of MgO terraces, characterized by a small work 

function and low-lying FER levels. Then the second FER is reached for the whole MgO 

terrace, which brightly contrasts against dislocation step regions in the photon maps. A further 

voltage increase shifts the resonance condition gradually to the dislocation step regions, which 

subsequently appear brighter in the optical measurements. 

On the other hand, the detected light could follow another process. The process consists 

of the opening of inelastic tunneling channels involving radiative tip-induced plasmons (TIP) 

(chap.1, sect. III.2.1). High photon yields are expected whenever the final state of the inelastic 

tunneling process matches a FER (see figure 1.11). The Au tip and Mo surface would play the 

active parts in supporting TIPs, while the MgO layer acts as dielectric spacer in addition to the 

vacuum gap between tip and sample. The tip dominates the spectral characteristics of emitted 

light, because the small imaginary part of the Au dielectric function drastically reduces the 

plasmon damping in the gold electrode (chap1. sect. III.2.1). The detected light emission is in 
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general agreement with earlier experiments, where optical emission peaks at approximately 

800nm were observed from tunneling contacts containing a Au electrode [33,218,219].  

In summary, the emission light from the Au tip–MgO surface detected in our experiment 

is related either to radiative transitions between field-emission resonances (FERs), to tip-

induced plasmons (TIPs) in the tip-sample cavity, or to the two processes at the same time, 

where the radiative electron transition could be enhanced by the TIP due the energy matching 

of the two phenomena. To check these assumptions, a second set of experiment has been 

performed with Ag tips (sect.III.3.2). 

 

 

III.3.2.  Ag tip–MgO junction 

The use of silver as STM tip extends the field-enhancement in the tip-sample cavity to 

higher energies (up to 3.5eV, see figure 1.10) compared to a gold tip [10]. This might 

facilitate the detection of high frequency optical modes like MgO excitons, which were not 

seen for Au tips.  

As summarized in figure 4.30, the topographic images and the photon maps obtained with 

an Ag tip shows similar behavior as the one for an Au tip. However, light emission is detected 

in the bias range from 4.5V to 14V, in contrast to the Au tip (from 4.5V to 7V). For bias 

voltages higher than 8V, the STM spatial resolution decreases, while photons are still emitted. 

In figure 4.30, the photon map taken at 8.5V shows that light is still detected whereas the 

spatial contrast has vanished. For biases higher than 14V, scanning becomes unstable and the 

tip can only be positioned at selected points above the surface. 
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Figure 4.30: 50×50 nm2 topographic image and corresponding photon maps taken at different sample 
bias from a 12.5ML thick MgO film using a Ag tip. A current of 2.0nA was used in all measurements. 

In the upper half of the photon map at 8.5V a smaller current of 0.2nA was used for some lines to 
define the dark level of the photon signal. 

 

 

The spectral distribution of the emitted light for different sample bias is presented in 

figure 4.31. Compared to the Au–MgO junction, the use of Ag as tip material results in a rich 

spectral behavior exhibiting a strong dependence on the excitation bias. At the emission onset 

around 4.5V, a single peak appears in the spectrum at 920nm (1.35eV) that gradually shifts to 

lower wavelengths with increasing voltage.  
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Figure 4.31: (a) Electro-luminescence spectra as a function of excitation bias from a 12.5ML thick 
MgO film deposited on Mo(001). The electron current was set to 2nA, the accumulation time per 

spectrum was 120s. 
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This trend is interrupted around 5V, when a second peak emerges at 700nm (1.8eV) in the 

spectra and quickly develops into the dominant feature. The peak runs through a pronounced 

intensity maximum between 6.5V and 6.8V excitation bias without changing its wavelength 

position and decrease again with further bias increase. At 7V, a faint shoulder around 500nm 

(2.5eV) becomes visible, which then develops into a broad peak visible over a large bias 

range (7.5V to 13V). Additional photon intensity is observed between 400nm and 450nm 

(~3eV) for excitation voltages above 10V, however, only with small emission yield. In the far 

field-emission regime (25V < Us <100V), the later emission peak becomes very intense and 

slightly blue-shifts to 400nm (3.1eV).  

To illustrate the evolution of different spectral components as a function of excitation 

bias, the emission spectra were deconvoluted into a set of Gaussian curves. To account for the 

different spectral lines in the spectra, four Gaussians were necessary to reproduce the intensity 

distribution for all bias voltages. The evolution of theses emission lines as a function of 

sample bias, as derived from the fitting procedure, is summarized in figure 4.32. 

 

In the following, the origin of the different spectral components is discussed. 

The long-wavelength emission (850nm-920nm) detected for low excitation bias is neither 

compatible with the intrinsic MgO emission nor with optical modes excited in the silver tip. 

Based on its distinct blue-shift and intensity decrease with increasing sample bias, the 

emission is assigned to tip-induced plasmons (TIPs). The Ag tip and the Mo sample are 

actively involved in TIP excitations, while the MgO film only acts as dielectric spacer in 

addition to the vacuum gap between tip and sample.  

A distinct influence of the dielectric MgO layer on the TIP emission characteristic is 

revealed, however, from the spectra. The onset bias of 4.5V is unusually high for TIP-

mediated emission, which starts at much lower voltages in pure metal-metal junctions 

[33,218]. Taking only energy conservation arguments into account, the onset is expected to be 

at 1.3V, when electrons have formally enough energy to excite the 900nm photons. The high 

onset bias in the present case is attributed to the absence of final states for inelastically 

tunneling electrons inside the MgO band gap. The excitation probability for TIP modes 

becomes relevant only when the inelastically tunneling electrons have enough energy to reach 

the MgO conduction band after an energy transfer to the TIP. From this consideration, the 

position of the conduction band edge can be determined from the difference between the onset 

bias and the TIP energy to be at 3.2eV. This value is verified by elastic tunneling 

spectroscopy, where a pronounced peak at 3.1eV marks the onset for electron transport into 

the MgO conduction band (figure 4.33a, dashed line). Assuming EF to be in the midgap 

position, a total band gap of 6.4eV is deduced for the 12.5ML thick MgO film, which is 

smaller than the bulk value of 7.9eV [154,144]. 
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Figure 4.32: Evolution of the emission intensity with excitation bias for selected wavelengths, derived 

from the deconvolution of the spectral series shown in figure 4.31. 
 

 

The emission peak at 700nm is not compatible with a TIP-mediated process, because 

neither its sharp intensity variation with sample bias, nor its constant peak position fit into the 

general picture of coupled plasmon modes. Its appearance falls into the bias regime, where 

field-emission resonances (FERs) start to control the electron transport between tip and 

sample. Typical conductance measurements of the Ag tip–MgO junction taken on an MgO 

terrace position are presented in figure 4.33a. As observed for the Au tip-MgO junction (sect. 

III.3.1), the conductance is characterized by oscillations due to transport via the FERs. Similar 

to the results for the Au tip, a shift of the FERs to higher energies is observed when 

measurements are done on a dislocation step region (data not shown here). 

 

In contrast to the Au tip-MgO junction (sect. III.3.1), here the characteristic 700nm 

photon peak is clearly related to radiative electron transition from the 2nd to the 1st FER level. 

This conclusion is based on the following reasons: (i) According to dz/dUs spectra, electron 

population of the 2nd FER and transition to the 1st level becomes possible at 5.5V-6.0V, in 

good agreement with the visibility onset of the 700nm peak. (ii) The energy separation 

between the 2nd and 1st FER amounts to approximately 1.6eV, which closely matches the 
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energy of the photon peak (1.7eV). (iii) The tip material affects only slightly the emission 

behavior, in contrast to the expectation of a TIP-mediated process. A pronounced emission 

peak of comparable wavelength (~750nm) was also detected for the Au–MgO junction (sect. 

III.3.1). (iv) The photon energy stays nearly constant when increasing the bias from 5.5V to 

more than 7.0V and moving the resonance conditions from the MgO terraces to dislocation 

step regions. It should be emphasized that the bias range for exciting the 700nm emission 

peak is mainly determined by variations in the FER energy position at different surface 

locations, such as terraces, steps, and dislocations. The intrinsic width of the FERs plays only 

a negligible role for the excitation bias range. 

 

 

 
Figure 4.33: (a) dz/dUs spectra taken on top of a MgO terrace on Mo(001) (I = 50pA). While the 

maximum in the dashed curve marks the onset of the MgO conduction band, the solid line covers the 
range of the lower field-emission resonances. (b) Energy diagram of the Ag tip–MgO/Mo(001) 

junction. Different emission channels that might contribute to the photon signal from the junction are 
indicated for different sample bias Us. Channel 1 corresponds to a TIP-mediated process involving 

inelastic electron tunneling. Channel 2 marks radiative transition between two field-emission 
resonances. Only transition from the 2nd to the 1st FER level is shown here. Channel 3 illustrates the 

radiative decay of an electron-hole pair. The change in tip-sample distance with bias voltage is 
omitted for clarity. 

 

 

The 700nm peak decreases sharply in intensity at bias voltages above 7V, when electrons 

from the tip cannot populate the 2nd FER any more. On the other hand, a step-like increase of 

the emission yield of 500nm photons is observed at 7V. This emission might be explained by 
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radiative transitions from the 3rd to the 1st FER level, which gives rise to an emission of 

500nm (~2.47eV) photons, according to the level energies deduced from the dz/dUs spectra. 

Besides, radiative transitions from the 3rd to the 2nd FER level leads to a photon emission at 

roughly 1500nm (~0.82eV). Since the spectral window of the optical system limit is at around 

1000nm (chap. 2, sect. III.2), radiative transitions between 3rd and 2nd FER states cannot be 

detected. So, the 500nm emission line is at least partly assigned to the onset of radiative 

transitions from the 3rd to the 1st level. A distinct spectral signature, as revealed for the 2nd to 

1st FER transition, is not observed in this bias range. The large width and small intensity of 

the 500nm peak might be owed to the short electron lifetime in the 3rd FER level. This is due, 

for instance, to easier electron penetration into the MgO film. The effect could be amplified 

due to the existence of competing decay channels like transitions to the 2nd FER level, 

coupling to TIP modes of similar energy, or enhanced scattering with electron-hole pairs in 

the Mo support. Only occasionally, transitions between the 3rd and 1st FER give rise to a 

pronounced emission peak as shown in figure 4.34. The morphological peculiarity of the 

MgO region that favors this particular recombination channel is not known. 

 
Figure 4.34: Photon spectrum showing a high contribution of radiative electron transitions from the 
3rd to 1st FER levels in the emission process from Ag tip–MgO junction. The electron current was set 

to 2nA, the accumulation time per spectrum to 120s. 
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The 500nm emission peak could also be compatible with radiative TIP modes. Using the 

model described in chapter 1-section III.2.1, the TIP position for an Ag-Mo junction without 

MgO film is computed to be 355nm (3.5eV). The emission at 500nm (~2.47eV) peak would 

therefore be red-shifted by 1eV compared to the theoretical value. Such deviation is, however, 

expected from the influence of the MgO film on the plasmon position. The MgO dielectric 

layer formed by the MgO film increases the polarizability of the tip-sample cavity with 

respect to a vacuum gap (εMgO=10 versus εVac=1) and shifts the TIP mode to lower energies. A 

similar behavior is well known for plasmon polaritons in metal particles that are embedded in 

a matrix with a high dielectric constant [12]. 

 

The emission line at around 420nm becomes only distinguishable at excitation voltages 

beyond 10V. It gradually shifts towards 400nm while developing into the dominant feature 

for excitation energies above 25eV, where the tip influence on the emission process can be 

excluded due to the macroscopic tip-sample separation. The position of the 400nm peak 

points to the intrinsic optical emission of the MgO film that has been assigned before to the 

radiative decay of excitons trapped at three-fold coordinated oxygen ions located at corners 

and kinks of the MgO surface (III.1.2). The visibility of the 400nm photon peak only for 

excitation energies above 10eV is not in conflict with an exciton-mediated light emission 

channel. The excitons are stimulated by impact ionization of valence-band states via the 

injected electrons, which require a minimum excitation energy of approximately 1.5 times the 

energy of the MgO surface bandgap, i.e., 1.5×6.2eV = 9.3eV (see chap.1, sect. III.3). High 

excitation cross-sections are only achieved at considerably higher impact energies, which 

suggest the importance of secondary processes, such as electron cascades and Auger decays, 

for the exciton stimulation (chap.1, sect. III.3).  

 

In conclusion, the observed complex optical behavior of the Ag–MgO STM junction 

(figure 4.31) does not follow a single emission mechanism, but involves several channels that 

are active in different sample bias windows. These emission channels are schematically 

elucidated in figure 4.33. 
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IV.  Conclusion  

The relationship between the optical properties and the surface morphology of MgO thin 

films deposited on Mo(001) was investigated for different film thicknesses. As a first step, the 

film surface topography and crystallographic structure were explored using STM and Low 

Energy Electron Diffraction (LEED) as well as Grazing Incidence X-ray Diffraction (GIXD) 

techniques, respectively. The film morphology is found to depend on the number of MgO 

layers and passes through different stages with increasing thickness, whereby the MgO 

follows a layer-by-layer growth fashion. The stress resulting from the 5.3% mismatch 

between the MgO(001) and the Mo(001) lattices relaxes by inducing a periodic superstructure 

at the MgO/Mo interface. This relaxation structure consists of alternated flat and tilted 

mosaics involving the first 7ML of the MgO film. For film thicknesses around 12ML, the 

MgO topography starts to present new features, namely screw dislocations, MgO<100> 

oriented steps, and tilted planes. Flat and defect-poor MgO films were obtained for 

thicknesses higher than 25ML. 

Using the Photon-STM, the optical properties of the MgO films were then analyzed by 

optical excitation with field-emitted or tunneling electron injection from the STM tip. In the 

field-emission excitation regime, the spectral distribution of the emitted light from differently 

thick MgO films are dominated by two emission bands located at 3.1eV and 4.4eV. These 

bands are assigned to the radiative decay of MgO excitons at 3-fold and 4-fold coordinated 

sites (corner, kinks, and step sites) and not at F-center sites for the following reasons: (i) 

Nucleation of Au particles at the low coordinated sites quenches the MgO optical signal, and 

(ii) creation or annihilation of F-centers in MgO surface does not alter the MgO emission 

bands. By performing optical excitation in the tunneling mode, different light emission 

mechanisms have been identified in an STM tip-MgO thin film junction, where Au and Ag 

tips were used. The onset of each mechanism is found to be dependent on the applied STM 

bias. At low sample bias, the optical response is determined by tip-induced plasmons that 

form between the noble metal tip and the Mo support and are weakly altered by the presence 

of the oxide layer. A dominant emission channel appears at bias voltages, at which electron 

transport in the junction is determined by field-emission resonances (FERs). Due to the 

insulating character of MgO, the FERs are sufficiently decoupled from the metal support to 

enable radiative electron transitions between higher and lower levels. A local increase of the 

MgO work function across the structural surface defects is deduced from the shift of the FER 

positions to higher energies. The optical signal related to excitons trapped at corners and kinks 

of the MgO surface are stimulated only by the injection of electrons at high sample bias, 

where the tip-sample distance is large. This results in a spatial resolution in the photon maps 

that is not better than 1nm, preventing the localization of the emission centers. 
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Summary and Outlook  
 

Summary  
 

The influence of the local morphological structure on the optical properties is studied 

using the Photon-STM for two systems: (1) Supported silver nanoparticle ensembles, and (2) 

MgO thin films deposited on Mo(001).  

To study the influence of particle aspect ratio on the optical response to injected field-

emitted electrons from the STM tip in Ag particle ensembles, dome- and disk-like particle 

ensembles with different densities were prepared on an alumina film grown on NiAl(110). 

The resonance energy of the excited Mie plasmon in the round Ag particle ensemble is found 

to shift to higher energies when the particle density increases. Such a shift is absent in the 

case of the disk-like particle ensemble, revealing an efficient electromagnetic coupling in 

ensembles of particles characterized by high aspect ratios. Besides, optical experiments were 

performed on ordered and disordered spherical Ag nanocolloids, prepared by a reverse 

micelle technique, on HOPG. The long-rang order of the size-selected Ag nanocolloids is 

found to weakly influence the Mie energy positions as compared to disordered ensembles.  

In the thin MgO films grown on Mo(001), a periodic superstructure consisting of 

alternated flat and tilted mosaics generates at the MgO-Mo interface. This superstructure 

results from the relaxation of the stress caused by the 5.3% misfit between the MgO(001) and 

the Mo(001) lattice constants. The tiled mosaics gradually flatten with increasing the MgO 

thickness. The film surface levels off completely at thicknesses above 7ML. However, for a 

12ML thick MgO film, other features, such as screw dislocations, tilted planes, and steps 

oriented along the <100> MgO directions, are clearly observed on the surface. These features 

are induced by the merging of relaxed MgO islands. Flat and defect-poor MgO films are only 

obtained for thickness above 25ML. The typical light emission spectra obtained from the 

MgO films are characterized by two emission bands located at 3.1eV and 4.4eV. Further 

experiments, namely, controlled Au nanoparticle nucleation and creation or removing of F-

centers on the MgO surface, were performed to check the origin of the MgO optical response. 

The radiative exciton decay at the low coordinated sites in the MgO surface, such as steps, 

corners, and kinks, is deduced to be the source of the detected emitted light. The localization 

of the emission centers in the tunneling mode could not be achieved, since the intrinsic MgO 

emission is detected only for tunneling conditions where the spatial resolution is significantly 

reduced. Nevertheless, by performing spatially resolved optical measurements other light 

emission processes have been identified. These radiative mechanisms relate to tip-induced 
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plasmons excited in the cavity between the STM tip and the Mo support, and to radiative 

electron transitions between field-emission-resonance states that form in the STM tip-MgO 

film junction. The dependence of the latter process on the sample work function allowed the 

observation of a local increase of the MgO work function around the structural surface 

defects. 
 

 
Future prospects  
 

Although the initial aim of this work is essentially achieved, there are still some open 

points, which should be investigated in the future in order to reach better understandings, 

especially concerning the optical properties of the MgO/Mo(001) system.  

 

Two prospects for future experiments are listed in the following: 

• Determination of the light emission centers in the MgO surface: Two possible 

experiments may elucidate this point. (i) Perform atomically resolved optical 

measurements in the low bias regime, and create excitons by applying short pulses of 

high bias. The pulsed bias should be larger than the MgO bandgap to be able to create 

excitons, and the pulse duration has to be shorter than the response time of the STM 

feedback loop to avoid tip crashes or unwanted changes in the STM junction. (ii) Use 

of another simple oxide that is characterized by a smaller bandgap to enable exciton 

creation at much smaller excitation voltages than in case of MgO. A potential 

candidate for such an experiment is barium oxide (BaO), which has a bandgap∗ of 

around 4eV, corresponding to half the MgO bandgap. 

• Identification of the stoichiometry of the MgO surface structural-defects: As noticed 

in this work, the local MgO work function is found to increase when going from a flat 

terrace to screw dislocation or dislocation step regions. This fact is tentatively traced 

back to local nonstoichiometry in these regions while no evidence is provided. 

Atomically resolved STM measurements of these defects in conjunction with DFT 

calculations might give better information on this point. 

 

 

                                                 ∗ R. J. Zollweg. “Optical Absorption and Photoemission of Barium and Strontium Oxides, Sulfides, Selenides, 
and Tellurides”. Phys. Rev. 111 (1958)113. 
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