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Abstract: Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for 
the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of ‘Transparent’ or 
‘Invisible Electronics’. This kind of transparent junctions can be used as a “functional” window, which will transmit 
visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can 
be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO 
materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect 
transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in 
details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as 
well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting 
activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with 
considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-
type transparent conducting CuAlO2 thin film, deposited by cost-effective low-temperature DC sputtering technique, by 
our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of 
optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices. 

Keywords: P-type transparent conducting oxide (p-TCO), nanocrystalline p-TCO, transparent p-n junction, transparent field 
effect transistor (TFET), nano-active device, transparent nanoelectronics, delafossite structure, nonstoichiometry, p-type 
doping, p-CuAlO2 nanoparticles, direct current (DC) sputtering, low-temperature deposition, quantum confinement effect, 
photoluminescence, p-type ZnO. 

1. INTRODUCTION 

1.1. P-type Transparent Conducting Oxide 

 Amongst various oxide materials, the most important 
oxide based materials that create overwhelming interest 
within materials scientists is the fundamental aspects and 
applications of semiconducting transparent films: more 
popularly known as “Transparent Conducting Oxides” 
(TCO), which are widely used for a long time in opto-
electronics industries as well as in research fields [1-61]. The 
characteristics of such films are high room-temperature 
electrical conductivity (~ 103 S cm-1 or more) and high 
optical transparency (more than 80 %) in the visible region. 
The electronic band gap of a TCO is higher than 3.1 eV 
(corresponding to the energy of a 400 nm blue photon). So 
visible photons (having energy between 2.1 to 3.1 eV) 
cannot excite electrons from valence band (VB) to the 
conduction band (CB) and hence are transmitted through it, 
whereas they have enough energy to excite electrons from 
donor level to CB (for n-type TCO) or holes from acceptor 
level to VB (for p-type TCO). And these acceptor or donor 
levels are created in the TCOs by introducing non-stoichio- 
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metry and (or) appropriate dopants in a controlled manner. A 
schematic representation of the bandgap designing for 
transparent conductors is shown in Fig. (1). 

 Although the TCOs have vast range of applications, very 
little work has been done on the active device fabrication 
using TCOs [62, 63]. This is because most of the well-
known and widely used TCOs are n-type semiconductors (n-
TCO), whereas their p-type counterpart (p-TCO), which are 
essential for junctional devices, were surprisingly missing in 
thin film form for a long time. Only in the last decade Sato et 
al. [64] and Kawazoe et al. [65] reported the p-type 
conductivity in a transparent thin film of binary nickel oxide 
(p-Ni1-xO) and delafossite copper aluminum oxide (p-
CuAlO2+x) [64] respectively. Thereafter, syntheses of a large 
number of p-TCO thin films with wide range of electro-
optical properties have been reported in the last few years. 
Amongst this new group of TCOs, the most important is the 
delafossite structured p-TCO thin films in the form of 
A IBIIIO2+x (AI: Cu+, Ag+, BIII : Trivalent cations) and their 
doped versions [66-75]. Besides delafossite p-TCO thin 
films, some important non-delafossite p-TCO thin films have 
also been reported having very good electro-optical 
properties. These films include Cu2Sc2O4 [76], spinel oxide 
films of the form AIIBIII

2O4 (AII: Ni2+, BIII : Co3+) [77-78], 
layered oxychalcogenide films of the form (LnIIIO)MICh 
(LnIII : La+3, Pr+3, Nd+3, Sm+3, Gd+3, Y+3, MI: Cu+, Ag+, Ch: S-

2, Se-2) [79-89], mixed oxide films of the form In2O3-Ag2O 
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[90], binary oxide films like Ni1-xO [64] and p-ZnO etc. [91-
101]. A chart of various groups of p-TCO thin films, repor-
ted so far, has been shown in Fig. (2). Also the electrical and 
optical properties of various delafossite and non-delafossite 
p-TCO thin films are furnished in Table 1 and Table 2 
respectively. The deposition techniques involved in the 
syntheses of these p-TCO thin films include pulsed laser 
deposition (PLD) [66-67, 76, 101-105], sputtering [64, 69-
71, 74, 78-81, 84, 90, 104, 106-117], chemical vapor 
deposition (CVD) [96, 118-120], Reactive Solid Phase 
Epitaxy [121-123], Molecular beam epitaxy [98], Thermal 
co-evaporation [69, 72], Electron-beam evaporation [124-
125], Rapid thermal annealing [126], sol-gel synthesis [110-
111, 127, 128], hydrothermal process [69, 129-130], spray 
pyrolyses [131], spin coating [77] etc. Deposition parameters 
of different p-TCO thin films grown by various techniques 
are tabulated in Table 3 to Table 7. It is noteworthy in this 
context that there are reports on the fabrication of non-oxide 
p-type transparent semiconductors like BaCu2S2, BaCuSF 
[132-134] etc. Although these materials cannot be classified 
as p-TCO, but still they have scientific importance in the 
field of transparent active device fabrication. 

1.2. Transparent Electronics 

 The importance of this new group of p-TCOs lies in the 
fact that the transparent junction with both types of TCOs 
can be fabricated as a ‘functional’ window, which would 
absorb the UV part of the solar radiation to generate 
electricity, yet transmits the visible potion of it. This has 
opened up a new field in opto-electronics device technology, 
which is called “Transparent Electronics” or “Invisible 

Electronics” [53, 135]. The first report of a semi-transparent 
all-oxide p-i-n heterojunction diode of the form p-NiO/i-
NiO/i-ZnO/n-ZnO was published in 1993 by Sato co-authors 
[64] in 1993. They observed only 20 % transmittance of the 
diode in the visible region. Although this low transmittance 
was not favorable for superior device applications, but still 
this report was an important milestone in the field of 
“Transparent Electronics” and in the development of p-TCO 
technology. Thereafter, a large number of groups reported 
the fabrication of all-TCO p-n and p-i-n heterojunction [72, 
136-145] and homojunction [68, 146-148] transparent diodes 
as well as transparent field effect transistors (TFET) [53, 
149-155] on glass and various transparent substrates. A 
schematic diagram of an all-TCO diode and a TFET are 
shown in Fig. (3a) and Fig. (3b) respectively. For all-TCO 
diodes, the visible transparency of the device varies from 
less than 20 % to more than 80 % whereas the turn-on 
voltage ranges from 2.5 to 0.4 V. For heterojunctions, the 
efficiency of the diode deteriorates due to lattice mismatch 
whereas homojunction diodes are favored as the lattice 
matching seems to be natural, which improves the diode 
efficiency. In TFETs, the maximum transparency of the 
device had been reported to be 80 % with on-off ratio 
ranging from 104 to 107. Various parameters of deferent all-
transparent diodes are furnished in Table 8 whereas 
deposition routes and various parameters of different TFETs 
are furnished in Table 9. 

1.3. Nanocrystalline p-TCO 

 After the pioneering works of Efros and Efros [156] and 
Brus [157] on the size-quantization effect in semiconductor 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Bandgap designing for transparent conductors. Visible photons (2.1 eV to 3.1 eV) do not have enough energy to excite electrons 
from valence band to conduction band, but have enough energy to excite holes (for p-type) from acceptor level to VB or electrons (for n-
type) from donor level to CB. Right hand side shows the transmittance of the TCO with respect to incident radiation. The arrow ‘  ’ 
indicates the transmittance graph for a p-type TCO, where a slight absorption can be observed (indicated by shaded part) at low energy 
region, due to the activation of holes from acceptor level to VB. Similarly, the arrow ‘ ’ indicates the same for n-type TCO, where slight 
absorption at low energy region takes place due to electron activation from donor level to CB. 
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Fig. (2). Chart of various p-TCO materials reported so far. Here the doped versions of Cu-based delafossite p-TCOs have been mentioned 
only. 
 

Table 1. Delafossite p-TCO thin Films with Different Doping Concentrations and their Respective Opto-Electrical Parameters 

Material Dopant 
% of 

Doping 

Average film 
thickness 

(nm) 

T 

(%) 

Eg-direct 

(eV) 

 RT 

(S cm-1) 

SRT 

(μV K -1) 
Ref. 

CuAlO2 undoped --- 230 70 3.5 0.34 + 214 102 

CuGaO2 undoped --- 500 80 3.6 0.063 + 560 66 

CuGa1-xFexO2 Fe 0.5 150 60 3.4 1.0 + 500 69 

CuIn1-xCaxO2 Ca 0.07 170 70 ~ 3.9 0.028 + 480 67 

CuCrO2 undoped --- 250 40 ~ 3.1 1.0 --- 71 

CuCr1-xMgxO2 Mg 0.5 270 50 3.1 220.0 + 150 71, 73 

CuYO2 undoped --- 200 60 ~ 3.5 0.025 --- 72, 73 

CuY1-xCaxO2 Ca 0.01–0.02 240 50 3.5 1.05 + 275 72, 73 

CuScO2
a undoped --- 110 40 ~ 3.3 30.0 --- 70, 73 

80 3.3 –3.6 ~ 0.07 --- 

60 -do- ~ 0.1 --- 

25 -do- ~ 0.8 --- 

CuSc1-xMgxO2
b Mg 0.05 220 - 250 

15 -do- ~ 20.0 --- 

69, 134 
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[BIII : Al+3, Ga+3, In+3, Cr+3, Fe+3, 

Co+3, Y+3, La+3, Sc+3 etc.] 

Non-delafossite 
structured  

p-TCO 

Cu-based 
delafossite  

p-TCO 
(Cu

I
B

III
O2) 

Ag-based 
delafossite  

p-TCO 
(Ag

I
B

III
O2) 

Cu2SrO2

Spinel oxide  
(AII

B
III

2O4) 
[A II: Ni2+]  
[BIII : Co3+] 

Binary oxide  
(NiO,  

p-ZnO) 

Layered 
Oxychalcogenide 
[(Ln

III
O)M

I
C

h] 
[Ln III : La+3, Pr+3, Nd+3, 
Sm+3, Gd+3, Y+3 etc.] 

[M I: Cu+, Ag+] 
[Ch: S-2, Se-2] 

Single doping of Cu-
based delafossite  

p-TCO 

( 21 OBBCu II

x

III

x

I − ) 

[BII: Fe+2, Ca+2, 
Mg+2 etc.]

Double doping of Cu-based 
delafossite p-TCO 

( 21

'''

OBBBCu II

y

III

yx

III

x

I −− ) 

[BII: Sn+2 etc.] 
[BIII’ : Ni+3]; [B III” : Sb+3]   

Mixed  
oxide  

(Ag2O-In2O3) 

Not F
or D

istrib
utio

n



44    Recent Patents on Nanotechnology 2008, Vol. 2, No. 1 Banerjee and Chattopadhyay 

(Table 1) Contd…. 

 

Material Dopant 
% of 

Doping 

Average Film 
Thickness 

(nm) 

T 

(%) 

Eg-direct 

(eV) 

 RT 

(S cm-1) 

SRT 

(μV K -1) 
Ref. 

Ni 0.66 

Sb 0.33 

CuNi1-xSbxSnyO2 

Sn 0.033 

~ 200 60 3.4 0.05 + 250 69 

AgCoO2
c undoped --- 150 50 4.15 0.2 + 220 69 

aMaximum of 25 % oxygen was intercalated. 
bThe variation of transparency of the films at the expense of conductivity was due to a variation of oxygen pressure from 3 Torr (for most transparent film) to 15,000 Torr (for least 
transparent film). Also according to Ref. [189] the doping concentration of Mg was 1 %. 
c The Ag : Co ratio was 1.1 : 1. 
 
 

Table 2. Non-Delafossite p-TCO thin Films with Different Doping Concentrations and their Respective Opto-Electrical Parameters 

Material Dopant 
% of 

Doping 

Average film 
thickness 

(nm) 

T 

(%) 

Eg-direct 

(eV) 

 RT 

(S cm-1) 

SRT 

(μV K -1) 
Ref 

Cu2SrO2 undoped --- 150 75 ~ 3.3 0.004 260 78 

Cu2Sr1-xKxO2 K 0.03 120 75 ~3.25 0.05 260 76 

NiCo2O4 undoped --- 100 ~ 65 --- ~ 16.67 --- 77 

(LaO)CuS undoped --- 150 70 ~ 3.1 6.4x10-5 713 79 

(La1-xSrxO)CuS Sr 0.03 150 60 ~ 3.1 20 44 79 

0.0 ~ 0.6 ~ 250 

0.25 ~ 2.5 ~ 200 

0.4 ~ 20  ~ 250 

0.7 ~ 15 ~ 150 

(LaO)CuS1-xSex Se 

1.0 

~ 150 ~ 60 > 3.1 

~ 25 ~ 250 

86 

0.0 24 --- (La1-

xMgxO)CuSe 
Mg 

0.2 

~ 150  --- --- 

140d --- 

86 

In2O3-Ag2O
e --- --- 300 ~ 20 --- 100 --- 90 

NiOf undoped --- 111 40 ~ 3.8 7.0 --- 64 

p-ZnO Ga & N 
codoped 

* --- ~ 90 --- 0.23 --- 101 

d The film showed degenerate p-type semiconductivity.   
e  The film contained 50 wt % Ag2O. 
f  Data given for the films deposited under an atmosphere of Ar + 50 vol. % O2.  
* N : Ga ratio was 2 : 1 with 5 wt % codoped Ga in the film. 
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Table 3. Deposition Parameters of Different p-TCO Films Grown by PLD Technique 

 CuAlO 2 CuGaO2 CuInO2: Ca CuScO2 Cu2SrO2: K  ZnO: N 

Laser KrF (248 nm) KrF (248 nm) KrF (248 nm) KrF KrF (248 nm) ArF 

Laser frequency (Hz) 20 20 20 1 2 1 

Laser power (J cm-2 pulse-1) 5 6 3.5 1.1 2.5 0.5 

Base pressure (Pa) 1 x 10-7 6 x 10-6 1 x 10-7 --- 1 x 10-6 1 x 10-6 

O2 pressure (Pa) 1.3 9 1 1.5 7 x 10-4 # 

Target 

 

CuAlO2 

Pellet 

CuGaO2 

pellet  

CuInO2: Ca 

pellet 

Cu2Sc2O5 

pellet 

Cu2Sr0.97K0.03O2 

pellet 

ZnO: Ga 

pellet 

Substrate  -Al 2O3 (001)  -Al 2O3      (001)  -Al 2O3 (001)  -Al 2O3 (1120) SiO2 SiO2 

Substrate-target distance (mm) 25 25 25 40 40 --- 

Substrate Temperature (OC) 690 700 450 900 300 400 

Deposition time (min) --- --- --- --- 180 --- 

Post annealing time (min) 180 none none none    120 --- 

Post annealing temp (OC) 690 none none none 300         --- 

Reference 103, 102 103, 66 67 105 103, 76       101 

#The deposition atmosphere was N2 or N2O. 

 

Table 4. Different Deposition Parameters of p-TCO Films Synthesized by R.F. Magnetron Sputtering Technique 

Material CuAlO 2 CuGaO2: Fe CuCrO2:Mg CuNi 2/3Sb1/3O2:Sn AgCoO2 NiCo2O4 (LaO)CuS NiO In2O3-Ag2O 

R.F. power 
(W) 

65 80 90 80 80 200 110 50 40 

Electrode 
distance 

(mm) 

 40  30  38  ---  30 ---  35  --  --- 

Base 
pressure 

(Pa) 

 ---  --- 9.3 x 10-4  --- --- 1.33x10-4  --- --  --- 

Sputtering 
pressure  

(Pa) 

4.53 

(O2 

press) 

 13.33 

 (Ar : O2 

 = 4 : 1) 

1.33 

(Ar press) 

 13.33 

(Ar:O2= 4:1 / 9:1) 

 53.33 

(Ar:O2=  

 4:1) 

1.33 

 

 13 

(Ar : H2S =19 
: 1) 

 0.8 
(O2press) 

 0.25 

 (Ar + O2) 

Target CuAlO2 

 pellet 

CuGa0.5Fe0.5O2 

 Pellet 

CuCr1-xMgO2 

pellet 

 CuNi0.67Sb0.3 - 

 - Sn 0.03O2  

 pellet 

AgCoO2 

 pellet 

Co-Ni 
alloys 

 

(LaO)CuS  

 : Sr 

 pellet 

 NiO 

 pellet 

In2O3-Ag2O 

 pellet 

Substrate 

 

 -Al 2O3 

 (001) 

 fused 

 silica 

 fused 

 quartz 

 SiO2,  

 YSZ(100),  

 Al2O3(001) 

 SiO2,  

 Al2O3 

Quartz, 
sapphire, 

Si 

 SiO2 

 

 SiO2 

 

 SiO2 

 

Substrate 
temp. (OC) 

ambient  100 °C 450-750  500 °C  400 °C ambient  ambient  200  ambient 

Post-
annealing 
time (min)  

 90  90  2.5 (RTA in  

Ar)  

 180   --- ---  120  none  60 
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(Table 4) Contd…. 
 

Material CuAlO 2 CuGaO2: Fe CuCrO2:Mg CuNi 2/3Sb1/3O2:Sn AgCoO2 NiCo2O4 (LaO)CuS NiO In2O3-Ag2O 

Post-
annealing 
temp. (OC) 

 1050g  800 °C  

 (N2 atmos.) 

600-900  900 °C 

 (in air)*** 

 --- ---  800**  none  500 

Reference  104  69 71  69, 74 69 78 79  64  90 

* Ex situ in a Lindberg box furnace containing small amount of CuAlO2 powder.   
** Ex situ in an evacuated silica tube containing small amount of (LaO)CuS powder.  
*** Also for some cases RTA in air at 900 OC was performed. 
 

Table 5. Various Parameters Used to Deposit Different p-TCO Films by R. F. Magnetron Reactive Sputtering Technique 

Material Cu-Al-O films (a mixture of CuAlO 2 and CuO) p-ZnO 

R. F. power (W) Al power - 60 to 110 ‡ 

Cu power - 30 W 

20 

Targets metallic Cu and Al Metallic Zn 

Substrate glass Si (1 0 0) 

Substrate temperature (°C) 100 350 

Sputtering atmosphere Ar + 5% O2 Ar + 83 %O2 

(pressure ~ 4 Pa) 

Post annealing none At 750 °C, in vacuum (~ 1.33 x 10-4 Pa), for 30 min. 

Reference [112] [147] 

‡ For Al power 110 W single phase amorphous CuAlO2 was formed 

 

Table 6. Deposition Parameters of Reactively d.c. Sputtered p-CuAlO2 Thin Films 

Material  CuAlO 2 thin film  CuAlO 2 thin film  CuAlO 2 thin film* 

Target Elemental Cu & Al metal (facing) targets Mixture of Cu + Al metal powder pellets Cu / Al alloy (with 1:3 ratio) 

Electrode distance (mm) ---------- 18 65 

Sputtering Voltage (V) Cu facing targets = 750V 

Al facing targets = 350 V 

1000 

 

292 - 394 

 

Current density  

(mA cm-2) 

Cu facing targets ~ 1.17 

Al facing targets ~ 7.0 

12 

 

200 - 300 mA (current) 

Base pressure (Pa) ------------ 10-4 5 x 10-4 

Sputtering pressure (Pa) 0.53 20.0 4.0 

Sputtering atmosphere Ar + O2 (4 : 1) Ar + O2 (3 : 2) Ar + O2 

Substrate quartz (rotating) Si (400) & glass glass 

Substrate temperature (°C) 300 200 250 

Deposition time (min) 240 240 ---- 

Post annealing time (min) 240 120 ---- 

Post-annealing temp. (°C) > 700 220 ---- 

Post annealing atmosphere N2 (ambient pressure) O2 (20 Pa) ----- 

Reference [113] [114] [117] 

*This process involved d.c. reactive magnetron sputtering technique. 
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Table 7. Deposition Parameters for Various Co-Evaporation Techniques for the Deposition of p-TCOs 

Material CuYO 2 : Ca* CuGaO2 BaCuSF 

Reactants Elemental Cu, Y, Ca metals Cu, Ga metals Cu metal, BaF2 

Base pressure (Pa) 9.33 x 10-5 9.33 x 10-5 --- 

Reactant gas O2 O2 H2S 

Deposition pressure (Pa) 0.02 0.02 --- 

Substrate Glass, MgO (100), Si SiO2 SiO2, MgO 

Substrate temperature (°C) 80 - 650 100 200 

Post annealing time (min) 3 (RTA) 90 180 

Post annealing temp. (°C) 600 800 350 

Post annealing atmosphere O2 N2 H2S 

Reference 72 69 134 

* 1-2 % Ca doping in Y - sites 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Schematic diagram of (a) an all-TCO p-n junction diode 
on glass substrate, (b) a top-gated TFET structure [154]. 

 

nanoparticles, the research on nanostructured materials 
generates great interest in the scientific community and 
offers tremendous opportunities in science and technology 
because of new properties exhibited by these materials and 
challenging problems thrown up for providing theoretical 
concepts in physics associated with it [158-160]. Infact, both 
the natural as well as the artificial world can now be 
categorized in two regimes: micro regime and nano regime. 
Starting from a human hair to DNA structure - the nature 
evolves itself from micro to nano scale structures. Similarly, 
man made world is now shifting its attention from micro 
devices to nano materials. Fig. (4) schematically represents 
the broad spectrum of the micro and nano regime, indicating 
how natural and man made world evolve into smaller 
domain. 

 Optical properties of nanocrystals are markedly related to 
their size and surface chemistry and drastically differ from 
those of bulk materials. Preparation and study of high quality 
quantum dots, nanobelts and nanowires [161-163] have been 
reported widely. These achievements in the last few years 
have focused nanoparticle research on their applications in 
electrical and optoelectronics devices [164-165]. But most of 
the commercially available devices fabricated by nano-
materials are passive nano-devices, whereas fabrication of 
nano-active devices is still under research level. But, with 
the recent exponential growth and development in the 
nanotechnology, it is just a matter of time to realize 
commercially viable high-efficient nano-active devices. In 
fact, the recent report of the U.S. National Nanotechnology 
Initiative, showed that the growth of the nanotechnology can 
be divided into four generations (shown in Fig. (5)). The 
current era, is that of passive nanostructures, materials 
designed to perform one task. The second phase, which we 
are just entering, introduces active nanostructures for 
multitasking; for example, diodes, transistors, actuators, drug 
delivery devices, and sensors. The third generation is 
expected to begin emerging around 2010 and will feature 
nanosystems with thousands of interacting components. A 
few years after that, the first integrated nanosystems, 
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Table 8. Various Parameters of Deferent All-Transparent Diodes 

Diode structure 

p-NiO/i-NiO/  

i-ZnO/ 

n-ZnO:Al 

n-ZnO/ 

p-SrCu2O2 

n-ZnO/ 

p-SrCu2O2: 
K 

n-ZnO:Al/ 

p-CuYO2:Ca 

n-ZnO/ 

p-CuAlO 2 

n-CuInO 2:  
Sn/ p-

CuInO 2: 
Ca 

n-ZnO: Al/  

p-ZnO: As 

n-ZnO/ 

p-ZnO 

p-layer 195 300 200 300 400 400 1500-2000 5000 

i-layer 216 --- --- --- --- --- --- --- 

Thickness 

(nm) 

 
n-layer 400 300 - 1000 200 250 400 400 600 5000 

p-layer 1019 1017 ~1018 --- --- --- --- ~ 5 x 1015 Carrier 
concentration  

(cm-3) 
n-layer 7 x 1020 5 x 1018 ~1018 --- --- --- --- ~ 6 x 1015 

Substrate Glass Glass YSZ (111) Glass Glass YSZ (111) GaAs (001) Si (100) 

p-layer R. F. 
magnetron 
sputtering 

Reactive 
co-

evaporation 
in O2 

atmosphere 

PLD Reactive co-
evaporation in 
O2 atmosphere 

PLD PLD R. F. 
Magnetron 
sputtering 

R. F. 
Magnetron 

reactive 
sputtering 

i-layer R. F. 
magnetron 
sputtering 
with post-

annealing in 
air(at 300°C) 

--- --- --- --- --- --- --- 

Deposition 
technique 

n-layer --- Magnetron 
sputtering 

PLD R. F. 
Magnetron 
sputtering 

PLD PLD R. F. 
Magnetron 
sputtering 

R. F. 
Magnetron 

reactive 
sputtering 

p-side Al ITO Ni In ITO ITO In Au/Al Electrodes 

n-side Al n+-ZnO ITO ITO n+ - ZnO ITO In Au/Al 

Turn-on voltage (V) ~1.5 ~ 0.5 ~ 1.0 0.4 – 0.8 0.4 – 1.0 1.8  ~ 2.5 ~ 1.0 

Diode factor --- 1.62 --- --- --- --- --- --- 

Reference 64 137 138 72 143 68 146 136 

 
Table 9. Different Growth Techniques and Parameters of TFETs 

Active Channel Gate Insulator 
Back Gate 
Electrode 

Substrate 
used 

Mobility 

(cm2V-1s-1) 

On/Off 
ratio 

Visible 
Transparency 

(%) 

Reference 

SnO2: Sb 

(Thickness ~ 110 

nm) 

(Deposition 
technique: PLD) 

PbZr0.2Ti0.8O3 

(Thickness ~ 160 

nm) 

(Deposition 
technique: PLD) 

SrRuO3 

(Thickness ~ 140 

nm) 

(Deposition 
technique: PLD) 

SrTiO3 (100) 

 

10.0 ~ 104 Transparent, as seen 
in the figure 

provided, but no 
numerical data 

given. 

149*,  

150 
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(Table 9) Contd… 

 

Active Channel Gate Insulator 
Back Gate 
Electrode 

Substrate 
used 

Mobility 

(cm2V-1s-1) 

On/Off 
ratio 

Visible 
Transparency 

(%) 

Reference 

ZnO 

(Thickness ~ 100 

nm) 

(Deposition 
technique: PLD) 

Al 2O3 + TiO2
# 

(Thickness ~ 220 

nm) 

(Deposition 
technique: ALD) 

ITO 

(Thickness ~ 200 

nm) 

(Deposition 
technique: 
Sputtering) 

Glass 2.5 ~ 107 75  151 

ZnO 

(Thickness ~ 140 
nm) 

(Deposition 
technique: PLD 

SiO2 + SiNx
† 

(Thickness ~ 250 & 
50 nm respectively) 

(Deposition 
technique: PECVD) 

ITO 

(Thickness ~ 100 
nm) 

(Deposition 
technique: e-beam 

evaporation) 

Glass 1.0 105 80 152 

InGaO3(ZnO)5
‡ 

(Thickness ~ 120 

nm) 

(Deposition 
technique: PLD) 

a-HfO2 

(Thickness ~ 80 nm) 

(Deposition 
technique: PLD) 

ITO 

(Thickness ~ 30 

nm) 

(Deposition 
technique: PLD) 

YSZ (111) 80.0 ~ 106 80 154‡‡ 

*  Due to the presence of ferroelectric insulator PbZr0.2Ti0.8O3, the device showed intrinsic memory function. 
# Al 2O3 + TiO2 is an alternative layers of Al2O3 & TiO2. 
† This TFET has a double layer Gate insulator.  
‡ Single-crystalline InGaO3(ZnO)5 is used as active channel layer. 
‡‡ The device has top-gate structure. 

 
functioning much like a mammalian cell with hierarchical 
systems within systems, are expected to be developed. 

 In this context, transparent nano-active devices will be 
very interesting and important field of research in nanotech-
nology. Syntheses and characterizations of nanostructured n-
TCOs are very important and well-established field in 
nanotechnology and still growing in stature. Therefore, the 
formation of nanocrystalline p-type counterpart may open up 
an extremely important and interesting field of research for 
the fabrication of all-transparent nanoactive devices. This 
will not only give a new dimension in the field of 
“Transparent Nano-Electronics”, but new avenues may open 
up in the nanoparticle research keeping an eye on its 
tremendous applications in optoelectronics technology. 

2. DIFFICULTIES IN OBTAINING P-TCO AND 
POSSIBLE REMEDIES 

2.1. Chemical Modulation of the Valence Band 

 It has been observed that the preparation of binary metal 
oxides with p-type conductivity is very challenging and that 
is why, most of the existing TCOs are n-type in nature. The 
possible reason is the electronic structure of these metal 

oxides, where strong localization of holes (introduced by 
intentional substitutional doping) at oxygen 2p levels or an 
upper edge of the valence band due to high electronegative 
nature of oxygen, i.e. this localization is due to the ionicity 
of metallic oxides [65, 103]. O 2p levels are far lower lying 
than the valence orbit of metallic atoms [166], leading to the 
formation of deep acceptor level by the holes. In other 
words, the holes, therefore, have high probability to be 
localized around the oxygen atoms. Hence these holes 
require high enough energy to overcome large barrier height 
in order to migrate within the crystal lattice, resulting in poor 
conductivity and hole mobility. A possible solution proposed 
by Kawazoe and co-authors [103] is to introduce a “degree 
of covalency” in the metal-oxygen bondings to induce the 
formation of an extended valence band structure, i.e. the 
valence band edge should be modified by mixing orbitals of 
appropriate counter cations that have energy-filled-levels 
comparable to O 2p level. This would reduce the strong 
coulombic force by oxygen ions and thereby delocalizing the 
holes. This is the essential approach to obtain p-TCO, which 
is called “Chemical Modulation of the Valence Band 
(CMVB)” [103].  
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 But the next requirement is the choice of appropriate 
cationic species that will serve for CMVB technique. 
Investigations showed that the required cationic species are 
3d10-closed shell of Cu+ ions and 4d10-closed shell of Ag+ 
ions [103, 166]. Although some transition metal cations with 
open d-shell may fulfill the energy requirement [167] for 
CMVB technique, but they usually show strong coloration 
due to d-d transition, which is not expected for transparent 
materials. Hence focus had been concentrated on the cations 
mentioned above, with closed (d10s0) electronic confi-
guration. Fig. (6) shows a schematic illustration of CMVB 
technique. Both of the atomic orbitals are occupied by 
electron pairs, and the resulting antibonding level becomes 
the highest occupied level, i.e. the valence band edge.  

 Next is the structural requirement for designing p-TCO 
materials. Tetrahedral coordination of oxide ions is 
advantageous for p-type conductivity, as it acts in reducing 
the localization behavior of 2p electrons on oxide ions [103]. 
The valence state of the oxide ions can be expressed as sp3 in 
this conformation. Eight electrons (including 2s2) on an 
oxide ion are distributed in the four   bonds with the 
coordination cations. This electronic configuration reduces 
the non-bonding nature of the oxide ions and increases the 
delocalization of holes at the valence band edge (that is why 
Cu2O is a p-type conducting oxide [168-170]). But Cu2O, 
although p-type in nature, has rather small bandgap (2.17 
eV) [169]. This is probably because of the three-dimensional 

interactions between 3d10 electrons of neighboring Cu+ ions. 
It is expected that the low-dimensional crystal structure 
would suppress this interaction [102]. As we are interested in 
transparent conducting oxides, bandgap of the material (Eg) 
should be greater than 3.1 eV. Hence, enlargement of 
bandgap would be another structural requirement for 
designing p-TCO, so that there is no absorption of visible 
photons. Materials with delafossite crystal structure AIBIIIO2 
(A I = Monovalent ions, Cu+, Ag+; BIII  = Trivalent ions, Al+3, 
Ga+3, In+3, Cr+3, Fe+3, Co+3, Sc+3, Y+3 etc.) [171-173] were 
chosen as the candidates for p-TCOs for several reasons. 
Firstly, if we investigate the delafossite structure as shown in 
Fig. (7), we see an alternative stacking of AI and layers of 
nominal BIIIO2 composition consisting BIII -O6 octahedra 
sharing edges. Each AI atom is linearly coordinated with two 
oxygen atoms to form a O-AI-O dumbbell unit placed 
parallel to the c-axis. O-atoms of O-AI-O dumbbell link all 
A I layers with the BIIIO2 layers. On the other hand, each 
oxide ion in the BIIIO2 layer forms a “pseudo-tetrahedral 
coordination (BIII 3A

IO)” [103] with the neighboring BIII  and 
A I ions. Hence, as previously mentioned, this electronic 
configuration reduces the non-bonding nature of the oxide 
ions and, therefore, delocalizes the holes at the valence band 
edge. Secondly, this layered structure (O-AI-O dumbbell 
layer and BIIIO2 layer) effectively reduces the dimension of 
cross-linking of AI ions and, thus enlarging the bandgap [65]. 
And finally, another important factor in this structure is the  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Description of nano regime. From Forbes-Nanotech Report. 
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Fig. (5). Roadmap to Nanotechnology (from US National Nano-
technology Initiative report). 

Fig. (6). Schematic diagram of CMVB method. Energy levels are 
not to the scale [103]. 
 
low coordination number of the AI ions, due to the large 
separation from oxygen legands, which is the result of the 
strong coulombic repulsion between 2p electrons in oxygen 
legands and AI d10 electrons. This leads to the AI d10 energy 
levels almost comparable to the O 2p level, resulting in a 
high degree of mixing of these levels, which is essential for 
CMVB technique [103]. 

 

 

 

 

 

 

 

 

 

Fig. (7). Delafossite Crystal Structure. 
 
 As the importance of p-TCO lies in the active device 
fabrication, it is very important to have lattice matching 
between both p and n-types of TCOs to form p-n homo-
junctions. Both types of TCOs with delafossite structure may 
serve this requirement. In this regard, it is also worthwhile to 
mention that the BIIIO2 layers of this structure is also 
important for designing n-TCOs, specially for the cations 
like Ga+3, In+3 in the BIII  sites with s0 configuration [103]. 
Following the above argument, delafossite AgInO2 thin film 
with n-type semiconductivity had already been established 
[174].  

NONSTOICHIOMETRY AND DOPING IN P-TCO  

 The cause of p-type conductivity shown by p-type 
transparent conducting oxide materials is due to excess 
oxygen (or metal deficit) within the crystallite sites of the 
material, i.e. the defect chemistry plays an important role. 
This deviation from the stoichiometric composition of the 
components can be induced by regulating the preparation 
condition of the materials. The defect reaction may be 
represented by the following equation [175,176]: 

O O V V hO
x

A BI III2
32 4! = + + +  +                                          (1) 

where ‘OO’ denotes the lattice oxygen, ‘V’ denotes the 
vacancies of monovalent cation AI and trivalent cation BIII  
respectively and ‘h’ denotes the hole. Superscripts X, -, and + 
denote effective neutral, negative, and positive charge states 
respectively. The symbol, , denotes the dissolution of 
oxygen within the material during oxidation. 

 Also, intercalation of excess O-2 ions in the interstitial 
sites may trap electrons, leaving behind empty states in the 
valence band, which act as holes. The formula for oxygen-
excess delafossite films may be written as AIBIIIO2+x (AI = 
Cu+, Ag+ and BIII  = Al+3, Ga+3, In+3, Y+3, Sc+3 cations etc.). 
The value of x i.e. the percentage of excess oxygen may be 
as low as 0.001% in CuAlO2+x thin film [135] to more than 
25% in CuYO2+x polycrystalline powder and CuScO2+x thin 
films [73, 177-179]. Fig. (8-i), (8-ii) and (8-iii) show sche-
matic representation of stoichiometric AIBIIIO2 crystal and 
non-stoichiometric AIBIII O2+x crystal with “excess” oxygen 
in lattice sites and interstitial sites.  

 Oxygen intercalation in delafossite p-TCOs only showed 
a maximum reported conductivity around 3 x 101 S cm-1 
[70]. But this is still quite less than that of commercially 
available n-TCOs like indium tin oxide (ITO), which is 
having room temperature conductivity more than 1 x 103 S 
cm-1. So next attention was focused on the substitutional 
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doping of these materials by appropriate dopants to increase 
the conductivity. Doping of CuAlO2 was first attempted, as it 
was the first reported material amongst p-TCO thin films 
[65]. Several groups theoretically calculated the effects on 
the electronic behavior of the material due to the presence of 
various cations in Cu and (or) Al sites. Lali# and co-authors 
[180-181] showed that Cd and Zn substitutions on Cu site 
would produce n-type conductivity in the material, whereas 
Ni doping in Cu sites would enhance the p-type conductivity 
of the material. But Cd doping on Al sites would have no 
effect on the electrical properties of the material. Preparation 
of a solid solution of gallium doped copper aluminum oxide 
in the form of CuAl1-xGaxO2 (0   x   0.5) was reported by 
Shahriari et al [129]. But no film preparation of this material 
was reported by them. Also any other experimental data on 
the doping of CuAlO2 thin film has not been reported yet. 
Heavy doping (~ 50 %) of CuGaO2 by Fe+3 in Ga sites has 
been reported by Tate et al. [69]. Their strategy was to 
combine high transparency of CuGaO2 thin film (~ 80% in 
visible region [66]) with better conductivity (over other Cu 
and Ag based delafossites [173]) of CuFeO2 pellets (2.0 S 

cm-1 [173, 182]). Both the polycrystalline powder and thin 
film of CuGa1-xFexO2 (0 " x " 1) have shown p-type 
conductivity. It was observed that high Fe doping had 
increased the conductivity of the film from 2 x 10-2 S cm-1 
(for undoped CuGaO2 thin film) to almost 1.0 S cm-1 for 
CuGa1-xFexO2 (x = 0.5) thin film, whereas transparency of 
the films became ~ 60 % in the visible region [69]. Doping 
of CuInO2, CuYO2, CuScO2, CuCrO2 by divalent cations e.g. 
Ca+2, Mg+2 etc. were reported by various groups [67-72]. 
When a trivalent cation was replaced by a divalent one, one 
empty state in the valence band was created, which acts as a 
hole, thus increasing hole conductivity. The method may be 
described by the following equation: 

( ) ( )B e C e V hIII II+  +   ++ " = + ! + +
3 2

3 2                   (2)  

where B III +3
and C II +2

are trivalent and divalent cations, 
 V is the vacant state occupied by an electron,  e and +h is 

a “free” hole. The symbols " and ! denote the replacement 
of trivalent cation by divalent one in the lattice sites. Such 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Schematic diagram of (i) Stoichiometric ABO2 lattice, (ii) Non-stoichiometric ABO2+x structure with “excess” oxygen in lattice 
sites, (iii) interstitial sites. The diagram is not according to the relative lattice parameters.  
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doped delafossite films like CuCr1-xMgxO2 (x = 0.05), CuY1-

xCaxO2 (x = 0.01 - 0.02), CuSc1-xMgxO2 (x= 0.05) showed 
better hole conductivity over the corres-ponding undoped 
films [71]. Some Ag based delafossite materials like 
AgMIIIO2 (M

III  = Sc+3, Cr+3, Ga+3 etc.) with 5% Mg doping at 
MIII  sites was reported by Nagrajan et al. [73]. The 
conductivities of these sintered powders were very low (~ 
10-5 -10-4 S cm-1) and also no film preparation of these 
materials were reported anywhere so far. 

 There are also reports in the literature about the double 
substitution of trivalent MIII  sites by divalent and pentavalent 
cations e.g. CuFe1-xVxO2 (x = 0.5), CuNi1-xSbxO2, CuZn1-

xSbxO2, CuCo1-xSbxO2, CuMg1-xSbxO2, CuMn1-xSbxO2 (x = 
0.33), AgNi1-xSbxO2, AgZn1-xSbxO2 (x = 0.33) etc., but all in 
the form of sintered powder [74, 183]. Also triple 
substitution of trivalent cation had been reported by Tate and 
co-authors [69, 74] in the form of CuNi1-xSbxSnyO2 (x = 0.3, 
y = 0.033). Thin film of this material showed an average of 
60 % transmittance with a room temperature conductivity of 
5 x 10-2 S cm-1. The exact electronic structure and conduc-
tion mechanism of these types of materials are yet to be 
explored completely.  

3. RECENT REVIEW AND PATENTING ACTIVITIES 
IN NANO/MICRO-STRUCTURED P-TCO 

 For new materials with novel properties and applications, 
patent generation is an important but common practice 
within scientific communities. As p-TCO is a new and 
interesting group of materials with important applications in 
the new filed of “Invisible Electronics”, there are no 
exceptions of filing patents on various aspects of this new 
group of materials. Although Shannon, Sato, Kawazoe, 
Thomas, Wager and co-authors [53, 64, 65, 135, 171-173] 
first reported the formation of delafossite p-TCOs and 
possible applications in “Invisible Electronics”, Shahriari 
and co-authors [184] first filed patents on the low-tempe-
rature (< 500°C), low-pressure (< 3x108 Pa) preparation of p-
type, delafossite-structured, transparent conducting, phase-
pure ABO2 materials (A: monovalent cations Cu+, Ag+, Pt+, 
Pd+, B: trivalent cations Al+3, Ga+3, Fe+3, La+3, In+3, Sc+3 
etc.). This group has used stoichiometric amounts metallic 
A, B and their oxides (e.g. AO, A2O, B, and B2O3) in an FEP 
(fluoro(ethylenepropylene)) Teflon pouch along with ground 
NaOH pellets in it. The pouch was sealed and placed in a 
Teflon-lined autoclave (Parr) filled with deionized water. 
The autoclave was sealed and first heated to about 150°C for 
5 hours to allow H2O to enter the permeable membrane of 
the pouch and dissolve the NaOH. This was followed by an 
approximate heating at 210°C for 48 hours, with subsequent 
cooling to room temperature at 0.1 to 6°C/hr. Delafossite 
crystallites were recovered by filtration. A flow-chart of the 
synthesis of delafossite CuAlO2 crystallites is shown in Fig. 
(9). The two-step heating is an important part of the reaction 
and material formation. The Teflon pouches heated above 
100°C become permeable and an exchange reactions occurs 
between the inside powder and the outside solution. This 
reaction is very exothermic and appears to be responsible for 
the two-step heating process. The first step 150°C seems to 
initialize the reaction, and the second step around 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Flow chart for the hydrothermal synthesis of CuAlO2 
powder [184]. 

 
215°C completes it. Previously, Shannon et al. [171-173] 
hydrothermally synthesized several ABO2 delafossites under 
extreme conditions of temperature and pressure using plati-
num or gold tubes. This manifests the higher temperature 
and pressure for reaction. But in the case of Shahriari and 
group, the use of Teflon pouch creates the low-temperature, 
low-pressure condition for reaction as the Teflon becomes 
permeable around 100°C and initiates the reaction. For the 
syntheses of silver-based delafossites (AgBO2), the above-
mentioned hydrothermal process appears to be particularly 
important to grow superior quality materials. Previously, 
Shannon and co-authors used a multi-step cation exchange 
method instead of high-temperature solid-state reaction to 
prepare these types of materials, as silver oxide decomposes 
around 160°C. Therefore the above-mentioned hydrothermal 
method appears to be a uniform synthesis route to prepare 
various types of delafossite materials. The thermo-gravi-
metric analysis (TGA) of the hydrothermally synthesized 
samples (shown in Fig. (10)) shows the chemical formula of 
the material is CuAlO2.185. The excess oxygen intercalation 
causes the p-type conductivity of the material as described in 

Teflon Fluoro-(ethylene-

propylene) (FEP) pouch 

CuO Cu2O 

Al Al2O3 

NaOH 

pellets 

Pouches were sealed and placed 

in autoclave 

Autoclave was sealed and heated (at 150 
OC, for 5 hrs) 

Further heating (at 210 OC, for 48 hours) 
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previous sections. The temperature variation of conductivity 
of the as-synthesized powder is shown in Fig. (11), which 
shows a room-temperature conductivity around 1.3 x 10-3 
Scm-1 with an activation energy (corresponds to the 
minimum energy required to transfer a hole from valence 
band to the acceptor level, for p-type material) of 93 meV. 
These values are comparable to that reported previously by 
Benko and Coffyberg [185] for CuAlO2 powder pellets (1.7 
x 10-3 S cm-1) and the curve resembles with that reported by 
Kawazoe et al. [65] within the temperature range shown in 
the figure. Photo-electrochemical measurement depicts the 
existence of indirect bandgap of the material around 1.65 eV, 
which resembles with that reported previously [185]. 
Therefore, this scheme of synthesis procedure given by 
Shahriari et al. [184] provides a general methodology for the 
hydrothermal preparation of ABO2 compounds, compo-
sitions and/or materials, including entire A1-mA  

mB1-nB
 
nO2 

solid solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Comparison of TGA analysis of hydrothermally 
synthesized (HS) and high-temperature solid-state synthesized 
(SSS) CuAlO2+x powders [184]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Temperature variation of conductivity of p-CuAlO2+x 
powder pellets [184]. 

 

 Besides p-type delafossite oxides, binary metal oxide 
such as p-ZnO is another and very important material in p-
TCO technology. Doped versions of zinc oxides (ZnO: 
In/Al/F/B/Ga) are well known and widely used transparent 
oxides with n-type conductivity [3, 8]. Advent of p-ZnO is 
an important milestone in “Transparent Electronics” [53, 
135] due to the fact that p-n homojunction can be fabricated 
by both types of zinc oxides, which is a key structure in this 
field. The attempt to synthesize p-ZnO was first made long 
back in 1960 by Lander [91] and a decade later by Hümmer 
[92]. Later considerable efforts were made to produce p-ZnO 
doped with N [93-98, 186-191] and As [99], Sb [192], P 
[193] etc. But theoretical calculations of the electronic band 
structure predicted that nitrogen is the best candidate for 
producing a shallow acceptor level in ZnO [194, 195]. 
However, to substitute oxygen by nitrogen, the use of source 
species that contain only one nitrogen atom per entity (NH3, 
NO, N, NO2) should be more amenable to acceptor-state 
formation because of the large dissociation energy of N2 (9.9 
eV) [196]. Recently, from first principle calculation, 
Yamamoto and co-authors [100] proposed that ‘co-doping’ 
of donor - acceptor dopants (e.g. Ga and N respectively) in 
ZnO might lead to p-type ZnO. Successful fabrication of p-
ZnO by this theory has been realized first by Joseph and co-
authors [101]. In this method the simultaneous doping of 
both acceptor (N) and donor (Ga) into ZnO lattice were done 
with an acceptor concentration twice that of donor 
concentration to get maximum conductivity in p-ZnO. The 
essential approach of this method is to stabilize the N 
substitution in the appropriate ZnO lattice sites by formation 
of N-Ga-N type bonds, which would reduce the N-N 

repulsive interaction (Madelung Energy) and thereby making 
the acceptor level shallower, thus enhancing the acceptor 
doping [100, 101]. Following this notion, Zhang and co-
authors [197] reported the fabrication of N-Al co-doped p-
ZnO films by solution-based technique. But later, several 
reports pointed out on the reproducibility of p-ZnO and 
difficulties in ‘co-doping’ technique [198,199]. Although 
this put some questions on ‘co-doping’ theory, but non-
realization of proper growth parameters as well as formation 
of some non-ZnO species in the ZnO matrix in these studies 
may not be ruled out which shows unambiguous results. 
Recently, few groups reported the possibility of fabricating 
p-ZnO with metallic Na and Mn as the dopant source [200-
201]. Also Tan et al [202] fabricated intrinsic p-ZnO1+x by 
controlling the Zn: O ratio within the material. This report is 
important in the sense that p-n homojunction can be 
fabricated by controlling only the oxygen atmosphere inside 
the growth chamber without the hassle of intentional 
substitutional doping. Recently, Triboulet and Perrière [203] 
reviewed the advancement in the field of ZnO films and 
briefly described the importance and recent status of p-ZnO 
films. Similarly, Dai and co-authors [204] reviewed the 
recent advances in the field of p-ZnO thin film. These review 
works dealt in details with the various growth techniques of 
both n- and p-type epitaxial ZnO films and their device 
applications in optoelectronics, spintronics etc. These reports 
and the corresponding references therein would provide an 
in-depth knowledge in the development of p-ZnO thin films. 
Tremendous scopes lie ahead in this area of research for 
future applications.  
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 As far as patenting activities of p-ZnO is concerned, Yan 
and Zhang [205] filed patent for providing a method of 
fabricating N-doped ZnO with high hole conductivity. The 
deposition is done under Zn-rich growth conditions with 
molecular NO and (or) NO2 as the dopant source. This 
creates a shallow acceptor level via multi-site substitution of 
NO or NO2 molecules, in such a way that one molecule 
occupies more than one normally O sites, which is energe-
tically favored, and results in high hole concentrations. 
Another reason for the use of NO or NO2 gas is that these 
gases further suppress the formation of donor-like defects 
such as oxygen vacancy (VO) and metal interstitials (Zni), 
leading to high hole mobility. This unique concept of using 
molecules as dopants is the key to prevent the formation of 
other unwanted forms of molecules in the growth chamber 
and the formation of multi-site substitutional defects inside 
the material. In general, this molecular doping process can be 
used to grow various p-type transparent conducting oxides, 
such as ZnO, CdO, In2O3, SnO2, Ga2O3 and the alloys 
thereof, with a molecular doping source, such that the oxide 
and doping source can be grown under conditions sufficient 
to deliver the doping source intact onto the oxide before it 
dissociates. This group has calculated the formation energy 
for the ZnO: N via substitution of atomic nitrogen as well as 
molecular NO or NO2 in the O-sites of the ZnO matrix and 
showed that molecular substitution is energetically favored 
when NO or NO2 molecule occupying more than one O-sites 
[205]. They also showed that the formation energies of N 

related defects are largely reduced at the Zn-rich condition 
when NO or NO2 gas is used as dopants, leading to 
significant enhancement of concentrations. The higher N 

chemical potentials (higher than1

2 2μN
) due to the NO or 

NO2 molecules are the reason for the defect formation 
energy reduction. The same principal can be applied to other 
transparent conducting oxide films too, which make the 
process more special. The schematic diagram of the NO / 
NO2 incorporation inside ZnO matrix is illustrated in Fig. 
(12). As shown in the figure, Fig. (12-a) shows the structures 
of an NO and an NO2 molecule. Fig. (12-b) shows the 
substitution of NO molecule in an O-site in such a way that 
the N-atom occupies a normal O-site of ZnO and, in effect, 
the O-atom of NO occupies an octahedral interstitial site 
(Ooct), denoted as (NO)O-O. The O-atom of the NO molecule 
can also occupy a tetrahedral (T) interstitial site, which is 
denoted as (NO)O-T (not shown here). This scheme is called 
single O-site substitution. On the other hand, when both the 
atoms of NO molecule occupy the normal O-site of ZnO 
matrix (denoted by (NO)OO), the scheme is called double O-
site substitution (as shown in Fig. (12-c)). For NO2 
molecular substitution, if the N-atom of the NO2 molecule 
occupies a normal O-site of ZnO matrix, whereas the O-
atoms of NO2 molecule also occupy two other normal O-site, 
the scheme is called triple O-site substitution, as shown in 
Fig. (12-d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Schematic illustration of the incorporation of NO and NO2 molecule inside the ZnO matrix [205]. 
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 Similarly, Yoshida et al. [206] filed patent on the 
fabrication of p-type ZnO single crystal by a co-doping 
technique which comprises of p-type dopants such as 
nitrogen and carbon and an n-type dopant composed of any 
one or more elements selected from a group consisting of 
boron, aluminum, gallium, indium and hydrogen. The 
doping was done in such a way that the concentration of said 
p-type dopant is higher (between 1.5 to 5 times) than the 
concentration of said n-type dopant. When C is used as the 
p-type dopant, the material growth was done under Zn-rich 
condition. This is because C is a medium (not hard but not 
soft) basic element. When ZnO is doped with B, Al, Ga, or 
H, which are hard basic elements, as an n-type dopant 
together with such a C, since the chemical bonding of these 
elements with C is unstable, Zn is easily released. And a 
phenomenon occurs that C enters the vacancy produced after 
the Zn has been released. That is, C is in the state of easily 
substituting for Zn, a medium acid. This substitution means 
that C functions as an n-type dopant. Thereby, the crystal-
linity of ZnO doped with C together with B, Al, Ga, or H 
becomes unstable, and in the crystal, a phenomenon occurs 
in which C that functions as an n-type dopant offsets C that 
functions as a p-type dopant. Therefore, in the case of 
producing a p-type ZnO single crystal by this doping 
technology, it is preferable to supply zinc (Zn) excessively 
compared with oxygen (O). The chemical bonding occurs 
between Zn and C, which are both medium elements, and the 
substitution of Zn by C is prevented. As a result, since the 
crystallinity of ZnO doped with C together with B, Al, Ga, or 
H is stabilized and C functions only as a p-type dopant in 
this crystal. The p-ZnO single crystal containing p- and n-
type dopants was grown on a semiconductor substrate by 
simultaneously supplying Zn, O, p-type dopants and n-type 
dopants using the MBE method. The said p-and n-type 
dopants are supplied in an atomic state produced by 
electronical excitation with radio waves, laser beams, X rays, 
electron beams etc. Fig. (13) shows the schematic structural 
diagram of a MBE growth chamber. The vacuum in the 
vacuum chamber is maintained at 10-8 torr and atomic gases  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). MBE growth chamber of N-Ga co-doped p-ZnO film 
[206]. 

of Zn, O, N, and Ga etc. are supplied to the substrate through 
RF coils and heater. The hole conductivity in the single 
crystalline material is found to be around 1017 cm-3. 

 Kakuya et al. [207] filed patent on the fabrication of co-
doped p-ZnO: N-Ga via a two-step MBE growth technique. 
The schematic illustration of the process is shown in Fig. 
(14). In the first step atomic gases of Zn, O and p-type 
dopant (N) is supplied to grow ZnO on sapphire substrate. 
Thereafter, in the next step, the oxygen flow is stopped and a 
n-type dopant (Ga) is supplied to the system, thereby 
forming a p-type ZnO layer. By repeating these two steps, 
several numbers of times times, a p-type ZnO based oxide 
semiconductor layer is grown. As a result, N to be the p-type 
dopant can be doped in a stable carrier concentration also 
during high temperature growth in which a residual carrier 
concentration can be reduced, and the carrier concentration 
of the p-type layer made of the ZnO based oxide semicon-
ductor can be increased sufficiently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). Schematic diagram of N-Ga co-doped p-ZnO thin film 
[207].  

 
 As far as patenting activities on the transparent active 
devices, in the field of “Invisible Electronics”, are concer-
ned, White et al. [208] filed the patent for the fabrication of 
all-oxide transparent p-n homojunction diode of the form 
GaAs / p-ZnO: As / n-ZnO: Al by eximer pulsed laser depo-
sition (PLD). A schematic diode structure is shown in Fig. 
(15-a). The current-voltage characteristic shows rectifying 
property with turn-on voltage around 1.0 V. In and Ga 
dopants were also used as the n-type donor atoms. Also GaN 
substrate is used for the fabrication of the junction instead of 
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GaAs. For GaAs substrate, a special substrate heat treatment 
is done so that As can migrate from the substrate to ZnO 
layer to make it p-type. But for GaN substrate, either As-
doped ZnO pellet is directly used as the target for PLD or a 
molecular source of As is used during the growth, along-with 
the ZnO target. In both cases, the acceptor atom concen-
tration is set no less that 10

15
 cm

-3
, so also the donor atom 

concentration is kept around 10
15

 cm
-3

. Also they have 
fabricated transparent heterojunctions diode where the p-
layer is made up of p-ZnO: As whereas the n-layer 
comprises of an oxide-based material whose bandgap is 
different from that of p-layer. This invention is important in 
the sense that the preparation of homoepitaxial and heteroe-
pitaxial transparent p-n junctions can be accomplished using 
additional techniques in place of pulsed laser deposition such 
as MBE, MBE with laser ablation, CVD and MOCVD. Also, 
more complex devices such as transparent n-p-n, p-n-p 
transistors, FETs, photodetectors, lattice matching layers, 
and layers on which electrical leads may be attached can 
easily be fabricated using the above-described techniques 
and processes. Similarly, Kakuya and co-inventors [207] 
filed patent for the fabrication of a blue based (wavelength 
region from ultraviolet to yellow) p-n junction light emitting 
diode (LED) based on ZnO. The device structure is shown in 
Fig. (15-b), which is a double heterojunctions diode. All the 
layers are grown by MBE method on sapphire substrate. The 
fabrication technique described in this patent, in general, can 
be used to fabricate various oxide-based transparent homo- 
and (or) hetero-junction diode.  

 As far as nanostructured p-TCOs are concerned, Gong 
and co-authors [119] first reported the preparation of phase 
impure copper aluminum oxide thin films by chemical vapor 
deposition (CVD) method, which contain nanocrystalline 
phases of CuAlO2 and Cu2O. They have used metalorganic 
precursors Cu(acac)2 and Al(acac)3 (acac = acetylacetonate) 
as the source material. The crystallite size was found to be 
below 10 nm with an optical bandgap of 3.75 eV. The carrier 
concentration was ~10

19
 cm

-3
 [119]. Also later, Gao and co-

authors [130] reported the synthesis of phase pure 
nanocrystalline CuAlO2 thin film by spin-on technique. They 
have initially prepared CuAlO2 nanocrystalline powder by 
hydrothermal cation exchange reaction between NaAlO2 and 
CuCl. Then the powder was dispersed in alcohol and 
deposited as thin film on glass substrates by spin-on 
technique [130]. The average grain size obtained by this 
group was around 10 nm with an optical bandgap around 
3.75 eV. The room temperature conductivity was found to be 
2.4 S cm

-1
 with a hole concentration around 10

18
 cm

-3
. We 

have also reported the synthesis of CuAlO2 nanoparticles by 
D.C. sputtering technique from a sintered disk of copper 
aluminum oxide [209]. The particle size was found to be as 
low as 10 nm. We have observed an increase in the particle 
size with an increase in the deposition time. Also an increase 
in the bandgap from 3.60 to 3.94 was observed with the 
decrease in the particle size. And this bandgap enhancement 
is attributed to the quantum confinement effect as often 
found in semiconductor nanocrystals. We have also obser-
ved, for the first time some photoluminescence properties of 
nanocrystalline CuAlO2 thin films and tried to explain it with 
existing theories [209]. Photoluminescence properties of p- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15). Schematic structure of ZnO-based (a) transparent p-n 

homojunction [208] (b) LED [207]. 

 

type transparent semiconducting layered oxysulphide thin 
films of LaO(CuS) have been reported previously by Ueda 
and co-authors [80]. Also, as far as luminescence properties 
of copper based delafossite oxide materials are concerned, 
Jacob and co-authors [210] reported the luminescence 
properties of CuLaO2 and CuYO2 pellets. Various opto-
electronic properties of nanocrystalline CuAlO2 thin film are 
furnished in Table 10. As far as non-delafossite p-TCO 
nanostructure is concerned, recently, Xiang et al. [211] 
reported the fabrication of highly oriented p-ZnO: P 
nanowires by simple chemical vapor deposition method. The 
p-type dopant source is taken as P2O5 and well-aligned 
single-crystalline nanowires are grown on the sapphire 
substrate. The average diameter and length of the nanowires 
are 50 nm and 2 μm respectively. 
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4. FABRICATION OF p-CuAlO 2 NANO-PARTICLES 
BY LOW-COST D.C. SPUTTERING TECHNIQUE 

 Nanostructured p-CuAlO2 thin films have been 
synthesized by D.C. sputtering technique by reducing the 
deposition time and substrate temperature during deposition. 
Effect of deposition time on crystal quality, particle size, 
strain, bandgap etc of the film has been investigated. Also 
photoluminescence properties of this nanocrystalline 
material have been reported here. 

4.1. Fabrication 

 Polycrystalline CuAlO2 powder was first synthesized by 
mixing Cu2O and Al2O3 powders (both 99.99 %) with Cu / 
Al atomic ratio 1 : 1 for 1 hr. Then the mixture was then air-
annealed at 1100oC for 24 hours to form the CuAlO2 powder. 
The sintered body was then reground and pressed into pellet 
by hydrostatic pressure and was placed in aluminum holder 
by some appropriate arrangement, which was used as the 
target for sputtering. 

 The sputtering unit was evacuated by standard rotary-
diffusion arrangement upto a base pressure of 10-6 mbar and 
the target was then pre-sputtered for 10 min to remove 
contamination, if any, from the surface and then the shutter 
was displaced to expose the substrates in the sputtering 
plasma. Films were deposited on ultrasonically cleaned glass 
and Si substrates, which were placed on the lower electrode 
and connected to the ground of the power supply. The 
electrode distance was taken as 1.5 cm. Ar and O2 (3 : 2 vol. 
ratio) were taken as sputtering gases. Details of the 
deposition conditions were described elsewhere [209]. Most 
importantly, the deposition times (td) of the films were kept 
at very low values, which range from 3 min to 45 min and 
also the substrate temperature was kept at ambient condition 
(373 K). This is because, generally at higher substrate 
temperature, the particles tend to coalesce to form bigger 
clusters, which is unwanted for the formation of nano-
structured films. The variation in the deposition time is done 
to observe the changes in the nanostructure and optical 

properties of the films. Also no post-annealing of the films 
was performed.  

4.2. Characterization 

 The X-ray diffraction pattern of the synthesized CuAlO2 
powder, which was used for target preparation, has been 
presented in Fig. (16-a). The peaks of the powdered material 
confirm the proper phase formation of the required target 
material. Fig. (16-b) and (16-c) represent the XRD patterns 
of sputter-deposited nanocrystalline CuAlO2 thin films on Si 
substrates with deposition times (td) 45 min and 15 min 
respectively. For the film with td = 15 min, two broad peaks 
of (101) and (012) reflections are observed along with two 
smaller peaks of (107) and (018) reflections. On the other 
hand for the film deposited in 45 min, a slightly stronger 
peak of (006) reflections and a small peak of (018) 
reflections are observed along with the presence of a broad 
and considerably attenuated hump representing (101) and 
(012) reflections. 

 Transmission electron microscopic (TEM) analyses were 
done for nanocrystalline CuAlO2 thin films with various 
deposition times (td). Fig. (17-a), (17-b) and (17-c) show the 
TEM micrographs of CuAlO2 films deposited in 3, 9 and 15 
min respectively. From the micrographs, the average particle 
sizes (L) are obtained around 10 nm, 20 nm and 30 nm 
respectively, for the films deposited in 3 min, 9 min and 15 
min respectively. Previously, Gong et al [119] and Gao et al 
[130] reported the particle size of their nanocrystalline 
copper aluminum oxide films around 10 nm, which is 
comparable to our samples deposited in 3 min. Also, from 
the TEM micrographs we have observed an increase in the 
average particle size of our nanocrystalline CuAlO2 thin 
films with increase in the deposition times, which is mainly 
due to the greater amount of influx of sputtered particles, 
resulting into the agglomeration of bigger particles. Thus the 
average particle size increases with increase in the deposition 
time as observed in Fig. (17-a), (17-b) and (17-c) and when 
the deposition time is 45 min and above, the average particle 
size (L) becomes ~ 60 nm and more (not shown here).  
 

Table 10. Electro-Optical Properties of Nanostructured CuAlO2 Thin Films Synthesized by Various Processes  

Process 

Avg. Particle 
Size 

(nm) 

Band-Gap 

(eV) 

Room-Temp. 
Conductivity 

(S cm-1) 

Carrier 
Concentration 

(cm-3) 

Ref Remarks 

MO-CVD 10 3.75 2.0 1.8 x 1019 119 The film contains nanocrystalline phases of CuAlO2 
and Cu2O. 

Spin-on 
technique 

10 3.75 2.4 5.4 x 1018 130 Initially CuAlO2 nanocrystalline powder was 
prepared by hydrothermal cation exchange reaction 
between NaAlO2 and CuCl. Then the powder was 
dispersed in alcohol and deposited as thin film. 

Sputtering ~10 3.94 --- --- 209 Deposition time was varied to decrease the particle 
size. With decrease in the particle size, an increase 

in the bandgap is observed due to quantum 
confinement effect. Also room-temp. 

photoluminescence properties were observed first 
time in these nanocrystalline CuAlO2 thin films. 
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Fig. (16). XRD pattern of (a) p-CuAlO2 sintered target, (b) 
nanocrystalline p-CuAlO2 thin film deposited for 45 min., (c) for 15 
min. 

 
Selected area electron diffraction pattern (SAED) of the 
films deposited in 3 min, 9 min and 15 min are shown in the 
Fig. (17-d), (17-e) and (17-f). Few diffraction rings are 
obtained in all the patterns which correspond to the (101) & 
(202) planes of the films deposited in 3 min, (101) & 
(00 21 ) for the films with td = 9 min and (101) & (018) for 
the films deposited in 15 min respectively. The lattice 
spacings (d) corresponding to these rings in the diffraction 
patterns were measured with the camera constant of the 

equipment and the diffraction ring radii were measured from 
the micrographs [212]. These ‘d’-values calculated from all 
the patterns along with that obtained from XRD 
measurements were then matched with the theoretical ‘d’-
values obtained from JCPDS file [213] and compared in 
Table 11.  

 It has been observed that in all the SAED patterns, a 
(101) orientation is present, which is similar to the target 
material as well as to that of the film deposited for 15 min 
(as shown in the XRD pattern). Therefore, this observation 
basically indicates the formation of quasi-continuous films 
consisting of CuAlO2 nano-particles, when the deposition 
time is 15 min or less, (as has been depicted from TEM 
micrographs), whereas with further increase in the deposition 
time (i.e. for td   45 min), the growth mechanism followed a 
preferred (006) orientation. 

 UV-Vis spectrophotometric measurements of CuAlO2 
thin films were done for the samples with deposition times 3 
min, 9 min, 15 min, 45 min and 150 min. Fig. (18-a) shows 
the spectral variation of the transmittance (T) of these films 
deposited on glass substrates taking similar glass as 
reference. Therefore the spectra are for the films only. 
Thickness of the films are in the range of 30 nm, 60 nm, 90 
nm, 200 nm and 400 nm for the films deposited in 3 min, 9 
min, 15 min, 45 min and 150 min respectively. The average 
visible transmittance of these films increases from 75% to 
98% with decrease in the deposition time. This is mainly due 
to the decrease in the film thickness, which leads to lesser 
scattering and absorption of photons. Fig. (18-b) represents 
the spectral variation of reflectance (R) of the same films 
deposited on glass substrates. From the transmittance (T) and 
reflectance (R) data, the absorption coefficients ( ) of these 
films were measured according to the following equation 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (17). TEM micrographs of p-CuAlO2 nanoparticles deposited for (a) 3 min., (b) 9 min. and (c) 15 min. (d) SAED pattern of the same for 
deposition time 3 min (e) 9 min. and (f) 15 min. 
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]
1

[ln
1

T

R

d

 =!                                                   (3) 

where T is the transmittance, R is the reflectance,   is 
absorption coefficient and d is the thickness of the film 
(here, we have neglect the internal multiple reflections, as 
the film thickness is very low). (Fig. 18-c) represents the 
spectral variation of   in the visible range. The value of   
varies from 8.61 x 102 cm-1 for film deposited for 3 min to 

2.56 x 104 cm-1 for film deposited for 150 min (bulk film) at 
400 nm wavelength. Also the refractive indices (n) and 
extinction coefficients (k) of these films were determined 
according to Eq. 4 and Eq. 5 respectively using the values of 
  and R. Fig. (18-d) and (18-e) show the wavelength ( ) vs. 
n and k plots respectively. 

R

R
n  

+=
1

1                                                                  (4) 

Table 11. Comparison Between the Experimentally Obtained d-Values from SAED Patterns (dSAED) of the Nano-Crystalline p-
CuAlO 2 Thin Films Deposited for 3 min and 9 min and that of XRD Patterns (dXRD) for the Target and Films Deposited 
for 15 min and 45 min Respectively with that given in JCPDS File (dJCPDS) 

dSAED 

(Å) 

dXRD 

(Å) 

h k l 

td = 3 min td = 9 min td = 15 min td = 15 

min 

td = 45 

min 

Target 

dJCPDS 

(Å) 

0 0 6 --- --- --- --- 2.816 2.83 2.820 

1 0 1 2.438 2.441 2.450 2.448 2.450 2.45 2.437 

0 1 2 --- --- --- 2.350 2.380 2.378 2.376 

104 --- --- --- --- --- 2.133 --- 

1 0 7 --- --- --- 1.732 --- 1.732 1.732 

0 1 8 --- --- 1.618 1.607 1.610 1.611 1.612 

0 0 0 2 --- 1.406 --- --- --- 1.401 1.401 

2 0 2 1.220 --- --- --- --- 1.225 1.225 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (18). Spectral variation of the (a) transmittance, (b) reflectance, (c) absorption coefficient, (d) refractive index, (e) extinction coefficient 
and (f) bandgap determination of p-CuAlO2 nano-particles. 
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and 

 
!"

4
=k                                                     (5) 

 Here, for transparent medium (as for p-CuAlO2 films), 
we have assumed that k2 « (n-1)2. 

 In the range of the onset of absorption edge, the 
absorption coefficients can be described by the relation for 
parabolic bands according to the following equation 

)(
1

)(
g

EhAnh  = ""!                                       (6) 

where Eg is the band gap of the material and the exponent n 
depends on the type of transition. For direct allowed 
transition, n=1/2, for indirect allowed transition, n=2, and for 
direct forbidden transition, n=3/2. The factor A is a constant 

but also depends on the type of transition. The 2)( ! h  vs. 

 h plots for the films with different deposition times (td) is 
shown in Fig. (18-f). The direct allowed bandgap values for 
the films deposited for 3 min, 9 min, 15 min, 45 min and 150 
min are obtained as 3.94 eV, 3.84 eV, 3.72 eV, 3.60 eV and 
3.34 eV respectively. The corresponding average particle 
sizes (L) are 10 nm, 20 nm, 30 nm, 60 nm and greater than 
90 nm respectively. Various optical parameters of 
nanocrystalline CuAlO2 films deposited for different times 
are compared in Table 12. From the table, we have observed 
the broadening of the bandgap energy of our nanocrystalline 
CuAlO2 thin film with the decrease in the deposition time. 
This may be attributed to the quantum confinement effect 
put forward by Brus [157] where the size dependency of the 
bandgap of a semiconductor nanoparticle )

][
(

nanog
E  is 

given by the following formula: 

#μ )
2

(

28.1
2)

2
(8

2

][][ L
e

L
h

bulkg
E

nanog
EE !"=!=           (7) 

where  E is the shift of the bandgap with respect to the bulk 

bandgap 
][bulkg

E , 
2

L  is the radius of the nano-particles 

(where L is the particle diameter, taken to be equivalent to 
the particle size, mentioned earlier), μ* is the reduced mass 
of electron-hole effective masses and " is the semiconductor 
dielectric constant. The first term of the RHS expression in 
the equation represents the particle-in-a box quantum 

localization energy and has a 
2

1

L
 dependence for both 

electron and hole. The 2nd term represents the Coulomb 

energy with an 
L

1  dependence. In the limit of large L, the 

value of 
][nanog

E  approaches that of 
][bulkg

E . As TEM 

micrographs (Fig. (17-a), 17-b and 17-c)) reveal that the 
average particle size of our samples decreases with the 
decrease in the deposition time (i.e. L ~ 10 nm and ~ 20 nm 
for td = 3 min & 9 min respectively and for td = 15 min and 
45 min, L ~ 30 nm and ~ 60 nm), the observation of bandgap 
widening in our samples is consistent with the quantum 
confinement effect explained by the Eq. 6. 

 The size-dependant optical properties of CuAlO2 
nanoparticles were examined by the photoluminescence (PL) 
spectroscopic measurements at room temperature. The PL 
spectra shown in Fig. (19) were obtained with a 210 nm 
excitation wavelength and the films were deposited on Si 
substrates. Three spectra shown in the Fig. (19) are for three 
samples deposited for 9 min (curve - a), 15 min (curve - b) 
and 45 min (curve - c) respectively. Three peaks obtained are 
around 3.56 eV, for curve - c (! = 348.5 nm), 3.61 eV, for 
curve - b (! = 343.6 nm) and 3.66 eV, for curve - a (! = 
339.0 nm) respectively. These peaks may be attributed to the 
UV near-band edge (NBE) emission [214] of wide bandgap 
CuAlO2, namely the recombination of free excitons through 
an exciton-exciton collision process. This observation again 
indicates the existence of direct transition type bandgap of 
this material, which is favorable for the optoelectronics 
applications like light-emitting diodes (LED). Also, a slight 
blue-shift of the emission peaks is observed with decrease in 
the deposition time. As already mentioned previously, that a 
decrease in the average particle size (L) is observed with the 
decrease in the deposition time, td (i.e. for td = 9 min, 15 min 
and 45 min, L ~ 20 nm, ~ 30 nm and ~ 60 nm respectively),  
 

Table 12. Variation of Average Particle Size, Film Thickness and Bandgap with the Deposition Time of Nano-Crystalline CuAlO2 
Thin Film 

td 

(min) 

Average 
particle size 

(nm) 

Film thickness 

(nm) 

Avg. T 

(%) 

  

(at  =400 nm) 

(cm-1) 

n 

(at  =400 nm) 

k 

(at  =400 nm) 

Band-gap 

(eV) 

3 ~ 10 30 95 8.61 x 102 1.29 0.003 3.94 

9 ~ 20 60 90 1.63 x 104 1.38 0.05 3.84 

15 ~ 30 90 80 2.44 x 104 1.34 0.08 3.72 

45 ~ 60 200 75 1.56 x 104 1.36 0.05 3.60 

150 

(bulk) 

> 90 400 65 2.56 x 104 1.44 0.08 3.34 
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Fig. (19). Photoluminescence spectra (PL) spectra of nano-
structured CuAlO2 thin films deposited for (a) 9 min, (b) 15 min 
and (c) 45 min. 

 
therefore this blue-shift may be another indication of 
experimentally observed bandgap enhancement results from 
low-dimensional quantum confinement effects.  

 Hall measurements could not be performed in all of our 
samples. But p-type conductivity of the sample deposited for 
150 min was established by thermo-power measurement and 
the positive value of room temperature Seebeck coefficient 
(SRT = + 93 μV K -1) of this sample confirmed the p-type 
nature of the film. But for the films deposited for 45 min and 
less, thermo-power measurement could not be performed and 
only hot-probe measurements confirmed the p-type 
conductivity in these films.  

 In conclusion, it has been observed that the nano-
structured p-type conducting CuAlO2 thin films, synthesized 
by D. C. sputtering technique, showed a variation in the 
particle size with a variation in the deposition time. Optical 
transmission spectra of the films also show an increase in the 
average visible transmittance with decrease in deposition 
time. A blue-shift or widening of the bandgap of the material 
is observed with decrease in deposition time. As particle size 
decreases with decrease in the deposition time, this bandgap 
broadening is attributed to the quantum confinement effect, 
where the bandgap of a semiconductor nanoparticle becomes 
an inverse function of the particle size. Room temperature 
photoluminescence measurements of this material showed 
UV bands around 3.56 eV to 3.66 eV for the films deposited 
for 45 min to 9 min respectively, which arises from the room 
temperature excitons. The existence of room-temperature 
excitons in CuAlO2 is supposed to originate from low 
relative dielectric constant of the material and high reduced 
mass of the excitons, which produces large exciton binding 
energy. A blue-shift of the emission peaks is observed with 
decrease in the particle size, confirming the quantum con-
finement effect within the CuAlO2 nanoparticles. Therefore, 
fabrication of nano-structured p-CuAlO2 and other types of 
p-TCOs, coupled with the already existing and well-known 
materials of nano-structured n-TCOs, will give an added 
impetus in the field of “Invisible Electronics” for the fabrica-

tion of nano-active devices, which can have high-efficient 
applications in the optoelectronics device technology. 

5. CURRENT & FUTURE DEVELOPMENTS 

 Currently, a major part of the research activities in p-
TCO technology are concentrated on the fabrication of 
device quality films with superior electrical characteristics. 
The maximum conductivity of p-TCO films reported so far 
is still few orders of magnitude less than that of 
commercially available n-TCO films. So this puts hindrance 
in the formation of effective active devices for large-scale 
production. It is found that nonstoichiometric oxygen 
intercalation within the material has its limitation to increase 
the conductivity of the film. Excess oxygen intercalation, 
beyond an optimum value, is found to deteriorate the film 
quality [107]. So intentional doping of the material is the 
obvious step to increase the conductivity of the film. 
Identification of proper dopant and doping procedure should 
be the focus of the future work in this field. Several 
theoretical articles have been published so far [180-181, 215-
217], indicating various doping materials and procedures to 
enhance the electrical characteristics of these materials but 
no experimental work has yet been reported, as far as 
literature survey goes. Therefore, doping of p-TCOs for 
superior device quality films is an important area of research 
for the development of “Transparent Electronics”. In this 
regard, another important direction should be mentioned here 
is the development of various new kinds of p-TCOs, having 
diverse characteristics. Recently, new types of p-TCOs in the 
form of spinel ZnM2O4 (M: Co, Ir, Rh) [218,219] and SnO2: 
M (M: In, Ga) [220,221] have been reported, which show 
considerably high conductivity. These results may lead to 
different new kinds of p-TCOs with superior electro-optical 
properties.  

 Another interesting area of research is the cost-effective 
fabrication of transparent junctions, without compromising 
its electro-optical properties. This is important for the large-
scale production of various junctional devices for diverse 
applications in “Transparent Electronics”. Costly techniques 
like PLD [222] may produce superior junctions, but for 
large-scale production, cost-effective techniques are the 
needs of the hour [144, 187, 223]. It is noteworthy that the 
ZnO-based LEDs are recently gained renewed interest in 
optoelectronics technology [188] for potential applications in 
short-wavelength LEDs and diode lasers in the field of 
display, illumination and information storage technology. 
Therefore, this field has tremendous potential to explore 
high-efficient devices. 

 Another area of research, which is not yet explored 
completely, but has tremendous potential, is the thermo-
electric properties of CuAlO2 films. Being a layered-
structured material, this material as well as other delafossite 
materials (so also other superlattice materials) can become 
very good candidate for thermoelectric converters. Recently, 
Park et al [224] have reported a significant increase in the 
thermoelectric properties of this material for Ca substitution 
in Al sites at high temperature. They have observed the 
highest value of power factor around 7.82 ! 10 5 Wm 1 K 2 
for CuAl0.9Ca0.1O2 at 1140 K. Also, recently, Hicks and co-
authors [225-227] theoretically showed that low-dimensional 
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materials (such as quantum wires, quantum dots of different 
thermoelectric materials) can have superior thermoelectric 
properties over the corresponding bulk materials. This is 
assumed to be due to the confinement of the electrons and 
phonons inside the low-dimensional environment of the 
nanostructures, which manifests the superior Figure-of-merit 

( ,
2

 
!TS

ZT =  also called dimensionless Figure-of-merit, 

where S is the Seebeck Coefficient, ! is the electrical 
conductivity, " is the thermal conductivity and T is the 
temperature [228]) of these nanomaterials. Therefore, nano-
structured p-CuAlO2 and similar p-TCOs may provide new 
and high-efficient thermoelectric materials and, hence, if 
proper studies can be done on the thermoelectric properties 
of these types of superlattice and nanostructured materials, 
new horizon may open up in the field of thermoelectric 
converters. 

 Also keeping an eye in the tremendous progress in 
nanotechnology, fabrication and characterization of nano-
structured p-CuAlO2 as well as other p-TCO thin films may 
become an important field of work, because of new and 
interesting properties exhibited by these nano-materials [209, 
211]. Proper fabrication procedure to get reproducible nano-
materials is the most important future work. Also in-depth 
studies of the photoluminescence properties of p-CuAlO2 
and similar types of p-TCO nano-particles will be another 
area of research, which is needed to be explored properly. 
Fabrication of nano-structured p-TCOs, coupled with the 
already existing and well-known materials of nano-
structured n-TCOs, will give an added impetus in the field of 
“Invisible Electronics” for the fabrication of nano-active 
devices, which can have high-efficient applications in the 
optoelectronics device technology. 

 Field-emission property of CuAlO2 thin films is a 
completely new area of research, which has tremendous 
opportunities [229,230]. This material showed very low turn-
on field comparable to most of the carbonaceous low-
threshold field-emitters like carbon naotube (CNT), diamond 
like carbon (DLC), diamond, amorphous carbon (a:C), 
silicon carbide (SiC) nanorods etc. So these types of p-TCO 
materials may become promising alternative to the existing 
materials in the field of FED technology. But, proper 
emission mechanism in these materials is not very clear till 
date and very good scopes are there to properly investigate 
the emission mechanism so that the material properties can 
be tuned accordingly to get better field-emission properties 
of these films.  

 Also recent study showed that p-CuAlO2 can become a 
good candidate for ozone sensors. Zheng and co-authors 
[231] reported that CuAlO2 has a selective and reversible 
response to ozone gas at room temperature. All existing 
commercial semiconductor ozone sensors are of n-type [232-
235]. This study demonstrated the feasibility of developing 
an inexpensive p-type transparent ozone sensor. Hence, 
transparent p-n junction ozone sensors may be fabricated 
using the p-CuAlO2 and existing n-TCO such as In2O3.  

 Photocatalytic hydrogen evolution over delafossite 
CuAlO2 is another interesting report published recently by 
Koriche et al. [236]. This group proposed a new photoche-

mical system for water reduction based on p-CuAlO2 and S2  
as hole scavenger. They have used co-precipitation method, 
a new synthetic route, to synthesis CuAlO2, which increased 
the surface to volume ratio and delivered a highest H2 
production. This report is very interesting and shows newer 
applications of delafossite p-CuAlO2 and similar p-TCO 
materials. 

 Also, recently Kizaki and co-authors [237] proposed a 
material-designing procedure to get CuAlO2-based dilute 
magnetic semiconductors. Ab-initio calculations showed that 
Fe- and Mn-doped CuAlO2-based dilute magnetic semicon-
ductors possess high-Curie-temperature ferromagnetic 
characteristics. Being a natural p-type transparent semicon-
ductor without intentional doping, CuAlO2 can easily be 
used for the host of dilute magnetic semiconductors. Also, 
most importantly, the delafossite structure of CuAlO2 has the 
advantage of possessing two cation-sites, Cu+1 and Al+3 sites, 
for possible magnetic ion substitution. O-Cu-O dumbbell-
sites in delafossite CuAlO2 can be partially replaced with 
magnetic ions. Due to this coordination one can realize new 
ferromagnetic dilute magnetic semiconductors from the 
standpoint of the hybridization of orbitals between 3d 
orbitals with the impurities and 2p orbitals with the oxygen 
in CuAlO2. Similarly, Diet et al. [201] recently showed that 
Mn-doped p-type ZnO can become a good candidate for 
magnetic semiconductors having potential application in 
spintronics.  

  Therefore, it will not be an exaggeration to say that next 
decade will see the renaissance of micro/nano-structured p-
TCO materials and various new, interesting and novel 
technological applications with these materials are on the 
verge of exploration. 
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