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New opportunities in interferometric lithography
using extreme ultraviolet tabletop lasers
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Abstract. The development of tabletop extreme ultraviolet (EUV) lasers
opens now the possibility to realize interferometric lithography systems
at EUV wavelengths that easily fit on the top of an optical table. The high
degree of spatial and temporal coherence and high brightness of the
compact EUV laser sources make them a good option for interferometric
applications. The combination of these novel sources with interferometric
lithography setups brings to the laboratory environment capabilities that
so far had been restricted exclusively to large synchrotron facilities.
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1 Introduction

Periodic nanostructures, such as gratings and arrays of
holes and pillars, can be used to fabricate UV polarizers,
plasmonic structures, highly sensitive detectors based on
surface-enhanced Raman scattering, high-density magnetic
memories, miniaturized RF oscillators, etc., or to character-
ize photoresists and lithographic processes.k9 Electron
beam lithography and focused ion beam lithography pro-
vided an excellent method to fabricate these nanostructures
with periods below 100 nm. However, due to their intrinsic
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serial characteristic, they are time consuming and are not
well suited for large area patterning. Self-assembly, repli-
cation by embossing, molding, or printing with master
stamps are  also  alternatives  for  large-area
nanolithography.10’11 In the case of self-assembly, the ar-
rangement of nanostructures is frequently organized in re-
duced areas, while the replication using master stamps
needs a different master for each motif, restricting the ver-
satility of the method.

Interferometric lithography (IL) is an attractive and in-
expensive alternative for efficient patterning of periodic
structures over large areas. The periodic patterns are ob-
tained combining mutually coherent beams at the surface of
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a photoresist-coated substrate, creating a sinusoidal profile
with a period d=N\/2 sin 6, where \ is the wavelength, and
0 is the half-angle between the intersecting beams. Also
two-dimensional (2-D) motifs can be obtained by combin-
ing more than two coherent beams or using multiple expo-
sures.

One approach to reduce the period that can be printed by
interference is to use immersion optics to increase the nu-
merical aperture (NA) of the optics.'”” Using short-
wavelength lasers or filtered synchrotron radiation for the
illumination is the other way to achieve this goal. Savas et
al., using an ArF laser (\=193 nm) and an achromatic in-
terference setup implemented with phase gratings, demon-
strated patterning with periods down to 100 nm.">'* Zaidi
et al., using multiple exposure, demonstrated patterning of
1-D and 2-D structures with 0.6-um period.15

Further reduction in the period can be achieved utilizing
even shorter wavelength radiation from synchrotron facili-
ties. Synchrotrons provide a large photon flux and tunable
output, but the spatial and temporal coherence of the beam
are much lower than those typically obtained with laser
sources. Additional filtering is often necessary to obtain a
good contrast in the interference fringes over large areas.
This necessary filtering has the immediate consequence of a
serious flux reduction. Despite this inconvenience, synchro-
trons are always an attractive short-wavelength source for
leading-edge IL experiments.

The main advantage of the interferometric lithography
scheme is that it provides a relatively simple way to print
periodic structures over large areas with a maskless, lens-
less, noncontact technique. Compact extreme ultraviolet
(EUV) laser sources open new possibilities to realize effi-
cient nanopatterning in a compact (tabletop size) setup with
similar capabilities to systems now accessible only with
synchrotron sources. The development of compact and ef-
ficient EUV and soft x-ray lasers facilitated the demonstra-
tion of a large number of applications, including lithogra-
phy, interferometry, microscopy, holography, and
nano-ablation.'®°

In this paper, we present the development of a compact
tabletop nanopatterning tool based on the combination of
the well-established interferometric lithography technique
and a tabletop EUV laser. In Sec. 2, we present a detailed
description of the compact extreme ultraviolet laser
sources. Section 3 is devoted to describing a wavefront
division interferometric lithography tool based on a Lloyd’s
mirror interferometer. In Sec. 4, we discuss the results ob-
tained with an amplitude division interferometer imple-
mented with a transmission diffraction grating used as a
beamsplitter and two folding mirrors.

2 Compact Tabletop EUV Lasers

The sources utilized in this work are tabletop EUV lasers,
as shown in Figs. 1 and 2. This compact EUV laser enabled
us to realize in a laboratory environment applications so far
restricted to large synchrotron facilities. It is a capillary
discharge pumped laser that produces an intense beam at
A=46.9 nm with the necessary coherence and peak power
to realize a robust tabletop nanopatterning tool.

Lasing is obtained in the 46.9-nm 3-s 'P,-3p'S, (J=0
—1) transition of the Ar*® ion (neon-like Ar). An alumina
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Fig. 1 Tabletop A=46.9-nm laser and experiment chamber. The
footprint of the system is 2.5 0.75 m2.

capillary 3.2-mm inner diameter filled with Ar is excited
with a current pulse having an amplitude of =24 kA, a
10% to 90% rise time of =25 ns, and a first half-cycle
duration of =110 ns. The fast current pulse is produced by
discharging a water dielectric cylindrical capacitor through
a spark gap switch connected in series with the capillary
load. The current pulse rapidly compresses the plasma col-
umn to form a dense and hot filamentary plasma channel
where population inversion is created between the 3p(ISO)
and SS(1P1) levels by strong monopole electron impact ex-
citation of the laser upper level and rapid radiative relax-
ation of the laser lower level. Water serves as a liquid di-
electric for the capacitor and also cools the capillary. A
continuous flow of Ar is injected in the front of the capil-
lary, while an optimum Ar gas pressure of 490 mTorr is
maintained in the capillary channel.

The tabletop laser produces pulses approximately
400 wpJ at repetition rates up to 4 Hz.*'?*? The spatial co-
herence varies with the length of the gain medium.* For a
36-cm-long gain medium, a coherence radius of 550 wm at
1.5 m from the source that includes almost half the entire
laser power is obtained. The coherence radius was mea-
sured analyzing the fringe visibility of the interference
fringes obtained when a mask with two pinholes at differ-
ent separations was placed at selected distances from the
source. The coherence radius R, characterizes the trans-
verse coherence of the laser beam and was defined follow-
ing the convention of coherence area used by Goodman.**
The laser has a narrow spectral bandwidth, AN/A < 1074,
corresponding to a temporal coherence length of 470 wm.

This laser developed at Colorado State University is the
highest average power compact coherent EUV source pres-
ently available at this wavelength. It is a very compact unit
with a footprint of 1X0.5 m>. Combined with an experi-

Fig. 2 (a) Photograph of the desktop capillary discharge laser
(right) connected using a vacuum manifold to the experiment cham-
ber (left) housing the amplitude division interferometer. (b) Desktop
version of the capillary discharge laser with an energy per pulse
about 10 wJ and a repetition rate up to 12 Hz.
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Fig. 3 Wavefront division interferometer based on a Lloyd’s mirror. The setup allows for multiple exposures of the sample with arbitrary rotation

angles around an axis parallel to the mirror’s surface.

ment chamber, the system easily fits on top of an optical
table. Figure 1 shows the laser and the experiment chamber.

A more compact version of the EUV laser was used in
combination with an amplitude division interferometer
(ADI) that will be described in Sec. 4. Figure 2 shows this
more compact, “desktop” size EUV laser. The desktop A\
=46.9-nm Ne-like Ar capillary discharge laser emits pulses
with lower energy, approximately 10 wJ at repetition rates
up to 12 Hz (Ref. 25).

3 Wavefront Division Interferometric Lithography

In wavefront division interferometers, the interfering beams
are obtained by dividing the incoming wavefront into two
or more beams. One example is the multiple beams scheme
generated using a mask composed of several diffraction
gratings arranged in different configurations. This mask al-
lows for great versatility in the shape, period, and configu-
ration of the arrays of structures. By changing the orienta-
tion, period, and number of the gratings, it is possible to
print arrays of holes in square or circular patterns.%f30 An-
other attractive wavefront division scheme is the Lloyd’s
mirror interferometer. Because of its simplicity, it is a con-
venient configuration for IL at EUV wavelengths. With this
scheme, Solak et al. demonstrated 19-nm line and space

gratings (38-nm period) in polymethyl methacrylate
(PMMA) ghotoresist with  13.4-nm  wavelength
illumination.”'*

Using a Lloyd’s mirror scheme combined with multiple
exposures, we were able to print different 2-D motifs. Fig-
ure 3 shows a scheme and a picture of the actual device.
The sample is mounted in a rotation stage to allow arbitrary
angle rotations around an axis parallel to the mirror’s sur-
face. All the critical movements are controlled by vacuum
compatible actuators that allow multiple exposures in situ
with identical experimental conditions. Figure 4 shows
atomic force microscope micrographs of different patterns
obtained in PMMA with different rotation angles « be-
tween the two exposures. With a=m/2, symmetric dots are
obtained, as shown in Fig. 4(a). If the rotation angle is
changed to a=m/6, regular elongated dots are produced
instead, as shown in Fig. 4(b).

Changing the exposure dose allows for the fabrication of
pillars or holes. This can be understood in the following
way. With a small dose, the PMMA is activated only in thin
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lines corresponding to the interference maxima. The super-
position of two exposures develops small holes in the loci
where the maxima of interference superpose. On the other
hand, if the dose is increased, the PMMA is activated in
wide trenches, developing in the intersection of the minima
small regions with unexposed photoresist that resembled
cone-shaped nanodots.'’ The height of the features printed
in PMMA is 25 to 30 nm, limited by the penetration depth
of the EUV photons in this resist.

An alternative to increasing the height of the structures
is to use the Si-based photoresist hydrogen silsesquioxane
(HSQ). The 46.9-nm photons from the EUV laser have a
larger penetration depth in this photoresist, in excess of
120 nm. Figure 5 shows an example of the structures that
can be fabricated. Figure 5(a) shows an atomic force mi-
crograph of an array of dots obtained with a low exposure
dose. The HSQ is activated in small volumes corresponding
to the maxima of intensity, creating symmetric dots. If the
dose is increased, a regular array of holes is obtained in-
stead, about 130-nm FWHM and 120-nm depth, as shown
in Fig. 5(b). For higher doses, the photoresist is activated in
wide strips along the maxima of interference, which devel-
ops symmetric holes in the loci where the minima of inter-
ference superpose.

The Lloyd’s mirror configuration combined with the
tabletop EUV laser constitutes a simple and versatile inter-

Fig. 4 Arrays of symmetric (a) and elongated (b) nanodots printed
in PMMA using a Lloyd’s mirror interferometer with two successive
exposures after rotating the sample by an angle a=#/2 and «
=/6, respectively.

Apr—Jun 2009/Vol. 8(2)



Wachulak et al.: New opportunities in interferometric lithography...
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Fig. 5 (a) Dots and (b) holes fabricated in HSQ with a Lloyd’s mirror
interferometer and two successive exposures. The change from
dots to holes is obtained by changing the exposure dose. The
FWHM of the holes is 130 nm, and the depth is 120 nm.

ferometric tool capable of producing various features with
minimal changes in the exposure conditions. All the pat-
terns shown in Figs. 4 and 5 were obtained with typical
exposure times of 1 to 2 min. The printed area is limited to
500 X 500 wm? by the spatial coherence of the laser source.
This limitation can be overcome utilizing an amplitude di-
vision interferomer, which will be described in the next
section.

4 Amplitude Division Interferometric

Lithography
To obtain high-contrast fringes in a wavefront division
scheme, the interfering beams must be mutually coherent,
and that requirement imposes the necessity of a highly spa-
tial coherent illumination. In an amplitude division scheme,
this requirement is more relaxed because the interference is
obtained by the superposition of two beams that are repli-
cas of the original wavefront. This scheme allows “achro-
matic” interferometric lithography, where temporal coher-
ence is not relevant and spatial coherence limits the depth
of focus of the system.33

To overcome the limitations on the printable area im-
posed by the spatial coherence of the laser in the wavefront
division interferometer, we developed an amplitude divi-
sion interferometer (ADI) IL system. The ADI is based on a
transmission diffraction grating used as a beamsplitter and
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Fig. 7 Atomic force microscope scan of a 145-nm-period grating
printed on HSQ using an amplitude division interferometer.

two folding mirrors. The grating was fabricated by electron
beam lithography in a thick (1 wm) photoresist layer sup-
ported on a 100-nm-thick Si membrane. A scheme and a
photograph of the device are shown in Fig. 6.

The transmission diffraction grating splits the illuminat-
ing laser beam into two beams corresponding to the two
first diffraction orders. The two beams are recombined in
the surface of the sample after the reflection in two grazing
mirrors implemented with Si wafers. When illuminated
with a collimated beam, the grating produces two replicas
of the wavefront that are mutually coherent. The require-
ment for this configuration is to superpose the two beams in
the sample with an accuracy better than the transverse co-
herence length of the laser; which for our experimental
conditions is a fraction of a millimeter.” The optical path
difference between the two interferometer branches has to
be adjusted better than the longitudinal coherence, approxi-
mately 0.5 mm.

Figure 7 shows a line grating pattern with a period of
145 nm (72.5-nm-thick lines) printed on HSQ with the ADI
setup. The printed area is 2 X 0.6 mm?, corresponding to
the size of the diffraction grating used as a beamsplitter.
Gratings with smaller period, down to 95 nm, were also
printed, increasing the angle between the two beams im-

Transmission
diffraction grating

(b)

Fig. 6 Amplitude division interferometric lithography setup. The laser beam is split using a transmission diffraction grating into two beams
corresponding to the two first diffraction orders. The two beams are recombined in the sample surface on reflections in two grazing mirrors.

J. Micro/Nanolith. MEMS MOEMS

021206-4

Apr—Jun 2009/Vol. 8(2)



Wachulak et al.: New opportunities in interferometric lithography...

pinging at the sample. However, the 95-nm-period gratings
showed an increased noise and lower modulation as com-
pared to the larger period gratings.

The lower quality of the gratings printed with this inter-
ferometer can be understood if we consider that for this
experiment, we used the smaller version (desktop) laser,
which provides a substantially lower energy per pulse
(about 10 wJ per pulse). This lower photon flux increased
the necessary exposure times to approximately 10 min. The
increased exposure time might be an explanation for this
lower quality printing because vibrations during the expo-
sure play a more important role. In addition, the print qual-
ity may possibly be affected by photoresist scumming,
which is particularly severe in 50% duty cycle lines with
line widths approaching 50 nm (Ref. 34). The quality of the
beamsplitter grating and the folding mirrors is also a pos-
sible reason for the increased noise in the gratings printed
with this interferometer. The presence of scattering centers
in the grating and mirrors might introduce a random noise
background, reducing the fringe visibility and the quality of
the patterns. Furthermore, small variations in the thickness
of the Si membrane that supports the transmission grating
can introduce random phase and intensity variations across
the beam that also reduces the fringe visibility.

5 Summary

In summary, we presented a compact EUV interferometric
lithography tool that combines compact EUV lasers with
wavefront division and amplitude division interferometers
to realize tabletop nanopatterning test beds. With the wave-
front division scheme, lines and 2-D structures were printed
with exposure times of a few minutes over surfaces of the
order of a fraction of one millimeter square. By changing
the experimental conditions, it was possible to modify the
patterns from pillars to holes or to print symmetric or elon-
gated features with feature size down to 60 nm. Using an
amplitude division scheme, lines with periods down to
95 nm were obtained. For this interferometer however, the
quality of the beamsplitter must be improved to increase
the line modulation of the printed gratings.

The continuing development of tabletop laser-excited
EUYV lasers capable of emitting in the region below 20 nm
in combination with these interferometric lithography tools
can potentially further reduce the periods of the printed
structures. The shorter wavelength lasers are obtained by
irradiating a solid target with a short high-energy laser
pulse to produce an elongated plasma column were strong
gain is obtained in the 4dISO-4p1P1 transition of Ni-like
ions in Ru, Pd, Ag, Cd, Sn, Sb, and Te (Ref. 35). Recently,
the possibility of enhancing the beam spatial coherence by
seeding the plasma amplifiers with short high-harmonic
pulses was also demonstrated.’® These capabilities would
enable the demonstration of practical EUV IL tools for the
quick fabrication of large arrays of periodic features in
research-oriented prototyping that so far were restricted to
the use of large synchrotron facilities.
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