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Abstract

Within the RSJ model, we performed a theoretical analysis of phase-locking

in elementary strongly coupled Josephson junction cells. For this purpose, we

developed a systematic method allowing the investigation of phase-locking in

cells with small but non-vanishing loop inductance. The voltages across the

junctions are found to be locked with very small phase difference for almost

all values of external flux. However, the general behavior of phase-locking

is found to be just contrary to that according to weak coupling. In case

of strong coupling there is nearly no influence of external magnetic flux on

the phases, but the locking-frequency becomes flux-dependent. The influence

of parameter splitting is considered as well as the effect of small capacitive

shunting of the junctions. Strongly coupled cells show synchronization even

for large parameter splitting. Finally, a study of the behavior under external

microwave radiation shows that the frequency locking-range becomes strongly
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flux-dependent, whereas the locking frequency itself turns out to be flux-

independent.

74.50

Typeset using REVTEX

2



I. INTRODUCTION

Josephson junction arrays are considered as candidates for microwave oscillators with

possible applications in the field of satellite communication systems, astronomical observa-

tions, construction of supercomputer chips and spectroscopy1–9. They are potentially well

tunable over a relatively wide frequency range while radiating on a narrow linewidth, and

they can deliver large output power, at least in comparison with a single element. Lin-

ear arrays of Josephson junctions have been subject to theoretical investigation for more

than twenty years1,3,8,10–12. During last years, there have been some promising experimental

results13–15. Since the beginning of the nineties, there has been a growing interest in 2D

arrays4,5,16–21. Up to now, the radiation power of 2D arrays was found to be much smaller

than that of 1D arrays (0,1 µW maximum18, in comparison to 50 µW in 1D arrays15). This

may be a consequence of technological problems as well as of general properties of 2D arrays.

Because of this fact, there is some renewed interest in the general mechanisms of syn-

chronization of coupled Josephson junctions. Most of the early adiabatic investigations

were based on weak (preferably inductive) coupling of the elements1,22–28, which is surely

fulfilled for relatively large circuits with total inductances
>
∼ 10 pH. However, present day

technology allows the preparation of very compact arrays with circuit dimensions around 1

µm and smaller, having inductances smaller than 3pH. In this case, the adiabatic methods

developed earlier fail. On the other hand, neglecting inductances at all29 seems to be a too

rough approximation.

In this paper we develop a method for dealing with Josephson junctions coupled via a

small inductive shunt (SQUID-type coupling) in a systematic way. In Sec. II, we describe the

circuits handled by this method, derive the general equations, review some results obtained

by conventional methods and discuss their inapplicability to our problem. In Sec. III, we

give a review of our analytical method and present some results for the simplest case of non-

hysteretical, identical junctions, which are compared with numerical simulations. Sec. IV is

devoted to non-identical junctions and Sec. V to the influence of an additional small junction
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capacitance. In Sec. VI we consider the synchronization of strongly coupled SQUID cells

by external microwave radiation. A summary as well as some speculations about possible

applications of our results are given in Sec. VII.

Contrary to most theoretical investigations which are mainly based on computer simula-

tions during the last years, we concentrate on approximate analytical results. The advantage

of this approach is usually a better insight into physical mechanisms in combination with a

broader range of applicability concerning the choice of parameters. The disadvantage is a

larger amount of mathematical machinery necessary even in relatively simple cases. How-

soever, we found it quite valuable to use both methods and compare the results. Some

material described in Sec. III was published in a short note earlier30.

II. A SHORT REVIEW ON WEAKLY COUPLED JOSEPHSON JUNCTIONS

The strong coupling method described in this paper was developed for the investigation

of the three similar SQUID-like cells shown in Fig. 1, but the general principles should have

a much wider range of applicability. These three circuits have a bias current 2I0, a net loop

inductance L and a parallel biasing scheme in common. Elaborating the equations of motion

within the RSJ model, one obtains for the case of identical junctions

φ̇1 + sinφ1 = i0 − l−1(φ1 − φ2 + ϕ), (2.1a)

φ̇2 + sinφ2 = i0 + l−1(φ1 − φ2 + ϕ) (2.1b)

where φ1 and φ2 are the respective Josephson phases, and i0 is the normalized bias current,

i0 = I0/IC (IC : critical current), (2.2)

which is supposed to fulfill the condition i0 > 1, here. l marks the normalized loop induc-

tance,

l = 2πICL/Φ0, (2.3)

and ϕ the normalized external flux,
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ϕ = 2πΦ/Φ0 (Φ: external flux, Φ0: flux quantum). (2.4)

Dots denote differentiation w.r.t. the scaled time

s = (2e/h̄)ICRN t (RN : normal resistance). (2.5)

There exist several investigations of these systems for weak coupling, i.e. l ≫ 11,3,26. In

this case, coupling can be neglected to 0th order w.r.t. l−1 and both junctions oscillate with

the Josephson phase of an overcritically biased free contact,

φ1/2 = arctan

[

ζ0
i0 + 1

tan
(ζ0s− δ1/2

2

)

]

+
π

2
, (2.6)

showing an oscillation frequency

ζ0 =
√

i20 − 1 (2.7)

and constant phases δ1 and δ2. To 1st order the lowest harmonics of solutions (2.6) are

inserted into the r.h.s. of Eqs. 2.1a,b. This provides so-called reduced equations for the

mean values of the phases, averaged over short time scales of the order of ζ0. Looking for

solutions of the phase-locking type,

˙< δ > = 0, < δ >=< δ1 > − < δ2 >, (2.8)

one finds

< δ > −
1

i0
(

i0 + ζ0
) sin < δ >= ϕ. (2.9)

For usual operation regimes with i0 ≈ 1.5 this results in an approximate linear relation

between δ and φ, as indicated in Fig. 2. The normalized voltages

v1/2 =
V1/2

ICRN
(2.10)

are obtained as

v1/2 =
ζ2
0

i0 + cos(ζ0s− δ1/2)
. (2.11)
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This procedure and similar adiabatic methods led to a general understanding of the be-

havior of weakly coupled Josephson junctions. However, they are not applicable to small

circuits (of diameter
<
∼ 1µm) with inductances

<
∼ 1 pH. The point is, that for small induc-

tances the parameter l−1 is not longer small, e.g. l−1 ≈ 3 for L = 1 pH and IC = 100 µA.

In this case the term in parenthesis on the r.h.s. of Eqs. 2.1a and 2.1b, resp., dominates the

remaining terms and it is not possible to derive reduced equations of the type mentioned

above.

In order to deal with small inductances which already can be realized technologically

today, we developed an alternative systematic scheme, which is described in the next section.

III. A PERTURBATION SCHEME FOR STRONG INDUCTIVE COUPLING

At first, we found it convenient to introduce new variables

∆ = (φ2 − φ1)/2 and Σ = (φ2 + φ1)/2, (3.1)

providing the set of equations

∆̇ + cos Σ sin∆ =
1

l
(ϕ− 2∆), (3.2a)

Σ̇ + sin Σ cos∆ = i0. (3.2b)

These equations already indicate that the behavior of Σ is determined necessarily by the

bias current i0 and that of ∆ by the external flux, although coupling makes things slightly

more complicated.

We perform a perturbation expansion valid for small l,

∆ = ∆0 + l∆1 +O(l2), (3.3a)

Σ = Σ0 + lΣ1 +O(l2). (3.3b)

This ansatz resembles the ”slowly-varying amplitude method” developed several years ago1,31

for l−1 then and resulting in reduced equations similar to those mentioned above. Expanding

the sin and cos terms, it is not sufficient that the condition
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|lΣ1| ≪ |Σ0| (3.4)

is fulfilled, but additionally we must demand the much more rigid conditions

|lΣ1| ≪ 1 and |l∆1| ≪ 1. (3.5)

Investigation of the final result shows, that this can be met for all ϕ by choosing a sufficiently

small l. Only the case ϕ = π requires a slightly more involved consideration.

After inserting the expansion (3.3a,b) into Eqs. 3.2a,b one can compare identical powers

of l. To lowest, i.e. (−1)st, order one finds

∆0 = ϕ/2 (3.6)

without solving any differential equation. This general feature is valid for higher orders of

l, too: The variables Σn must be determined by solving a first-order differential equation

(only to lowest (0th) order being non-linear), whereas the ∆’s can be calculated algebraically.

Introducing a once more rescaled time,

s̃ = s · cos (ϕ/2), ′ =
d

ds̃
, (3.7)

the equation for Σ0 (0th order w.r.t. l) becomes very similar to that of an autonomous

junction,

Σ′
0
+ sin Σ0 = ĩ0, ĩ0 = i0/ cos(ϕ/2). (3.8)

Thus, we can immediately write down the solution,

Σ0 = 2 arctan

(

ζ
0

i0 + cos(ϕ/2)
tan

(ζ
0
s

2

)

)

+
π

2
, (3.9)

with

ζ
0
=
√

i20 − cos2(ϕ/2) (3.10)

where we have imposed the initial condition

Σ0(s = 0) = π/2. (3.11)
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Because the ∆n are determined algebraically there is no freedom to specify separate initial

conditions for them. To ensure the validity of the perturbation expansion, it is important

to specify all higher Σn according to

Σn(s = 0) = 0 for n ≥ 1. (3.12)

With ∆0 and Σ0 given ∆1 can be determined algebraically,

∆1 =
1

2

(

ζ
0
sin(ζ

0
s)

i0 + cos(ϕ/2) cos(ζ
0
s)

sin(ϕ/2)

)

. (3.13)

This expression automatically satisfies the initial condition

∆1(0) = 0 (3.14)

required for the validity of the perturbation expansion. For Σ1 one obtains the inhomoge-

neous linear differential equation

Σ̇1 + Σ1 cos Σ0 cos(ϕ/2)−∆1 sin Σ0 sin(ϕ/2) = 0, (3.15)

admitting the solution

Σ1 =
tan2(ϕ/2)

2(i0 + cos(ϕ/2) cos ζ
0
s)

(

i0 cos(ϕ/2)(1− cos ζ0s) + ζ
2

0
ln

i0 + cos(ϕ/2) cos ζ
0
s

i0 + cos(ϕ/2)

)

(3.16)

where we already exploited the initial condition, Eq. 3.12. From Eqs. 3.6, 3.9, 3.13, and

3.16 one derives the normalized voltages

v1/2 =
ζ̄2
0

i0 + cos(ϕ/2) cos ζ̄0s
+ l

ζ̄0 sin(ϕ/2)

2(i0 + cos(ϕ/2) cos ζ̄0s)2
× (3.17)

[

sin(ϕ/2) sin ζ̄0s

(

i0 + cos(ϕ/2) +
ζ̄2
0

cos(ϕ/2)
ln

i0 + cos(ϕ/2) cos ζ̄0s

i0 + cos(ϕ/2)

)

∓ζ̄0

(

cos(ϕ/2) + i0 cos ζ̄0s

)]

.

In this way we derived an analytic expression for the voltage on junction 1 and 2 resp.,

valid to first order w.r.t. l. It has to be compared with the solution (2.11) for weakly coupled

elements. Both have in common, that there always exists a solution showing phase-locking
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for all values of the external field. However, contrary to the case of weak coupling, where the

phase shift scales approximately with external flux, we will shortly see that it is negligibly

small for all values of the external field, except for ϕ ≈ π. On the other hand, the frequency,

being flux-independent for weakly coupled elements, becomes flux-dependent according to

Eqs. 3.17,10, detuning the cell this way.

So far, we could not derive an equation of motion (a kind of reduced equation) for the

phase shift of strongly coupled elements directly from the basic equations as it is possible

for weakly coupled elements. Therefore we must adopt an appropriate alternative definition

of phase difference. We define phase shift as the difference of the mean value crossings of

the lowest harmonics of v1 and v2 according to (3.17).

To proceed, we must evaluate the lowest Fourier coefficients of Eqs. 3.17,

v1/2 =
α

2
+ a1/2 cos ζ0s+ b1/2 sin ζ0s. (3.18)

After some calculation including a Taylor expansion of the logarithm one obtains

α = 2ζ0, (3.19)

a1/2 =
ζ0

i0 + ζ
0

(−2 cos(ϕ/2)∓ lζ0 sin(ϕ/2)), (3.20)

b1/2 = b = l
sin2(ϕ/2) cos(ϕ/2)

(i0 + ζ
0
)



1 +
cos (ϕ/2)

i0
+

ζ
3

0

4i20(i0 + ζ
0
))



 . (3.21)

Note that the Fourier coefficient b being proportional to l is small compared to a1/2; the

coefficient a1/2 itself is dominated by its first term, except for ϕ = π. Thus, with the possible

exception of the vicinity of this value, both voltages are in phase independent of the external

flux.

Adopting the definition given before, one can derive a formula for the phase shift δ as a

function of the Fourier coefficients,

δ = arccos





a1a2 + b2
√

b2(a21 + a22 + b2) + a21a
2
2



 , (0 ≤ ϕ ≤ π). (3.22)

Deriving this formula, no assumption has been made about the structure or order of magni-

tude of the Fourier coefficients. Extension to π < ϕ ≤ 2π needs a more subtle investigation

of the solution itself to get the correct branch of the arccos; in this case one obtains
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δ = sgn(ϕ− π)



π − arccos





a1a2 + b2
√

b2(a21 + a22 + b2) + a21a
2
2







+ π, (3.23)

(0 ≤ ϕ ≤ 2π).

Fig. 3 shows the phase shift between v1 and v2 as a function of external flux ϕ.

Our analytical approach was accompanied by numerical investigations exploiting the

Personal Superconducting Circuit ANalyzer program PSCAN32,33 (Fig. 4). Comparison

of Figs. 3 and 4 shows that even for l = 1 where the analytical approximation is not

longer valid results are quite similar to those of the numerical simulation. Both figures show

that already in this case the behavior is qualitatively different from that of weakly coupled

elements. Thus, in the intermediate regime l ≈ 1 the strong coupling scheme provides a

better approximation to the actual behavior of the SQUID cell than the weak coupling

results do.

There are two limiting cases of special interest. For vanishing external flux the elements

behave in the same way as one junction; the phase shift between voltages vanishes and the

elements oscillate with voltages

v1 = v2 =
ζ2
0

i0 + cos ζ0s
. (3.24)

This behavior is plausible, because in this case there is no current flowing through the shunt

and both elements act essentially as one element. For ϕ = π one obtains

v1 = i0 −
li0
2

sin i0s+
l

4
sin 2i0s, (3.25)

v2 = i0 +
li0
2

sin i0s+
l

4
sin 2i0s. (3.26)

This clearly indicates that the phase difference δ between the voltages according to our

definition is equal to π. Within the narrow transition region between the regimes δ ≈ 0 and

δ ≈ π oscillations become highly non-harmonic (cf. the voltages in Figs. 5a and 5b). This is

caused by higher harmonics becoming dominant in comparison to the lowest harmonic with

frequency ζ
0
. In this case the definition of phase difference based on the lowest harmonic

of the Fourier expansion (3.18) as well in the analytical calculation as in the numerical
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procedure becomes less reliable. The jump observed in the numerical curve (Fig. 4) may be

assigned to this fact.

To derive a more simple rule of thumb Eq. 3.22 can be rewritten as

δ(ϕ) = arctan(a2/b)− arctan(a1/b), 0 ≤ ϕ < π. (3.27)

with a1/2 and b according to (3.20,3.21). We consider this formula for very small, but finite

l. In this case, the second arctan approaches the value −π/2. The first one changes its sign

at the flux ϕ∗,

cos(ϕ∗/2)−
l

2
ζ
0
sin(ϕ∗/2) = 0. (3.28)

Exploiting this formula while neglecting higher orders in l, one obtains

ϕ∗ ≈ π − i0l. (3.29)

This provides a simple approximation for the phase shift of the cells under investigation,

δ ≈ πθ(ϕ− ϕ∗) (ϕ ≤ π). (3.30)

Fig. 6 shows that for sufficiently small l the solution is indeed perfectly approximated by a

Heaviside step function. This approximation might be useful considering more complicated

arrays.

Another quantity of interest is the I-V characteristics of the cells under investigation.

From (3.18) one easily obtains

v1/2 =
√

i20 − cos2(ϕ/2). (3.31)

This reproduces a well-known result3: The I-V characteristics of a small-inductance SQUID

has a hyperbolic shape, the vertex being dependent on the external flux.

IV. PARAMETER-SPLITTING IN STRONGLY COUPLED CELLS

Real junctions never have identical parameters. The response to parameter differences

becomes particularly important in large arrays, where one usually cannot avoid a parameter-
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splitting of the order of one p.c., at least. In this section we consider junctions having

different critical currents as well as normal resistances,

IC1
6= IC2

, RN1
6= RN2

, (4.1)

with the subsidiary condition

IC1
RN1

= IC2
RN2

, (4.2)

which is usually realized as a consequence of the technological process with a good accuracy.

Introducing the mean critical current

IC =
1

2
(IC1

+ IC2
) (4.3)

and the parameter-splitting

ϑ =
IC2

− IC1

IC2
+ IC1

, (4.4)

one derives the following RSJ-model equations for the cells shown in Fig. 1:

φ̇1 + sin φ1 =
i0

1− ϑ
−

1

l(1− ϑ)
(φ1 − φ2 + ϕ), (4.5a)

φ̇2 + sin φ2 =
i0

1 + ϑ
+

1

l(1 + ϑ)
(φ1 − φ2 + ϕ). (4.5b)

As before, it is advantageous to introduce new variables ∆ and Σ according to Eq. 3.1.

Eqs. 3.2a,b are then modified to

∆̇ + cosΣ sin∆ = −
ϑ

1 − ϑ2
i0 +

1

l(1− ϑ2)
(ϕ− 2∆), (4.6a)

Σ̇ + sin Σ cos∆ =
1

1− ϑ2
i0 −

ϑ

l(1− ϑ2)
(ϕ− 2∆). (4.6b)

Some effects are already qualitatively displayed by this couple of equations. (i) To first order

in ϑ there is a correction of the magnetic flux ∼ −i0lϑ. (ii) There is a correction of the

bias current ϑ(ϕ − 2∆)/l being of first order, too. It includes an additional coupling via

∆. Eqs. (4.6a,b) indicate that for weak coupling (l ≫ 1, ϑ ≪ 1) the additional magnetic

flux dominates, an effect which has already been observed (cf. Eq. 13.30b in3). However,
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for strong coupling (l ≪ 1, ϑ ≪ 1) this term is of second order only. It turns out that the

difference ϕ− 2∆ is of the order of l, so the addition to the bias current is of first order in

ϑ and dominates.

First of all, we are interested in the maximum parameter-splitting which is possible

without destroying synchronization. For this purpose, the splitting-parameter ϑ should not

be considered small from the beginning. As before, we perform a perturbation expansion

w.r.t. l according to (3.3a,3.3b). To lowest, i.e. −1st, order we again obtain ∆0 = ϕ/2. To

0th order, we get the system of equations

Σ̇0 + sin Σ0 cos(ϕ/2) =
i0

1− ϑ2
+

2ϑ

1− ϑ2
∆1, (4.7a)

cosΣ0 sin∆0 = −
ϑ

1 − ϑ2
i0 −

2

1− ϑ2
∆1. (4.7b)

Again, Σ0 has to be determined by solving a differential equation, whereas ∆1 is calculated

algebraically. The new feature is an additional coupling between both variables caused by

the last term on the r.h.s. of Eq. 4.7a. Combining both equations, one obtains

Σ̇0 + sinΣ0 cos(ϕ/2) + ϑ cosΣ0 sin(ϕ/2) =
i0

1− ϑ2
. (4.8)

In comparison to (3.8) this equation shows an additional non-linearity due to the parameter-

splitting. Moreover, the current is divided by (1− ϑ2), indicating that a splitting of critical

current can lower the current necessary for the onset of oscillations.

Eq. 4.8 can be handled exactly. There are four different types of solutions34. Only one

of them shows the continuous transition to the case ϑ = 0 and the corresponding oscillating

voltage: It is realized for

i2
0

1− ϑ2
> ϑ2 sin2(ϕ/2) + cos2(ϕ/2). (4.9)

Further estimation gives the bound for oscillations to occur,

i2
0
> 1− ϑ2. (4.10)

For ϑ = 0 this reproduces a well-known fact. In addition, it proves the conjecture above

that growing parameter-splitting leads to an effective lowering of the critical current.
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With this condition fulfilled we could evaluate Σ0 and from (4.7b) ∆1. However, although

Σ1 has to be determined from a first-order linear differential equation, the resulting integrals

are rather intricate. Thus, we performed a perturbative treatment of the system (4.6a,b)

not only w.r.t. l, but w.r.t. ϑ, too. This is more delicate, of course, because there are

two parameters involved. To discuss the l- and ϑ-dependence independently, its not wise to

specify the ratio l/ϑ from the beginning. We only suppose l ≪ 1 and ϑ ≪ 1, leaving the

ratio ϑ/l unspecified. To first order, we write down the expansion

∆ = ∆0 + l∆10 + ϑ∆01, (4.11a)

Σ = Σ0 + lΣ10 + ϑΣ01. (4.11b)

Inserting into (4.6a,b) and comparing equal orders lmϑn, one obtains the set of equations

necessary to evaluate the ∆’s and Σ’s. For ∆0,Σ0,∆10, and Σ10 one obtains similar equations

as before. Furthermore, one observes ∆01 = 0; thus, no additional phase shift is caused by

the parameter-splitting. For Σ01 one obtains an equation similar in structure to that for Σ10

(cf. Eq. 3.15),

Σ̇01 + Σ01 cosΣ0 cos(ϕ/2) + cosΣ0 sin(ϕ/2) = 0. (4.12)

It admits the solution

Σ01 =
1− cos ζ

0
s

i0 + cos(ϕ/2) cos ζ
0
s
sin(ϕ/2). (4.13)

Thus, weak parameter-splitting leads to an additional in-phase contribution

ϑ(i0 + cos(ϕ/2)) sin ζ0s
ζ
0
s sin(ϕ/2)

(i0 − cos(ϕ/2) cos ζ
0
s)2

(4.14)

to be added to the voltages (3.17). The Fourier coefficients a1/2 are unaffected by this,

whereas there is an additional contribution to b1/2,

bϑ
1/2 = 2ϑ

(

i0 + cos(ϕ/2)
)sin(ϕ/2)

i0 + ζ
0

. (4.15)

The solution obtained this way proves our earlier conjecture on the dominant contribution

in the strong-coupling case (Fig. 7a). One observes that the phase shift, being slightly raised
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generally is considerably lowered for ϕ = π. To lowest order of our analytic approximation

(valid for strong coupling and weak parameter splitting) there is no indication of a shift of

the peak caused by the parameter splitting. This is confirmed by comparison with numerical

simulation, as long as parameter splitting is sufficiently small (ϑ
<
∼ 0.2). For larger ϑ the

numerical result (Fig. 7b) gives a first hint to the peak shift.

V. CAPACITIVELY SHUNTED JUNCTIONS

The influence of the displacement current flowing through the junctions was neglected

up to now. This is justified, as long as the McCumber parameter35,36

β =
2e

h̄
ICR

2

NC (5.1)

is negligible.

In this section, we will investigate the influence of β 6= 0. The displacement current

adds a second-derivative term to the RSJ model equations (sometimes called RCSJ model

equations then),

βφ̈1 + φ̇1 + sinφ1 = i0 − l−1(φ1 − φ2 + ϕ), (5.2a)

βφ̈2 + φ̇2 + sinφ2 = i0 + l−1(φ1 − φ2 + ϕ). (5.2b)

In general, the second derivative may change the character of the differential equations

completely; for instance, it is well-known that there appear new types of solutions showing

chaotic behavior37,38. Here, we will restrict our treatment to small β (β ≪ 1) guaranteeing

a continuous transition to the former solution for β = 0.

Again, it is recommended to combine Eqs. 5.2a,b obtaining

β∆̈ + ∆̇ + cos Σ sin∆ =
1

l
(ϕ− 2∆), (5.3a)

βΣ̈ + Σ̇ + sin Σ cos∆ = i0. (5.3b)

One clearly sees, that both equations are affected by the additional β-terms. Again, both l

and β are supposed to be small parameters justifying the expansion
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∆ = ∆0 + l∆10 + β∆01, (5.4a)

Σ = Σ0 + lΣ10 + βΣ01. (5.4b)

The resulting equations for ∆0,Σ0,∆10, and Σ10, resp., are essentially the same as before.

For ∆01 one readily recovers

∆01 = 0. (5.5)

The only new equation concerns Σ01,

Σ̇01 + Σ01 cos Σ0 cos (ϕ/2) = −Σ̈0, (5.6a)

where we have already exploited some of the previous results. Again, this is an inhomoge-

neous linear differential equation, with the inhomogeneity being determined by the already

well-known Σ0. The solution, obeying the correct boundary condition (Σ01(s = 0) = 0), is

Σ01 =
ζ
2

0

i0 − cos(ϕ/2) cos ζ
0
s
ln

i0 + cos(ϕ/2) cos ζ
0
s

i0 + cos(ϕ/2)
. (5.7)

One obtains a logarithmic structure similar to that observed earlier in formula (3.16). The

term (5.7) provides to both voltages a contribution

Σ̇01 =
ζ
3

0
cos(ϕ/2) sin ζ

0
s

(i0 + cos(ϕ/2) cos ζ
0
s)2

(

ln
i0 + cos(ϕ/2) cos ζ

0
s

i0 + cos(ϕ/2)
− 1

)

. (5.8)

Because the logarithmic structure is already present in (3.17), it is not hard to evaluate the

corresponding capacitive contribution to be added to the Fourier coefficients b1/2 according

to (3.21),

bβ
1/2 = bβ = −2βζ

2

0

cos(ϕ/2)

(i0 + ζ
0
)

(

1 +
cos(ϕ/2)

i0
−

ζ
0
cos2(ϕ/2)

4i20(i0 + ζ
0
)

)

. (5.9)

The phase difference obtained by inserting (3.21) and (5.9) together with the unchanged

coefficients (3.20) into (3.23) is shown in Fig. 8a. Results of a numerical calculation per-

formed in parallel are given in Fig. 8b. The general tendency is that a non-vanishing

capacitance (β
<
∼ 1) slightly enhances the phase shift without qualitatively changing the

general behavior. For β > 0.5 the agreement between analytical approximation and numer-

ical simulation becomes worse, but the same general tendency is still preserved. This is, of

course, simply a result of the fact that higher orders in β are no longer negligible.
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VI. STRONGLY COUPLED SQUID CELLS UNDER MICROWAVE RADIATION

There is some interest in the behavior of the SQUID cells under microwave radiation

from at least two points of view. First of all, the topic is interesting for the construction

of sensitive microwave detectors. Secondly, knowledge of the behavior under microwave

radiation is necessary for the study of synchronization in larger arrays, where the long-range

interaction via external shunts acts similar to an external microwave signal.

The external microwave signal can be described by an additional ac current, leading to

the system of equations

φ̇1 + sinφ1 = i0 − l−1(φ1 − φ2 + ϕ) + iω sinωs, (6.1a)

φ̇2 + sinφ2 = i0 + l−1(φ1 − φ2 + ϕ) + iω sinωs. (6.1b)

As a result, only the equation for the sum variable Σ is affected and becomes

Σ̇ + sinΣ cos∆ = i0 + iω sinωs, (6.2)

whereas Eq. 3.2a for the difference variable ∆ remains unchanged. We apply a perturbation

scheme similar to that used before. From the beginning we will assume l ≪ 1, as before,

justifying the expansion (3.3a,b). Solving for Σ0 and Σ1, resp., we must take iω to be small

in some intermediate steps, too.

The first result is

∆0 = ϕ/2, (6.3)

as usual. The corresponding equation for Σ0,

Σ̇0 + sinΣ0 cos(ϕ/2) = i0 + iω sinωs, (6.4)

is decisive for the behavior of the solution. Introducing the scaled time s̃ according to (3.7),

we obtain

Σ′
0
+ sin Σ0 = ĩ0 + ĩω sin ω̃s̃, ĩω =

iω
cos(ϕ/2)

, ω̃ =
ω

cos(ϕ/2)
, (6.5)
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which formally has the same structure as the equation describing an autonomous Josephson

junction under external irradiation26,31,39.

It is well-known that phase-locking of an autonomous junction takes place only if the

frequency of the external microwave does not deviate too far from the inherent Josephson

frequency ζ0 =
√

i20 − 1,
∣

∣

∣

∣

∣

2ζ0
iω

(ω − ζ0)

∣

∣

∣

∣

∣

< 1 (autonomous contact). (6.6)

The main new feature in our case is, that the corresponding quantities substituted for i0, iω,

and ω resp. according to

i0 → ĩ0, (6.7)

iω → ĩω, (6.8)

ω → ω̃ (6.9)

are dependent on the external magnetic flux. Exploiting the corresponding equation
∣

∣

∣

∣

∣

2ζ̃0

ĩω
(ω̃ − ζ̃0)

∣

∣

∣

∣

∣

< 1, (6.10)

one obtains the phase-locking condition

ζ
0
−

iω cos(ϕ/2)

2ζ
0

≤ ω ≤ ζ
0
+

iω cos(ϕ/2)

2ζ
0

. (6.11)

An interesting conclusion from Eq. 6.11 is that for external flux ϕ = π the range of phase-

locking shrinks to a single point, ω = ζ
0
= i0. In this case, for all practical purposes

phase-locking disappears at all. This is confirmed by Fig. 9, showing the range of phase-

locking against external flux ϕ. The reason for this behavior is obvious from examining (6.4):

For ϕ = π the non-linear term vanishes thus removing the non-linearity of the equation at

all. One more observation is that the center of the locking-range determined by ζ
0
becomes

flux-dependent, too.

In case of phase-locking, phase shift between the external microwave and the circuit (the

last being characterized by the sum variable Σ) can be deduced from comparison with the

autonomous contact yielding
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δ0 = arcsin
2ζ0(ω − ζ0)

iω cos(ϕ/2)
. (6.12)

To verify our result in an independent way, we performed a numerical operation range

analysis automatically integrating the corresponding differential equations and checking,

whether the results lie within a certain bound. The output of this analysis indicated by

diamonds in Fig. 9 is in excellent agreement with the analytical results. In view of the

experimental setup the figure should be interpreted as follows: For a fixed bias current and

frequency of the external microwave radiation there is a limited range of flux indicated in

Fig. 9, within which synchronization occurs. Within this range the whole cell oscillates

with the microwave frequency, ω. For small microwave intensities this puts rather severe

conditions on the external flux, as is observed by comparing Figs. 9a, b and c.

In case of phase-locking, we obtain to 0th order of perturbation theory

Σ0 = 2 arctan

(

ζ
0

i0 + cos(ϕ/2)
tan

(ωs

2
−

δ0
2

)

)

+
π

2
(6.13)

with the lowest-order phase shift δ0 according to (6.12).

Within the next perturbative order, ∆1 is determined algebraically as before. The so-

lution is identical to Eq. 3.13, the only difference being, that within the time-dependent

arguments one has to substitute

ζ
0
s → ωs− δ0. (6.14)

For Σ1 we obtain the equation

Σ̇1 + Σ1 cos Σ0 cos(ϕ/2)−∆1 sin Σ0 sin(ϕ/2) = 0. (6.15)

Substituting Σ0 we exploit (6.4) neglecting the external current, bearing in mind that iω

is small and Σ1 is already of first order. Within this approximation, the solution has the

same general structure as (3.16), where we again have to substitute (6.14). As a result, in

addition to the flux-dependent phase shift between the SQUID circuit voltage oscillations

and the external microwave signal we obtain the same (mostly negligible) phase splitting

between the junction voltages than without radiation.
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To summarize, solution (3.17) is reproduced with the only substitution (6.14). This has

several consequences: (i) The frequency of the oscillations is determined by the microwave

frequency only and turns out to be independent of external flux within the locking-range.

(ii) If external flux is present in addition to the microwave radiation, this flux will limit the

range of phase-locking in general and destroy synchronization at all in case of ϕ = π. (iii)

The relative phase of both junctions is not influenced by the external radiation up to first

order in perturbation theory w.r.t. l. (iv) There is an additional shift of both phases relative

to the external radiation according to Eq. 6.12, which is controlled by external flux as well.

VII. SUMMARY

We investigated the synchronization behavior of three similar 2-junction SQUID cells

with strong inductive coupling. For this purpose we developed a perturbation scheme ap-

propriate for small but non-vanishing inductances. The perturbation ansatz itself is in a

certain sense similar to the ”slowly-varying amplitude method” developed several years ago.

However, application to strong coupling completely changes the character of the expansion.

Generally, the procedure is more involved than in the case of weak coupling. Therefore

we were not able to derive an explicit equation of motion for the phase difference between

voltages. In view of this fact, we determined voltage phase shift from the lowest Fourier

coefficients of the voltages.

For identical junctions without capacitive shunting we find that for every value of the

external flux a phase-locking between oscillating voltages takes place like in weakly coupled

elements. However, contrary to the case of weak coupling, the phase shift is negligibly small

for almost all values of external flux, with the exception of the vicinity of ϕ = π. On the

other hand, the frequency, being flux-independent for weakly coupled elements, becomes

strongly flux-dependent in strongly coupled elements and, consequently, the corresponding

I-V characteristics too. The results obtained are compared with numerical calculations.

Generally, a good agreement is observed. Especially it is found, that the strong-coupling
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approach provides a good approximation not only for very small inductances l, but is better

suited to describe the intermediate range l ≈ 1 than the ordinary weak-coupling approach.

If both junctions are not identical the influence of parameter splitting is found to be

qualitatively different for weak and for strong coupling. For weak coupling, parameter

splitting mainly leads to an additional contribution to the external flux; as a result, the

whole phase-flux-dependence is shifted by some value. In case of strong coupling, this effect

can be neglected and the leading contribution is a correction of the bias current. This

correction acts in favor of synchronization and lowers the phase shift present in a small

range around ϕ = π.

In case of identical junctions having a small, but non-vanishing capacitance the main

result is a slight enhancement of the phase shift, although the qualitative picture is not

changed, at least if β < 1. For β > 0.5 the agreement of analytical results and numerical

simulation becomes less convincing, obviously showing the limitations of applicability of the

analytical perturbative method. We should mention that in the case β 6= 0 as well as for

parameter splitting two independent expansion parameters must be considered small.

Finally, we investigated the behavior of the cells under external microwave radiation. In

this case, we observed a limited locking range similar to that of an autonomous Josephson

junction under external radiation. However, for a strongly coupled cell the synchronization

range is flux-dependent and shrinks to zero for ϕ = π. In addition, the width of the

synchronization range depends on the amplitude of the external radiation.

Contrary to our results for a freely oscillating cell, external radiation synchronizes the

cell in such a way that the oscillation frequency becomes flux-independent within the flux-

dependent locking range. However, within the synchronization range, an additional phase

shift between external radiation and internal oscillations takes place as well as a shift of the

whole synchronization range.

From our study one can draw the general conclusion, that two strongly inductive coupled

junctions behave like a free junction if no flux is present within the cell. External flux

tends to shift the phases between the voltage oscillations of the two junctions, but for most
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practical applications this splitting is negligibly small. More serious is the fact that already

in a cell of identical junctions the oscillation frequency itself becomes field-dependent. This

detuning of the cell has several consequences for the construction of larger arrays. First

of all, external fluxes must be shielded, preferably by an external superconducting ground

plane. Secondly, additional fluxes are produced by the array itself, which might seriously

disturb the synchronization40.

A possible way to circumvent this problem and to obtain phase-locking could be to include

an external long-range interaction via an additional shunt. The methods developed in Sec.

VI could be helpful in such an investigation. For instance, according to our observations,

an external shunt with sufficiently strong coupling-strength to make the synchronization

frequency flux-independent may play a crucial role for obtaining phase-locking in large two-

dimensional arrays.
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FIGURES

FIG. 1. Three SQUID Cells which can be described with the strong coupling method described

in this paper.

FIG. 2. Mean voltage phase shift δ against normalized external flux ϕ from analytical approx-

imation for weak inductive coupling (i0 = 1.5).

FIG. 3. Phase shift δ against normalized external flux ϕ for strong inductive coupling l = 0.1

and medium inductive coupling l = 1.0 obtained from analytical approximation (3.23) (i0 = 1.5).

FIG. 4. Like Fig. 3, results obtained from numerical simulation. (A tiny shunt capacitance

β = 0.01 has to be added here.)

FIG. 5. Time-dependence of the voltage for two different values of the external flux, a) ϕ = π/2

b) ϕ = π, Parameters: i0 = 1.5, l = 0.1.

FIG. 6. Phase shift δ against normalized external flux ϕ for extremely strong coupling

(0.001 ≤ l ≤ 0.1), obtained from analytical approximation (3.23) (i0 = 1.5).

FIG. 7. The influence of parameter splitting on the phase shift δ against normalized external

flux ϕ for strong coupling obtained from a) analytical approximation (3.23), b) numerical simulation

(i0 = 1.5, l = 0.1, 2 ≤ ϕ ≤ 4).

FIG. 8. The influence of a non-vanishing capacitive shunt of the Josephson junctions on the

phase difference for i0 = 1.5, l = 0.1, β = 0.2, 0.5, 1.0. a) analytical approximation, b) numerical

simulation (i0 = 1.5, l = 0.1, 2 ≤ ϕ ≤ 4).

FIG. 9. Synchronization range for a strongly coupled SQUID cell under external microwave

radiation with frequency ω for a)iω = 0.1, b)iω = 0.2, c)iω = 0.4 (bias current i0 = 1.5 ). The

diamonds indicate results from numerical operation range analysis.
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