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Abstract

We argue that, at finite temperature, parity invariant non-compact elec-
trodynamics with massive electrons in 2+1 dimensions can exist in both
confined and deconfined phases. We show that an order parameter for the
confinement-deconfinement phase transition is the Polyakov loop operator
whose average measures the free energy of a test charge that is not an integral
multiple of the electron charge. The effective field theory for the Polyakov
loop operator is a 2-dimensional Euclidean scalar field theory with a global
discrete symmetry Z, the additive group of the integers. We argue that the
realization of this symmetry governs confinement and that the confinement-
deconfinement phase transition is of Berezinskii-Kosterlitz-Thouless type.
We compute the effective action to one-loop order and argue that when the
electron mass m is much greater than the temperature T and dimensional
coupling e2, the effective field theory is the Sine-Gordon model. In this limit,
we estimate the critical temperature, Tcrit. = e2/8π(1− e2/12πm+ . . .).

1Permanent address: Dipartimento di Fisica and Sezione I.N.F.N., Universitá di Peru-
gia, Via A. Pascoli I-06100 Perugia, Italy
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Gauge field theories in 2+1-dimensions have many interesting field theo-
retical features such as gauge invariant local topological mass [1, 2], fractional
spin [3] and statistics [4]. They have been of interest as model systems with
somewhat more severe infrared divergences than their 3+1-dimensional rela-
tives [1, 5] and where one can study the dynamics of chiral symmetry break-
ing [6, 7, 8]. Gauge field theories arise naturally in the description of lower di-
mensional statistical models such as spin systems and the Hubbard model [9]
and an understanding of both their ground state and thermodynamic prop-
erties are essential to the applications of mean field theory there. In this
Letter, we shall show that parity invariant 2+1-dimensional quantum elec-
trodynamics exhibits one more interesting property - when the electron has
a large enough mass - it has a finite temperature confinement-deconfinement
phase transition.

The question of confinement has been extensively investigated in the more
familiar context of quantized Yang-Mills theory at finite temperature and it
is intimately related to the realization of a global symmetry involving the
center of the gauge group [10, 11]. This symmetry transforms the Polyakov
loop operator

P (~x) ≡ trP exp

(

∫ 1/T

0
dτA0(τ, ~x)

)

(1)

which measures gauge group holonomy in the periodic Matsubara time in
the Euclidean path integral description of finite temperature gauge theory.2

Consider a gauge transformation

Aµ
′(τ, ~x) = g−1(τ, ~x)Aµ(τ, ~x)g(τ, ~x) + ig−1(τ, ~x)∇µg(τ, ~x) (2)

under the group SU(N) which has center ZN , the additive group of the in-
tegers modulo N . In Eq.(2) g(τ, ~x) can be periodic up to an element of the
center of the group, g(1/T , ~x) = g(0, ~x)e2πin/N . Under a gauge transforma-
tion of the form (2),

P ′(~x) = P (~x)e2πin/N (3)

Therefore, if the ZN symmetry is not spontaneously broken, the correlators
of Polyakov loop operators < P (~x1) . . . P (xm)P

†(~y1) . . . P
†(~yn) >, are zero

2We use units where Planck’s constant, the speed of light and Boltzmann’s constant are
one. For a discussion of the path integral formulation of finite-temperature gauge theory,
see [12].
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unless m = n modulo N . The quantity

F (~x1, . . . , ~xm, ~y1, . . . , ~yn) = −T ln
(

< P (~x1) . . . P (xm)P
†(~y1) . . . P

†(~yn) >
)

(4)
is the free energy of the gluodynamic system in the presence of an external
fundamental representation quark sources at positions ~x1, . . . ~xm and anti-
quark sources at ~y1, . . . , ~yn. If the ZN symmetry is unbroken, the expectation
value of a single loop, < P (~x) >, vanishes and consequently the free energy
F (~x) of a single quark source is infinite. This is a signal of confinement -
introducing a colored source into the confining system requires infinite energy.
On the other hand, if the ZN symmetry is spontaneously broken, F (~x) is finite
and characterizes the deconfined phase [13].

When dynamical quarks in the fundamental representation of the gauge
group are present, the Polyakov loop operator does not characterize the con-
fining phase, since, even if quarks are confined, screening can still take place.
The coupling of gluons to quarks which are in the fundamental represen-
tation, is invariant only under strictly periodic gauge transformations and
therefore breaks the ZN symmetry explicitly. This is interpreted as the pos-
sibility of fundamental quarks screening the color of an external source, so
that the free energy of the source is always finite.

In this Letter, we shall argue that the Polyakov loop operator can be used
to study confinement in non-compact quantum electrodynamics even when
dynamical electrons are present. In this case, the free energy of a distribution
of external charges is

e−F (~xi)/T =

∫

dAµdψdψ̄e
−
∫

1/T

0
( 1
4
F 2
µν+ψ̄(γ·(∇−ieA)+m)ψ)ei

∑

ei
∫

1/T

0
dτA0(τ,~xi)

∫

dAµdψdψ̄e
−
∫

1/T

0
( 1
4
F 2
µν+ψ̄(γ·(∇−ieA)+m)ψ)

(5)

with (anti-)periodic boundary conditions Aµ(1/T , ~x) = Aµ(0, ~x), ψ(1/T , ~x) =
−ψ(0, ~x), ψ̄(1/T , ~x) = −ψ̄(0, ~x). The gauge transformation

Aµ
′(τ, ~x) = Aµ(τ, ~x)+∇µχ(τ, ~x) , ψ

′(τ, ~x) = eieχ(τ,~x)ψ(τ, ~x) , ψ̄′(τ, ~x) = ψ̄(τ, ~x)e−ieχ(τ,~x)

(6)
is a symmetry of the action and measure if it preserves the (anti-)periodic

boundary conditions, ~∇µχ(1/T, ~x) = ∇µχ(0, ~x) and χ(1/T , ~x) = χ(0, ~x) +
2πn/e. The coset of the group of all time-dependent gauge transformations
modulo those which are periodic is the group Z, the additive group of the

3



integers. The Abelian Polyakov loop operator transforms under this global
symmetry as

exp

(

i
∑

i

ei

∫ 1/T

0
dτA0

′(τ, ~xi)

)

= exp

(

i
∑

i

ei

∫ 1/T

0
dτA0(τ, ~xi)

)

exp

(

2πin

e

∑

i

ei

)

(7)
Thus, if Z is not spontaneously broken, F (~xi) defined by (5) is infinite when
the total charge of the external distribution is not an integral multiple of the
electron charge,

∑

i ei 6= integer · e. When the symmetry is broken, F (~xi)
can be finite. Thus, the nature of the realization of Z tests the ability of
the electrodynamic system to screen charges which are not integral multi-
ples of the electron charge and therefore probes the confining nature of the
electromagnetic interaction.

Z is the analog of the global ZN symmetry of gluo-dynamics. However,
in contrast to the case of a compact non-Abelian gauge theory, where ZN
is explicitly broken by dynamical quarks, and, due to compactness of the
gauge group, charges which are not integer multiples of the quark charge are
not available, the non-compactness of the gauge group of QED allows the Z
symmetry to exist even in the presence of dynamical electrons. The electrons
could be viewed as the analog of adjoint particles, either gluons or adjoint
quarks, in QCD.

At T = 0, and for the physical value of the electromagnetic coupling con-
stant, 3+1-dimensional electrodynamics does not exhibit a confining phase.
It is in the deconfined Coulomb phase at zero temperature and forms a De-
bye plasma at finite temperature and density. There is a conjecture that, if
the electron charge is increased so that e2/4π ∼ 1, there is a phase transi-
tion to a chiral symmetry breaking and perhaps confining phase [14]. This
phase, being in the strong coupling region, is difficult to analyze. In 1+1-
dimensions, the massive Schwinger model is confining and the Z symmetry is
not broken, at least when the temperature is much greater than the electron
mass and the confinement scale is set by the dimensional electron charge e.
On the other hand, it is known that when the electron mass is zero, the
Z symmetry is spontaneously broken [15]. The symmetry breaking can be
attributed to nonlocal effects of massless fermions. It can be argued that the
phase transition between the broken Z and unbroken Z phases occurs for all
temperatures at some value of the electron mass.

One might also expect a confinement-deconfinement transition in the in-
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termediate case of 2 + 1-dimensional electrodynamics. In that case, even at
the classical level, the Coulomb potential is a marginally confining logarithm.
Its entire spectrum is bound states, but the bound states can have arbitrarily
large size. The free energy of a gas of charged particles is

Fcl. = −1

2

∑

i,j

eiej
1

2π
ln |~xi − ~xj | (8)

It is straightforward to compute the correlators of Polyakov loop operators
(which are simply exponentials of the appropriate free energies, e−Fcl./T ).
They have the scaling form

<
∏

i

eiei
∫

1/T

0
dτA0(τ,~xi) >= const.

∏

i<j

|~xi − ~xj |eiej/2πT (9)

with temperature dependent exponent, reminiscent of the spin-wave correla-
tors in Gaussian spin wave theory in 2 dimensions [16].

It is interesting to ask how this result would be changed by radiative
corrections and by thermal fluctuations. This can be done by computing the
effective action for the Polyakov loop operator. In electrodynamics at finite
temperature, it is possible to use a gauge transformation to set the temporal
component of the gauge field, A0, independent of the Euclidean time. Then,
the effective 2-dimensional field theory for A0 is obtained by integrating the
other degrees of freedom from the path integral. What remains is an effective
action for a static field A0(~x). In general, it was shown in ref. [17] that the
effective action for the Polyakov loop operator in D+1-dimensional gauge
theory is a D-dimensional sigma model with group-valued fields. In the
present case of electrodynamics, the group-valued variables are eieA0/T and
the effective field theory for A0 describes the appropriate sigma model. The
Z symmetry is a periodicity of the effective action under the field translation
A0(~x) → A0(~x) + 2πT/e.

The effective action obtained from integrating propagating fields from the
path integral is non-local and non-polynomial in the remaining fields. It can
only be regarded as a local field theory when the momenta of interest are
much smaller than the masses of the fields which have been eliminated. In
that case the effective action has a local expansion in powers of derivatives
divided by masses. The effective action for A0 possesses such a local expan-
sion. If the electron mass is sufficiently large that this expansion is accurate,
the effective field theory for A0 can be approximated by a local field theory.
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In 2+1-dimensions, the fermion mass operator constructed from the min-
imal 2-component Dirac fermions is a pseudoscalar and therefore violates
parity [1, 18]. If included in the action, they can generate a parity violating
topological mass for the photon by radiative corrections [19, 20]. In this
paper, we wish to study the case where the photon is massless. For this
purpose, we study the model with Euclidean action

S =
∫

d3x
[

1

4
F 2
µν + ψ̄1(γ · (∇+ ieA) +m)ψ1 + ψ̄2(γ · (∇+ ieA)−m)ψ2

]

(10)
Where the parity transformation is the spacetime parity as well as ψ′

1,2(x
′) =

γ1ψ2,1(x), ψ̄
′
1,2(x

′) = −ψ̄2,1(x)γ1 with x′ = (−x1, x2). The mass term ψ̄1ψ1 −
ψ̄2ψ2 is a scalar. If m = 0 in (10) there is a ‘chiral’ symmetry under the
transformation ψi

′(x) = uijψj(x) where u ∈ SU(2). The latter symmetry is
broken at T = 0 [6, 7], however, since it is a continuous symmetry, it must be
unbroken at any finite temperature in 2+1-dimensions. It has been argued
that at finite temperature, the chiral transition is replaced by a Berezinskii-
Kosterlitz-Thouless (BKT) transition [21]. In this paper, we shall consider
the opposite limit of large mass, and show that there is indeed a BKT-
transition corresponding to a confinement-deconfinement transition at some
value of the temperature T . It is likely that this transition is in some way
related to the chiral transition.

At finite temperature, 2+1-dimensional QED contains three parameters
with the dimension of mass, the electron mass m, the gauge coupling e2, and
temperature T . The loop expansion is super-renormalizable [1, 5] and is an
expansion in the dimensionless ratios e2/m and e2/T . We can compute the
effective action for A0(~x) ≡ a(~x)

√
T in a double expansion in the number

of loops and in powers of derivatives of a(~x). To order 1-loop and up to
quadratic order in derivatives the effective action is

Seff [A0] =
∫

d~x
(

Z(m, ea/
√
T )

1

2
~∇a · ~∇a− V (m, ea/

√
T )
)

. (11)

Here V is the effective potential for A0 arising from the fermion determinant
and Z is obtained from expansion of the temporal components of the vacuum
polarization function to linear order in −~∇2. To order one-loop, the effective
potential is obtained from the fermion determinant in constant background
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A0,

V (m, eA0/T ) =
1

(Vol.)
log det((−i∂0 − eA0)

2 −∇2 +m2) (12)

where the fermions have anti-periodic boundary conditions in the 0 direction.
The determinant can be computed by considering the ratio [23]

∆(m, eA0/T ) = det((−i∂0 − eA0)
2 −∇2 +m2)/ det(−∂20 −∇2 +m2) (13)

One finds

∆(m, eA0/T ) =
∏

~k

[

1− sin2(eA0/2T )

cosh2(λk/2T )

]

≡
∏

~k

∆~k(m, eA0/T ) , (14)

where λ2k =
~k2 +m2 are the positive eigenvalues of the operator −∇2 +m2.

Eq.(14) holds in any dimensions. In 2+1-dimensions however one can perform

the integral on ~k arising in log∆(m, eA0/T ), after taking the infinite volume
limit.

V (m, eA0/T ) =
1

(Vol.)

∫ +∞

−∞

d2~k

(2π)2
log∆~k(m, eA0/T ) =

= −T
2

π

[

m

T
Li2(e

−m/T , eA0/T + π) + Li3(e
−m/T , eA0/T + π)

]

(15)

where Li2(r, θ) = − ∫ r0 dx ln(1−2x cos θ+x2)/2x and Li3(r, θ) =
∫ r
0 dxLi2(x, θ)/x

are the real parts of the dilogarithm and trilogarithm according to the con-
vention of Ref. [24]. Eq.(15) shows the periodicity of the effective potential
for eA0/T → eA0/T + 2π. This is the residual gauge invariance. In 1 and

3 dimensions the integral in ~k can only be performed for m = 0 in which
case it gives simple polynomial expressions. In the limit m = 0, the effective
potential for A0 has been discussed in [22].

It is also straightforward to compute the term which contributes the lead-
ing order in derivatives to the effective action,

Z(m, ea/
√
T ) =

e2

12πm







sinhm/T

coshm/T + cos ea/
√
T

− m

T

e−m/T
(

coshm/T + cos ea/
√
T
)2







(16)
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The critical behavior of the 2-dimensional model defined by Eqs.(11), (15)
and (16), can be understood by comparing it with the sine-Gordon model
in two-dimensions. That this comparison can be reliably performed can be
seen by the study of the harmonic content of (15).

V (m, ea/
√
T ) = −T

2

π

∞
∑

n=1

e−nm/T
(

1 +
nm

T

)

cos(n(ea/
√
T + π)) . (17)

Consider then the large m limit, T/m and e2/m small with finite e2/T . In
this limit, the higher harmonics are small perturbations to the potential

V (m, ea/
√
T ) =

Tm

π
e−m/T cos(ea/

√
T ) , (18)

which is the sine-Gordon potential. Amit et al. [25] showed that in the
sine-Gordon model any perturbation of the type cos(nβφ) to a sine-Gordon
potential α cos(βφ)/β2 are irrelevant for the critical behavior of the model.
By analogy with the spin wave plus Coulomb gas model, it was also proven
in Refs. [25] that a critical line for a BKT [26, 27] phase transition in the
sine-Gordon model with a logarithmic potential starts at the point (α, β2) =
(0, 8π). We can then conclude that also in 2+1-QED at finite temperature
there is a BKT phase transition, with a critical line in the (m/T, e2/T ) plane
starting at (m/T, e2/T ) = (∞, 8π). The critical temperature for this transi-
tion (up to 1-loop order) can be computed from Eq.(16) and Eq.(18) as

Tcrit. =
e2

8π

(

1− e2

12πm
+ . . .

)

. (19)

This is the critical value of the coupling constant originally found by Coleman
in his discussion of bosonization of the massive Thirring model [28].

Note that the vacuum expectation value of A0 in the deconfined phase,
where the Z symmetry is spontaneously broken, is

< A0 >=
2πnT

e
. (20)

In a semiclassical analysis, this expectation value contributes an imaginary
chemical potential for the electron action. However, this chemical potential
can be absorbed by shifting the Matsubara frequency. Thus, the semiclassical
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thermodynamics do not suffer from the difficulties of the meta-stable ZN
phases of QCD [30, 31].
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