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We formulate Hamiltonian lattice Chern-Simons theory which has the property that the 
Chern-Simons gauge fields of the theory can be eliminated by making matter lields multi- 
valued operators with anyonic statistics. We prove that, when the statistics parameter is an 
odd integer so that the anyons are bosons, the ground state, which consists of a condensate 
of bound pairs of flux tubes and fermions, breaks phase invariance. The ensuing long-range 
order implies that the system is an unconventional superfluid. We formulate a condition which 
may be useful as a numerical signal for symmetry breaking in the ground state for any 
statistics parameter. We also discuss an exotic lattice Chern-Simons theory, which makes 
explicit the relation of anyons tofiamed knot invariants. We discuss various lattice representa- 
tions of the Chern-Simons term and find the unique local lattice Chern-Simons term with the 
appropriate naive continuum limit, which permits anyonization. 0 1992 Academic Press, Inc. 

Anyons are particles that may have “any” spin and statistics, rather than 
the usual set of integer and half-integer spins that arise in most quantum systems 
[l-20]. They arise only in 2 + 1 dimensions, where the rotation group is abelian 
and therefore permits representations where the angular momentum is not integer 
or half-integer [ 15-201. 

Such particles are interesting because they arise in real systems. The anyon 
hypothesis correctly predicts the form of the Hall coefficient as function of magnetic 
held in the fractional quantum Hall effect [21-221 and may appear in other quasi- 
two-dimensional condensed matter systems, such as high TC su~rconductors 
[23-291. They have recently been the focus of much study. 

Anyons may be realized in a theory containing ordinary (charged) fermions or 
bosons by attaching to these particles a tube of magnetic flux [2,30 J. Since the 
resulting composites carry both an electric charge and magnetic flux, when two 
such bound states encircle each other their wave functions acquire an Aharonov- 
Bohm phase. If one exchanges two particles by adiabatic transport, this phase 
appears in addition to the ordinary factor 4 1 from bosonic or fermionic statistics. 
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It may be adjusted in strength by adjusting the field inside the flux tube and may 
even be so strong as to change a fermionic particle exchange into a bosonic one (or 
vice versa). In general, then, the composite particles have effective statistics which 
can be in between fermi and bose and are called anyons. 

The pinning of this magnetic flux tube to a particle may be achieved in the 
context of quantum field theory as well [8, 9, 11-14, 31, 35, 361. This is done by 
coupling matter fields to an abelian gauge field, which itself has no kinetic term of 
the usual type, but instead is self-coupled through a Chern-Simons term, with the 
Lagrangian 

(0.1) 

The coupling constant CI determines the statistics of the anyons and is usually called 
the statistics parameter. With this coupling the gauge constraint is 

2mj0-B=O, (0.2) 

precisely pinning flux 27ca to a unit of matter charge. There are no dynamics for 
this gauge field, since the gauge field appears in the Hamiltonian only through its 
coupling to matter, and it may therefore be completely eliminated by solving the 
accompanying constraints [36]. Chern-Simons gauge theory is thus an important 
tool in the study of anyons. Additionally, we note that if we had added the conven- 
tional Maxwell term to (0.1) a photon having a topological mass [ 15, 371 would 
appear. In the limit as the coefficient of the Maxwell term vanishes, the mass of the 
physical photon goes to infinity, leaving the kinematical Chern-Simons interaction. 

A quantized Chern-Simons theory coupled to classical charged particles is 
exactly solvable [38]. In planar (or spherical) geometry it has no physical degrees 
of freedom and the wavefunction is a pure phase expressing the braiding of the 
classical particle histories [ 111. In more complicated geometries its Hilbert space is 
finite dimensional and its wavefunctions are related to the conformal blocks of 
rational conformal field theory [39]. 

Also, for nonrelativistic quantum mechanical matter with a finite number of 
particles [4&42] the mapping of fermions to anyons is now well understood and 
can even be done at the operator level. It is known how to eliminate the gauge 
interactions in favor of multi-valued wave functions. In operator language, it is 
possible to construct multi-valued operators which create particles in multi-valued 
quantum states. The ideas involved have important applications to the study of the 
quantum Hall effect. 

However, in a relativistic quantum field theory, where the matter degrees of 
freedom are necessarily described by quantum fields, the exact correspondence 
between a Chern-Simons theory and anyons is less well established. The semiclassi- 
cal reasoning whereby the Gauss’ law constraint (0.2) associates magnetic flux with 
electric charge is obscured by the fact that in a relativistic field theory it is generally 
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not possible to diagonalize the charge density operator.’ Therefore the charge 
density operator has large fluctuations, as does the magnetic field operator if the 
constraint (0.2) is obeyed, and the semiclassical arguments relating statistics to 
abiabatic Aharonov-Bohm phases are not obviously correct. On the other hand, 
rigorous mathematical arguments have been given for the existence of anyonic 
particles in relativistic quantum field theories [13, 141. In order to make these 
arguments more useful and to better understand their domain of applicability, 
much work remains to be done. 

For example, it would be desirable to complete the analogy between the 
Chern-Simons theory-anyon correspondence and the familiar fermion-boson 
mapping in two-dimensional quantum field theory. Especially at the operator level, 
it would be interesting to construct the analog of a vertex operator, i.e., an “anyon 
operator” which creates multi-valued anyon states. One could pursue this analogy 
by constructing an effective Hamiltonian for the anyon operators and thus 
implementing “anyonization” of the field theory, analogous to bosonization in two 
dimensions. 

This possibility was originally examined for field theories in the continuum [8, 9, 
12, 17, 201 and later on the lattice [31-35, 43, 44-J. The continuum work for the 
most part ignored difficulties with regularization which are known to be crucial to 
the Coleman-Mandelstam [45546] bosonization of two-dimensional field theories. 
Also, the precise definition of the multi-valued operators involved, particularly the 
“singular everywhere” gauge transformations introduced in [S] (and discussed in 
[47]), is obscure in the continuum. 

The latter may be given a precise definition, and all the ultraviolet singularities 
may be regulated, by putting the field theory on a lattice. In Refs. [43,44] the 
construction of anyons from a lattice regulated Chern-Simons theory (ori~nally 
suggested for the continuum in [8]) was carried out rigorously. It was shown that 
in a particular lattice fermion-Chern-Simons theory, multi-valued anyon fields 
could be constructed and the gauge interactions eliminated from their effective 
Hamiltonian. It should be emphasized that, as in the case of bosonization in two 
dimensions, this “anyonization” does not necessarily solve the field theorys2 It 
simply presents the regulated bare field theory in terms of operators with different 
statistics. Generally, three-dimensional field theories are much more difficult to 
solve than two-dimensional ones. This higher complexity of structure, however, is 
rewarded by the availability of a greater variety of physical phenomena. 

In the case of the fermion-Chern-Simons theory with statistics parameter 
Q = odd integer, the Hamiltonian is written in terms of bosonic operators, and the 
gauge interactions decouple completely [43]. The resulting bosonic operators obey 

‘The transfo~ation between the basis where the Hamiltonian is diagonal and the charge density 
operator is diagonal is not unitarily implementable even in a free field theory. 

* To our knowledge, this transformation has not yet been successfully used to obtain an exact solution 
of any nontrivial interacting three-dimensional field theory. 
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a spin algebra. This fact was used to map the original Chern-Simons-fermion 
theory onto the quantum X-Y model (see also [48, 3 1, 351). Previous results 
[49, SO] that the ground state of the two-dimensional quantum X-Y model has 
long-range order were used in [43] to prove that, in this particular case, the 
fermion-Chern-Simons theory has a superfluid ground state. The latter fact is most 
interesting in that the condensate is unconventional, consisting of fermion-vortex 
pairs rather than pairs of elementary matter fields. 

When anyon statistics are neither Bose nor Fermi, the Hamiltonian for the anyon 
operators contains a residual interaction which can not be eliminated. In Ref. [51] 
it was shown that anyonic theories of necessity have a local symmetry among its 
fields which is a representation of the braid group, which breeds a kinematic phase 
in the Hamiltonian as an interaction-a direct derivation of this result from 
Chern-Simons theory was found. For rational statistics parameters it consisted of 
a Z, gauge interaction. 

In the present paper we elaborate and extend that work. We discuss alternative 
versions of the lattice Chern-Simons term. We present arguments that the 
Chern-Simons term given here is the unique local lattice expression which describes 
the geometry of a line bundle over a rectangular lattice. We present a detailed 
description of the solution of the gauge constraints in a Chern-Simons theory and 
apply them to our Hamiltonian lattice model. We give a construction of the multi- 
valued angle function which is later used to form multi-valued operators. We also 
discuss the role of gauge invariance and show that gauge invariance itself is almost 
sufficient to determine the monodromy of anyon wavefunctions. 

In addition, we discuss the possibility of proving that anyons have a superfluid 
ground state. We give a numerical test for superfluidity and superconductivity 
there. 

Finally, the machinery developed herein will allow us to treat another, more 
exotic implementation of lattice Chern-Simons theory first introduced by Kantor 
and Susskind [54], whose advantage is that it simplifies considerably the formalism 
that we have presented. 

This paper is organized as follows. In Section I we introduce our lattice notation. 
Section II is devoted to representing the Chern-Simons term on the lattice. Much 
previous work has been done on this and related subjects-in this section we also 
discuss the relationship between our formulation and these others [52, 13, 32, 33, 
311. We then turn to the problem of constructing anyonic operators. This construc- 
tion requires the use of the angle function, so Section III is a small detour which 
delineates how this is done on a lattice. In Sections IV and V, the lattice anyon 
operators are actually constructed, in two ways. The standard way consists of 
multiplying the fermion operator with both a vortex creation operator and a multi- 
valued statistics inducing operator, and it is done in the continuum because of its 
rotation properties. Afterwards, we show that this may be more neatly achieved by 
simply attaching a Wilson line to the fermion operator (although this does what we 
want only for a specific choice of the parameter freedom that we found in the earlier 
sections). At this time, we also point out the relations to knot theory and the 
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geometric formulation of this lattice Chern-Simons theory. Section VI discusses the 
relation of lattice Chern-Simons theory to spin models and its implications for the 
question of long-range order for anyons. Finally, Section VII uses the methods of 
Section V to treat the Kantor-Susskind version of lattice Chern-Simons theory. 

I. NOTATION 

We work in the Hamiltonian formalism, where time is continuous and where 
space is a finite two-dimensional square lattice with lattice spacing 1. We define the 
forward shift operator Si, i= 1,2, by 

Sif(X) =f(X + i) (1.1) 

and its inverse is denoted by 

sz:‘: Sf y-(x) =f(x - i). (1.2) 

(For convenience of notation, also define So = 1, so that we may use the Greek 
index notation S,, p = 0, 1,2), On lattices, differentiation becomes dilferencing, and 
it may do so in one of two possible ways-either with forward differencing, 

dif(X) =f(x + f) -f(x), d,=&- 1, (1.3) 

or backward differencing, denoted by 

dif(x)=f(x)-f(x-f), di = 1 - S,y l = s; 1 di. (1.4) 

(Again, for convenience, define & = do = a,. We will also use the notation I= a,$:) 
Note that summation by parts on a lattice takes the form (neglecting surface terms) 

f: f(x) d, g(x) = -c &J(x) g(x), (1.5) 
x 

by virtue of the lattice Leibniz rule, 

~Jfg)=fd,g+d,f~,g (1.6) 

{no sum on p). The spatial components Ai of the gauge field are real-valued 
functions on the links specified by the pair [x, i], and the time component A,(x) 
is a function on sites. Thus the field strength tensor in this formalism has two parts. 
The space-space part, 

F~(X)=diA~(X)-djAi(X)y (1.7) 

is a function on plaquettes, but mapped by our use of forward differencing to a 
function on sites as well, by the convention of associating a plaquette to the site at 
its lower left corner. The space-time components 

(1.8) 
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are a function on links. Defining the dual held strength in the usual way, 

the Bianchi identity takes the form 

d&,=0 

(i.e., using forward differencing). 
The lattice fourier transform is defined by 

f(x) = jQB$ eeik.Y(k), 

where 

QL?= {(k,k,):--71<k1,k2~71} 

71 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

is the Brillouin zone. Furthermore, the fourier transform of the difference and shift 
operators are 

dj(k)=Si(k)-1=e-ik8-l, Ji(k) = 1 -S;‘(k) = 1 - eikr (1.13) 

and obey the identities -c&(k) = di( -k) = d?(k), S; l(k) = Si( -k) = ST(k). It is 
straightforward to derive the equations (with no sum on i) 

di& = di - Lii (1.14) 
and 

d*~*=(dxc?)*+(d.~)* (1.15) 

which are useful in deriving some of the formulae in Section III. 
Similarly, the time domain has the usual fourier transform 

(1.16) 

and derivatives are defined analogously. 

II. LATTICE REPRESENTATIONS OF THE CHERN-SIMONS TERM 

We shall consider a system of fermions coupled to a gauge field, where the only 
gauge field kinetic term in the action is a Chern-Simons term. We write L = 

kn + Lcm with the matter Lagrangian minimally coupled to the gauge field, 

L, = c Y+(x, t)(iiY, + A,(x, t)) Y(x, t) 

-C A,p, + 1 Ai Yt(x + i, t) eiAi(x,r)Y(x, t) + h.c. 
I r;, i 

(2-l) 
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p0 is a constant background charge density. di(x) is a hopping amplitude which 
may be chosen arbitrarily and does not affect our calculations, but we note 
di(x) = 1 corresponds to nonrelativistic fermions, and di(x) = const( - l)=; 3 to 
relativistic fermions, so that either may be treated in this formalism. (Ai could 
be considered a background gauge field.) The gauge transformation is 

Y(x, t) + exp(iA(x, t)) Y(x, 2) (2.2) 

A,(-% t) -+ .q% t) + qw, f). (2.3) 

The Chern-Simons Lagrangian L,, requires more thought. We begin by briefly 
reviewing previous formulations. Chern-Simons theory on a lattice has been 
receiving attention for some time now. Originally, Frohlich and Marchetti [13] 
used a formalism for differential forms on a lattice (previously developed by Becher 
and Joos [52]) to write down a simple, local lattice Chern-Simons term and used 
it to study the quantization of vortices in three-dimensional gauge theory. Liischer 
[32] used the same representation of the lattice Chern-Simons term to carry out 
a careful fermion-boson mapping in the context of Maxwell-Chern-Simons theory 
(i.e., including the kinetic term f F2 for the photon). Later, Miiller [33] extended 
that work to anyons and discussed the role of the braid group and braid statistics. 

These theories are interesting in their own right, but our interest is in pure 
Chern-Simons theory. And while one might expect, from the discussion in the 
Introduction, that the e -+ 00 limit of these theories, in which the photon decouples 
from the theory, would now be a satisfactorily regulated pure Chern-Simons 
theory, it is not. This lattice formulation of Chern-Simons theory introduces new 
singularities which appear only as the Maxwell term disappears (and thus do not 
cause a problem in Refs. [ 13, 32, 331). It is instructive for our purposes to see why. 

Their Chern-Simons Lagrangian was, in terms of the dual field strength 

& = &/,,A F,A, 

z3 =& 1 A,(x) S,&(x) 

x 

(2.4) 

which, by virtue of the lattice Leibniz rule (1.5) is gauge invariant, on summation 
by parts and use of the Bianchi identity d,FP(x) E 0. Writing (2.4) in k-space yields 

c A,(k)K,(k)Aj(-k)+~A,(--k)J(-k)B(k)) (2.5) 
ki,i k 

with 

and 

J= -f(l+s;‘,~,‘) (2.6) 

+A ( 
0 As;‘+S2 

2 -(S,‘+S,) 0 > 
(2.7) 
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(see footnote before Eq. (2.16)). We see then that both K,, which determines the 
commutator function, 

inaKl;‘(k) = [Ai( Aj( -k)], (2.8) 

and J, which determines the Gauss law, 

2?(k) = 27cap(k) + J( -k) B(k) = 0, (2.9) 

have the same zeroes, at J= - 4 (1 + exp - i(k, + k2)) = 0, i.e., at k, + k2 = fn. The 
Gauss law, then, forces the vanishing of the charge density at these lines, the 
“antiferromagnetic modes” in the Brillouin zone. Furthermore, the fourier trans- 
form of K,‘(k) diverges, indicating that K is not invertible as is and there is 
another constraint which must be dealt with before we can find the commutator in 
(2.8). The presence of this constraint, which is not a part of any a priori theory of 
anyon kinematics, indicates that the photon does not fully decouple. Instead it 
leaves behind a remnant strong interaction, ruins the connection between pure 
Chern-Simons theory on a lattice and lattice anyons, and prevents their study in 
this setting. 

A further symptom of the difficulties with this form of pure Chern-Simons theory 
on a lattice may be found in the gauge field propagator. Writing 

%s = A,(k) G,‘(k) 4-k) (2.10) 

with the covariance 

G,‘(k) = & ~~2,. 4(k) S,(k) (2.11) 

(no sum on ,u), we see that the classical current-current correlator, 

(&,(W,( -k)) = G,,(k) (2.12) 

is proportional to the inverse of the eigenvalues of G-l, which are (ignoring the 
inevitable zero eigenvalue from gauge invariance, which can be dealt with by 
conventional gauge fixing) 

(2.13) 

These vanish at k, + k, = +rc. These line segments in the Brillouin zone have 
co-dimension 1 and therefore bring logarithmic singularities into the fourier 
transform of G,,(k), even after the usual gauge degeneracy is dealt with. Thus, the 
covariance in the Frolich-Marchetti Chern-Simons term is not invertible and 
cannot be used for pure Chern-Simons theory (without imposing additional 
constraints, beyond those of gauge invariance). 

Contemporaneous with the work of Liischer was a treatment by Fradkin 
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[31, 351 of pure lattice Chew-Simons theory. Though Fradkin’s constraint is 
non-singular, his implementation of the Chern-Simons term on the lattice, different 
from that of Frohlich-Marchetti, was not gauge invariant. The expression that 
appeared in that work 

=%s = A,(x) &Ax>, ~p=~pvd,& (2.14) 

under a gauge transformation becomes d,A(x) FJx), which does not realize the 
Bianchi identity expression n(x) d,Fp(x) z 0 on summation by parts, but instead 
n(x) &FJx) #O. Thus a canonical analysis of Fradkin’s Chern-Simons term 
would require second-class constraints and has thus far not been completed in 
detail. 

It is possible to find a suitable modi~cation of the Fr~hlich-Marchetti 
Chern-Simons term which does not have this dificulty and, as we shall see later, 
still has the property of locality. We begin by seeking a quadratic function of the 
gauge fields that is odd under P and T, even under PT, at most linear in time 
derivatives and in A,, with this latter being the Lagrange multiplier for a Gauss law 
appropriate to Chern-Simons theory (as in Eq. (2.20) below). We allow for 
nonlocality on the lattice. Thus, 

%=& c A,(x,f)J,(x--~)A,(v,~)+~ c k,(x,t)K,,(x-y)A,(y,t). 
X,Y,i ‘c, Y. i, i 

(2.15) 

Without loss of generality, we take K,(x- y) = -Kjj(y-x),3 or 

K,(k) = -K$(k). (2.16) 

Again, the gauge generator and commutator in Hamiltonian quantization are 
directly determined by the functions Ji and K,, respectively, as 

~(X)=~‘MP(X)-PO)+C Jifx-.dAi(Y) (2.17) 
.v. i 

[Ai( Ai( = izaKij’(x- y). (2.18) 

Gauge invariance requires 

d,(k) Jj(k) = 0 (2.19a) 

2c$(k) K,(k) = J,(k). (2.19b) 

The first equation may be solved by Ji(k) = dfJ(k) (Given any spatial vector Vi, 
we define Vf = cii Vj), and in terms of this new function J(k), the gauge constraint 
in k-space is 

S(k) = 2na( p(k) - po) - J( -k) B(k). (2.20) 

3 This condition ensures the property of reflection positivity which is emphasized as a necessary 
condition in Ref. [15]. 
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We seek a solution to Eq. (2.20) which is nondegenerate, i.e., for which J(k) # 0 
for all k. Equation (2.20b) may be solved by decomposing K&(k) as 

K(j(k)=K,, ,,d,dj+K,.afd,‘- +K,,,a;dj+K,,Jid,l (2.21) 

with 

K* z-K II I 111’ 4 II = -Kir II) K,, = -K*,,, (2.22) 

from (2.16). Then (2.19b) implies 

Kll II =Q 

J* 
KLII = -“-E> 

J* 
K,,, = -- 

22.2’ 
(2.23) 

K,, is arbitrary, The dete~inant of the K which solves (2.19b) is det K= $ J*J, 
which implies that the canonical structure has the same degeneracies as the gauge 
generator, and a nondegenerate choice of J(k) eliminates the degeneracies in both. 

In what follows we find it necessary to specialize to the case J(k) = 1, leading to 
the Gauss law, 

g(k) = 27&G) -Po) - B(k), (2.24) 

because anyonization requires a local Gauss law. 
What remains is the freedom to fix the function K,,. We see that this amounts 

to the freedom to add a nonlocal but manifestly gauge invariant term of the form 

c K,,(x - Yl B(x) @Y). (2.25) 
-x, J’ 

We determine KLL such that exact anyonization is possible. 
It proves convenient to use a part of K,, to subtract off the trace of Kg--this 

is useful both in taking the continuum limit and in comparing our implementation 
of the Chern-Simons term on the lattice with that of Friihlich and Marchetti [ 131. 
Furthermore, this trace subtraction comes automatically from the requirement of 
exact anyonization, so that including it now serves only to simplify calculations 
later. Thus we write 

K 
tr K.. 

11+K,,-l 
d-2’ 

and, after some rearranging, we may now write K, as 

K,,=d,dj- -cifJj 
Y 

2d.d 
+ K&d; 

and K,; ’ as 

(2.26) 

(2.27) 

“,y ’ = $-i(@xij-did;)+4KlLdic?j. (2.28) 
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Note that this trace subtracting piece satisfies the requirement that if, be pure 
imaginary in k-space. Also note that this gives us the relation Tr K= d-dK,, . 

Finally, we note here that is is possible to show that the naive continuum limit 
of this lattice representation of the Chern-Simons term has a local continuum iimit. 
To do so, we may write the continuum Chern-Simons term as 

-%s = $“lA/AX) a&f,(x) = I, B(x) + +u4 &x) 

and introduce the identity 

(2.29) 

(2.30) 

into the second term; note the similarity with the form equation (2.27). We 
then see, for Fourier-transfo~able field configurations at least, that this lattice 
representation of the Chern-Simons term has a close correspondence with that in 
the continuum. 

III. DEFINITION OF THE LATTICE ANGLE FUNCTION 

Because anyons acquire a phase upon circling each other and returning to their 
original configuration, their wavefunctions are of necessity m~ti-valued functions of 
position, and the operators that create them are similarly multi-valued. In fact, the 
phases accumulated thereby must be an abelian representation of the fundamental 
group of the (multiply punctured) plane, i.e., the braid group. The operators which 
create anyons must therefore be similarly multi-v~ued and carry this same 
representation. Such multi-valued operators may be understood as single-valued 
operators, defined on the universal covering space of the punctured plane, which is 
the set of homotopy classes of continuous open curves which start at a fixed base 
point. This dependence on homotopy class cannot appear in the single-valued) 
Hamiltonian density and must therefore cancel out through the anyon interactions. 
As a result, the curve dependence represents a kind of “gauge” freedom,4 ar* 
inevitable feature characteristic of anyon interactions [Sl J. The appropriate: 
operators have been constructed in the continuum (with its attendant difficulties), 
and previous work on lattice Maxwell-Chern-Simons theory has centered on 
generalizing these to the lattice. 

To define a multi-valued operator in terms of the fundamental (and single- 
valued) fields Y and A,, we shall make use of a multi-valued lattice angle function. 
Our treatment will be similar to that of Liischer [32], but with a few differences. 

4 This curve changing “gauge” invariance is not a gauge invariance in the true sense, since the gauge 
group (i.e., the braid group) need not be represented trivially on the physical Hilbert space. By abuse 
of language, we here use the term gauge invariance to refer to invariance of the Hamiltonian under a 
local symmetry. 
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Given the inverse lattice Laplacian operator g(x): d.&(x) = -6(x), defined by 
(see Ref. [32]), 

(3.1) 

let L.(x) = 2: g(x), which then satisfies -dfh(x) = 6(x). Then the angle function is 
defined as a contour sum over this vector field from a base point B to the endpoint 
x along a curve C, as 

&x(x, Y) = 27~ c 4fiU- Y). 
IGC, 

(3.2) 

C, is a curve going from the base point B to a point x, dl,= j--i along the directed 
link going from z to z rt: i, and we have shifted the origin of the vector field f to y. 
We refer to y as the “origin of the angle function.” We choose the base point B so 

that these curves cannot wind around it, by putting it off at infinity in some 
direction. 

It is easily seen that 0,(x, y) is multi-valued because it increases by 2n when the 
curve C, winds around its “center point.” The center point of the angle function 
thusly defined lies on the dual lattice, in the center of the plaquette in whose lower 
left corner lies the origin of the angle function, the lattice point y. Since a lattice 
curl-using the forward difference operator d, and acting on a vector function~j at 
the point x-amounts to a winding around the plaquette in whose lower left corner 
lies the point x, we have that this angle function satisfies the two (equivalent) 
conditions 

dxdO,(x, y)=2&(x-y) (3.3a) 

8,(x, y)-e&x, y)=27T~co(ccI-i, z), 

where o(Cc’- ‘, z) is the winding number of the closed curve Cc’- ’ around the 
point z and is like the continuum angle function in most respects.5 There is, 
however, an important angle function relation which is modified on the lattice. Let 
v(C,, C,) be the signed intersection number of C, with C,, defined as the number 
of left-handed intersections minus the number of right-handed intersections (with 
slight deformations, all curve intersections can be brought to one of these forms). 
The continuum angle function obeys 

~& v) - @c,(~, x) - 7~ sgntx, - y2) + 2nv(C,, Cl,) = 0 (3.4a) 

* We write Cc’-’ for the contour which is formed by running along first C and then backwards along 
c’. This notation was chosen to be consistent with that familiar from homotopy theory, and so would 
be more readily understood. However, as these curves are summation contours, the reader is reminded 
that this multiplication is to be understood as commutative. 



78 ELIEZER AND SEMENOFF 

(where y = (y, , y2), x = (x1, x2)); however, the above-defined lattice angle function 
satisfies (see Appendix) 

@,(x9 Y) - @c$~, xl - 7~ sgnfx2 - y2) + 27WL C;> = 5(x - Y) (3.4b) 

with 

5(x-Y)= -1Cfi(x-Y)+fifx-Y)+fi(x-y+~)+f,(x-y++)~; (3.5) 

5 satisfies t(x) = --5(-x). 
The properties (3.3), obeyed by the angle function, are unaffected by adding any 

curve inde~ndent nonsingular function to 8. We may take advantage of this fact 
to alter the definition of the angle function, if we so choose, so as to zero out the 
right-hand side of (3.4b). The appropriate modification is 

&;h Y) = ~,(x9 Y) + i 5(x - VI* (3.6) 

In what follows, we will need to define 6 as a single-valued function, by fixing the 
curve dependence, i.e., by fixing the “gauge.” This is done by choosing a field of cur- 
ves %‘(x, z), depending on both the endpoint x and the origin of the angle function 
z, which for each x defines a curve running from the base point to the point x. We 
choose this field of curves so that it is explicitly translation invariant, in the sense 
that %(x, z) = %?(x - z). We then define the single-valued function 8, as 8,(x - z) = 
B,I-jx, z). This angle function now has a cut, consistent with the fact that it is no 
longer multi-valued. For simplicity, we put the origin z of the angle function to zero 
for the moment. The cut of the angle function may be found as follows: Given two 
neighboring points x and x + f, and the curves chosen to run to them, C, and C,, i, 
define the closed curve A,%& = C,L,,C.;~, (Lx,i is the link based at x pointing in 
the a^ direction and may be considered as a curve running from x to x + i) as the 
curve that comes in from the base point along C,, continues along the link running 
from x to x + i, and returns to the base point along the curve C,, F. If this curve 
winds around the center point of the angle function, then the link from x to x + i 
cuts perpendicularly across the cut of the angle function (see Fig. 1). Thus the cut 
of the angle function does not run along links on the lattice, but between them, on 
a curve running from the center point of the angle function out to infinity. It is easy 
to see that d’o(d,%?(x), 0) = S(x), where o (closed curve, z) is the winding number 
of a closed curve around the plaquette associated with a point z. In terms of this 
cut, we have 

d,fl,(x - z) = 27tfi(x - 2) + 2XO(diV(X - z), z). 

For future reference, this latter piece satisfies 

~i~(A~~(x-z))-~j~(Ai~(x-z)) =@(x-Z) 

(3.7) 

(3.8a) 

or 

d~+o(A$(x - z), z) = d;o(Af%(x - z), z) = 6(x-z). (3.8b) 
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FIG. 1. A curve field V in the neighborhood of its cut. The wavy line is the cut. The solid lines are 

curves C in the curve field %. The dotted lines are nonzero links of o(d,%(x-r), z). which define the 

cut. 

The lattice vector function o(d~W(x - z), z) may be understood as a “contour den- 
sity,” in that, when dotted into a vector field and summed in the variable z over the 
entire plane, the result is a contour sum along a lattice curve, with curve parameter 
z. This curve is a reflection across the origin of the lattice curve beginning at the 
base point B (i.e., at infinity) and ends at the point x, running next to the cut of 
the angle function 8, (see Fig. 2). The lattice curve defined by o(d~%?(x-z), z) we 

. . . . ......... . 

. . . . ........ . 

. . . . . . . 

. . ..... 

. . . . . . . 

. . 

d-- l l l 

I  i i . . . . 
FIG. 2. The cut of a curve held W and its associated dual cut. The cut is shown as the wavy line, 

and the dual cut is shown by the solid line. The dotted lines are the reflections of the nonzero links 

(dashed lines) which define the cut through w(d,W(x - z). z). 

595/217/l-6 
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call the “dual cut” D,. Such contours may contain, in addition to the open curve 
running from B to x - z, any number of closed loops, if such loops are contained 
in the cut of &, by a perverse choice of V. 

We will have to consider, in addition to the relations derived for a single angle 
function above, similar relations for two angle functions defined with different curve 
fields %? and 59’. To this end, we note only that the relation (3.8a) generalizes as 
follows. Define di(%, G?(x)) = C,L,,,C.~;\. Then 

diW(di(gT g’(X)), ,I’)-W(d,W(X+j)p J’)+w(A~U’(X), J’)=E~S(X-J’). (3.8~) 

Finally, note that, because 8, and fi are functions of x-z alone, (3.7) implies 
that o(d,%?(x - z), z) is also a function of x-z alone. 

IV. CONSTRUCTION OF ANYON FIELD OPERATORS 

In continuum constructions of anyon operators, as well as in the work of 
Refs. [32, 331, anyon creation operators are constructed by attaching to a fermion 
field a vortex creation operator U(x), defined as 

U(x) = exp i 
I 

d*z d,O(x - z) Ai( (4.1) 

This has the effect of making the combination gauge invariant and eliminating the 
gauge interactions from the Hamiltonian. In addition, a multi-valued field K&x) of 
the form 

Kq = exp i 
s 

d*z &(x, z)@(z) - po) (4.2) 

is included whose role is to transmute the statistics. On the lattice the procedure is 
similar, but we shall have to determine the precise form of these coefficients and 
K,, so that anyonization can proceed. 

Therefore we write down the anyon creation and annihilation operators as 

@&) = u(x) K,(x) WL O&(x) = Y+(x) K&(x) U+(x) (4.3) 

with 

U(x)=expiCM,(x-z)A,(z), &Ax) = exp ia c &Ax -zMz) - ,d (4.4) 
Z z 

For future reference, we note at this point because of the identity (3.4b) for the 
angle function, under a change of curve (which shall become a gauge freedom in the 
anyon Hamiltonian) we have 

@Ax) = exp i C4C,CF’, z)(P(z) - po) 
( 

@&). 
i > 

(4.5) 
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Consider the Hamiltonian density 

H= Y+(x+ E) eiA’(“)Y(x) 

= @:(x + i) U(x + i) K&x + i) eiA’(.‘)K,$(x) U+(x) @Jx). (4.6) 

We determine the function M, so that the gauge interaction is eliminated. Actually, 
unless the statistics parameter is an odd integer, the gauge interaction can only be 
eliminated at the expense of introducing a charge-dependent Z, phase, as we will 
see. 

We combine all of the exponential factors accompanying the fields @*(x + I^) and 
@Jx) (the Baker-Campbell-Hausdorff commutators give only an irrelevant 
c-number constant) and examine the phase we obtain. The two K,‘s combine to 
give 

K,(x + i) K&(x) = exp ict 1 (p(z) - pO) diiB,(x -z), (4.7) 

so that this piece of the phase is now 

Z~~C(~(Z)-~,)~(~~~(X-Z),Z)+~~~C~;(X-ZZ)(P(=)--P~)~Y~~Y~. (4.8) 
i Z 

The first term, y, , is the curve dependent interaction which cancels the anyon’s 
curve dependence, as discussed previously. We concentrate on the second term y2. 
We may apply Gauss’ law (the other operators present, when taken in certain 
combinations, are gauge invariant) B - 2na( p - pO) = 0 and sum by parts to find 

y2 = c djf.(x - z) Aj(Z). (4.9) 

Combining the other three exponentials together, we find, up to an inessentiaf 
constant, 

U(x + i) e iA,lx)Ut(X) E ,iB 

fi=C dfncrl,(X-Z) Aj(Z)+Af(X) 

= ;  (diMj(k) + 6,) L4j( -k). 

Adding, we find 

P+Y2=C (diMj(k)+6,+dfJ;l(k))Aj(-k). 

k 

This phase vanishes when 

(4.10a) 

(4.10b) 

(4.11) 

(4.12) 
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and our Hamiltonian is simply 

rr=c @,:(x-+-i) U(diV(X)) @&x) 
x,i 

with 

U(di%(x)) = eiy’ 

(4.13) 

(4.14) 

We would like to express the sum in the exponential as the charge enclosed inside 
some curve. In the above form we are close, but the curve itself depends on the 
summation parameter z. The solution is to make use of the dual cuts defined in 
Section III. Applying Gauss’ law and summing by parts, we have 

U(d,‘&(x)) = exp i 
( 

C djo(diGR(x - z), z) A;(z) 
I: ) 

(4.15) 

which, from (3.8a), is 

U(di~(x)) = exp i 
( 

C [djo(djiV(x - z), 2) + 6,6(x - z)] AJz) 
) 

. (4.16) 
2 

This last result may be understood as a difference of Wilson lines on the dual cuts 
of the angle functions with origins at x and x + i, respectively, plus a piece on the 
link running from x to x f f, i.e., a closed Wilson loop. Applying Gauss’ law one 
more time, we have 

u(div(x)) = exp i 

(  

1 dDdx+ 9 L.xTiDW(x) - I ,  Z)(P(Z) -  Po) 

; > 

9 
(4.17) 

where D,(x) is the dual cut of the angle function & with origin x and thus does 
not change with z. Thus, the phase U has the interpretation of the charge (or flux) 
enclosed inside the closed curve formed by the dual cuts D&x) and D&x + i) and 
the link L,;. 

In general, we may consider fields Q, with different choices of curve field in (4.13) 
“ig and %“. The changes resulting from this in the above calculation are minimal. In 
Eq. (4.8), the winding number factor that appears in the first term becomes 
w(d j(V, U/)(x - z), z), and the generalization of (3.8a) given in (3.8~) is now used 
in (4.16) to give 

= exp i C [~(df%(x - 2 + i)) - w(dJ+%‘(x - z)) + 6,&x -2)] A,(z) 
> 

. (4.18) 
z 
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Again, we see that two dual cut functions, one running from B to x, and the other 
running from x + i to B, appear along with a connecting link represented by the 
6,&(x-z) term. Together these are a contour density for a closed curve, so that 
when multiplied into a gauge field and summed over the plane, they become a 
Wilson loop, as before. The final result is 

H= c @L(x + f) U(d,(%, W(x))) G&x) (4.19) 
.x, i 

with 

U(di(W%, W’(X))) =exp 2nici 
(; 

1 W(D&X + i) L,,iDwc(X)-‘, Z)(p(Z)-ppo) . 
> 

(4.20) 

Because of the gauge transfo~ation (4.5) under a change of curve, this type of 
interaction is unavoidable in a theory of anyons [51]. Note that this phase is of the 
form c1 times an integer. When the statistics parameter a is an odd integer, this 
phase is just 1, and, if o? is rational, the phase may take on only a finite number of 
values. In such a case the theory becomes a Z, “gauge” theory, where N is the 
rationaiity of a. 

As a final note to this calculation, we point out that it may also be carried out 
at the level of the Lagrangian. In this case, we have the added interesting 
phenomenon that the anyonic variables, when plugged into the time derivative part 
of the Lagrangian (2.1), precisely cancel out the canonical part of the Chern- 
Simons term, leaving only the constraint times A,, minus the anyon Hamiltonian 
(4.13) and a kinetic term for the anyons of the same form as that for fermions, as 
in (2.1). However, the utility of this is not clear, because of the complicated changes 
induced in the measure. 

We need to impose the condition of anyonic statistics6 We thus consider 

@%-E(x) @w(Y) = U(x) &4x) u’(x) WY) &r(Y) ul(Y) (4.21) 

and interchange the order of the exponentials using the Baker-Campbell-Hausdorff 
theorem eAeB = eBeAerAqsl. We find 

U(x) U(y)= U(y) U(x)exp-inolCM,(x-z)M,(y-z’)K,‘(z-z’) 
is 

= U(y) U(x) exp- inu C Mi(k) Mj( -k) ZCy’(k) 
k 

= U(y) U(x)exp-4inaK,.(x- y), (4.22) 

6Note that, although it is possible to require the commutation of specific operators, a well-defined 
anyonic exchange requires that the state in whose presence this operation is performed be empty in order 
that this operation is meanin~ul. If it is not, we shall have to require that, in addition to the curve field 
%?(x - z) avoiding the two charges involved in the commutation, %(x-z) must avoid ail other charges 
in the plane. Note further that this is not a problem for bosom, only for anyons. 
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using the commutator function [Ai( A,(y)] = inaK,i’(x - v) from (2.28). On 
interchanging K&x) with ‘P(y) and K,(y) with Y(x), we obtain the factors 

Kdx) WY) = WY) Kdx) exp iaf-b(x - Y), 

W) K&) = K&) y(x) exp - iab4.v -XL 
(4.23) 

so that 

%(x) @MY) = -WY) @dx) exp ia(&(x - Y) - &(Y -x)) 

x exp - 4inaK,.(x - y). (4.24) 

In the continuum, the difference of angle functions that sits in the first exponential 
would simply be 71 sgn(x,-y,)-2rrv(C(x--y), C(y-x)), with v(C(x-y), C(y-x)) 
the signed intersection number of the two curves C(x - y) and C(y - x), and this 
factor alone would give us precisely the anyonic commutation relations. As we have 
seen, this is not necessarily so for the angle functions that arise naturally on the 
lattice, most notably the angle function defined in (3.2). Let us imagine for a 
moment that the previous calculations have been done, not with the angle function 
of (3.2), but with an arbitrary angle function &(x, y), which differs from 8,(x, y) 
by the addition of a single-valued function which we call 4 x(x-y), and so 
necessarily still satisfies the two conditions (3.3a), (3.3b). Because they continue to 
satisfy the two conditions (3.3a), (3.3b), nothing actually changes in the above. 
Generally, though, we will have a lattice angle deficit: 

4dx - Y) - 6d.v - x) - n wh - YJ + 27dC(x - Y), W-x)) 

= f (x(x - Y) - xb -xl). (4.25) 

Aside from the terms 7c sgn(x, - vn) + 27cv(C(x - y), C(y - x)), this is what then 
appears in the first exponential of (4.24). It may in general be cancelled off simply 
by choosing K,, appropriately. Note that this is possible only because the lattice 
angle deficit is of necessity an odd function of position, and thus it is imaginary in 
k-space, as K,, should be. In particular, for the two lattice angle functions 8 and 
g defined in (3.2) and (3.6), respectively, K,, is chosen as 

K,, =-&Tr K=i (for e) 

K,, =bJTr K=O (for t7). (4.26b) 

Thus we see that the formalism above can accommodate any lattice angle function 
at all, as long as it satisfies (3.3a), (3.3b). Note finally that, for any reasonable 
lattice angle function, the lattice angle deficit i (x(x - y) - ~(y - x)) vanishes in the 
continuum limit, and so it does no damage to the good continuum limit properties 
of our lattice Chern-Simons term. 
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We have now shown that there exists an exact lattice anyonization, i.e., a map 
which eliminates all extra gauge interactions from the Hamiltonian (4.13) (although 
leaving the necessary curve-changing gauge invariance and achieves the exact 
anyon commutation relations 

@Ax> @+AY) = -@,(Y) @&f exp ida sgnfx, - y2) 

-2dC(X-Y), C(Y-x)1) 

@L(x) @L(y) = -@L(y) @L(x) exp - icl(n: sgn(x, - y2) 

-274IC(X-Y), W-x)1) 

@b(x) @tp(y) = -@LAY) @b(x) w iaCI(x sgn(x, - y2) 

-274C(x-v), C(Y-x)1), x # y 

(4.27a) 

(4.27b) 

(4.27~) 

V. WILSON LINE FORMALISM 

Although the foregoing is the traditional formalism in which to treat anyoniza- 
tion, a much simpler formalism is in fact available. We return to the definition of 
our anyon variables and apply Gauss’ to KB, 

Qi,(x)=exp iCf*(x-2) A,(z)exp ia ~O,(x-~)(p(z)-~~) 
I 2 

=expiCjf(x-z)A,(z)exp-i$O,(x--z)dfA,iz). (5.1) 
2 z 

We may now sum by parts freely, because 8, is a single-valued function. From 
(3.7), we will have two terms. The first simply cancels out the first exponential 
factor. The other term is w(dEA%(x -z), z), which satisfies (3.8b) and is, therefore, 
a Wilson line. Thus we see that the effect of all of the above machinery is to attach 
a Wilson line to this fermion field, with no extra gauge invariant phase (unless such 
phases are added by a perverse choice of w, which may add other Wilson loops to 
the Wilson line). Note that this result depends on the particular choice of angle 
function that we have made, namely that delined in (3.2). 

We may then redo the calculations for the elimination of the gauge interaction 
and anyonic statistics very simply. In fact, the first calculation is trivial. With 

Qidx) = Y(x) W&4X))> W(D,(x)) =exp i x dfi Ai( 
/E&(S) 

(5.2) 

we find that YV’(x + i) exp S,(x) Y(x) becomes 

Y+(x + f) exp iAj(x) F(x) = CD&(x + i) W(D,(x + i)) e”““‘FV+(D,(x)) (P&x). (5.3) 

It is immediate that the middle three factors together form a Wilson loop, 
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W(D,(x) L,,iD;‘(x + i)) = exp i c AJl) dl, 
/E Dw(x)Lx,iD~‘(.x+ i) 

= exp i C B(Z) O(D&X) L,iDGl(X + i), Z) 

= exp 27tict 1 (p(Z) - PO) W(D&X) L,,iD, ‘(X + i), Z) 
Z 

(5.4) 

which is precisely the factor U(d,(%, w’(x))) of (4.19) and (4.20). 
To compute the statistics of these QQ’s, we need only the commutator of the 

Wilson lines, 

@&) @dY) = -er@dy) @dx) 

Z-= - c d&A,(Z), 1 
[ 

dZ;Aj(l’) 
Is h(X) /‘e&(y) 1 

= -im 1 1 dl,dl,!K;‘(l-I’) 
/EDdJ) r’ED@fy) 

(5.6) 

Allowing the hatted differences of I- 1’ to act as unhatted differences of I’, we may 
evaluate four of these six contour sums directly: 

r= -27cia 

- iat(x - y). (5.7) 

The first term we recognize as ODV(xj (x, y). The second term we rewrite as 

(5.8) 

and this we recognize as 6 D&y, x). The final result for r is 

r= iQbw&y Y) - ~D~(u~(~9 4 -5(x- YN 

= inu sgn(x, - y2) - 2nicw(D,(x), D,(y))), (5.9) 

and we recover the anyonic statistics property of the field operators Qy(x). 
An interesting consequence of (5.9) is that, because (given the choices (3.2) for 

the angle function and (4.26a) for K,,) commutation of Wilson lines counts their 
crossings, the commutator function K,;‘(x - y) must be a local function, in the 
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sense that a link variable commutes nontrivially only with its nearest neighbors. 
This may seem strange, given (2.28) and (4.26a), but it may be verified directly 
through tedious algebra. We find 

K,= 
( 

&s-s;’ -(-1+s;‘+s,+s;‘s,) 

-1+S;‘+S*+S$s2 s;‘-s, > 

d2 + d, -2-2d, +2&+&d, 

= 2+2d,-2&&d, ( -d,-2, > 
(5.10) 

which, it may be checked, satisfies both (2.19b) with J= 1 and (4.26a). Note that 
Ai commutes nontrivially with all six of its nearest neighbors, i.e., any link with 
a common site, not just the other link defined to sit at the same site x, as many be 
read off from the inverse of (5.10) (or see Fig. 3). This appears to restore the 
“democracy” between the forward and backward directions, first broken by our’ link 
variable definitions, but the signs in (5.10) still distinguish these directions. 
The above result may also be deduced by use of (5.9) along with A,(x)= 

V&Ax + f)) - W,)(x), where W,)(x) = L Dwcxj 4A#). 
Armed with this insight, we now return to (5.9). This equation has the odd 

feature that, while it implies that commutation is local in the above sense, it seems 
to have an additional feature that does not look local, namely, the first term on the 
right-hand side, the n term. Although it looks very much like this should be called 
a “half intersection” and attributed to the common base point of the two contours, 
this question has never been resolved in the previous, continuum formulations 
[S, 9, 123. Because our theory is well regulated, however, we may compute the 
commutator of Wilson lines intersecting at their endpoints. A trivial computation 
directly verifies the above conjecture. 

This definition of K,, which makes Wilson line commutators local, allows a 
geometric formulation of lattice Chern-Simons theory as the geometry of a line 
bundle over the lattice, as in the continuum. The role of Ku is to define the wedge 
product so that the Leibniz rule is satisfied. This will be more fully developed 
elsewhere [53]. 

We close this section with a remark about the relation of anyons to knot theory. 
At the beginning of Section III, it was noted that anyon creation operators must 
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FIG. 3. The link variables which commute nontrivially (dashed lines) with a given link (solid line) 

are shown, together with the signs of their (c-number) commutators. The magnitudes of these numbers 

are all 1. 
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carry a representation of the braid group. It is easy to check that this is in fact the 
case, because of a theorem by Reidemeister [M--58], which gives necessary and suf- 
ficient conditions for a set of ~rmutation generators (r to represent the braid group. 
Let cij represent a permutation of the ith and jth strands. Then Reidemeister 
requires 

(5.11) 

It is trivial to check that, for a multi-particle state written as a series of anyon 
creation operators acting on the vacuum, these relations are satisfied by simply 
commuting creation operators with each other using (4.27). 

A surprising aspect of this relationship is that the knot invariances (5.11) are 
those of framed knots, i.e., knots which have a width and thus are actually ribbons. 
Unframed invariance requires that the generators (r also not distinguish twists, 
which are not even defined on these particle states. Thus, the appropriate invariance 
for anyons is the framed invariance, also known as ambient isotopy, rather than the 
unframed one, known as regular isotopy. The origins of this framing are not 
obvious, because the curves involved are merely summation contours, not ribbons. 
It is worth noting, however, that the forward differencing convention that we intro- 
duced in Section I may be regarded as fixing a framing by associating a plaquette 
to each link and this framing cannot twist. In Section VII, we discuss another 
lattice Chern-Simons term in which framing of anyon creation operators is more 
explicit and, also, nontrivial. 

VI. RELATIONS TO SPIN MODELS AND SUPERFLUIDITY 

In the special case that a is an even integer, we have a system of free fermions, 
and the fields are curve independent. In the case that 01 is an odd integer, Gc and 
Qc are bosonic and again independent of C and c’. With the identification found 
in Ref. [48] (see also Ref. [43 3, @p(x)= S’(x)- is*(x), Qt = S’(x)+ iS2(x), 
p(x) = S’(x) - $), they form the j = 8 representation of the lattice SU(2) algebra 

[P(x), P(y)] = icabcSc(x) 6(x - y), i P(x) S”(x) = 3, (6-l) 
a=1 

and (11) with A = - $ is the Hamiltonian of the X-Y model,’ 

H= -~(S’(X+i)S1(x)+S2(x+i)S2(x)). (6.2) 

‘The discrete symmetries of Chern-Simons theory map onto the XY model as follows: 
(CP),, u (CP),, and (T),, c) (T),.. Parity, which is broken in general for Chem-Simons theory, is 
not broken in the case that tl is an integer. 
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Here, the average charge density p0 = (Q)/volume, where Q is the number 
operator, also fixes the expectation value (C, S3(x)/Y> = p0 - 4. We consider the 
case p0 = f. It has been proved [49,50] that, when the volume is infinite, the 
ground state of the X-Y model in two dimensions has long-range order with 

lim, -t m (S’(x) S ‘(0)) # 0. Thus, in the Chern-Simons-fermion model described 
by (2.1) and (2.5) (together with the constraints we have derived), the ground state 
has off-diagonal long-range order, 

e+(x) jJ piA@ #O; 
links 

(6.3 1 

i.e., it is a charged superfluid and, if coupled to the physical electromagnetic field, 
at least for sufftciently weak coupling, would be a superconductor. It is also known 
{SO] that the long-range order persists in the antiferromagnetic XXZ model formed 
by adding the coupling H,, = g Cx,i S3(x + i) S3(x) or, in fermionic variables, 

H,, = g c (tt/+(x + i) $(x + i) 9+(x) $4~)) - 2gQ + cons& (6.4) 
x,i 

with g sufficiently small. This is a repulsive interaction and, for g large enough, it 
destroys the superfluid condensate. For g -+ co the groud state of H+ H33 is that 
of H,, which is the antiferromagnetic Ising model. The ground state of the latter 
does not have off-diagonal long-range order and is not a superfluid but breaks 
symmetry under translation by one lattice spacing, (C, ( - l)E1”l S3(x)) = 
(C, ( - l)Ei”t (p(x) - f) > # 0. Here, antiferromagnetism of the XXZ model coin- 
cides with a commensurate charge-density wave state of the Chern-Simons-fermion 
model and is stable when the repulsive self-interaction of the fermions is strong 
enough. 

The treatment by Kennedy, Lieb, and Shastry actually may be used to say some 
things about lattice Chern-Simons theory with more general statistics parameters. 
Their strategy was to derive an infrared (q #O) bound on the correlator g(q) = 
(ShS t,) <fir(q) as a function of q then integrate it up against xi cos qi over the 
Brillouin zone, thus converting it into a bound on the ground state energy. They 
then show that, if g is smooth at q = 0, i.e., having no h-function contribution there, 
then this bound on the energy is contradicted by the simplest of variational bounds, 
in which the variational state is chosen as an eigenstate of Sl, at every site x, giving 
energy per bond e = - a. 

The analogous bound on the correlator of Chern-Simons theory at non-integer 
statistics parameter is a challenging problem. The KLS proof does not easily carry 
over to the more general case. But while we cannot complete a proof of long-range 
order using a straightforward generalization of the KLS strategy, we can use that 
strategy to find a condition for long-range order in these systems, a condition which 
may be tested numerically. Because the Hamiltonian of the anyon system is, like 
that of the XY model, a hopping Hamiltonian, we may still integrate the two-point 
correlator up against cos qi to obtain the ground state energy. Thus an upper 



90 ELIEZER AND SEMENOFF 

bound, any upper bound, on the correlator at finite q may be converted in this way 
into an upper bound on the ground state energy. If this contradicts some 
variational bound, we then once again have found long-range order. Variational 
bounds are more difficult to evaluate with a Hamiltonian such as (4.131, which 
contains nonlocal phases, but it is possible to show that the state 

IY)“,,=~-I-(/1),10)x+4+/O~.~Il)x+*) 
2 

(6.5) 

has energy - Q per bond, where sites x have components x = (x,, x2), and the 
product n’ runs over all x2 even. This variational state may be thought of as a 
state that “resonates” in the 2 direction, In this configuration, it is possible to 
choose the curves so that they contain no charge at all, so that the energy is the 
same as a similar configuration of bosons. 

This condition is numerically useful, because it requires the measurement of only 
a single quantity, an integral of the correlator, and allows an inference of the long- 
range properties of the system from those at finite distance, which are easier to 
compute accurately in a numerical study. Computation of the two-point function in 
the ground state may be treated by standard methods at zero temperature, for 
example, by using the Lanczos method to find the ground state and evaluating the 
two-point function straightforwardly. Thus, we may used the above observations as 
a numerical signal for the onset of anyon superfluidity. We emphasize that this 
condition is sufficient but not necessary. A numerical search for a KLS-like bound 
among more exotic spin models has been carried out by Liang [59]. 

VII, AN EXOTIC LATTICE CHERN-SIMONS THEORY: DUMBBELLS 

Thus far, we have seen that it is possible to perform an anyonization transforma- 
tion on a Chern-Simons system written on a lattice. The result was complicated to 
write down, though easy to understand-while our lattice variables imposed a 
preferred direction (forward vs backward) on the lattice through the definitions of 
the link variables defined to be at the site x, the system partially restores the 
democracy between the positive and negative directions on the lattice, so as to 
count crossings of Wilson lines correctly. We saw also that this preference could be 
interpreted as a framing on the Wilson line defining the anyonic variables, thus 
explaining the peculiarity that anyonic variables seem to obey framed link 
invariants, rather than unframed ones. All of this suggests that an ordinary square 
lattice is not the natural setting for lattice Chern-Simons theory. It would be 
interesting to find a lattice on which Chern-Simons theory sits more naturally, 
as this would simplify computations and allow the knot-theoretic properties to be 
more readily extracted. 

Recently, Kantor and Susskind [54 3 proposed a representation of lattice 
Chern-Simons theory which seems to achieve this program, but involves twice as 
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many lattice degrees of freedom, defined on a lattice together with its dual lattice. 
Using a dual lattice in this way to define natural geometric invariants on lattice 
principal libre bundles was investigated earlier by Honan [55]. In this section we 
investigate the properties of the model, constructing exact anyon operators, 
calculating their monodromy, and treating the continuum limit. 

Kantor and Susskind’s model introduces a discretized Chern-Simons theory with 
two species of gauge fields, one associated with links of the primary lattice and the 
other with links of the dual lattice. In terms of these, they wrote down a very 
simple, gauge invariant (mixed) term that is completely local. They also suggested 
that this lattice ChernSimons theory be coupled to “dumbbell” matter, the 
components of which occupy sites on the primary lattice as well as an adjacent site 
of the dual lattice. 

We treat the model in the context of the methods developed in Section V. We 
begin by showing that the Chern-Simons term in that model is parity invariant. We 
then consider the coupling of the gauge fields to matter fields and show that this, 
in fact, breaks parity. We further show that the physical states of the theory exhibit 
anyonic monodromy in terms of a particular version of the two-color braid group 
of R2. Using the formalism already developed, we then provide a simple, exact 
construction of the anyonic fields, which eliminates the need for the semiclassical 
arguments of Kantor and Susskind. We argue that the lattice Chern-Simons theory 
which is obtained can be regarded as a lattice regularization of a parity invariant 
continuum U( 1) gauge theory with two species of gauge fields and a parity 
invariant Chern-Simons term, together with a parity-breaking constraint on the 
currents. 

Consider a square two-dimensional lattice, with sites x = n,? + n,2 and basis 
vectors p = *I, +2, which is called the primary lattice. An oriented link from site 
x to site x + p is denoted [IX, ~1. Similarly we consider the dual lattice with sites I* 
located at the centers of plaquettes of the primary lattice. We take the convention 
that the link [x, p]* dual to [x, ~1 is that link of the dual lattice which crosses 
[x, ~1 and, if [x, ~1 is oriented in the forward direction, [x, p]* is oriented from 
right-to-left. Then we introduce gauge fields A( [x, ~1, t) associated with the link 
[x, ~1, A”([x, p]*, t) associated with [x, p]*. A(x, t) is associated with sites, and 
d(y*, t) is associated with dual sites. These have the gauge transformations 

A(Cx, PI, 2) -+ A([% PI, t) + &X(X, t), A(x, t) + A(x, t) +1(x, t) (7.1) 

m-7 PI*, O+A”(Cx, PI*, t)+qji(x*, f), A”(y*, t) + &*, t) + icy*, t), (7.2) 

where x(x, t) and f(y*, t) are independent functions on the primary lattice and dual 
lattice, respectively and the dual lattice derivative zfij( y*) is defined by the operation 
of taking the difference of i(y*) at the dual sites on the endpoints of [y, ,u]*. 
Gauge fields have the property 

A( c4 -PI, t) = -4Ex - PL, PI, t), A([x,-p]*, t)= -Ji([x-p,p]*, t). (7.3) 
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The primary lattice gauge field has magnetic flux through a plaquette, i.e., a site of 
the dual lattice, 

B(x* =x + j/2 + 92, t) 

=A([x+Li,~],t)-A([x,2],t)-A([x+2,~],t)+A([x,~],t). (7.4) 

Similarly, the magnetic flux due to the dual lattice field is located on a primary 
latice site, 

B(x)=A”([x, I-J*, t)+A”([x,2]*, t)-A([x-1, I]*, t)-AI([x-2,21*, t). (7.5) 

A Chern-Simons term which is invariant under the both gauge transformations 
(7.1) and (7.2), when the gauge functions have compact support, is [54] 

+ 1 A(x, t) B(x, t) - 1 A”(x*, t) B(x*, t) . (7.6) 
J .X* 

Canonical quantization of the first-order action (7.6) yields the canonical commuta- 
tion relation 

CNCX, PI), acY3 VI*)1 =wcT PI, cJ4 VI). (7.7) 

In two dimensions, parity is defined as reflecting one of the coordinates, 
(xi, xi) = (-x,, x2). Choosing A to be a vector under parity and A” a pseudo- 
vector, 

A’( [x, T], t) = A( [x’, A], t), A’( [x, 21, t) = A( [x’, 21, t) (7.8) 

A’( [x, I-J*, t) = -A( [x’, -I]*, t), 2’( [x, 2-J t) = -A( [x’, 21*, t) (7.9) 

A’(x, t) = A(x’, t), 2(x*, t) = -2(x’*, t), (7.10) 

we see that this Chern-Simons action is actually invariant. The action (7.6) is also 
invariant under the simultaneous charge conjugation transformations A + -A, 
A” + --A”. The continuum limit of (7.6) is 

&=f,d d2 ( t x ciiAi(x) -$ Aj(x) + A,(x) B(x) -A”,(x) B(x) , 
> 

(7.11) 

where, again, A is a vector under parity and aP is a pseudo-vector, so that the 
Chern-Simons cross-coupling is parity invariant. Such a model has been used to 
discuss a scenario for parity symmetric anyon superconductivity [29]. 

This gauge theory is suited to couple to matter which resides either on the 
primary lattice or the dual lattice and which has transport confined to its respective 
lattice. Gauge invariant transport of a particle with charge g along an oriented 



ANYONIZATION OF LATTICE CHERN-SIMONS 93 

curve C on the primary lattice or a particle with charge d along an oriented curve 
2: of the dual lattice are accompanied by the Wilson line operators, 

WC1 =exp ig C A(Cx, ~11, P[Z;] = exp ig C A”(cx, PI*). (7.12) 
links in C dual links tn I? 

If xi, xf are the initial and final endpoints of C and x7, x/* the initial and final 
points of c, the operators in (12) gauge transform as 

WCC1 + ,kx(-~f)w[q e -ipxl-~~), @Z;] ~ eiiZW~)#Y[Z;] e-kTIL~O~ (7.13) 

Also, for closed curves, they are gauge invariant and give the monodromy 

W[closed C] = exp ig 1 B(x* 1, 
x* s interior C (7.14) 

m[closed ?J = exp ig C &I 
I E interior ? 

and for either open or closed curves they have the commutator algebra, 

W[C] W[c’]= W[c’] WCC], tt[C] P[z;I]= nqz;‘] fv[z;] (7.15 

tt[C] WCC] = WCC] tV[2;] exp iggtlv[c, C], (7.16) 

where v[c, C] is the number of right-handed intersections minus the number of 
left-handed intersections of c and C (this is strictly true only when C and z‘ do not 
intersect each other’s endpoints). It follows that for closed loops C and c, WCC] 
and m[c] always commute. It further follows that simple counterclockwise non- 
tilde (tilde) Wilson loops acquire a phase exp ig@l (exp - igg0) when commuted 
with a tilde (non-tilde) Wilson line whose endpoint is inside the loop. More 
generally, the commutation phase between a Wilson line and a Wilson loop is 
proportional to the winding number of the loop around the endpoint of the Wilson 
line. 

We introduce annihilation and creation a, ut for particles with charge g which 
reside on primary lattice sites and ii, iTt for particles with charge g which reside on 
dual sites with nonvanishing anti-commutators 

{4X)? a+(Y)) = &rv {ii(x*), ii+( =8.py*. (7.17) 

Their gauge transformations are a(x) -+ exp + iA u(x), u+(x) --) exp - i/i(x) u+(x), 
ii(x) + exp + iA ii(x), ii+(x) + exp - L?(x) Z+(x). The generators of gauge trans- 
formations are 

$ = 11(x*) 
.A-* 

S; [5+(x*), ii( + f B(x*) 
> 

(7.18) 
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Here we have defined the matter charge densities using a Dirac commutator. In a 
relativistic theory or a non-relativistic theory which has a particle-hole symmetry, 
this definition gives the gauge generators a definite charge conjugation symmetry, 
where the matter transformation law is C: a(x) + a+(x), at(x) -+ a(x) and 
C: 5(x*) + ii+(x*), 2+(x*) + ii( (This is an invariance of the anti-commutators 
in (7.17). It generally has to be augmented by a gauge transformation to also 
be an invariant transformation of a Hamiltonian.) Furthermore, under parity 
P: a, a?(x) *a, at(x) and P: 5, Z+(x*) -+ iit, 5(x*‘). Note that the parity transfor- 
mation of ii is defined so that g in (7.18) has well-defined parity in that both terms 
in the summand are pseudo-scalars. 

Gauge invariance of a physical model with charged particles requires the 
constraints $9 - 0 and 9 N 0 which are imposed as physical state conditions. Gauge 
invariant (under transformations where the gauge functions have compact support) 
creation and annihilation operators are formed by taking a product of a creation 
or annihilation operator at a point x or x* and the appropriate Wilson line 
operator with curve C or c going from the point x or x* to some point at infinity, 

a&) = ~CCl4x), 6+(x*) = @[2’] a(x*). (7.19) 

These are multi-valued operators with multi-valuedness characterized by the 
monodromy in (7.14). Thus, for example, when we transport the operator Q(X) 
around a loop C’ we obtain 

~c+c(x)=exp & ( E: Btx*) %4x) 
I* f interior C ) 

C 
I* E interior C 

(7.20) 

where the last weak equality holds for matrix elements with physical states. Thus 
the change in phase of the wavefunction upon transport of an a-particle around a 
loop is given by f3gg times the number of Z-particles whose positions are linked by 
the loop. If 8gg/27c is a rational number (say M/N, where M and N are relative 
prime integers) this monodromy can only take on a finite number of values which 
are the elements of the one-dimensional representation of the discrete group 2, by 
phases exp 2~i~~/N. In the following we shall confine our attention to this case. 

We quantize the gauge fields using the functional Schroedinger picture. We treat 
the primary gauge field A( [x, ,u]) as a coordinate, so that the wavefunctionals 
depend on classical configurations of A([x, ~1) and we represent the commutator 
(7.7) by taking 

(7.21) 
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Then the empty vacuum state is given by8 

(7.22) 

where IO) is the state with no charged particles a(x) IO) = 0 = d(x*) 10). From the 
empty vacuum we can create the basis states for the n-particle and &particle sector 
of the theory, 

qxl) . . ~~tc,kz) @+G+? . . . iits;ii(x;) YJA]. (7.23) 

In this state, we transport a particle in a loop, 1, by successive operation from the 
left with the gauge invariant operator T( [x, ~1) = at(x + p) eiA(C-‘,P1’a(x). This effec- 
tively multiplies the state from the left by the Wilson loop operator I%‘[/]. We can 
use lattice Stoke’s theorem to show that W[l] ul,= !PO, so that the only effect of 
this transport resides in the commutators of W[l] with m[cj]. From the discus- 
sion after Eq. (7.16) it is easy to see that the net phase is exp(igg0 x (number of 
tilde particles linked by I)), because each of these particles sits at the end of a 
Wilson line. Also, if the non-tilde particle at x1 is exchanged with the non-tilde 
particle at x2 by transporting particle 1 along C,, and particle 2 along C,, then 
the wavefunction acquires a phase exp(igg0 (number of tilde-particles linked by) 
Cl2 0 Czl). For similar reasons, it can be shown that if we transport a tilde-particle 
in a loop or exchange two tilde-particles the state changes by a phase exp(igg0 
(number of non-tilde-particles linked by the loop)). (Note that the sign of the phase 
is the same as that for the non-tilde particle, so that if a pair of bound states of two 
such particles were to encircle each other, these phases would add.) Thus the 
wavefunction carries a one-dimensional unitary representation of a two-color braid 
group [57]. The representation gives a phase proportional to the number of 
charges of the opposite color linked by a braid (weighted by the orientation of the 
braid). It has recently been shown that a similar braiding characterizes the solitons 
for the (2 + 1 )-dimensional CP’ model [60]. 

Kantor and Susskind [54] argued that a natural candidate for anyons is the 
dumbbell matter which consists of a pair of charges, g and g, one placed on a 
primary lattice site and the other on a neighboring dual lattice site. They could be 
viewed as confined pairs of primary and dual lattice particles and could arise in a 
realistic situation as a tightly bound electron-magnetic flux tube pair, for example. 
Alternatively, if we view the primary and dual lattices as embedded in an ordinary 
square lattice, with the primary and dual lattices each being a next-to-nearest 
neighbor sublattice, we could think of dumbbells as representing confined pairs of 
ordinary particles. For such a pair the low-energy hopping process would effectively 
be for one of the members to the pair to hop between sites which are nearest 
neighbors to the location of the other member of the pair. Thus, effectively, the 

s Note that, as is characteristic of constrained systems, this state is not normalizable. When taking the 

norm one should properly view [S(B(x*))]* as @II( x (volume of gauge group). 

595/217/l-7 
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lowest energy hopping would transport particles only on one of the next-to-nearest 
neighbor sublattices. 

Here, following Kantor and Susskind, we shall treat dumbbells as elementary 
extended particles. We denote a primary-dual site pair by [x, 01, where x is a 
primary lattice site, and cr is a vector with entries it 4, denoting on which of the 
four neighboring dual sites the other end of the dumbbell lies. Creation and 
annihilation operators for dumbbells are denoted by D’( [x, r~]) and L)( [x, 03). 
Their commutation relations are given by 

C~(Cx, ol), D+(CvY ffl)l =&&fd. (7.24) 

Note that we have not included the parity image of the dumbbells in this system, 
because under parity the tilde particles have to undergo charge conjugation. Thus, 
although the Chern-Simons term preserves parity, the matter Hamiltonian does 
not, and parity is broken in the dumbbell-gauge field system. 

The charge density on a primary site x is given by p(x) = C,, @D([x, o]), 
summed over all neighboring dual lattice sites, where the other end of the dumbbell 
might reside. We may similarly define a charge density @ on a dual site by summing 
DtD( [x, 01) over neighboring primary sites. In terms of these variables, we may 
express the gauge generators (7.18) as 

@f=~~(x*) &-p(x*)+(x*) 

Gauge invariant transport of a dumbbell involves attaching a Wilson line to each 
component of the dumbbell. The Wilson lines follow parallel paths and can be 
thought of as a ribbon. The Wilson line operators can be combined to form a 
“Wilson ribbon” operator 

links of C links of C 

(7.26) 

where C and (? are adjacent curves. A gauge invariant dumbbell is given by 

Qicc(Cx, 01) = mc Cl @CK Ql), (7.27) 

where C and 2; go from x and x + TV to a pair of adjacent base points chosen at one 
of the corners of the (finite) lattice. Note that this is the automatic and explicit 
framing of anyonic braids referred to in Section V. 

The empty dumb~ll vacuum is constructed as in (7.22) with 10) as the state 
with no dumbbells. From it we construct the state with n dumbbells as 

dc,e,(L-x7 ~1lb&“2$L6 OIJ ug* (7.28) 

As in the case of the unconstrained matter we first discussed, gauge invariant trans- 
port of a dumb~ll around a loop Z, lhas the effect of multiplying the state from the 

‘We arrange the corner of the lattice such that both B and B are on the boundary of the lattice, so 
that neither B nor B may be encircled by a curve on the other lattice. 
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left by the Wilson ribbon operator W[Z, I]. Commuting this through the vacuum, 
we find the sum of the two phases that were found for the tilde and non-tilde 
particles, namely, exp(ig$ (number of dumbbells linked by the loop)). It should be 
noted that dumbbells sitting on top of the ribbon loop give a half linking. Thus 
monodromy for the dumbbells is exactly that expected for anyons. 

Half-monodromy, which gives the statistics phase, may be treated by computing 
the commutator of two dumbbell-anyon creation operators dc,,=-,( [x, a] i) = 

W(ICi, cl1 D(Cx, all), 4czrz(Cx, all)= WCC*, 2’,] D([x, 01~) directly. The 
general formula for such a commutator is proportional to the sum of the inter- 
section numbers of the two sets of curves, i.e., exp iggO(v[C,, c,] + v[c,, CJ). 
For a pair of Wilson ribbons, starting at a pair of base points such as we have 
described, this number is simply 1 (giving half of the monodromy calculated above) 
if the two ribbons do not intersect away from the base point, because there is 
necessarily a single intersection when the two ribbons separate. For generic 
additional intersections of the ribbons, the half-monodromy increases by 2gg0, but 
an exception to this occurs when one of the particles lies on the Wilson ribbon of 
the other-then, as in the monodromy, only one of the two pairs of Wilson lines 
in the ribbons intersect, and the half-monodromy phase increases only by gg0. 

Spin for the dumbbells may be treated in a way similar to that of the 
monodromy, by rotating the dumbbell about one of its ends, using a Wilson loop 
operator for that end to effect the transport. In this case, the path of the rotating 
end of the dumbbell links the stationary end, and there is a single intersection of 
the resulting Wilson loop with one of the Wilson lines in the dumbbell-anyon 
creation operator. This gives a phase identical to the (generic intersection-less) half- 
monodromy, exp ig@I. Thus the spin-parity of a single dumbbell, i.e., the change 
in phase of its wavefunction under a arc-rotation, is identical to the phase 
the wavefunction acquires under the exchange of adjacent dumbbells. This is the 
conventional spin-statistics relationship. 

The curious way that fractional statistics come out of this model may be under- 
stood by examining its continuum limit. This is a model containing two flavors of 
fermions coupled to two separate gauge fields, which are themselves coupled by a 
mixed Chern-Simons term. The dumbbell condition may be most straightforwardly 
achieved by simply setting the two fermion currents equal. To be more specific, let 
us consider a model of lattice fermions coupled to the Chern-Simons gauge fields 
with action 

S=~SCsfSdrC(ut(X)(i~-gAU(X)) 
.Y 

xa(x)+ii+(x*) 
( 
i&g&(x*) 

> > 
2(x*) -H,, (7.29) 

where the matter field Hamiltonian is given by 

H, = c d,(x) a+(x + p) P+‘u(X) + c 2,(x*) 2+(x* + p) $+*‘ii(x*) 
‘3 P .r*.u 

(7.30) 
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with the constraint that the total density of particles on the primary attice is f per 
site and the total density of particles on the dual lattice is also f per site. We regard 
(7.29) and (7.30) as lattice regularization” of a relativistic continuum field theory 
with action 

s cant = 
N 

~ddA+~i~.a*+~i~.ai+RV.~~*+~~.~gb . 
1 

(7.31) 

This may be rearranged by writing AZ = A, + d,, and jz = gj, f gj;, so that the 
action now becomes 

S cant = 
N 

f [A+dA+ -AmdApl+iA+ .j+ 

+~A-.j~+Sh.all,+diy-aS 
> 

(7.32) 

and we may complete the square to find 

s cant = 

(7.33) 

The gauge fields may now be integrated out, and the terms that are left over may 
be recognized as the expression for the linking number of two trajectories, written 
in terms of their currents [lo]. We now impose the dumbbell constraint, which 
amounts t6 jP = 0 and confines charges and tilde-charges into bound pairs. Given 
two such bound states, we see that, if their classical paths intertwine, this action has 
the effect of assigning an extra anyonic phase to the amplitude. Thus, the effect of 
the dumbbell constraint in this continuum limit of dumbbell Chern-Simons theory 
is to both confine the charges and to select out only one combination of the gauge 
fields as influencing the dynamics, recovering ordinary continuum Chern-Simons 
theory in a unique way. 

VIII. DISCUSSION 

We have presented an exact map of lattice Chern-Simons theory coupled to 
fermions onto anyons interacting via a Z, gauge field. This establishes that exact 

lo Here again we have inserted classical phases into the hopping amplitude in the Hamiltonian. We 
remind the reader that if we choose these classical phases to that n A for each plaquette is (- 1) the 
spectrum of each part of the Hamiltonian is that of two species of two-component relativistic fermions. 
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anyonization is possible, without the singularities and other problems that earlier 
plagued continuum formulations and, further, without the strong interactions that 
obscured the meaning of previous results. Although the lattice representation of the 
Chern-Simons term in our formalism appears to be non-local, in general (with a 
local continuum limit), we showed that it may always be chosen to be local and we 
presented a formula for the local, gauge invariant lattice representation of the 
Chern-Simons term which permits exact anyonization. This allows us to resolve the 
question of the origin of the statistics phase-it is shown that this phase may be 
regarded as coming from the half-intersection of the Wilson lines at their common 
base point. This formulation further makes it possible to regard the theory as a 
geometric theory, of a line bundle over the lattice. In addition, we have constructed 
anyonic field operators in an exotic and interesting version of lattice Chern-Simons 
theory, which sits on a lattice very naturally suited to Chern-Simons theory, and 
in which the framing of the braids is made explicit. 

Further, we have presented a rigorous proof of off-diagonal long-range order for 
a non-Cooper-pairing fermionic system, Chern-Simons electrodynamics on a lattice 
with bosonic statistics parameter. This connection with a well-understood system 
has allowed us to find a new numerical signal for superfluidity, in terms of a bound 
on the anyon correlation function as a function of q. It is particularly interesting 
numerically in that it relates the large volume effects (which are the ones of interest) 
to effects occurring at finite volume, which are more easily calculable numerically. 

It is yet possible that the proof of superfluidity can be extended beyond the case 
where the statistics parameter CI is an odd integer, by obtaining the appropriate 
bound on the fermion correlator. The advantages of the lattice Chern-Simons 
theory formulation are simply that a direct comparison of the two correlators is 
possible, for example, in the path integral representation, where differences in the 
Hilbert space do not appear and the two models of interest differ only by the value 
of the statistics parameter and filling fraction. Further, the path integral, by dis- 
cretizing time, can be easily made well defined. The difficulty with such an approach 
is that the phenomenon of superfluidity is not expected to be generic to anyons, but 
rather should occur only at specific values of the statistics parameter and filling 
fraction. Thus the correlator, as a function of these parameters need not be smooth 
at all. In fact it probably is not, which rules out, for example, a rigorous perturba- 
tion analysis. 

Given the geometrical nature of the lattice Chern-Simons term which we have 
discussed, it would be interesting to see whether features of the continuum theory 
such as duality [60, 613 of certain Bose-Chern-Simons systems or the perturbative 
arguments for anyon superconductivity [23-291 are operative on the lattice. 

APPENDIX: CALCULATION OF @,(x, y)-0,,(y,x) 

Consider two points x, y E LZ and two lattice curves C, and C,,, lengths N, and 
N,., beginning at the base point B, and with endpoints x and y, respectively: 
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C,(O) = C,(O) = B, C,(N,) =x. C,(N,) = y. We restrict our attention to curves C, 
and C, which do not wind around or intersect their respective vertex points, i.e., C, 
does not wind around or intersect y, and C, does not wind around or intersect x. 
Also, we assume that the vertical coordinates x2 and y, satisfy y, - x2 > 0. The case 
of nonzero winding number and arbitrary relative positions for x and y may be 
treated by a simple addition to the following argument. 

8,(x, y) is defined in terms of a contour sum over a function fi, itself defined, on 
lattice links, as f, = afg, where g is minus the Green’s function of the lattice 
Laplacian d. d: d -Jg(x) = -6(x). fi is the field profile of a vortex, satisfying 
difi(x) = 0, -dlfi(x) = 6(x), centered at x = 0. In terms off,, the definition of the 
function 8,(x, y) is 

~c(X, Y)=~T i dlif,(l- y), (A.11 
ICC 

i.e., a contour sum over C, starting at B and ending at x, of the vortex functionfi, 
whose center has been shifted to y. Note that this is directly analogous to the 
definition of g, fi, and 19 in the continuum. However, the reflection properties of 
fi are altered slightly. Instead off,(x) = -f.( -x), as in the continuum, we find 

(with no sum on i). 

fi(x) = -s;j-J -x) (A.21 

The curl property off, allows us to freely deform our contour, as long as we leave 
the endpoints fixed and do not change the winding number around the center of the 
vortex, which sits at y.” Therefore, deform the contour C, in the following way 
(assume B sits at radius R on the positive 1 axis, and at the end of the calculation 
we take R + co): The curve C, rises from B a vertical distance y,, where y, is the 
component of y in the 2 direction. The contour then travels in the -1 direction, 
directly toward the center of the vortex, at y, until it reaches the point y + f. 
Finally, the contour travels down to x in an almost arbitrary way, arbitrary save 
that its penultimate point is x + 1. We assign notation to the separate parts of C,: 
the rising portion of length y, we call R,, the middle, horizontal portion we call L,, 
and the final, almost arbitrary piece we call F,. We therefore have C, = 
R, u L, v F.x. The result is shown in Fig. A-l. 

We deform C, in a similar way. It begins, however, with an additional horizontal 
piece, moving a distance y, -x1 in the -1 direction (or x, - y, in the +I direc- 
tion). It then, in direct analogy with C,, rises a vertical distance x2 and moves a 
horizontal distance B - y, in the -1 direction, ending at the point x + 1. These 

” As in the continuum, we also must not allow the contour to go through the center of the vortex. 

Actually, the following argument must change slightly to handle the cases in which y =x + 2 or 

y = x + 22, where we will not be able to avoid hitting y with the contour that this construction gives. 

The cost of this error, however, is calculable and gives an extra 2n which is not there for proper 

contours. Thus the formula (AS) which we will eventually derive will be valid generally. 
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FIG. A-l. The summation contour which defines O,,(x, y). 

pieces we name Z.V, R,., and L,,, respectively. These pieces have been chosen so that 
contour summation over these parts of the curve may either be cancelled pairwise 
with terms from C,, or neglected because they are finite in length and sit infinitely 
far from the center of the vortexfi. We would like to do something similar with the 
last part of C,., i.e., use the skewed reflection property of fi (A.2). To do so, we 
attempt to use a reflected version of F,, denoted F,*, to connect the endpoint of LJ 
with x. We must reflect so that individual terms of the contour sum cancel exactly, 
i.e., taking account of the extra shift in the reflection property forfi. When we do 
so, we find that F.: does not begin at the endpoint of L,, nor does it end at x. 
Rather, its starting and ending points are both shifted from these points by the vec- 
tors ‘i + 2 and f - 2, respectively. It is therefore necessary to include two additional 
pieces, D, and D,, that remedy this by connecting the endpoint of L, to the 
startpoint of F.z and the endpoint of F’ to x. Thus we have C,. = Z? v R,. v LI, v 
D, v F,* v D,. The result is shown in Fig. A-2. 

Using these contours, we now may directly evaluate the two contour sums in 
0=,(x, y) - 8,(y, x). They have been arranged so that almost everything cancels, or 
may be neglected as R + co. Clearly, the sums over the pieces Z.V, R,, and R,, are 
negligible, because fi(x) is of order l/R for every one of the very finite number of 
terms in these contour sums. We have already seen that the contours L, and L, 
have been chosen so that their contributions precisely cancel, as have the contours 
F.y and F,*. What remains are the two terms D, and D2. The first is just -rr, 
precisely the continuum answer. This is true because, on reflecting D,, using the 
skewed reflection property (A.2), we actually arrive at precisely the closed contour 
sum defined by -d,‘f,(O), which is -2~ The sum over D,, however, is a 

’ f=x 
I B 

.% 
R, ‘Y 

X 
LY 

FIG. A-2. The summation contour which defines OC,(y, 5). 
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lattice artifact and is equal to -f2(y-x+1)-f,(y-x) or, when x#y, 
-(i)[fi(y-x+i)+fr(y-x)+fi(y-x+2)+f,(y-x)]. This function, which 
from the reflection property off. is an odd function of y - x, is denoted by ~(JJ - x). 
Thus we have 

&Jx, Y) - fLy(Y> x) = --n + 4(x - Y). (A.3) 

We now consider the case of more general curves, i.e., with a more general winding 
number around the respective centers of the vortices and with arbitrary positions 
for the points x and y. In general, windings add or subtract 27~ from the answer 
found above, 

~Cx(X> Y) - &T,bG xl = -7-c + 5(x - Y) + 2744c,, Y) - 4c,, xl), (A.4) 

where w(C, p) denotes the winding number of a curve C around a point p. But, in 
addition, the right-hand side of (A.4) is further modified when the sign of the 
relative height sgn(x, - y2) is reversed. The construction still gives a calculable 
answer; in fact, it gives the same answer, but one of the curves constructed will 
contain an extra, unintended winding, which has to be subtracted off to obtain the 
analog of (A.3) for this case. Thus, when x and y change places, (A.3) becomes 

and, in general, 

k(x, Y) - e,(Y, 4 = n+ ax - Y) (A.3’) 

e,(x9 Y) - e,(Y, -4 = w-4x2 - oh + ax- Y) + w4c,, Y) - w,, 4). (A.51 
We note here that the function 5 has appeared previously in the context of lattice 
angle deficits, in work by Luscher [32]. 

We wish to re-express this in terms of intersections between the curves them- 
selves. To do so, we note that the presence of the base point makes this difficult, 
inasmuch as the intersection number of the two curves may be changed without 
affecting the windings of the curves, as long as a compensating change is made in 
the way that the curves leave the basepoint. In the following, we shall redefine the 
contour sum in such a way that this extra freedom is nailed down. 

We impose the additional condition on all contours that they leave the basepoint 
vertically, rise until they are at the same vertical coordinate as the center of the 
vortex (as in R, or R,), and afterwards run in towards the vortex. The curves may 
do anything after that. This amounts to demanding that the curves leave from a 
base line at infinity on the f axis, at a vertical coordinate equal to that of their 
endpoints. Note that the curves C, and C, do not satisfy this condition, and 
therefore OcX(x, y) - 8&, x) as calculated above will differ by 271 from the formula 
that we are about to derive. 

With curves obeying the above condition, the case treated in the first section of 
this appendix corresponds to no intersections of the curves at all. We may create 
intersections by pushing the upper curve down so that it crosses the lower curve, 
and if we do not try to create windings, this curve will in fact cross a second time, 
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on its way back. These two intersections actually have an opposite handedness, and 
from this example we see that it is really the intersection number weighted by this 
handedness, or the signed intersection number, that we are interested in. The 
handedness of an intersection between two directed curves C and c’ is simply the 
sign of the cross product of their tangent vectors at the crossing. If the cross 
product points out of the page, then the sign of the intersection is positive, and if 
it points into the page, then the sign of the intersection is negative. It is this signed 
intersection number that keeps track of the difference between the winding numbers 
of C, around y and C,, around x, i.e., for curves restricted as above, 2740.4 C,, y) - 
o(C,., x)) = 2nv(C,, C,). Thus, we may rewrite the formula (AS) in terms of the 
signed intersection number as 

~,(-T Y) - ec,.b, -x) = sgn(x, - Y,)X + 5(x - Y) + 27dC,, Cl,). (‘4.6) 

This is the formula that we will find useful in the text. 
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