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Using the spectrum generating algebra method, we find the complete set ofexact eigenstates for the quantum damped harmonic 

oscillator. The states which diagonahze our quantum mechanical model Hamiltonian are the Lindblad-Nagel states which pro- 

vide an unitary irreducible representation of the SU( 1. 1 ) algebra. We derive an integral representation of the Lindblad-Nagel 

states in terms of SU ( I. I ) generalized coherent states, We discuss possible applications of this formula. 

Spectrum generating algebras (SGA) in quantum 

physics have for a long time been a simple and pow- 

erful tool in characterizing and describing the dy- 

namics of physical systems (for recent reviews of the 

subject see ref. [ 1 ] ). By SGA we mean an algebra 

with generators that can be used to replace the ca- 

nonical variables in the Hamiltonian, thus allowing 

for a purely algebraic derivation of its spectrum. In 

this approach, unitary irreducible representations of 

a given SGA provide the exact eigenstates of the 

Hamiltonian. 

In this Letter, we apply the SGA method to the 

quantum damped harmonic oscillator (QDHO). The 

model Hamiltonian we consider is the one intro- 

duced by Bateman [ 21 and Feshbach and Tikochin- 

sky [ 31 to analyse the classical and quantum prop- 

erties of the DHO. We shall show that this 

Hamiltonian has an SU( 1, 1 ) SGA and that its ei- 

genstates are the Lindblad-Nagel (LN) states [ 41. 

Our analysis thus provides an independent proof of 

the statement that dissipative quantum theories have 
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the non-compact group SU ( 1, 1) as a relevant sym- 

metry [ 5,6 1. On the space of the LN states the quan- 

tum mechanical Hamiltonian is a Hermitian 

operator. 

In this Letter, we shall also derive an integral rep- 

resentation of the LN states in terms of SU ( 1, 1 ) 

generalized coherent states [ 7 1. As a byproduct, we 

shall obtain an integral equation relating the LN 

states to the highest weight states of the standard 

representation of SU ( 1, 1 ). Since the representation 

we obtain is generic to Hamiltonians which can be 

expressed as a linear superposition of the Casimir 

operator and a non-compact generator of SU ( 1, I ), 

it is useful also to describe the eigenstates for quan- 

tum models defined on manifolds of constant neg- 

ative curvature [ 81. We shall report on this appli- 

cation in a separate paper. 

In order to provide a consistent Hamiltonian for- 

mulation of the QDHO, one needs at least two de- 

grees of freedom to describe the system [ 2-61. Our 

choice of the Hamiltonian for a QDHO with mass 

M. elastic constant k and friction coefficient 7 is [ 2,3] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

If= ip,p, +mR’xy+ & (pry--p,x) , 

with S’= (l/m)(k-y’/4m). The extra degree of 
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freedom described by (JJ, p,.) represents an enhanced 

harmonic oscillator [ 2,3 1. 

Introducing the annihilation operators a and h, 

a= (2mtiQ)-‘/7(mlnx+iP,) , 

h= (2mhQ)-“‘(mL$+ip,) , 

the Hamiltonian ( 1 ) becomes 

(2a) 

(lb) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H=hQ(ah++ha+) 

-tirj(b’-b+‘+a+‘-a’) , 

with r= y/2m. 

(3) 

In this realization the kinetic energy mixes the two 

degrees of freedom whereas the dissipative part is 

written in a separable form. 

One can easily recognize in eq. (3) the non-com- 

pact generator and the Casimir operator of the SU ( 1, 

1 ) algebra in the following two-mode realization. 

D, =~(~‘+~+2-_a’-_a+2) 

= $& [p’-p;-mW(x’-y’)] ) 

D2= $ (b+2-b2+a2-a+2) 

= - & (.vP,~-~~P,) , 

D3 = f (a+u+b+b+ 1) 

=4&j [P:+&+mW(X~+y2)] ) 

Dq=f(ah++a+b) 

= & (m.Qx.v+p.,p,~lm.Q) 

The commutation relations for the D, are 

[D,,D?]=-iD3, 

[D2, D31 =iD, , 

[b,D,l=i&, 

[D4,D,]=0, i=l,2,3, 

(da) 

(4b) 

(4c) 

(4d) 

(5a) 

(5b) 

(SC) 

(5d) 

while the Casimir operator C is related to D4 by 

C=D;-Df-Df=Df-+. (se) 

As a consequence of eqs. (4), (5), the Hamiltonian 

is rewritten as 

H=2fi(fID,-TDz). (6) 

In order to find explicit eigenstates of (6), it is con- 

venient to perform a unitary transformation Rnlz 

=exp( ;ixW), on the D, induced by the operator 

W= (1/2i)(ab+-a+b). As a result, the set of D, 

changes into a set of new operators k, defined by 

k, =R,&,D, Rx12 = t (ah+a+h+) , (7a) 

kz=Rz,2D2Rx,2= $ (a+h+-ah). (7b) 

k,~R,:rDIR,,z=t(N,+N~,+l), (7c) 

k4=R,;rD4R,,z=;(Nu-Nl,), (7d) 

with 

N,=a+a, N,t =h+h. (Tel 

In terms of the new operators k, the Hamiltonian (6 ) 

reads as 

H= H,, + H,,, = 2fdk, -  2W kz 

=tiQ(a+a-b+b)+iW (a+b+-ab). (8) 

A few remarks are now in order. Even if we set r= 0, 

eq. (8 ) describes a system with an energy spectrum 

not bounded from below. This is not surprising since 

we are dealing with a system in which dissipation 

causes a continuum energy exchange between the a 

and b degrees of freedom. A similar feature is shared 

by the dissipative Hamiltonian in therm0 field dy- 

namics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(TFD ) [ 6 1. Notice also that H is invariant 

under time reversal, since under this discrete sym- 

metryoperationa+a+, b-b+,andr-t-I’. Finally, 

the creation of a (6) quanta does not imply a change 

in the eigenvalue of Ho if the same number of b (a) 

quanta is simultaneously created. It is easy to con- 

vince oneself that the rotation induced by the op- 

erator W corresponds to a canonical transformation 

mapping ( 1 ) into 

H= & (p~-p;)+;t.Q2(x2-y2) 

+mpj. +yp,) . (9) 

To find the eigenstates of ( 8 ) we first diagonalize k3 

and k,. Choosing the standard basis 11, k) we have 
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k,Il,k)=kll,k), (loa) 

k,]I,k)=;(21+1)]I,k ) (lob) 

with k and 1 determined by 

n,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=k-l- 1 , (lla) 

n,,=k+/. (Ilb) 

In eqs. ( 1 1 ) n, (n,,) is the eigenvalue of N, (N),) and 

k is the eigenvalue of k3. The unitary irreducible rep- 

resentations of SU ( 1, 1) have been classified long 

ago by Bargmann [ 9 1. There are two discrete prin- 

cipal series - T,? and T, - which have 1 negative 

integer or half integer and k> -1 for T: while k<l 

for T,. Since n,, n,,>O one must use the T: series. 

The highest weight state is 1 I, - 1) = 11, 11 I ) corre- 

sponding to n,,=21+ 1 and n,,=O. The state with 

II,= n/,=0 is associated to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI= -  4. We shall denote 

this state with IO). 

prove that all the states 1 A) can be obtained as func- 

tionals of the state IO) belonging to the standard 

representation of SU ( 1, 1 ). From a formal point of 

view - here we consider a quantum mechanical sys- 

tem with only two degrees of freedom - the state ]A ) 

is strikingly similar to the “thermal vacuum” in TFD 

[ 61. On the space of LN states (8) is a Hermitian 

operator. 

To make explicit the functional relation between 

]A) and IO), we shall prove that a LN state can be 

written in terms of SU( 1, 1 ) generalized coherent 

states as 

Il,A)=S’(l,il) 7 dsexp(-isA)]s), 

-scI 
(15) 

with 

Is)~exp[fs(k+-k-)11/, III) 

To diagonalize ( 8 ), we need the eigenstates of the =exp(isk,)]l, Ill). (16) 

non-compact operators kl and k,. This problem has In eq. ( 16 ) ki = k, + ik2. The advantage of ( 15 ) lies 
been solved by Lindblad and Nagel [4] who found in the fact that it provides a rather simple integral 
a complete set of states labelled by a real number A representation of an arbitrary LN state in terms of 
satisfying the coherent state Is). For I= - i we obtain 

k211.A)=Al/,ii) ( (12a) 

k,~l.‘4)=~(2/+l)~l,A). (12b) 

The LN states can be expressed in terms of the vec- 

tors of the standard basis as 

l/l) -S’(i) 7 dsexp[is(k,-A)] 10) . (17) 

-0Z 

The state I ,4) due to ( 17) is understood as a state 

with neither vanishing or definite occupation num- 

bers of a and h but rather as a superposition of states 

IO(s) ) = exp ( isliz) IO) each having the same num- 

ber of a and h quanta. Notice that the unitary op- 

erator U(s) = exp ( iskz ) commutes with H. 

I/.A)=S(l,‘4) ,$,, (,f(k-1’ “‘z h+i+a)) 
I 

I 
dt 

X 
~, (1-p) l-l/l rim 

X exp[-ift in(E) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIl,k), (13) 

with S( 1. <4) a normalization coefficient determined 

by 

(l.A’~l,n)=s(A’-n). (14) 

The LN states ( 12) provide the set of exact eigen- 

states of (8). Notice that the eigenstates associated 

to I= - $ correspond to n,, - n, = 0 and define the zero 

mode space of H,(k,). We denote this infinite de- 

generate space by [ii). In the following, we shall 

In order to prove eq. ( 15 ), we recall that the SU ( 1. 

1 ) generalized coherent states are obtained by the 

action of a displacement operator on the highest 

weight vector of the standard basis 

Irl>=W~)IL Ill > 

=exp(r/k+---*k_)]I, Ill). (18) 

In eq. ( 18 ) k, =k, & ik, and ‘1 is a complex number. 

Introducing a new parameter < ([= tgh I r] I elv), use of 

the Baker-Campbell-Hausdorff formula allows us to 

rewrite (18) as [IO] 

li>=(l-lil’ )“ ‘ e xp (ik+)Il, III). (19) 
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Since 

expanding the exponential in ( 19) leads to 

lO=(l-1112)“’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I/ 2 

[“-“‘II, k). 

(20) 

(21) 

Eq. (2 1 ) allows one to write the generic LN state as 

(/.n)=s’(/.n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X j, &5exp[-~ln(~)]lf> , (22) 

where It) is a coherent state labelled by the real 

number t. Upon defining a new parameter s as 

s=2ln[ (1 +t)/( 1 -t)]‘l’ eq. (15) is easily 

obtained. 

It is easy to derive the extension of eq. (15) for 

the three classes of SU ( I, 1) unitary irreducible rep- 

resentations. As pointed out earlier, this formula 

shows itself very useful to describe the eigenstates of 

quantum Hamiltonian models with SU( 1, 1) sym- 

metry such as the ones defined as manifolds of con- 

stant negative curvature [ 81. From a more formal 

standpoint. the integral representation ( 15) could 

provide a tool to investigate the structure of the rais- 

ing and lowering operators for the LN generalized 

cigenvectors space [ 41. 

In this paper we reported on the exact diagonali- 

zation of the Hamiltonian (1) and derived the in- 

tegral representation ( 15 ) for the LN states. Unfor- 

tunately. the model Hamiltonian introduced in refs. 

[ 2,3 ] provides - in our opinion - only a formal de- 

scription of the QDHO since the separation of the 

degrees of freedom associated with the “physical” 

and the “image” oscillators is very difficult to achieve 

without very strong ad hoc assumptions [ 3,111. We 

believe that the approach of TFD [ 61 leads to a more 

transparent physical theory. In the context of TFD, 
the integral representation ( 15) provides a nice 

expression for the quantum mechanical analogue of 

the “thermal vacuum.” Work to further elucidate the 

structure of the zero mode space of H,, - as well as 

to determine the pertinent raising and lowering op- 

erators acting on this space - is now in progress. 
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