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Preface to the Second Edition

The field of topological materials has been developing very rapidly since the first

publication of this book. The experimental observation of the quantum anomalous

Hall effect in magnetically doped topological insulator thin films and the discovery

of the topological semimetals are two outstanding examples. Measurement of

Majorana fermions has been reported by several experimental groups. Besides

topological band structures have gone beyond quantum materials and are found in

materials such as the photonic crystals, metamaterials, and even mechanic systems.

Thus, the topological quantum phenomena and related materials now have become

an important and inalienable part in condensed matter physics and material

sciences.

In this edition, Chap. 11 on topological semimetals and several sections on

experimental observation of the quantum anomalous Hall effect, the quantum spin

Hall effect, and Majorana fermions are added. Also the first and last chapters have

been updated. Here I would like to thank Drs. Hai-Zhou Lu, Song-Bo Zhang, and

Jianhui Zhou for their contributions and helpful discussions on Weyl semimetals.

Hong Kong, China Shun-Qing Shen

March 2017
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Preface to the First Edition

Recent years, we have seen rapid emergence of topological insulators and super-

conductors. The field is an important advance of the well-developed band theory in

solids since its birth in 1920s. The band theory or Fermi liquid theory and Landau’s

theory of spontaneously broken symmetry are two themes for most collective

phenomena in many-body systems, such as semiconductors and superconductors.

Discovery of the integer and fractional quantum Hall effects in 1980s opens a new

window to explore the mystery of condensed matters: Topological order has to be

introduced to characterize a large class of quantum phenomena. Topological

insulator is a triumph of topological order in condensed matter physics.

The book grew out of a series of lectures I delivered in an international school on

“Topology in Quantum Matter” at Bangalore, India, in July 2011. The aim of this

book is to provide an introduction for a large family of topological insulators and

superconductors based on the solutions of the Dirac equation. I believe that the

Dirac equation is a key to the door of topological insulators. It is a line that could

thread all relevant topological phases from one to three dimensions, and from

insulators to superconductors or superfluids. This idea actually defines the scope of

this book on topological insulators. For this reason, a lot of topics in topological

insulators are actually not covered in this book, for example, the interacting systems

and topological field theory. Also I have no ambition to review rapid developments

of the whole field and consequently no intention to introduce all topics in this

introductory book.

I would like to express my gratitude to my current and former group members,

and various parts of the manuscript benefited from the contributions of Rui-Lin

Chu, Huai-Ming Guo, Jian Li, Hai-Zhou Lu, Jie Lu, Wen-Yu Shan, Yan-Yang

Zhang, An Zhao, Yuan-Yuan Zhao, Rui Yu, and Bin Zhou. Especially, I would like

to thank Hai-Zhou Lu for critical reading the manuscript and replotting all figures.

I benefited from numerous discussions and collaborations with Qian Niu,

vii



Jainendra K. Jain, Jun-Ren Shi, Zhong Fang, and Xin Wang on the relevant topics.

I am grateful for the support and suggestions from Lu Yu while writing this book.

Some of the results in this book were obtained in my research projects funded by

Research Grants Council of Hong Kong.

Hong Kong, China Shun-Qing Shen

June 2012
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Chapter 1

Introduction

Abstract The discovery of topological insulators and superconductors is an impor-

tant advance in condensed matter physics. Topological phases reflect global prop-

erties of the quantum states in materials, and the boundary states are characteristic

of the materials. Such phases constitute a new branch in condensed matter physics.

Here a historic development is briefly introduced, and the known family of phases

in condensed matter are summarized.

1.1 From the Hall Effect to the Quantum Spin Hall Effect

In 1879, Edwin H. Hall observed an effect that now bears his name; he measured

the voltage that arises from the deflected motion of charged particles in solids under

externally applied electric and magnetic fields [1]. Consider a two-dimensional sam-

ple subjected to a perpendicular magnetic field B. Charged particles passing through

the sample are deflected by the Lorentz force and accumulate near the boundary.

As a result, the charge accumulation along the boundary produces an electric field

E. When electric and magnetic forces are balanced, the Lorentz force on a moving

charged particle is zero,

F = q(E + v × B) = 0, (1.1)

where v is the velocity of the particle and q is the charge of particle. The voltage

difference between the two boundaries is VH = EW (W is the width of the sample)

and the electric current through the sample is I = qρevW (ρe is the density of the

charge carriers). The ratio of the voltage to the electric current is known as the Hall

resistance

RH =
VH

I
=

B

qρe

, (1.2)
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2 1 Introduction

which is linear in the magnetic field B. In practice, the Hall effect is used to measure

the sign of charge carriers q, i.e., the particle-like or hole-like charge carrier, and the

density of charge carriers ρe in solids. It can be also used to measure the magnetic

field.

In the year following his discovery, Hall measured the resistances in ferromagnetic

as well as paramagnetic metals under various magnetic fields, and observed that it

could have an additional contribution other than the term linear in the magnetic field

[2]. That contribution can depend on the magnetization M in a ferromagnetic metal,

and hence the Hall effect can persist even in the absence of an external magnetic

field. An empirical relation describes this effect:

RH = RO B + RA M, (1.3)

which has been applied to many materials over a broad range of values of the external

field. The second term, representing the contribution from the magnetization of M ,

cannot be simply understood as a result of the Lorentz force on a charged particle.

It has taken almost one century to explore the physical origin, probably because this

effect involves the topology of the band structure in solids, which was not formulated

until 1980s. In 1954, Karplus and Luttinger [3] proposed a microscopic theory and

found that electrons acquired an additional group velocity when an external electric

field is applied to a solid. The anomalous velocity is perpendicular to the electric

field, and contributes to the Hall conductance. It is related to the change in the phase

of the Bloch wave function when an electric field forces the wave function to evolve

in momentum space of the crystal [4, 5].

Generally speaking, the anomalous Hall effect can have either an extrinsic origin

arising from the disorder-related spin-dependent scattering of the charge carriers, or

an intrinsic origin because of the spin-dependent band structure of the conduction

electrons. The latter can be expressed in terms of the Berry phase in the momentum

space [6]. This effect originates from the coupling of the electron’s orbital motion to

its spin, which is a relativistic quantum mechanical effect. A spin-orbit force or spin

transverse force can be used to understand the spin-dependent scattering by either

impurities or the band structure. When an electron moves in an external electric

field, the electron experiences a transverse force, which is proportional to the spin

current of the electron rather than the charge current as for the Lorentz force [7]. As

a result, spin-up electrons are deflected to one direction while spin-down electrons

are deflected in the opposite direction. In a ferromagnetic metal, the magnetization

creates an imbalance in the population between spin-up and spin-down electrons that

consequently leads to the anomalous Hall effect.

Although the Hall resistance vanishes in the absence of an external magnetic field

and magnetization in a paramagnetic metal, the spin-dependent deflection of elec-

trons in solids can still lead to an observable effect, i.e., the spin Hall effect. The

spin version of the Hall effect was first proposed by Russian physicists Dyakonov

and Perel in 1971 [8, 9]. It yields a spin accumulation on the lateral surfaces of

a current-carrying sample, the spin directions being opposite along the two oppo-

site boundaries. When the current is reversed, the spin orientation is also reversed.
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Initially, theorists argued that the spin accumulation was caused through asymmet-

ric scattering of the spin-up and spin-down electrons within the impurity potentials,

hence termed the extrinsic spin Hall effect [10]. In 2003, two independent groups

demonstrated that the spin-orbit coupling in the electron band structure can produce

a transverse spin current even without impurity scattering, hence called the intrin-

sic spin Hall effect [11, 12]. In the quantum Hall regime, the competition between

Zeeman splitting and spin-orbit coupling leads to the resonant spin Hall effect, in

which a small current induces a finite spin current and spin polarization [13]. The

spin Hall effect has been observed experimentally in a GaAs and InGaAs thin film

[14] and in the spin light-emitting diode of a p-n junction [15].

The discovery of the integer quantum Hall effect opened a new phase in the study

of the various forms of the Hall effect. In 1980, von Klitzing, Dorda, and Pepper

discovered experimentally that, in a two-dimensional electron gas produced at a

semiconductor hetero-junction subjected to a strong magnetic field, the longitudinal

conductance vanishes while quantum plateaus appear in the Hall conductance at

values νe2/h [16]. The prefactor is an integer (ν = 1, 2, . . .), known as the filling

factor. The quantum Hall effect is a quantum mechanical version of the Hall effect in

two dimensions. This effect is now very well understood, and can be simply explained

in terms of the single-particle orbitals of an electron in a magnetic field [17]. It is

known that the motion of a charged particle in a uniform magnetic field is equivalent to

that of a simple harmonic oscillator in quantum mechanics, in which the energy levels

are quantized with energy (n+
1
2
)�ωc, andωc = eB/m is the cyclotron frequency. The

energy levels, called Landau levels, are highly degenerate. When one Landau level is

fully filled, the filling factor is ν = 1 and the corresponding Hall conductance is e2/h.

It is realized now that the integer ν is actually a topological invariant, i.e, Thouless-

Kohmoto-Nightingale-Njis (TKNN) invariant, that is insensitive to the geometry of

the system and the interaction of electrons [18].

For clarity, physicists like to use a semi-classical picture to explain the quantization

of the Hall conductance. For a charged particle in a uniform magnetic field, the

particle cycles rapidly around the magnetic flux because of the Lorentz force. The

cyclotron radius is given by the magnetic field Rn =

√

�

eB
(2n + 1). When the particle

is close to the boundary, the particle bounces off the rigid boundary, and thus skips

forward along the boundary. As a result, it forms a conducting channel called edge

state (see Fig. 1.1). The group velocity of the particle in the bulk is much slower than

the cyclotron velocity, and hence the particles in the bulk are pinned or localized by

impurities or disorders. However, the rapid-moving particles along the edge channel

are not affected by the impurities or disorders and thus form a perfect one-dimensional

conducting channel with a quantum conductance e2/h. Because the Landau levels

are discrete, each Landau level will generate one edge channel. Consequently, the

number of filled Landau levels, i.e., the filling factor, determines the quantized Hall

conductance. Thus the key feature of the quantum Hall effect is that all electrons

in the bulk are localized, whereas the electrons near the edge form a series of edge

conducting channels [19], which is characteristic of a topological phase.
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Fig. 1.1 Schematic of the formation of the chiral edge channel in the quantum Hall effect under

the Lorentz force on charge carriers. In the quantum anomalous and spin Hall effects, the driving

force is replaced by the spin transverse force

In 1982, Tsui, Stormer, and Gosard observed that, in a sample with higher mobility,

the quantum plateaus appear at filling factors ν with rational fractions (ν =
1
3
,

2
3
, 1

5
, 2

5
, 3

5
, 12

5
, · · · ). Known as the fractional quantum Hall effect [20], this effect

relies fundamentally on the electron–electron interaction as well as the Landau level

quantization. Laughlin proposed that the ν = 1/3 state is a new type of many-

body condensate, which can be described by the Laughlin wave function [21]. The

quasi-particles in the condensate carry the fractional charge e/3 because of their

strong Coulomb interaction. The observed Hall conductance plateaus arise from the

localization of the fractionally charged quasi-particles in the condensate. Thus, the

fractional quantum Hall effect can be regarded as the integer quantum Hall effect of

these quasi-particles. In 1988, Jainendra K. Jain proposed that the quasi-particles,

called composite fermions, can be regarded a combination of an electron charge and

quantum magnetic flux [22]. This picture is applicable to all the quantum plateaus

observed in the fractional quantum Hall effect, which is now well-accepted in terms

of a topological quantum phase of composite fermions that breaks time-reversal

symmetry.

In 1988, Duncan Haldane proposed that the integer quantum Hall effect can be

realized in a lattice system of spinless electrons in a periodic magnetic flux [23].

Although the total magnetic flux is zero, electrons are driven to form a conducting

edge channel by the periodic magnetic flux. As there is no pure magnetic field, the

quantum Hall conductance originates from the electron band structure for the lattice

not from the discrete Landau levels with a strong magnetic field. Thus this is a

version of the quantized anomalous Hall effect in the absence of an external field or

Landau levels. Furthermore, it was found that the role of the periodic magnetic flux

can be replaced by spin-orbit coupling. The quantized anomalous Hall effect can be

realized in a ferromagnetic insulator with strong spin-orbit coupling. The anomalous

Hall effect persists in an insulating regime. The anomalous Hall conductance can be

expressed in terms of the integral of the Berry curvature over the momentum space

or the Chern number for fully-filled bands [24]. The Haldane model produces a non-

zero Chern numbers for an electron band without the presence of a magnetic field

or Landau levels. According to the bulk-edge correspondence, the quantized Hall

conductance originates from the dissipationless transport of topologically protected

edge states. There have been extensive investigations on this topic [25–29]. One of

the promising schemes is based on a magnetically doped topological insulator thin
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film, where an interplay between the strong spin-orbit coupling in the surface states

and magnetic exchange coupling gives rise to a band gap opening to form chiral edge

states [27]. In 2013, the experimental observation of the quantum anomalous Hall

effect was reported in Cr-doped (Bi,Sb)2Te3 ultra thin film by a group led by Xue in

Beijing [30].

The quantum spin Hall effect is a quantum version of the spin Hall effect or

a spin version of the quantum Hall effect, and can be regarded as a combination

of the quantum anomalous Hall effects for spin-up and spin-down electrons with

opposite chirality. Overall, it results in no charge Hall conductance, but a non-zero

spin-Hall conductance. In 2005, Kane and Mele generalized the Haldane model to

a graphene lattice of spin- 1
2

electrons with spin-orbit coupling [31]. Strong spin-

orbit coupling is introduced to replace the periodic magnetic flux in the Haldane

model. This interaction looks like a spin-dependent magnetic field to electron spins.

The different electron spins experience opposite spin transverse forces [7]. As a

result, a bilayer spin-dependent Haldane model can be realized in a spin- 1
2

electron

system with spin-orbit coupling, which exhibits the quantum spin Hall effect. When

spin-dependent edge states exist around the boundary of the system, electrons with

different spins move in opposite directions, and form a pair of helical edge states.

Time-reversal symmetry is still preserved, and the edge states are robust against

impurities or disorders because the electron backscattering in the two edge channels

is prohibited because of the symmetry. However, the spin-orbit coupling in graphene

is minute. In 2006 Bernevig, Hughes and Zhang proposed that the quantum spin

Hall effect can be realized in the CdTe/HgTe/CdTe sandwiched quantum well [32].

HgTe is a material with an inverted band structure, and CdTe has a normal band

structure. Tuning the thickness of HgTe layer leads to band inversion in the quantum

well, which exhibits a topological phase transition. This prediction was confirmed

experimentally by Konig et al. 1 year later [33]. The stability of the quantum spin Hall

effect was studied by several groups [34–37]. The other confirmed quantum spin Hall

system is an inverted electron–hole bilayer engineered from indium arsenide–gallium

antimonide (InAs/GaSb) semiconductors [38]. A quantized conductance associated

with helical edge states was first measured for the quantum transport of helical edge

states in a π shape device of an InAs/GaSb quantum well [39]. One of its key features

is that the quantum conductance is accompanied with the opening of a mobility gap

in the sample, strongly indicating that impurities localize the bulk electrons.

A system exhibiting the quantum spin Hall effect is also known as a two-

dimensional topological insulator. A flow chart from the ordinary Hall effect to

the quantum spin Hall effect is presented in Fig. 1.2.
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Fig. 1.2 Evolution from the ordinary Hall effect to the quantum spin Hall effect or two-dimensional

topological insulator. Here B signifies the strength of the magnetic field, and M the magnetization

for the ferromagnet. The year indicates when the effect was discovered experimentally. σH is the

Hall conductance and σS is the spin Hall conductance

1.2 Topological Insulators as a Generalization

of the Quantum Spin Hall Systems

There is no Hall effect in three dimensions. However, the generalization of the quan-

tum spin Hall effect to three dimensions is one of the milestones in the develop-

ment of topological insulators [40–43]. It is not a simple generalization from two

dimensions to three dimensions of the transverse transport of an electron charge

or spin, or the Hall effect. Instead, bound states evolve near the system boundary

based on the intrinsic band structure; the one-dimensional helical edge states in the

two-dimensional quantum spin Hall system can evolve into two-dimensional surface

states surrounding the three-dimensional topological insulator. A topological insu-

lator is a material in a state of quantum matter that behaves as an insulator in its

interior but as a metal on its boundary. In the bulk of a topological insulator, the elec-

tronic band structure resembles an ordinary insulator, with separated conduction and

valence bands. Near the boundary, the surface states within the bulk energy gap allow

electron conduction. Electron spins in these states are locked to their momenta. A

topological insulator preserves the time-reversal symmetry. Because of the Kramers

degeneracy, for a given energy, there always exists a pair of states that have oppo-

site spins and momenta; the backscattering between these states is forbidden. These

states are characterized by a topological index. Kane and Mele proposed a Z2 index

to classify materials with time-reversal invariance as strong and weak topological

insulators [44]. For a weak topological insulator, the resultant surface states are not

robust against disorder or impurities, although its physical properties are very similar

to those of two-dimensional states. The relationship of a strong topological insulator

with the quantum spin Hall system is more subtle. It is possible to classify conven-

tional and topological insulators by time-reversal symmetry. The surface states in a

strong topological insulator is protected by time-reversal symmetry.

Bi1−x Sbx was the first candidate as a three-dimensional topological insulator

predicted [45] and verified experimentally [46] by Fu and Kane. Zhang et al. [47]

and Xia et al. [48] pointed out that Bi2Te3 and Bi2Se3 are topological insulators with
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a single Dirac cone of surface states. Angle-resolved photoemission spectroscopy

data showed clearly the existence of a single Dirac cone in Bi2Se3 [48] and Bi2Te3

[49]. Electrons in the surface states possess a quantum spin texture, and the electron

momenta are strongly coupled with the electron spins. These can produce many exotic

magneto-electric properties. Qi et al. [50] proposed an unconventional magneto-

electric effect for the surface states, in which electric and magnetic fields are coupled

together and are governed by the so-called axion equation instead of by Maxwell’s

equations. This is now regarded as one of the characteristic features of topological

insulators [51, 52].

Reducing the system to one dimension brings some new insights with respect to

topological properties. The boundary of one-dimensional system is simply an end

point. A one-dimensional topological insulator is an insulator with two end states

Fig. 1.3 The boundary states and their energy dispersions of topological materials. A d-dimensional

material has a (d − 1)-dimensional boundary
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of zero energy. The end states in one dimension have been studied since the 1980s.

Polyacetylene is a one-dimensional organic material with so-called A and B phases.

The domain walls connecting the A and B phase induce rigid solitons with zero

energy, and are the charge carriers for this organic conductor [53]. Although the

soliton and anti-soliton are topological excitations in polyacetylene, the A and B

phases are actually topologically distinct in an open boundary condition; one phase

possesses two end states of zero energy while the other does not, although both

phases open up an energy gap because of the Peierls instability or dimerization of

the lattice. This is actually the simplest topological insulator protected by chiral

symmetry, which is a combination of the time-reversal symmetry and particle-hole

symmetry.

A d-dimensional topological insulator has (d − 1)-dimensional boundary states.

For a summary, see Fig. 1.3.

1.3 Beyond Band Insulators: Disorder and Interaction

Topological phases exist in disordered and interacting systems. Generally a topolog-

ical phase is robust against impurities or interactions that do not break time-reversal

symmetry. The edge or surface states are protected by a band gap between the con-

duction and valence bands. It has even been demonstrated that the topological phase

actually can be induced by either strong disorder or interaction.

For example, a topological Anderson insulator is a topological phase, in which

impurities localize the bulk electrons but the edge or surface boundary remains con-

ducting because of the presence of helical edge states occupied by surface electrons;

this picture is very close to the picture of the quantum Hall effect. In the presence

of disorder, there exists a metal-insulator transition in three-dimensional systems,

or in two-dimensional systems with spin-orbit coupling. Electrons in low dimen-

sional systems are always strongly localized. Li et al. discovered that, in the effective

model for a HgTe/CdTe quantum well, impurities can generate the quantum spin

Hall effect even starting from a normal band structure. They predicted such wells

were a possible realization of the topological Anderson insulator [54]. This phase

has been studied numerically and analytically [55, 56]. The phase was also general-

ized to three dimensions [57]. The edge or surface states in a topological Anderson

insulator are protected by a mobility gap instead of a band gap for topological band

insulators [58].

The electron–electron interaction provides another route to realize a topological

phase. SmB6 is a type of heavy fermion material that was first discovered 40 years ago

[59]. In the material, the f -electrons from the outer shell of Sm are highly correlated

because of their strong Coulomb interactions. The highly renormalized f -electrons

hybridize with the conduction electrons to form an excitation gap in the millivolt

range. Dzero et al. [60] pointed out that the position of the hybridized f -electrons at

the bottom of the two bands determines a topologically nontrivial insulating phase

that forms a topological Kondo insulator. The existence of surface states solved a
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long-standing puzzle in SmB6 in that it becomes conducting at very low temperatures.

Several independent groups [61–63] reported experimental results that support the

formation of the new phase.

A Mott insulator is a class of insulating materials with a strong electron correlation.

Raghu et al. found that the strong Hubbard interaction can turn a semimetal into a

quantum spin Hall phase in an extended Hubbard model at half filling. Such phases

are called topological Mott insulators [64]. Usually the electron correlation and

spin-orbit coupling are expected in compounds of 5d transition metals. Pesin and

Balents further pointed out that, taking Ir-based pyrochlores as an example, the Mott

correlation enhances the effect of spin-orbit coupling, which leads to the existence

of a topological insulating phase. The phase can be regarded as a quantum spin

liquid state, and neutral fermionic spin-1/2 spinons are deconfined [65]. It was also

suggested that some Heusler compounds such as GdBiPt can be antiferromagnetic

topological insulators [66].

1.4 Topological Phases in Superconductors and Superfluids

At low temperatures, liquid helium 3He has two different superfluid phases, called the

A and B phases. The 3He atoms are neutrally charged fermions that can be described

by the conventional Fermi liquid theory, just like electrons in a metal. Osheroff, Lee,

and Richardson [67] studied the pressurization curve of a mixture of liquid and solid
3He. They observed two reproducible anomalies, which indicate that the liquid phase

existing between 2.0 and 2.6 mK is the A phase, and that below 2.0 mK is the B

phase. The normal-to-A phase transition at TA ∼ 2.6 mK is of the second-order

and the A-B phase transition at TB ∼ 2.0 mK is of the first-order. The theory of

superconductivity for electrons in spin-triplet states was first developed by Balian

and Werthamer in 1963 [68]. They observed that all Cooper pairs are in the p-wave

pairing (l = 1) and spin-triplet states; this mechanism explains superfluidity in the

B phase. The pairing symmetry determines the topology of the band structure of

quasi-particles. The A phase is topologically different from the B phase; the pairs

form only in the state of Sz = 1 and/or Sz = −1, i.e., the so-called equal spin pairing

state or Anderson-Brinkman-Morel state. This conclusion was first drawn from an

analysis of spatial profiles from the nuclear magnetic resonance experiment [69].

The insights gained from the study of superfluid phase of liquid 3He have been

widely applied in various fields from particle physics and cosmology to condensed

matter physics [70]. In a spinless p-wave pairing superconductor, there are weak

and strong coupling phases that are characterized by different topological invariants.

The weak coupling phase is topologically non-trivial and can have chiral edge states

around the boundary of the system, very similar to those occurring in the quantum

Hall effect [71]. After the discovery of the fractional quantum Hall effect, the weak

coupling state was found to have a pairing wave function that is asymptotically

the same as in the Moore-Read quantum Hall state. Thus, topological order was

introduced to characterize the superfluid phases. The topological aspects of these
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two phases have been discussed in detail in a book by Volovik [70]. Some concepts

and topological invariants can be applied explicitly to topological insulators in the

framework of a single particle wave function in the band theory. For example, band

inversion can accompany a topological quantum phase transition, as in the quantum

spin Hall effect.

Now, we realize that the Bogoliubov-de Gennes equation for superconductors and

superfluids has a mathematical structure very similar/identical to the Dirac equation

for topological insulators. Like band gaps in insulators, the quasi-particle band struc-

ture in superconductors and superfluids can also have a non-zero gap. The symme-

try classification of non-interacting Hamiltonians emerged in the context of random

matrix theory long before the discovery of topological insulators. Schnyder et al. [72]

systematically studied the topological phases of insulators and superconductors, and

provided an exhaustive classification of topological insulators and superconductors

for non-interacting systems of fermions. The Bogoliubov-de Gennes equation has

particle-hole symmetry, and the Dirac equation has time-reversal symmetry. The sim-

ilarity between the particle-hole symmetry and the time-reversal symmetry makes it

possible to study topological insulators and superconductors in a single framework.

The discovery of the topological insulators stimulated a re-examination of the

properties of spin-triplet superconductors, that are candidates for topological super-

conductors. Among several classes of spin triplet superconductors, Sr2RuO4 is

thought to be a p-wave-pairing superconductor that is similar to the A phase in

superfluid liquid 3He [73, 74]. Initial data from tunneling spectroscopy measure-

ments suggest the possible existence of chiral edge states in Sr2RuO4 [75]. The

Cu-doped topological insulator Cux Bi2Se3, which becomes superconducting below

Tc = 3.8 K [76], might also be a topological superconductor [77].

Fu and Kane’s proposal initiated a “gold rush” in Majorana fermion searches

[78]; they found that, as a superconducting proximity effect, the interface of the

surface states of topological insulators and an s-wave superconductor resembles a

spinless p+ip superconductor. This actually indicates a way to achieve topological

superconductivity in a conventional s-wave superconductor instead of p-wave super-

conductor as expected before. A feature of topological superconductors is that the

quasi-particles of end states and edge states have a peculiar property: antiparticle and

particle are identical, and hence are Majorana fermions. Mathematically, the parti-

cle’s creation operator is equal to its annihilation operator, γ†
= γ. There have been

many schemes to engineer and detect Majorana fermions in quantum Hall systems

and p-wave superconductors [79–81]. One promising scheme is a semiconductor

with strong spin-orbit coupling connected to an s-wave superconductor [82, 83]. In

a two-dimensional electron gas, Rashba spin-orbit coupling separates the parabolic

bands for two spin-dependent projections, and the Zeeman field opens an energy

gap near the crossing point. When the chemical potential falls within the gap, the

penetrating Cooper pairs from the s-wave superconductor in this region behave like

those of spinless p-wave superconductors. This picture persists in one-dimensional

confined nanowires, which have become the experimental prototype in the hunt for

Majorana fermions. While more and more experiments provide signatures of the
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existence of Majorana fermions [84–87], it is still believed that the experimental

data have not yet constituted a definitive proof, and “the race for the unambiguous

detection of the particle continues” [88].

1.5 Topological Dirac and Weyl Semimetals

Topological phases of matter are not just limited to the systems with energy gaps.

The discovery of topological Dirac and Weyl semimetals illustrates that the novel

quantum phases of matter can exist even if band gaps are closed. In topological Dirac

and Weyl semimetals the conduction and valence bands touch at a finite number of

points, which are robust and protected by uniaxial rotation symmetries in crystal

lattices. The energy dispersion of the quasiparticles near the points are linear, and can

be described as massless relativistic particles as proposed by Hermann Weyl in 1929,

who found that the massless Dirac equations can describe relativistic fermions with a

definite handedness or chirality. Weyl’s equation was intended to model elementary

particles, but over 80 years no candidate of Weyl fermions have ever been observed

in high-energy experiment. In 1937 Conyers Herring [89] proposed that the Weyl

fermions can be realized in the electric band structure in solids. The energy bands

can cross at points or nodes which are protected by a high crystal symmetry. The

low-energy excitations near the points can be described by the Weyl equations. Weyl

fermions have left or right-handedness or chirality. The chiral symmetry of Weyl

fermions are broken in the presence of both electric field and magnetic field, i.e.,

chiral anomaly as a purely quantum mechanical effect. In 1983 Ninomiya and Nielsen

[90] suggested that the chiral anomaly of Weyl fermions could be observable in solids

as a magnetoresistivity in materials may reveal its signatures. After the discovery of

topological insulators, initial proposals for Weyl semimetals included Bi1−xSbx at a

critical point between the normal and topological insulators [91], pyrochlore iridates

[92], and HgCr2Se13 [93], but there is no experimental evidence to support them yet.

Cd3As2 [94] and Na3Bi [95] were predicted to be Dirac semimetals, and confirmed

to be so by photoemission and transport experiments [96, 97]. The Fermi arcs of the

surface states which are characteristic of the topological phases of matter have been

observed experimentally. TaAs [98, 99] is a stoichiometric and non-centrosymmetric

material and confirmed to be a topological Weyl semimetal with the Fermi arcs on

the surface [100, 101]. It is a representative of the transition metal monopnictide

or TX family where T = Ta/Nb and X = As/P. There are twelves pairs of Weyl

nodes near the Fermi surface. As a possible consequence of chiral anomaly of Weyl

fermions, negative magnetoresistance has been extensively reported in a series of

Dirac and Weyl semimetals at finite temperatures [102–105].
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1.6 Dirac Equation and Topological Insulators

The Dirac equation is a relativistic quantum mechanical equation describing an ele-

mentary spin- 1
2

particle [106, 107]. It enters the field of topological insulators for

two ways. First, a large class of topological insulators is characterized by strong

spin-orbit coupling, which arises in explicit form from the Dirac equation in the

non-relativistic limit [108]. It enables spin, momentum, and the Coulomb or external

electric fields to couple together. As a result, the band structures in some materials

can become topologically non-trivial. This provides a physical source from which

topological insulators form. Second, the minimal Hamiltonians for the quantum spin

Hall effect and the three-dimensional topological insulators have a mathematical

structure identical to the Dirac equation [109]

H = ve f f p · α +
(

mv2
e f f − Bp2

)

β, (1.4)

where α and β are the Dirac matrices, ve f f is the effective velocity, and 2mv2
e f f the

energy band gap. In these effective models, the equation is employed to describe the

coupling between electrons in the conduction and valence bands in semiconductors,

not the electrons and positions in Dirac’s theory. The positive and negative energy

spectra are the respective energies for the electrons and holes in the semiconductors,

and not those in high energy physics. The conventional Dirac equation is time-reversal

invariant. For a system with time-reversal symmetry, an effective Hamiltonian that

describes electrons near the Fermi level can be derived from the theory of invariants

or the k · p theory. As a consequence of the k · p expansion of the band structure,

some effective continuous models have a mathematical structure identical to the

Dirac equation. The equation can also be obtained from the effective model near the

critical point of the transition for a topological quantum phase.

Generally speaking, each topological insulator or superconductor is governed by

one Dirac equation. In this book, we start with the Dirac equation to provide a simple

but unified description for a large family of topological insulators and superconduc-

tors. A series of solvable differential equations are presented to demonstrate the

existence of the end, edge, and surface states in topological matters.

1.7 Topological Insulators and Landau Theory of Phase

Transition

Topological insulators and superconductors go beyond the Landau theory of phase

transitions, and constitute a new branch of condensed matter physics. There is no

continuous order parameter to describe the topological quantum phase. Instead we

have topological invariants, which characterize the phases [110]. Briefly speaking,

a quantum system is an eigenvalue problem; the solutions of the problem are the

eigenvalues and eigenvectors (also called eigenstates). The Landau theory actually
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focuses on the eigenvalue problem; by introducing an order parameter for a quantum

phase, Landau proposed that the free energy of a quantum system can be expanded

in terms of the order parameter, and the variational principle is used to determine

the general formalism of the free energy of quantum phase. A non-zero value for the

order parameter represents the occurrence of the quantum phase transition. Usually

the order parameter is related to the system symmetry. For example, there exists

a SU(2) symmetry breaking in a phase transition from a paramagnetic phase to a

ferromagnetic phase, and a U(1) symmetry breaking in a phase transition from a

metallic phase to a superconducting phase.

The other aspect of the eigensystem is the eigenstates; the eigenstates themselves

determine physical properties of the system, for example, the transport properties.

Topological invariants of the band structure reflect bulk properties of the quantum

system different from the order parameters in Landau theory of phase transitions.

There is no symmetry breaking in topological quantum phase transition while the

topological invariant changes. For example, the spin-orbit coupling can lead to a

band inversion of the conduction and valence bands in a topological insulator. The

Z2 index changes from 0 to 1 while the time-reversal symmetry is not broken. The

topological invariants are calculated from the eigenstates of the system, not from

the free energy or the energy dispersion.

1.8 Summary

To summarize, there are several streams of research in the field.

1. The Hall effect: the integer and fractional quantum Hall effects (1980, 1982),

the quantum anomalous Hall effect (2013), the quantum spin Hall effect (2007,

2011).

2. Topological insulators: one-dimensional polyacetylene (1980s); the two-

dimensional HgTe/CdTe quantum well (2007) and the InAs/GaSb quantum well

(2011); the three-dimensional Bi1−x Sbx (2008), Bi2Te3 (2009), Bi2Se3 (2009),

and Bi2Te2Se (2010).

3. Topological superconductors: superfluid A and B phases in liquid 3He (1972),

and semiconductor nanowires coupled to s-wave superconductors (2012), . . ..

4. Topological Dirac and/or Weyl semimetals: graphene as two-dimensional Dirac

semimetal, Dirac semimetals Cd2Sb3, Weyl semimetals TaAs, . . ..

5. Beyond electronic materials: topological photonic crystals, metamaterials, . . ..

In 2016, Nobel prize in physics was divided, one half awarded to David J. Thou-

less, the other half jointly to F. Duncan M. Haldane and J. Michael Kosterlitz “for

theoretical discoveries of topological phase transition and topological phases of mat-

ter”. This is the third Nobel prize in physics related to the quantum Hall effect. It

is believed that the prediction and discovery of topological insulators deserve one

more Nobel prize in the future.
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1.9 Further Reading

Introductory materials:

• J.E. Moore, The birth of topological insulators. Nature (London) 464, 194 (2010).

• X.L. Qi, S.C. Zhang, The quantum spin Hall effect and topological insulators.

Phys. Today 63, 33 (2010).

Overview:

• M.Z. Hasan, C.L, Kane, Topological Insulators. Rev. Modern Phys. 82, 3045

(2010).

• X.L. Qi, S.C. Zhang, Topological Insulators and superconductors. Rev. Modern

Phys. 83, 1057 (2011).

• X.G. Wen, Quantum Field Theory of Many-body Systems: From the Origin of

Sound to an Origin of Light and Electrons, Oxford Graduate Texts (2007).
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Chapter 2

Starting from the Dirac Equation

Abstract The Dirac equation is the key to understanding topological insulators

and superconductors. A quadratic correction to the equation makes it topologically

distinct. The solution of the bound states near the boundary reflects the topology of

the system’s band structure.

2.1 Dirac Equation

In 1928, Paul A.M. Dirac wrote an equation for a relativistic quantum mechanical

wave function that describes an elementary spin- 1
2

particle [1, 2],

H = cp · α + mc2β, (2.1)

where m is the rest mass of a particle and c is the speed of light. αi and β are known

as the Dirac matrices that satisfy the relations

α2
i = β2 = 1, (2.2)

αiα j = −α jαi , (2.3)

αiβ = −βαi . (2.4)

Here ai and β are not simple complex numbers. The anticommutation relation means

that they can obey a Clifford algebra and must be expressed in a matrix form. In

one- and two-dimensional spatial space, they are at least 2 × 2 matrices. The Pauli

matrices σi (i = x, y, z) satisfy all these relations,

{σi ,σ j } = 2δi j , (2.5)
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where

σx =
(

0 1

1 0

)

,σy =
(

0 −i

i 0

)

,σz =
(

1 0

0 −1

)

. (2.6)

Thus, in one dimension, the two Dirac matrices αx and β are any two of the three

Pauli matrices, for example,

αx = σx ,β = σz . (2.7)

In two dimensions, the three Dirac matrices are the Pauli matrices,

αx = σx ,αy = σy,β = σz . (2.8)

In three dimensions, we cannot find more than three 2 × 2 matrices that satisfy the

anticommutation relations. Thus, the four Dirac matrices are at least 4-dimensional,

and can be expressed in terms of the Pauli matrices

αi =
(

0 σi

σi 0

)

≡ σx ⊗ σi , (2.9)

β =
(

σ0 0

0 −σ0

)

≡ σz ⊗ σ0, (2.10)

where σ0 is a 2 × 2 identity matrix.

From this equation, the relativistic energy-momentum relation will be automati-

cally the solution of the following equation:

E2 = m2c4 + p2c2. (2.11)

In three dimensions, there are two solutions for positive energy E+ and two solutions

for negative energy E−,

E± = ±
√

m2c4 + p2c2. (2.12)

This equation can be used to describe the motion of an electron with spin: the two

solutions of the positive energy correspond the two states of an electron, spin-up and

down, and the two solutions of the negative energy correspond to the two states of

an positron with spin-up and down. The energy gap between these two particles is

2mc2(≈1.0 MeV).

This equation requires the existence of an antiparticle, i.e., a particle with nega-

tive energy or mass, and predates the discovery of positrons, the antiparticles of an

electron. It is one of the main achievements of modern theoretical physics. Dirac

proposed that the negative energy states are fully filled, and the Pauli exclusion prin-

ciple prevents a particle transiting into these occupied states. The normal state of

the vacuum then consists of an infinite density of negative energy states. The state
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of a single electron means that all the states of negative energies are filled, and only

one state of positive energy is filled. It is assumed that any deviation from the norm

produced by employing one or more of the negative energy states can be observed.

The absence of a negative charged electron that has a negative mass and kinetic

energy would then manifest itself as a positively charged particle that has an equal

positive mass and positive energy. In this way, a hole or positron can be formulated.

Unlike the Schrödinger equation for a single particle, the Dirac theory, in principle,

is a many-body theory. This has been discussed in many textbooks on relativistic

quantum mechanics [2].

Under the transformation of mass m → −m, it is found that the equation remains

invariant if we replace β → −β, which satisfies all of the mutual anticommutation

relations for αi and β in (2.4). This reflects the symmetry between the positive and

negative energy particles in the Dirac equation: there is no topological distinction

between particles with positive and negative masses.

2.2 Solutions of Bound States

2.2.1 Jackiw-Rebbi Solution in One Dimension

A possible relation between the Dirac equation and the topological insulator is

revealed by a solution of the bound state at the interface between the regions of

positive and negative masses. We start with

h(x) = −iv�∂xσx + m(x)v2σz (2.13)

and

m(x) =
{

−m1 if x < 0

+m2 otherwise
(2.14)

(and m1 and m2 > 0). We use an effective velocity v to replace the speed of light c

when the Dirac equation is applied to solids. The eigenvalue equation has the form

(

m(x)v2 −iv�∂x

−iv�∂x −m(x)v2

) (

ϕ1(x)

ϕ2(x)

)

= E

(

ϕ1(x)

ϕ2(x)

)

. (2.15)

For either x < 0 or x > 0, the equation is a second-order ordinary differential equa-

tion. We can solve the equation at x < 0 and x > 0 separately. The solution of the

wave function should be continuous at x = 0. In order to have a solution of a bound

state near the junction, we take the Dirichlet boundary condition that the wave func-

tion must vanish at x = ±∞. For x > 0, we set the trial wave function as
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(

ϕ1(x)

ϕ2(x)

)

=

(

ϕ+
1

ϕ+
2

)

e−λ+x . (2.16)

Then the secular equation gives

det

(

m2v
2 − E iv�λ+

iv�λ+ −m2v
2 − E

)

= 0. (2.17)

The solution to this equation is λ+ = ±
√

m2
2v

4 − E2/v�.

The solutions λ can be either real or purely imaginary. For m2
2v

4 < E2 the solu-

tions are purely imaginary, and the corresponding wave functions spread over the

whole space. These are the extended states or the bulk states, which we are not inter-

ested in here. For m2
2v

4 > E2 the solutions are real, and we choose a positive λ+
to satisfy the boundary condition at x → +∞. The two components in the wave

function satisfy

ϕ+
1 = −

iv�λ+

m2v2 − E
ϕ+

2 . (2.18)

Similarly, for x < 0, we have

(

ϕ1(x)

ϕ2(x)

)

=
(

ϕ−
1

ϕ−
2

)

e+λ−x (2.19)

with λ− =
√

m2
1v

4 − E2/v�, and

ϕ−
1 = −

iv�λ−

m1v2 + E
ϕ−

2 . (2.20)

At x = 0, the continuity condition for the wave function requires

(

ϕ+
1

ϕ+
2

)

=
(

ϕ−
1

ϕ−
2

)

. (2.21)

From this equation, it follows that

−
√

m2
2v

4 − E2

m2v2 − E
=

√

m2
1v

4 − E2

−m1v2 − E
. (2.22)

Thus, there exists a solution of zero energy, E = 0, and the corresponding wave

function is

Ψ (x) =
√

v

�

m1m2

m1 + m2

(

i

1

)

e−|m(x)vx |/�. (2.23)
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Fig. 2.1 Probability density

|Ψ (x)|2 of the solution as a

function of its position in

(2.23)

The solution is dominantly distributed near the interface or domain wall at x = 0 and

decays exponentially away from the point x = 0 as shown in Fig. 2.1. The solution

of m1 = m2 was first obtained by Jackiw and Rebbi, and is the mathematical basis

for the existence of topological excitations or solitons in one-dimensional systems

[3]. The spatial distribution of the wave function are determined by the characteristic

scales ξ1,2 = λ−1
± = �/

∣

∣m1,2v
∣

∣ . The solution exists even when m2 → +∞. In this

case, Ψ (x) → 0 for x > 0. However, we have to point out that the wave function is

not continuous at the interface, x = 0. If we regard the vacuum as a system with an

infinite positive mass, a system with a negative mass with an open boundary condition

possesses a bound state near the boundary if the continuity condition is relaxed to

the wave function. This result leads to some popular impression of the formation of

the edge and surface states in topological insulators.

With regards to the stability of the zero mode solution, we may find a general

solution of zero energy for a distribution of mass m(x) that changes from a negative to

positive mass at two ends. Consider the solution of E = 0 for (2.13). The eigenvalue

equation is reduced to

[

−iv�∂xσx + m(x)v2σz

]

ϕ(x) = 0. (2.24)

Multiplying σx from the left hand side, one obtains

∂xϕ(x) = −
m(x)v

�
σyϕ(x). (2.25)

Thus, the wave function should be the eigenstate of σy ,

σyϕη(x) = ηϕη(x) (2.26)
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with

ϕ± =
1

√
2

(

1

±i

)

ϕ(x).

The wave function has the form

ϕη(x) ∝
1

√
2

(

1

ηi

)

exp

[

−
∫ x

η
m(x)v

�
dx ′

]

. (2.27)

For x → ±∞, ϕ(x) ∝ exp [− |m(±∞)vx | /�] , and the sign η is determined by the

signs of m(±∞). If m(+∞) and m(−∞) differ by a sign as a domain wall, there

always exists a zero energy solution near a domain wall of the mass distribution

m(x). Therefore this solution is quite robust against the mass distribution m(x).

2.2.2 Two Dimensions

In two dimensions (with pz = 0), we consider a system with an interface at x = 0,

m(x) = −m1 for x < 0, and m2 for x > 0. py = �ky is a good quantum number.

We have two solutions which the wave functions dominantly distribute around the

interface: one solution has the form

Ψ+(x, ky) =
√

v

h

m1m2

m1 + m2

⎛

⎜

⎜

⎝

i

0

0

1

⎞

⎟

⎟

⎠

e−|m(x)vx |/�+iky y (2.28)

with the dispersion ǫk,+ = v�ky and the other has the form

Ψ−(x, ky) =
√

v

h

m1m2

m1 + m2

⎛

⎜

⎜

⎝

0

i

1

0

⎞

⎟

⎟

⎠

e−|m(x)vx |/�+iky y (2.29)

with the dispersion ǫk,− = −v�ky . We can check these two solutions in the following

way. The Dirac equation can be divided into two parts,

H = [m(x)v2β + vpxαx ] + vpyαy . (2.30)

From the one-dimensional solution one has

(m(x)v2β + vpxαx )Ψ± = 0 (2.31)
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and

vpyαyΨ± = ±vpyΨ±. (2.32)

From the dispersions of the two states, the effective velocities of the electrons in the

states are

v± =
∂ǫk,±

�∂k
= ±v. (2.33)

Therefore, each state carries a current along the interface, but the electrons with

different spins move in opposite directions. The current density decays exponentially

away from the interface. As the system has the time reversal symmetry, the two

states are time reversal counterpart of each other, constituting a pair of helical edge

(or bound) states at the interface. Furthermore, the Dirac equation of pz = 0 can be

reduced to two independent sets of equations

h(x) = vpxσx ± vpyσy + m(x)v2σz (2.34)

for different spins. Thus, it is clear why two bound states have opposite velocities.

2.2.3 Three and Higher Dimensions

In three and higher dimensions, bound states always exist at the interface of the

system with positive and negative masses. Even when all other components of the

momentum in the interface are good quantum numbers, there is always a solution

for zero momentum, as in the one-dimensional case. We can use these solutions to

derive the ones of non-zero momenta in higher dimensions.

2.3 Why not the Dirac Equation?

From the Dirac equation, we know there is a solution of bound states at the interface

between two media with positive and negative masses or energy gaps. These solutions

are quite robust against the roughness of the interface or other factors. If we assume

that the vacuum is an insulator with an infinitely large and positive mass or energy

gap, then the system with a negative mass should have bound states around the open

boundary only if the contiuity condition of the wave function is relaxed. This is very

close to the definition of topological insulators. However, because of the symmetry

in the Dirac equation with positive and negative masses, there is no topological

distinction between these two systems after a unitary transformation. We cannot

determine which one is topologically trivial or non-trivial simply from the sign of the
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mass or energy gap. If we use the Dirac equation to describe a topological insulating

phase, we have to introduce or assign an additional “vacuum” as a benchmark. Thus,

we think this additional condition is unnecessary as the existence of the bound state

should be a physical and intrinsic consequence of the band structure in topological

insulators. Therefore we conclude that the Dirac equation in (2.1) itself may not be

a “suitable” candidate to describe the topology of quantum matters.

2.4 Quadratic Correction to the Dirac Equation

To explore a possible description of a the topological insulator, we introduce a

quadratic correction −Bp2 in momentum p to the band gap or rest-mass term in

the Dirac equation [4],

H = vp · α +
(

mv2 − Bp2
)

β, (2.35)

where mv2 is the band gap of the particle and m and v have dimensions of mass and

speed, respectively. B−1 also has the dimension of mass. The quadratic term breaks

the symmetry between the mass m and −m in the Dirac equation, and makes this

equation topologically distinct from the original Dirac equation in (2.1).

To illustrate this, we plot the spin distribution of the ground state in momentum

space as shown in Fig. 2.2. At p = 0, the spin orientation is determined by mv2β

or the sign of mass m, but for a large p, it is determined dominantly by −Bp2β

or the sign of B. If the dimensionless parameter m B > 0, when p increases along

one direction, say the x-direction, the spin will rotate from the z-direction to the

x-direction of p at p2
c = mv2/B, and then eventually to the opposite z-direction for

a larger p. This consists of two so-called merons in momentum space, which is named

Fig. 2.2 Spin orientation in momentum space. Left (m B < 0) the spins at p = 0 and p = +∞
are parallel, which is topologically trivial. Left bottom spin orientation along the px -axis. Right

(m B > 0) the spins at p = 0 and p = +∞ are anti-parallel, which is topologically non-trivial.

Right bottom spin orientation along the px -axis
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skymion. For m B < 0, when p increases, the spin will rotate from the z-direction

to the direction of p, and then flips back to the initial z-direction. The question of

whether the spin points in the same direction at p = 0 and +∞ determines whether

the equation is topologically distinct in the case of m B > 0 and m B < 0.

2.5 Bound State Solutions of the Modified Dirac Equation

2.5.1 One Dimension: End States

Let us start with a one-dimensional case. In this case, the 4 × 4 (2.35) can be decou-

pled into two independent sets of 2 × 2 equations,

h(x) = vpxσx +
(

mv2 − Bp2
x

)

σz . (2.36)

For a semi-infinite chain with x ≥ 0, we consider an open boundary condition at

x = 0. It is required that the wave function vanishes at the boundary, i.e., the Dirichlet

boundary condition. Usually, we have a series of solutions of extended states, which

wave functions spread throughout the whole space. In this section, we focus on the

solution of the bound state near the boundary. To find the solution of zero energy, we

have

[

vpxσx +
(

mv2 − Bp2
x

)

σz

]

ϕ(x) = 0. (2.37)

Multiplying σx from the left hand side, one obtains

∂xϕ(x) = −
1

v�

(

mv2 + B�
2∂2

x

)

σyϕ(x). (2.38)

If ϕ(x) is an eigen function of σy , take ϕ(x) = χηφ(x) with σyχη = ηχη (η = ±1).

Then, the differential equation is reduced to the second-order ordinary differential

equation,

∂xφ(x) = −
η

v�

(

mv2 + B�
2∂2

x

)

φ(x). (2.39)

Taking the trial wave function φ(x) ∝ e−λx , one obtains the secular equation

B�
2λ2 − ηv�λ + mv2 = 0. (2.40)

The two roots satisfy the relation λ+ + λ− = ηv�/B and λ+λ− = mv2/B�
2. To

have a bound state solution, it is required that the wave function vanishes at x = 0

and x = +∞,

ϕ(x = 0) = ϕ(x = +∞) = 0. (2.41)
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Fig. 2.3 Schematic of the

probability density |Ψ (x)|2
of the end state solution as a

function of its position in

(2.42)

The two roots should be positive and only one of χη satisfy the boundary condition

for a bound state, η = sgn(B) (without loss of generality, we assume that v is always

positive). In the condition of m B > 0, there exists a solution of the bound state with

zero energy

ϕη(x) =
C
√

2

(

sgn(B)

i

)

(e−x/ξ+ − e−x/ξ−), (2.42)

where ξ−1
± = v

2|B|�
(

1 ±
√

1 − 4m B
)

and C is the normalization constant. The main

feature of this solution is that the wave function distributes dominantly near the

boundary, and decays exponentially away from one end as shown in Fig. 2.3. The

two parameters ξ+ and ξ− decide the spatial distribution of the wave function. These

are two important length scales, which characterize the end states. When B → 0,

ξ+ → |B| �/v and ξ− = �/mv, i.e., ξ+ approaches to zero, and ξ− becomes a finite

constant that is determined by the energy gap mv2. If we relax the constraint of the

vanishing wave function at the boundary, the solution exists even if B = 0. In this

way, we go back to the conventional Dirac equation. In this sense, the two equations

reach the same conclusion. When m → 0, ξ− = �/mv → +∞ and the state evolves

into a bulk state. Thus, the end states disappear and a topological quantum phase

transition occurs at m = 0.

In the four-component form to (2.35), two degenerate solutions have the form,

Ψ1 =
C
√

2

⎛

⎜

⎜

⎝

sgn(B)

0

0

i

⎞

⎟

⎟

⎠

(e−x/ξ+ − e−x/ξ−) (2.43)
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and

Ψ2 =
C
√

2

⎛

⎜

⎜

⎝

0

sgn(B)

i

0

⎞

⎟

⎟

⎠

(e−x/ξ+ − e−x/ξ−). (2.44)

We shall see that these two solutions can be used to derive effective Hamiltonians

for higher dimensional systems.

The role of this solution cannot be underestimated in the theory of topological

insulators. We will see that all solutions of the edge or surface states, and topological

excitations are closely related to this solution.

2.5.2 Two Dimensions: Helical Edge States

In two dimensions, the equation can also be decoupled into two independent equa-

tions

h± = vpxσx ± vpyσy +
(

mv2 − Bp2
)

σz . (2.45)

These two equations break the “time” reversal symmetry under the transformation

of σi → −σi and pi → −pi , although the original four-component equation is time

reversal invariant.

We consider a semi-infinite plane with the boundary at x = 0. py = �ky is a good

quantum number. At ky = 0, the two-dimensional equation has the identical form as

the one-dimensional equation. The x dependent part of the solution has the identical

form as in the one dimension. Thus, we use the two one-dimensional solutions

{Ψ1, Ψ2} in (2.43) and (2.44) as the basis of the two-dimensional solutions. The y

dependent part ∆H2D = vpyαy − Bp2
yβ is regarded as the perturbation to the one-

dimensional Hamiltonian. In this way, we have a one-dimensional effective model

for the helical edge states

He f f = (〈Ψ1| , 〈Ψ2|)∆H

(

|Ψ1〉
|Ψ2〉

)

= vpysgn(B)σz . (2.46)

The sign dependence of B in the effective model also reflects the fact that the helical

edge states disappear if B = 0. The dispersion relations for the bound states at the

boundary are

ǫpy ,± = ±vpy . (2.47)

Electrons have positive (+v) and negative velocity (−v) in their two different states,

respectively, and form a pair of helical edge states.
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The exact solutions of the edge states in this two-dimensional equation have the

form similar to that in the one-dimensional equation [5],

Ψ1 =
C
√

2

⎛

⎜

⎜

⎝

sgn(B)

0

0

i

⎞

⎟

⎟

⎠

(e−x/ξ+ − e−x/ξ−)e+i py y/� (2.48)

and

Ψ2 =
C
√

2

⎛

⎜

⎜

⎝

0

sgn(B)

i

0

⎞

⎟

⎟

⎠

(e−x/ξ+ − e−x/ξ−)e+i py y/�, (2.49)

with the dispersion relations ǫpy ,± = ±vpysgn(B). The characteristic lengths become

py dependent,

ξ−1
± =

v

2 |B| �

(

1 ±
√

1 − 4m B + 4B2 p2
y/v

2

)

. (2.50)

In two dimensions, the Chern number or Thouless-Kohmoto-Nightingale-Nijs

(TKNN) integer can be used to characterize whether the system is topologically

trivial or non-trivial [6]. For the two-band Hamiltonian in the form H = d(p) · σ,

the Chern number is expressed as

nc = −
1

4π

∫

dp
d · (∂px

d × ∂py
d)

d3
, (2.51)

where d2 =
∑

α=x,y,z d2
α (see Appendix A.2). The integral runs over the first Brillouin

zone for a lattice system, in which the number nc is always an integer (see Appendix

A.1). In the continuous limit, the integral area becomes infinite, the integral can be

fractional. For (2.45), the Chern number has the form [7, 8]

n± = ±
1

2
(sgn(m) + sgn(B)), (2.52)

which is related to the Hall conductance σ± = n±e2/h. When m and B have the

same sign, n± = ±1, and the system is topologically non-trivial. But if m and B

have different signs, n± = 0. The topologically non-trivial condition is in agreement

with the existence condition of the edge state solution m B > 0. This reflects the

bulk-edge relation of the integer quantum Hall effect [9].
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2.5.3 Three Dimensions: Surface States

In three dimensions, we consider a y–z plane at x = 0. We can derive an effective

model for the surface states by means of the one-dimensional solution of the bound

state. As the momenta among the y–z plane are good quantum numbers, we use

their eigenvalues to replace the momentum operators, py and pz . Consider py and

pz dependent part as a perturbation to H1D(x),

∆H3D = vpyαy + vpzαz − B(p2
y + p2

z )β. (2.53)

The solutions of the three-dimensional Dirac equation at py = pz = 0 are identical to

the two one-dimensional solutions, |Ψ1〉 and |Ψ2〉 in (2.43) and (2.44). For py, pz 
= 0,

we use the solutions

Ψ1 =
C
√

2

⎛

⎜

⎜

⎝

sgn(B)

0

0

i

⎞

⎟

⎟

⎠

(e−x/ξ+ − e−x/ξ−)ei(py y+pz z)/� (2.54)

and

Ψ2 =
C
√

2

⎛

⎜

⎜

⎝

0

sgn(B)

i

0

⎞

⎟

⎟

⎠

(e−x/ξ+ − e−x/ξ−)ei(py y+pz z)/� (2.55)

as the basis. A straightforward calculation as in the two-dimensional case gives

He f f = (〈Ψ1| , 〈Ψ2|)∆H3D

(

|Ψ1〉
|Ψ2〉

)

= vsgn(B)(p × σ)x . (2.56)

Under a unitary transformation,

Φ1 =
1

√
2
(|Ψ1〉 − i |Ψ2〉) (2.57)

and

Φ2 =
−i
√

2
(|Ψ1〉 + i |Ψ2〉), (2.58)
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one can have a gapless Dirac equation for the surface states

He f f =
1

2
(〈Φ1| , 〈Φ2|)∆H3D

(

|Φ1〉
|Φ2〉

)

= vsgn(B)(pyσy + pzσz). (2.59)

The dispersion relations become ǫp,± = ±vp with p =
√

p2
y + p2

z . In this way, we

have an effective model for a single Dirac cone of the surface states as plotted in Fig.

2.4. Note that σi in the Hamiltonian is not a real spin, which is determined by two

states at py = pz = 0. In some systems |Ψ1〉 and |Ψ2〉 are almost polarized along the

z-direction of the electron spin. In this sense, the Pauli matrices in (2.56) may be

regarded as approximating a real spin.

The exact solutions of the surface states of this three-dimensional equation with

a boundary are

Ψ± = CΨ 0
±(e−x/ξ+ − e−x/ξ−) exp[+i

(

py y + pzz
)

/�], (2.60)

Fig. 2.4 The Dirac cone of

the surface states in

momentum space
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where

Ψ 0
+ =

⎛

⎜

⎜

⎜

⎜

⎝

cos θ
2
sgn(B)

−i sin θ
2
sgn(B)

sin θ
2

i cos θ
2

⎞

⎟

⎟

⎟

⎟

⎠

(2.61)

and

Ψ 0
− =

⎛

⎜

⎜

⎜

⎜

⎝

sin θ
2
sgn(B)

i cos θ
2
sgn(B)

− cos θ
2

i sin θ
2

⎞

⎟

⎟

⎟

⎟

⎠

(2.62)

with the dispersion relation ǫp,± = ±vpsgn(B). tan θ = py/pz . The penetration

depth becomes p dependent,

ξ−1
± =

v

2 |B| �

(

1 ±
√

1 − 4m B + 4B2 p2/�2

)

. (2.63)

2.5.4 Generalization to Higher-Dimensional Topological

Insulators

The solution can be generalized to higher-dimensional system. We conclude that

there is always a (d-1)-dimensional surface state in the d-dimensional modified Dirac

equation when m B > 0.

2.6 Summary

From the solutions of the modified Dirac equation, we found the following conclu-

sions under the condition of m B > 0,

• in one dimension, there exists a bound state of zero energy near the end;

• in two dimensions, there exists solution of a pair of helical edge states near the

edge;

• in three dimensions, there exists solution of surface states near the surface; and

• in higher dimensions, there always exists a higher dimensional boundary states.

From the solutions of the bound states near the boundary and the calculation of the

Z2 index, we conclude that the modified Dirac equation can provide a description of

a large class of topological insulators from one to higher dimensions.
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2.7 Further Reading

• P.A.M. Dirac, Principles of Quantum Mechanics, 4th edn. (Clarendon, 1982).

• J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (MaGraw-Hill Inc.,

1964).

• S.Q. Shen, W.Y. Shan, H.Z. Lu, Topological insulator and the Dirac equation.

SPIN 01, 33 (2011).
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Chapter 3

Minimal Lattice Model for Topological

Insulators

Abstract A lattice model can be mapped into a continuous model near the critical

point of a topological quantum phase transition. The topology of a lattice model

remains unchanged if no energy gap in the band structure closes and reopens.

3.1 Tight Binding Approximation

The tight-binding model has been extensively used to describe the band structure

of electrons in solids. The schematic in Fig. 3.1 depicts the formation of a tight

binding lattice from the point of view of atomic physics. Consider an isolated atom,

say hydrogen atom. In quantum mechanics, an electron rotates around the nuclei in

the Coulomb interaction, and forms a series of discrete energy levels or orbits, En =
−e2/(8πǫ0n2a0), where the Bohr radius a0 = 4πǫ0�

2/(mee2) and n is an integer. The

ground state energy is En = 1 = −13.6 eV and the radius of the orbit is a0 = 0.529

Å. The energy of the first excited state is En = 2 = −3.4 eV. The energy difference

between the two states is about −10.2 eV, which is very large in a solid. Thus, it

is a good approximation to consider only the ground state of an electron at low

temperatures. When two atoms get close to each other, the orbits of two electrons

from different atoms may overlap in space. As a result, the electron of one atom may

jump into the orbit of another atom. Since the electron is mainly localized around the

original nuclei, the probability of an electron tunneling from one atom to another is

still quite tiny. The picture can be generalized to a lattice system consisting of atoms:

the electrons move from one atom to another one, and form energy bands.

In the second quantization the tight binding Hamiltonian is written as

H =
∑

i,σ=↑,↓

ǫ0c
†
i,σci,σ −

∑

〈i, j〉,σ=↑,↓

ti j c
†
i,σc j,σ, (3.1)

where the summation i runs over all the lattice sites, and σ =↑,↓ represent the

electron spin up and down, respectively. c
†
i,σ and ci,σ are the creation and annihilation

operators of an electron at site i with spin σ obeying the anticommutation relation,
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Fig. 3.1 Schematic

explaining the tight binding

approximation. a A single

atom with discrete orbits for

its electron. b When atoms

get together to form a solid,

the wave functions of the two

orbits (black) of adjunct

atoms overlap in space. c If

the overlap of the orbits is

small, the electrons are still

considered to be almost

localized around the original

orbits, but have a tiny

probability tunneling into the

adjunct orbits to form an

energy band (color figure

online)

c
†
i,σc j,σ′ + c j,σ′c

†
i,σ = δσσ′δi j . It is required that ci,σ |0〉 = 0. ti j describes the hopping

amplitude of the electron from site i to site j .

For a ring of one-dimensional lattice with N lattice sites or a one-dimensional

lattice with a periodic boundary condition, we take ci,σ = ci+N ,σ . For simplicity,

we suppose that the lattice is translationally invariant by taking ti j = t for a pair of

nearest neighbor lattice sites. Performing the Fourier transformation, one obtains

ci.σ =
1

√
Na

∑

kn

eikn Ri ckn ,σ, (3.2)

c
†
i.σ =

1
√

Na

∑

kn

e−ikn Ri c
†
kn ,σ

. (3.3)

and the periodic boundary condition gives eikn Ri = eikn(Ri +Na) with kn = 2nπ/Na

(n = 0, 1, . . . , N − 1). In this way the Hamiltonian can be diagonalized as

H =
∑

kn

ǫ(kn)c
†
kn ,σ

ckn ,σ (3.4)

with the dispersion ǫ(kn) = ǫ0 − 2t cos kna. Notice that for K = 2π/a, ǫ(kn + K ) =
ǫ(kn). For a very large N , kna can be taken to be continuous number from 0 to 2π

and K is called the reciprocal lattice vector.
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The approach can be generalized to two and three dimensions. The reciprocal

lattice vector can be defined for the purpose of the Fourier transformation from the

real space to the momentum space. In a three-dimensional lattice with the lattice

spaces a, b, and c, the reciprocal lattice vectors are given by

Ka = 2π
b × c

a · (b × c)
, (3.5)

Kb = 2π
c × a

a · (b × c)
, (3.6)

Kc = 2π
a × b

a · (b × c)
, (3.7)

and Kα Rα = 2π for α = a, b, c.

The Fourier transformation is a powerful tool to study the periodic problem.

Usually it is a very good approximation for periodic lattices with a large lattice

sites. It is noted that the energy dispersions obtained in this way only describe the

bulk band structure. However, it may ignore solutions of possible states near system

boundary as phsyical systems usually are in the open boundary conditions instead

of the periodic boundary conditions.

3.2 Mapping from a Continuous Model to a Lattice Model

Usually a continuous model describes low energy physics in a long wave length limit.

The topology of the band structure should reveal the properties of the whole band

structure in the Brillouin zone. In practise, people like to use a lattice model instead

of a continuous model to explore the topology of a system. A continuous model

can be mapped into a lattice model in the tight binding approximation, in which

the Brillouin zone is periodic and finite. In a d-dimensional hyper-cubic lattice, one

makes the following replacements [1]:

ki →
1

a
sin ki a (3.8)

and

k2
i →

4

a2
sin2 ki a

2
=

2

a2
(1 − cos ki a), (3.9)

which are equal only in a long wave length limit, i.e., ki a → 0 by using the relation

sin x ≈ x for a small x . We use sin2 ki a

2
or cos ki a instead of sin2 ki a for k2

i to avoid

the next nearest neighbour hopping in the lattice Hamiltonian. In this way the hopping

terms in the lattice model only exist between the nearest neighbor sites.
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Usually, the fermion doubling problem exists in the lattice model for massless

Dirac particles. The replacement of ki → 1
a

sin ki a will cause an additional zero point

for 1
a

sin ki a at ki a = π as well as at ki a = 0. Thus, there exist four Dirac cones in

a square lattice at k = (0, 0), (0,π/a), (π/a, 0), and (π/a,π/a) for a gapless Dirac

equation. A large B term removes the zero point at (π/a,π/a) as 4B
a2 sin2 ki a

2
→ 4B

a2 .

Thus, the lattice model is equivalent to the continuous model only in the condition

of a large B. For a finite B, the band gap may not open at the Γ point in the lattice

model because of the competition between the linear term and the quadratic term

of ki . This fact may lead to a topological transition from a large B to a small B.

Imura et al. [2] analyzed the two-dimensional case in details and found that there is

a topological transition at a finite value of B in two dimensions. A similar transition

also exists in higher dimensions. Thus, it is necessary to be careful when a lattice

model is constructed based on the continuous model. However the topology of the

band structure never changes if the energy gap in the band structure does not close

and reopen, whereas the model parameters vary continuously.

With this mapping, one obtains the following lattice model for topological

insulator

H =
�v

a

∑

i=x,y,z

sin ki aαi +

⎛

⎝mv2 − B
4�

2

a2

∑

i=x,y,z

sin2 ki a

2

⎞

⎠ β. (3.10)

The energy dispersions for this system are

Ek,± = ±

√

√

√

√

√

�2v2

a2

∑

i=x,y,z

sin2 ki a +

⎛

⎝mv2 −
4B�2

a2

∑

i=x,y,z

sin2 ki a

2

⎞

⎠

2

. (3.11)

For m B < 0 there is always an energy gap between the two bands 2|m|v2. For

m B = 0 (B 
= 0) the energy gap closes at the points ki a = 0 as E0,+ = E0,−. For

m B > 0 there exists several gapless points at mv2 = 4B�
2/a2 (in one, two, and

three dimensions), 8B�
2/a2 (in two and three dimensions) and 12B�

2/a2 (in three

dimensions). We shall show that these are the critical points for topologically quantum

phase transitions. For simplicity, we take the lattice constant a = � = 1.

We can perform the Fourier transform to transfer the effective Hamiltonian from

momentum space into lattice space. In the tight binding approximation, the model

Hamiltonian on a hyper-cubic lattice has the form

H =
∑

i,n,m

∆c
†
i,nβnmci,m − t

∑

〈i, j〉,

c
†
j,nβnmcim

+i t ′
∑

i,δ,n,m

[

c
†
i+a,n(αa)nmcim − c

†
i,n(αa)nmci+a,m

]

. (3.12)
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Here 〈i, j〉 runs over the pairs of nearest neighbor sites. a = x, y, z and i + a rep-

resents the lattice site Ri + Ra . n, m = 1, 2, . . . , d where d is the dimension of the

Dirac matrices. The relations of the model parameters are

t ′ =
�v

2a
= v/2,∆ − 2dt = mv2, t = −B�

2/a2 = −B. (3.13)

Denote
(

c
†
i,1, c

†
i,2, . . . , c

†
i,d

)

by c
†
i . In this way, the equation can be written in a

compact form:

H =
∑

i

∆c
†
i βci − t

∑

〈i, j〉,

c
†
jβci + i t ′

∑

i,δ

[

c
†
i+aαaci − cv

i αaci+a

]

. (3.14)

3.3 One-Dimensional Lattice Model

Consider a one-dimensional lattice model

H = ∆

N
∑

j=1

c
†
jσzc j − t

N−1
∑

, j=1

(

c
†
j+1σzc j + c

†
jσzc j+1

)

(3.15)

+i t ′
N−1
∑

j=1

(

c
†
j+1σx c j − c

†
jσx c j+1

)

, (3.16)

where c
†
j =

(

c
†
j,↑, c

†
j,↓

)

. To find the end state, we adapt the open boundary condition.

We choose
(

c
†
1, c

†
2, . . . , c

†
N

)

as the basis. The Hamiltonian can be written in the form

of a matrix:

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∆σz T 0 0 . . . 0

T † ∆σz T 0 . . . 0

0 T † ∆σz T . . . 0
...

...
. . .

. . .
. . .

...

0 0 0 T † ∆σz T

0 0 0 0 T † ∆σz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.17)

where T = −tσz − i t ′σx . As σx and σz are 2 × 2 matrices, the Hamiltonian is a

2N × 2N square matrix.

Here we present a solution for N = +∞, i.e., a semi-infinite chain with an end at

j = 1. We take the eigenvector for H as Ψ † = (Ψ
†
1 , Ψ

†
2 , . . . , Ψ

†
N ). The eigenvalue

equation of this problem becomes
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∆σzΨ j + T Ψ j+1 + T +Ψ j−1 = EΨ j (3.18)

for j = 1, 2, . . . and Ψ0 = 0. To solve this equation, we set a trial solution,

Ψ j+1 = λΨ j = λ j+1Ψ. (3.19)

Then (3.18) becomes

(

∆σz + λT + λ−1T +)

Ψ = PΨ = EΨ. (3.20)

where the operator P = ∆σz + λT + λ−1T + ≡ γ · σ with

γx = −i t ′(λ − λ−1), (3.21)

γy = 0, (3.22)

γz = ∆ − λt − tλ−1. (3.23)

In general, the matrix P is non-Hermitian, and one may have two complex eigen-

values for P . However, E must be real as it is the eigenvalue for a physical system.

Thus, P should meet one of the conditions:

(1). all components of γ are real, and

(2). all non-zero complex components combine to give E = 0.

The first condition is met when γ = eik , which gives solution of the bulk band. These

solutions are not what we are interested in here. The second condition defines the

so-called annihilator. In the present case, if γz = isγx (s = ±1),

P = γx (σx + isσz). (3.24)

Ψ = 1√
2
(1,−is)T satisfies PΨ = 0, which is also one of the eigenstates of σy with

the eigenvalue −s.

Increasing and decreasing operators are defined by σ± = σx ± iσy, which satisfy

σ+

(

1

0

)

= 0;σ+

(

0

1

)

= 2

(

1

0

)

(3.25)

and

σ−

(

0

1

)

= 0;σ−

(

1

0

)

= 2

(

0

1

)

. (3.26)

To have a zero-energy mode of E = 0, one has

∆ − λt − tλ−1 = st ′(λ − λ−1). (3.27)
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This equation has two roots,

λ±(s) =
∆

2(t + st ′)

[

1 ±
√

1 −
4(t2 − t ′2)

∆2

]

. (3.28)

The solutions for the end state require |λ±| < 1 as Ψ j → 0 for a large j . Thus,

λ+λ− =
t − st ′

t + st ′ < 1, (3.29)

which requires s =sgn(t ′/t).

Case I: λ± are complex for

4(t2 − t ′2) > ∆2 (3.30)

and

∣

∣λ2
+
∣

∣ =
t − st ′

t + st ′ =
1 −

∣

∣

∣

t ′

t

∣

∣

∣

1 +
∣

∣
t ′

t

∣

∣

. (3.31)

Case II: For

4(t2 − t ′2) < ∆2, (3.32)

one requires

|λ±|2 =
∆2

4(t + st ′)2

[

2 −
4(t2 − t ′2)

∆2
± 2

√

1 −
4(t2 − t ′2)

∆2

]

< 1. (3.33)

It follows that

4(t2 − t ′2) < ∆2 < 4t2. (3.34)

Thus, the boundary condition of Ψ0 = 0 gives the solution

Ψ j = (λ
j
+ − λ

j
−)Ψ, (3.35)

which does not vanish at the boundary at j = 1.

We now consider the special case of two exact solutions of this lattice model at

∆ = 0 and t = t ′. In this case we have the solutions:
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ΨL =

⎛

⎜

⎜

⎜

⎝

ϕ1

0
...

0

⎞

⎟

⎟

⎟

⎠

(3.36)

and

ΨR =

⎛

⎜

⎜

⎜

⎝

0

0
...

ϕN

⎞

⎟

⎟

⎟

⎠

, (3.37)

with

T †ϕ1 = −t (σz − iσx )ϕ1 = 0; (3.38)

T ϕN = −t (σz + iσx )ϕN = 0, (3.39)

and

ϕ1 =
1

√
2

(

1

−i

)

,ϕN =
1

√
2

(

1

+i

)

. (3.40)

These two solutions are located at two ends, and the energy eigenvalues are zero.

As the two solutions are degenerate, the linear combination of these two solutions is

also the solution for the lattice model.

3.4 Two-Dimensional Lattice Model

3.4.1 Integer Quantum Hall Effect

In two dimensions, the lattice model on a square lattice can be written as

H = d(k) · σ, (3.41)

where

dx = A sin kx a; (3.42)

dy = A sin kya; (3.43)

dz = ∆ − 4B sin2 kx a

2
− 4B sin2 kya

2
. (3.44)
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One can regard this model as a quantum spin in an effective magnetic field, d(k).

The dispersion relations are

Ek,± = ± |d(k)| . (3.45)

The zero points of the dispersion are determined by a set of equations

sin2 kx a = sin2 kx a = 0 (3.46)

and

∆ = 4B sin2 kx a

2
+ 4B sin2 kya

2
. (3.47)

There are three solutions: (1). ∆ = 0 with (kx a = 0, kya = 0); (2). ∆ = 4B with

(kx a = 0, kya = π) or (kx a = π, kya = 0); (3). and ∆ = 8B with (kx a = π, kya =
π). Thus, the energy gap closes and re-opens near these points. We shall see that

topological quantum phase transition will occur at the points (1) ∆ = 0, (2) ∆ = 4B,

and (3) ∆ = 8B.

To find a solution of an edge state, we may adopt the geometry of a ribbon.

Along the x-direction, we adapt the periodic boundary condition such that kx is a

good quantum number. Along the y-direction, we adapt an open boundary condition.

Performing the partial Fourier transformation only for the x-direction, the problem

is reduced to a one-dimensional problem as kx is regarded as a variable.

H(kx ) =
N

∑

j=1

c
†
kx , j h j, j (kx)ckx , j

+
N−1
∑

j=1

[

c
†
kx , j h j, j+1(kx )ckx , j+1 + c

†
kx , j+1h j+1, j (kx )ckx , j

]

, (3.48)

where

h j, j (kx ) = A sin kxσx +
(

∆ − 2B − 4B sin2 kx a

2

)

σz, (3.49)

h j, j+1(kx ) = Bσz +
i

2
Aσy, (3.50)

h j+1, j (kx ) = h
†
j, j+1(kx ) = Bσz −

i

2
Aσy . (3.51)

The problem of finding the solution of the edge state is reduced to a one-dimensional

problem for a specific kx . It can be solved following the method introduced in the

preceding section. This model can also be solved numerically.
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3.4.2 Quantum Spin Hall Effect

The combination of two 2 × 2 modified Dirac models can generate an effective model

for the quantum spin Hall effect. Under the time reversal Θ = iσy K ,

ki −→ −ki ,σi −→ −σi , (3.52)

we have

Θd(k) · σΘ−1 = −d(−k) · σ

= Aσx sin kx a + Aσy sin kya

−σz

(

∆ − 4B sin2 kx a

2
− 4B sin2 kya

2

)

. (3.53)

We set d(k) · σ for the “spin-up” sector and then −d(−k) · σ for the “spin-down”

sector. In this way, we obtain an effective Hamiltonian,

HQSH E =
(

d(k) · σ 0

0 −d(−k) · σ

)

= A sin kx as0 ⊗ σx + A sin kyas0 ⊗ σy

+
(

∆ − 4B sin2 kx a

2
− 4B sin2 kya

2

)

sz ⊗ σz, (3.54)

where s0 is a 2 × 2 identity matrix and sz is the Pauli matrix for the spin index.

More terms can be included, such as the spin-orbit coupling which appears as an

off-diagonal term in the matrix to couple the spin-up and -down. In this way Sz is no

longer conserved, but the edge states may persist. This can be checked numerically.

3.5 Three-Dimensional Lattice Model

The lattice model on a cubic lattice is

H = A
∑

i=x,y,z

αi sin ki a + β

⎛

⎝∆ − 4B
∑

i=x,y,z

sin2 ki a

2

⎞

⎠ . (3.55)

Its dispersions are

Ek,± = ±

√

√

√

√

√A2
∑

i=x,y,z

sin2 ki a +

⎛

⎝∆ − 4B
∑

i=x,y,z

sin2 ki a

2

⎞

⎠

2

. (3.56)
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The zero points of the dispersion are determined by a set of equations:

sin2 kx a = sin2 kya = sin2 kza = 0, (3.57)

and

∆ = 4B sin2 kx a

2
+ 4B sin2 kya

2
+ 4B sin2 kza

2
. (3.58)

There are four solutions at ∆ = 0, ∆ = 4B, ∆ = 8B and ∆ = 12B. The topologi-

cal non-trivial regions are 0 < ∆/B < 4 and 8 < ∆/B < 12. Topological quantum

phase transition occurs at the points of ∆ = 0, and ∆/B = 4, 8 and 12.

To find the solution of the surface states, we consider a semi-infinite x–y plane.

In this case, the kx and ky are still good quantum numbers. In this case, performing

the partial Fourier transformation for the x- and y-axis,

ckx ,ky , jz =
1

√

Nx Ny

∑

jx , jy

c jx , jy , jz exp[i(kx jx + ky jy)] (3.59)

and

c jx , jy , jz =
1

√

Nx Ny

∑

kx ,ky

ckx ,ky , jz , exp[−i(kx jx + ky jy)], (3.60)

we have a one-dimensional effective Hamiltonian along the z-axis:

H(kx , ky) =
∑

i

c
†
kx ,ky , jz

ǫ(kx , ky)ckx ,ky , jz

+
∑

i

c
†
kx ,ky , jz+1(i

A

2
αz − 2Bβ)ckx ,ky , jz + h.c., (3.61)

where

ǫ(kx , ky) = (A sin kxαx + A sin kyαy) +

⎛

⎝∆ − 2B − 4B
∑

i=x,y

sin2 ki a

2

⎞

⎠β.

(3.62)

Here ckx ,ky , jz is a four-component spinor. One can find the surface states solution by

means of exact diagonalization.
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3.6 Parity at the Time Reversal Invariant Momenta

We have constructed a lattice model by mapping the continuous model onto a lattice.

In the continuous model, the energy gap of the conduction bands and the valence

bands opens near k = 0. In the mapping, k is replaced by 1
a

sin ka. As sin ka has

two zero points at ka = 0 and ka = π, this property may make the two models

topologically distinct. The topology of a system should be determined by the band

structure of the whole Brillouin zone, not simply by the asymptotic behavior near a

single point. In this section, we calculate the parity of the eigenstates at time reversal

invariant momenta, which may reveal whether the lattice model is topologically

trivial or non-trivial. We find that the parity of the eigenstates will change when

the energy gap between the two bands closes and re-opens, which accompanies a

topological quantum phase transition. Readers can come back to this section after

reading Chap. 4.

The parity operation π changes a right-handed system into a left-handed system,

π†xπ = −x (3.63)

and

π†pπ = −p. (3.64)

π is not only unitary, but also Hermitian

π† = π−1 = π (3.65)

and π2 = 1. Hence its eigenvalue is either +1 or −1. For a system with a parity

symmetry, the energy eigenstates must be symmetric (+1) or antisymmetric (−1),

πφ(x) = φ(−x) = ±φ(x), (3.66)

if they are nondegenerate. In the Dirac equation, the full parity operator P needs to

be augmented with a unitary operator β [3],

P = πβ, (3.67)

such that

Pαi P = −αi , PβP = β. (3.68)

In this way the Dirac equation is invariant under parity P .

http://dx.doi.org/10.1007/978-981-10-4606-3_4
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3.6.1 One-Dimensional Lattice Model

We begin with the one-dimensional lattice model:

H = A sin kx aαx +
(

∆ − 4B sin2 kx a

2

)

β. (3.69)

The eigenvalues are doubly degenerate,

E± = ±

√

A2 sin2 kx a +
(

∆ − 4B sin2 kx a

2

)2

. (3.70)

Suppose the Fermi energy is zero. Then two occupied states has negative energy and

are time reversal partners with each other,

ψ1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
A sin kx a

√

2E+

(

E+ + ∆ − 4B sin2 kx a

2

)

0

0

∆ − 4B sin2 kx a

2
+ E+

√

2E+

(

E+ + ∆ − 4B sin2 kx a

2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.71)

and

ψ2 = Θψ1, (3.72)

where Θ is the time reversal operator.

The system is invariant under parity P as

P H(k) = H(−k)P. (3.73)

Noted that k is now a good quantum number, not an operator. From this relation, two

time reversal invariant momenta can be defined,

P H(Γi ) = H(Γi )P. (3.74)

In one dimension, the first is Γ1 = 0,

P H(Γ1 = 0) = H(−Γ1)P (3.75)
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and the second is Γ2 = 1
2

K = π
a

(K is the reciprocal lattice vector),

P H(Γ2) = H(−Γ2 + K )P. (3.76)

We calculate the eigenvalue of the parity of the state |ψ1〉,

δ|k=Γi
= 〈ψ1|P|ψ1〉 = sgn

(

−∆ + 4B sin2 Γi a

2

)

. (3.77)

At the two time reversal invariant points, we have

δ|ka=0 = sgn(−∆) (3.78)

and

δ|ka=π = sgn(−∆ + 4B). (3.79)

We notice that the parity changes sign at the points of ∆ = 0 and ∆ = 4B, where

the energy gap closes. The Z2 index ν is determined by

(−1)ν = δ|ka=0δ|ka=π = sgn(∆)sgn(∆ − 4B). (3.80)

Thus, there are two distinct values of (−1)ν , +1 or −1. Correspondingly, ν = 0 or

1. Therefore, for 0 < ∆2 < 4∆B, the Z2 index is

ν = 1, (3.81)

which shows that the system is topologically non-trivial.

3.6.2 Two-Dimensional Lattice Model

For a two-dimensional lattice model,

H = A
∑

i=x,y

sin ki aαi +

⎛

⎝∆ − 4B
∑

i=x,y

sin2 ki a

2

⎞

⎠ β. (3.82)
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The two energy eigenstates with the negative energy are

ψ1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−A(sin kx a − i sin kya)
√

2E+

(

E+ + ∆ − 4B

(

sin2 kx a

2
+ sin2 kya

2

))

0

0

∆ − 4B

(

sin2 kx a

2
+ sin2 kya

2

)

+ E+

√

2E+

(

E+ + ∆ − 4B

(

sin2 kx a

2
+ sin2 kya

2

))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.83)

and

ψ2 = Θψ1. (3.84)

The corresponding energy eigenvalue is

E− = −

√

√

√

√

√A2
∑

i=x,y

sin2 ki a +

⎛

⎝∆ − 4B
∑

i=x,y

sin2 ki a

2

⎞

⎠

2

. (3.85)

The parity or the δ quantity at the time reversal invariant momenta is

δ|k=Γi
= 〈ψ1|P|ψ1〉 = sgn

⎛

⎝−∆ + 4B
∑

i=x,y

sin2 Γi a

2

⎞

⎠ . (3.86)

In two dimensions there are four time reversal invariant momenta, Γi a = (0, 0),

Γi a = (0,π), Γi a = (π, 0), and Γi a = (π,π). At these points the parity of the state

ψ1 is

δ|Γi a=(0,0) = −sgn(∆); (3.87)

δ|Γi a=(0,π) = sgn(−∆ + 4B); (3.88)

δ|Γi a=(π,0) = sgn(−∆ + 4B); (3.89)

δ|Γi a=(π,π) = sgn(−∆ + 8B). (3.90)

As a result,

(−1)ν = sgn(∆) [sgn(−∆ + 4B)]2 sgn(∆ − 8B). (3.91)
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Therefore, we have a non-trivial index

ν = 1 (3.92)

for 0 < ∆2 < 8∆B.

However, it is noted that δ|ka=(0,π) = δ|ka=(π,0) discontinues at ∆ = 4B. Although

the index is equal to 1 near the point, there exists another topological quantum phase

transition. Both phases are topologically non-trivial. Accompanying the transition,

the spin current around the boundary will change its sign.

3.6.3 Three-Dimensional Lattice Model

For a three-dimensional lattice model,

H = A
∑

α=x,y,z

sin kαaαα +

(

∆ − 4B
∑

α=x,y,z

sin2 kαa

2

)

β. (3.93)

The two energy eigenstates are

ψ1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−A(sin kx a − i sin kya)
√

2E+

(

E+ + ∆ − 4B
∑

α=x,y,z sin2 kαa

2

)

A sin kz
√

2E+

(

E+ + ∆ − 4B
∑

α=x,y,z sin2 kαa

2

)

0

∆ − 4B
∑

α=x,y,z sin2 kαa

2
+ E+

√

2E+

(

E+ + ∆ − 4B
∑

α=x,y,z sin2 kαa

2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.94)

and

ψ2 = Θψ1. (3.95)

The corresponding negative energy is

E− = −

√

√

√

√A2
∑

α=x,y,z

sin2 kαa +

(

∆ − 4B
∑

α=x,y,z

sin2 kαa

2

)2

. (3.96)
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The parity at the time reversal invariant momenta is

δ|k=Γi
= 〈ψ1|P|ψ1〉 = sgn

(

−∆ +
∑

α=x,y,z

4B sin2 Γαa

2

)

. (3.97)

At the time reversal invariant points

δ|Γi a=(0,0,0) = −sgn(∆), (3.98)

δ|Γi a=(0,0,π) = δ|Γi a=(0,π,0) = δ|Γi a=(π,0,0) = sgn(−∆ + 4B), (3.99)

δ|Γi a=(0,π,π) = δ|Γi a=(π,π,0) = δ|Γi a=(π,0,π) = sgn(−∆ + 8B), (3.100)

δ|Γi a=(π,π,π) = sgn(−∆ + 12B). (3.101)

For kx = 0,

(−1)ν1 = δ|Γi a=(0,0,0)δ|Γi a=(0,0,π)δ|Γi a=(0,π,0)δ|Γi a=(0,π,π)

= sgn(∆)sgn(∆ − 8B). (3.102)

For ky = 0,

(−1)ν2 = δ|Γi a=(0,0,0)δ|Γi a=(0,0,π)δ|Γi a=(π,0,0)δ|Γi a=(π,0,π)

= sgn(∆)sgn(∆ − 8B). (3.103)

For kz = 0,

(−1)ν3 = δ|Γi a=(0,0,0)δ|Γi a=(0,π,0)δ|Γi a=(π,0,0)δ|Γi a=(π,π,0)

= sgn(∆)sgn(∆ − 8B). (3.104)

For kx a = π,

(−1)ν
′
1 = δ|Γi a=(π,0,0)δ|Γi a=(0,0,π)δ|Γi a=(π,π,0)δ|Γi a=(π,π,π)

= sgn(∆ − 4B)sgn(∆ − 12B). (3.105)

The prime index ν0 is determined by the product of the parities at the eight time

reversal invariant points,

(−1)ν0 =
∏

i

δi = (−1)ν1+ν ′
1

= sgn(∆)sgn(∆ − 4B)sgn(∆ − 8B)sgn(∆ − 12B). (3.106)
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Thus, for B > 0,

(ν0; ν1, ν2, ν3) = (0; 0, 0, 0), for ∆ < 0, (3.107)

(ν0; ν1, ν2, ν3) = (1; 1, 1, 1), for 0 < ∆ < 4B, (3.108)

(ν0; ν1, ν2, ν3) = (0; 1, 1, 1), for 4B < ∆ < 8B, (3.109)

(ν0; ν1, ν2, ν3) = (1; 0, 0, 0), for 8B < ∆ < 12B, (3.110)

(ν0; ν1, ν2, ν3) = (0; 0, 0, 0), for ∆ > 12B, (3.111)

The system is topologically non-trivial only if 0 < ∆ < 4B and 8B < ∆ < 12B.

3.7 Summary

In summary, a minimal lattice model for a topological insulator is established in

one, two and three dimensions. According to the parity of the eigenstates at the time

reversal invariant momenta, we conclude that (supposing that B is positive),

1. In one dimension, it is topologically non-trivial for 0 < ∆ < 4B.

2. In two dimensions, it is topologically non-trivial for 0 < ∆ < 4B and 4B < ∆ <

8B.

3. In three dimensions, it is topologically non-trivial for 0 < ∆ < 4B and 8B < ∆ <

12B.
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Chapter 4

Topological Invariants

Abstract There are two classes of topological invariants for topological phases of

matter. The first is characterized by the elements of the group Z, which consists of

all integers. For example, the integer quantum Hall effect is characterized by the

integer n, i.e., the filling factor of electrons. The second class is characterized by

the elements of the group Z2, which consists of 0 and 1, or 1 and −1 depending on

convention. In a topological insulator with time reversal symmetry, 0 and 1 represent

the existence of odd and even numbers of the surface states in three dimensions or

even and odd numbered pairs of helical edge states in two dimensions, respectively.

4.1 Bloch’s Theorem and Band Theory

A Bloch wave or a Bloch state, named after Felix Bloch, is the wave function of an

electron in a periodic potential. Let us consider a Hamiltonian H(r) = H(r + R) in

a periodic potential. Bloch’s theorem states that the eigenfunction for such a system

must be in the form

|ψn,k(r)〉 = eik·r|un,k(r)〉, (4.1)

where un,k(r) has the same period of the crystal lattice R with un,k(r) = un,k(r + R).

The corresponding energy eigenvalues satisfy En(k) = En(k + K), periodic with the

periodicity K of a reciprocal lattice vector. The energies associated with the index n

vary continuously with the wave vector k and form an energy band identified by the

band index n. The eigenvalues for a given n are periodic in k; all distinct values of

En(k) are located within the first Brillouin zone of the reciprocal lattice. See [1].

According to the Pauli exclusion principle, each state can be occupied at most by

one electron. Electrons will fill lower energy states first and consequently form the

Fermi sea for a finite density of electrons. The highest energy of the occupied states

is called the Fermi level or Fermi energy. Near the Fermi level, if a band is partially

occupied, it is in a metallic state. In this case when an external field is applied to

the system, the field will force electrons to shift away from the equilibrium position,

and gain a non-zero total momentum to form a flow of electric current. If the band is
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fully filled, and there exists an energy gap between the filled or valence band and the

unfilled or conduction band, it is an insulating state. In this case a weak external field

cannot force the electrons to move away from the occupied states to circulate a flow

of electric current. This is the case for a band insulator. The size of the energy gap

serves as a dividing line between semiconductors and insulators. If the energy gap

is smaller than 4 eV (roughly), the electrons can be excited easily from the valence

band to the conduction band at finite temperatures, although the fully filled band does

not contribute to electrical conductivity at absolute zero. Thus, a semiconductor has

a smaller energy gap than an insulator.

4.2 Berry Phase

The choice of |un,k〉 is not unique. For example, there is always a U(1), i.e., a phase

uncertainty,

|un,k〉 → eif (k)|un,k〉. (4.2)

A definite set of phase choices in the Brillouin zone is called a definite gauge [2]. For a

time reversal invariant system, there always exists a continuous gauge throughout the

Brillouin zone. For a time reversal broken system with a nonzero Chern number, there

is no such gauge so continuous gauges have to be defined in different patches of the

Brillouin zone [2, 3]. However, any physical observable must be gauge independent.

Consider the system Hamiltonian that varies with time through a parameter

R → R(t). We are interested in a cyclic evolution of the system from t = 0 to T

such that R(t = 0) = R(t = T). The parameter R(t) changes very slowly along a

closed path C in the parameter space. To solve the problem, we first introduce an

instantaneous orthogonal basis from the instantaneous eigenstates of H(R(t)) at time

t or each value of R(t),

H(R(t)) |un(R(t))〉 = εn(R(t)) |un(R(t))〉 . (4.3)

This equation does not completely determine the basis function of |un(R(t))〉 due

to the phase uncertainty. However we can require that the functions are smooth and

single valued along the closed path. The equation also does not describe correctly the

time evolution of the quantum states. Instead, the quantum state should be governed

by the time dependent Schrödinger equation,

i�∂t |Φ(t)〉 = H(R(t)) |Φ(t)〉 . (4.4)

In the adiabatic approximation [4], the system will stay at one of the instantaneous

eigenstates (usually we choose the lowest energy state or the ground state) if the
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instantaneous state is clearly separated from the others and the time evolution is very

slow. In this case, this wave function can be related to |un(R(t))〉:

|Φ(t)〉 = eiγc(t) exp

[

−
i

�

∫ t

0

dt′εn

(

R
(

t′
))

]

|un(R(t))〉 (4.5)

and

∂tγ(t) = i 〈un(t)| ∂t |un(t)〉 . (4.6)

Using the relation, ∂t = ∂tR · ∇R as the parameter R is a function of time t, the phase

factor can be expressed as a path integral

γc =
∫

C

dR · An(R), (4.7)

where An(R) is a vector

An(R) = i 〈un(R(t))| ∇R |un(R(t))〉 . (4.8)

This vector is called the Berry connection or the Berry vector potential. In addition

to the dynamic phase which is determined by integrating over εn(R(t′)), the state

|Φ(t)〉 will acquire an additional phase γc during the adiabatic evolution.

As An(R) is gauge dependent, it becomes

An(R) → An(R)−∇Rχ (4.9)

if we make a gauge transformation

|un(R(t))〉 → eiχ(R) |un(R(t))〉 . (4.10)

Thus, the phase γc will be changed by χ(R(t = T)) − χ(R(t = 0)) for the initial

and final points. For a cyclic evolution of the system along a closed path C with

R(0) = R(T), the single-valued condition of the wave function requires

χ(R(T)) − χ(R(0)) = 2mπ (4.11)

with an integer m. Therefore for a closed path C, γc is independent of the gauge, and

now is known as the Berry phase

γc =
∮

C

dR · An(R). (4.12)
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By using the Stokes’ theorem, γc can be expressed as an area integral

γc =
∫

A

dS · (R), (4.13)

where the Berry curvature from the Berry connection is defined as

Ωn(R) = ∇R × An(R). (4.14)

Its components are

Ωn
μν(R) = ∂μ (An)ν − ∂ν (An)μ

= i
(〈

∂μun(R)|∂νun(R)
〉

−
〈

∂νun(R)|∂μun(R)
〉)

, (4.15)

where we denote ∂/∂Rμ by ∂μ.

The Berry curvature Ω is analogous to the magnetic field in electrodynamics.

Using the completeness relation for the basis,

∑

n

|un(R)〉 〈un(R)| = 1 (4.16)

and the identity

〈um(R)| ∇R |un(R)〉 =
〈um(R)| ∇RH(R) |un(R)〉

En − Em

(4.17)

(m �= n), the Berry curvature has an alternative expression:

Ωn = Im
∑

m �=n

〈un(R)| ∇RH(R) |um(R)〉 × 〈um(R)| ∇RH(R) |un(R)〉
(En − Em)2

. (4.18)

It is noted that the Berry curvature in (4.15) is expressed in term of one state un(R),

but that in (4.18) is expressed as a summation over all possible states. It reflects that

the Berry curvature describes the global properties of a system, NOT the property of

a single band.

Consider a two-level system as an example. The general Hamiltonian describing

a two-level problem has the form,

H =
1

2

(

Z X − iY

X + iY −Z

)

=
1

2
R · σ. (4.19)

The energy eigenvalues are E± = ±R = ±
√

X2 + Y 2 + Z2 and the two levels cross

at the point of R = 0. The gradient of the Hamiltonian in the parameter space is
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▽R H =
1

2
σ (4.20)

and we find that the Berry curvature has its vector form

Ω =
1

2

R

R3
. (4.21)

This curvature can be regarded as a field generated by a magnetic monopole at the

origin R = 0. Integrating the Berry curvature over a sphere surface containing the

monopole, we have

1

2π

∫

A

dS·Ω = 1. (4.22)

The divergence of Ω has the property

∇R · Ω = 2πδ(R). (4.23)

Thus, a point-like “magnetic monopole” is located at R = 0, which generates the

Berry curvature.

In a Bloch band, the Berry curvature is defined as

Ωn(k) = i ▽k ×〈un(k)| ∇k |un(k)〉 . (4.24)

As the Brillouin zone has the periodic boundary condition in momentum space and

the two points k and k + K in the Brillouin zone can be identified as the same point,

where K is the reciprocal lattice vector, a closed path can be realized when k sweeps

the whole Brillouin zone. In this case the Berry phase across the Brillouin zone

becomes [5]

γc =
∫

BZ

dk · [▽k × 〈un(k)| i∇k |un(k)〉] . (4.25)

4.3 Quantum Hall Conductance and the Chern Number

The Hall conductance in a two-dimensional band insulator can be expressed in terms

of the Berry curvature,

σxy =
e2

�

∫

BZ

dk

(2π)2
Ωkx,ky

= n
e2

h
, (4.26)

which is quantized for an integer n (including zero). Consider a crystal under pertur-

bation of a weak electric field E. Usually, the electrostatic potential φ(r), which pro-

duces an electric field E = − ▽ φ, varies linearly in space and breaks the translational
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symmetry. If the electric field enters the Hamiltonian through the electrostatic poten-

tial φ(r), the wave vector is no longer a good quantum number and the Bloch’s

theorem fails to apply to the problem. To avoid this difficulty, recall the relation

E = −∇φ − ∂tA. One can introduce a uniform vector potential A(t) that changes

over time such that ∂tA(t) = −E. The Hamiltonian is written as

H(t) =
1

2m

[

p + eA(t)
]

2 + V(r). (4.27)

Here we take the elementary charge of electron −e (e > 0). In this way the lattice

translational symmetry is preserved, and the momentum p is still a good quantum

number. In momentum space, p = �q, we have

H(q, t) = H
[

q +
e

�
A(t)

]

. (4.28)

Now we introduce the gauge-invariant crystal momentum,

k = q +
e

�
A(t). (4.29)

As q is a good quantum number, i.e., dq/dt = 0, it follows that

dk

dt
= −

e

�
E. (4.30)

The velocity operator is defined by

v =
dr

dt
=

i

�
[H, r]. (4.31)

In momentum space, it becomes

v(q) =
1

�
∇qH(q, t). (4.32)

The presence of A(t) makes the problem time-dependent. The wave function for

the quantum state ψ(t) is governed by the time-dependent Schrödinger equation,

i�∂t |ψ(t)〉 = H(t) |ψ(t)〉 . (4.33)

Using the instantaneous eigenstates as the basis, we can expand the wave function

ψ(t) in terms of the instantaneous eigenstates |un(t)〉 and eigenvalues En(t)

|ψ(t)〉 =
∑

n

exp

(

1

i�

∫ t

t0

dt′En(t
′)

)

an(t) |un(q, t)〉 . (4.34)
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Then the Schrödinger equation is reduced to

dan(t)

dt
= −

∑

m

am(t) 〈un(t)|∂tum(t)〉 exp

(

−i

∫ t

t0

dt′ωmn(t
′)

)

, (4.35)

where ωmn(t) =
(

Em(t′) − En(t
′)
)

/�. For our purpose we consider an adiabatic

process in which the vector parameter R(t) varies with time very slowly, and

〈un(q, t)|∂tun(q, t)〉 = ∂tR· 〈un(q, R)| ▽R |un(q, R)〉 << 1. (4.36)

In the limit of ∂tR = 0, we have

∂tan = 0. (4.37)

If the system is initially in the eigenstate |un(q, t = 0)〉, it will stay in that state

afterwards. This is the quantum adiabatic theorem [4].

Now we consider the case that ∂tR �= 0 but is still very small. Suppose the ini-

tial state has an(0) = 1 and am(0) = 0 for all m �= n. We apply the time-dependent

perturbation theory to calculate the quantum correction to the states due to the per-

turbation of the electric field. The zero-order perturbation gives a(0)
m = δm,n. Thus,

the first-order perturbation a(1)
m is given by

da(1)
m (t)

dt
= −〈um(q, t)|∂tun(q, t)〉 exp

(

−i

∫ t

t0

dt′ωnm(t′)

)

. (4.38)

For m = n,
da(1)

m (t)

dt
= 0. Thus, we have

a(1)
n (t) = 0. (4.39)

For m �= n,

a(1)
m (t) = −i�

〈um(q, t)|∂tun(q, t)〉
En − Em

exp

(

−i

∫ t

t0

dt′ωnm(t′)

)

. (4.40)

Thus, the wave function up to the first-order perturbation is given by

|un(t)〉 → |un(q, t)〉 − i�
∑

m �=n

|um(q, t)〉
〈um(q, t)|∂tun(q, t)〉

En − Em

. (4.41)

The second term is caused by the external field. Using the velocity operator in (4.32),

the average velocity in the state after the perturbation becomes
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vn(q) = −i
∑

m �=n

( 〈un(q, t)| ∇qH |um(q, t)〉 〈um(q, t)|∂tun(q, t)〉
En − Em

− h.c

)

+
1

�
∇qEn(q) (4.42)

by ignoring the higher order terms. Furthermore using the identity

〈un(q, t)| ∇qH |um(q, t)〉 = (En − Em)
〈

∇qun(q, t)|um(q, t)
〉

, (4.43)

the expression can be simplified in a compact form,

vn(q) =
1

�
∇qEn(q) − Ωn

q,t, (4.44)

where

Ωn
q,t = i

(〈

∇qun|∂tun

〉

−
〈

∂tun|∇qun

〉)

. (4.45)

Thus, in the presence of an electric field, an electron can acquire an anomalous

transverse velocity proportional to the Berry curvature of the energy band [6, 7]. It

is noted that the Berry curvature is defined in the space of (t, q).

It follows from (4.29) and (4.30) that

∇q = ∇k (4.46)

and

∂t = ∂tk·▽k = −
e

�
E · ∇k. (4.47)

Thus, the velocity is reduced to

vn(q) =
1

�
∇kEn(k) −

e

�
E × Ωn(k), (4.48)

where

Ωn(k) = ∇k × 〈un(k)| i∇k |un(k)〉
= i 〈∇kun(k)| × |∇kun(k)〉 . (4.49)

Thus, the external field produces a transverse velocity in an adiabatic process. The

electric current in the presence of E is defined by

j = −e
∑

n

∫

dk

(2π)2
vn(k)f (k), (4.50)
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where f (k) is the Fermi-Dirac distribution function. Suppose all bands below the

Fermi level are fully filled. The sum over the first term in the velocity in (4.48)

becomes zero, and the second term gives a Hall current

jα = σHǫαβEβ (4.51)

with

σH =
e2

h

1

2π

∑

n

∫

BZ

dkΩn
kx,ky

. (4.52)

The integral runs over the first Brillouin zone, and

Ωn
kx,ky

= Ωn
kx+π,ky

= Ωn
kx,ky+π. (4.53)

Hence the first Brillouin zone forms a closed torus. In this expression, we assume

that all bands are fully filled, and there exists an energy gap between the filled band

or valence band and the unfilled band or conduction band. The integral over a closed

torus gives an integer ν (including zero).

σH = ν
e2

h
. (4.54)

The number is called Thouless–Kohmoto–Nightingale–den Nijs or TKNN number.

This result can also be derived from the Kubo formula explicitly (see Appendix A.1).

4.4 Electric Polarization in a Cyclic Adiabatic Evolution

Electric polarization P is the electric dipole moment per volume in dielectric media,

which is one of the essential concepts in electrodynamics. It is an intensive vector

quantity that carries the meaning of the dipole moment per unit volume. For example,

in a ferroelectric material, the electric polarization can present spontaneously. In the

Maxwell’s equation for the displacement D,

∇ · D = −ρ(t), (4.55)

where D = ǫ0E + P. Here E is the electric field, P is the polarization density and

ρ(t) is the charge density. Consider a solid in which there is no electric field. The

continuity equation ∂tρ = −∇ · j leads to

∇ · (∂tP − j) = 0, (4.56)
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where j is the macroscopic current density. In an adiabatic evolution of a system, up

to a divergence-free part, the change in the polarization density in a cyclic evolution

is given by

∆Pα =
∫ T

0

dtjα. (4.57)

This equation is the basis for the modern theory of polarization. In the early 1990s,

it was realized that the polarization difference has a topological meaning, and is

actually related to the Berry phase [2, 8].

In an adiabatic process, it follows from (4.44) that

∆Pα = e
∑

n

∫ T

0

dt

∫

BZ

dq

(2π)d
Ωn

qα,t, (4.58)

which is determined by the Berry curvature Ωn
qα,t The summation runs over all the

occupied bands. In general we suppose that the adiabatic transformation is parame-

terized by a scalar λ(t), it follows that [9]

∆Pα = e
∑

n

∫ λ(T)

λ(0)

dλ

∫

BZ

dq

(2π)d
Ωn

qα,λ, (4.59)

where

Ωn
qα,λ = ∂qα

An
λ − ∂λAn

qα
. (4.60)

In the course of a cyclic evolution, λ(T) and λ(0) will represent the same state.

Consider the periodicity of the q space. The qα − λplane forms a close torus. It should

be pointed out that the polarization is determined up to an uncertainty quantum. As

the integral does not track the history of λ, there is no information on how many

cycles λ has gone through. For each cycle an integer number ν of electrons are

transported across the sample [2],

∆Pα = eνa, (4.61)

where a is the lattice constant. Here the integer ν appears as a topological invariant

for the adiabatic transport.

From the Bloch function we can define the Wannier function associated with the

lattice vector,

|R, n〉 =
1

2π

∫

dke−ik·(R−r)
∣

∣un,k

〉

. (4.62)

King-Smith and Vanderbilt [9] showed that the polarization can be defined by the

sum over all the bands of the center of the charge of the Wannier state associated

with R = 0,
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P = −e
∑

n

〈R = 0, n| r |R = 0, n〉 = −
e

2π

∫

dk · A(k), (4.63)

where A(k) = i
∑

n

〈

un,k

∣

∣∇k

∣

∣un,k

〉

. Here we have used the relation, r = i▽k.

4.5 Thouless Charge Pump

In the cyclic adiabatic evolution of a one-dimensional insulator,

H(k, t + T) = H(k, t), (4.64)

the charge pumped across the insulator is always an integer, which is defined as a

topological invariant, i.e., the electric polarization

∆P =
e

2π

∮

[A(k, T) − A(k, 0)] dk = nea. (4.65)

Here we present an example to illustrate the process of the charge pump. The Rice–

Mele model was introduced in the study of solitons in polyenes in the 1980’s, and

later used to study ferroelectricity [10]. It reads

H = +hst(t)
∑

n

(−1)nc†
ncn +

1

2

N
∑

n=1

[

t0 + δ(t)(−1)n
]

c†
ncn+1 + h.c., (4.66)

where

(δ(t), hst(t)) =
(

δ0 cos
2πt

T
, h0 sin

2πt

T

)

(4.67)

and N is an even number. This is a time-dependent model: δ(t) denotes the displace-

ments of the nth and (n + 1)th electrons from their respective equilibrium positions

in a staggered or dimerized form, and ±hst(t) are the staggered on-site potentials.

Both δ(t) and hst(t) are periodic function of time t with the same period T .

We consider a system with an even number 2N of lattice sites and take a periodic

boundary condition. After performing the Fourier transformation,

ak =
1

√
N

∑

j∈2n

cje
−ikj (4.68)



62 4 Topological Invariants

and

bk =
1

√
N

∑

j∈2n+1

cje
−ikj, (4.69)

the Hamiltonian is reduced to

H =
∑

k

(a
†
k, b

†
k) [d(k, t) · σ]

(

ak

bk

)

, (4.70)

where

dx(k, t) =
1

2
(t0 + δ(t)) +

1

2
(t0 − δ(t)) cos k, (4.71)

dy(k, t) = −
1

2
(t0 − δ(t)) sin k, (4.72)

dz(k, t) = hst(t). (4.73)

The instantaneous dispersions of the two bands at time t are

ε±(k, t) = ± |d(k, t)|

= ±
√

h2
0 sin2 2πt

T
+ δ2

0 cos2
2πt

T
sin2 k

2
+ t2

0 cos2
k

2
. (4.74)

The degeneracy points are h0 = 0, or δ0 = 0, or t0 = 0. The energy gap between

the two bands is ∆E = min(2 |t0| , 2 |h0| , 2 |δ0|). Therefore, the adiabatic condition

requires that T ≫ �/ min(2 |t0| , 2 |h0| , 2 |δ0|). If the low band is fully filled, the

charge pump in the cyclic adiabatic evolution is associated with the Chern number

of the ground state ∆P = ncea,

nc =
∫ T

0

dt

∫

BZ

dk

2π
Ωn

k,t

= −
1

4π

∫

dk

∫ T

0

dt
d(k, t) · [∂kd(k, t) × ∂td(k, t)]

|d(k, t)|3
= −sgn(t0h0δ0), (4.75)

because the k − t plane forms a closed torus due the the periodicity of T . We find

that the Chern number is +1 or −1 once t0h0δ0 �= 0. A topological quantum phase

transition occurs at the points of h0 = 0, or δ0 = 0, or t0 = 0, where the Chern number

changes its sign whenever any one of the parameters changes its sign.
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The charge pumping can be understood by examining the end states in an open

chain. The Rice–Mele model is reduced to the Su–Schrieffer–Heeger model when

δ(t) �= 0 and hst(t) = 0. The solution of the end state in this model can be found

in Sect. 5.1. At t = 0, (δ(t), hst(t)) = (+δ0, 0). The hopping amplitudes along the

chain starting from site i = 1 are t0 − δ0, t0 + δ0, t0 − δ0, t0 + δ0, · · · . Assume

t0 > δ0 > 0. In this case, there are the two end states of zero energy at two ends

of the chain, which are degenerate at h0 = 0. At the half filling, which occurs

when one particle occupies two sites on average, we suppose that the right end

state is occupied, and the left end state is empty. With increasing time t, the on-

site energy hst(t) lifts the end mode away from the zero energy to the valence

band: one is pushed to the positive band and the other to the negative band At

t = T/2, (δ(t), hst(t)) = (−δ0, 0). The hopping amplitudes become t0 + δ0, t0 − δ0,

t0 + δ0, t0 − δ0, · · · . In this case, the two end states disappear, as they have already

evolved into bulk states. When t continuously increases, the end states reappear. How-

ever, the left end state becomes the occupied state, and the right end state becomes

empty. At t = T , (δ(t), hst(t)) = (+δ0, 0). The hopping amplitudes go back to the

case of t = 0. The Hamiltonian returns to the original at t = 0. Although the energy

eigenstates remain unchanged, due to the double degeneracy of the ground state at

half filling, the electron configuration has changed: the electron in the right end state

at t = 0 has been transferred to the left end state at t = T . In this way one electron

has been pumped from the left to the right side. The instantaneous spectra of the

Rice–Mele mode in (4.66) are plotted in Fig. 4.1.

Fig. 4.1 Instantaneous

energy spectra of the

Rice–Mele model. The solid

line stands for the end state

near the right side and the

dashed line stands for the

state at the left side. It

illustrates the evolution of

the end state from one side to

the other. Here we take

δ0 = 0.2t0 and h0 = 0.5t0

http://dx.doi.org/10.1007/978-981-10-4606-3_5
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4.6 Fu–Kane Spin Pump

Fu and Kane proposed an electronic model with spin 1
2

for the spin pump by gener-

alizing the spinless Rice–Mele model [11],

H = hst(t)
∑

i,σ=±1

(−1)ic
†
i,σσz

σσ′ci,σ′ +
1

2

∑

i,σ=±1

[

t0 + (−1)iδ(t)
]

c
†
i,σci+1,σ + h.c.,

(4.76)

where

(δ(t), hst(t)) =
(

δ0 cos
2πt

T
, h0 sin

2πt

T

)

. (4.77)

A magnetic staggered field is introduced to replace the on-site potential. We choose

the eigenstates of σz as a basis, and set φ
†
k,↑ = (a

†
k,↑, b

†
k,↑) and φ

†
k,↓ = (a

†
k,↓, b

†
k,↓).

The model is diagonalized in block with spin up and down,

H =
∑

k

(φ
†
k,↑,φ

†
k,↓)

(

d+ · σ 0

0 d− · σ

)(

φk,↑
φk,↓

)

, (4.78)

where

(d±)x =
1

2
(t0 + δ(t)) +

1

2
(t0 − δ(t)) cos k, (4.79)

(d±)y = −
1

2
(t0 − δ(t)) sin k, (4.80)

(d±)z = ±hst(t). (4.81)

Thus, electrons with spin up and down are decoupled. It is noted that (d±)z differ

by a minus sign. The corresponding Berry curvatures for electrons with spin up and

down will also differ by a minus sign. As t increases from 0 to T , if an electron

with spin up moves from left to right, there must be another electron with spin down

moving from right to left

∆P↑ = +ea (4.82)

and

∆P↓ = −ea. (4.83)

As a result, there is no charge pump in a cyclic evolution. Instead electron spins

exchange at the ends as electrons with spin up and down move in opposite direc-

tions simultaneously. When Sz is conserved, this idea can be used to describe the a

quantized spin pump.
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Usually electron spin does not obey a fundamental conservation law. The concept

of spin pump cannot be simply generalized to the case that Sz is non-conserved.

However, Fu and Kane [11] proposed that similar events occur even when the spin

degrees of freedom are non-conserved. Consider the inclusion of an additional term

for spin-orbit coupling,

Vso =
∑

i,σ,σ′

ieso · (c
†
iσσσσ′ci+1σ′ − c

†
i+1σσσσ′ciσ′), (4.84)

into (4.76) where eso is an arbitrary vector characterizing the spin-orbit interaction.

In this way, the z-component spin σz is no longer a good quantum number

Vso =
∑

i,σ,σ′

ieso · σσσ′

[

(1 − eik)a
†
k,σbk,σ′ − (1 − e−ik)b

†
k,σak,σ′

]

. (4.85)

In this case, there still exists an additional symmetry, i.e., time reversal symmetry,

and the Hamiltonian satisfies the following relation

H(−t) = ΘH(t)Θ−1. (4.86)

For an adiabatic cyclic evolution, we have

H(t) = H(t + T). (4.87)

There exist two distinct points, t∗1 = 0 and t∗2 = T/2 at which the Hamiltonian is time

reversal invariant

H(t∗i ) = ΘH(t∗i )Θ−1 (4.88)

(i = 1, 2). The existence of these two points plays a crucial role in the topological

classification of the pump cycle.

In general, in the absence of a conservation law, there will be no level crossing, and

the system will stay in the same state before and after cycling. In the case of charge

pump, the level crossing is protected by the charge conservation. In this case it is the

time reversal symmetry that protects the level crossing at t∗1 or t∗2 . At the two points,

there exists a Kramers degeneracy: the two states, as time reversal counterparts, have

the same energy. Fu and Kane proposed introducing the concept of time reversal

polarization, which is quantized in the spin pump.
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4.7 Integer Quantum Hall Effect: The Laughlin Argument

Laughlin showed that the quantization of the Hall conductance is a consequence

of the gauge invariance and the existence of the mobility gap [12]. Consider a two-

dimensional electron gas which is rolled as a cylinder along the y-direction, as shown

in Fig. 4.2. A magnetic flux φ is threading through the cylinder and varies with time

very slowly. Suppose the system has an energy gap and the Fermi energy is located in

the gap. According to the Faraday law, the varying magnetic field induces an electric

field Ey around the magnetic flux φ. The Hall current density Jx is given by

Jx = σxyEy, (4.89)

where the coefficient σxy is the Hall conductance. Then, from the continuity equation

of charge, the charge Q flowing through the cylinder is

dQ

dt
= −

∮

dl · Jx = −σxy

∮

dl · Ey. (4.90)

Using the Stokes’ theorem,

∮

dl · Ey =
∫

dS · ∇ × Ey. (4.91)

Furthermore it follows from Faraday law, ∇ × E = − ∂B
∂t

, that

dQ

dt
= σxy

∫

dS ·
∂B

∂t
= σxy

dφ

dt
(4.92)

or

∆Q = σxy∆φ, (4.93)

Fig. 4.2 Schematic of the setup for Laughlin’s Gedanken experiment for the integer quantum Hall

effect. A changing flux through the cylindrical device generates an electric field Ey in the y-direction,

which induces a Hall current Jx in the surface along the x-direction. The change of one quantum

flux will transfer an integer of elementary charges from one side to the other side
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where φ =
∫

dS · B is the magnetic flux. Taking the change of magnetic flux as ∆φ =
φ0 = h/e, the Hall conductance becomes σxy = e

h
∆Q. Thus, the Hall conductance

is determined by the charge transfer ∆Q after changing the magnetic flux by one

magnetic flux quantum ∆φ = φ0.

What’s the value of ∆Q? In the present geometry, the presence of the magnetic

flux in the cylinder will lead to a gauge transformation in the vector potential,

p + eA → p + e(A + δA). (4.94)

We take δA = �

e
∇λ. The wave function will be transformed as

Ψ (r) → eiλ(r)Ψ (r). (4.95)

For a quantum flux
∮

δA · dl = φ0, one has λ(r,φ = φ0) − λ(r,φ = 0) = 2π. Thus,

the eigenstate before and after the variation of one quantum flux are identical, i.e.,

H(φ = φ0) = H(φ = 0). (4.96)

However, for a many-body system, the occupancy of electrons may be different after

the variation of one quantum flux,

∆Q = ne, (4.97)

where n is an integer that is determined by the topology of the band structure of the

system. Therefore we conclude that

σxy = n
e2

h
. (4.98)

This can be regarded as a generalization of the adiabatic charge pump in a two-

dimensional system.

The Fu–Kane argument is a spin version of the Laughlin argument as a general-

ization from the integer quantum Hall effect to the quantum spin Hall effect, which

is similar to a generalization from a charge pump to a spin pump. For a quantum

spin system, time reversal symmetry will give a different topological invariant for

the quantum spin Hall system. Consider a setup of the same geometry as in the pre-

vious subsection for the quantum Hall effect, as shown in Fig. 4.2. A magnetic flux

φ threads a two-dimensional cylinder, which will cause an extra change of the phase

factor before the physical states, ei2πφ/φ0 . the magnetic flux plays the role of the edge

crystal momentum kx in the band theory. Increasing the magnetic flux with time t

from φ = 0 to φ0 may form an adiabatic cyclic evolution. There exists a Kramers

degeneracy at φ = 0 and φ0/2,

H(0) = ΘH(0)Θ−1 (4.99)
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and

H(φ0/2) = ΘH(φ0/2)Θ−1. (4.100)

Thus, a variation by a half flux quantum will change the electron parity number at

two ends.

4.8 Time Reversal Symmetry and the Z2 Index

Time reversal symmetry implies that [H(r),Θ] = 0, where the time reversal operator

Θ = −iσyK and K is the complex conjugation. Note in the band theory time reversal

symmetry means that,

H(−k) = ΘH(k)Θ−1, (4.101)

as the good quantum number k has already replaced the momentum operator

p = −i�∇ in the Hamiltonian, and the later changes a minus sign under time reversal

Θ . In the Brillouin zone of a square lattice, there are four ( eight for a cubic lattice in

three dimensions) time reversal invariant points satisfying −Γi = Γi + niG, where G

is a reciprocal lattice vector and ni = 0 or 1 [11, 13, 16]. At these points, Γi = niG/2,

H(Γi) = ΘH(Γi)Θ
−1 (4.102)

always holds, therefore the eigenstates are always at least doubly degenerate due

to the Kramers degeneracy. A pair of such energy bands E2n−1(k) and E2n(k) are

called a Kramers pair, as illustrated in Fig. 4.3. These two bands (labeled as (n, I)

and (n, II), respectively) are related with each other by a time reversal operation

Fig. 4.3 Schematic of band

structures En(k), along the

direction of one reciprocal

vector. The Kramers pairs

cross at time reversal

invariant points k = 0, G1/2
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accompanied by a phase factor [11]. Their crossings at time reversal invariant points

are protected by time reversal symmetry. If a Kramers pair is isolated from other

pairs by finite gaps, a topological invariant associated with this pair can be defined.

For simplicity, we consider a one-dimensional system and suppose that there is

no additional degeneracy other than those required by the time reversal symmetry.

Therefore the 2N eigenstates cab be divided into N pairs that satisfy

∣

∣uI
n(−k)

〉

= −eiχk,nΘ
∣

∣uII
n (k)

〉

. (4.103)

Then,

Θ
∣

∣uI
n(−k)

〉

= −Θeiχk,nΘ
∣

∣uII
n (k)

〉

= e−iχk,n
∣

∣uII
n (k)

〉

, (4.104)

as Θ2 = −1 for electrons with spin 1
2
. Thus, one has the relation,

∣

∣uII
n (−k)

〉

= eiχ−k,nΘ
∣

∣uI
n(k)

〉

. (4.105)

The partial polarization associated with either of the categories s = I or II can be

written as

Ps =
∫

BZ

dk

2π
As

k . (4.106)

with As
k = i

∑

n

〈

us
n(k)|∇k|us

n(k)
〉

. It is invariant (up to a lattice translation) under

changes in the phases of
∣

∣uI
n(k)

〉

and
∣

∣uII
n (k)

〉

. However, this appears to depend on

the arbitrary choice of the label I and II being assigned to each band. To make this

invariance explicit for Ps, we separate the integral into two parts

PI =
∫ π

0

dk

2π
AI

k +
∫ 0

−π

dk

2π
AI

k

=
∫ π

0

dk

2π
AI

k +
∫ π

0

dk

2π
AI

−k . (4.107)

Using the time reversal constraint,

〈

ΘuII
n (k)|∂k|ΘuII

n (k)
〉

= −
〈

uII
n (k)|∂k|uII

n (k)
〉

, (4.108)

we have

AI
−k = AII

k −
∑

n

∂kχk,n. (4.109)

It then follows that

PI =
∫ π

0

dk

2π
Ak −

1

2π

∑

n

(χπ,n − χ0,n), (4.110)
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where Ak = AI
k + AII

k . Introduce the U(2N) matrix

wmn(k) = 〈um(−k)| Θ |un(k)〉 . (4.111)

Then, only non-zero terms are

〈

uI
n(−k)

∣

∣Θ
∣

∣uII
n (k)

〉

= −e−iχk,n (4.112)

and

〈

uII
n (−k)

∣

∣Θ
∣

∣uI
n(k)

〉

= e−iχ−k,n . (4.113)

The matrix w is a direct product of 2 × 2 matrices with −e−iχk,n and e−iχ−k,n on the

off-diagonal. At k = 0 and π, w is antisymmetric. An antisymmetric matrix may be

characterized by a Pfaffian, whose square is equal to the determinant. Then we have

Pf [w(π)]

Pf [w(0)]
= exp

[

i
∑

n

(χπ,n − χ0,n)

]

. (4.114)

Thus,

PI =
1

2π

[∫ π

0

dkAk + i ln
Pf [w(π)]

Pf [w(0)]

]

. (4.115)

A similar formula can be obtain for PII . It follows from the time reversal symmetry

that PII = PI modulo an integer, reflecting the Kramers pairing of the Wannier states.

The charge polarization for one Kramers pair of states is

Pρ = PI + PII (4.116)

and the time reversal polarization is defined as

Pθ = PI − PII

=
1

2π

[∫ π

0

dkAk −
∫ 0

−π

dkAk + 2i ln
Pf [w(π)]

Pf [w(0)]

]

. (4.117)

In terms of the matrix wnm, the formula can be written in a compact form,

Pθ =
1

2πi

[∫ π

0

dkTr[w†∇kw] − 2 ln
Pf [w(π)]

Pf [w(0)]

]

. (4.118)

In the matrix w, only non-zero elements are off-diagonal,

Tr
[

w†∇kw
]

= Tr

[(

0 e−iχ−k,n

−eiχk,n 0

)

∇k

(

0 −e−iχk,n

eiχ−k,n 0

)]

. (4.119)
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Thus,

Tr
[

w†∇kw
]

= i∇kχ−k,n − i∇kχk,n. (4.120)

Using the unitarity of w, we have

Tr
[

w†∇kw
]

= Tr[∇k ln w(k)] = ∇k ln det[w(k)]. (4.121)

Thus, Pθ can be expressed as,

Pθ =
1

i2π

[

ln
det(w(π))

det(w(0))
− 2 ln

Pf (w(π))

Pf (w(0))

]

(4.122)

or

(−1)Pθ =
√

det(w(0))

Pf (w(0))

√
det(w(π))

Pf (w(π))
. (4.123)

In general, for a cyclic process of H(t + T) = H(t), it follows that

H(t∗1 = 0) = ΘH(0)Θ−1 (4.124)

and

H(t∗1 = T/2) = ΘH(T/2)Θ−1. (4.125)

The change of time reversal polarization is gauge invariant:

ν = [Pθ(T/2) − Pθ(0)] mod2. (4.126)

Consider the mapping between the time reversal invariant momenta Γi and the time

invariant point of time t∗i , we conclude that the topological invariant can be written

as

(−1)ν =
∏

i

√
det(w(Γi))

Pf (w(Γi))
. (4.127)

As

det(w(Γi)) =
[

Pf (w(Γi))
]2

, (4.128)

the right hand side of (4.127) is always +1 or −1. Correspondingly, ν is only an

integer modulo 2, i.e., 0 or 1. Thus, the time reversal polarization defines two distinct

polarization states, topologically trivial (ν = 0) and non-trivial (ν = 1). Fu and Kane

proposed that the value of ν is related to the presence or the absence of a Kramers

degenerate states at the end of a finite system [11].
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If an insulator has the additional inversion symmetry, there is a simplified algo-

rithm to calculate the Z2 invariant. Suppose that the Hamiltonian H has an inversion

symmetry,

H(−k) = PH(k)P−1, (4.129)

where the parity operator is defined by

P |r, sz〉 = P |−r, sz〉 . (4.130)

Here r is the coordinate and sz is the spin, which is unchanged by the parity P because

it is a pseudo vector. An explicit consequence of the combination of the time reversal

symmetry and inversion symmetry is the fact that the Berry curvature must vanish,

F(k) = ∇k × A(k) = 0. (4.131)

It follows from the definition of the Berry curvature that it is odd under time reversal,

F(−k) = −F(k), and even under inversion, F(−k) = F(k). Considering the mth

pair of the occupied energy bands at the time reversal invariant momentum Γi, we

define P
∣

∣u2m,i

〉

= ξ2m(Γi)
∣

∣u2m,i

〉

, where the parity eigenvalues ξ2m(Γi) = +1 or −1.

The degenerate Kramers partners share the same eigenvalue ξ2m = ξ2m−1. In this

case, there a simple formula to calculate δ [13]

(−1)ν =
∏

i

N
∏

m=1

ξ2m(Γi). (4.132)

In Sect. 3.6, we have already used this result to classify the topological phases in the

lattice model.

Note on Pfaffian: In mathematics, a skew-symmetric matrix is a square matrix

A whose transpose is its negative, A = −AT . The determinant of a skew-symmetric

matrix A can always be written as the square of a polynomial in the matrix entries,

which is called the Pfaffian of the matrix, denoted by Pf(A), i.e.,

det(A) = Pf (A)2. (4.133)

The term Pfaffian was introduced by Cayley [17] who named it after Johann Friedrich

Pfaff. The Pfaffian is nonvanishing only for 2n × 2n skew-symmetric matrices, in

which case it is a polynomial of degree n.

For example,

Pf

(

0 a

−a 0

)

= a (4.134)

http://dx.doi.org/10.1007/978-981-10-4606-3_3
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and

Pf

⎛

⎜

⎜

⎝

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

⎞

⎟

⎟

⎠

= af − be + dc. (4.135)

4.9 Generalization to Two and Three Dimensions

The generalization of the Z2 invariant from two to three dimensions is a milestone in

the development of topological insulators. The topological invariant characterizing

a two-dimensional band structure may be constructed by rolling a two-dimensional

system into a cylinder, as shown in Fig. 4.4a. Then the magnetic flux threading the

cylinder plays the role of the circumferential crystal momentum kx, with φ = 0 and

φ = φ0/2 to two edge time reversal momenta kx = Λ1 = 0 and kx = Λ2 = π/a.

Fig. 4.4 a A two-dimensional cylinder threaded by magnetic flux Φ. When the cylinder has a

circumference of a single lattice constant, Φ plays the role of the edge crystal momentum kx

in band theory. b The time-reversal invariant fluxes Φ = 0 and h/2e correspond to edge time-

reversal invariant momenta Λ1 = 0 and Λ2 = π/a. Λa are projections of pairs of the four bulk

time-reversal momenta Γi=(aμ), which reside in the two-dimensional Brillouin zone indicated by

the shaded region. c In three dimensions, the generalized cylinder can be visualized as a Corbino

donut, with two fluxes, which correspond to the two components of the surface crystal momentum.

d The four time-reversal invariant fluxes Φ1, Φ2 = 0, h/2e correspond to the four two-dimensional

surface momenta. Reprinted with permission from [13]. Copyright (2007) by the APS
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The Z2 invariant characterizes the change of the time reversal polarization in the

Kramers degeneracy at the ends of the one-dimensional system between kx = Λ1

and kx = Λ2. The change is related to the bulk band structure of a two-dimensional

system with the periodic boundary condition. For a square lattice, there are four time

reversal invariant momenta in the first Brillouin zone,

Γnx,ny
=
(nx

2
Gx,

ny

2
Gy

)

(4.136)

with nx, ny = 0, 1. For an edge perpendicular to Gy, the one-dimensional edge time

reversal invariant momenta are kx = Λ1 and kx = Λ2, which satisfy Γ1,ny
− Γ0,ny

=
Gx

2
. Thus, the time reversal polarization can be expressed as πx = δx1δx2 where

δxi =
√

det[w(Γi,y)]
Pf [w(Γi,y)]

= ±1. (4.137)

However, πx is a gauge invariant. A k-dependent gauge transformation can change the

sign of any pair of δi. If we roll the system into a cylinder along another direction, we

can calculate the time reversal polarization πy = δy1δy2. The product πxπy is gauge

invariant,

(−1)ν =
∏

nx,ny=0,1

√

det[w(Γnx,ny
)]

Pf [w(Γnx,ny
)]

. (4.138)

This ν can be equal to 0 or 1, and define a single Z2 invariant in two dimensions.

The Z2 invariant for three-dimensional crystals can be reduced to the problems

in two dimensions [11, 14, 15]. The three-dimensional Brillouin zone can be rolled

into a donus along the x- and y-directions as illustrated in Fig. 4.4c. There are 8 time

reversal invariant momenta for three-dimensional systems,

Γi=(n1,n2,n3) =
(n1

2
G1,

n2

2
G2,

n3

2
G3

)

(4.139)

with nj = 0, 1. They can be viewed as vertexes of a parallelepiped. For a fixed n1,

for example, n1 = 1, the point set

(n1

2
G1,

a2

2
G2,

a3

2
G3

)

(4.140)

for all a2, a3 ∈ [− 1
2
, 1

2
) defines a two-dimensional Brillouin zone of a two-

dimensional system respecting time reversal symmetry, for which a Z2 invariant can

be calculated using the method for the two-dimensional system, referred to as νn1=1.

The other 5 invariants νn1=0, νn2=0,1 and νn3=0,1 can be defined in a similar way. These

6 invariants are associated with the six planes of the above parallelepiped. As they
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belong to the same three-dimensional crystal, only four of them can be independent

due to the constraints [11, 14]

νn1=0 · νn1=1 = νn2=0 · νn2=1 = νn3=0 · νn3=1mod2. (4.141)

The 4 independent invariants can be chosen as, say, ν0 = νn1=0νn1=1, ν1 = νn1=1,

ν2 = νn2=1 and ν3 = νn3=1. The indices ν0; (ν1ν2ν3) reflects the topology of the

surface states [13, 16]. ν0 is given by

(−1)ν0 =
∏

n1,n2,n3=0,1

√

det[w(Γn1,n2,n3
)]

Pf [w(Γn1,n2,n3
)]

. (4.142)

If ν0 = 1, then the system is a strong topological insulator, with an odd number of

Dirac cones on all surfaces of the crystal. If ν0 = 0, then the crystal is a weak topo-

logical insulator, with an even number (including 0) of Dirac cones on the surfaces.

The case of ν0 = 0 is topologically equivalent to a two-dimensional insulator, and

therefore is not robust against disorder. Let’s take 0; (001) for an example [13]. The

surface states corresponding to the two-dimensional Brillouin zone spanned by G2

and G3 (with index ν1 = 0) have two Dirac cones, as do the surface states in the

Brillouin zone spanned by G1 and G3, with index ν2 = 0. However, there are no any

surface states in the G2 − G3 plane with index ν3 = 1.

4.10 Phase Diagram of the Modified Dirac Equation

We now consider whether the modified Dirac equation is topologically trivial or

non-trivial. The general solution of the wave functions for an infinite system or with

the periodic boundary conditions can be expressed as

Ψν = uv(p) exp[i(p · r − Ep,ν t)/�], (4.143)

in which the momentum is a good quantum number. The dispersion relations of four

energy bands are

Ep,ν(=1,2) = −Ep,ν(=3,4) =
√

v2p2 + (mv2 − Bp2)2. (4.144)
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The four-component spinors uv(p) can be expressed as uv(p) = Suν(p = 0) with

S =
√

ǫp

2Ep,1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 −
pzv

ǫp

−
p−v

ǫp

0 1 −
p+v

ǫp

pzv

ǫp

pzv

ǫp

p−v

ǫp

1 0

p+v

ǫp

−
pzv

ǫp

0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.145)

where p± = px ± ipy, ǫp = Ep,1 +
(

mv2 − Bp2
)

, and uν(0) is one of the four eigen

states of β.

The topological properties of the modified Dirac equation can be gained from these

solutions. The Dirac equation is invariant under the time reversal symmetry, and can

be classified according to the Z2 topological classification following Kane and Mele

[18]. In the representation of the Dirac matrices in (2.9), the time reversal operator

defined as Θ ≡ −iαxαzK [19], where K is the complex conjugate operator that forms

the complex conjugation of any coefficient that multiplies a ket or wave function

(and stands on the right of K). Under the time reversal operation, the modified Dirac

equation remains invariant,

ΘH(p)Θ−1 = H(−p) (4.146)

(p is a good quantum number of the momentum). Furthermore we have the relations

that Θu1(p) = −iu2(−p) and Θu2(p) = +iu1(−p), which satisfy the relation of

Θ2 = −1. Similarly, Θu3(p) = −iu4(−p) and Θu4(p) = +iu3(−p). Thus, the solu-

tions of {u1(p), u2(−p)} and {u3(p), u4(−p)} are two degenerate Kramers pairs of

positive and negative energies, respectively. The matrix of overlap
{〈

uμ(p)
∣

∣Θ |uν(p)〉
}

has the form:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 i
mv2 − Bp2

Ep,1

−i
p−v

Ep,1

i
pzv

Ep,1

−i
mv2 − Bp2

Ep,1

0 i
pzv

Ep,1

i
p+v

Ep,1

i
p−v

Ep,1

−i
pzv

Ep,1

0 i
mv2 − Bp2

Ep,1

−i
pzv

Ep,1

−i
p+v

Ep,1

−i
mv2 − Bp2

Ep,1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(4.147)

which is antisymmetric,
〈

uμ(p)
∣

∣Θ |uν(p)〉 = − 〈uν(p)| Θ
∣

∣uμ(p)
〉

. For the two neg-

ative energy bands u3(p) and u4(p) which are fully occupied for an insulator, the

submatrix of the overlap can be expressed in terms of a single number as ǫμνP(p),

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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P(p) = i
mv2 − Bp2

√

(mv2 − Bp2)2 + v2p2
, (4.148)

which is the Pfaffian for the 2 × 2 matrix. According to Kane and Mele [18], the even

or odd number of zeros in P(p) defines the Z2 topological invariant. Here we want

to emphasize that the sign of a dimensionless parameter mB will determine the Z2

invariant of the modified Dirac equation. As P(p) is always non-zero for mB ≤ 0 and

there exists no zero in the Pfaffian, we conclude immediately that the modified Dirac

Hamiltonian for mB ≤ 0, including the conventional Dirac Hamiltonian (B = 0), is

topologically trivial.

For mB > 0 the case is different. In this continuous model, the Brillouin zone

becomes infinite. At p = 0 and p = +∞, P(0) = isgn(m) and P(+∞) =
−isgn(B). In this case P(p) = 0 at p2 = mv2/B. p = 0 is always one of the time

reversal invariant momenta. As a result of an isotropic model in the momentum

space, we think all points of p = +∞ shrink into one point if we regard the con-

tinuous model as a limit of the lattice model by taking the lattice space a → 0 and

the reciprocal lattice vector G = 2π/a → +∞. In this sense as a limit of a square

lattice other three time reversal invariant momenta have P(0, G/2) = P(G/2, 0) =
P(G/2, G/2) = P(+∞) which has an opposite sign of P(0) if mB > 0. Similarly

for a cubic lattice the P(p) of the other seven time reversal invariant momenta have

the opposite sign of P(0). Following Fu et al. [13, 16], we conclude that the modified

Dirac Hamiltonian is topologically non-trivial only if mB > 0.

In two dimensions, Z2 index can be determined by evaluating the winding number

of the phase of P(p) around a loop of enclosing the half the Brillouin zone in the

complex plane of p = px + ipy,

I =
1

2πi

∮

C

dp · ∇plog[P(p) + iδ]. (4.149)

Because the model is isotropic, the integral is then reduced to only the path along

px -axis and the half-circle integral vanishes for δ > 0 and |p| → +∞. Along the px

axis one one of a pair of zeros in the ring is enclosed in the contour C when mB > 0,

which gives a Z2 index ν = 1. This defines the non-trivial quantum spin Hall phase.

Volovik [20, 21] proposed that the Green function rather than the Hamiltonian is

more suitable for classifying topological insulators. From the 3-dimensional Dirac

equation, the Green function has the form

G(iωn, p) =
1

iωn − H

= −
iωn + vp · α + (mv2 − Bp2)β

ω2
n + h2(p)

, (4.150)

where h2(k) = H2 = v2p2 + (mv2 − Bp2)2. The frequency ωn = (2n + 1)π/β =
(2n + 1)πkBT . (kB is the Boltzman constant and T is the temperature). The topo-

logical invariant is defined as
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Fig. 4.5 Phase diagram of

topological states of the

modified Dirac equation as a

function of the two model

parameters m and B

Ñ =
1

24π2
ǫijkTr[K

∫

iωn=0

dpG∂pi
G−1G∂pj

G−1G∂pk
G−1], (4.151)

where K = σy ⊗ σ0 is the symmetry-related operator. After tedious algebra, it is

found that

Ñ = sgn(m) + sgn(B). (4.152)

When mB > 0, Ñ = ±2, which defines the phase as topologically non-trivial. If B

is set to be positive, there exist a quantum phase transition from a topologically

trivial phase of m < 0 to a topologically non-trivial phase of μ > 0. This is in a good

agreement with the result of the Z2 index in the preceding section [22].

As a summary, we present in Fig. 4.5 the phase diagram of the topological invari-

ants.

4.11 Further Reading
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Chapter 5

Topological Phases in One Dimension

Abstract Polyacetylene was studied extensively in the 1980s. A re-examination of

the Su–Schrieffer–Heeger model for polyacetylene shows that it is actually a one-

dimensional topological insulator with the end states. Topological phases also exist

in other one-dimensional systems.

5.1 Su–Schrieffer–Heeger Model for Polyacetylene

The simplest “two-band” model is the Su–Schrieffer–Heeger model for polyacety-

lene [1], which is an insulator with chirality symmetry. Chiral symmetry is a com-

bination of particle-hole symmetry and time reversal symmetry. Physically, Peierls’

theorem states that a one-dimensional equally spaced chain with one electron per

ion is unstable due to lattice distortion. The lattice distortion becomes energetically

favourable to form a dimerized lattice when the new band gap outweighs the elastic

energy cost of rearranging the ions. Consider a one-dimensional dimerized lattice,

H =
N

∑

n=1

(t + δt)c
†
A,ncB,n +

N−1
∑

n=1

(t − δt)c
†
A,n+1cB,n + h.c., (5.1)

where c
†
A(B),n and cA(B),n are the creation and annihilation operators of the electrons

on the A (or B) sublattice site (A(B), n), respectively. In this model, each unit cell

consists of two sites, A and B, and the hopping term connects the two different

sublattice sites. The hopping amplitude in the unit cell is t + δt and that between the

two unit cells is t − δt . There are two distinct phases, the A and B phases, which are

plotted in Fig. 5.1. These two phases were believed to be degenerate. The interface of

these two phases forms a domain wall, which may generate a soliton solution nearby.

In this section, we demonstrate that these two phases are topologically distinct in an

open boundary condition.

© Springer Nature Singapore Pte Ltd. 2017
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Fig. 5.1 Two distinct phases in the Su–Schrieffer–Heeger model. The solid and dashed lines stand

for the long and short bonds of hopping, respectively. Note that the boundary conditions are distinct

in the two phases

Performing the Fourier transformation,

ak =
1

√
N

∑

n

e−ik·nacA,n, (5.2)

bk =
1

√
N

∑

n

e−ik·nacB,n, (5.3)

where N is the number of the unit cells (the total number of lattice sites is 2N ), we

obtain

H = (t + δt)
∑

k∈(−π,π)

(

a
†
k bk + b

†
k ak

)

+ (t − δt)
∑

k

(

eika
†
k bk + e−ikb

†
k ak

)

. (5.4)

Introducing the spinor

ψk =
(

ak

bk

)

, (5.5)

we can write the Hamiltonian in a compact form,

H =
∑

k

ψ
†
k [((t + δt) + (t − δt) cos k)σx + (t − δt) sin kσy]ψk . (5.6)

Under the unitary transformation, σx → σz,σy → σx and σz → σy and k → k +π,

it is reduced to

H =
∑

k

ψ
†
k

[

−(t − δt) sin kσx +
(

2δt + 2(t − δt) sin2 k

2

)

σz

]

ψk . (5.7)
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It is easy to check that

σy Hσy = −H (5.8)

which means the Hamiltonian possesses the chirality symmetry. Thus, a one-

dimensional dimerized lattice is equivalent to the Dirac lattice model in Chap. 3.

In general, the dispersions of this two-band model are

E± = ±
√

d2
x + d2

z , (5.9)

where dx = −(t − δt) sin k and dz = 2δt + 2(t − δt) sin2 k
2
. The eigenstates for the

negative dispersion are

|ϕ〉 =
1

√
2

⎛

⎜

⎜

⎝

sgn(dx )

√

1 − dz√
d2

x +d2
z

−
√

1 + dz√
d2

x +d2
z

⎞

⎟

⎟

⎠

. (5.10)

They are fully filled for a half filling, i.e., an average of one electron at every two

sites. An energy gap ΔE = 4δt opens for δt �= 0.

Thus, the Berry phase for this state is defined as

γ =
∫ +π

−π

dk 〈ϕ| i∂k |ϕ〉

=
1

2

∫ +π

−π

dki∂k ln sgn(dx )

(

1 −
dz

√

d2
x + d2

z

)

=
1

2

∫ +δ

−δ

dki∂k ln sgn(dx ) (1 − sgn(δt))

+
1

2

∫ π+δ

π−δ

dki∂k ln sgn(dx ) (1 − sgn(t + δt))

=
1

2
π [sgn(t + δt) − sgn(δt)] (5.11)

with a modulus 2π. For δt > 0, γ = 0, but for δt < 0, γ = π. This is consistent with

the conclusion from the Dirac model. Alternatively, the winding index is given by

(−1)ν = sgn(δt)sgn(t + δt) = sgn(1 + t/δt). (5.12)

A change in the Berry phase or the winding number accompanies a closing and

re-opening of the energy gap between the two bands near δt = 0. It can be understood

that the energy gap changes from positive to negative, as shown in Fig. 5.2. At δt = 0,

http://dx.doi.org/10.1007/978-981-10-4606-3_3
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Fig. 5.2 Energy dispersions of δt > 0, δt = 0 and δt < 0. The closing and reopening of the energy

gap near δt = 0 indicates the occurrence of a quantum phase transition

the spectrum is gapless and the two bands cross at k = 0. Near the point, using

sin x ≈ x for a small x , one obtains

H =
∑

k

ψ
†
k

[

−(t − δt)kσx +
(

2δt +
1

2
(t − δt)k2

)

σz

]

ψk . (5.13)

This is the continuous model of the Dirac equation. Thus, we can define the energy

gap, ΔE = 4δt , not 4 |δt | . The sign change of δt indicates a topological quantum

phase transition.

Existence of the end states in an open boundary condition is characteristic of

the topological phase when the Berry phase is π or the winding index ν = 1. It

should be noted that in the open boundary the chain is cut between two unit cells,

not between two sites within a unit cell. Assume that t > 0. It is topologically non-

trivial for δt < 0, but trivial for δt > 0. In other words, if the end bond is a long

bond, |t + δt | < |t − δt |, it is topologically non-trivial. Otherwise it is topologically

trivial.

A topological quantum transition occurs at δt = 0. In the long wave approxima-

tion, we can make use of the solution given in Sect. 2.5.1 when δt < 0. In this case,

there exists a solution of zero energy near the end. The spatial distribution of the

wave function is mainly determined by the scale length,

ξ− =
2 |B| �

v
(1 −

√
1 − 4m B)−1 →

�

|m| v
=

t − δt

2 |δt |
. (5.14)

It becomes divergent when δt → 0, because the end state evolves into a bulk state and

the system becomes gapless. There is no end state when δt > 0. This demonstrates

a topological quantum phase near δt = 0 [2].

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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We can also use a numerical method to calculate the energy eigenstates and

eigenvalues by diagonalizing the Hamiltonian, which can be written in the form of

square matrix:

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 t + δt 0 0 0 0 0

t + δt 0 t − δt 0 0 0 0

0 t − δt 0 t + δt 0 0 0

0 0 t + δt 0 t − δt 0 0

0 0 0 t − δt 0
. . . 0

0 0 0 0
. . . 0 t + δt

0 0 0 0 0 t + δt 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.15)

One can find the zero energy mode at the end by changing the sign of δt . The end state

solutions at δt = −0.1t and −0.3t are plotted in Fig. 5.3. This figure demonstrates

that the wave function has a wider distribution in the space for a smaller |δt |.
However, the most famous excitations in this model are soliton and anti-soliton,

which are the charge and spin carriers in polyacetylene [3]. They are the domain

walls of two distinct phases of π and 0. These solutions correspond to those of

the Dirac equation at the interface between two regions of positive and negative

masses, which is discussed in Chap. 2. The wave function of the in-gap bound

state is distributed around the domain walls. Given the degeneracy of the electron

spins, there are two bound states with different spins. The charge and spin states of

the soliton follow from the solutions of the domain wall along with the localized

chemical-bond representation. In total there are four possible states according to the

electron number n in the two states: (a) two neutral spin- 1
2

solitons with Sz = ± 1
2

for n = 1 and (b) two charge species S± for n = 0 and n = 2, in which the total

Fig. 5.3 Amplitudes of the

wave function �i of the end

states at the lattice site i for

δt = −0.1t and −0.3t . The

smaller value of |δt |
corresponds to the wider

distribution of the wave

function in space

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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spin is zero and may be viewed as spinless “ions”. However, the solitons can move

freely unless they are pinned, in contrast to the chemical analogs. From the point of

view of topological insulators, these states are the end states at the interface between

a topologically trivial phase and a topologically non-trivial phase.

5.2 Topological Ferromagnet

In the Su–Schrieffer–Heeger model, the Hamiltonian is written as a 2 × 2 matrix on

the basis of the A and B sublattices, (a
†
k , b

†
k). A new type of topological phase in

one dimension can be obtained if we replace the A and B sublattices with electrons

with different spins, (c
†
k,↑, c

†
k,↓). For a ferromagnet with spin–orbit coupling, the

Hamiltonian becomes

H =
∑

k

(c
†
k,↑, c

†
k,↓)

[

λ sin kσx +
(

M − 4B sin2 k

2

)

σz

] (

ck,↑
ck,↓

)

, (5.16)

where c
†
k,σ and ck,σ are the creation and annihilation operators for the electrons

with spin σ(=↑,↓). Here λ is the strength of spin–orbit coupling. In the absence

of spin–orbit coupling, the two bands of electrons with spin-up and -down are well

separated. If the lower band is fully filled, the ground state is fully saturated with a

maximal spin, and the system is an insulating ferromagnet. In the presence of the

spin–orbit coupling λ the total Sz is no longer conserved. However, the filled band is

still ferromagnetic, as the expectation value of Sz is still non-zero. We find that this

model has the identical mathematical structure as the Su–Schrieffer–Heeger model,

although the bases for the two models are different. It describes a one-dimensional

topological ferromagnet.

5.3 p-Wave Pairing Superconductor

The p-wave pairing spinless superconductor has two distinct phases, strong pairing

and weak pairing, which correspond to the topologically trivial and non-trivial phase,

respectively [4]. In the Bardeen-Cooper-Schrieffer theory for superconductivity, the

effective model for the superconductor can be written as,

H =
∑

k

(

�
2k2

2m
− μ

)

c
†
k ck + Δkckc−k + h.c., (5.17)

where μ is the chemical potential to determine the number of electrons. Introducing

the Nanbu spinor (c
†
k , c−k), one obtains
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H =
∑

k

(

c
†
k , c−k

)

[

Δkσx +
1

2

(

�
2k2

2m
− μ

)

σz

] (

ck

c
†
−k

)

. (5.18)

Here a constant 1
2

∑

k(
�

2k2

2m
− μ) is omitted. For a p-wave pairing superconductor,

the order parameter for Cooper pairing satisfies Δk = −Δ−k . For simplicity here we

take Δk = Δ0k. The Berry phase in the ground state is always π for μ > 0 as m is

assumed to be positive. In this system, if Δ = 0,

H =
1

2

∑

k

(

c
†
k , c−k

)

(

�
2k2

2m
− μ

)

σz

(

ck

c
†
−k

)

=
∑

k

(

�
2k2

2m
− μ

)

c
†
k ck −

1

2

∑

k

(

�
2k2

2m
− μ

)

, (5.19)

the two states with eigenvalues ± 1
2
(�

2k2

2m
−μ) actually correspond to one state. This is

because the basis in the term of the spinors is redundant. This so-called particle-hole

symmetry persists even when Δ �= 0.

On a lattice, k and k2 can be replaced by sin k and 4 sin2 k
2
. The effective model

becomes

H =
∑

k

(

c
†
k , c−k

)

[

Δ0 sin kσx +
(

t + 4t ′ sin2 k

2

)

σz

](

ck

c
†
−k

)

. (5.20)

The energy eigenvalues of the quasi-particles always appear in pairs,

E±,k = ±

√

Δ2
0 sin2 k +

(

t + 4t ′ sin2 k

2

)2

. (5.21)

Performing the Fourier transformation, one obtains a lattice model in real space,

which is the one-dimensional Kitaev model for Majorana fermions.

When the system has an open boundary condition in a topologically non-trivial

phase, there exists an energy zero mode near the boundary, which satisfies

γ†(E = 0) = γ(E = 0). (5.22)

Thus, the creation operator of the zero mode is equal to its annihilation operator. This

particle is called a Majarona fermion. Due to the particle-hole symmetry, these two

states actually correspond to one state after the particle-hole transformation. Thus,

the ground states are doubly degenerate depending on whether the zero energy mode

is occupied or not. As the Cooper pairing term in the effective Hamiltonian creates or

annihilates the electrons in pairs, the number parity of electrons is always conserved.

The occupancy of the zero mode changes the number parity of the system.
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The p-wave pairing superconductor and the Su–Schrieffer–Heeger model are con-

nected through a partial particle-hole transformation [5]. Performing a particle-hole

transformation for electrons on the site B,

cB,n → c
†
B,n, (5.23)

the Su–Schrieffer–Heeger model in (5.1) is transformed into

H =
N

∑

n=1

(t + δt)c
†
A,nc

†
B,n +

N−1
∑

n=1

(t − δt)c
†
A,n+1c

†
B,n + h.c., (5.24)

which is a model for the p-wave pairing superconductor on a lattice [6]. A solution

for the end states of the lattice model in terms of Majorana fermions can be found in

Sect. 10.2.2.

5.4 Ising Model in a Transverse Field

The one-dimensional Ising model with a transverse field is equivalent to a spinless

p-wave pairing superconductor under the Jordan–Wigner transformation. The model

is defined as

H = J

N−1
∑

n=1

σx,nσx,n+1 + h

N
∑

n=1

σz,n, (5.25)

where N is the number of lattice sites.

When |J | >> |h|, the ground state is determined by the first term. It is antifer-

romagnetic if J > 0, and ferromagnetic if J < 0. The magnetization is along the

x-direction and the ground state is doubly degenerate. If |h| >> |J | the ground state

is ferromagnetic along the z-direction, and is non-degenerate. The doubly degener-

acy and non-degeneracy of the ground state means two distinct states. Thus, a change

in the degeneracy of the ground state reveals a quantum phase transition at J = h.

For a lattice with an even number of lattice sites, under the Jordan–Wigner trans-

formation [7],

σ+
n = σx,n + iσy,n = exp

[

−iπ

n−1
∑

k=1

f
†
k fk

]

f †
n , (5.26)

σ−
n = σx,n − iσy,n = exp

[

+iπ

n−1
∑

k=1

f
†
k fk

]

f †
n , (5.27)

σz,n = 2 f †
n fn − 1, (5.28)

http://dx.doi.org/10.1007/978-981-10-4606-3_10
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where f †
n and fn are the fermion operators and satisfy the anticommutation relation

of { f †
n , fn′} = δn,n′ . In this way, the model is reduced to a model for a p-wave pairing

superconductor or the Kitaev’s toy model for Majorana fermions,

H = J
∑

i

( f +
n − fn)( f

†
n+1 + fn+1) + h

∑

i

(2 f †
n fn − 1). (5.29)

The ground state is doubly degenerate due to the existence of the end states when

J < h. However, it is noted that the Jordan–Wigner transformation is a non-local

transformation. The ground states in the Ising model simply have different polariza-

tions along the x-direction, not the end states.

5.5 One-Dimensional Maxwell’s Equations in Media

A one-dimensional plane electromagnetic wave of the frequency ω in a nonconduct-

ing media can be described by the Maxwell’s equations [8],

∂x Ey = −iωμ(x)Hz (5.30)

and

∂x Hz = −iωǫ(x)Ey . (5.31)

Ey is the electric field and Hz = 1
μ0

Bz − Mz is the magnetic field. ǫ is the electric

permittivity and μ is the magnetic permeability, which are functions of position.

To derive a Dirac-like equation for the electromagnetic wave, we introduce dimen-

sionless fields, e = Ey/E0 and h = Hz/H0, where E0 and H0 are the field units for

the electric and magnetic fields, respectively, and can be determined by the incident

wave, i.e, E0/H0 = 1/cǫ0 = cμ0 in the vacuum. Equations (5.30) and (5.31) can be

combined to form a matrix equation,

− iσx∂x

(

e

h

)

=
(

−
k

2
(μ̃ + ǫ̃) +

k

2
(μ̃ − ǫ̃)σz

) (

e

h

)

, (5.32)

where k = ω/c, ǫ̃(x) = ǫ(x)/ǫ0, and μ̃ = μ(x)/μ0. The dimensionless permittivity

ǫ̃(x) and permeability μ̃(x) satisfy the relation ǫ̃μ̃ = n(x) where n(x) is the index of

refraction. In this way we obtain a Dirac-like equation for the electromagnetic wave

[

−iσx∂x + m(x)σz + V (x)
]

(

e

h

)

= E

(

e

h

)

. (5.33)
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Here the mass distribution m(x) = k
2
(ǫ̃−μ̃), and the potential V (x)−E = k

2
(ǫ̃ + μ̃).

This equation looks like the stationary Dirac equation with the eigenvalue E (� =
c = 1).

In a metamaterial with subwavelength resonant unit cells, both ǫ and μ can be

tuned, and can even change their signs [9]. From this equation, it is possible to

simulate the topological phase by performing the microwave experiment in meta-

materials. For example, design a sample with an interface with m(x) > 0 if x > 0

and m(x) < 0 if x < 0. It is required that E = V (x) = 0. It follows from (5.33)

that we may have a solution that is distributed around the interface as in the case of a

domain wall, as shown in Fig. 2.1. Furthermore if we design a periodic structure for

m(x), it is possible to have a solution for the end states, as we plotted in Fig. 2.3. In

this way, the topological phase can be observed in quasi-one-dimensional periodic

metamaterial [10]. This provides a platform for observing topological excitations in

one dimension.

5.6 Summary

The re-examination of the Su–Schrieffer–Heeger model demonstrates that polyacety-

lene actually has two distinct topological phases. The domain wall of these two phases

constitutes the topological excitations or charge and spin carriers in the system. Also

the Dirac equation in different bases may be applied to describe topological phases

in different physical systems such as a dimerized lattice model, a ferromagnet with

spin–orbit coupling, and a superconductor.
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Chapter 6

Quantum Anomalous Hall Effect

and Quantum Spin Hall Effect

Abstract A quantum anomalous Hall system possesses chiral edge states around its

boundary, giving rise to quantized Hall conductance even in the absence of external

magnetic field. Quantum spin Hall effect is a spin version of quantum Hall effect. A

quantum spin Hall system possesses a pair of helical edge states, in which an electric

current can induce a transverse spin current or a spin accumulation near the system

boundary. It is also called two-dimensional topological insulator.

6.1 Quantum Anomalous Hall Effect

6.1.1 Two-Dimensional Dirac Model and the Chern Number

In two dimensions, the Chern number or TKNN number is associated with the quan-

tum Hall conductance in the band insulators. We first focus on the Chern number in

the two-dimensional Dirac equation in (2.45), in which time reversal symmetry is

broken. The Hamiltonian can be written in a compact form,

H = d(p) · σ, (6.1)

where dx = vpx , dy = vpy and dz = mv2 − Bp2. Using the formula in (A.33), the

Chern number is given by

nc = −
1

2
(sgn(m) + sgn(B)) . (6.2)

From this formula, we have topological non-trivial phase with n = ±1 for m B > 0,

and a topologically trivial phase with n = 0 for m B < 0. We also have two marginal

phases with n = ± 1
2

for m = 0 or B = 0. The case of B = 0 is a marginal phase. At

the junction of two systems with a positive mass and a negative mass, the topological

invariant changes by δn = 1 or −1. Thus, there exists a boundary state at the junction.
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For the gapless Dirac fermions m = 0 and B �= 0, the system is also marginal. The

topological invariant also changes by δn = 1 at the interface between a positive and

a negative B.

In the lattice model in (3.41), using the formula for the Chern number in (A.33),

one obtains

nc =
{

1 i f 0 < ∆/B < 4

−1 i f 4 < ∆/B < 8
. (6.3)

The number is always an integer, as the first Brillouin zone is finite and periodic for

a lattice model. There exist three transition points: the first point is at ∆/B = 0 for

a transition from nc = 0 to nc = 1; the second point is at ∆/B = 4 for a transition

from nc = 1 to nc = −1; and the third point is at ∆/B = 8 for a transition from

nc = −1 to nc = 0. It is noted that the transition at ∆/B = 4 is between two

topological phases with nc = 1 and −1.

A non-zero Chern number indicates the existence of quantum Hall conductance.

Therefore, the two-dimensional Dirac equation is a good starting point for study-

ing the quantum anomalous Hell effect in ferromagnetic insulator with spin-orbit

coupling.

6.1.2 Haldane Model

In 1988 Haldane proposed a spinless fermion model for the integer quantum Hall

effect without Landau levels, in which two independent effective Hamiltonians in

the form as in the two-dimensional Dirac equation were obtained [1]. He proposed

that the quantum Hall effect may result from the broken time reversal symmetry with

no net magnetic flux through the unit cell of a periodic two-dimensional graphite

or graphene model, as depicted in Fig. 6.1. The lattice is bipartite with A (black)

and B (white) sublattice sites. A real hopping term t1 between the nearest neighbor

sites (solid line) and t2 between the next nearest neighbor sites (dashed line) are

considered. On-site energies of +M on A sites and −M on B sites are included

to break the inversion symmetry on the A and B sublattices. In addition he added a

periodic magnetic flux density B(r) normal to the plane with the full symmetry of the

lattice and with no flux through the unit cell, that is, the flux φa in the region a and the

flux φb in the region b have the relation φa = −φb. As the closed path of the nearest

neighbor hops enclose a complete unit cell, but the net flux is zero, the hopping terms

t1 are not affected, but the hopping terms t2 acquire a phase φ = 2π(2φa + φb)/φ0

where the flux quantum φ0 = h/e. The hopping direction is indicated when the

amplitudes are t2 exp[iφ].

http://dx.doi.org/10.1007/978-981-10-4606-3_3
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Fig. 6.1 Haldane’s honey-comb model. The white and black dots represents the two sublattice sites

with different on-site energy. The areas a and b are threaded by the magnetic flux φa and φb = −φa ,

respectively. The area c has no flux

To diagonalize the Hamiltonian, a two-component spinor
(

c
†
k,A, c

†
k,B

)

of Bloch

states constructed on the two sublattices is applied. Let (a1, a2, a3) be the displace-

ments from a B site to its three adjacent A sites. In this representation the model

Hamiltonian can be expressed as

H = ǫ(k) + d(k) · σ, (6.4)

where

ǫ(k) = 2t2 cos φ
∑

i=1,2,3

cos(k · bi ), (6.5)

dx (k) = +t1
∑

i

cos(k · ai ), (6.6)

dy(k) = +t1
∑

i

sin(k · ai ), (6.7)

dz(k) = M − 2t2 sin φ

(

∑

i=1,2,3

sin(k · bi )

)

(6.8)

with b1 = a2 − a3, b2 = a3 − a1 and b3 = a1 − a2. The Brillouin zone is a

hexagon rotated π/2 with respect to the Wigner-Seitz unit cell. At its six corners

(k · a1, k · a2, k · a3) is a permutation of (0, 2π/3, 4π/3). Two distinct corners k0
α

are defined such that k0
α · bi = α 2π

3
with α = ±1. The energy spectra are easily

obtained by diagonalizing the 2 × 2 matrix. There are two bands, which only touch

if all three Pauli matrix terms have vanishing coefficients. This can only occur at
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the zone corner k0
α and only if M = α3

√
3t2 sin φ. Assume |t2/t1| < 1/3, which

guarantees that the two bands never overlap, and are separated by a finite gap unless

they touch. At the point K, (K · a1, K · a2, K · a3) = (0, 2π/3,−2π/3). Near the

point, we expand the Hamiltonian up to the linear order in δk = k − K. As a result,

H+ = v(δkxσx − δkyσy) + m+v2σz, (6.9)

where v = 3
2
t1a/� and m+v2 = M − 3

√
3t2 sin φ. At another point K′, (K′ · a1,

K′ · a2, K′ · a3) = (0,−2π/3,+2π/3),

H− = v(−δkxσx − δkyσy) + m−v2σz, (6.10)

where v = 3
2
t1a/� and m−v2 = M + 3

√
3t2 sin φ. The two Hamiltonians have

different chirality when m± = 0.

To compare H+ and H−, we make a transformation for σ in H−,

(σx ,σy,σz) → (−σx ,σy,−σz). (6.11)

Thus, H− can be written as

H− = v(δkxσx − δkyσy) + m̃−v2σz (6.12)

with m̃− = −m− = −M −3
√

3t2 sin φ. Therefore the effective models near the two

points have the form:

Hα = v(δkxσx − δkyσy) + m̃αv2σz, (6.13)

where m̃α = αM −3
√

3t2 sin φ. Clearly, inclusion of M in the graphene lattice opens

the opposite energy gaps M and −M at K and K′, respectively, while the magnetic

flux opens the same energy gap at the two points. This demonstrates that the on-site

energy ±M and a magnetic flux play different roles in opening the energy gap, and

they generate different topological results.

The Chern number of the whole system is determined by

nc =
1

2

[

sgn(m̃+) + sgn(m̃−)
]

. (6.14)

In the absence of magnetic flux, the Chern number is always zero, as the gaps at K

and K′ have opposite signs while it can be +1 or −1 in the presence of magnetic

flux.

Of course, the topology of the system should be determined by the whole band

structure. In his pioneering paper, Haldane used the Streda formula to calculate the

Hall conductance [2],
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Fig. 6.2 Phase diagram of the Haldane model for |t2/t1| < 1/3. The zero-field quantum Hall effect

phases where σxy = nce2/h occur if |M/t2| < 3
√

3 |sin φ|

σH =
∂ρ

∂Bz

∣

∣

∣

∣

μ

, (6.15)

which shows the variation in the density of charge carriers ρ with respect to the

external field Bz perpendicular to the plane for a fixed chemical potential μ. For a

full and complete calculation, we can use the formula in (A.33) to calculate the Chern

number, which gives +1, 0 or −1. The Hall conductance is expressed in terms of the

Chern number σxy = nc
e2

h
, which depicts a phase diagram shown in Fig. 6.2.

6.1.3 Experimental Realization

In 2013, the quantum anomalous Hall effect was observed experimentally in a

Cr0.15(Bi0.1Sb0.9)1.85Te3 ultrathin film by a group led by Xue in Beijing [3]. The

measured Hall conductance exhibits a quantized plateau while the longitudinal con-

ductance decreases drastically at lower temperatures. The effect was later confirmed

in a series of independent experiments with high precisions. Theoretically, it was

first predicted that quantum anomalous Hall effect could be realized in thin film

of magnetically doped topological insulators such as Cr or Fe doped Bi2Te3 and

Sb2Te3 [4].

An effective model for a ferromagnetic ultrathin film consists of two parts,

H = H0 +
m

2
τ0 ⊗ σz . (6.16)
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m is the exchange field from the magnetic dopants [4], which acts effectively like a

Zeeman field. τ0 is a 2 × 2 unit matrix, and H0 is the effective model for topological

insulator thin film [5, 6]

H0 = −Dk2

+

⎛

⎜

⎜

⎜

⎜

⎝

∆
2

− Bk2 iγk− V 0

−iγk+ −∆
2

+ Bk2 0 V

V 0 −∆
2

+ Bk2 iγk−

0 V −iγk+
∆
2

− Bk2

⎞

⎟

⎟

⎟

⎟

⎠

,

(6.17)

where (kx , ky) is the wave vector, k2 = k2
x + k2

y . The D term breaks the particle-hole

symmetry, and the band gap opening requires |D| < |B|. ∆ is the hybridization

of top and bottom surface states of the thin film, which becomes relevant for thin

films, e.g., Bi2Se3 thinner than 5 nm. Both ∆ and B are functions of the thickness

of thin film, and approach zero simultaneously for a thicker film. γ = v�, with v the

effective velocity. V measures the structure inversion asymmetry between the top

and bottom surfaces of the thin film, which is a natural starting point for a realistic

thin film grown on a substrate, which always induces an electric field along the film

growth direction. The derivation of H0 can be found in Sect. 7.7.

It is noted that the four bands are coupled through the term V of the structural

inversion asymmetry. This model is different from Haldane model. Under a unitary

transformation, the Hamiltonian can be diagonalized into two 2 × 2 blocks [7]

hs = −Dk2 + σz (Γ + sΛ) + sγ(kxσy − kyσx ) cos Θ, (6.18)

where s = ±1 for the outer and inner blocks, respectively. The model parameters

are

Γ =
√

(m/2)2 + γ2k2 sin2 Θ, (6.19)

Λ =
√

(∆/2 − Bk2)2 + V 2, (6.20)

cos Θ = (∆/2 − Bk2)/Λ. (6.21)

For a small k, it reads

hs = σz

( |m|
2

+ s
√

△2 + V 2

)

+
sγ△

√

△2 + V 2
(kxσy − kyσx ), (6.22)

which is a massive Dirac equation. For s = +1, the energy gap between the bands is

|m| +
√

∆2 + 4V 2, which is always positive. For s = −1, the energy gap between

the bands is |m|−
√

∆2 + 4V 2. Without m, the inner bands and outer bands touch at

http://dx.doi.org/10.1007/978-981-10-4606-3_7
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(a) (b)

(e) (f)

(c) (d)

Fig. 6.3 a Solid and dashed curves depict the top and bottom surface states, respectively, of a

thin film of topological insulator before magnetic doping. (b–d) The exchange field from magnetic

dopants can lift the degeneracies at k = 0 and induce a band inversion, whereas structure inversion

asymmetry is competing against the exchange field. d No band crossing if ∆B < 0. e Band crossings

are expected if the band inversion is achieved by doping a thin film with ∆B > 0. f SIA can turn

the band crossings to anti-crossings while exchange the topological properties between inner and

outer bands. 0,±1 indicate the contribution to σxy (Chern number) of a band if the band is fully

occupied (Adapted from [7])

k = 0 as shown in Fig. 6.3a. A finite m can lift the degeneracies at k = 0 as plotted

in Fig. 6.3b. Increasing m then produces a band inversion when

|m| =
√

∆2 + 4V 2 (6.23)

and change their topological properties from trivial to nontrivial or vice versa as

shown in Fig. 6.3c, d. It is found that a large exchange field m always gives arise to

a topological phase transition to quantum anomalous Hall effect once the gap closes

and reopens.

The Hall conductance can be given by the integral of the Berry curvature over

occupied states in momentum space, and the longitudinal conductivity can be given

by the Einstein relation. The calculated Hall and longitudinal conductances are in

good agreement with the experimental data as shown in Fig. 6.4.
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Fig. 6.4 Calculated Hall

(square) and longitudinal

(circle) conductances. The

energy-related parameters

are up to a scaling compared

to the experiment. Inset the

Hall and longitudinal

conductances measured in

the experiment (Adapted

from [7])

6.2 From the Haldane Model to the Kane-Mele Model

The Haldane model is for spinless fermions. One can generalize the Haldane model

to an electron system with spin, which becomes doubly degenerate if there is no

coupling between the electrons with spin up and spin down. The electrons in the

edge channel are chiral, i.e., they flow around the boundary in a counterclockwise

for nc = 1 and in a clockwise direction for nc = −1, which is characteristic of

quantum Hall effect. This is a trivial generalization. In 2005 Kane and Mele [8]

generalized the Haldane model to the graphene lattice model of electrons with spin
1
2
. They introduced the spin-orbit coupling between electron-spin and momentum

to replace the periodic magnetic flux, and predicted a new quantum phenomenon—

the quantum spin Hall effect. Simply speaking, the quantum spin Hall effect can be

regarded as the combination of the two layers of the Haldane models for electrons

with spin up and down. In a system with the time reversal symmetry, the electrons

with spin up in the edge channel flow in one direction while electrons with spin

down in the edge channel flow in the opposite direction, I↑ = −I↓. The net charge

current in the two edge channels must zero, Ic ≡ I↑ + I↓ = 0, as a net charge current

breaks the time reversal symmetry. In constrast a pure spin current circulates around

the boundary of the system, Is ≡ �

2e
(I↑ − I↓). Unlike the quantum Hall effect in

which the magnetic field breaks the time reversal symmetry, the spin-orbit coupling

preserves the time reversal symmetry. The spin current itself does not break the

symmetry, as the momentum p → −p and spin σ → −σ under the time reversal.

However, it is noted that the spin-orbit coupling mixes the spin up and down, and

the spin Sz is no longer a good quantum number. It is necessary to point out that

generalization from quantum Hall effect to quantum spin Hall effect is revolutionary.

It opens a new field to explore novel topological phases of matter.

The Kane-Mele model for the quantum spin Hall effect is a graphene model with

the time reversal invariant spin-orbit coupling,
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H = t
∑

〈i, j〉
c

†
i c j + iλSO

∑

〈〈i, j〉〉
νi j c

†
i szc j + iλR

∑

〈i, j〉
c

†
i (s × di j )c j + λv

∑

i

ξi c
†
i ci .

(6.24)

The first term is the nearest neighbor hopping term on a graphene lattice, where

c
†
i = (c

†
i,↑, c

†
i,↓). The second term is a mirror symmetric spin-orbit interaction, which

involves spin-dependent second neighbor hopping. Here νi j = 2√
3
(di × d j )z = ±1,

where d1 and d2 are two unit vectors along the two bonds that the electron traverses

going from site j to i . The Pauli matrices si describe the electron spin. The third term

is the nearest neighbor Rashba term, which explicitly violates the z → −z mirror

symmetry. The last term is a staggered sublattice potential with ξi = ±1. Inclusion of

the Rashba term makes the system more complicate as sz is no longer conserved and

the electrons with spin up and down are coupled together. Thus, Kane-Mele model

is not a simply addition of two layers of the Haldane model for electrons with spin

up and down.

Following the method in the Haldane model, a four-band Hamiltonian can always

be expressed in terms of the Dirac Gamma matrices:

H(k) =
5

∑

a=1

da(k)Γ a +
5

∑

a<b=1

dab(k)Γ ab. (6.25)

Here the 5 Dirac matrices are

Γ a = (σx ⊗ s0,σz ⊗ s0,σy ⊗ sx ,σy ⊗ sy,σy ⊗ sz) (6.26)

(a = 1, 2, 3, 4, 5), where the Pauli matrices σi represent the sublattice indices and

Γ ab =
1

2i
[Γ a, Γ b]. (6.27)

In this representation the time reversal operator is Θ = i(σ0 ⊗ sy, )K . The five Dirac

matrices are even under time reversal,

ΘΓ aΘ−1 = Γ a (6.28)

while the 10 commutators are odd,

ΘΓ abΘ−1 = −Γ ab. (6.29)

To have a time reversal invariant Hamiltonian, the coefficients should satisfy the

relations,

dα(−k) = dα(k) (6.30)
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and

dab(−k) = −dab(k). (6.31)

Thus, the coefficients in the Kane-Mele model are

d1 = t

(

1 + 2 cos
kx

2
cos

√
3ky

2

)

; (6.32)

d2 = λv; (6.33)

d3 = λR

(

1 − cos
kx

2
cos

√
3ky

2

)

; (6.34)

d4 = −
√

3λR sin
kx

2
sin

√
3ky

2
; (6.35)

d12 = −2t cos
kx

2
sin

√
3ky

2
; (6.36)

d15 = λSO

(

2 sin kx − 4 sin
kx

2
cos

√
3ky

2

)

; (6.37)

d23 = −λR cos
kx

2
sin

√
3ky

2
; (6.38)

d24 =
√

3λR sin
kx

2
sin

√
3ky

2
. (6.39)

This equation gives two pairs of doubly degenerated energy dispersions. When

the two lower energy bands are fully occupied, the system becomes insulating if an

energy gap exists between the two upper bands and two lower bands. As the whole

system does not break the time reversal symmetry, the Chern number is always zero.

For λR = 0, the Hamiltonian is split into two independent parts,

H =
∑

s=↑,↓
Hs, (6.40)

where

Hs = t
∑

〈i, j〉
c

†
i,sc j,s + isλSO

∑

〈〈i, j〉〉
νi j c

†
i,sc j,s + λv

∑

i

ξi c
†
i,sci,s . (6.41)

In this case there is an energy gap with the magnitude

∣

∣

∣6
√

3λSO − 2λv

∣

∣

∣ . For λv >

3
√

3λSO the gap is dominated by λv, while for λv < 3
√

3λSO the gap is dominated

by λSO . For each Hs , we can define a spin dependent Chern number. For λv >

3
√

3λSO the corresponding Chern number is zero for both H↑ and H↓. However, for

λv < 3
√

3λSO the corresponding Chern number becomes nonzero,
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Fig. 6.5 Energy bands for a one-dimensional stripe with a zig-zag boundary condition. a Quantum

spin Hall phases with λv = 0.1t . b Insulating phase with λv = 0.4t . In both cases λSO − 0.06t and

λR = 0.05t

ns = sgn(sλSO). (6.42)

Although the total Chern number n+ + n− = 0, their difference n+ − n− = 2 or

−2. Thus, for λv < 3
√

3λSO it is a combination of two independent quantum Hall

phases with different chirality, i.e., the quantum spin Hall system [9].

For λR �= 0 the electrons with spin up and spin down will mix together, and we

cannot separate the whole system into two independent parts as in the case of λR = 0.

In other word, we couldn’t introduce a spin-dependent Chern number to describe this

new phase. Instead Kane and Mele introduced the Z2 invariant to describe it.

For a strip sample we adopt the periodic boundary condition in the x-direction

such that kx is a good quantum number. Exact diagonalization gives the energy

dispersion of the system as a function of kx a. It is found that there are two distinct

phases: (a) a pair of the bands connects the conduction and valence band; (b) no band

connects the two bands, as plotted in Fig. 6.5. As the system is insulating and there

is an energy gap in the bulk, the bands connecting the conduction and valence bands

must be the edge states, which could be confirmed numerically. Thus, we conclude

that in the topologically non-trivial phase, we have a pair of edge states between the

bulk band gap at each boundary.

6.3 Transport of Edge States

The helical edge states are characteristic of a two-dimensional topological insulator.

It can be detected through the transport measurement in a mesoscopic device. Before

we discuss the transport properties of the edge states in the quantum spin Hall system,

we briefly introduce the Landauer-Büttiker formula for electron transport.
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6.3.1 Landauer-Büttiker Formalism

Consider a one-dimensional conductor. Suppose the left side (the source) is filled up

to the energy level μs , slightly higher than that of the right-hand side (the drain) μd .

Then in the range between μs and μd the conductor has fully occupied states poring

from left to right. The current through the channel is defined as

I = −eve f f δN , (6.43)

where ve f f is the effective velocity of charge carriers along the channel near the Fermi

energy and δN is the density of the charge carriers. Assume the voltage difference

between two leads is quite small. Then

δN = D(E f )(μs − μd), (6.44)

where D(E f ) = ∂N/∂E |E f
is the density of states at the Fermi level, and D(E f ) ≈

D(μs) ≈ D(μd). In one dimension, the velocity ve f f is given by the variance of

dispersion with respect to the wave vector ve f f = ∂E(k)/�∂k and the density of

states D(E) = ∂k/2π
∂E

= 1
hve f f

and μs − μd = −e(Vs − Vd). As a result, the current

through the channel is given by

I =
e2

h
(Vs − Vd). (6.45)

The conductance is

G =
I

Vs − Vd

=
e2

h
, (6.46)

which is quantized in an ideal one-dimensional conductor.

More generally, Landauer proposed that the conductance of a mesoscopic con-

ductor is given by [10, 11],

G =
2e2

h
MT, (6.47)

where M stands for the number of transverse modes in the conductor, and T is the

averaged probability that an electron injected from one end can transmit to the other.

The factor 2 comes from the spin degeneracy of the electron. The conductance is then

independent of the system’s length or width. Assume a conductor is connected to

two electron reservoirs through ballistic leads. Then at low temperatures the current

flow is caused by motion of the electrons in the energy window μ1 ∼ μ2. So the

current transmitted from the left lead into the right lead is:

I = −
2e

h
MT (μ1 − μ2), (6.48)
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and thus, the conductance is given by the linear response formula G = I/δV (μ1 −
μ2 = −eδV ), which is exactly the Landauer formula in (6.47).

It can be shown that the Landauer formula recovers the classic Ohm’s law in the

large conductor scale limit. For a wide conductor, its conducting mode number is

proportional to the width W : M ∝ W . Assuming the conductor is long, we can prove

that its transmission probability is given by:

T (L) =
L0

L + L0

, (6.49)

where L0 is a characteristic length, and L is the conductor’s length.

Büttiker developed an approach to systematically treat the voltage and current

probes in a multiple terminal device [12, 13], which has helped in the interpretation

of numerous mesoscopic experimental results since the 1980s. The approach was to

extend the two-terminal Landauer formula and to sum over all of the probes. In a

multi-terminal device, the current in the i th terminal is given by:

Ii =
e

h

∑

j �=i

[T j iμi − Ti jμ j ], (6.50)

where μi is the Fermi energy in the i th probe and is related with the voltage through

Vi = μi/e, and Ti j can be seen as the product of the number of modes and the

transmission probability from the j th probe to the i th probe. The summation runs

over all of the probes apart from probe i . The above formula can be written in terms

of the inter-terminal transmission coefficient Ti j as:

Ii =
e2

h

∑

j �=i

[T j i Vi − Ti j V j ]. (6.51)

In the equilibrium condition, all the probes have equal voltage and zero current flow.

And thus, from the above equation, we must have

∑

j �=i

T j i =
∑

j �=i

Ti j , (6.52)

which enables us to rewrite the Büttiker formula in (6.51) in a more straight forward

form:

Ii =
e2

h

∑

j �=i

Ti j [Vi − V j ]. (6.53)

The Büttiker formula in (6.53) enables us to write the multi-terminal conductance

and resistance in the compact forms of matrices. For example, without knowing the

specific pattern of a three-terminal device, we know the current and voltage in the

terminals are related with a set of equations:
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⎛

⎝

I1

I2

I3

⎞

⎠ =
e2

h

⎛

⎝

T12 + T13 −T12 −T13

−T21 T21 + T23 −T23

−T31 −T32 T31 + T32

⎞

⎠

⎛

⎝

V1

V2

V3

⎞

⎠ . (6.54)

This matrix equation satisfies the law of charge conservation, i.e., the total current

flow is conserved, I1 + I2 + I3 = 0. Also we know from the Landauer formula as

well as the Büttiker formula that it is only the voltage difference between the probes

that determines the magnitude of the current. Thus, we can set an arbitrary probe

voltage to be 0. For instance, we can set V3 = 0 and this enables us to reduce the

matrix dimension by 1:

(

I1

I2

)

=
e2

h

(

T12 + T13 −T12

−T21 T21 + T23

) (

V1

V2

)

. (6.55)

The resistance is also in the matrix form, it is related with the conductance matrix

through:

(

R11 R12

R21 R22

)

=
h

e2

(

T12 + T13 −T12

−T21 T21 + T23

)−1

. (6.56)

The above approach has become a standard technique to calculating the conductance

and resistance in a multi-terminal device.

6.3.2 Transport of Edge States

In the quantum spin Hall system, a pair of helical edge states consists two chiral states

of electrons with spin up (σ =↑) and down (σ =↓). The transmission coefficient

of the chiral state with spin up from one terminal to its neighbor terminal, say,

in the clockwise direction is T
↑

i j = 1, and the transmission coefficient from one

terminal to its neighbor terminal in the counter-clockwise direction is T
↑
j i = 0.

Meanwhile the transmission coefficient of the chiral state with spin down from one

terminal to its neighbor terminal in the clockwise direction is T
↓

i j = 0, and the

transmission coefficient from one terminal to its neighbor terminal in the counter-

clockwise direction is T
↓
j i = 1.

The charge current at terminal i is defined as the summation of the currents with

spin up and down

I c
i ≡ I

↑
i + I

↓
i =

e2

h

∑

j �=i,σ

(T σ
i j V j − T σ

j i Vi ). (6.57)

The spin current at terminal i is defined as the difference between the currents with

spin up and spin down
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I s
i ≡

�/2

e

(

I
↑
i − I

↓
i

)

=
e

4π

∑

j �=i,σ

σ(T σ
i j V j − T σ

j i Vi ), (6.58)

where we convert the unit of the charge current into that of the spin current: change

the unit of charge e into the unit of spin �/2 by the ratio
�/2

e
.

Two-terminal measurement: as the edge states are helical, there are two conducting

channel to connect the two terminals. The transmission coefficients T σ
12 = T σ

21 = 1

for electrons with both spin up (σ =↑) and down (σ =↓). Take V1 = V/2 and

V2 = −V/2. The spin-dependent current flowing out of the terminal 2 is

I
↑
2 = I

↓
2 =

e2

h
(V1 − V2). (6.59)

Thus, the charge conductance is

G = G↑ + G↓ = 2
e2

h
(6.60)

as there are two conducting channels from the left to right. This is equivalent to a

quantum Hall conductance for n = 2 in a setup with two terminals.

Four-terminal measurement: In this case, the transmission coefficients for an elec-

tron with spin up, T
↑

43 = T
↑

32 = T
↑

21 = T
↑

14 = 1, and 0 otherwise, and the transmission

coefficients for an electron with spin down, T
↓

12 = T
↓

23 = T
↓

34 = T
↓

41 = 1, and 0 oth-

erwise. From the Landauer-Büttiker formula, we have

⎛

⎜

⎜

⎜

⎜

⎜

⎝

I
↑
1

I
↑
2

I
↑
3

I
↑
4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

V1

V2

V3

V4

⎞

⎟

⎟

⎠

(6.61)

and

⎛

⎜

⎜

⎜

⎜

⎜

⎝

I
↓
1

I
↓
2

I
↓
3

I
↓
4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−1 1 0 0

0 −1 1 0

0 0 −1 1

1 0 0 −1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

V1

V2

V3

V4

⎞

⎟

⎟

⎠

. (6.62)

The total charge current is the sum of the currents with spin up and down, Ii = I
↑
i +I

↓
i .

Thus, the equation for the charge current,
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⎛

⎜

⎜

⎝

I1

I2

I3

I4

⎞

⎟

⎟

⎠

=
e2

h

⎛

⎜

⎜

⎝

−2 1 0 1

1 −2 1 0

0 1 −2 1

1 0 1 −2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

V1

V2

V3

V4

⎞

⎟

⎟

⎠

. (6.63)

The total spin current in each terminal is the difference between the currents with

spin up and down, I s
i =

(

I
↑
i − I

↓
i

)

× �/2

e
,

⎛

⎜

⎜

⎜

⎜

⎝

I s
1

I s
2

I s
3

I s
4

⎞

⎟

⎟

⎟

⎟

⎠

=
e

4π

⎛

⎜

⎜

⎝

0 −1 0 1

1 0 −1 0

0 1 0 −1

−1 0 1 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

V1

V2

V3

V4

⎞

⎟

⎟

⎠

. (6.64)

Set the voltages at terminal 1 and 3 as V/2 and −V/2 and as 0 for terminal 2

and 4:
⎛

⎜

⎜

⎝

V1

V2

V3

V4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

V
2

0

− V
2

0

⎞

⎟

⎟

⎠

. (6.65)

The currents at terminal 2 are

I
↑
2 =

e2

h
T

↑
21V1 = +

e2

2h
V (6.66)

and

I
↓
2 =

e2

h
T

↓
23V3 = −

e2

2h
V . (6.67)

As a result, the total current is

I c
2 = I

↑
2 + I

↓
2 = 0. (6.68)

However,

I s
2 =

(

I
↑
2 − I

↓
2

)

×
�/2

e
=

e

4π
V . (6.69)

Thus, the spin Hall conductance is Gs = e
4π

. However it is noted that the Hall

conductance for each sector is

G↑ =
I
↑
2

V1 − V3

=
e2

2h
(6.70)
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Fig. 6.6 Schematic diagram showing a two-terminal and b four-terminal measurement geometries.

In (a) a charge current IC = (2e2/h)V flows into the right lead. In (b) a spin current IS = e
4π

V

flows into the right lead

as we have set the voltages at the four terminals. In conclusion, the quantum spin

Hall effect can be measured through the charge transport in a mesoscopic system as

shown in Fig. 6.6 [8].

Strictly speaking, spin up and down here mean two different conducting channels

of the edge state, NOT a real electron spin. Due to the spin-orbit coupling none of the

spin components Sα (α = x, y, z) are conserved. So the “real” spin Hall conductance

is not quantized.

6.4 Stability of Edge States

Assume the impurity potential V is time reversal invariant. There does not exist

backscattering between the two helical edge states. The time reversal operator Θ2 =
−1. Thus, we set

∣

∣u−k,↓
〉

= Θ
∣

∣uk,↑
〉

and
∣

∣uk,↑
〉

= −Θ
∣

∣u−k,↓
〉

. The operator Θ is

anti-unitary and has the property,

〈Θα| V |Θβ〉 = 〈β| V |α〉 . (6.71)

Using this relation it is easy to conclude,

〈

uk,↑
∣

∣ V
∣

∣u−k,↓
〉

= 0. (6.72)

Li and Shi proposed a general argument for the robustness of the helical edge

state transport [14]. In essence, a two-dimensional quantum spin Hall insulator is a

conductor with odd number of the Kramers pairs in the conducting channel. This

is different from the ordinary one-dimensional conductor which always has an even

number of Kramers pairs in the conducting channel. In general, the transmission
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along the conductor can be characterized by a 2N × 2N S matrix, which relates the

in-coming (ψin) and out-coming (ψout ) wave amplitude:

ψout = Sψin, (6.73)

where

ψin = (a+
1 , a+

2 , . . . , a+
N ; b−

1 , b−
2 , . . . , b−

N )T (6.74)

and

ψout = (a−
1 , a−

2 , . . . , a−
N ; b+

1 , b+
2 , . . . , b+

N )T . (6.75)

a+
i (b+

i ) and a
_
i (b

−
i ) denote the right-going and left-going wave amplitudes, respec-

tively. a±
i or b±

i with the same index i are related by the time reversal and form a

Kramers pair. N denotes the total number of Kramers pairs at each edge, and can

be odd for the quantum spin Hall insulator or even for an ordinary insulator. In this

notation, the time reversal symmetry imposes a constraint on the S matrix:

ST = −S. (6.76)

Moreover, the conservation of charge implies that the S matrix must be unitary:

S†S = 1.

Under these constraints, the polar decomposition of the S matrix reads [15]

S =
(

U T 0

0 V T

)(

Σ T

T Σ

)(

U 0

0 V

)

, (6.77)

where U and V are the two N × N unitary matrix. For an even N = 2n, Σ is a block

diagonal matrix

Σ =
√

1 − T1σx ⊕
√

1 − T2σx ⊕ · · · ⊕
√

1 − Tnσx (6.78)

and

T = diag[
√

T1σ0,
√

T2σ0, · · · ,
√

Tnσ0]. (6.79)

For an odd N = 2n + 1, Σ is a block diagonal matrix

Σ =
√

1 − T1σx ⊕
√

1 − T2σx ⊕ · · · ⊕ 01×1 (6.80)

and

T = diag[
√

T1σ0,
√

T2σ0, · · · , 1]. (6.81)
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Ti denotes the transmission coefficient in the i th conducting channel. One immedi-

ately sees that for odd N there is at least one conducting channel that has the perfect

transmission Ti = 1, that is not being adversely affected by the disorder. This is the

reason behind the robustness of helical edge states in the quantum spin Hall effect.

According to the Z2 classification for the time reversal invariant insulating system,

there always exist an odd number of Kramers pairs in the conducting edge states along

each edge of a sample. However, in the geometry of a strip, there are two edges and

the total number of Kramers pairs is still even in the system. The conductance is

not really quantized if the interaction or finite size effect makes the channels at two

edges coupling together [16].

6.5 Realization of the Quantum Spin Hall Effect

in HgTe/CdTe Quantum Wells

In 2006, Bernevig et al. [17] predicted that the HgTe/CdTe quantum well may have

an inverted band structure and may exhibit the quantum spin Hall effect. One year

later, Konig et al. [18] verified this theoretical prediction experimentally.

6.5.1 Band Structure of HgTe/CdTe Quantum Wells

The band structures of HgTe and CdTe near the Γ point can be described very well

by the 6-band bulk Kane model which incorporates the Γ6 and Γ8 bands but neglects

the split-off Γ7 band. CdTe has a so-called normal band structure, in which the band

Γ6 of the s-wave electron ( j = 1
2
) has a higher energy, and the band Γ8 ( j = 3

2
) has

a lower energy. However, HgTe has an inverted band structure, as shown in Fig. 6.7.

In order to consider the coupling between the Γ6 and Γ8 bands we choose the 6-band

basis set [19, 20]:

u1 (r) =
∣

∣

∣

∣

Γ6,+
1

2

〉

c

= S ↑, (6.82)

u2 (r) =
∣

∣

∣

∣

Γ6,−
1

2

〉

c

= S ↓, (6.83)

u3 (r) =
∣

∣

∣

∣

Γ8,+
3

2

〉

v

=
1

√
2
(X + iY ) ↑, (6.84)

u4 (r) =
∣

∣

∣

∣

Γ8,+
1

2

〉

v

=
1

√
6

[(X + iY ) ↓ −2Z ↑] , (6.85)

u5 (r) =
∣

∣

∣

∣

Γ8,−
1

2

〉

v

= −
1

√
6

[(X − iY ) ↑ +2Z ↓] , (6.86)
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Fig. 6.7 Schematic illustration of the normal band structure and inverted band structure. The left

is the normal band structure where the blue curve represents the light hole (LH) and the heavy hole

(HH) of the Γ8 valence bands, the right is the inverted band structure where the LH flips up and

becomes the conduction band, the Γ6 appears below the HH bands (Adapted from [20]) (color

figure online)

u6 (r) =
∣

∣

∣

∣

Γ8,−
3

2

〉

v

= −
1

√
2

(X − iY ) ↓ . (6.87)

For the chosen basis set, the Hamiltonian for a three-dimensional system with [001]

growth direction takes the following form:

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

T 0 − 1√
2

Pk+

√

2
3

Pkz
1√
6

Pk− 0

0 T 0 − 1√
6

Pk+

√

2
3

Pkz
1√
2

Pk−

− 1√
2

Pk− 0 U + V −S− R 0
√

2
3

Pkz − 1√
6

Pk− −S
†
− U − V 0 R

1√
6

Pk+

√

2
3

Pkz R† 0 U − V S
†
+

0 1√
2

Pk+ 0 R† S+ U + V

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6.88)

where

k2
‖ = k2

x + k2
y, k± = kx ± iky, (6.89)

T = Ec (z) +
�

2

2m0

[

(2F + 1) k2
‖ + kz (2F + 1) kz

]

, (6.90)
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U = Ev (z) −
�

2

2m0

(

γ1k2
‖ + kzγ1kz

)

, (6.91)

V = −
�

2

2m0

(

γ2k2
‖ − 2kzγ2kz

)

, (6.92)

R = −
�

2

2m0

√
3

2

[

(γ3 − γ2) k2
+ − (γ3 + γ2) k2

−
]

, (6.93)

S± = −
�

2

2m0

√
3k± (γ3kz + kzγ3) . (6.94)

P = − �

m0
〈s| px |X〉 is the Kane matrix element between the s and p bands with m0

the bare electron mass.

The quantum well growth direction is along z with Hg1−x Cdx Te for z < −d/2,

HgTe for −d/2 < z < d/2, and Hg1−x Cdx Te for z > d/2. As the quantum well is

confined along the z-direction, we make the Peierls substitution, kz = −i ∂
∂z

. Now

the problem reduces, in the presence of continuous boundary conditions, into the

Hamiltonian (6.88) in each of the 3 regions of the quantum well.

The basic technique for deriving an effective Hamiltonian is to start with the

Hamiltonian at kx = ky = 0 and to find the solutions of the wave function of the

electrons in the confined quantum well. Then, using the solution of kx = ky = 0 as

the basis, one can derive an effective Hamiltonian for kx , ky �= 0 by means of the

projected perturbation method.

For kx = ky = 0,

H(k‖ = 0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

T 0 0

√

2
3

Pkz 0 0

0 T 0 0

√

2
3

Pkz 0

0 0 U + V 0 0 0
√

2
3

Pkz 0 0 U − V 0 0

0

√

2
3

Pkz 0 0 U − V 0

0 0 0 0 0 U + V

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6.95)

which is reduced to a block diagonalized matrix after re-arranging the basis as

{u1, u4, u3, u2, u5, u6}. On the subsector of {u1, u4} for jz = 1
2
,

He f f =

⎛

⎝

T

√

2
3

Pkz
√

2
3

Pkz U − V

⎞

⎠ , (6.96)

which is a one-dimensional modified Dirac equation. Consider a quantum well poten-

tial Vqw(z). The model coefficients are different for CdTe at |z| > d/2 and HgTe at
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|z| < d/2. Solving this one-dimensional problem, one obtains a bound state for the

quantum well ϕ1. Similarly, on the base {u3} of jz = 3
2
, one obtains a solution for

the quantum well ϕ2. Use these two states, one can have an effective Hamiltonian

near the point of k �= 0,

h(k) = (〈ϕ1| , 〈ϕ2|)H(k)

(

|ϕ1〉
|ϕ2〉

)

. (6.97)

Similarly, (u2, u5, u6) gives two other states. In this way, Bernevig, Hughes and

Zhang derived an effective model for a quantum well of HgTe/CdTe [17],

HB H Z =
(

h(k) 0

0 h∗(−k)

)

, (6.98)

where h(k) = ǫ(k) + A(kxσx + kyσy) + (M − Bk2)σz .

The model is actually equivalent to the modified two-dimensional Dirac model

as shown in (2.45) with the addition of the kinetic term ǫ(k),

h(k) = ǫ(k) + h+ (6.99)

and

h∗(−k) = ǫ(k) + Uh−U−1, (6.100)

where the unitary transformation matrix U = σz . All of the model parameters are

functions of the thickness of the quantum well. The most striking property of this

system is that the mass or gap parameter M changes sign when the thickness d of the

quantum well is varied through a critical thickness dc (=6.3 nm), associating with the

transition of the electronic band structure from a normal to an “inverted” type [21].

If the inclusion of ǫ(k) does not close the energy gap caused by M for a non-

zero B, the system should be insulating in the bulk. There exists a topological phase

transition from a positive M to negative M . However, the sign of M alone cannot

determine whether the system is topologically trivial or non-trivial. From the formula

in (2.52), we know that the system is in a quantum spin Hall phase only for M B > 0,

and there exists a pair of helical edge states at the boundary of the system.

6.5.2 Exact Solution of Edge States

In this subsection we present an exact solution of the edge state for the Bernevig-

Hughes-Zhang model in (6.98), which was first solved by Zhou et al. [16]. Here we

consider a semi-infinite plane with an open boundary condition at y = 0. In this

case, kx is a good quantum number, and ky is replaced using the Peierls substitution

ky = −i∂y . The Hamiltonian is a block-diagonalized one,

http://dx.doi.org/10.1007/978-981-10-4606-3_2
http://dx.doi.org/10.1007/978-981-10-4606-3_2
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H
(

kx ,−i∂y

)

=
(

h↑
(

kx ,−i∂y

)

0

0 h↓
(

kx ,−i∂y

)

)

, (6.101)

where

h↑
(

kx ,−i∂y

)

=
(

M − B+
(

k2
x − ∂2

y

)

A(kx − ∂y)

A(kx + ∂y) −M + B−
(

k2
x − ∂2

y

)

)

(6.102)

and

h↓
(

kx , ky

)

=
(

M − B+
(

k2
x − ∂2

y

)

−A(kx + ∂y)

−A(kx − ∂y) −M + B−
(

k2
x − ∂2

y

)

)

, (6.103)

with B± = B ± D. The upper h↑ and lower h↓ blocks describe the states of spin

up (strictly speaking, it is the sector of jz = 1
2

and 3
2
) and spin down (the sector of

jz = − 1
2

and − 3
2
), respectively.

The eigenvalue problem of the upper and lower blocks can be solved separately.

Here we focus on the solution for the upper block of this Hamiltonian,

h↑Ψ↑ = EΨ↑. (6.104)

We take the trial wave function

Ψ↑ =
(

c

d

)

eλy, (6.105)

and substitute it into (6.104). Then the characteristic equation gives

det

(

M − B+
(

k2
x − λ2

)

− E A(kx − λ)

A(kx + λ) −M + B−
(

k2
x − λ2

)

− E

)

= 0. (6.106)

We obtain four real roots ±λ1 and ±λ2:

λ2
1,2 = k2

x + F ±

√

F2 −
M2 − E2

B+ B−
, (6.107)

where F = [A2 − 2 (M B + E D)]/(2B+ B−). To find an edge state solution, the

wave function must decay to zero when deviating far away from the boundary. We

adopt the Dirichlet boundary condition Ψ↑ (kx , y = 0) = Ψ↑ (kx , y = +∞) = 0.

Thus, the solution has a general form,

Ψ↑ =
(

c̃(kx )

d̃(kx )

)

(e−λ1 y − e−λ2 y), (6.108)
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if λ1 and λ2 are positive or their real parts are positive. Substituting the solution into

(6.104), we obtain

c̃

d̃
=

A(kx + λ1)

E − M + B+k2
x − B+λ2

1

=
A (kx + λ2)

E − M + B+k2
x − B+λ2

2

. (6.109)

Thus, it follows from this equation that

E = M − B+λ1λ2 − B+ (λ1 + λ2) kx − B+k2
x . (6.110)

At kx = 0,

E = M − B+λ1λ2, (6.111)

λ1 =
√

F +
√

F2 − (M2 − E2)/B+ B−, (6.112)

λ2 =
√

F −
√

F2 − (M2 − E2)/B+ B−. (6.113)

Thus, one obtains

E =
B− − B+

B− + B+
M = −

D

B
M, (6.114)

λ1λ2 =
M − E

B+
=

M

B
> 0, (6.115)

λ1 + λ2 =

√

A2

B+ B−
> 0. (6.116)

Therefore the existing conditions of the edge state solution are,

A2

B+ B−
> 0,

M

B
> 0. (6.117)

Near kx = 0, from the equations for λ1, λ2 and E , we calculate

d E

dkx

∣

∣

∣

∣

kx =0

= −B+
d(λ1λ2)

dkx

∣

∣

∣

∣

kx =0

− B+ (λ1 + λ2)|kx =0

= sgn(B)A

√

1 −
D2

B2
. (6.118)

It follows that the energy spectrum of the edge states near kx = 0 reads

E↑ (kx ) = −
M D

B
+ sgn(B)A

√

1 −
D2

B2
kx + O(k2

x ). (6.119)
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The effective velocity of this state is

v↑ = +sgn(B)A

√

1 −
D2

B2
. (6.120)

Similarly, we may have the energy dispersion of the edge states for the lower block h↓

E↓ (kx ) = −
M D

B
− sgn(B)A

√

1 −
D2

B2
kx + O(k2

x ) (6.121)

and the effective velocity

v↓ = −sgn(B)A

√

1 −
D2

B2
. (6.122)

The results can be also obtained from the perturbation theory for a small kx . Thus,

the effective velocities in the two edge states are opposite, one is positive and the

other is negative. These two edge states constitute a pair of helical edge states.

6.5.3 Experimental Measurement

The transition from the normal band to an inverted band structure coincides with

the topological quantum phase transition from a trivial insulator to an quantum spin

Hall insulator. The first experimental observation was made by a group in Wurzburg,

Germany led by Molenkamp [18]. In order to cover the regime of normal and inverted

band structures, a series of HgTe samples with quantum well widths from 4.5 to 12 nm

were grown. Initial evidence for the quantum spin Hall state was revealed in studies

of Hall bar of dimension (L × W ) = (20.0×13.3)µm2 with different thickness. For

thinner samples with dQW < dc the samples show an insulating behavior. But for

thicker samples with dQW > dc a finite value of resistance was measured, as shown in

Fig. 6.8, which is anticipated as the theoretical prediction for the quantum spin Hall

effect. The inset shows the resistances at two different temperatures. Surprisingly, the

resistance at lower temperatures is larger than the resistance at higher temperatures,

which usually is characteristic of an insulating phase rather than a conducting phase.

We have to say that no quantized conductance has been measured experimentally

in the quantum spin Hall effect, although the measured conductance is close to the

predicted value at a specific temperature.

Further evidence in the helical edge states comes from the non-local transport

measurement. which is performed in a multi-terminal setup. In conventional diffusive

electronics, bulk transport satisfies Ohm’s law. The resistance is proportional to the

length and inversely proportional to the cross-sectional area, implying the existence

of a local resistivity or conductivity tensor. However, the existence of the edge state

necessarily leads to nonlocal transport, which invalidates Ohm’s law. Such nonlocal
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Fig. 6.8 Longitudinal four-terminal resistance, R14,23, of various normal (d = 5.5nm) (I) and

inverted (d = 7.3 nm) (II, III, and IV) quantum well structures as a function of the gate voltage

measured for B = 0T at T = 30 mK. The device sizes are (20.0 × 13.3) µm2 for devices I and II,

(1.0×1.0) µm2 for device III, and (1.0×0.5) µm2 for device IV. The inset shows the R14,23(Vg) of

two samples from the same wafer, that have the same device size (III) at 30 mK (green) and 1.8 K

(black) on a linear scale (Adapted from [18] reprinted with permission from AAAS) (color figure

online)

Fig. 6.9 H-shaped

four-terminal device of the

quantum spin Hall system.

The spin-filtered edge

channels are indicated by red

(spin up) and blue (spin

down) arrowed lines (color

figure online)

transport was first observed in quantum Hall effect, and is well described by the

quantum transport theory based on the Landauer-Büttiker formula.

In the device shown in Fig. 6.9, which is used in the non-local measurements to

prove the existence of helical edge states, two terminals act as current probes and the

other two act as voltage probes. The non-local resistance is defined as:
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Ri j,kl =
Vk − Vl

Ii j

. (6.123)

We can set V4 = 0 and write down the Büttiker formula:

⎛

⎝

I1

I2

I3

⎞

⎠ =
e2

h

⎛

⎝

2 −1 0

−1 2 −1

0 −1 2

⎞

⎠

⎛

⎝

V1

V2

V3

⎞

⎠ . (6.124)

If the current is driven through the terminal 1 and 4, and the terminal 2, 3 act as

voltage probes, we have I1 = −I4 and I2 = I3 = 0. Then we obtain

R14,14 =
V1 − V4

I1

=
h

e2

3

4
(6.125)

and

R14,23 =
V2 − V3

I1

=
h

e2

1

4
, (6.126)

which are the predicted values if the helical edge states truly exist in the system. These

predictions have been experimentally confirmed in HgTe/CdTe quantum wells [22].

However, so far the exact quantized plateau of the conductance has not yet been

measured experimentally in HgTe/CdTe quantum wells.

6.6 Quantized Conductance in InAs/GaAs Bilayer

Quantum Well

The double layer quantum wells InAs/GaSb, which is sandwiched between AlSb bar-

riers, provides an alternative to observe the quantum spin Hall effect. In the system

the conduction band of InAs layer and the valence band in GaSb layer are sepa-

rated spatially in quantum wells and the overlap of the two bands is tunable by the

gate voltages. Hybridization of the two bands may lead to a gap opening, which has

been studied theoretically and experimentally for a long time. In 2008, a complete

phase diagram was suggested to cover metallic, normal insulating, and topological

quantum spin Hall insulating phase. In the quantum spin Hall regime a pair of heli-

cal edge states are expected to be protected topologically, and to be dominated the

transport properties near the band crossing point [23]. The helical edge states in the

hybridization gap were evidenced by low-temperature electronic transport measure-

ment [24]. In 2015, Du et al. [25] reported the clear quantized conductance plateau

of helical edge states in the sample of electron-hole bilayer of inverted InAs/GaSb

by using dilute silicon impurity doping at the interference, and non-local transport

measurement to support the helicity of edge states. Surprisingly it is observed that

the quantized conductance plateau can survive even up to 12 Tesla in-plane magnetic
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field, which goes beyond theoretical expectation asthe magnetic field will break time

reversal symmetry and consequently the Zeeman coupling between electron with

opposite spins destroys the helical edge states. It is anticipated that the robustness of

the edge states may result from the electron-electron interaction effect in the system,

such as the Luttinger liquid in the edge channel or the emergence of excitons in this

special particle-hole bilayer quantum well structure. The edge current can be imaged

in InAs/GaAs quantum well with long edge. An effective edge resistance can be

determined to be larger than h/e2, it is independent of temperature up to 30 K, which

cannot be explained by existing scattering mechanism [26]. Besides, Ma et al. [27]

demonstrates that HgTe/CdTe system also exhibits the robustness of edge states in

the presence of strong magnetic field, which is very similar to the InAs/GaSb. Until

now, the story behind these unconventional phenomena is still unclear theoretically.

6.7 Quantum Hall Effect and Quantum Spin Hall Effect:

A Case Study

The difference between the quantum Hall effect and the quantum spin Hall effect

can be illustrated with the conductance of a three-probe conductor with one contact

playing the role of a voltage probe. At this contact the net charge current vanishes.

Electrons that leave the contact is replaced by electrons from the contact reservoir.

In the quantum Hall effect sample with ν = 2, two edge states from the left source

contact enter the voltage probe and two edge states leave the voltage probe for the

right drain contact. The potential of the probe is equal to that of the source contact and

the voltage probe has no effect on the overall conductance. However in the quantum

spin Hall effect sample, the situation is different. Here, only one edge state is directed

from the source contact to the voltage probe. Two other edge states lead away from

the probe—one to the source contact and one to the sink contact. To maintain zero

current, it is sufficient to tune the chemical potential at the probe halfway between

the potentials of the source and sink contact. Now, half the current is directed back

to the source contact. The voltage probe reduces the overall conductance by half

a conductance quantum, i.e., σ = 3
2

e2

h
not 2 e2

h
as in the quantum Hall effect of

ν = 2 [28]. Such a probe maintains a zero net charge current into the contact.

However, the spin current into the probe is nonzero with spin up in the case depicted.

Simultaneously, a spin current is induced into both the source and drain electrodes.

6.7.1 Quantum Hall Effect (ν = 2)

In this setup with three-terminal geometry, using the Landauer-Büttiker formula, the

currents are
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⎛

⎝

Ile f t

Iprobe

Iright

⎞

⎠ = 2
e2

h

⎛

⎝

−1 0 1

1 −1 0

0 1 −1

⎞

⎠

⎛

⎝

µle f t

µprobe

µright

⎞

⎠ . (6.127)

The probe potential is tuned such that the charge current at the voltage probe vanishes,

Iprobe = 2
e2

h
(μle f t − μprobe) = 0. (6.128)

Then,

Iright = 2
e2

h
(μprobe − μright )

= 2
e2

h
(μle f t − μright ). (6.129)

The conductance is

G Q H E = 2
e2

h
. (6.130)

6.7.2 Quantum Spin Hall Effect

Using the Landauer-Büttiker formula, the currents are

⎛

⎝

Ile f t

Iprobe

Iright

⎞

⎠ =
e2

h

⎛

⎝

−2 1 1

1 −2 1

1 1 −2

⎞

⎠

⎛

⎝

μle f t

μprobe

μright

⎞

⎠ . (6.131)

The probe potential is tuned such that the charge current at the probe vanishes,

Iprobe =
e2

h
(μle f t + μright − 2μprobe) = 0. (6.132)

Then,

Iright =
e2

h
(μle f t + μprobe − 2μright )

=
3

2

e2

h
(μle f t − μright ). (6.133)

The charge conductance is

G Q H E =
3

2

e2

h
. (6.134)
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Fig. 6.10 Difference of quantum Hall effect and quantum spin Hall effect (right) in a setup with

three probes. Left quantum Hall effect for ν = 2 with two chiral edge chaneels. Right the quantum

spin Hall effect with a pair of helical edge channels

In the quantum spin Hall effect, the spin currents are

⎛

⎜

⎜

⎝

I S
le f t

I S
probe

I S
right

⎞

⎟

⎟

⎠

=
e

4π

⎛

⎝

0 −1 1

1 0 −1

−1 1 0

⎞

⎠

⎛

⎝

μle f t

μprobe

μright

⎞

⎠ . (6.135)

The spin current at the probe is

I S
probe =

e

4π

(

μle f t − μright

)

�= 0. (6.136)

Although the charge current vanishes at the probe, the spin current does not vanish.

The results are summarized in Fig. 6.10.

6.8 Coherent Oscillation Due to the Edge States

We study here the device shown in Fig. 6.11, which consists of a two-dimensional

strip of a topological insulator on which two quantum point contacts have been

patterned in series through gates (shaded regions in Fig. 6.11). The quantum point

contacts define a saddle shaped confining potential, whose height can be controlled

by a gate voltage. An effective disk with the area A = πR2 (R is the radius of

the disk) is formed in the center. An Aharonov-Bohm effect in the device can be

expected intuitively, because a topological insulator possesses a pair of independent

gapless edge states of different spins moving in opposite directions, each forming

an ideal one-dimensional loop around the disk. The two edge states are independent

because no backscattering is allowed at a given sample edge even in the presence of

weak time reversal invariant disorder. We note here that spin is not a good quantum

number in topological insulators because of spin-orbit coupling. In the absence of

a magnetic field, the actual edge states are eigenstates of the time reversal operator;

their characterization as spin up and down is not precisely correct, and the word
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Fig. 6.11 Schematic of the setup consisting of a disk connected to two reservoirs through two

quantum point contacts. Red (light gray) and blue (dark gray) lines indicate the chiral edge channels

of spin up and down electrons, with arrows indicating the direction of their motion (Adapted from

[32]) (color figure online)

“spin” below is to be viewed more generally as the quantum number denoting the

two states of a Kramers doublet.

Suppose a weak magnetic field B⊥ exists normal to the plane. Following [29]

we consider an electron with spin up (or spin down) travelling from the left hand

side in Fig. 6.11. At the left hand side junction it splits into two partial waves: one is

transmitted through the quantum point contact into the disk with amplitude t , and the

other is transmitted across the quantum point contact with an amplitude r causing a

backscattering. We denote the wave function amplitudes in the upper and lower edge,

right after the left hand side junction, by u1 and d1, respectively. The corresponding

amplitudes in the vicinity of the right hand side junction are u2 = u1 exp[iθ/2] and

d2 = d1 exp[−iθ/2], where

θ = 2π
φ

φ0

+ 2πk Reff , (6.137)

φ0 = h/e is the magnetic flux quantum, φ = πR2
eff B⊥ is the magnetic flux threading

the effective one-dimensional loop with an effective radius Reff , and 2πk Reff is the

phase acquired by the wave function traveling along the loop. As the Fermi level of

electrons in the edge states can be tuned by a gate voltage Vgate and the dispersion

relation for the edge states is linear in k, the phase can be tuned by the gate voltage

δθ = 2πReffδk ∝ δVgate.

A partial wave goes through the right hand side slit with an amplitude t ′ and across

the slit with an amplitude r ′. Using the theory of multi-scattering processes [30], it

follows that the total transmission for a spin-up electron through the slit A and B is

given by
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T ↑(B⊥) =
∣

∣t t ′∣
∣

2

1 + |rr ′|2 − 2 |rr ′| cos(θ + θ0)
. (6.138)

Here θ0 = arg(rr ′). For specificity, the following numerical calculations suppose

two symmetric quantum point contacts with |t | =
∣

∣t ′∣
∣ and |r | =

∣

∣r ′∣
∣. Resonant

tunneling, i.e. T ↑(B⊥) = 1, occurs for cos(θ + θ0) = 1.

The transmission coefficient for a spin down electron T ↓(B⊥), which is the time

reversal counterpart of a spin-up electron at −B⊥, is given by T ↓(B⊥) = T ↑(−B⊥).

According to the Landauer-Büttiker formula [11, 31], the total conductance is

G(B) =
e2

h
[T ↑(B⊥) + T ↓(B⊥)]. (6.139)

This coherence oscillations in the conductance G as a function of the magnetic flux φ

through the disk are therefore expected to be symmetric with respect to the direction

of the magnetic field.

6.9 Further Reading

• F.D.M. Haldane, Model for a Quantum Hall Effect without Landau Levels:

Condensed-Matter Realization of the “Parity Anomaly”, Phys. Rev. Lett. 61, 2015

(1988).

• C.L. Kane and E.J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett.

95, 226801 (2005).

• C.L. Kane and E.J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect,

Phys. Rev. Lett. 95, 146802 (2005).

• B. Andrei Bernevig, T.L. Hughes, and S.C. Zhang, Quantum Spin Hall Effect and

Topological Phase Transition in HgTe Quantum Wells, Science 314, 1757 (2006).

• M. Konig, S. Wiedmann, Ch. Brne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L.

Qi, and S.C. Zhang, Quantum Spin Hall Insulator State in HgTe Quantum Wells,

Science 318, 766 (2007).
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Chapter 7

Three-Dimensional Topological Insulators

Abstract Three-dimensional topological insulators are characterized by surround-
ing surface states in which electrons are well described as two-dimensional Dirac
fermions. A series of materials have been identified as topological insulators after
being theoretically predicted.

7.1 Family Members of Three-Dimensional Topological

Insulators

7.1.1 Weak Topological Insulators: PbxSn1−xTe

The first known inverted band material was SnTe, which was discovered more than
50 years ago [1]. The valence- and conduction-band edges in PbTe and SnTe occur
at the L points in the Brillouin zone. The valence band of PbTe is an L+

6 state and its
conduction band is an L−

6 state, and the valence band of SbTe is an L−
6 state and its

conduction band is an L+
6 state, as shown in Fig. 7.1. In a Pbx Sn1−x Te alloy sample,

as the Sn composition increases, the energy gap initially decreases as the L+
6 and L−

6
states approach each other, then closes at an intermediate composition where the two
states become degenerate, and finally re-opens, with the L+

6 state now forming the
conduction band and the L−

6 state forming the valence band [2]. The band structures
of PbTe and SnTe were calculated in the early sixties of the last century [3, 4]. It was
realized that the change in the energy gap corresponding to different compositions of
the Pbx Sn1−x Te alloy series can be understood qualitatively in terms of the difference
between the relativistic effects in Pb and Sn, and relativistic correction are extremely
important in determining the positions of the energy bands. Nowadays we call the
relativistic correction as the spin-orbit coupling in semiconductors.

The band inversion in Pbx Sn1−x Te occurs at four equivalent valleys. The number
of the surface states is even. Thus, it is a trivial or weak topological insulator according
to the topological classification of time reversal symmetry [5].

© Springer Nature Singapore Pte Ltd. 2017
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Fig. 7.1 Schematic
representation of the valence
and conduction bands for
PbTe, for the composition at
which the energy gap is zero
and for SnTe

Fig. 7.2 Schematic
representation of the band
energy evolution of
Bi1−x Sbx as a function of x.
Replotted from [9]

7.1.2 Strong Topological Insulators: Bi1−xSbx

The first strong topological insulator to be discovered was the bismuth antimony alloy
Bi1−x Sbx [6, 7]. Semiconducting Bi1−x Sbx alloys have been studied experimentally
because their thermoelectric properties make them desirable for thermocoupling. The
evolution of the band structure of the alloy Bi1−x Sbx as a function of Sb composition
x has been well studied and is summarized in Fig. 7.2 [8, 9]. As the Sb concentration
increases, two things happen. First, the gap between the Ls and La bands decreases.
At x = 4%, the band gap closes and then reopens with the inverted ordering. Second,
the top of the valence band at T comes down in energy and crosses the bottom of the
conduction band at x = 7%. At this point, the indirect gap becomes positive, and the
alloy is a semiconductor. At x = 9% the T valence band crosses the Ls valence band,
and the alloy is a direct-gap semiconductor at the L points. As x increases further, the
gap increases and reaches its maximum value of about 30 meV at x = 18%. At that
point, the valence band H crosses the Ls valence band. For x > 22%, the H band
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crosses the La conduction band, and the alloy is again a semimetal. As the inversion
transition between the Ls and La bands occurs in the semimetal phase adjacent to pure
bismuth, it is clear that the semiconducting Bi1−x Sbx alloy inherits its topological
class from pure antimony and is, thus, a strong topological insulator [6].

Direct observation of Dirac gapless surface states in Bi1−x Sbx was first reported
by a group led by Hasan [7]. High-momentum-resolution angle-resolved photoe-
mission spectroscopy performed with varying incident photon energy allows for the
measurement of electronic band dispersion along various momentum space (k-space)
trajectories in the three-dimensional bulk Brillouin zone. The surface band-dispersion
image along the Γ − M direction shows five Fermi level crossings, which demon-
strates that the materials are topologically non-trivial.

7.1.3 Topological Insulators with a Single Dirac Cone:

Bi2Se3 and Bi2Te3

Soon after the discovery of Bi0.9Sb0.1, a new family of stoichiometric crystals, Bi2Se3,
Bi2Te3, and Sb2Te3, was identified as a family of three-dimensional topological
insulators [10–12]. Among them, Bi2Se3 (Bismuth selenide) is expected to be the
most promising for applications. It has a large bulk band gap up to 0.3 eV, equivalent
to 3000 K, which ismuch higher than room temperature. Its band inversion happens
at the Γ̄ point, leading to a simple band structure of the topological surface states
with only a single Dirac cone. The high-resoluation ARPES measurement shows
clearly the surface band dispersion on Bi2Se3, as shown in Fig. 7.3, which provides
explicit and unambiguous evidence of the surface states of topological insulators. It
also reveals a single ring around the Γ̄ point formed by the pure surface states, and
the band structure of the Dirac cone. The single Dirac cone of the surface states is
now considered characteristic of topological insulators.

7.1.4 Strained HgTe

Three-dimensional crystal HgTe is a semimetal with a neutral charge when the Fermi
level is at the touching point between the light-hole and heavy-hole Γ8 bands. A
unique property of the band structure of HgTe is the inversion of the Γ6 and Γ8

band ordering. The effective masses of light- and heavy-holes have opposite signs
(see Fig. 6.7). The appearance of the heavy-hole band between the light-hole and Γ6

bands makes the material metallic instead of insulating, as there is no energy gap in
the band structure. Because of the band inversion, three-dimensional HgTe is also
expected to have Dirac-like surface states, however, the surface states always mix
with bulk states. Once the system opens an energy gap, it will evolve into a topological
insulator. Usually, there are two ways to open an energy gap in the band structure. One

http://dx.doi.org/10.1007/978-981-10-4606-3_6
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Fig. 7.3 High-resolution ARPES data of surface electronic band dispersion on Bi2Se3(111) mea-
sured with an incident photon energy of 22 eV near the Γ -point along the Γ̄ − M̄ and Γ̄ − K̄

momentum-space cuts. Reprinted by permission from Macmillan Publisher Ltd: Nature Physics
[10], copyright (2009)

Fig. 7.4 a Surface local density of states of 3D HgTe without strain. The bright line in the direct
gap between LH and HH bands indicates the first type surface state; the bright regimes in the valence
band indicates the second type surface state. b An insulating band gap is opened and the first and
second-type surface states becomes connected. c The surface states when the Γ6 and the HH band
are inverted

way is to fabricate a thin film or a quantum well. The finite size effect opens a gap,
which is the origin of the quantum spin Hall effect in two-dimensional HgTe/CdTe
quantum wells. The other way is the strain effect. A strained three-dimensional HgTe
is expected to be a topological insulator (See Fig. 7.4). The quantum Hall effect of
the surface states in a strained bulk HgTe was observed experimentally [13].
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Based on the adiabatic continuity of their band structure to HgTe, a series of
chalcopyrite semiconductors are predicted to be topological insulators [15].

7.2 Electronic Model for Bi2Se3

Bi2Se3 and Bi2Te3 are three-dimensional topological insulators with robust and sim-
ple surface states constituting a single Dirac cone at the Γ point [11]. Bi2Se3 and
Bi2Te3 share the same rhombohedral crystal structure with the space group D5

3d

(R3̄m) with five atoms in one unit cell. We take Bi2Se3 as an example and show its
crystal structure in Fig. 7.5; it is a layered structure with a triangle lattice within one
layer. It has a trigonal axis (three-fold rotation symmetry), defined as the z-axis; a
binary axis (two-fold rotation symmetry), defined as the x-axis; and a bisectrix axis
(in the reflection plane), defined as the y-axis. The material consists of five-atom
layers arranged along the z-direction, known as quintuple layers. Each quintuple
layer consists of five atoms with two equivalent Se atoms (denoted as Se1 and Se1’),

Fig. 7.5 Top Crystal structure of Bi2Se3 with three primitive vectors denoted as t1,2,3. The Se1
(Bi1) layer can be related to the Se1’ (Bi1’) layer by an inversion operation in which the Se2 atoms
have the role of inversion centres. Bottom Schematic diagram of the pz orbitals of electrons, and
the band inversion of the p+

z orbitals of Bi and the p−
z orbitals of Se due to the spin-orbit coupling
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two equivalent Bi atoms (denoted as Bi1 and Bi1’) and a third Se atom (denoted as
Se2). The coupling is strong between two atomic layers within one quintuple layer
but much weaker, predominantly of the van der Waals type, between two quintuple
layers. The primitive lattice vectors t1;2;3 and the rhombohedral unit cells are shown
in Fig. 7.5. The Se2 site has the role of an inversion center and under an inversion
operation, Bi1 is changed to Bi1’ and Se1 is changed to Se1’. The existence of
inversion symmetry enables us to construct eigenstates with definite parity for this
system.

To get a better understanding of the inversion of the band structure and the parity
exchange in Fig. 7.5, we start from the atomic energy levels and consider the effect
of crystal-field splitting and spin-orbit coupling on the energy eigenvalues at the Γ

point. The states near the Fermi surface mainly come from p orbitals of Bi (6s26p3)
and Se (4s24p4). The crystal-field removes the degeneracy of the p orbitals and
only the pz orbitals become relevant in the present problem. Furthermore due to the
inversion symmetry of the crystal lattice, the pz orbitals of the electrons from Bi
and Se atoms near the Fermi surface have opposite parities. The band gap between
these two orbitals is controlled by the spin-orbit coupling: increasing the spin-orbit
coupling may cause a band inversion, as analyzed in [11].

The three-dimensional Dirac equation can be applied to describe a large family
of three-dimensional topological insulators. Bi2Te3, Bi2Se3 and Sb2Te3 have been
confirmed to be topological insulators with a single Dirac cone of surface states. For
example, in Bi2Te3, the electrons near the Fermi surfaces mainly come from the p

orbitals of Bi and Te atoms. According to the point group symmetry of the crystal
lattice, a pz orbital splits from px,y orbitals. Near the Fermi surface the energy levels
turn out to be the pz orbital,

∣

∣P1+
z ,↑

〉

,
∣

∣P1+
z ,↓

〉

,
∣

∣P2−
z ,↑

〉

, and
∣

∣P2+
z ,↓

〉

, where ±
stand for the parity of the corresponding states and ↑,↓ for the electron spin. Four
low-lying states at the Γ point can be used as a basis to construct the low-energy
effective Hamiltonian [11]. On the basis of (

∣

∣P1+
z ,↑

〉

,
∣

∣P1+
z ,↓

〉

,
∣

∣P2−
z ,↑

〉

,
∣

∣P2+
z ,↓

〉

),
we keep the terms up to the quadratic order in p, and obtain

H = ǫ(p) +
∑

i=x,y,z

vi piαi +

⎛

⎝M −
∑

i=x,y,z

Bi p2
i

⎞

⎠β (7.1)

with vx = vy = v‖ and vz = v⊥, and Bx = By = B‖ and Bz = B⊥. The first term,
ǫ(p) = C − D‖(p2

x + p2
y)− D⊥ p2

z , breaks the particle-hole symmetry of the system.
The linear term in pi is determined by the change in the parity of the different basis.
Anisotropy of the crystal reveals that B‖ �= B⊥ and v‖ �= v⊥. This will modify the
effective velocity of the surface states.

This model can be understood as a result of the k · p theory. Under the time reversal,
αi → −αi and β → β. Suppose the system is time reversal invariant. Expand the
Hamiltonian near p = 0. The zero-order term is Mβ, where M represents the energy
gap at the point, the first order term is

∑

i=x,y,z vi piαi since pi → −pi , and the
second order term is

∑

i=x,y,z Bi p2
i β, as p2

i → p2
i under the time reversal. ǫ(p) is

the dispersion independent of inter-band coupling.
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7.3 Effective Model for Surface States

The effective Hamiltonian for the surface states can be derived from the electronic
model for the bulk states. Consider an x-y plane at z = 0. Both px and py are
good quantum numbers, and pz is replaced by −i�∂z in (7.1) To derive an effective
Hamiltonian for the surface states, we first find the solution of the surface states at
px = py = 0 in (7.1):

H(z) |Ψ 〉 = E |Ψ 〉 , (7.2)

where

H(z) = C + D⊥�
2∂2

z − iv⊥�∂zαz + (M + B⊥�
2∂2

z )β. (7.3)

We have derived an effective model for surface states for the modified Dirac equation
in Chap. 2. Here the presence of ǫ(p) makes it a little bit more complicate to find the
solution at px = py = 0. The term ǫ(p) breaks the particle-hole symmetry between
the conduction band and the valence band. If D2

⊥ > B2
⊥, the band gap closes and the

system is no longer an insulator. To have a surface state solution, we focus on the
case of D2

⊥ < B2
⊥. In this matrix equation, the first and third rows are decoupled from

the second and fourth rows. For this reason, we can adopt two trial wave functions:

|Ψ1〉 =

⎛

⎜

⎜

⎝

a1

0
b1

0

⎞

⎟

⎟

⎠

eλz (7.4)

and

Ψ2 =

⎛

⎜

⎜

⎝

0
a2

0
b2

⎞

⎟

⎟

⎠

eλz, (7.5)

respectively. The equation is reduced into two independent sets of equations

(

M + B+λ2 −iv⊥λ

−iv⊥λ −M + B−λ2

)(

a1

b1

)

= E

(

a1

b1

)

(7.6)

and
(

M + B+λ2 +iv⊥λ

+iv⊥λ −M + B−λ2

)(

a2

b2

)

= E

(

a2

b2

)

, (7.7)

where B± = B⊥ ± D⊥. These two equations are equivalent to those for the edge
states in the quantum spin Hall effect at kx = 0. We first focus on the solution of a1

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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and b1. To have a non-trivial solution, the characteristic equation is

det

(

M + B+λ2 − E −iv⊥λ

−iv⊥λ −M + B−λ2 − E

)

= 0. (7.8)

From this equation, we find four roots for λ: ±λ1 and ±λ2. We adopt the Dirichlet
boundary conditions, which require that the wave function for the surface states must
vanish at z = 0 and z → −∞. For M B⊥ > 0, we obtain

|Ψ1〉 =

⎛

⎜

⎜

⎝

a1

0
b1

0

⎞

⎟

⎟

⎠

(

eλ1z − eλ2z
)

(7.9)

with

λ1 =
1

2

√

v2
⊥

B+ B−
+

√

1

4

v2
⊥

B+ B−
−

M

B⊥
(7.10)

and

λ2 =
1

2

√

v2
⊥

B+ B−
−

√

1

4

v2
⊥

B+ B−
−

M

B⊥
, (7.11)

which requires that

a1

b1
=

i Aλ1

B+(λ2
1 + M

B⊥
)

=
i Aλ2

B+(λ2
2 + M

B⊥
)
. (7.12)

The normalization of the wave function requires

|a1|2 + |b1|2 =
(

λ1 + λ2

2λ1λ2
−

2

λ1 + λ2

)−1

. (7.13)

Similarly, we find the solution to |Ψ2〉 by setting a2 = −a1 and b2 = b1,

|Ψ2〉 =

⎛

⎜

⎜

⎝

0
−a1

0
b1

⎞

⎟

⎟

⎠

(

eλ1z − eλ2z
)

. (7.14)

The energy eigenvalue for both states is E = −D⊥M/B⊥.
To find the solution of px , py �= 0 we may use the projection and perturbation

method by utilizing the two solutions at px = py = 0 as the basis to project the
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Hamiltonian. On the new basis, the effective Hamiltonian is projected out

He f f =
(

〈Ψ1| H |Ψ1〉 〈Ψ1| H |Ψ2〉
〈Ψ2| H |Ψ1〉 〈Ψ2| H |Ψ2〉

)

. (7.15)

In this way, we obtain an effective Hamiltonian in the x-y plane [16],

He f f = ǫ0(p) + ve f f (p × σ)z, (7.16)

where ve f f =sgn(B⊥)

√

1 − D2
⊥/B2

⊥v‖. We note that the inclusion of ǫ(p) will revise

the effective velocity of the surface states. A quadratic term appears up to p2, ǫ0(p) =
E0 − D‖(p2

x + p2
y). Note that the effective Hamiltonian is only valid for a small p.

A key feature of this effective model is the lock-in relation between the momentum

and spin. In the polar coordinate, we set p =
√

p2
x + p2

y and φp = arctan py/px . The

dispersions for the surface states are E±(p) = ǫ0(k) ± ve f f p and the corresponding
energy states are

|Ψ±〉 =
1

√
2

(

±e−iφp

1

)

. (7.17)

The Berry phase, which is acquired by a state upon being transported around a loop
in the k space, can be evaluated exactly,

γ± =
∮

dφp 〈Ψ±| i
∂

∂φp

|Ψ±〉 = ∓π. (7.18)

The Berry phase will play an essential role in the transport properties of the surface
states, such as weak antilocalization. An ideal Dirac fermion gas is a super-metal, in
which none of the states can be localized by disorders or impurities.

Hexagonal warping effect [17]: Bi2Te3 has a rhombohedral crystal structure with
the space group R3m̄. In the presence of a [111] surface, the crystal symmetry is
reduced to C3v , which consists of a three-fold rotation of C3 around the trigonal
z-axis and a mirror operation M: x → −x , where x is in the Γ − K direction. Under
the operations of C3 and M, the momentum and spin transform as follows:

C3 : p± → e±i2π/3 p±,σ± → e±i2π/3σ±,σz → σz (7.19)

and
M : p+ → −p−,σx → σx ,σy,z → −σy,z . (7.20)

In addition, the time reversal symmetry gives the constraint

H(p) = Θ H(−p)Θ−1. (7.21)



134 7 Three-Dimensional Topological Insulators

Keeping the higher order term up to p3, the effective Hamiltonian for the surface
states has the form

He f f = ǫ0(p) + ve f f (pxσy − pyσx ) +
λ

2
(p3

+ + p3
−)σz, (7.22)

where ǫ0 = p2/2m∗. The cubic term does not breaks the time reversal symmetry.

7.4 Physical Properties of Topological Insulators

7.4.1 Absence of Backscattering

The absence of backscattering in the topological surface states can be demonstrated
as follows: a pair of the Kramers’ states |k,↑〉 and |−k,↓〉 are related through the
time reversal transformation, |−k,↓〉 = Θ |k,↑〉. As the operator Θ is anti-unitary,
it is straightforward that

〈−k,↓| U |k,↑〉 = − 〈−k,↓| ΘUΘ |k,↑〉 (7.23)

= −〈k,↑| U |−k,↓〉∗ = −〈−k,↓| U |k,↑〉 , (7.24)

where U is a time reversal invariant operator. Thus, for a potential of a nonmagnetic
impurity V , 〈−k,↓| V |k,↑〉 = 0.

The absence of backscattering of the surface states was studied in the alloy
Bi1−x Sbx [18], and in the single crystal Bi2Te3 [19]. Bi2Te3 has only a single Dirac
cone and therefore the picture is clearer. The constant energy contour at the Fermi
energy of the conduction band of Bi2Te3 is shown in Fig. 7.6. Due to the strong warp-
ing effect in (7.22), the constant energy contour of the surface band of Bi2Te3 is not a
perfect ring, but looks like a hexagram. In the scanning tunneling microscopy (STM)
measurement on the surface of Bi2Te3, non-magnetic Ag atom trimers are deposited,
which can scatter the surface states. The electron wave functions before and after
scattering will interfere with each other and form a standing wave pattern. The fast
Fourier transformation from the real-space standing wave pattern to the momentum
space can reveal the momentum difference before and after the scattering. On the
hexagram, the density of states is not uniform. At some momenta, the density of
states is relatively large, as depicted by the darker area on the hexagram in Fig. 7.6.
The scattering between these high-density momenta is more obvious in some than
in others. The momentum difference between two momenta with totally opposite
momenta, i.e., backscattering is q = k f − ki = 2K̄ . If the backscattering is present,
there will be a high-value signal along q direction in the fast Fourier transformation
spectra, more specifically, along the K̄ direction of the surface Brillouin zone. How-
ever, there are apparent gaps along the K̄ direction in the STM measurement [19].
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Fig. 7.6 Constant energy
contour of He f f in (7.22).
The dominant scattering
wave vectors connect two
points in Γ − K directions
on the constant energy
contour. ki and k f denote
the wave vectors of incident
and scattered states

This provides a direct evidence of the absence of backscattering of Dirac fermions
on the surface of topological insulator.

7.4.2 Weak Antilocalization

Weak antilocalization is a characteristic feature of transport experiments that demon-
strates the presence of the Dirac fermions in topological insulators. It appears in the
form of low-field negative magnetoconductivity, i.e., negative conductivity change
as a function of an applied magnetic field [20–24]. A series of experimental mea-
surements have been reported. So far, all of the reported samples in the transport
experiments have low mobility and a short mean free path, indicating that diffusion
dominates the electronic transport. Like many semiconductors, the phase coher-
ence length in topological insulators can be as long as several hundred nanometers
to more than one micrometer at low temperatures (below the liquid helium tem-
perature). When the sample size is comparable to the phase coherence length, the
quantum interference becomes an important correction to the diffusion transport. In
materials without or with ignorable spin-orbit coupling, the constructive quantum
interference will enhance the backscattering between two time-reversed scattering
loops (Fig. 7.7), and suppress the resistivity. This suppression of resistivity by the
quantum interference leads to the weak localization. It can be destroyed by applying a
magnetic field that breaks the constructive quantum interference. On the other hand,
people have known for a long time that strong spin-orbit scattering in some solids
could also make the quantum interference change from constructive to destructive.
As a result, the conductivity is enhanced and weak antilocalization happens.
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Fig. 7.7 a The back scattering between two time-reversed scattering loops. b The exhibition of
weak localization and weak antilocalization in magnetoconductivity. The horizontal dashed line

marks the classical conductivity

In addition to the spin-orbit scattering, the energy band structure with spin-orbit
coupling can also lead to weak antilocalization, and this case can be understood
in terms of the Berry phase argument. Due to the strong spin-orbit coupling, the
surface states of topological insulators have a two-component spinor wave function,
which describes a momentum-spin lock-in relation in the surface states. After an
electron circles around the Dirac point, its spin orientation rotates by 2π, and the wave
function accumulates only a π Berry phase [25, 26]. The π Berry phase changes the
interference of the time-reversed scattering loops from constructive to destructive.
The destructive interference will enhance the conductivity, which can be destroyed
by applying a magnetic field, leading to a negative magnetoconductivity with the
cusp.

7.4.3 Shubnikov-de Haas Oscillation

All of the early in-plane transport measurements reveal the dominance of three-
dimensional bulk conductivity [20, 21, 27]. One way to determine the dimension
of the carriers and to distinguish the two-dimensional surface states from the three-
dimensional bulk states is the Shubnikov-de Haas oscillation. In the presence of a
strong perpendicular magnetic field, an electron gas splits into discrete Landau levels,
the separation between the Landau levels increases with the increasing magnetic field.
As the magnetic field increases, the Landau levels cut through the Fermi surface one
by one. When the Fermi level is (not) aligned with a Landau level, the resistivity drops
(increases). As a result, the in-plane measurement will measure an oscillating resis-
tivity, known as the Shubnikov-de Haas oscillation. Because the Shubnikov-de Haas
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oscillation only responds to a perpendicular magnetic field, a two-dimensional elec-
tron gas has no Shubnikov-de Haas oscillation for in-plane magnetic fields, whereas a
three-dimensional electron gas can have a Shubnikov-de Haas oscillation for a mag-
netic field applied along any directions. This angle-dependence of the Shubnikov-de
Haas oscillation is a convenience tool to identify the dimension of carriers. The
Shubnikov-de Haas oscillation revealed the coexistence of three-dimensional bulk
carriers with the two-dimensional surface states in the transport for Bi1−x Sbx [27, 28]
and Bi2Se3 [29–31]. The Shubnikov-de Haas oscillation measured in a Bi2Se3 crys-
tal shows that the bulk states dominate the transport, because it can be measured
for an arbitrary magnetic field direction. The Shubnikov-de Haas oscillation also
reveals the Berry phase information. The oscillating longitudinal resistivity ρxx can
be formulated as

ρxx ∼ cos

[

2π

(

F

B
− γ

)]

, (7.25)

where F is the oscillation frequency, γ is the phase of the oscillation. The Berry
phase can be found as [32] 2π(γ − 1

2 ). One has zero Berry phase for γ = 1
2 , and π

Berry phase for γ = 0. The Berry phase is about 0.4, giving another signature that
the bulk states dominate the transport of as-grown topological insulator Bi2Se3.

7.5 Surface Quantum Hall Effect

When the surface states are subjected to a Zeeman field, the massless Dirac fermions
gain a mass and open an energy gap:

H = v(p × σ)z + ∆σz = d · σ (7.26)

with dx = −vpy , dy = vpx , and dz = ∆. From the Kubo formula, the Hall conduc-
tance can be expressed as

σxy =
e2

2�

∫

dkx dky

(2π)2

(

fk,+ − fk,−
)

d(k) · ∂kx
d(k) × ∂ky

d(k)

|d(k)|3
, (7.27)

where fk,± = {1 + exp[(±(d(k) − μ)/kB T ]}−1 (for details see Sect. A.2). When
the Fermi energy level is located in the gap, i.e., μ = 0, the Hall conductance is half
quantized at zero temperature,

σxy = −
sgn(∆)

2

e2

h
. (7.28)

It is noted that the Hall conductance is usually related to the Chern number, which is
always an integer if the Brillouin zone is finite, as we prove in Sect. A.1. However,
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here the integral range is infinite, which makes it possible that the conductance is not
an integer.

This is regarded as one of the key features of the surface states in topological
insulators. It has many applications in the field of topological insulators. For example,
it plays a decisive role in the development of topological field theory [33].

Although we have a half quantized Hall conductance from the Kubo formula, it
is still not clear whether or not the half quantization of the Hall conductance can
be directly observed in transport measurement. In the integer quantum Hall system,
the current-carrying chiral edge states are responsible for the quantized conductance
measured in transport experiments [34, 35]. It is not immediately clear whether or not
the similar chiral edge state will form on the closed surface of a topological insulator,
and how the quantized nature of the edge states can be reconciled with the prediction
of the half quantization of the Hall conductance [33, 36, 37]. To get a definite answer
to these questions, we investigate the multi-terminal transport properties of a three-
dimensional topological insulator in the presence of a uniform spin-splitting Zeeman
field.

To illustrate the basic physics, we consider a three-dimensional topological insu-
lator with a cubic shape. A Zeeman field is applied along the z-direction, as shown
in Fig. 7.8a. As the bulk of the system is insulating, it is effectively a closed two-
dimensional surface with six facets. The effective Hamiltonian of the Dirac fermions
for the surface states can be written as [16, 38]:

Heff(k) = v (k × σ) · n − g‖μBh‖σ‖ − g⊥μBh⊥ · σ⊥, (7.29)

Fig. 7.8 a Schematic of a three-dimensional topological insulator in a weak Zeeman field, and
the formation of the chiral current on the top and bottom surface boundaries. b Chiral edge state
around the domain wall between the two-dimensional Dirac fermions with the positive and negative
masses. c Edge mode splits into two halves separating by a metallic area
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where n denotes the normal vector of the surface, σ ≡ {σx ,σy,σz} are the Pauli
matrices, h‖ (σ‖) and h⊥ (σ⊥) are the Zeeman field (Pauli matrix) components
parallel and perpendicular to the normal vector, respectively, and g‖ and g⊥ are
the corresponding spin g-factors. Note that the surface states have anisotropic spin
g-factors due to the strong spin-orbit coupling of the bulk band: g‖ is the same as
that of the bulk material, and g⊥ is renormalized by the bulk band parameters and is
usually strongly suppressed [16, 38]. Different facets of the surface have different
effective Hamiltonians respective to different normal vectors n. For the top and the
bottom facets, the effective Hamiltonian can be written as

Heff = ±v(kxσy − kyσx ) + ∆zσz, (7.30)

where + and − are for the top and bottom surfaces, respectively, and ∆z ≡ −g‖μBh.
The spectrum will open a gap on these facets, and the Dirac fermions gain a mass
±∆z . On the other hand, the effective Hamiltonians for the side facets can be written
as

Heff = v[(kx + ∆h)σz − kzσx ], (7.31)

where ∆h ≡ g⊥μBh. In this case, the Zeeman field simply shifts the Dirac point
from (kx = 0, ky = 0) to (−∆h, 0). When the fermi level is located in the gap of
the top and bottom surface, the system becomes effectively two insulating domains
separated by a conducting belt with massless Dirac fermions.

A chiral edge state will form and is concentrated around the boundaries between
the insulating domains and the metallic belt, as illustrated in Fig. 7.8b, c. Effectively,
the chiral edge state is split into two halves, each of which is circulating around the
boundary of one of the domains and carrying one half of the conductance quantum
e2/h. This reconciles the apparent conflict between the half quantization and the
index theorem. After establishing the existence of the chiral surface-edge states, we
can calculate the Hall conductance numerically using the Landauer-Büttiker formal-
ism [39–41]. The setup of the device is illustrated in Fig. 7.9 four identical two-
dimensional metallic leads (μ = 1, 2, 3, 4) are attached to the top square surface of
a semi-infinite three-dimensional topological insulator, acting as the measurement

Fig. 7.9 Schematic
illustration of the
three-dimensional (3D)
device with two-dimensional
(2D) semi-infinite metallic
leads
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electrodes. The Zeeman field is normal to the top surface, and the Fermi level is
located in the gap. The multi-terminal conductance can be deduced from the trans-
mission coefficient Tpq from the terminal p to terminal q,

Tpq = T r [ΓpGrΓq Ga], (7.32)

where Γp is determined by the self energy at the terminal p [40]. The advanced and
retarded Green’s functions are given by

G R,A(E) =
1

E − Hc −
∑4

p=1 Π
R,A
p

, (7.33)

where E is the electron energy and Hc is the model Hamiltonian for three-dimensional
system. The retarded and advanced self-energy terms are introduced for the semi-
infinite lead p [41].

In this way The transmission coefficients, as a function of the thickness of the
sample, can be calculated numerically. When the sample is thick enough it was found
that the transmission coefficients between the two neighboring terminals p and q has
the relation [42]

Tpq − Tqp =
1

2
. (7.34)

A straightforward way to measure the “half quantized” Hall conductance in the
four-terminal setup is to apply a voltage between terminals 1 and 3 (V13), and mea-
sure the current between terminal 2 and 4 (I24). It is easy to show that the cross-
conductance σ24,13 ≡ I24/V13 = (e2/2h)(T12 − T21), yielding e2/4h for the half
quantization. The measurement using the usual six-terminal Hall bar configuration
could be more tricky due to the presence of the metallic side facets, which give
rise to the finite longitudinal conductance σL . In the limit of a thick sample with
σL ≫ e2/h, the Hall conductance σH approaches (4e2/h)(Tpq −Tqp) (if we assume
Tpq − Tqp is the same between all neighboring leads), which yields 2e2/h for the
half quantization. It can be compared with the case of quantum Hall effect, where
σL vanishes when σH is quantized [42].

7.6 Surface States in a Strong Magnetic Field

We now consider the surface states subjected to a uniform magnetic field. We first
consider the geometry of a strip with width L y and thickness H , which are much
larger than the magnetic length lB and the spatial distribution ξ of the surface states.
suppose the magnetic field B (along the z-axis) is perpendicular to the slab. We focus
on the top plane. The periodic boundary condition is adapted along the x-axis, and
the open boundary condition along the y-axis. In this way the wave number kx is still
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a good quantum number, and ky is substituted by −i∂y . We take the Landau gauge
for the vector potential, Ax = −By and Ay = 0. In this way, the effective model
(7.26) in a B field can be expressed in

He f f = vF

[

(�kx − eBy)σy + i�∂yσx

]

+ ∆σz . (7.35)

To solve the problem, it is convenient to define

a(y0) = i
lB√

2
[∂y + l−2

B (y − y0)], (7.36)

where the magnetic length lB =
√

�/eB and y0 = l2
Bkx assuming eB > 0. The

defined operators a and a† satisfy the commutation relation,

[a(y0), a†(y0)] = 1. (7.37)

For simplicity, we introduce a dimensionless parameters m0 = ∆√
2�vF / lB

. In this way,
we obtain a dimensionless Schrödinger equation,

(

m0 a

a† −m0

)(

ϕ1

ϕ2

)

=
E

vF

√
2e�/B

(

ϕ1

ϕ2

)

. (7.38)

The allowed values for y0 are separated by δy0 = 2πl2
B/L x for a periodic boundary

condition with length L x and are limited within 0 < y0 < L y . The solution is a
function of the good quantum number kx or y0 = l2

Bkx . When y0 is far away from
two edges of y = 0 and y = L , the two components ϕ1 and ϕ2 will vanish at the
two boundaries. Let |0〉 be the lowest energy state for a simple harmonic oscillator
such that a(y0) |0〉 = 0. |n〉 = 1

(n!)1/2 (a
†(y0))

n |0〉 is the eigenstates of N (y0) =
a†(y0)a(y0) with eigenvalue n (an integer). In this case, the energy eigenstates in
(7.38) are

|n,α〉 =
(

sin θn,α |n − 1〉
cos θn,α |n〉

)

, (7.39)

where tan θn,α =
√

n

α
√

n+m2
0−m0

and α = ±1 [43]. The Landau energy is given by

En,α = αvF

√

2e�B
(

n + m2
0

)

, (7.40)

which are highly degenerate for different values of y0. The number of the allowed
values of y0, NL = L y/δy0 = 2πL x L y/ l2

B, is called the degeneracy of the Landau
levels.
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It should be emphasized that the zero mode E0 = −vF

√
2e�B |m0| for n = 0

and the eigenstate is fully saturated, |0, 0〉 =
(

0
|0〉

)

. The energy expressions yield

an energy gap ∆E = |En=±1|− E0 between the zero mode and the states of n = ±1.
For m0 = 0 the energy gap is about ∆E ≈ 800 K for Bi2Se3 at B = 10 T, which
makes it possible to measure the quantum Hall effect even at room temperature, just
as in single layer graphene [44].

Unlike the conversional two-dimensional electron gas where the landau levels are
evenly spaced, En = �ωc(n+ 1

2 ), and the lowest Landau level of the conventional two-
dimensional electron gas has a nonzero energy �ωc/2 (ωc is the cyclotron frequency),
the Landau-level energies of massless Dirac fermions have a square-root dependence
on a magnetic field B and the level index n, given by

En = sgn(n)vF

√

2eB�|n|, (7.41)

where the level index n = 0,±1,±2, .... Moreover, Dirac fermions can have the
zero Landau level index, n = 0, or even negative level indices, n < 0. This
square-root dependence has been observed in the measurement of scanning tun-
neling spectroscopy [45, 46]. Despite the observation of the Landau levels in the
STM measurement, an in-plane measurement with a Hall-bar setup still poses an
experimental challenge, so the quantum Hall conductance has not yet been observed
for the surface states of topological insulators.

7.7 Topological Insulator Thin Film

Thin film of three-dimensional topological insulators may provide an alternative
way to realize the quantum spin Hall effect. It presents the opportunity to reduce
a three-dimension topological insulator to a two-dimensional topological insulator.
The surface states have spatial distribution, which can be characterized by a length
scale ξs . When this length scale is comparable to the thickness of the thin film, the
wave functions of the two surface states from the top and bottom surfaces will overlap
in space. Consequently, the two surface states open gaps. Thus, the surface states of
the thin film can be described by a two-dimensional massive Dirac model [16, 38].

7.7.1 Effective Model for Thin Film

Consider an extra-thin film in the x-y plane such that kx and ky are good quantum
numbers, and the thickness of the thin film along the z-direction is denoted as L . To
establish an effective model for an ultra-thin film, we still start with the electronic
model in (7.1) and follow the approach to derive an effective model for the surface
states where only one surface is considered, as discusssed in Sect. 7.3. The boundary



7.7 Topological Insulator Thin Film 143

condition in the present problem is different as two surfaces are considered simul-
taneously. If the thin film is so thick that the surface states at the top and bottom
layers are well separated, i.e., L >> λ−1

1 ,λ−1
2 which are the characteristic scales

of the surface states defined in (7.3), then the thin film consists of two independent
massless Dirac cones when the Fermi level is located in the bulk gap. However, if
the thickness L is comparable with λ−1

1 and λ−1
2 , the two surface states at the top

and bottom layers will be coupled together and will open an energy gap at the Dirac
point. Thus, the massless Dirac electrons will gain a mass and evolve into massive
Dirac electrons.

At kx = ky = 0, we have four roots for λ in (7.8): ±λ1 and ±λ2 as function of
energy E . Thus, the final solution for the wave function should be a linear superpo-
sition of these solutions; for example

|Ψ1〉 =
4
∑

i=1

ci

⎛

⎜

⎜

⎝

ai

0
bi

0

⎞

⎟

⎟

⎠

eλi z . (7.42)

We take the Dirichlet boundary condition for the wave functions at z = ±L/2, i.e.,
Ψ (z = ± L

2 ) = 0. Then, we can obtain a set of transcendental equations to determine
the values of E , λ1 and λ2 as function of thickness L ,

α2
1λ

2
2 + α2

2λ
2
1

α1α2λ1λ2
=

tanh λ1 L
2

tanh λ2 L
2

+
tanh λ2 L

2

tanh λ1 L
2

, (7.43)

where α1,2 = E − C − M − (D1 + B1)λ
2
1,2. In (7.43), λα define the behavior of the

wave functions along the z-axis, and are functions of the energy E

λα(E) =

√

−F + (−1)α−1
√

R

2(D2
1 − B2

1 )
, (7.44)

where for convenience we have defined F = A2
⊥ + 2D⊥(E − C) − 2B⊥M and

R = F2 − 4(D2
⊥ − B2

⊥)[(E − C)2 − M2]. The two equations in (7.43) can be found
numerically, and give two energies at the Γ point, i.e., E+ and E−, which define an
energy gap

∆ ≡ E+ − E−. (7.45)

We can find two solutions of |Ψ1〉: ϕ1 for E+ and χ1 for E− and other two solutions
for |Ψ2〉: ϕ2 for E+ and χ2 for E−. For details readers may refer to the reference
[16, 38]. By using these four solutions as basis states and rearranging their sequence
following (note that each basis state is a four component vector)

(

ϕ1,χ2,χ1,ϕ2
)

,

we can map the original Hamiltonian to the Hilbert space spanned by these four
states, and reach a new low-energy effective Hamiltonian for the ultra-thin film:
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Heff =
[

h+(k) 0
0 h−(k)

]

, (7.46)

in which

hτz
(k) = E0 − Dk2 − �vF (kxσy − kyσx ) + τz

(

∆

2
− Bk2

)

σz . (7.47)

Note that here the basis states of Pauli matrices stand for spin-up and spin-down states
of real spin. In (7.47), we have introduced a hyperbola index τz = ±1 (or ±). Unlike
the momentum correspondence in graphene, therev is a σz to −σz correspondence
in the present case. Therefore, the dispersions of h± are actually doubly degenerate,
which is secured by time reversal symmetry. Here, τz = ± are used to distinguish the
two degenerate hyperbolas; h+(k) and h−(k) describe two sets of Dirac fermions,
each show a pair of conduction and valence bands with the following dispersions

ε±(k) = E0 − Dk2 ±

√

(

∆

2
− Bk2

)2

+ (�vF )2k2, (7.48)

where + and − correspond to the conduction and valence bands, respectively. The
eigen states for ε± are

u±(k) =
1

‖u±‖

[

(

∆
2 − Bk2

)

τz ±
√

(

∆
2 − Bk2

)2 + (�vF )2k2

−i�vF k+

]

(7.49)

with

‖u±‖ =

√

√

√

√

√

⎡

⎣

(

∆

2
− Bk2

)

τz ±

√

(

∆

2
− Bk2

)2

+ (�vF )2k2

⎤

⎦

2

+ (�vF )2k2.

(7.50)

The energy gap ∆ and other model parameters are functions of thickness L and
can be calculated numerically. The numerical results of ∆, vF , D, and B are presented
in Fig. 7.10. It is noted that |D| must be less than |B|, otherwise the energy gap will
disappear, and all of the following discussions will not be valid. The ∆ terms play a
role in the mass term in 2+1 Dirac equations.

In the large L limit,

vF =
A‖

�

√

1 −
D2

⊥
B2

⊥
. (7.51)
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Fig. 7.10 a–c Two fold degenerate (τz = ±1) energy spectra of surface states for thicknesses
L = 20, 25, 32 (solid lines), and L → +∞ (dash lines). The gray area corresponds to the bulk
states. The parameters are M = 0.28 eV, A1 = 2.2 eV, A2 = 4.1 eV, B1 = 10 eV2, B2 = 56.6 eV2,
C = −0.0068 eV, D1 = 1.3 eV2, and D2 = 19.6 eV2. d–g The calculated parameters for the new
effective model He f f as a function of thickness L (Adapted from [38]) (color figure online)

The dispersion relation is given by

εc/v(k) = ±vF�k (7.52)

for small k. As a result, the energy gap closes at k = 0. The two massless Dirac
cones are located near the top and bottom surfaces, respectively, as expected in a
three-dimensional topological insulator.

In a small L limit,

vF =
A‖

�
, (7.53)
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and

∆ =
2B⊥π2

L2
. (7.54)

The ratio of the two velocities in the limits is

η =
1

√

1 − D2
⊥

B2
⊥

. (7.55)

It is noted that the velocity and energy gap for an ultra-thin film are enhanced for a
thinner film.

7.7.2 Structural Inversion Asymmetry

Recent experiments [47, 48] revealed that the substrate on which the film is grown
dramatically influences electronic structure inside the film. Because the top surface
of the film is usually exposed to the vacuum and the bottom surface is attached to a
substrate, the inversion symmetry does not hold along the z-direction, leading to the
Rashba-like energy spectra for the gapped surface states. In this case, an extra term
that describes the structure inversion asymmetry needs to be taken into account in
the effective model.

Without loss of generality, we add a potential energy V (z) into the Hamiltonian.
Generally speaking, V (z) can be expressed as V (z) = Vs(z) + Va(z), in which
Vs(z) = [V (z)+V (−z)]/2 = Vs(−z) and Va(z) = [V (z)−V (−z)]/2 = −Va(−z).
The symmetric term Vs could contribute to the mass term ∆ in the effective model,
which may lead to an energy splitting of the Dirac cone at the Γ point. Here we
focus on the case of the antisymmetric term, V (z) = Va(z), which breaks the top-
bottom inversion symmetry in the Hamiltonian. A detailed analysis gives the effective
Hamiltonian for structure inversion asymmetry

V SIA
eff =

⎡

⎢

⎢

⎣

0 0 Ṽ 0
0 0 0 Ṽ ∗

Ṽ ∗ 0 0 0
0 Ṽ 0 0

⎤

⎥

⎥

⎦

, (7.56)

where

Ṽ =
L/2
∫

−L/2

dz〈ϕ1|Va(z)|χ1〉. (7.57)
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When the term of the structure inversion asymmetry is included, the Hamiltonian in
(7.46) with V SI A

e f f (7.56) gives

E1,± = E0 − Dk2 ±

√

(

∆

2
− Bk2

)2

+ (|Ṽ | + �vFk)2, (7.58)

E2,± = E0 − Dk2 ±

√

(

∆

2
− Bk2

)2

+ (|Ṽ | − �vFk)2, (7.59)

where the extra index 1 (2) stands for the inner (outer) branches of the conduc-
tion or valence bands. Consequently, both the conduction and valence bands show
Rashba-like splitting in the presence of structure inversion asymmetry. An intuitive
understanding of the energy spectra can be developed with the help of Fig. 7.11. On
the left is a thicker freestanding symmetric topological insulator film with a single
gapless Dirac cone on each of its two surfaces, with the solid and dash lines for the
top and bottom surface, respectively. The two Dirac cones are degenerate. The top of
Fig. 7.11 indicates that the inter-surface coupling across an ultrathin film will turn the
Dirac cones into gapped Dirac hyperbolas. On the bottom of Fig. 7.11, the structure
inversion asymmetry lifts the Dirac cone at the top surface, while lowering the Dirac
cone at the bottom surface. The potential difference at the top and bottom surfaces
removes the degeneracy of the Dirac cones. On the right of Fig. 7.11, the coexistence
of both the inter-surface coupling and structure inversion asymmetry leads to two
gapped Dirac hyperbolas that also split in the k-direction.

Fig. 7.11 Evolution of the
doubly degenerate gapless
Dirac cones for the 2D
surface states, in the
presence of both
inter-surface coupling and
structure inversion
asymmetry (SIA), into
gapped hyperbolas that also
split in the k-direction. The
blue solid and green dashed

lines correspond to the states
residing near the top and
bottom surfaces, respectively
(color figure online)



148 7 Three-Dimensional Topological Insulators

Fig. 7.12 ARPES spectra of Bi2Se3 thin film at room temperature. a–e ARPES spectra of 1, 2,
3, 4, 5, and 6 quintuple-layer (QL) along the Γ − K direction. f–h Energy distribution curves of
c, d and e. The pink dashed lines in b represent the fitted curves using the formula in (7.48). The
blue and red dashed lines in c–e represent the fitted curves using the formula in (7.59) (Adapted
from [47])

7.7.3 Experimental Data of ARPES

Several groups have investigated the thickness-dependent band structure of molecular
beam epitaxy-grown ultrathin film Bi2Se3 using angle-resolved photoemission spec-
troscopy [47, 48]. The energy gap due to the interlayer coupling has been observed
experimentally in the surface states of ultrathin film Bi2Se3 below the thickness of
6QL. The spectrum splitting caused by structure inversion asymmetry was also con-
firmed. The observed experimental data can be fitted by the dispersion in (7.59) very
well as shown in Fig. 7.12.

The gap in the surface states is caused by the spatial confinement of thin film,
which does not break the time reversal symmetry. This is different from the gap
opening in the surface states in a Zeeman field or magnetic impurity doping.

7.8 HgTe Thin Film

HgTe is a semimetal with an inverted band structure. Usually a strain will induce an
energy gap and force the HgTe to evolve into a topological insulator. However, it is
technically difficult to apply a strong strain to a sample to make a semimetal insulating
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in experimental conditions. The finite size effect provides a practical way to open an
energy gap in the bulk state when the dimensionality of the sample is reduced from
three dimensions to two dimensions, as in the case of a quantum well [14].

When the film is thin enough, the band gap caused by the finite size effect becomes
obvious. In this case the finite confinement induced sub-bands are far away from the
low-energy regime. We can then use the quantum well approximation 〈kz〉 = 0,

〈k2
z 〉 ≃ (π/L)2. Using the relations in the Hamiltonian in (6.88), and choosing the

basis set in the sequence (|ψ1〉, |ψ3〉, |ψ5〉, |ψ2〉, |ψ6〉, |ψ4〉), we can obtain a two-
dimensional 6-band Kane model

H(k) =
(

h(k) 0
0 h∗(−k)

)

, (7.60)

where

h(k) =

⎛

⎜

⎜

⎜

⎝

h11 − 1√
2

Pk+
1√
6

Pk−

− 1√
2

Pk− h22

√
3γBk2

−

1√
6

Pk+
√

3γBk2
+ h33

⎞

⎟

⎟

⎟

⎠

(7.61)

with

h11 = Eg + B(2F + 1)(k2
‖ + 〈k2

z 〉), (7.62)

h22 = −(γ1 + γ)Bk2
‖ − (γ1 − 2γ)B〈k2

z 〉, (7.63)

and

h33 = −(γ1 − γ)Bk2
‖ − (γ1 + 2γ)B〈k2

z 〉. (7.64)

The system retains the time reversal symmetry, and the representation of the sym-
metry operation in the new set of basis is given by T = K · iσy ⊗ I3×3, where K

is the complex conjugation operator, σy and I denote the Pauli matrix and identity
matrix, respectively.

We can study the two blocks separately as they are time reversal counterparts
of each other. Here we focus on the upper block first. At kx = 0, the boundaries
of Γ6, light hole (LH) and heavy hole (HH) are at E = Eg + B(2F + 1)〈k2

z 〉,
E = −(γ1 − 2γ)B〈k2

z 〉, and E = −(γ1 + 2γ)B〈k2
z 〉, respectively, which are con-

trollable by choosing film thickness L . Down to L ≈ 30 Å, Γ6 band flips up and
exchanges position with HH, and the system is still non-trivial. Further down to
L ≈ 20 Å, Γ6 flips up and exchanges with the conduction band. The band structure
becomes trivial. Using the tight binding approximation, we can transform h(k) into
a tight binding model on a two-dimensional lattice. In Fig. 7.13 we show the local
density of states on the edge of a semi-infinite film for h(k). When L > 20 Å the
edge states are found connecting the valence and conduction bands. After the system
becomes trivial when L < 20 Å, the edge states do not cross the band gap anymore,

http://dx.doi.org/10.1007/978-981-10-4606-3_6


150 7 Three-Dimensional Topological Insulators

Fig. 7.13 Local density of states at the edge of thin films at different thickness using the Hamiltonian
in (7.60) with 2D lattice model in the tight-binding approximation. a L = 28A; b L = 25A;
c L = 20A; d L = 16A (Adapted from [14])

instead, they only attach to the valence band. At the critical point L = 20 Å, the
valence band and conduction band touch and form a linear Dirac cone at the low
energy regime. This shows that by controlling the film thickness, it is possible to
obtain a single-valley Dirac cone for each spin block without using the topological
surface states [49]. Notice that in Fig. 7.13 we can also see the edge states submerging
in the valence bands.
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Chapter 8

Impurities and Defects in Topological

Insulators

Abstract Impurities and defects in topological insulators can be regarded as system

boundaries. Bound states may form around these impurities or defects for the same

reason that the edge or surface states form.

Topological insulators are distinguished from conventional band insulators by the

Z2 invariant classification of the band insulators that respect time reversal symmetry.

Variation in the Z2 invariants at their boundaries will lead to topologically protected

edge or surface states with a gapless Dirac energy spectrum. Impurities or defects

are inevitably present in topological insulators. They may change the geometry or

topology of the systems, and induce the bound states as those near the boundary.

Given that a boundary state is a manifestation of the topological nature of bulk bands,

one should examine the host bulk to understand how impurities or defects affect the

electronic structure. It is known that a single impurity or defect can induce bound

states in many systems, such as in the Yu-Shiba state in s-wave superconductors [1,

2] and in d-wave superconductors [3]. In this chapter, we study the formation of

bound states around a single vacancy or defect in the bulk energy gap of topological

insulators.

8.1 One Dimension

When a δ potential V (x) = V0δ(x) is present in an infinite one-dimensional topo-

logical insulator, the equation for the wave function reads,

[

vpxσx +
(

mv2 − Bp2
x

)

σz + V0δ(x)
]

Ψ (x) = EΨ (x), (8.1)

where Ψ (x) is a two-component spinor. The continuity of the wave function at x = 0

requires

lim
ǫ→0+

Ψ (ǫ) = Ψ (−ǫ). (8.2)
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In addition, the integral of (8.1) around the δ potential leads to

lim
ǫ→0+

[

∂xΨ |x=ǫ − ∂xΨ |x=−ǫ

]

= − V0

B�2
σzΨ (0), (8.3)

i.e., the derivative of the wave function is not continuous at x = 0. To find a bound

state near x = 0, the electron wave function should vanish when x → ±∞.

For x > 0,

Ψ (x > 0) = c+
1 e−x/ξ1 + c+

2 e−x/ξ2 , (8.4)

and for x < 0,

Ψ (x < 0) = c−
1 e+x/ξ1 + c−

2 e+x/ξ2 , (8.5)

with ξ−1
1,2 = |v|

2|B|� (1 ±
√

1 − 4m B).

Substituting the wave function into (8.2) and (8.3) at x = 0, one obtains two

transcendental equations for the bound state energy,

√

1 − 2m B + 2|m B|
√

1 − E2

m2v4
= V0

2�v

[ ±mv2 − E√
m2v4 − E2

∓ sgn(B)

]

, (8.6)

where up to two solutions can be found. When V0 = 0 and the δ potential vanishes

there is no solution to the equation that satisfies the boundary condition.

The bound states essentially have the same origin as the boundary states in topolog-

ical insulators as shown in Fig. 8.1. Consider an infinite one-dimensional topological

insulator, in which the energy gap separates the positive and negative spectra. If we

(a)

(b)

Fig. 8.1 In-gap bound states in a one-dimensional topological insulator. a The presence of end

states with zero energy at the open boundaries of a broken one-dimensional topological insulator.

b The zero-energy end states evolve into in-gap bound states when the two open boundaries are

connected by an impurity
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cut the chain at one point, say at x = 0, then we produce two open boundaries at

the two sides of x > 0 and x < 0. There exists a pair of states (end states) at the

boundaries with the following energy:

Ψ (±) = C√
2

(

±sgn(B)

i

)

(e∓x/ξ1 − e∓x/ξ2), (8.7)

with C =
√

2(ξ1 + ξ2)/|ξ1 − ξ2|. ± indicates that the semi-infinite chain lies in the

region x > 0 or < 0. The energies of these states lie inside the bulk gap, and are equal

to zero. Now we paste the two ends together again with some kind of “glue potential”,

it is possible that these end states can be trapped or mixed around the connecting

point and will evolve into in-gap bound states. The shapes of the possibility density

of the wave function of our solutions for a δ−potential supports this intuitive picture

of the formation of the in-gap bound states. An impurity located at x = 0, unlike the

open boundary, allows tunneling between the two ends of the chain, and will affect

the behavior of the wave function near the point x = 0. For a δ−potential, the bound

states induced by it are always there, regardless its strength [4].

For comparison, consider an ordinary insulator of m B < 0. A pair of bound states

induced by a δ−potential is also possible when 0 < |V0| < 2�|v|
√

1 − 2m B, but

vanishes after |V0| exceeds 2�|v|
√

1 − 2m B, indicating a distinct origin from those

induced when m B > 0.

8.2 Integral Equation for Bound State Energies

The bound states can be formally obtained by solving an integral equation. Although

in most cases the integral equation cannot be solved analytically, it does provide rich

information about the existence of bound states under certain impurity potentials

in various dimensions. The modified Dirac equation with a potential V (r) can be

written as

[E − H0(r)]Ψ (r) = V (r)Ψ (r). (8.8)

The wave function Ψ (r) can be expanded by its Fourier transformation components

into

Ψ (r) =
∑

p′

up′eip′·r/�. (8.9)

Thus, one obtains,

[E − H0(p)]up =
∑

p
′

Vpp
′ up

′ , (8.10)

where Vpp
′ =

∫

drV (r)e−i(p−p
′
)·r/�. Although this equation cannot be solved ana-

lytically in general, one can find the solution if Vpp
′ is taken to be a factorizable
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potential [5]:

Vpp
′ = V0ξ

∗(p)ξ(p′). (8.11)

In this case,

up = V0ξ
∗(p)

E − H0(p)

∑

p
′

ξ(p′)up
′ . (8.12)

Multiplying ξ(p) in (8.12) and summarizing over p, it follows that

[

∑

p

V0ξ
∗(p)ξ(p)

E − H0(p)
− 1

]

∑

p
′

ξ(p′)up
′ = 0. (8.13)

Thus, one obtains

det

[

∑

p

V0ξ
∗(p)ξ(p)

E − H0(p)
− 1

]

= 0. (8.14)

For a magnetic impurity, it is more complicated.

More generally, the solution can be determined if the system is isotropic and Vpp
′

can be expanded into its partial wave components,

Vpp
′ =

∞
∑

l=0

l
∑

m=−l

V (|p| ,
∣

∣p′∣
∣)Y m

l (Ωp)Y
−m
l (Ωp′), (8.15)

with a factorizable V (|p| ,
∣

∣p′∣
∣) = λlw

l
p(w

l
p′)

∗, where Y m
l (Ωp) is the spherical har-

monic Bessel function.

8.2.1 δ−Potential

For a delta potential V (r) = V0δ(r), Vpp′ ≡ V0. A nontrivial solution requires

det

[

∑

p

V0

E − H0(p)
− 1

]

= 0, (8.16)

or

det

[∫

ddp

(2π�)d

V0

E − H0(p)
− 1

]

= 0, (8.17)

where d is the dimensionality.

For the one-dimensional case, the modified Dirac Hamiltonian can be easily

inverted. After some algebra we have,
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∫ +∞

0

dkx

π

[E A/B ± (mv2 − B�
2k2

x )]V0

E2
A/B − (mv2 − B�2k2

x )
2 − v2�2k2

x

= 1, (8.18)

where E A and EB denote the energy solution for + and −, respectively. From this

equation we can recover the result given in Sect. 8.1.

For the two-dimensional case, one can obtain a similar integral equation for the

two-dimensional bound state energies,

∫ +∞

0

kdk

2π

[E A/B ± (mv2 − B�
2k2)]V0

E2
A/B − (mv2 − B�2k2)2 − v2�2k2

= 1, (8.19)

where k2 = k2
x + k2

y . However the integral in (8.19) will logarithmically diverge

when |k| → +∞. This means that in the two-dimensional case, an impurity with

δ-potential cannot trap any bound states. Similarly, in three dimensions, although the

integration equation is more complicated, divergence also exists in the k-integration,

which excludes the possibility of three-dimensional bound states under δ-potential.

As the Brillouin zone of lattice crystal is always finite, it is possible to form bound

states under δ−potential by introducing a reasonable cut-off of k.

8.3 Bound States in Two Dimensions

The formation of the in-gap bound states can be readily illustrated by reviewing the

edge states in two-dimensional topological insulators. As the Z2 index varies across

the boundary, the edge states arise in the gap with the gapless Dirac dispersion.

Unlike the quantum Hall effect in a magnetic field, spin-orbit coupling respects the

time reversal symmetry, so the resulting edge states appear in pairs, of which one state

is the time reversal counterpart of the other, propagating in opposite directions and

with opposite spins (Fig. 8.2b). Now imagine that the system edge is bent into a hole or

punch a large hole in the system; the edge states will then circulate around the hole, as

the periodic boundary conditions along the propagating direction remain unchanged

(Fig. 8.2d). The dispersion of these edge state is proportional to (n + 1
2
)�/R (n� is

for orbital angular momentum). As the radius of the hole shrinks, most of the edge

states will be expelled into the bulk bands as the energy separation between the states

becomes larger and larger for a smaller R. It is found that at least two degenerate

pairs of the states will be trapped to form bound states in the gap as the hole shrinks

into a point defect. This mechanism forming the bound states can be realized in a

topological insulator in all dimensions.

In two dimensions, the modified Dirac model can be reduced into two independent

2 × 2 Hamiltonians:

h± = (mv2 − Bp2)σz + v(pxσx ± pyσy), (8.20)
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(a)

(f)

(b) (c)

(d)(e)

Fig. 8.2 Schematic description of the formation of vacancy-induced in-gap bound states in two-

dimensional topological insulators. a and b A pair of helical edge states traveling along the edge

of a two-dimensional topological insulator with the gapless Dirac dispersion. c and d When the

edge is bent into a hole, the helical edge states evolve to circulate around the hole. e and f The

circulating edge states may develop into bound states as the hole shrinks into a point or is replaced

by a vacancy (Adapted from [6])

with h− the time reversal counterpart of h+ [7–9]. It is convenient to adopt the polar

coordinates (x, y) = r(cos ϕ, sin ϕ) in two dimensions. In the coordinate

p± = −i�e±iθ

(

∂r ± i∂θ

r

)

(8.21)

and

p2 = −�
2

(

∂2
r + 1

r
∂r + 1

r2
∂2

θ

)

. (8.22)

Here these equations are solved under the Dirichlet boundary conditions

(Fig. 8.2a), i.e., the center of the two-dimensional topological insulator is punched

with a hole of radius R, thus, the wave function is required to vanish at r = R and

r = +∞. Due to the rotational symmetry of h+, it is found that the z-component of

the total angular momentum Jz = −i�∂θ + (�/2)σz satisfies

[h+, Jz] = 0 (8.23)
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and provides a good quantum number. The wave function has a general form

ϕl(r, θ) =
(

fl(r)eilθ

gl(r)ei(l+1)θ

)

(8.24)

with an integer l, satisfying that Jzϕl(r, θ) = j�ϕl(r, θ) with j = l + 1
2
. Thus, the

equation is reduced so that for the radial part of the wave function,

he f f

(

fl(r)

gl(r)

)

= E

(

fl(r)

gl(r)

)

, (8.25)

where

he f f =
(

mv2 + �
2 B(∂2

r + ∂r

r
− l2

r2 ) −i�v(∂r + l+1
r

)

−i�v(∂r − l
r
) −mv2 − �

2 B(∂2
r + ∂r

r
− (l+1)2

r2 )

)

. (8.26)

We take the trial wave function

fl(r) = cl Kl(λr) (8.27)

and

gl(r) = dl Kl+1(λr), (8.28)

where Kn(x) is the modified Bessel function of the second kind. The secular equations

give four roots of λn (= ±λ1,±λ2) as functions of E ,

λ2
1,2 = v2

2B2�2

[

1 − 2m B ±
√

1 − 4m B + 4B2 E2

v4

]

. (8.29)

Using the Dirichlet boundary conditions at r = R and r = +∞ we arrive at the

transcendental equation for the bound-state energies:

λ2
1 + mv2−E

B�2

λ1

Kl+1(λ1 R)

Kl(λ1 R)
=

λ2
2 + mv2−E

B�2

λ2

Kl+1(λ2 R)

Kl(λ2 R)
. (8.30)

As there is more than one value of λ, the wave function should be the linear combina-

tion of the modified Bessel functions; for example, fl(r) = c1 Kl(λ1r)+ c2 Kl(λ2r).

With the boundary condition at r = R, the wave function ϕl(r, θ) for h+ turns out

to have the form
⎡

⎣

Kl (λ1 R)

Kl+1(λ1 R)
fl(r)eilθ

i
λ2

1+ mv2−E

B�2

(λ1v/B�)
fl+1(r)ei(l+1)θ

⎤

⎦ (8.31)

with
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fl(r) = Kl(λ1r)

Kl(λ1 R)
− Kl(λ2r)

Kl(λ2 R)
. (8.32)

The solution for h− can be derived following the same procedure.

In Fig. 8.2c, d, we show the bound-state energies as functions of R for an ideal

case (Fig. 8.2b, m B = 1), for the HgTe quantum well (Fig. 8.2c, m B = 0.05),

and for a two-quintuple-layer of Bi2Se3 thin film (Fig. 8.2d, m B = 0.32). For a

macroscopically large R, we find an approximated solution for the energy spectrum

(a) (b)

(c) (d)

Fig. 8.3 Two-dimensional in-gap bound states. a A two-dimensional topological insulator with a

hole of radius R at the center. b–d Energies (E in units of the band gap ∆) of in-gap bound states

circulating around the hole as functions of the hole radius. m j is the quantum number for the z-

component of the total angular momentum of the circulating bound states. In b, m =v = B =� = 1;

in c, mv2 = −10 meV, B�
2 = −686 meV nm2, and �v = 364.5 meV nm (Adopted from Ref. [7]);

in d, mv2 = 0.126 eV, B�
2 = 21.8 eV2, �v = 2.94 eV (Adopted from Ref. [11]). ∆ = 2mv2 for

0 < m B < 1/2, and ∆ = (v2/|B|)
√

4m B − 1 for m B > 1/2. The grey areas line mark the bulk

bands (Adapted from[6])
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of h+ as E = (l + 1
2
)�vsgn(B)/R. As the time reversal copy of h+, h− has an

approximated spectrum E = −(l + 1
2
)�vsgn(B)/R. They form a series of paired

helical edge states, in good agreement with the edge-state solutions in the two-

dimensional quantum spin Hall system [10] if we take k = (l + 1
2
)/R for a large R.

As R shrinks, the energy separation of these edge state ∆E = �vR increases with

the smaller R, and the edge states with a higher l will be pushed out of the energy gap

gradually. However, we observe that for m B > 0 the state with l = 0 always stays in

the energy gap, and as R → 0 their energies approach E = ±(v2/2|B|)
√

4m B − 1

for m B > 1
2

or ±mv2 for 0 < m B < 1
2
. When comparing the details of Fig. 8.2c

with d, we find that the two pairs of states for l = 0 have quite different asymptotic

behaviors in the spectrum when R decreases to zero. This can be explained by noting

that there is no in-gap bound state when m B < 0, suggesting that m B = 0 is the

critical point for the topological phase transition. The bound state with a smaller m B

is closer to the transition point, and thus, tends to enter the bulk more easily.

The solutions verify the formation of the in-gap bound states as shown in Fig.

8.3. Therefore considering the symmetry between h+ and h− we conclude that in the

presence of vacancy or defect there always exist at least two pairs of bound states in

the energy gap in the two-dimensional quantum spin Hall system.

8.4 Topological Defects

There are several types of topological defects, such as magnetic monopoles, vortex

lines, or domain walls. In Sect. 2.2, we have already solved the problem of domain

walls with a kink of mass distribution. The solution of zero energy is quite robust

against the distribution of domain walls. The solution has many applications in poly-

mers. The charge and spin carriers in one-dimensional polyacetylene are topological

excitations generated by domain walls. Here we present a solution of a zero energy

mode for a quantum vortex in the quantum Hall system, and its application to three-

dimensional systems.

8.4.1 Magnetic Flux and Zero Energy Mode

When a magnetic flux is threading the hole, the energy levels of the in-gap bound

states can be continuously manipulated. Consider a magnetic flux φ that threads

through a hole with a radius R. We perform the Peierls substitution p → p + eA

in h+ in (8.20) by taking the gauge A = (Φ/2πr)eθ, which still keeps m j as a

good quantum number. Therefore the eigenfunctions of this new Hamiltonian can be

readily expressed as exp(−iνθ)ϕl(r, θ) after a gauge transformation, with ν = φ/φ0

and the flux quantum φ0 = h/e. In this case, the allowed value for the total angular

momentum becomes j = l + 1
2

+ ν. The energies of in-gap bound states vary with

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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(a) (b)

Fig. 8.4 Effect of magnetic flux on in-gap bound states. Energies (E in units of the band gap ∆)

of in-gap bound states circulating around the hole as functions of a the hole radius R when half-

quantum flux ν = 1/2 is applied and b the magnetic flux ν (in unit of flux quantum Φ0 = h/e)

for a fixed radius R = 50 nm. m+ (m−) is the quantum number for the z-component of the total

angular momentum jz+ ( jz−) of the circulating bound states. m j = m+ + ν. In b, black (light

gray) lines belong to the h+ (h−) block. In a and b, mv2 = −10 meV, B�
2 = −686 meV nm2,

and �v = 364.5 meV nm (adopted from Ref. [7]. ∆ = 2mv2). The grey areas markthe bulk bands

the radius of the hole and the magnetic flux as shown in Fig. 8.4. When ν = 1
2

or

− 1
2
, there always exists one solution of j = 0. In this case, the solution has a general

form of

ϕ j=0(r, θ) =
(

f 1
2
(r)e−i θ

2

g 1
2
(r)e+i θ

2

)

. (8.33)

Equivalently, we replace l in (8.26) by − 1
2
,

[

E + i�v(∂r + 1

2r
)σx −

[

mv2 + �
2 B

(

∂2
r + ∂r

r
− 1

4r2

)]

σz

](

f

g

)

= 0.

(8.34)

Under a transformation,
(

f 1
2
(r)

g 1
2
(r)

)

= 1√
r
φ(r), (8.35)

the equation for the radial part of the wave function is reduced into a one-dimensional

modified Dirac equation.
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[

−i�v∂rσx +
(

mv2 + �
2 B∂2

r

)

σz

]

φ(r) = Eφ(r). (8.36)

There exists one bound state solution with zero energy near the boundary given in

Sect. 2.5.1. As a result it is found that

ϕ j=0(r, θ) = C

[

e−i θ
2

isgn(B)e+i θ
2

](

K 1
2
(λ1r)

K 1
2
(λ1 R)

−
K 1

2
(λ2r)

K 1
2
(λ2 R)

)

(8.37)

with E = 0. The modified Bessel function K1/2(x) =
√

π
2x

e−x , and C is a normalized

constant. Thus, when ν = 1
2

or − 1
2
, there always exists a stable solution of j = 0

with the energy eigenvalue exactly zero for an arbitrary R. As the energy eigenvalue

is independent of the radius R, the half quantum flux here is also called a topological

defect. The existence of the zero energy mode is valid even for an irregular hole that

can be deformed continuously into a point-like defect.

8.4.2 Wormhole Effect

This solution can be generalized to three dimensions. Consider a topological insulator

with a cylindrical hole (say along the z-direction) of radius R thread by a magnetic

flux ν = 1
2
. We take the periodic boundary condition along the z-direction. Thus,

kz is a good quantum number. The three-dimensional effective Hamiltonian can be

separated into two parts,

H3D(kz) = H2D + V (kz), (8.38)

where

H2D(x, y) = vpxαx + vpyαy +
[

mv2 − B(p2
x + p2

y)
]

β (8.39)

and

V (kz) = v�kzαz − Bk2
z β. (8.40)

At kz = 0, V (kz = 0) = 0. In this case, H3D are equivalent to two separated two-

dimensional Dirac equations in a hole threading a magnetic flux. Using the solutions

in the last paragraph for the two-dimensional case, one obtains two solutions of zero

energy

ϕ1 = C

⎛

⎜

⎜

⎝

e−i θ
2

0

0

isgn(B)e+i θ
2

⎞

⎟

⎟

⎠

(

K 1
2
(λ1r)

K 1
2
(λ1 R)

−
K 1

2
(λ2r)

K 1
2
(λ2 R)

)

(8.41)

and

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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ϕ2 = C

⎛

⎜

⎜

⎝

0

e+i θ
2

isgn(B)e−i θ
2

0

⎞

⎟

⎟

⎠

(

K 1
2
(λ1r)

K 1
2
(λ1 R)

−
K 1

2
(λ2r)

K 1
2
(λ2 R)

)

. (8.42)

The order of the base has been re-organized. Note that the two separated equations

are counter-partners of time reversal, and the prefactors of θ in ϕ2 change signs. Use

these two solutions as the basis, one obtains an effective Hamiltonian for a non-zero

kz ,

He f f = sgn(B)v�kzσy . (8.43)

Thus, there exists a pair of gapless helical electron states along the hole or magnetic

flux, which is independent of the radius R. This is the so-called wormhole effect

[12].

Dislocations are line defects of the three-dimensional crystalline order, charac-

terized by a lattice vector B (the Burgers vector). This is rather like the quantized

vorticity of a superfluid vortex, and must remain constant over its entire length. Dis-

locations in the three-dimensional crystal of a topological insulator is equivalent to

a hole threading a magnetic flux of ν = 1
2
. Ran et al. found that each dislocation

induces a pair of one-dimensional modes bound to it, which propagate in opposite

directions and traverse the bulk band gap [13].

8.4.3 Witten Effect

The Witten effect is a fundamental property of the axion media [14]. The idea of the

axion was first introduced as a means to solve what is known as the strong charge-

parity problem in the physics of strong interactions. After the discovery of topological

insulators, Qi, Hughes, and Zhang proposed that the electromagnetic response in

topological insulators is characterized by an axion term, ∆Laxion = θ e2

2πh
B · E with

θ = π [15]. The Witten effect means that a unit magnetic monopole φ0 = h/e placed

in a topological insulator will bind a fractional charge Q = −e
(

n + 1
2

)

with n integer.

This effect has been already used to identify whether a system is topologically trivial

or non-trivial by means of numerical calculation [16].

The axion term revises the Gauss’ law and Ampere’s law by adding extra source

terms

∇ · D = ρ − α

πμ0c
∇θ · B (8.44)

and

∇ × H = ∂t D + j + α

πμ0c
(∇θ × E + ∂tθB) , (8.45)
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where D = ǫ0E + P and H = 1
μ0

B − M. The fine structure constant α = e2

2ǫ0hc
.

Suppose there is a point-like magnetic monopole situated at the origin of the strength

φ0. The static magnetic field is given by B = φ0

r2 r or ∇ · B = φ0δ(r). Suppose θ = 0

initially and then increases to θ = π. θ is uniform in space and there is no current in

a vacuum. We take the divergence of the revised Ampere’s law,

∇ · ∂t E = −αc

π
∂tθ∇ · B. (8.46)

Thus, when θ increases from 0 to π, integrating the equation yields

∇ · [E(θ = π) − E(θ = 0)] = − 1

ǫ0

e2

2h
∇ · B = − 1

ǫ0

e

2
δ(r). (8.47)

This demonstrates that a magnetic monopole φ0 can bind an extra fractional charge

−e/2.

To understand the Witten effect, we consider a sphere with radius R of an isotropic

topological insulator with a magnetic monopole 2qφ0 situated at the origin,

H = vΠ · α +
[

mv2 − BΠ
2
]

β, (8.48)

where Π = p + eA and ∇ × A = 2qφ0

r2 r. It is well known that the magnetic field of

a magnetic monopole cannot be derived from a single expression of vector potential

valid everywhere. We can construct a pair of the vector potentials,

AI = +2qφ0

r

1 − cos θ

sin θ
φ̂, for θ < π − ε (8.49)

and

AI I = −2qφ0

r

1 + cos θ

sin θ
φ̂, for θ > ε , (8.50)

such that there are no singularities in the two potentials in the defined range. In

the overlapping region ε < θ < π − ε, the two potentials are related by a gauge

transformation,

AI − AI I = 4qφ0

r sin θ
φ̂. (8.51)

In the overlapping region we can use either AI or AI I ; the corresponding wave

functions are related by a phase factor exp[i4qπ]. Thus, the single value condition

for the wave function for either AI or AI I implies 2q = integer , which is the

quantization condition for a magnetic charge [17].

Following Kazama et al. [18], we can define

L = r × Π − q�
r

r
, (8.52)
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which satisfies the commutation relation of the orbital angular momentum,

[Lα, Lβ] = i�ǫαβγ Lγ . Denote Yq,l,lz
as the eigenfunction of L2 and L z with the eigen-

values l(l +1)�2 and lz� (lz = −l, −lz +1, · · · , and l). The total angular momentum

J is defined as J = L + S, where the spin S = 1
2
�σ. The eigenstates of J2 and Jz can

be constructed by adding L and S:

φ
(1)

j, jz
=

⎛

⎝

√

j+m

2 j
Yq,l= j−1/2, jz−1/2

√

j−m

2 j
Yq,l= j−1/2, jz+1/2

⎞

⎠ (8.53)

and

φ
(2)

j, jz
=

⎛

⎝

−
√

j−m+1

2 j
Yq,l= j+1/2, jz−1/2

√

j+m+1

2 j
Yq,l= j+1/2, jz+1/2

⎞

⎠ , (8.54)

which are for j = l + 1/2 and j = l − 1/2, respectively. The coefficients in the

expressions are the Clebsch-Gordan coefficients. For simplicity, we here focus on

the zero energy solution. We construct an ansatz for the trivial wave function for

j = |q| − 1
2

and l = j + 1
2

= |q|;

Ψ =
(

F(r)φ
(2)

j, jz

G(r)φ
(2)

j, jz

)

. (8.55)

Substituting the trial wave function into the stationary equation of H in (8.48), and

using the relation

σ · Πφ
(2)

j, jz
(θ,φ) = −isgn(q)�(∂r + r−1)φ

(2)

j, jz
(θ,φ), (8.56)

the equation for the radial part of the wave function is reduced to

[

−isgn(q)v�∂rσx +
[

mv2 + B�
2(∂2

r − |q|
r2

)

]

σz

](

r F(r)

rG(r)

)

= E

(

r F(r)

rG(r)

)

.

(8.57)

For our purpose, we consider a sphere with a large radius R enough by ignoring the

finite size effect between the surface states and the bound states near the center.

When r >> 1,
|q|
r2 → 0. In this case, (8.57) is approximately reduced to the

one-dimensional Dirac equation,

[

−isgn(q)v�∂rσx +
(

mv2 + B�
2∂2

r

)

σz

]

(

r F(r)

rG(r)

)

= E

(

r F(r)

rG(r)

)

, (8.58)

as in (2.36) and (8.36), in which there always exists an end state solution of zero

energy near r = R when m B > 0. The solution has the form:

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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(

F(r)

G(r)

)

= C

r

(

eλ1r

eλ1 R
− eλ2r

eλ2 R

)(

1

iη

)

(8.59)

with η = −sgn(q Bv), and λ1,2 =
∣

∣
v

2B�

∣

∣±
√

v2

4B2�2 − mv2

B�2 . These solutions are valid

even for complex λ1,2.

Near the center of the sphere r = 0, we can find another solution

(

F(r)

G(r)

)

= C ′ e
−ζρ/2

√
ρ

J√|q|+1/4

(

√

1 − ζ2/4ρ
)

(

1

−iη

)

, (8.60)

where ρ =
√

m∗v2/B�2r , ζ = 1/
√

m B, and Jα(x) is the first Bessel function.

C and C ′ are the normalization constants. From the asymptotic behavior of the

first Bessel function, Jα(x) → x |α|, it concludes that the solution is convergent at

ρ → 0 when q 
= 0. For ζ2 > 4, Jα(x) is replaced by the modified Bessel function

K√|q|+1/4

(

√

ζ2/4 − 1ρ
)

.

As the final result is independent of the eigenvalue jz , there is a 2 |q| (= 2 j + 1)-

fold degeneracy of the zero energy states as well as the double degeneracy of the

states near the center and the surface. For each jz , the double degeneracy of the

bound states can be lifted when the radius R is finite, and the two states at the center

and the surface will be coupled to form two new states, in which one has a positive

energy and the other has a negative energy. The energy gap decays exponentially

in the radius R. In this case, each bound state is split into two halves: one half is

distributed around the surface of the system while the other surrounds the magnetic

monopole. For a topological insulator, the system is half filled, and only the 2 |q|
zero energy states are occupied; all of the other negative energy states are filled. The

charge around the magnetic monopole from these 2 |q| bound states of zero energy

is − |q| e. Therefore the magnetic monopole can bind extra charge

∆Q = −(n + |q|)e,

where n is an integer which is contributed by the states of non-zero energy around it. In

this sense, the extra half charge in the Witten effect is actually related to a bound state

induced by a topological defect in the topological insulator, just as the one induced by

the half vortex in two-dimensional topological insulator. When m B > 0, the system

is topologically non-trivial while when m B < 0, the system is topologically trivial.

This means that the axion parameter θ is π when m B > 0 and 0 when m B < 0.

To interpret (8.47), we may consider the variation of the parameter B with time t

from negative to positive (assume m is positive). In this way the axion parameter θ

changes from 0 to π. For a conventional insulator, the magnetic monopole can induce

some bound states around it, in which each state traps only one charge −e. Therefore

the extra half charge in (8.47) must be induced by the monopole in the topological

insulator.
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However, the double degeneracy of the zero energy bound states for q = 1/2

and a large R makes it possible that the bound state near the center is fully occupied

and that near the surface is empty. The charge binding around the center is not deter-

mined. Therefore, further study is needed to determined whether the electromagnetic

response in topological insulators is really characterized by an axion term.

8.5 Disorder Effect on Transport

We now discuss the effect of the in-gap bound states on transport in topological insu-

lators. The wave function of the in-gap bound state is localized around the vacancy or

defect. Away from the center the wave function decays exponentially, i.e., ∝ e−r/ξ .

The characteristic length ξ reflects the spatial distribution of the wave function.

When two vacancies are close, that is within a distance comparable to the charac-

teristic length ξ, the overlapping of the wave functions in space becomes possible.

Consequently electrons in one bound state may jump to another bound states.

Fig. 8.5 Schematic of the melting of the quantum spin Hall effect due to holes or defects. The

helical edge states at different boundaries can be scattered via the in-gap bound states induced by

these holes or defects
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(a)

(b)

(c)

(d)

(e)

Fig. 8.6 Quantum percolation of electrons through in-gap bound states induced by randomly dis-

tributed vacancies or holes of size 1 × 1. The sample is W × L = 160 × 160 in size. a and b show

the transmission coefficients Ttr versus the concentration of vacancies p under the open boundary

condition and periodic or closed boundary condition. c–e are the density of states at the concentraion

p1 = 5/160, pc = 9/160 and p2 = 15/160, respectively

For a single vacancy close to the boundary of the quantum spin Hall system, the

edge states will be scattered by the in-gap bound state of the vacancy. However, if

there are no other defects or disorders in the bulk, the electrons in the edge state

will not be further scattered away from the edge, as happens in the quantum Hall

effect [19], which also indicates the robustness of the edge states against the defects

or disorders. The situation will change if the concentration of vacancies is dense

enough. The bound states could form an impurity band in the gap of bulk bands.

When the wave functions of the bound states overlap in space as shown in Fig. 8.5

it becomes possible for the electrons in the edge state on one side to be scattered to

the other side via a multiple scattering procedures. In this case, the backscattering

of electrons on two sides occurs, and the quantum transport of the edge states will

break down. Thus, there exist a critical point where the quantum percolation occurs

due to the in-gap bound states of the vacancies.
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This can be demonstrated explicitly by calculating the conductance in a two-

terminal setup of the quantum spin Hall system as a function of a concentration of

vacancies [20]. We use the open boundary condition with two edges and the periodic

boundary condition or a cylinder without the edge states. In an open boundary condi-

tion, the calculated conductance is quantized to be 2e2/h. Although it is immune to

the low density of vacancies, the conductance quickly decreases with the density of

vacancies, and the quantum spin Hall effect is destroyed completely. See Fig. 8.6a. In

a cylinder or periodic boundary condition, the conductance is zero in a pure quantum

spin Hall state, as there is no edge state in the geometry. A non-zero conductance

appears and increases with the concentration of vacancies, and reaches at a maximal

for a specific value of the concentration. Then it decreases as the concentration of

vacancies increases. See Fig. 8.6b. Figure 8.6c–e show the density of states at differ-

ent concentrations. A non-zero peak appears at E = 0 near the critical concentration,

which demonstrates the occurrence of quantum percolation and the appearance of a

metallic phase. The calculated conductance reveals a quantum phase transition from

a quantum spin Hall state (Z2: ν = 1) to a conventional insulator (Z2: ν = 0).

8.6 Further Reading

• Y. Ran, Y. Zhang, A. Vishwanath, One-dimensional topologically protected modes

in topological insulators with lattice dislocations. Nat. Phys. 5, 298 (2009).

• G. Rosenberg, H.M. Guo, M. Franz, Wormhole effect in a strong topological

insulator. Phys. Rev. B 82, 041104 (2010).

• W.Y. Shan, J. Lu, H.Z. Lu, S.Q. Shen, Vacancy-induced in-gap bound states in

topological insulators. Phys. Rev. B 84, 035307 (2011).
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Chapter 9

Topological Superconductors and Superfluids

Abstract Quasiparticles in a superconductor or superfluid may have an energy gap

as that for a band insulator. The quasiparticle bands can be topologically trivial or

non-trivial. Topological superconductors and superfluids have topological nontrivial

bands, and possess the edge states or surface states just like topological insulators.

Superfluid phases in liquid helium 3 are topological ones. Spin-triplet superconduc-

tors are potential candidates for topological superconductors.

The study of topological phases in superconductors and superfluids had a long history

even before the identification of topological insulators. 3He-B and -A phases are

topological superfluid liquids and can be characterized by topological invariants

[1]. A complex p + i p wave pairing superconductor is also known to process two

topologically distinct phases [2]. Soon after the discovery of topological insulators,

it was realized that there is an explicit analogy between topological insulators and

superconductors because the particle-hole symmetry in the Bogoliubov-de Gennes

(BdG) Hamiltonian for quasi-particles in superconductors is analogous to the time

reversal symmetry in the Hamiltonian for a band insulator. The BdG Hamiltonians

for a p+ i p wave superconductor and 3He-B superfluids are identical to the modified

Dirac equation that we discussed for topological insulators, although the bases of

these equations are completely different.

Superconductivity is a quantum phenomenon; the resistivity in certain materi-

als disappears below a characteristic temperature, which was discovered by Onnes

in 1911 in Leiden [3]. A superconductor is characterized by zero resistance, The

Meissner effect (or perfect diamagnetization), and magnetic flux quantization, though

some physical properties vary from material to material, such as heat capacity, tran-

sition temperatures and critical fields. The existence of universal properties in super-

conductors implies that superconductivity is a quantum phase with distinguishing

properties that are largely independent of microscopic details. The theory of super-

conductivity was formulated by Bardeen, Cooper and Schrieffer in 1957, and is

named the BCS theory [4]. This theory has successfully described a large class of

superconducting properties, such as aluminum, in which the electron-phonon inter-

action is weak.

The basic idea of the BCS theory is that electrons in metal form bound pairs.

Cooper pointed out that the ground state of a normal metal is unstable at zero
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temperature if the interaction between the electrons near the Fermi surface is attrac-

tive. For an ideal metal, electrons at zero temperature form a Fermi sphere in the

momentum space, which has a sharp step in energy. If there exists an weak attrac-

tive interaction between the electrons near the Fermi surface, Cooper found that two

electrons with equal and opposite spins and momentum can forget the mutual scat-

tering and form a bound state, which always has a lower energy than that of two

free electrons. In some metals, the electron-phonon interaction can provide this kind

of attractive interaction near the Fermi surface. Most electrons in the Fermi sphere

do not form bound states, only those within the Debye energy. The bound states of

electrons pairs or Cooper pairs behave like bosons, and can condensate at low tem-

peratures, which is known as Bose-Einstein condensation. The condensation of the

Cooper pairs exhibits superconductivity, which requires a many-body description.

To explore topological phases in superconductor, we start with p-wave super-

conductivity.

9.1 Complex ( p + i p)-Wave Superconductor for Spinless

or Spin Polarized Fermions

A complex p-wave spinless superconductor has two topologically distinct phases,

one is the strong pairing phase and the other is the weak pairing phase [1, 2]. The

weak pairing phase is identical to the Moore-Read quantum Hall state [2]. The system

can be described by the modified Dirac model. In the BCS theory, the effective

Hamiltonian for the quasiparticles is

He f f =
∑

k

[

ξkc
†
k ck +

1

2

(

Δ∗
kc−kck + Δkc

†
k c

†
−k

)

]

. (9.1)

It is noted that the electrons with k and −k are coupled together to form a Cooper

pair. Although the number of electrons is not conserved in this effective Hamiltonian,

the number parity, i.e., the even or odd number of electrons, is conserved. For a small

k, we take ξk = k2

2m∗ − μ, where m∗ is the effective mass, and −μ is a constant of

ξk=0.

For the complex p-wave pairing, we take Δk to be an eigen function of rotations

in k with angular momentum l. For l = +1 and small k, it generically takes the form

Δk = Δ(kx + iky). (9.2)

For l = −1, Δk = Δ(kx − iky). The states of Δk = Δ(kx ± iky) are degenerate.

Consider the anticommutation relation of fermions, c
†
k ck = 1 − ckc

†
k . Let ψ

†
k =

(c
†
k , c−k), and then the effective Hamiltonian can be written in a compact form,
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He f f =
1

2

∑

k

ψ
†
k he f f ψk (9.3)

by ignoring a constant. Here He f f has the identical form of the Dirac equation

he f f = Δ
(

kxσx ∓ kyσy

)

+

(

k2

2m
− μ

)

σz (9.4)

for Δk = Δ(kx ± iky).

The normalized ground state has the form

|Ω〉 =
∏

k

(uk + vkc
†
k c

†
−k) |0〉 , (9.5)

where |0〉 is the vacuum state and the product runs over the distinct pairs of k and −k.

The functions of uk and vk are complex and satisfy |uk |
2 + |vk |

2 = 1. We introduce

the Bogoliubov transformation

(

αk

α
†
−k

)

=

(

uk −vk

−v∗
−k u∗

−k

)(

ck

c
†
−k

)

, (9.6)

where
{

αk,α
†
k ′

}

= δk,k ′ and αk |Ω〉 = 0. The resulting Hamiltonian becomes

Ke f f = 1
2

∑

k

(

α
†
k,α−k

)

(

εk 0

0 −εk

) (

αk

α
†
−k

)

(9.7)

= 1
2

∑

k

(

εkα
†
kαk − εkα−kα

†
−k

)

. (9.8)

with εk =

√

ξ2
k + |Δk |

2 > 0. The first term represents the particle excitation with a

positive energy and the second term represents the hole excitations with a negative

energy. Performing the particle-hole transformation, or making using of α−kα
†
−k =

1 − α
†
−kα−k , we have

Ke f f =
∑

k

1

2
εk

(

α
†
kαk − 1 + α

†
−kα−k

)

(9.9)

=
∑

k

εkα
†
kαk −

∑

k

1

2
εk (9.10)

as εk = ε−k .

From the eigenstate equation,

[Ke f f ,αk] = εkαk, (9.11)



176 9 Topological Superconductors and Superfluids

one obtains

(

ξk −Δ∗
k

−Δk −ξk

) (

uk

vk

)

= εk

(

uk

vk

)

. (9.12)

The solutions are

uk =

√

1

2

(

1 +
ξk

εk

)

(9.13)

and

vk = −
Δk

|Δk |

√

1

2

(

1 −
ξk

εk

)

. (9.14)

Here we choose a gauge that uk is real and positive.

The Bogoliubov-de Gennes equation for uk and vk becomes

i�
∂

∂t

(

uk

vk

)

= Ke f f

(

uk

vk

)

, (9.15)

where

Ke f f =

(

ξk −Δ∗
k

−Δk −ξk

)

= −Δ(kxσx ± kyσy) + ξkσz . (9.16)

In this way the Bogoliubov-de Gennes equation has the exact form of two-dimensional

modified Dirac equation

Ke f f = −Δ
(

kxσx ± kyσy

)

+

(

k2

2m
− μ

)

σz . (9.17)

It is noted that this effective Hamiltonian is distinct from that in an effective

Hamiltonian for electrons.

If we treat the Bogoliubov-de Gennes equation as the same as a conventional

Hamiltonian for a band insulator, we can introduce the topological invariant for

Ke f f , in which the Chern number is

nc = ±

[

sgn(μ) + sgn

(

1

m

)]

/2. (9.18)

As we take the mass of the spinless particles m positive, we conclude that for a

positive μ(>0) the Chern number is +1 (or −1) and for a negative μ the Chern

number is 0. For μ = 0, the Chern number is equal to one half, which is similar to
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the case of m → +∞ and a finite μ. If the quadratic term in ξk is neglected, we see

that the topological property will change completely.

In general, from the solution of uk and vk , we have three possibilities of behavior

at small k, εk − ξk → 0.

(1). ξk > 0, in which uk → 1 and vk → 0. The BCS state is close to the vacuum,

|Ω〉 → |0〉.

(2). ξk < 0, in which uk → 0 and |vk | → 1. |Ω〉 →
∏

k ′ vkc
†
k c

†
−k |0〉 in which all

the states with negative energy are occupied as free fermions.

(3). ξk → 0, in which both uk and vk are both non-zero.

Usually for a positive μ, the system is in a weak pairing phase, and for a negative

μ it is a strong coupling phase. Including the quadratic term in ξk we conclude that

the weak pairing phase for a positive μ is a typical topological insulator. Read and

Green [2] argued that a bound state solution exists at a straight domain wall parallel

to the y-axis, with μ(r) = μ(x) being small and positive for x > 0, and negative

for x < 0. There is only one solution for each ky and so we have chiral Majorana

fermions on the domain wall. From the two-dimensional solution, the system in a

weak pairing phase should have a topologically protected and chiral edge state of

Majorana fermions.

If we make the Peirls substitution in Ke f f : kx → −i∂x and ky → −i∂y , the BdG

equation in (9.15) has the same form as the two-dimensional Dirac equation. When

we find a solution for the edge state within the band gap, we emphasize that the

solution for uk and vk should satisfy the relation
∣

∣u2
k

∣

∣ +
∣

∣v2
k

∣

∣ = 1. For the vacuum,

uk = 1 and vk = 0. The particle-hole spectra and the chiral edge spectra are presented

in Fig. 9.1.

A p-wave superconductor is a thermal insulating phase as there exist an energy

gap for the quasiparticles. The existence of edge states allows the heat conducting in

(b)(a)

Fig. 9.1 a Particle-hole spectrum and edge state spectrum of a non-trivial Bogoliubov-de-Gennes

equation for a weak pairing phase, or a topologically non-trivial phase. b After the particle-hole

transformation, the hole spectrum is merged into the particle spectrum. The zero energy mode is a

Majorana fermion, γ(E = 0) = γ†(E = 0)



178 9 Topological Superconductors and Superfluids

the interior of the system, and produces the thermal analogue of the quantum Hall

effect. Thus, the Chern number in a p-wave superconductor is associated with the

thermal Hall conductance as that in quantum Hall effect. The quantum Hall effect in

a two-dimensional electron gas is associated both with a quanitized Hall conductance

n e2

h
and a quantized thermal Hall conductance n e2

h
LT with T the temperature and

L = 1
3

(

πkB

e2

)2
the Lorentz number. In a p-wave superconductor the thermal Hall

conductance is also quantized, but the value of the thermal Hall conductance is

only one half of that in quantum Hall effect, n
2

e2

h
LT . This exact half-quantization

is caused by the structure of the Nambu spinor and the particle-hole symmetry in

its Bogoliubov-de Gennes Hamiltonian. In the picture of the Majorana fermions in

the edge states, it is attributed to the fact that the wave functions of the Majorana

fermions are real rather than complex, which reduces the thermal conductance by

two [5].

9.2 Spin Triplet Pairing Superfluidity: 3He-A and -B Phases

Helium has two isotopes, 3He and 4He. 4He atoms are bosons. At low temperatures,

liquid 4He shows a phase transition to a superfluid state that is similar to the Bose-

Einstein condensation, although a strong inter-particle interaction should be taken

into account. 3He atoms are fermions. Liquid 3He also shows a phase transition to

a superfluid state, which is similar to the superconducting transition in a metal [6].

As 3He atoms are neutral, there are no Meissner effect, but atoms form pairs like the

Cooper pairs of electrons. Atoms also avoid the singlet pairing as in metals, and tend

to pair in the form of a spin triplet, in which the spins align parallel [7]. A schematic

of the phase diagram of 3He as a function of temperature and pressure is presented

in Fig. 9.2.

Fig. 9.2 Phase diagram of
3He in the low millikelvin

temperature and pressure

region
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9.2.1 3He: Normal Liquid Phase

Before presenting the theory of superfluidity in 3He, we first briefly introduce a nor-

mal liquid phase of 3He atoms. The 3He atoms are charge neutral. Unlike the electrons

in metals, these atoms are strongly interacting and highly correlated. According to

the Fermi liquid theory, the low-lying excitations of the strongly interacting Fermi

system can be described by a phenomenological model, in which the free energy of

the system can be expanded in terms of low-energy excitation δnp,σ

F = F0 +
∑

p,σ

(ǫp − μ)δnp,σ +
1

2

∑

p,σ;p′,σ′

fp,σ;p′,σ′δnp,σδnp′,σ′ + . . . . (9.19)

The parameters in this expression can be deduced from experiments such as specific

heat, compressibility, sound velocity, and spin susceptibility. Here the energy zero

is defined as −μ at p = 0 such that ǫp = 0 and ǫp =
p2

2m∗ with the effective

mass m∗ = 3m, which is the three times of the bare mass of a 3He atom. The spin

dependence of the effective interaction is written as

fp,σ;p′,σ′ = f
(s)
p,p′ + σ · σ′ f

(t)
p,p′ . (9.20)

For details the readers can refer to several excellent reviews of Fermi liquid theory

such as Pine and Nozieres [8] and Leggett [9].

9.2.2 3He-B Phase

The theory of superconductivity for electrons in a spin triplet state was developed

by Balian and Werthamer [10]; it successfully explains superfluidity in 3He. In their

theory, fermions form spin triplet pairs (s = 1) and the weak coupling between these

pairs leads to condensation at low temperatures. The effective Hamiltonian for the

quasi-particles has the form

H =
∑

k,σ

(ǫp − μ)c
†
k,σck,σ +

1

2

∑

k,σ;k′,σ′,q

V (q)c
†
k+q,σc

†
k′−q,σ′ck′,σ′ck,σ. (9.21)

The interaction potential describes the scattering process of the momentum change

of two vectors ki and k f = ki + q. It can be expanded in spherical harmonics, and

the first two terms are

V (q) = V0 + V1ki · k f + . . . . (9.22)

The first term is a repulsive s-wave interaction, V0 > 0, and cannot cause the

bound states. The second term is for a p-wave interaction, V1ki · k f , which leads to
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p-wave pairing. Thus, we only keep the second term for the theory of superfluidity.

The interaction terms contains four operators. In the BCS theory, the atoms tend to

form Cooper pairs and the dominate interaction is reduced to the pair-pair interaction,

V (k−k′)c
†
k,σc

†
−k,σ′c−k′,σ′ck′,σ . A mean-field approach is used to write the interaction

term as two-operator term by introducing the order parameters for pairing,

He f f =
∑

k,σ

(ǫp − μ)c
†
k,σck,σ

+
∑

k

Δ+1(k)c
†
k,↑c

†
−k,↑ + Δ∗

+1(k)c−k,↑ck,↑

+
∑

k

Δ0(k)c
†
k,↑c

†
−k,↓ + Δ∗

0(k)c−k,↓ck,↑

+
∑

k

Δ−1(k)c
†
k,↓c

†
−k,↓ + Δ∗

−1(k)c−k,↓ck,↓, (9.23)

where three types of pairing order parameters are introduced,

Δ+(k) =
∑

k′

V (k − k′)
〈

c−k′,↑ck′,↑

〉

, (9.24)

Δ0(k) =
∑

k′

V (k − k′)
〈

c−k′,↑ck′,↓

〉

, (9.25)

and

Δ−(k) =
∑

k′

V (k − k′)
〈

c−k′,↓ck′,↓

〉

, (9.26)

and 〈· · · 〉 represents the thermodynamic average.

For a p-wave pairing, the order parameter Δm(k) is an odd function of momentum,

Δm(−k) = −Δm(k). This condition can be derived from the definition,

Δ+(−k) =
∑

k′

V (−k − k′)
〈

c−k′,↑ck′,↑

〉

(9.27)

= −
∑

k′

V (−k − k′)
〈

ck′,↑c−k′,↑

〉

= −Δ+(k), (9.28)

where the extra minus sign comes from the permutation of two operators in
〈

c−k′,↑ck′,↑

〉

, when the interaction potential is even for a p-wave. Thus, order para-

meters Δm(k) have p-wave symmetry, and is proportional to the spherical harmony,

Y1,−m(θ,ϕ),

Δ+1(k) = Δ(−kx + iky), (9.29)
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Δ0(k) = Δkz, (9.30)

and

Δ−1(k) = Δ(kx + iky). (9.31)

In the lattice model, for example on a cubic lattice, they are modified to be fit the

lattice symmetry,

Δ+1(k) = Δ(− sin kx + i sin ky), (9.32)

Δ0(k) = Δ sin kz, (9.33)

and

Δ−1(k) = Δ(sin kx + i sin ky). (9.34)

The pairing potential can be written in a compact form V + V †,

V =
∑

k

(

c
†
k,↑, c

†
k,↓

)

�(k)

(

c
†
−k,↓

−c
†
−k,↑

)

(9.35)

and

V † =
∑

k

(

c−k,↓,−ck,↑

)

�†(k)

(

ck,↑

ck,↓

)

, (9.36)

where.

�(k) =

(

Δ0(k) −Δ+1(k)

Δ−1(k) −Δ0(k)

)

=

(

Δkz Δ(kx − iky)

Δ(kx + iky) −Δkz

)

= Δ(kxσx + kyσy + kzσz). (9.37)

We introduce the basis,

ψ
†
k =

(

c
†
k,↑, c

†
k,↓, c−k,↓,−c−k,↑

)

. (9.38)

The effective Hamiltonian has the form:

H =
1

2

∑

k

ψ
†
k He f f ψk, (9.39)



182 9 Topological Superconductors and Superfluids

where

He f f = Δ
(

kxαx + kyαy + kzαz

)

+ ξkβ (9.40)

is identical to the modified Dirac equation.

As this Hamiltonian is identical to the one for a three-dimensional topological

insulator, there exists a solution of the surface states near the boundary of the surface

if it satisfies the condition for the topologically non-trivial phase. However, the bases

of the fermion operators are quite different. In the 3He-B phase, we have particle

and hole excitations while we have the conduction bands and valence bands in topo-

logical insulators. Due to the particle-hole symmetry in the effective Hamiltonian,

the particle and hole excitations always appear in pairs with energy, ±E , which are

connected by the particle-hole transformation,

γ(E, k) → γ†(−E,−k). (9.41)

Therefore, in the 3He-B phase the surface state consists of only one half of a Dirac

cone with a positive energy [11].

9.2.3 3He-A Phase: Equal Spin Pairing

When Δ0 = 0, there exists a state with equal spin pairing. In this case there is

no relation between the orbital momenta of Δ+1(k) and Δ−1(k). Thus, the orbital

motions of the spin-up and spin-down particles are arbitrary. We can write them as

Δ+1 = Δ(kx + iky) (9.42)

and

Δ−1 = Δ(k
′

x + ik
′

y). (9.43)

For the particles with spin up, the effective Hamiltonian is

H↑ =
1

2

∑

k

(

c
†
k,↑, c−k,↑

)

(

ξk Δ(kx + iky)

Δ(kx − iky) −ξk

) (

ck,↑

c
†
−k,↑

)

=
1

2

∑

k

(

c
†
k,↑, c−k,↑

)

(

Δkxσx − Δkyσy + ξkσz

)

(

ck,↑

c
†
−k,↑

)

, (9.44)

where

ξk =
�

2

2m
(k2

x + k2
y) −

(

μ −
�

2k2
z

2m

)

. (9.45)
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This is identical to the two-dimensional modified Dirac equation. For a layered

system, the term
�

2k2
z

2m
may be suppressed. The spectrum of the quasi particle is

εk =

√

|Δ|2 (k2
x + k2

y) + ξ2
k . (9.46)

The new feature of this model is that the effective chemical potential becomes kz

dependent, μ(kz) = μ −
�

2k2
z

2m
. The Chern number for a specific kz is

nc(kz) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 i f
�

2k2
z

2m
< μ;

1
2

i f
�

2k2
z

2m
= μ;

0 i f
�

2k2
z

2m
> μ.

(9.47)

At k2
z = 2mμ/�

2, μ = 0, and εk = |Δ1| k‖ + O(k2
‖), which is linear in the

momentum for a small k‖ (k2
‖ = k2

x + k2
y). It is a marginal phase between two

topologically distinguishing phases. Thus, in the 3He-A phase, there always exists a

nodal point. Due to the non-zero Chern number, there exist chiral edge states around

the boundary of the system.

There are several possible choices in the state of equal spin pairing.

The Anderson-Brinkman-Morel state [12]:

Δ+1 = Δα(k)(kx + iky), (9.48)

Δ0 = 0, (9.49)

and

Δ−1 = Δα(k)(kx + iky), (9.50)

where Δα(k) is an even function of k. In the case the two phases of spin up and

spin down particles are identical, and possess the same Chern number if they are

topologically non-trivial.

The two-dimensional planar state:

Δ+1 = Δα(k)(kx + iky), (9.51)

Δ0 = 0, (9.52)

and

Δ−1 = Δα(k)(kx − iky). (9.53)
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In the case the two phases of spin up and spin down particles possess opposite Chern

numbers if they are topologically non-trivial.

The one-dimensional polar state:

Δ+1 = 0, (9.54)

Δ0 = Δα(k)kz, (9.55)

and

Δ−1 = 0. (9.56)

The effective Hamiltonian becomes

He f f = Δα(k)kzαz + ξ(k‖, kz)β, (9.57)

where ξ(k‖, kz) = �
2

2m
k2

z − (μ−
�

2k2
‖

2m
). This equation can be deduced into two degen-

erated one-dimensional Dirac equation, as discussed in Chap. 2. There always exist

two crossing points at
�

2k2
‖

2m
= μ and kz = 0.

9.3 Spin-Triplet Superconductor: Sr2RuO4

There are several classes of candidates of spin-triplet superconductors, such as heavy

fermion superconductor UPt3, organic superconductor (TMTSF)2 X (X =ClO4 and

PF6) and ruthenate superconductors Sr2RuO4. In this section we briefly introduce the

unconventional properties of Sr2RuO4, which is thought to be a spin-triplet super-

conductor or even a topological superconductor, comparable with the odd-parity,

pseudo-spin-triplet superconductor UPt3.

Sr2RuO4 is an oxide superconductor in the same layered structure as high-Tc

cuprates but with a low superconducting transition temperature of 1.5 K [13]. The

availability of high quality single crystal and the relative simplicity of its fully-

characterized Fermi surface lead to a large number of experimental and theoretical

studies. Rice and Sigrist [14] proposed a similarity between the superconductivity

of Sr2RuO4 and the spin-triplet superfluidity of 3He soon after the discovery of the

ruthenate superconductivity, which leads to the first direct experimental evidence of

spin triplet pairing in Sr2RuO4 by the measurement of electron spin susceptibility

with NMR.

At low temperatures, Sr2RuO4 maintains a tetragonal structure with the crystal

point group symmetry D4h . Neglecting the dispersion along the out-of-plane c direc-

tion, possible spin triplet states are limited to those for the two-dimensional square

lattice with C4v symmetry. One possible state in Sr2RuO4 is so called chiral pairing

states, which possess two polarizations of the relative orbital angular momentum of

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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pairing quasi-particle: the left- and right-polarizations correspond to

Δ0 ∝ sin kx ± i sin ky, (9.58)

respectively. They are the states with the orbital angular momentum L z = +1 and

−1 and the Cooper pair spins lies in the plane, Sz = 0 whereas the total spin is S = 1.

The direct evidence of spin-triplet pairing in Sr2RuO4 is based on the electron

spin susceptibility measurement by the NMR Knight shift of both 17O and 99Ru

nuclei [15]. Combined with the observation of the internal magnetic field by μS R, it

is believed that the superconducting state of Sr2RuO4 is a spin triplet chiral p-wave

state, a two-dimensional analogue of the 3He-A phase. The odd parity of the orbital

part of the order parameter has been unambiguously demonstrated by phase sensitive

measurements.

In the sector of S = 1 and Sz = 0, the superconducting state withΔ±
0 = Δ(sin kx±

i sin ky) is similar to a spinless p + i p wave superconductor. The Chern number

can be defined as we discussed in Sect. 9.1. The states with Δ+
0 = Δ(sin kx +

i sin ky) and Δ−
0 = Δ(sin kx − i sin ky) are degenerated, but may have opposite

Chern number due to the sign difference in Δ±
0 . According to the the bulk-edge

correspondence, a non-zero Chern number will lead to the emergence of chiral edge

states around the system boundary, which breaks the time reversal symmetry. The

superconducting states of Δ+
0 and Δ−

0 possess opposite propagating edge states,

respectively. The superconducting state in Sr2RuO4 has broken the time reversal

symmetry spontaneously, and one of the states of Δ±
0 will be selected to be the

ground state.

The existence of edge states has been studied in an experiment using quasi-particle

tunneling spectroscopy [16]. The measured conductance spectra has provided evi-

dence of edge states. However, it is still under debate whether Sr2RuO4 is a topolog-

ical superconductor. We expect more and conclusive experiments to settle the issue

in the near future [17].

9.4 Superconductivity in Doped Topological Insulators

Doped topological insulator Cux Bi2Se3 exhibits the signature of superconductivity

at low temperatures [18, 19]. The undoped Bi2Se3 compound is a topological insu-

lator with a single Dirac cone of the surface states. Copper atoms can add holes

or electrons in the Bi2Se3 lattice. It was found that about 10% copper is needed to

bring about superconductivity in bulk Bi2Se3 when the transition temperature of Tc

is about 3.8 K; this was confirmed by the observation of the Meissner effect. The

temperature dependence of specific heat suggests a fully gapped superconducting

state. Experimental data even suggest the coexistence of superconductivity and sur-

face states of protected by time reversal symmetry. However, superconductivity of a

doped topological insulator does not mean that the superconducting phase is always

topologically non-trivial.
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For a time reversal invariant superconductor, the mean field Hamiltonian in

Bogoliubov-de Gennes formalism preserves the additional particle-hole symme-

try, P H(k)P = −H(−k) with P2 = 1. This particle-hole symmetry can define

a Z2 invariant as that for time reversal symmetry. Based on the calculation of the Z2

invariant, Fu and Berg [20] and Saito [21] proposed that a time reversal-invariant cen-

trosymmetric superconductor is a topological superconductor if (1) it has odd-parity

pairing symmetry with a full superconducting gap and (2) its Fermi surface encloses

an odd number of time reversal invariant momenta Ŵα (which satisfy Ŵα = −Ŵα up

to a reciprocal lattice vector) in the Brillouin zone.

It follows from the criteria that Cux Bi2Se3 is a potential candidates as a topological

superconductor, although further experiments to confirm this potential.

9.5 Further Reading

• J.R. Schrieffer, Theory of Superconductor, Persues books (1964).

• A.J. Leggett, Nobel Lecture: Superfluid 3He: The early days as seen by a theorist,

Rev. Mod. Phys. 76, 909 (2004).

• N. Read and D. Green, Paired states of fermions in two dimensions with breaking

of parity and time reversal symmetries and the fractional quantum Hall effect,

Phys. Rev. B 61, 10267 (2000).

• G.E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).

• Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida, Evaluation of

spin-triplet superconductivity in Sr2RuO4, J. Phys. Soc. Jn. 81, 011009 (2012).

• D. Vollhardt and P. Wofle, The Superfluid Phases of Helium 3, Taylor and Francis,

London (1990).
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Chapter 10

Majorana Fermions in Topological Insulators

Abstract A Majorana fermion is a particle that is its own antiparticle. This type of

particle can appear as an end state in a one-dimensional topological superconductor or

as a bound state induced by a half quantized vortex in a two-dimensional topological

superconductor.

In his interpretation of the Dirac equation, Dirac introduced the concept of antipar-

ticles as part of the negative energy solution. While the positive energy solution is

used to describe an electron with spin 1/2, the negative energy solution describes an

anti-particle of an electron, i.e., a positron, which has a negative mass and a positive

elementary charge [1]. Ettore Majorana found that the Dirac equation can be sepa-

rated into a pair of real wave equations, in which the fields are real and an particle

and its antiparticle have no distinction [2]. For massless and neutral particles, their

own antiparticles might be themselves. Neutrinos and antineutrinos are expected to

the same particles, but it has been confirmed experimentally that neutrinos do have

tiny mass. Thus, Majorana fermions as elementary particles have never been realized

in nature [3]. But now it is highly possible to realize Majorana fermions in solid as

quasi-particles of the collective behavior of many-particle systems.

10.1 What Is a Majorana Fermion?

A Majorana fermion satisfies the rules

γ
†
i = γi (10.1)

and

{γi , γ
†
j } = γiγ

†
j + γ

†
j γi = δi j . (10.2)
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A fermion operator can be always written in terms of two Majorana fermions,

c
†
12 =

1
√

2
(γ1 + iγ2) (10.3)

and

c12 =
1

√
2
(γ1 − iγ2), (10.4)

with γ
†
1 = γ1 and γ

†
2 = γ2. Conversely,

γ1 =
1

√
2
(c

†
12 + c12), (10.5)

and

γ2 =
1

i
√

2
(c

†
12 − c12). (10.6)

One γi toggles the fermion number between even and odd, which is called the fermion

number parity. The fermion parity operator is

P = 1 − 2c
†
12c12 = 2iγ1γ2, (10.7)

which has an eigenvalue +1 if the state is empty, and −1 if the state is occupied.

10.2 Majorana Fermions in p-Wave Superconductors

10.2.1 Zero Energy Mode Around a Quantum Vortex

The quantum flux in a p-wave superconductor can induce a bound state of zero

energy, which is a Majorana fermion. Consider a disk of size L with a hole of radius

R in which a magnetic flux φ threads through. We require the wave function vanishes

at r = R. In the presence of the magnetic flux, the wave function should satisfy the

boundary condition

φ(θ + 2π) = ei2πφ/φ0φ(θ), (10.8)

where the quantum flux φ0 = h/e if we take a gauge that the vector potential is

absent in the Hamiltonian,

H (p − eA) → H(p). (10.9)
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In a polar coordinate system the Hamiltonian becomes

H =

(

− �
2

2m
(∂2

r + 1
r
∂r + 1

r2 ∂
2
θ ) − μ −iΔ0e−iθ(∂r − i

r
∂θ)

−iΔ0e+iθ(∂r + i
r
∂θ)

�
2

2m
(∂2

r + 1
r
∂r + 1

r2 ∂
2
θ ) + μ

)

. (10.10)

Solution of the wave function for the Schrödinger equation has the form,

φ =
(

f (r)

g(r)eiθ

)

eiνθ, (10.11)

where ν = m + φ/φ0 and m an integer. In this way, this two-dimensional problem

is reduced to a one-dimensional equation for radial part of the wave function,

(

− �
2

2m
(∂2

r + ∂r

r
− ν2

r2 ) − μ −iΔ0(∂r + ν+1
r

)

−iΔ0(∂r − ν
r
) �

2

2m
(∂2

r + ∂r

r
− (ν+1)2

r2 ) + μ

)

(

f

g

)

= E

(

f

g

)

.

(10.12)

The solution of the equation has the form:

f = cν Kν(G+r) + dν Kν(G−r), (10.13)

and

g = c′
ν Kν+1(G+r) + d ′

ν Kν+1(G−r), (10.14)

where Kν(x) is the modified Bessel function, and the two coefficients are

G2
± = F ±

√

F2 −
4m2

�4
(μ2 − E2), (10.15)

where F = 2m2Δ2
0/�

4 − 2mμ/m�
2). With the boundary condition φ(r = R) = 0,

one obtains

G2
+ + 2m(E + μ)/�

2

G+

Kν+1(G+ R)

Kν(G+ R)
=

G2
− + 2m(E + μ)/�

2

G−

Kν+1(G− R)

Kν(G− R)
.

(10.16)

Solving the set of (10.15) and (10.16), one may obtain the energy eigenvalues of the

bound states around the hole. It is known that the equation becomes topologically

non-trivial when μ > 0. For μ < 0 no bound state exist around the hole. For μ > 0,

there exist a series of bound states. For a half quantum flux φ/φ0 = 1
2
, there always

exists a zero energy mode that is independent of the radius of the hole, and robust

against other interactions and even the geometry of the hole. For an integer quantum

flux φ/φ0 = 1 the bound states always exist in pairs of ±E .
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The robustness of the zero mode for a half quantum vortex can be demonstrated

in the following way. When ν = − 1
2
, (10.12) becomes

[

−iΔ0(∂r +
1

2r
)σx −

[

�
2

2m

(

∂2
r +

∂r

r
−

1

4r2

)

+ μ

]

σz

] (

f

g

)

= E

(

f

g

)

.

(10.17)

Furthermore, take a substitution,

(

f (r)

g(r)

)

=
1

√
r
φ(r), (10.18)

then the equation for the radial part of the wave function is reduced to

[

−iΔ0∂rσx −
(

�
2

2m
∂2

r + μ

)

σz

]

φ(r) = Eφ(r), (10.19)

which is identical to a one-dimensional modified Dirac equation in (2.33). r is

between R and disk size L . The dispersions for several different angular momenta

as a function of R are plotted in Fig. 10.1. There exists a zero energy mode, which is

independent of radius R. One can find the bound state solution in Sect. 2.5. A zero

mode always exists near r = R and L if μ > 0.

In the geometry of a disk with a finite radius, the solution of zero energy is split

into two parts: one half is located around the vortex, the other half is distributed

around the boundary. The zero energy modes appear simultaneously near the vortex

and the system boundary. Thus, in this case, the Majorana fermions is non-local.

Ivanov [4] pointed out the equivalence between a half quantum vortex for spinful

fermions and a single-quantum vortex for spinless fermions, and there exist an zero

energy mode near a half quantum vortex.

Fig. 10.1 Energy

eigenvalues of the bound

states as a function of radius

R of the hole in the presence

of a half quantum vortex.

The parameters for the

numerical calculations are

μ = 1
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= Δ0 = 1
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10.2.2 Majorana Fermions in Kitaev’s Toy Model

The Kitaev’s toy model is a one-dimensional lattice chain of spinless p-wave super-

conductor [5],

H = −μ

N
∑

x=1

c†
x cx −

N−1
∑

x=1

(tc†
x cx+1 + Δeiφcx cx+1 + h.c.), (10.20)

where μ, t > 0, and Δeiφ denote the chemical potential, the tunneling strength,

and the superconducting order parameters, respectively. It has the same form as the

modified Dirac model on a one-dimensional lattice. In the special case, μ = 0 and

t = Δ, the Hamiltonian can be factorized as

H = −t

N−1
∑

x=1

(eiφ/2cx + e−iφ/2c†
x )(e

iφ/2cx+1 − e−iφ/2c
†
x+1). (10.21)

We define

γB,x =
1

√
2
(eiφ/2cx + e−iφ/2c†

x ) (10.22)

and

γA,x =
1

i
√

2
(eiφ/2cx − e−iφ/2c†

x ), (10.23)

which are Majorana fermions and obey

γA,x = γ
†
A,x (10.24)

and

γB,x = γ
†
B,x . (10.25)

In this way,

H = −2i t

N−1
∑

x=1

γB,xγA,x+1. (10.26)

Furthermore two Majorana fermions, γB,x and γA,x+1, can be combined to form a new

fermion operator dx = 1√
2

(

γA,x+1 + iγB,x

)

and iγB,xγA,x+1 = 1
2

− d†
x dx . Notice

that the new fermion operators are not the original c-operators in (10.20). The Hamil-

tonian has a diagonal form in term of dx ,
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H = +2t

N−1
∑

x=1

d†
x dx − (N − 1)t. (10.27)

However, although all pairs of (γB,x , γA,x+1) for x = 1, 2, · · · , N − 1 form new

fermions, γA,1 and γB,N are absent from the Hamiltonian, i.e., [γA,1, H ] =
[γB,N , H ] = 0. For t > 0, the lowest energy state is |g〉, in which dx |g〉 = 0 for

all x , and

H |g〉 = −(N − 1)t |g〉 . (10.28)

As [γA,1, H ] = [γB,N , H ] = 0, we can construct two degenerated states γA,1 |g〉
and γB,N |g〉, which are related to an ordinary zero-energy fermion d = 1√

2
(γA,1 +

iγB,N ). As the γ operator changes the fermion parity, 〈g| d |g〉 = 0. γA,1 |g〉 and

γB,N |g〉 have a relation:

〈g| γA,1γB,N |g〉 =
〈

g

∣

∣

∣

∣

1 − 2d†d

2i

∣

∣

∣

∣

g

〉

=

{

+ i
2

f or d†d = 1;

− i
2

f or d†d = 0.
(10.29)

This is determined by the number parity of |g〉. Thus, these two states are not inde-

pendent. Therefore the ground states of the Kitaev model are doubly degenerate, i.e.,

|g〉 and d |g〉. The two states have different parities: one is even and the other is odd.

The doubly degeneracy reveals that the Kitaev model is topologically nontrivial. The

solution is illustrated in Fig. 10.2, which looks like the Aflack-Khomoto-Lieb-Tasaki

state for a spin-one system.

As an example, we further present the solutions of a two-site problem. The Hamil-

tonian is

H = −t (c
†
1c2 + c

†
2c1 + c1c2 + c

†
2c

†
1). (10.30)

We have two eigenstates with even parity,

Ψe,± =
1

√
2
(1 ± c

†
2c

†
1) |0〉 (10.31)

with the eigenvalues ǫe,± = ∓t , and two eigenstates with odd parity,

Ψo,± =
1

√
2
(c

†
1 ± c

†
2) |0〉 (10.32)

with the eigenvalues ǫe,± = ∓t . The states are doubly degenerate.

Fig. 10.2 Schematic of two end Majorana states in the Kitaev’s toy model
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In the language of the Majorana fermion operators,

H = −2i tγB,1γA,x+1 = +2td†
x dx − t, (10.33)

which commutes with γA,1 and γB,2. Multiplying the two Majorana operators on one

of the ground states, one obtains

γA,1Ψe,+ =
i

2
(c

†
1 + c

†
2) |0〉 = iΨo,+ (10.34)

and

γB,2Ψe,+ = Ψo,+ = −iγA,xΨe,+. (10.35)

Thus, these two states are identical by differing a trivial phase factor.

10.2.3 Quasi-One-Dimensional Superconductors

The Kitaev model can also be realized in a quasi-one-dimensional system. Recently

Potter and Lee [6] generalized the results to a quasi-one-dimensional system. They

found that for a strip of a two-dimensional p-wave superconductor, when the width

of the strip is narrow enough that the edge states at the two sides overlap in space,

and open a finite energy gap as a consequence of finite size effect. The zero energy

modes may exist at the two ends of the strip. The Majorana fermions of zero modes

are quite robust against this disorder.

We consider a two-dimensional spinless p-wave superconductors on a square-

lattice [7],

H =
L

∑

j=1

n
∑

α=1

[

−μc
†
j,αc j,α −

(

tc
†
j,αc j,α+1 + Δc j,αc j,α+1 (10.36)

+tc
†
j,αc j+1,α + iΔc j,αc j+1,α + h.c.

)]

, (10.37)

where c
†
j,α creates an electron on site ( j,α), t (> 0) is the hopping amplitude, μ is

the chemical potential and Δ (for simplicity we take Δ > 0) is the p-wave pairing

amplitude. Here we consider a strip geometry in which the lattice site numbers are

L along the x-axis direction and n along the y-axis direction (the sample width

direction), thus, which total number of lattice sites is N = nL . First, we adopt a

periodic boundary condition along the x-axis direction, i.e., c
†
L+1,α = c

†
1,α, and the

Fourier transforms of the operator c
†
j,α

c
†
j,α =

1
√

L

∑

q

c†
α (q) e−iq j , (10.38)
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where q = qx is the wave vector along the x-axis, and −π ≤ q ≤ π. In terms of the

new creation and annihilation operators c†
α (q) and cα (q), the Hamiltonian (10.37)

can be rewritten as

H =
∑

q

n
∑

α=1

{

− (μ + 2t cos q) c†
α (q) cα (q) (10.39)

−
[

tc†
α (q) cα+1 (q) + |Δ| cα (q) cα+1 (−q) (10.40)

+i |Δ| e−iqcα (q) cα (−q) + h.c.
]}

. (10.41)

Then, we define a set of the operators γ2α−1 (q) and γ2α (q) as,

γ2α−1 (q) = i
[

c†
α (−q) − cα (q)

]

(10.42)

and

γ2α (q) = c†
α (−q) + cα (q) , (10.43)

which satisfy the anticommutation relations
{

γ†
m (q) , γn

(

q ′)}

= 2δmnδqq ′ and

γ†
m (q) = γm (−q). In fact, γm (0) is just a Majorana fermion operator due to

γ†
m (0) = γm (0). In the basis of the news operators γ2α−1 (q) and γ2α (q), the Hamil-

tonian (10.41) has the following form

H = i
1

4

∑

q

∑

η,κ

γη (−q) Bη,κ (q) γκ (q) , (10.44)

where the elements of the 2n × 2n matrix B (q) are given as

B2α,2α = −B2α−1,2α−1 = −2i |Δ| sin q, (10.45)

B2α,2α−1 = −B2α−1,2α = −μ − 2t cos q, (10.46)

B2α,2α+1 = −B2α+1,2α = −t − |Δ| , (10.47)

B2α−1,2α+2 = −B2α+2,2α−1 = t − |Δ| , (10.48)

and all other elements are zero.

Here we will give the phase diagrams of the presence of Majorana end modes

in quasi-one-dimensional p-wave superconductors by using Kitaev’s topological

arguments [5]. To this end, we consider the 2n × 2n matrix B (q) in the Hamiltonian

in (10.44). The matrix B is an antisymmetric matrix when q is equal to zero or

π, such that we can calculate the Pfaffians PfB (0) and PfB (π). The topological

property of the system described by the Hamiltonian in (10.44) is characterized by

a Z2 topological index (Majorana number) M:

M = sgn [P f B (0)] sgn [P f B (π)] = ±1, (10.49)
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where +1 means topologically trivial phases and −1 means topologically nontrivial

states (i.e., the existence of zero mode Majorana end states).

For the simplest case, there is only one lattice site along the y-axis direction

(i.e., n = 1). This case is just the one-dimensional Kitaev model. The two 2 × 2

antisymmetric matrices are

Bn=1 (0/π) =
(

0 μ ± 2t

− (μ ± 2t) 0

)

, (10.50)

and PfBn=1 (0/π) = μ ± 2t , where + and − correspond to the cases of q = 0 and

π, respectively. The Majorana number in the one-dimensional limit is

Mn=1 = sgn (μ + 2t) sgn (μ − 2t) , (10.51)

thus, we have the topologically nontrivial condition:

2 |t | > |μ| (10.52)

with (Δ 	= 0). The (10.52) is consistent with the result given by Kitaev [5], who

demonstrated that a long open chain (in the limit of L → ∞) has zero energy Majo-

rana end states located near the boundary under the same condition.

For the case of n = 2, the lattice site numbers along the y-axis direction are two.

The two 4 × 4 antisymmetric matrices are

Bn=2 (0/π) =

⎛

⎜

⎜

⎝

0 μ ± 2t 0 t − Δ

− (μ ± 2t) 0 − (t + Δ) 0

0 t + Δ 0 μ ± 2t

− (t − Δ) 0 − (μ ± 2t) 0

⎞

⎟

⎟

⎠

. (10.53)

The direct calculation yields the Pfaffians PfBn=2 (0/π),

P f Bn=2 (0/π) = (μ ± 2t)2 + Δ2 − t2. (10.54)

For the larger lattice site numbers n (≥ 3), PfBn (0/π) can also be calculated analyt-

ically. A recursion relation gives

P f Bn (0/π) = a± P f Bn−1 (0/π) + bP f Bn−2 (0/π) , (10.55)

where a± = μ ± 2t and b = |Δ|2 − t2. We further solve (10.55), and give an analytic

formula for PfBn (0/π)

P f Bn (0/π) =
(

rn+1
1 − rn+1

2

)

√

a2
± + 4b

, (10.56)
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Fig. 10.3 Phase diagram for a quasi-1D p-wave superconductor model as a function of the p-wave

pairing amplitude and chemical potential for lattice site numbers n along the y-axis direction. N

denotes the topologically nontrivial region with zero-mode Majorana end states, and T denotes the

topologically trivial region. When |Δ| /t = 0.1, the solid (red) lines and dotted (blue) lines guide

the values of μ/t , corresponding to the topologically nontrivial and trivial phases, respectively

(Adapted from [7]) (color figure online)

where

r1 =
a± +

√

a2
± + 4b

2
, r2 =

a± −
√

a2
± + 4b

2
. (10.57)

According to the Pfaffians PfBn (0/π) one can compute M as a function of the

physical parameters, and then plot the phase diagram for the lattice site number n.

Figure 10.3 presents the phase diagram for the lattice site number n along the y-axis

direction. The phase diagrams of this tight binding model are symmetric for positive

and negative μ, thus, here we only plot the part of negative μ values because the plot

of positive μ values is a mirror image. However this μ → μ symmetry is not generic

to models with say, next-nearest-neighbor hopping or next-nearest-neighbor pairing.

10.3 Majorana Fermions in Topological Insulators

Fu and Kane proposed that as a superconducting proximity effect the interface of

the surface stets of a three-dimensional topological insulator and an s-wave super-

conductor resembles a spinless px + i py superconductor, but does not break time
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reversal symmetry [8]. The system supports Majorana bound states at vortices. Sup-

pose that an s-wave superconductor is deposited on the surface of a topological

insulator. Because of the proximity effect, Cooper pairs from superconductor can

tunnel into the surface states of topological insulator, which is described by the

pairing potential V = Δc
†
k,↑c

†
k,↓ + h.c. where Δ = Δ0eiφ. In the Nambu notation,

C
†
k =

{(

c
†
k,↑, c

†
−k,↓

)

,
(

c−k,↓,−ck,↑
)}

, the surface states can then be described by

H =
1

2

∑

k

C
†
k He f f (k)Ck, (10.58)

where

He f f = −ivτzσ · k − μτz + Δ0(τx cos φ + τy sin φ), (10.59)

where τ are the Pauli matrices that mix the c and c† blocks of C . The Hamiltonian has

the time reversal symmetry T , Θ = iσy K (K is the complex conjugate operator),

and the particle-hole symmetry P , � = σyτy K . The energy spectra are

Ek = ±
√

(±vk − μ)2 + Δ2
0. (10.60)

For μ ≫ Δ0, the low energy spectrum resembles that of a spinless px + i py super-

conductor. Define dk = (ck↑ + eiθk ck↓) for k = k(cos θk, sin θk) and vk ∼ μ. The

projected Hamiltonian is then

He f f =
∑

k

(vk − μ)d
†
k dk + Δ0(e

iθk d
†
k d

†
−k + h.c). (10.61)

This is identical to the one for a p-wave pairing superconductor. Following the

approach in a p-wave superconductor, a half quantum vortex in this system leads to

a Majorana bound state.

Experimental realization of the proximity effect was reported in a superconducting

topological insulator/superconductor heterostructure by growing Bi2Se3 thin films on

superconductor niobium diselenide substrate. Using scanning tunneling microscopy

and angle-resolved photoemission spectroscopy, the localized Majorana zero mode

at the vortex core has been observed [9].

10.4 Sau–Lutchyn–Tewari–Das Sarma Model
for Topological Superconductors

Sau et al. [10] proposed an idea to create Majorana fermions in a ferromag-

netic insulator/semiconductor/s-wave superconductor hybrid system. They originally

proved the existence of Majorana fermions in the setup by solving the vortex problem
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in the Bogoliubov-de Gennes equation. Alicea [11] found that the model is connected

to a spinless p + i p superconductor. Here we prove that the system is actually equiv-

alent to two spinless p ± i p superconductors, among which one is always topologi-

cally trivial, and the other is possibly topologically non-trivial.

Consider first an isolated zinc-blende semiconductor quantum well grown along

the (100) direction in the presence of a perpendicular Zeeman field. Assume there

is structural inversion asymmetry in the system, which generates Rashba spin-orbit

coupling. The system can be modeled as a two-dimensional electron gas with Rashba

spin-orbit coupling plus a perpendicular Zeeman field. The effective Hamiltonian

reads

H0 =
∑

k,σ

c
†
k,σ

(

ǫ(k)σ0 + α(kxσy − kyσx ) + VZσz

)

σσ′ ck,σ′ (10.62)

where ǫ(k) = k2

2m
− μ. μ is the chemical potential and α(>0) is the Rashba spin-orbit

coupling strength. Furthermore consider the two-dimensional electron gas contact-

ing an s-wave superconductor. Due to the proximity effect of superconductivity, an

additional pairing potential is generated

V =
∑

k

(

Δc
†
k,↑c

†
−k,↓ + h.c.

)

. (10.63)

Thus, the total Hamiltonian for the electrons in quantum well becomes

H = H0 + V . (10.64)

To illustrate its connection to spinless p-wave superconductors, we first introduce

a unitary transformation to diagonalize H0,

(

ck,↑
ck,↓

)

=

(

cos θk

2
−e−iϕk sin θk

2

eiϕk sin θk

2
cos θk

2

)

(

ak,+
ak,−

)

. (10.65)

Consequently, H0 is transformed to

H0 =
∑

k,ν=±

(ǫ(k) + ν�k) a
†
k,νak,ν . (10.66)

where �k =
√

V 2
Z + α2k2. The parameters are determined by cos θk = VZ/�k,

sin θk = αk/�k and tan ϕk = −kx/ky . After the transformation, the pairing poten-

tial V can be divided into two parts:

V = V1 + V2, (10.67)
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where

V1 =
∑

k

(

Δk,ca
†
k,+a

†
−k,− + h.c.

)

(10.68)

and

V2 = −
1

2

∑

k,˚

(

Δk,νa
†
k,νa

†
−k,ν + h.c.

)

. (10.69)

Here Δk,c = Δ cos θk and Δk,± = Δe∓iϕk sin θk. Thus, Hc = H0 + V1 is equiva-

lent to a s-wave superconductor with a “Zeeman” splitting, �k. We introduce the

Bogoliubov transformation to diagonalize Hc:

(

ak,+
a

†
−k,−

)

=

(

cos
γk

2
− sin

γk

2

sin
γk

2
cos

γk

2

)

(

bk,+
b

†
−k,−

)

, (10.70)

where cos γk = ǫ(k)/

√

ǫ(k)2 + Δ2
k,c and sin γk = Δk,c/

√

ǫ(k)2 + Δ2
k,c. As a result,

Hc =
∑

k,ν=±

(

√

ǫ(k)2 + Δ2
k,c + ν�k

)

b
†
k,νbk,ν (10.71)

up to a constant. Meanwhile, the pairing potential V2 has the form:

V2 = −
1

2

∑

k,˚

(

Δk,νb
†
k,νb

†
−k,ν + h.c.

)

. (10.72)

In the language of b
†
k,±and bk,±, the pairing potential V2 consists of two pairing

potentials between the same types of particles. The particles with ν = + and ν = −
are decoupled completely. Therefore, the total Hamiltonian is reduced to

H =
∑

k,ν=±

[(

√

ǫ(k)2 + Δ2
k,c + ν�k

)

b
†
k,νbk,ν −

1

2

(

Δk,νb
†
k,νb

†
−k,ν + h.c.

)

]

.

(10.73)

The order parameters are

Δk,ν =
αΔ

√

V 2
Z + α2k2

(

ky + iνkx

)

, (10.74)

which obey p ± i p symmetry. Thus, the effective model consists of two different

types of spinless px ± i py wave pairing superconductors. By introducing a Nambu
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spinor, ψ
†
k,ν =

(

b
†
k,ν, b−k,ν

)

, the total Hamiltonian has the form

H =
1

2

∑

k,ν=±

ψ
†
k,ν

[(

√

ǫ(k)2 + Δ2
k,c + ν�k

)

σz −
αΔ

�k

(

kyσx − νkxσy

)

]

ψk,˚.

(10.75)

The equation can be reduced to two modified Dirac equations near k = 0. In each

type of superconductor, the factor αΔ/VZ , which is equivalent to the velocity in the

modified Dirac equation, plays a role in coupling the two bands. This fact illustrates

that Rashba spin-orbit coupling, the pairing potential and the Zeeman field combine to

form three indispensable ingredients to realize a topological superconductor. For the

particles of ν = +, the gap between the particle and hole bands is always positive,

and never close if Δ 	= 0. The Chern number is equal to zero. Thus, it is always

topologically trivial. For the particles of ν = −,

H ≃
1

2

∑

k

ψ
†
k,−

[

(

√

μ2 + Δ2 − |VZ |
)

σz −
αΔ

|VZ |
(

kyσx − νkxσy

)

]

ψk,−.

(10.76)

The gap closes at |VZ | =
√

μ2 + Δ2. Thus, the sign change demonstrates that a

topological quantum phase transition can occur near |VZ | =
√

μ2 + Δ2. The Chern

number can be calculated explicitly,

nc =
1

2

[

sgn
(

√

μ2 + Δ2 − |VZ |
)

− 1
]

. (10.77)

It is topologically non-trivial if
√

μ2 + Δ2 < |VZ |. Therefore a large Zeeman term

can induce a topological superconducting phase in this system.

Experimentally, it was reported that the bound, mid-gap states at zero bias voltage

were observed in electric measurements on indium antimonide nanowires contacted

with one normal (gold) and one superconducting electrode [12]. Several other groups

also reported their experimental data to support existence of the Majorana fermions

[13, 14].

10.5 4π-Josephson Effect

Consider two one-dimensional superconducting wires with Majorana end fermions

connected at x = 0 to form a Josephson junction as shown in Fig. 10.4. The effective

Hamiltonian of the junction can be written in terms of two Majorana fermions at the

two ends

H junction = 2iΓ (φ)γB,LγA,R = Γ (φ)

(

1 − 2d
†
0 d0

)

, (10.78)
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Fig. 10.4 Top Schematic of

Josephson junction of

Majorana fermions at two

superconductors with the

phase 0 and φ, respectively.

Bottom The energies of two

states with different parity as

a function of the phase φ

where Γ (φ) is the coupling strength and is a function of the phase difference between

the two superconductors, φ = φR − φL . Suppose a gauge is chosen such that φL →
φL + 2π and φR → φR . In this gauge transformation, we have

γB,L → −γB,L (10.79)

and

γA,R → γA,R . (10.80)

As the Hamiltonian for the superconductor is invariant under the gauge transforma-

tion, we have a relation that Γ (φ) = −Γ (φ + 2π). This condition shows that Γ (φ)

is of period 4π and crosses zero at φ = ±π.

Equation (10.78) shows that Γ (φ) and −Γ (φ) are the eigenvalues of H junction and

|0〉 and d+
0 |0〉 are the corresponding eigenstates. If the fermion parity is conserved at

the junction, this energy crossing is protected because |0〉 and d+
0 |0〉 have different

fermion parities and there is no transition from one state to the other when φ equals π.

Since the energy eigenvalues ±Γ (φ) are periodic of 4π and there are no transitions

among the states with different fermion parities, the Josephson current, which is

given by

I± = ±
2e

h
∂φΓ (φ) (10.81)

is also 4π periodic as shown in Fig. 10.4. The observation of this 4π periodic Joseph-

son current is explicit evidence of Majorana fermions, and the sign of the current

reveals the fermion parity of the junction.
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10.6 Non-Abelion Statistics and Topological Quantum
Computing

If the overall phase of the superconducting gap shifts by φ, it is equivalent to rotating

the creation and annihilation operators of electron by φ/2: c → eiφ/2c and c† →
e−iφ/2c†. The solution for the Majorana fermion γ = uc† + u∗c → ue−iφ/2c† +
u∗eiφ/2c. If the phase of the order parameter is changed by 2π, the Majorana fermion

in the vortex changes its sign: γ → −γ. Let us fix the initial positions of the vortices.

Permutations of the vortices may form a braid group B2n , which is generated by the

elementary interchange Ti of neighboring vortices [4].

Under the action Ti ,

γi → γi+1, (10.82)

γi+1 → −γi (10.83)

and

γ j → γ j (10.84)

for j 	= i and j 	= i + 1. This action obeys the commutation relations

Ti T j = T j Ti , f or |i − j | > 1 (10.85)

and

Ti T j Ti = T j Ti T j , f or |i − j | = 1 , (10.86)

which describe for the braid group. The expression for this action is

τ (Ti ) = exp
(π

2
γi+1γi

)

= exp
(

−i
π

4
P

)

(10.87)

= cos
π

4
− i P sin

π

4
=

1
√

2
(1 + 2γi+1γi ) , (10.88)

where P is the parity operator and P2 = P . Thus, the Majorana fermions associated

with a quantum vortex obey non-Abelion statistics.

In the case of four vortices the four Majorana fermions combine into two complex

fermions c1 = 1√
2
(γ1 + iγ2) and c2 = 1√

2
(γ3 + iγ4). The ground state is four-fold

degenerated and the three generators T1, T2 and T3 of the braid group are represented

by

τ (T1) = exp
(π

2
γ2γ1

)

, (10.89)
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τ (T2) = exp
(π

2
γ4γ3

)

(10.90)

and

τ (T3) = exp
(π

2
γ3γ2

)

. (10.91)

One may write the operators in a matrix form in the basis {|0〉, c
†
1 |0〉, c

†
2 |0〉, c

†
1c

†
2 |0〉}.

τ (T1) = exp
(π

2
γ2γ1

)

=

⎛

⎜

⎜

⎝

e−i π
4 0 0 0

0 e+i π
4 0 0

0 0 e−i π
4 0

0 0 0 e+i π
4

⎞

⎟

⎟

⎠

, (10.92)

τ (T2) = exp
(π

2
γ4γ3

)

=

⎛

⎜

⎜

⎝

e−i π
4 0 0 0

0 e−i π
4 0 0

0 0 e+i π
4 0

0 0 0 e+i π
4

⎞

⎟

⎟

⎠

(10.93)

and

τ (T3) = exp
(π

2
γ3γ2

)

=
1

√
2

⎛

⎜

⎜

⎝

1 0 0 −i

0 1 −i 0

0 −i 1 0

−i 0 0 1

⎞

⎟

⎟

⎠

. (10.94)

A quantum computation consists of three steps.

1. Create: if a pair of i, j of vortices is created, they will be in the ground state
∣

∣0i j

〉

with no extra quasi-particle excitations. Creating N pairs initialize the system.

2. Braid: Adiabatically rearranging the vortices modifies the state and performs a

quantum computation.

3. Measure: Bringing vortices i and j back together allows the quantum state asso-

ciated with each pair to be measured.
∣

∣0i j

〉

will be distinguished by the presence

or absence of extra fermionic quasi-particles associated with the pair.

Majorana fermions might provide the basic elements for a quantum computer. This is

the motivation behind the search for Majorana fermions in condensed matter systems.
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10.7 Further Reading
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Chapter 11

Topological Dirac and Weyl Semimetals

Abstract A topological Dirac or Weyl semimetal is a topological phase of matter,

in which the conduction and valence bands touch at a finite number of points, i.e., the

Weyl nodes. Uniaxial rotation symmetries protect the nodes against gap formation.

Topological Weyl semimetals host paired monopoles and antimonopoles of Berry

curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces.

The chiral anomaly of the Weyl fermions, a pure quantum mechanical phenomenon,

can be realized in solids, and is attributed to the exotic magneto-transport properties

in Weyl and Dirac semimetals.

11.1 Weyl Equations and Weyl Fermions

11.1.1 Weyl Equations

In 1929, Weyl [1] found that the Dirac equation in (2.1) can be decoupled into two

Weyl equations when the mass term vanishes, i.e., m = 0,

i
∂

∂t
ψ± = ±vp · σψ±, (11.1)

with ψ± = ψ1 ± ψ2. The subscripts ± in the Hamiltonians,

H± = ±vp · σ, (11.2)

define two types of fermions with opposite chirality, the left- and right-handed par-

ticles. In a chiral particle, its quantum spin is tied to its momentum. The helicity is

defined as h = p · σ/p with two eigenvalues, ±1, which is also the chirality for the

gapless case.
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Either H+ or H− has two eigenvalues, E = ±vp. At p = 0 the two bands across

at one point, i.e., the Weyl point. A Dirac point is usually regarded as consisting of

two Weyl points of opposite chirality, i.e., fourfold degeneracy at the point. It is noted

that in three dimensions, as there are only three Pauli matrices, any perturbation δ ·σ
to H± = ±vp·σ just shifts the crossing point from zero to p = ∓δ/v, and cannot gap

out the crossing point. Thus, the crossing point is quite stable, and hence is dubbed the

Weyl nodes. In two dimensions, say x–y plane, as only two Pauli matrices are used in

the Hamiltonian H = ±v(pxσx + pyσy) as pz is suppressed, addition of a mass term

mv2σ3 opens a gap at p = 0. Hence two-dimensional crossing point is not as robust

as that in three dimensions except for some specific uniaxial rotation symmetries.

For terminology, it is dubbed the Dirac points in two dimensions. The Dirac point

can be stable if the system is protected by some specific rotation symmetries. For

example graphene is a two-dimensional Dirac semimetal.

A more general form of the Hamiltonian for the Weyl fermions is

H =
∑

i,i

vi j piσ j , (11.3)

where vi j have dimension of velocity and form a 3 × 3 square matrix. The chi-

rality number is defined as the sign of the determinant of the velocity matrix,

χ = sgn[det(vi j )].
Helicity and chirality are two different concepts for massive Dirac fermions. The

helicity is defined as

h = 2J · p

|p| = Σ · p

|p| , (11.4)

where J = r × p +Σ denotes the total angular momentum and Σ = σ0 ⊗σ denotes

the spin matrix. Note that orbital angular momentum is normal to the momentum.

The chirality operator is defined as

L = 1

2
(1 − γ5) ; R = 1

2
(1 + γ5) . (11.5)

For massive Dirac fermions the chirality operators do not commute with the Dirac

Hamiltonian and the Dirac operator γ5 (see Appendix C) does not commute with the

mass term, unlike the helicity operator. For massless Dirac fermions both chirality

and helicity are conserved.

11.1.2 A Single Node and Magnetic Monopole

Consider a single three-dimensional Weyl node, H = v�k·σ. In spherical coordinate,

the spinor wave function of the valence band can be found as



11.1 Weyl Equations and Weyl Fermions 209

|u+(k, θ,ϕ)〉 =
(

sin θ
2

− cos θ
2
eiϕ

)
, (11.6)

where cos θ ≡ kz/k with k =
√

k2
x + k2

y + k2
z . The Berry connection is defined as

A ≡ i〈u+ |∇k| u+〉 with the gradient operator ∇k = (∂k, (1/k)∂θ, (1/k sin θ)∂ϕ).

One finds that

(Ak, Aθ, Aϕ) =
(

0, 0,−
cos2 θ

2

k sin θ

)
. (11.7)

The Berry curvature can be found as � ≡ ∇ × A = k
2k3 . The monopole charge is

defined as the Berry curvature flux threading a sphere that encloses the origin,

N = 1

2π

∫

Σ

dS · � = 1. (11.8)

Using the Gauss’s theorem, it is found that ∇ · � = 2πδ(k). In the Dirac cone

of opposite chirality, the Hamiltonian can be written as H = −v�k · σ, the wave

function of the valence band |u−〉 can be obtained by letting θ → π/2 − θ and ϕ →
π + ϕ in |u+〉, and |u−〉 = (cos θ

2
, sin θ

2
eiϕ). In the other Weyl node with opposite

chirality, following the same procedure, the Berry curvature is �k = −1/2k2, and the

monopole charge is −1. Thus, they are called magnetic monopole and antimonopole

in momentum space.

In 1981 Nielsen and Ninomiya proved a no-go theorem [2]: for a Hamiltonian

H with translational invariance on a three-dimensional lattice, and its Fourier-

transformation is a smooth function, the numbers of left-handed Weyl states are

always equal to number of right-handed Weyl states. Equivalently, the theorem says

that there are as many charges of monopoles as of anti-monopoles in a lattice.

11.2 Emergent Dirac and Weyl Semimetals

A three-dimensional Dirac or Weyl semimetal indicates a phase whose low energy

excitations consists of degenerated quasiparticles with distinct chirality and linear

energy dispersions. It may exist as a consequence of the band crossing in the systems

with some uniaxial rotation symmetries.
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11.2.1 Dirac Semimetal

Let us consider a system having both time reversal symmetry and inversion symmetry.

In general the time reversal symmetry T requires that En,↑(k) = En,↓(−k), and the

inversion symmetry P requires that En,σ(k) = En,σ(−k). Consequently the energy

band is doubly degenerate for all k, En,↑(k) = En,↓(k). Under the condition a

three-dimensional Dirac point with fourfold degeneracy can be degenerated when an

accidental band crossing occurs. Due to the strong repulsion between the degenerated

bands, the accidental band crossing can be achieved at a time reversal invariant

momentum only when the conduction and valence bands have opposite parities. In

this case, a three-dimensional Dirac semimetal appears at the quantum critical point

between a normal insulator and a topological insulator [3]. Usually this type of the

Dirac semimetal is not stable when the system deviates from the critical transition

point. It is found that some crystals with uniaxial rotational symmetry Cn as well as

the time reversal symmetry and inversion symmetry may allow the Dirac semimetal

to be stable.

The invariance of the system under the Cn rotation (the n-fold rotation about a

principal axis) gives

Cn H(k)C−1
n = H(Rnk), (11.9)

where Rn is the 3 × 3 rotation matrix defining the 2π/n rotation in three dimensions

with n = 2, 3, 4, 6. Combined with the time reversal symmetry and the inversion

symmetry in space, a more rigorous classification of stable Dirac semimetals can be

found in the paper by Yang and Nagaosa [4].

From the modified Dirac equation, when the band gap is closed, one has an

effective Hamiltonian for massless Dirac fermions

H = vk · α = vkxαx + vkyαy + vkzαz, (11.10)

where higher order terms are ignored. As αi change their sign under time reversal,

the Hamiltonian is time reversal invariant. In the Dirac representation, Θ = iαxαy K .

It is easy to find Θ H(k)Θ−1 = H(−k). The crossing point is fourfold degenerated

as shown in Fig. 11.1a.

Bi1−x Sbx occurs a topological phase transition from a band insulator to a topolog-

ical insulator at x ≈ 4% as shown in Fig. 7.2. At the point the La and Ls bands cross,

and massless Dirac fermions appear at the crossing point. Therefore Bi1−x Sbx at the

transition point is identified as a Dirac semimetal, in which the Dirac point is fourfold

degenerated. It can be described in the three-dimensional modified Dirac equation by

taking the gap parameter M = 0. Recent quantum transport measurement evidenced

the properties of massless Dirac or Weyl fermions in Bi1−x Sbx [5].

http://dx.doi.org/10.1007/978-981-10-4606-3_7
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(d)(c)

(a) (b)

Fig. 11.1 Dirac semimetal, topological Dirac semimetal and topological Weyl semimetal and

Fermi arcs. a Dirac semimetal without Fermi arc. b Topological Weyl semimetal with a Fermi arc.

c Topological Dirac semimetals with Fermi arcs. d Topological Weyl semimetals with Fermi arcs.

circled plus and circled minus represent positive and negative monopole charges, respectively

11.2.2 Topological Dirac Semimetal

One effective Hamiltonian for a topological Dirac semimetal is

H = A(kxαx + kyαy) + M(k)β. (11.11)

For a time reversal invariant system, the coefficient before β has to be even in k under

time reversal. One keeps the quadratic term by taking M(k) = mv2 − B1k2
x − B2

1 k2
y −

B2k2
z , and coefficients B1,2 are introduced to describe the topological properties. One

of αi matrices, say αz , is absent to guarantee the occurrence of the band crossing

at kz �= 0. For m and B2 with the same sign, the bands will cross at two points,

kx = ky = 0 and kz = ±kw = ±
√

mv2/B2. As M(k) ≃ B1(kw + kz)(kw − kz) is

linear in kz ± kw at the two points kz = ∓kw, hence the Hamiltonian describes a pair

of Dirac points as shown in Fig. 11.1c. In this case the system still respects rotation

symmetry around the z axis.

Under a unitary transformation, the Hamiltonian can be written as

H → H =
(

H(k) 0

0 H∗(−k)

)
, (11.12)
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where H(k) = A(kxσx + kyσy) + M(k)σz and H∗(−k) is its time-reversal partner

where the asterisk refers to a complex conjugate. The Dirac points are still fourfold

degenerated. As there exists topological invariants for specific values of kz between

the two Dirac points, according to the bulk-boundary correspondence, there always

exists an edge states for each Chern number, and a set of edge states for kz between the

two nodes. The dispersions of these edge states construct the Fermi arcs connecting

the Dirac points near the Fermi surface, which is one of the key characteristics for

topological Dirac semimetal.

Cd3As2 [6] and Na3Bi [7] were predicted to be Dirac semimetals, and confirmed

to be so by photoemission and transport experiments [8, 9].

11.2.3 Topological Weyl Semimetal

Furthermore if the inversion symmetry is broken, the fourfold degenerate Dirac

points may be split in to two doubly degenerate points. In this case the two pairs

of Dirac point in a topological Dirac semimetal can be split into two pairs of Weyl

nodes, which means that the energy crossing point is only doubly degenerated. For

example, the Dirac points in Dirac semimetal (0, 0,±kw) evolve into two pairs of

Weyl nodes (k0, k0,±kw) and (−k0,−k0,±kw) as shown in Fig. 11.1d. Of course

the time reversal symmetry breaking can also lift the degeneracy of the Dirac points.

Thus, this class of materials is named topological Weyl semimetal. From the model

in (11.12), one can have an effective Hamiltonian for a topological Weyl semimetal,

H → H =
(

H(kx − k0, ky − k0, kz) 0

0 H∗(−kx − k0,−ky − k0, kz)

)
. (11.13)

TaAs [10, 11] is a stoichiometric, inversion breaking, single-crystal materials

and confirmed to be a topological Weyl semimetal with the Fermi arc states on the

surface. It is a representative of the transition metal monopnictide or TX family

where T = Ta/Nb and X = As/P. There are twelves pairs of Weyl nodes near the Fermi

surface. This material is confirmed as a topological Weyl semimetal by Xu et al. [12]

and Lv et al. [13] using ARPES to detect the Fermi arcs on the sample surface.

11.3 Graphene: A Topological Dirac Semimetal

Graphene [14] is a monolayer of carbon atoms packing a hexagon lattice to host

two pairs of two-dimensional Dirac fermions or four Dirac cones in the absence of

or with negligible spin–orbit coupling. Each pair of Dirac fermions have two Dirac

cones with opposite chirality [15], where the well-defined Berry phase π or −π rest

around the Dirac cones when an electron moves around the Dirac points adiabatically

[16–18].
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Fig. 11.2 a The lattice unit vectors a1 and a2 in a unit cell of a hexagonal lattice of graphene.

b The corresponding Brillouin zone, and the Dirac cones are located at the K and K′ points. The

shadowed area indicates the region with non-zero electric polarization

Since the spin–orbit coupling in graphene is tiny, only the spin degeneracy of

electrons is assumed here. The energy dispersions of electrons in graphene have been

investigated extensively [14, 19]. To diagonalize the tight-biding model for graphene,

a basis of two-component “spinors” of Bloch states constructed on the two sublattices

A and B is introduced. Let δ1, δ2 and δ3 be the displacements from a B site to its

three nearest-neighbor A sites as shown in Fig. 11.2a. The lattice vectors are chosen

to be a1 =
√

3a(
√

3
2

, 1
2
) and a2 =

√
3a(

√
3

2
,− 1

2
). The corresponding reciprocal

lattice vectors are b1 = 4π
3a

( 1
2
,

√
3

2
) and b2 = 4π

3a
( 1

2
,−

√
3

2
). In this representation the

Hamiltonian becomes

H = −t
∑

k

(
0 φ(k)

φ∗(k) 0

)
, (11.14)

where σi are the Pauli matrices and φ(k) =
∑3

n=1 eik·(δn−δ1). The energy band dis-

persions are obtained as,

Es = −st |φ(k)| , (11.15)

where s = ±. The two bands touch at the points of K = ( 2π
3a

, 2π

3
√

3a
) = 2

3
b1 + 1

3
b2

and K′ = ( 2π
3a

,− 2π

3
√

3a
) = 1

3
b1 + 2

3
b2 in the Brillouin zone formed by the reciprocal

lattice vectors b1 and b2 as shown in Fig. 11.2b, and the dispersions become linear

in k approximately measured from the two points. Thus, two Dirac cones are formed

around K and K′. The density of states is linear in energy E near the two Dirac

points, which is a key feature of a semimetal. The vector connecting K and K′ is

along δK = K − K′ = 1
3
(b1 − b2). To explore the topological properties of the
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two Dirac cones, we take k = k1b1 + k2b2 and consider a specific direction by

taking a specific value of k1 (or k2 ) as a constant, and the model is reduced to one-

dimensional along the b2 (or b1) direction. When k1 is away from the Dirac points,

i.e., k1 �= 1/3 and 2/3, the reduced one-dimensional system always possesses a finite

band gap. This gap closes and re-opens when k1 is sweeping over one Dirac point,

which indicates that a topological phase transition may occur in the process.

Ryu and Hatsugai [20] first realized that zero energy modes in the zigzag rib-

bon of graphene are closely associated to a hidden chiral symmetry for a reduced

one-dimensional Hamiltonian in a parameter space. Denote the eigenstates of H

by
∣∣φs

(
kx , ky

)〉
= 1√

2
(1, sφ(k)/ |φ(k)|)T with the eigenvalue Es(k) in (11.15). In

reduced one-dimensional momentum space, e.g., keeping k1 constant, the electric

polarization for the reduced one-dimensional band is defined as Sect. 4.4

Ps = −e
√

3a

2π

∮

C

dk2 〈φs(k1, k2)| (i∂k2
) |φs(k1, k2)〉 . (11.16)

The electric polarization has its topological origin, and is quantized to be Ps =
eνs

√
3a, where the integer νs = 0 or 1/2 with modulo 1 appears as a topological

invariant for quantum transport. It is found that Ps = se
√

3a/2 for 1/3 < k1 < 2/3,

and Ps = 0 otherwise. Thus, the 1D system is topologically nontrivial when 1/3 ≤
k1 < 2/3. Therefore a spinless graphene is a two-dimensional topological Dirac

semimetal characterized by a topological invariant, which is very similar to the three-

dimensional Weyl semimetal with k-dependent Chern numbers [21]. According to

the bulk-boundary correspondence, there exists a pair of end modes near the two ends

of an open and topological nontrivial chain, and the energy of the end states should

be zero due to the chiral symmetry [20], just as the end modes in the Su–Schrieffer–

Heeger model. Correspondingly, the open boundary parallel with the vector b1 (or

b2) is the zigzag boundary of the lattice. Each k1 in the shadow regime will have a pair

of zero energy modes near two edges according to the the bulk-edge correspondence

and the particle-hole symmetry. As the number of k1 between the two Dirac points

is finite, the same number of the zero energy of the end states form a flat band for a

zigzag boundary of the graphene lattice. This demonstrates that the famous flat band

of graphene with a zigzag boundary condition has its topological origin related to

the non-zero electric polarization or topological invariant [22].

11.4 Two-Node Model

To explore the topological properties in topological Dirac and Weyl semimetals, one

can start with an effective model which captures the key features of these systems.

The results from this model can simply be generalized to the time reversal invariant

systems.

http://dx.doi.org/10.1007/978-981-10-4606-3_4
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11.4.1 Model

Under the time reversal symmetry breaking, a minimal model for a Weyl semimetal

can be written as

H = A(kxσx + kyσy) + Mkσz, (11.17)

where σ are the Pauli matrices, Mk = M0 − M(k2
x + k2

y + k2
z ), k = (kx , ky, kz)

is the wave vector, and A, M are model parameters. This minimal model gives a

global description of a pair of Weyl nodes of opposite chirality. It has an identical

structure as that for A-phase of 3He superfluids as in (9.32). If M0 M > 0, the two

bands intersect at (0, 0,±kw) with kw ≡
√

M0/M (see Fig. 11.3), giving rise to the

topological semimetal phase. Here we want to emphasize that if the quadratic terms

of kx and ky are missed in Mk the Hamiltonian can still describe two weyl nodes,

but fails to describe the topological properties such as the Chern numbers and Fermi

arc which will be discussed in the following subsection. In the topological semimetal

phase, the model can also be written as

H = A(kxσx + kyσy) + M(k2
w − k2)σz, (11.18)

Energy

(a) (b)

Fig. 11.3 Nontrivial band structure and Berry curvature of a topological semimetal. a A schematic

of the energy spectrum of a topological semimetal. (kx , ky, kz) is the wave vector. k2
|| = k2

x + k2
y .

b The vector plot of the Berry curvature in momentum space. The conduction and valence bands

of a topological semimetal touch at the Weyl nodes, at which a pair of monopoles are hosted. The

arrows show that the flux of the Berry curvature flows from one monopole (red) to the other (blue),

defining the nontrivial topological properties of a topological semimetal (Adapted from [25])

http://dx.doi.org/10.1007/978-981-10-4606-3_9
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where A, M , kw are model parameters. The dispersions of two energy bands are

E± = ±
√

[M(k2
w − k2)]2 + A2(k2

x + k2
y), (11.19)

which reduce to E± = ±M |k2
w − k2

z | at kx = ky = 0. The two bands intersect at

(0, 0,±kw) (see Fig. 11.3). Around the two nodes (0, 0,±kw), H reduces to two

separate local models

H± = M± · σ, (11.20)

with M± =
(

Ak̃x , Ak̃y,∓2Mkw k̃z

)
and (̃kx , k̃y, k̃z) the effective wave vector mea-

sured from the Weyl nodes.

The topological properties in H can be seen from the Berry curvature [23], �(k)

= ∇k ×A(k), where the Berry connection is defined as A(k) = i 〈u(k)| ∇k |u(k)〉. For

example, for the energy eigenstates for the + band |u(k)〉 = [cos(θ/2), sin(θ/2)eiϕ],
where cos θ ≡ Mk/E+ and tan ϕ ≡ ky/kx . The three-dimensional Berry curvature

for the two-node model can be expressed as

� (k) = A2 M

E3
+

[
kzkx , kzky,

1

2

(
k2

z − k2
w − k2

x − k2
y

)]
. (11.21)

There exist a pair of singularities at (0, 0,±kw) as shown in Fig. 11.3. The chirality

of a Weyl node can be found as an integral over the Fermi surface enclosing one Weyl

node (1/2π)
∮
�(k)·dS(k), which yields opposite topological charges ∓sgn(M) at

±kw, corresponding to a pair of “magnetic monopole and antimonopole” in momen-

tum space.

11.4.2 The Chern Number and Fermi Arc

For a given kz , a Chern number is defined as

nc(kz) = −(1/2π)

∫
dkx dky�(kx , ky) (11.22)

to characterize the topological property of the band in the sliced kx -ky plane,

nc(kz) = −1

2
[sgn[M(k2

w − k2
z )] + sgn(M)]. (11.23)

The Chern number nc(kz) = −sgn(M) for −kw < kz < kw, and nc(kz) = 0

otherwise. One can say that a Chern number flux connects two Weyl notes. The ends

of the flux are the magnetic monopole and antimonopole. The nonzero Chern number
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Fig. 11.4 The energy spectrum of the bulk states (a) and the surface states at the y = 0 surface (b)

of the topological Weyl semimetal. c Both the bulk and surface states. d The real-space schematic

of the topological Weyl semimetal and its surface states. We assume that the x̂ and ẑ directions are

infinitely long. The lines with arrows in the y = 0 (red) plane indicate that the chiral surface states

travel along only one direction. In contrast, a topological Dirac semimetal hosts helical surface

states that travel along both the x̂ and −x̂ directions. Parameters: kc = 0.1/nm, M = 5 eV nm2, and

A = 1 eV nm (Adapted from [27])

corresponds to the kz-dependent edge states (known as the Fermi arcs) according to

the bulk-boundary correspondence [26].

To further demonstrate the topological properties of the two-node model, one can

find the edge state solution and the Fermi arc in the kz–kx or kz–ky plane which

is parallel with the z axis. Suppose a semi-infinite system in the half plane y ≤ 0

with open boundary conditions and with translational symmetry along the x- and

z-directions, as shown in Fig. 11.4d. In the case kx and kz are still good quantum

numbers but ky is replaced ky = −i∂y in (11.18). One can assume a trial wavefunction

for each set of kx , kz as

ψλ = eikx x+ikz z

(
ψ1

ψ2

)
eλy . (11.24)
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Substituting the trial wavefunction into the eigen equation

H(kx ,−i∂y, kz)ψλ = Eψλ (11.25)

after some algebra, one finds that the dispersion of the surface states is given by

Earc(kx , kz) = sgn(M)Akx . (11.26)

The corresponding wavefunction is

Ψ arc
kx ,kz

(r) = Ceikx x+ikz z

(
sgn(M)

1

)
(eλ1 y − eλ2 y), (11.27)

where C is a normalization factor and λ1,2 = A/2|M | ∓
√

(A/2M)2 − Δk . The

surface states are eigenstates of σx with a uniform effective velocity, ve f f =
sgn(M)A/�. Thus, they are chiral surface states around the surface parallel with

the z axis. We require that λ1λ2 > 0 and henceforth Δk > 0. Therefore the solution

of Fermi surface states is restricted inside a circle defined by k2
x + k2

z < k2
c , as shown

by Fig. 11.4b, c. At zero Fermi energy, i.e., kx = 0, the surface states exist for all

|kz| < kc which produces a Fermi arc connecting two Weyl nodes. For a non-zero

Fermi energy, the ends of the Fermi arc are shifted away from the Weyl nodes until

they vanish.

Thus, the two-node model in (11.18) provides a generic description for Weyl

topological semimetals, including the band touching, opposite chirality, monopoles

of Berry curvature, topological charges, and Fermi arcs.

11.4.3 Quantum Anomalous Hall Effect

In a magnetic field along the z direction, the energy spectrum is quantized into a set of

one-dimensional Landau bands dispersing with kz . Consider a magnetic field applied

along the z direction, B = (0, 0, B), and choose the Landau gauge in which the vector

potential is A = (−y B, 0, 0). Under the Pierls replacement, the wave vector in the

Hamiltonian in (11.17) is replaced by the operator k = (kx − eBz

�
y,−i∂y, kz), where

kx and kz are still the good quantum numbers as introduction of the vector potential

does not break the translational symmetry along the x and z direction. By using the

the ladder operator in (7.32), then one can write the Hamiltonian in terms of the

ladder operators,

H(k) =
[

Mk Ak−
Ak+ −Mk

]
→

[
Ma ηa

ηa† −Ma

]
, (11.28)

http://dx.doi.org/10.1007/978-981-10-4606-3_7
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where Ma = M0 − M1k2
z − ω(a†a + 1/2), ω = 2M1/ℓ

2
B , and η =

√
2A/ℓB . The

eigen energies are

Eν±
kz

= ω/2 ±
√

M2
ν + νη2 ν ≥ 1 (11.29)

and

E0
kz

= ω/2 − M0 + M1k2
z , ν = 0, (11.30)

where Mν = M0 − M1k2
z −ων. The Landau energy bands (ν as band index) disperse

with kz . The corresponding eigen states for ν ≥ 1 are

|ν, kx , kz,+〉 =
(

cos
θν

kz

2
|ν − 1〉

sin
θν

kz

2
|ν〉

)
|kx , kz〉 (11.31)

and

|ν, kx , kz,−〉 =
(

sin
θν

kz

2
|ν − 1〉

− cos
θν

kz

2
|ν〉

)
|kx , kz〉, (11.32)

where cos θν
kz

= Mν/
√

M2
ν + νη2, and the state for ν = 0 is

|ν = 0, kx , kz〉 =
(

0

|0〉

)
|kx , kz〉. (11.33)

The wave functions ψν,kz ,kx
(r) = 〈r|ν, kx , kz〉 are found to be

ψν,kz ,kx
(r) = Cν√

L x L zℓB

eikz zeikx x e
− (y−y0)2

2ℓ2
B Hν

(
y − y0

ℓB

)
, (11.34)

where Cν ≡ 1/
√

ν!2ν
√

π, L x L z is area of sample, the guiding center y0 = kxℓ
2
B , Hν

are the Hermite polynomials. As the dispersions are not explicit functions of kx , the

number of different kx represents the Landau degeneracy NL = 1/2πℓ2
B = eB/h in

a unit area in the x–y plane.

Now it is ready to present a derivation for the Hall conductance. In the presence of

an electric field Ey the correction to the model Hamiltonian comes from the electric

potential, ΔV = −eEy y. Consider the Fermi level is located near the Weyl node,

all the bands of |ν ≥ 1, kx , kz,−〉 are fully occupied. Only the band of ν = 0 is

partially occupied. Thus, one can focus on this band only. The energy dispersion

of the band is corrected to E0
kz

− eEyℓ
2
Bkx as 〈y〉 = l2

Bkx which is replaced by the

guiding center of the Landau levels. This energy correction leads to a velocity shift

along the x direction,
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vx ≡ 1

�

∂(E0
kz

− eEyℓ
2
Bkx )

∂kx

= −eEyℓ
2
B

�
. (11.35)

For each kz , the occupation of the band with the Landau degeneracy indicates to a

quantized Hall conductance

jx

Ey

= −evx

Ey

× 1

2πℓ2
B

= e2

h
. (11.36)

The total Hall conductance is obtained by integrating over kz up to the Fermi wave

vector k0
F , and σyx = k0

F
e2

πh
. In particular, k0

F = kw +πn0h/eB for Weyl semimetals

with a fixed carrier density n0, and a Hall conductance is found as

σyx = en0

B
+ e2kw

hπ
. (11.37)

The first term is attributed to the classical Hall effect, and the second term comes from

the non-zero Chern number of the fully filled low energy bands of −kw < kz < kw.

When the Fermi level is located at the Weyl node, n0 = 0, there is no free charge

carriers. Hence the contribution from the Lorentz force vanishes.

Even in the absence of magnetic field the quantum anomalous Hall conductance

still exists. This is one of the key features in the two-node model. The quantum

anomalous Hall effect in this anisotropic three-dimensional system is attributed to

the quantum transport of the surface electrons.

11.5 Tight-Binding Model and Topological Phase

Transition

A tight-binding model can be established by using the replacement in (3.5) as done

in Sect. 3.2. The Bloch Hamiltonian on a cubic lattice with lattice space a = 1 reads

H(k) = 2t0 sin kxσx + 2t0 sin kyσy + M(k)σz (11.38)

with M(k) = Δ− 4t1 sin2 kz

2
− 4t2

(
sin2 kx

2
+ sin2 ky

2

)
. Here anisotropic coefficients

t1 and t2 are introduced for the purpose of general discussion. The two bands are

given by

E = ±
√

4t2
0 sin2 kx + 4t2

0 sin2 k2
y + M2(k). (11.39)

As a result the two bands touch only if sin kx = sin ky = 0 and M(k) = 0. The

conditions require

http://dx.doi.org/10.1007/978-981-10-4606-3_3
http://dx.doi.org/10.1007/978-981-10-4606-3_3
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sin2 kz

2
= Δ

4t1
for kx = ky = 0; (11.40)

sin2 kz

2
= Δ

4t1
− t2

t1
for kx , ky = 0,π; (11.41)

sin2 kz

2
= Δ

4t1
− 2t2

t1
for kx = ky = π. (11.42)

In the first case, if 0 < Δ/4t1 < 1, kz = ±kw (kw = 2 arcsin
√

Δ/4t1)

gives two Weyl nodes. In the second case, the two Weyl nodes are located at

kz = ±2 arcsin
√

Δ−4t2
4t1

if 0 < Δ−4t2
4t1

< 1. In the third case, the two Weyl nodes

are located at kz = ±2 arcsin
√

Δ−8t2
4t1

if 0 < Δ−8t2
4t1

< 1.

Without loss of generality, we just focus on the first case in the following dis-

cussion. For a specific value of kz , the model is equivalent to one for the quantum

anomalous Hall effect as we discussed in Sect. 12.2. In the case of 0 < Δ/4t1 < 1,

there are two crossing points at (0, 0, ±kw). If kz �= ±kw there exists an energy gap.

In the reduced two-dimensional momentum space, the Chern number is given by

n(kz) = − sgn(t1t2)

2

[
1 + sgn

(
Δ

4t1
− sin2 kz

2

)]
. (11.43)

The separation distance of two Weyl nodes is controlled by the ratio of Δ/4t1.

Variation of the ratio leads to the annihilation of two monopoles at the Weyl nodes

and generates topological quantum transitions in the system as shown in Fig. 11.5.

Assume t1 and t2 have the same sign. The Chern numbers is −sgn(Δt2) when −kw <

kz < +kw. When Δ → 0, the pair of monopoles collide, and annihilate at Δ = 0 due

to their opposite signs. When the ratio of Δ/4t1 changes from positive to negative, the

Weyl nodes disappear and the band gap opens. In the case the system changes from

a Weyl semimetal into a normal insulator. Thus, the sign change of Δ can generate

a topological quantum phase transition. On the other hand, when the ratio increases,

the two monopoles move away in opposite direction. At Δ/4t1 = 1, kw = π. The

position of two nodes is separated by on one reciprocal lattice vector 2π. Due to the

(e)(d)(c)(b)(a)

Fig. 11.5 Annihilation of magnetic monopole and antimonopole and topological quantum phase

transition. From a, b, c, a conventional insulator evolves into a topological Weyl semimetal, and

further a topological Chern insulator while Δ/4t1 increases from a negative value to a positive one.

Here assume t1t2 > 0

http://dx.doi.org/10.1007/978-981-10-4606-3_12
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periodicity of the Brillouin zone the two monopoles meet again and annihilate at the

point. An energy gap opens as the ratio continues increasing. In this case the zone of

non-zero Chern number extends into the whole space. Hence the system evolves into

a topological Chern insulator from a topological Weyl semimetal. Similarly if t1 and

t2 have the opposite signs, the system will evolve into a topological Chern insulator

when the ratio of Δ/4t1 changes from positive to negative, and into a normal insulator

when the ratio of Δ/4t1 becomes larger than 1.

The two-node model breaks time reversal symmetry. A minimal lattice model

of topological Weyl semimetal respecting the time reversal symmetry should be a

4 × 4 square matrix. It can be constructed by using the continuous model as shown

in (11.12). The topological invariants for the topological phases is the Z2 index

instead of the Chern number, and the surface states will appear in pairs with opposite

velocities and spin or time reversal polarizations. In the case the system possesses

quantum spin Hall effect.

11.6 Chiral Anomaly

Chiral anomaly is a quantum mechanical phenomenon for Weyl fermions dating back

to 1960s. It is a surprising discovery that some exotic magnetotransport properties in

Weyl semimetals is related to the chiral anomaly. Usually it is said to be a symmetry

when in classical mechanics the Lagrangian L({qi , q̇i }) remains invariant under the

transformation qi → qi + δqi while in quantum mechanics the path integral must be

invariant under the same transformation. However, symmetries in terms of classical

variables may not be retained when expressed in terms of non-commuting quantum

variables. Such a symmetry is said to have a symmetry anomaly. In the theory of

a single massless fermion L = ψiγµ∂µψ. L is invariant under the transformation

of ψ → eiθψ and ψ → eiγ5θψ, corresponding to the conserved vector current

Jµ = ψγµψ and the conserved axial current J
µ
5 = ψγµγ5ψ. Consider the chirality

operators in (11.5), 1 = R+L and γ5 = R−L . Jµ and J
µ
5 are the sum and difference

of the right and left handed currents, respectively. Chiral anomaly here is related to

the axial symmetry, in which the conservation of the axial current is violated due to

the quantum fluctuation [29]. This anomaly for Weyl fermions was first proposed by

Ader [30], and Bell and Jackiw [31]. It is Nielsen and Ninomiya who first realized

that that the chiral anomaly could be detected in solid crystals [32].

In the presence of both electric field E and magnetic field B, it is found that the

chiral charges at each Weyl node (χ = ±) violate the continuity equation

∂

∂t
ρχ + ∇ · Jχ = −χ

e3

4π2�2
E · B, (11.44)

where ρχ is the charge density and J is the electric current near the Weyl node χ. As

Weyl nodes always appear in pair of opposite chirality, the total charges is therefore
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conserved. In quantum field theory this anomaly comes from two triangle Feynman

diagrams associated with the decay of the π0 particle. Here following Nielsen and

Ninomiya, we present an intuitive derivation of chiral anomaly in condensed matter

physics [32].

Consider a magnetic field B along the z direction. The energy dispersion of ν = 0

is

E0
kz

= 2M

l2
B

− M0 + M1k2
z (11.45)

which always crosses from the valence bands to conduction bands. The Landau bands

disperse with kz with the Landau degeneracy NL = eBL x L y/h. When the Fermi

level is located near the Weyl nodes at kz = ±kw only the zeroth Landau band is

relevant to the low energy physics we are interested here. The system now looks like

a one-dimensional conducting channel along the z direction or the magnetic field.

If an electric field E is now applied, all electrons move along the magnetic field

according to �k̇z = −eE · B/B. As the states in the zeroth Landau band move in one

direction, electrons moving away at the Weyl node at kz = +kw will appear at the

other Weyl node at kz = −kw. In other words, the charges at each Weyl node are not

conserved. The charge rate of charge at one Weyl node is given by

∂Q1D
χ

∂t
= χ

e

2π
L z k̇z = −χe2 L z

E · B

2πB�
. (11.46)

Consider the Landau degeneracy of the Landau bands. The three-dimensional charge

density at Weyl node is ρχ = NL Q1D
χ /L x L y L z , and the current at a single Weyl node

is of divergence free ∇ ·J due to the translational invariance of the system. Hence one

obtains the equation for the non-conservation of chiral charges in (11.44). Finally we

need to pint out that although we only consider the zeroth Landau level in a strong

field limit, the equations are valid for a general case when the Fermi level crosses

even more Landau levels.

11.7 Exotic Magnetotransport

11.7.1 Three-Dimensional Weak Antilocalization

The Dirac fermions in the surface states of topological insulators give rise weak

antilocalization as discussed in Sect. 7.4.2. The effective Hamiltonian for Weyl

fermions in (11.2) respects the time reversal symmetry but breaks spin rotational

symmetry. Hence it belongs to the symplectic class, and the weak antilocalization is

expected. At low temperatures, when the mean free path is much shorter than the sys-

tem size and phase coherence length, electrons suffer from scattering but can maintain

their phase coherence. In this quantum diffusive regime, the quantum interference

http://dx.doi.org/10.1007/978-981-10-4606-3_7
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between time reversal scattering loops is destructive, and can give rise to a positive

correction to the conductivity. When a weak magnetic field is applied, the destructive

interference can be destroyed, and the positive correction to the conductivity is sup-

pressed, leading to a negative magnetoconductivity, or positive magnetoresistivity,

as the signature for weak antilocalization. The weak antilocalization has been widely

observed in three-dimensional Dirac and Weyl semimetals, including Bi0:97Sb0:03,

ZrTe5, Na3Bi, Cd3As2, TaAs, etc. Three-dimensional weak antilocalization is one of

the clear signatures for Dirac and Weyl semimetals.

A theoretical approach to calculate the magnetoconductivity is the linear response

theory of conductivity by means of the Feynman diagram techniques. Both disorders

and interaction have to be taken into account. The magnetoconductivity arising from

the quantum interference δσqi strongly depends on the phase coherence length lφ

and the magnetic length lB . When B → 0, δσqi is proportional to −
√

B for lφ ≫ lB

or at low temperatures, and −B2 for lφ ≪ lB or at high temperatures. lB can be

evaluated approximately as 12.8 nm/
√

B with B in Tesla. Usually below the liquid

helium temperature, lφ can be as long as hundreds of nanometers to one micrometer,

much longer than lB which is tens of nanometers between 0.1 and 1 Tesla. Therefore,

−
√

B law of the magnetoconductivity at low temperatures and weak fields serves as

a signature for the weak antilocalization of three-dimensional Weyl fermions.

Lu and Shen proposed a formula to fit the magnetoconductivity arising from the

weak localization [34], which was applied in the experiment on TaAs [35]

δσ(B) = −CW

(√
B

B2

B2 + B2
c

+ γB2 B2
c

B2 + B2
c

)
, (11.47)

where the fitting parameters CW and γ are positive and the critical field Bc is related

to the phase coherence length ℓφ according to Bc ∼ �/eℓ2
φ. Empirically, the phase

coherence length becomes longer with decreasing temperature and can be written

as ℓφ ∼ T −p/2; then Bc ∼ T p, where p is positive and determined by decoherence

mechanisms such as electron-electron interaction (p = 3/2) or electron-phonon

interaction (p = 3). At high temperatures, ℓφ → 0; thus, Bc → ∞ and we have

δσ
qi
zz ∝ B2. At low temperatures, ℓφ → ∞; then Bc = 0 and we have δσ

qi
zz ∝

√
B.

By fitting the magnetoconductivity, we find that p ≈ 1.5. This indicates that the

decoherence mechanism is dominated by the electron-electron interaction in TaAs.

11.7.2 Negative Magnetoresistance

Magnetoresistance is the tendency of a material to the value of its electric resistivity

in an external magnetic field. In metals and semiconductors it is very common to

have a positive magnetoresistance which is proportional to 1 + (µB⊥)2 where µ is

the electric mobility and B⊥ is the perpendicular magnetic field to electric current

because the charge carriers experience the Lorentz force when moving in a magnetic
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Fig. 11.6 The electrons on

the cone R are transferred to

L due to the chiral anomaly

as shown in the arrow at the

bottom, and the exceeding

electrons with higher energy

in L are scattered back to L

to form a steady state

field. However, negative magnetoresistance has been reported in a series of Dirac

and Weyl semimetals. The measured negative magnetoresistance is quadratic in B,

and sensitive to the directions of electric field to the magnetic field [36, 37], which

is regarded as a consequence of chiral anomaly for Weyl fermions.

Consider a system with a pair of Weyl nodes. In the absence of external fields,

without loss of generality, we assume that the chemical potentials near two Weyl

nodes are equal, µ+ = µ− = µ > 0. The linear dispersion gives the relations

between the charge density of chiral electrons and the chemical potentials

ρ± = −e
µ3

±
6π2(v�)3

. (11.48)

In the presence of both electric and magnetic fields, the chiral anomaly will force

part of electrons move away at one node and reappear at the other node. However,

the process will be balanced through the inter-node scattering between the left and

right handed electrons as shown in Fig. 11.6. Denote the scattering time by τv . The

equation for the chiral anomaly is changed to

d(ρ+ − ρ−)

dt
= − e3

2π�2
E · B − ρ+ − ρ−

τv

. (11.49)

The solution of the equation in a steady state is given by

ρ+ − ρ− = − e3

2π2�2
E · Bτv. (11.50)

The difference will lead to the chemical potentials deviating from µ, i.e., µ± =
µ±δµ/2 (assume δµ ≪ µ). Hence the chiral anomaly generates a chemical potential

difference between the two Weyl nodes,
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δµ = −2π2(v�)3

eµ2
(ρ+ − ρ−). (11.51)

Remember the total number of electrons should be conserved. The relation is valid

for small δµ ≪ µ. A finite chemical difference can produce a charge current from the

general argument of energy conservation [32]. Since the Fermi levels are different,

the transfer of electrons from one node to the other one costs energy is the product of

the change rate and the energy difference, e2

4π2�2 B·Eδµ. The energy must be extracted

from the electric field E, i.e., the Joule’s heating effect in the presence of a charge

current J. Thus, from the energy balance,

J · E = e2

4π2�2
B · Eδµ. (11.52)

As the electric field is continuous, the possible solution for the current is

J = e2

4π2�2
δµB (11.53)

which is proportional to the magnetic field. The magnetic field induced current is

also called the chiral magnetic effect [38]. The Hall current is normal to the electric

field and does not cost energy. So we do not include it here. Using the chemical

difference produced by the chiral anomaly, one obtains

J = e2

4π2�

e2v3

µ2
τv(E · B)B. (11.54)

Hence when E is parallel with B, the conductivity caused by the chiral anomaly is

given by

σca = e2

2πh

e2v3 B2

µ2
τv. (11.55)

This result is identical to the one by Son and Spivak by means of the semi-classical

theory in terms of the Berry curvature [39]. Except for the chiral magnetic effect, the

Ohmic current may also be magnetic field-dependent.

It is noted that the quadratic behavior of magnetoconductivity in B is based on

the assumption that the inter-node scattering time is independent of B. However this

may not be true at least in a quantum limit, or in a strong field case. Consider possible

field dependence of the scattering time. The key feature of the chiral anomaly may

not the quadratic B dependence of the magnetoconductance, but the electric current

is along the direction of the magnetic field.
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11.7.3 Linear Magnetoconductance Near the Weyl Nodes

When the Fermi level is located near the Weyl point at sufficiently low tempera-

tures, i.e., kB T ≪ ω and in a strong magnetic field, the electronic transport can

be effectively conducted by the 0th bands of Landau levels. When the electric and

magnetic fields are in parallel with each other, the changing rate of density of charge

carriers near one node is maximal according to the chiral anomaly. In this case, the

semiclassical conductivity of the 0th Landau bands can be found with the help of

the standard Green function formalism. It is found that the conductivity depends on

the form of impurities potentials. Consider the random Gaussian potential

U (r) =
∑

i

ui

(d
√

2π)3
e−|r−Ri |2/2d2

, (11.56)

where ui measures the scattering strength of a randomly distributed impurity at

Ri , and d is a parameter that determines the range of the scattering potential. The

Gaussian potential allows us to study the effect of the potential range in a controllable

way. In the Born approximation, the conductivity is given by

σzz(B) = σ0

(
1 + 2 d2

l2
B

)
, (11.57)

with σ0 = e2

h

4(Mkc)
2

Vimp
e4d2k2

c , where Vimp ≡
∑

i u2
i /V measures the strength of the

scattering and V is the volume of the system. This conductivity is generated by

the inter-node scattering with a momentum transfer of 2kc. As the magnetic field

goes to zero, the magnetic length diverges and d/ℓB → 0, and one has a minimum

conductivity σ0 even though the DOS vanishes at the Weyl nodes at zero magnetic

field. The magnetoconductivity exists only for a finite potential range, i.e., d > 0.

Using (11.57),

Δσzz(B) ≡ σzz(B) − σzz(0)

σzz(0)
= B

B0

, (11.58)

where B0 = �/2ed2. This means that we have a positive linear z-direction mag-

netoconductivity for the Weyl semimetal. A small but finite carrier density n0 can

drive the system away from the Weyl nodes, then kc in (11.57) is to be replaced by

kF = kc + sgn(M)2π2ℓ2
Bn0. The finite n0 can vary the linear-B dependence, but a

strong magnetic field can always squeeze the Fermi energy to kc, and recover the

linear magnetoconductivity.
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11.7.4 High Mobility and Large Magnetoresistance

Ultrahigh mobility and extremely large magnetoresistance were measured in three-

dimensional topological semimetals. According to the Einstein relation, the Drude

conductivity is given as

σ = e2 DN (EF ) , (11.59)

where D = 1
3
v 2

F
τtr is the diffusion coefficient, vF is the Fermi velocity, τtr is the

transport relaxation time and N (EF ) is the density of states near the Fermi level.

Alternatively, the Drude conductivity can be expressed in terms of mobility as

σ = neµ, (11.60)

where µ is the mobility, and n is the carrier density. For three-dimensional Weyl and

Dirac semimetals with linear dispersions ε = ±vF�k, the corresponding zero-field

mobility has the form

µ = evFτtr

�kF

. (11.61)

Thus, the large Fermi velocity and the long transport relaxation time leads to a

high mobility. The typical value of Fermi velocity of Weyl and Dirac semimetals

ranges from 105 to 106 ms−1. It implies that high-quality Weyl semimetals and Dirac

semimetals potentially have a relatively high mobility.

It was reported that an ultrahigh mobility, 9 × 106 cm2 V−1 s−1 is measured

at 5 K in single crystals of Dirac semimetal Cd3As2 [40]. The ratio between τtr

and τs could reach value of 104, where the quantum lifetime τs is extracted from

the Dingle temperature via Shubnikov–de Haas oscillation experiment. This high

mobility in Dirac semimetal was attributed to strong suppression of backscattering

processes through an unknown protection mechanism. Meanwhile, the transverse

magnetoresistance ρxx of most samples shows a striking H -linear feature. There is

a trend from H -linear to Hα with α = 2–2.5 with increasing mobility. In fact, the

H -linear profile of magnetoresistance here already exists at a very low magnetic field.

Therefore, one can safely rule out the mechanism proposed by Abrikosov for Dirac

electrons in the quantum limit. Furthermore, giant magnetoresistance was observed

in all samples with a high mobility. It is also found that the H -linear feature remains

almost unchanged even when the temperature is raised to 300 K, which calls for an

unconventional mechanism.

The noncentrosymmetric Weyl semimetal NbP was also reported to exhibit an

ultrahigh carrier mobility of 5 × 106 cm2 V−1 s−1 and a giant non-saturating magne-

toresistance of 850,000% in a magnetic field up to 9 T at about 2 K [41]. Unlike the

Dirac semimetal Cd3As2, the band structure of NbP possesses an important feature

that the Fermi surface crosses both the quadratic-type valence bands and the linear

Dirac-type conduction bands. The ideal electron-hole compensation might account

for the huge magnetoresistance in NbP.
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11.8 Further Reading

Overview:

• On the chiral anomaly, see A. Zee, Quantum Field Theory in a Nutshell, (Princeton

University Press, 2003)
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Chapter 12

Topological Anderson Insulator

Abstract A topological Anderson insulator is a distinct type of topological insu-

lator, which is induced by disorders. Unlike conventional topological insulators, its

Fermi energy lies within a so-called mobility gap instead of in a real band gap. The

robustness of the edge or surface states is protected by the mobility gap.

12.1 Band Structure and Edge States

We start with a two-dimensional ferromagnetic metal with strong spin-orbit coupling,

h(k) = ǫ(k) + d(k) · σ, (12.1)

where d(k) = (Akx , Aky, M − Bk2) and ǫ(k) = C − Dk2 with A, B, C and D being

sample-specific parameters. This is a modified Dirac equation plus an additional term

ǫ(k), which breaks the symmetry between the conduction and valence bands. In order

to keep the band gap open, we require that B2 > D2. In this case, the Chern number

for this model is given by

nc = −
1

2
[sgn(M) + sgn(B)] . (12.2)

For a positive B, the sign change of M signifies a topological quantum phase transition

between a convention insulating phase (M < 0 and nc = 0) and a topological

quantum phase (M > 0 and nc = 1). A non-zero Chern number indicates that the

Hall conductance is quantized, σH = nce2/h. Thus, the existence of the additional

term ǫ(k) does not affect the Chern number once the band gap is open.

In an infinite-length strip with open lateral boundary conditions, the solution of

the two-band model HΨ = EΨ is given by [1]:

Ψ (kx , y) = (μ+eαy + μ−e−αy + ν+eβy + ν−e−βy), (12.3)

μ± and ν± are two-component kx -dependent coefficients, and α and β are determined

self-consistently by the following set of equations,

© Springer Nature Singapore Pte Ltd. 2017
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α2 = k2
x + F −

√

F2 −
M2 − E2

B2 − D2
, (12.4)

β2 = k2
x + F +

√

F2 −
M2 − E2

B2 − D2
, (12.5)

and

E2
αβ2 + E2

βα2 − γEα Eβαβ = k2
x (Eα − Eβ)2. (12.6)

Here, we have

F =
A2 − 2(M B + E D)

2(B2 − D2)
, (12.7)

Eα = E − M + (B + D)(k2
x − α2), (12.8)

Eβ = E − M + (B + D)(k2
x − β2), (12.9)

γ =
tanh

αL y

2

tanh
βL y

2

+
tanh

βL y

2

tanh
αL y

2

, (12.10)

and L y is the width of the strip. We take the Dirichlet boundary condition at y =

±L y/2 to get

Ψ

(

kx , y = ±
L2y

2

)

= 0. (12.11)

The solutions of this set of equations naturally contain both helical edge states

(α2 < 0) and bulk states (α2 > 0), which are shown in Fig. 12.1 for the three

cases M < 0, M = 0, and M > 0. The edge states (red lines in Fig. 12.1) are seen

beyond the bulk gap for all cases, up to an M dependent maximum energy. When

M < 0, the edge states cross the bulk gap producing a quantum Hall effect. At

M = 0, the edge states exist only in conjunction with the lower band, terminating

at the Dirac point. For M > 0, there are no edge states in the gap, producing a

conventional insulator, but the edge states may co-exist with the valence band. The

appearance of an edge state is a key feature of this model even for a normal band

structure, although these states mix with the bulk states.
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Fig. 12.1 Band structure of HgTe/CdTe quantum wells in a geometry of a stripe with a finite width.

a The “inverted” band structure case with M = −10 meV. Edge states (red lines) cross the bulk

band gap and merge into bulk states (gray area) at a maximum energy in the upper band. The

green dashed lines mark the boundary of the bulk states. b The transition point between an inverted

band structure and a “normal” band structure with M = 0 meV. c The normal band structure with

M = 2 meV. In all the figures, the strip width L y is set to 100 µm. The sample specific parameters

are fixed to be A = 364.5 meV nm, B = 686 meV nm2, C = 0, D = 512 meV nm2 (Adapted

from [2]) (color figure online)

12.2 Quantized Anomalous Hall Effect

For numerical simulation, we take the tight binding approximation on a square lattice,

and the Hamiltonian has the form

d(k) =

(

A sin kx , A sin ky, M − 4B sin2 kx

2
− 4B sin2 ky

2

)

(12.12)

for the periodic boundary condition. In the lattice space, by performing the Fourier

transformation we obtain a lattice model identical to the one as in Chap. 3, and then

take specific open boundary conditions.

The most surprising aspect revealed by the numerical calculation is the appearance

of quantized anomalous conductance at a large disorder when the clean system is a

metal without a preexisting edge state. We study transport as a function of disorder,

with the Fermi energy varying through all regions of the band structure. For this

purpose, disorders are introduced through random on-site energy with a uniform

distribution within [−W/2, W/2]. The conductance of the disordered strips with

width L y and length L x was calculated in a two-terminal setup using the Landauer-

Buttiker formalism [3, 4]. The conductance G as a function of disorder strength W is

plotted in Fig. 12.2. Furthermore the conductance was scaled by the width of the strip.

Figure 12.2 shows the calculated conductances of a strip as a function of its width

L y . In the region before the quantized anomalous conductance plateau is reached,

the scaled conductance GL x/L y , or conductivity, is independent of width, as shown

in the inset of Fig. 12.2, which implies bulk transport. Within the quantized plateau,

http://dx.doi.org/10.1007/978-981-10-4606-3_3
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Fig. 12.2 (Left) Width-dependence of the conductance in disordered strips with several values of

strip width L y and a length Lx = 2000 nm. In the inset, the conductance traces prior to the quantum

anomalous Hall phase (left-hand-side of the dashed line) are scaled with the width of the strips

as σ = GLx/L y . The formation of the edge states is indicated by the presence of conductance

quantization e2/h. In this figure, M = 2 meV, and the Fermi energy E f = 20 meV. (Right) Three

independent spin-resolved transmission coefficients, T
↑

21, T
↑

31 and T
↑

41, are plotted as functions of

disorder strength W . Standard deviations of the transmission coefficients for 1000 samples are

shown as the error bars. In the shadowed range of disorder strength, all bulk states are localized

and only chiral edge states exist, which is schematically shown in the inset (for spin-up component

only). The width of leads is 500 nm and M = 1 meV and E f = 20 meV (Adapted from [2])

the absence of such scaling indicates a total suppression of the bulk conduction, thus,

confirming the presence of conducting edge states in an otherwise localized system.

We further examine edge-state transport in a four-terminal cross-bar setup by

calculating the spin resolved transmission coefficients Tpq between each ordered

pair of leads p and q (= 1, 2, 3, 4). Three independent coefficients, T21, T31 and T41,

are shown in Fig. 12.2 as a function of the disorder strength inside the cross region.
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The shadowed area marks the appearance of a quantized plateau, where 〈T41〉 = 1,

〈T21〉 = 〈T31〉 = 0, and all of the transmission coefficients exhibit vanishingly small

fluctuations. From symmetry, it follows that 〈T41〉 = 〈T24〉 = 〈T32〉 = 〈T13〉 → 1,

and all other coefficients are vanishing small. These facts are easily understood from

the presence of a chiral edge state. Two consequences of this chiral edge state transport

are a vanishing diagonal conductance Gxx = (T21 − T12)e
2/h = 0 and a quantized

Hall conductance Gxy = (T41 − T42)e
2/h = e2/h, which is analogous to Haldane’s

model for the integer quantum Hall effect with parity anomaly [5]. The quantized

Hall conductance Gxy reveals that the topologically invariant Chern number of this

state is equal to one. Thus, this is an disorder induced quantum anomalous Hall effect.

A noncommutative Chern number can be defined in a disordered system. Prodan

[6] did a series of calculations for disordered systems, and found that the Chern

number takes a quantized value of ±1.

12.3 Topological Anderson Insulator

Now we are ready to consider a topological Anderson insulator, which does not break

the time reversal symmetry. The effective Hamiltonian for a clean bulk HgTe/CdTe

quantum well is given by [7]:

H(k) =

(

h(k) 0

0 h∗(−k)

)

, (12.13)

where h(k) has the form as the 2×2 Hamiltonian for a two-dimensional ferromagnet

with spin-orbit coupling. This 4 × 4 model is a combination of h(k) and h∗(−k),

which is the time reversal counterpart of h(k). The model is equivalent to the two-

dimensional modified Dirac model in (2.35) with an additional kinetic energy term

ǫ(k). When h(k) contributes a Hall conductance e2/h its time reversal counterpart

h∗(−k) will also contribute a quantum Hall conductance, but with an opposite sign,

−e2/h. As a result the total Hall conductance in this system is always equal to zero.

Both h(k) and h∗(−k) produce a chiral edge state: electrons in one of the edge states

of h(k) are moving in one direction, and electrons in the other edge state are moving

in an opposite direction. The electron spins in the two states are connected by the

time reversal operation and must be anti-parallel. Therefore this is a quantum spin

Hall effect in H(k).

The calculated behavior confirms to the qualitative expectation for certain situa-

tions. For the Fermi level in the lower band, for both M < 0 and M > 0, an ordinary

Anderson insulator results when the clean limit metal is disordered (green lines in

Fig. 12.3a, d). The conductance in this case decays to zero at a disorder strength of

around 100 meV, which is about five times that of the conventional hopping energy

between nearest neighboring sites t = −D/a2 ≈ 20.5 meV, and much larger than

the clean-limit bulk band gap Eg = 2|M | = 20 meV. Here a = 5 nm is the lattice

spacing of the tight binding model. The topological insulator (red line in Fig. 12.3a)

http://dx.doi.org/10.1007/978-981-10-4606-3_2
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Fig. 12.3 Conductance of disordered strips of HgTe/CdTe quantum wells. The upper panels (a–c)

show the results for a quantum well “inverted” with M = −10 meV, and the lower panels (d)–(f)

show the results for a “normal” quantum well with M = 1 meV. a Conductance G as a function

of disorder strength W at three values of Fermi energy. The error bars show the standard deviation

of the conductance for 1000 samples. b Band structure calculated with the tight-binding model. Its

vertical scale (energy) is the same as in c and the horizontal lines correspond to the values of Fermi

energy considered in a. c Phase diagram showing the conductance G as a function of both disorder

strength W and Fermi energy E f . The panels d–f are the same as in a–c, but M > 0. The TAI

phase regime is labeled. In all figures, the strip width L y is set to 500 nm; the length Lx is 5000 nm

in a and d, and 2000 nm in c and f (Adapted from [2])

is robust, and requires a strong disorder before it eventually yields to a localized

state. This is the expected result of the absence of backscattering in a topological

insulator when time reversal symmetry is preserved [8].

The most surprising aspect revealed by our calculations is the appearance of

anomalous conductance plateaus at a large disorder for situations when the clean

limit system is a metal without preexisting edge states. See, for example, the blue

lines in Fig. 12.3a (M < 0) and Fig. 12.3d (M > 0). The anomalous plateau is

formed after the usual metal-insulator transition in such a system. The conductance

fluctuations (the error bar in Fig. 12.3a, d) are vanishingly small on the plateaus; at the

same time, the Fano factor drops to nearly zero indicating the onset of dissipationless

transport in this system, even though the disorder strength in this scenario can be as

large as several hundred meV. This state is termed a topological Anderson insulator.

The quantized conductance cannot be attributed to the relative robustness of edge

states against disorder, because it occurs in the cases in which no edge states exist

in the clean limit. The irrelevance of the clean-limit edge states to this physics is
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further evidenced by the fact that no anomalous disorder-induced plateaus are seen

for clean limit metals for which bulk and edge states coexist; these exhibit a direct

transition into an ordinary Anderson insulator.

The nature of topological Anderson insulators is further clarified by the phase

diagrams shown in Fig. 12.3c for M < 0 and in Fig. 12.3f for M > 0. For M < 0,

the quantized conductance region (green area) of the topological Anderson insulator

in the upper band is connected continuously with the quantized conductance area of

the topological insulator phase of the clean-limit. One cannot distinguish between

these two phases on the basis of the conductance value. When M > 0, however, a

anomalous conductance plateau occurs in the highlighted green island labeled TAI

(topological Anderson insulator), surrounded by an ordinary Anderson insulator. No

plateau is seen for energies in the gap, where a trivial insulator is expected. The

topology of the topological Anderson insulator as well as the absence of preexisting

edge states in the clean limit demonstrate that the topological Anderson insulator

owes its existence fundamentally to disorder.

The existence of topological Anderson insulators has been confirmed by several

independent groups. As a new type of topological insulator, topological Ander-

son insulators exist even in three dimensions [9]. To confirm the genuine three-

dimensional nature of the topological Anderson insulators, Guo et al. probed for

the Witten effect in their three-dimensional model. According to Witten, a magnetic

monopole in a media could bind electric charge −e(n + 1
2
) with an integer n. They

found through numerical calculation that an half charge is bound to a monopole in a

three-dimensional topological Anderson insulator.

12.4 Effective Medium Theory for Topological Anderson

Insulator

Groth et al. [10] proposed an effective medium theory to explain the disorder induced

transition from a conventional metal to a topological Anderson insulator. Consider

a scalar short-ranged potential with for the disorder: V (r) = V0

∑

i (r − Ri ) where

V0 is the strength of the disorder. The retarded Green function can be written as

G R(k, E,Σ R) = (E − h(k) − Σ R)−1. (12.14)

Here the self energy Σ R is defined by

(EF − h(k) − Σ R)−1 =

〈

1

EF − h(k) − V (r)

〉

(12.15)

with 〈· · · 〉 the disorder average. The self energy can be expanded in terms of the

Pauli matrices: Σ R =
∑

i=0,x,y,z Σiσi . Thus, in the effective Hamiltonian, He f f =

h(k) + Σ R , the renormalized parameters are given by
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M̃ = M + lim
k→0

ReΣz (12.16)

and

ẼF = EF − lim
k→0

ReΣ0. (12.17)

The phase boundary of the topological Anderson insulator is at M̃ = 0, while the

Fermi level enters the negative band gap when ẼF = −M̃ . In the Born approximation,

the self energy is given by the integral equation

Σ R =
1

12

( a

2π

)2

V 2
0

∫

Bz

dk

(2π)2
G R(k, EF + i0+,Σ R), (12.18)

where the integral runs over the first Brillouin zone.

An approximate solution can be derived in a closed form,

M̃ = M +
U 2

0 a2

48π�2

B

B2 − D2
ln

∣

∣

∣

∣

∣

B2 − D2

E2
F − M2

(

π�

a

)2
∣

∣

∣

∣

∣

(12.19)

and

ẼF = EF +
U 2

0 a2

48π�2

D

B2 − D2
ln

∣

∣

∣

∣

∣

B2 − D2

E2
F − M2

(

π�

a

)2
∣

∣

∣

∣

∣

. (12.20)

In the clean limit, if M and B have different signs, say B > 0 but M < 0, the system

is a conventional metal. The modification of δM = M̃ − M is positive provided

B2 > D2 which is the condition for the gap opening between the conduction and

valence bands. This will change a negative M into a positive M̃ , leading to a quantum

phase transition.

This theory describes very well the transition from a metal to a topological Ander-

son insulator in a weak disorder, but fails to predict the transition from a topological

Anderson insulator to an Anderson insulator in an even stronger disorder.

12.5 Band Gap or Mobility Gap

The edge or surface states in a topological Anderson insulator are expected to be

protected by the mobility gap instead of by the band gap as in a topological (band)

insulator. In this section, a statistical analysis of the local density of states (DOS),

a function of energy, makes it possible to identify which states are localized and

which states are extended. The kernel polynomial method is a powerful method for

evaluating spectrum properties [11–13].
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There are two distinct average DOSs in a disordered calculation. The average

DOS is defined as the algebraic average of the local DOS that is,

ρav = 〈ρi (E)〉 ; (12.21)

the typical DOS is defined as the geometric average of the local DOS that is

ρt yp = exp[〈ln(ρi (E))〉]. (12.22)

When the electrons states are extended, the DOS distribution is almost uniform in

the space, and thus, there should be not much difference between the two definitions.

However, when the electron states are localized, the DOS is high near some sites,

but almost vanishes on the others. Thus, we expect a significant ratio between the

two types of DOS [14].

We can take a lattice sample of the periodic boundary condition on both the

x- and y-direction (i.e., a torus) and apply (12.21) and (12.22). The upper block of

the Hamiltonian in (12.13) is used, and we take A = B = 1, C = D = 0 such that

the electron-hole symmetry is recovered. M = 0.2 such that the system is initially a

Fig. 12.4 Averaged DOS

ρav (blue line), typical DOS

ρt yp (black line) and the ratio

between the two ρt yp/ρav

(red line) as a function of the

Fermi level. From a to e, the

disorder strength increases.

a The band gap opens. b The

band gap closes. c The

mobility gap opens and the

band gap disappears. d

Either the band gap or the

mobility gap closes. e The

averaged DOS becomes flat

in the strong disorder limit

(color figure online)
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trivial band insulator. The result is plotted in Fig. 12.4 with the increasing disorder

strength shown in Fig. 12.4a–e.

The mass renormalization phenomenon proposed by Groth et al. [10] is confirmed

in the weak disorder regime, where initially a band gap in Fig. 12.4a is clearly seen

but is gradually closed in Fig. 12.4b as the disorder increases. As is seen from the

ratio ρt yp/ρav , at the strong disorder regime, we can observe two extended states at

E = ±1 in Fig. 12.4c, which indicates that the system is topologically non-trivial.

It is noted that no band gap opens again for a stronger disorder, but the mobility gap

opens to separate the two extended states. As the disorder further increases, these

two extended states move towards each other and finally collide and disappear in

Fig. 12.4d. Finally, all of the the states become localized. This phenomenon can be

identified as the Levitation and pair annihilation. Levitation and pair annihilation

indicate that an extended state carryies topological numbers. Such states are stable

against disorder until those with opposite topological numbers collide with each other

and become trivial when the disorder strength is increased. In the disorder induced

non-trivial Hamiltonian h(k), these exist the gapless edge states between the two

extended states, which is the origin of topological Anderson insulators.

12.6 Summary

Topological Anderson insulators are distinct from conventional topological insulator,

and topological band insulators. We find that there exists a mobility gap instead of

a band gap in the system. From the point of view of time reversal symmetry, both

phases can be described by the Z2 index, and belong to the same topological class.

However, the disorder breaks the translational invariance. They are distinct provided

whether or not electrons in the bulk are localized.
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Chapter 13

Summary: Symmetries and Topological

Classification

Abstract For non-interacting electron systems, symmetry classification has already

exhausted all possible topological insulators and superconductors: each dimension

has five possible topological phases.

13.1 Ten Symmetry Classes for Non-interacting

Fermion Systems

Following Altland and Zirnbauer [1, 2], all of the possible symmetry classes of a

random matrix, which can be interpreted as the Hamiltonian of some non-interacting

fermionic systems, can be systematically enumerated: there are ten symmetry classes

in total. All classes are sets of Hamiltonians with specific transformation properties

under some discrete symmetries.

Consider a general system of non-interacting fermions, which is described by a

second quantized Hamiltonian,

H =
∑

A,B

ψ
†
A HA,BψB, (13.1)

where ψ
†
A and ψB are the creation and annihilation operators of fermions and satisfy

the relation
{

ψ
†
A,ψB

}

= δA,B . (13.2)

The subscripts A and B can be collective indices. For example, for a system of

electrons on a lattice, A = (i,σ), which represent the electrons with spin σ on the

lattice site i . In this case, HA,B is a square matrix. The symmetries of the Hamiltonians

means that Hamiltonian H is related to −H , its transpose H T and its complex

conjugation H∗. We demand that these transformations are implemented by unitary

transformations and that their actions on the Hamiltonian square to one. Hence we

consider the following transformations [3].
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P symmetry: H = −P H P−1, where P P† = P2 = 1.

C symmetry: H = ǫcC H T C−1, where CC† = 1 and CT = ηcC (ǫc = ±1 and ηc =

±1).

K symmetry: H = ǫk K H∗K −1, where K K † = 1 and K T = ηk K (ǫk = ±1 and

ηk = ±1).

Type P symmetry is commonly referred to as chirality symmetry, C expresses

as the particle-hole symmetry and K the time reversal symmetry. For Hermitian

Hamiltonians, H = H † = (H∗)T . Thus, H T = H∗, and C and K are identical. We

shall only talk about C symmetry, where ǫc = +1 will be interpreted as time reversal

symmetry and ǫc = −1 will be referred to as particle-hole symmetry.

An ensemble of Hamiltonians without any constraints other than being Hermitian

belong to the unitary symmetry class (A class). If a Hamiltonian possesses P sym-

metry, it belongs the chiral unitary classes (AIII class). For C symmetry, we have

four classes of ǫc = ±1 and ηc = ±1. If a Hamiltonian possesses both P and C

symmetries, then it automatically has another C-type symmetry C’:

H = ǫ′
cC ′ HC ′−1, (13.3)

where C ′ = PC and ǫ′
c = −ǫc. As C ′ can be interpreted as a time reversal symmetry if

ǫc = +1 or a particle-hole symmetry if ǫc = +1. the classes with P and C symmetries

automatically have chirality, time reversal or particle-hole symmetry. As a result, we

have ten symmetry classes related to P and C symmetries, as listed in Table 13.1.

Alternatively, the system can also be classified according to time reversal symme-

try T and the particle-hole symmetry P [4]. T can be represented by an anti-unitary

operator on a Hilbert space, which commutes with the Hamiltonian and is written as

a product of the complex conjugate operator K and unitary operator C, T = KC,

T HT
−1 = H, (13.4)

or the system is invariant under time reversal symmetry if and only if the complex

conjugation of the Hamiltonian is equal to itself up to a unitary operator:

Table 13.1 Ten symmetries classes following the random matrix ensembles

Symmetry classes

A H = H†

AI ǫc = +1 ηc = +1

AII ǫc = +1 ηc = −1

C ǫc = −1 ηc = −1

D ǫc = −1 ηc = +1

AIII P2 = 1

DI P2 = 1 ǫc = ±1 ηc = +1 PC PT = C

CII P2 = 1 ǫc = ±1 ηc = −1 PC PT = C

CI P2 = 1 ǫc = ±1 ηc = ±1 PC PT = −C

DIII P2 = 1 ǫc = ∓1 ηc = ±1 PC PT = −C
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T : C† H∗
A,BC = +HA,B . (13.5)

Thus, for a time reversal symmetry T , the Hamiltonian can be (i) not time reversal

invariant, in which we take T = 0; (ii) time reversal invariant, but the square of the

time reversal operator is +1, T 2 = 1, in which case we take T = 1. For example,

a spinless or integer spin system; (iii) time reversal invariant, but the square of the

time reversal operator is equal to −1, T 2 = −1, in which case we take T = − 1 (for

example, a half-odd-integer spin system). So there are three possible cases, T = 0,

+1, and −1.

The particle-hole symmetry P is also an anti-unitary operator which anti-

commutes with the Hamiltonian and can be expressed in terms of H :

P HP
−1 = −H, (13.6)

where P = KV or the system is invariant under time reversal symmetry if and only if

the complex conjugation of the Hamiltonian is equal to a minus itself up to a unitary

operator V:

P : V† H∗
A,BV = −HA,B . (13.7)

Thus, for a particle-hole symmetry, the Hamiltonian can be (i) not particle-hole

invariant, in which case we take V = 0; (ii) particle-hole invariant, but the square of

the particle-hole operator is +1, P2 = 1, in which case we take V = 1; (iii) particle-

hole invariant, but the square of the particle-hole operator is equal to −1, P2 =

−1, in which case we take V = −1. So there are three possible cases, V = 0, +1,

and −1.

Thus, there are at least 3 × 3 possible ways for a Hamiltonian to response the

time reversal and particle-hole operations. In addition, the product of T and P gives

C = T × P , often referred to as sublattice or chiral symmetry. C is an unitary operator

which anti-commutes with the Hamiltonian. C is not independent of T and P . The

assignment (T, V ) = (1, 1) allows C to be present and (T, V ) = (1, 0) or (T, V ) =

(0, 1) means C to be absent. However, if (T, V ) = (0, 0), then C to be either present

(C = 1) or absent (C = 0). Therefore one obtains ten symmetry classes by combining

time reversal symmetry and particle-hole symmetry together.

13.2 Physical Systems and the Symmetry Classes

13.2.1 Standard (Wigner–Dyson) Classes

Class A: The Hamiltonian that possesses neither the time reversal symmetry nor

particle-hole symmetry belongs to the unitary symmetry class, i.e., class A. For

example, a two-dimensional electron gas in an external magnetic field.
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Class AI: The Hamiltonian of integer spin or spinless particles that possess time

reversal symmetry belongs to the orthogonal symmetry. In this case T 2 = +1

and

H T = H. (13.8)

Class AII: The Hamiltonian of spin 1
2

particles which possesses time reversal sym-

metry belongs to the symplectic symmetry. In this case T 2 = −1. For example,

an electron system with spin-orbit coupling,

iσy H T (−iσy) = H. (13.9)

13.2.2 Chiral Classes

The symmetry classes of Hamiltonians possessing a P-type symmetry are convention-

ally called chiral symmetries. In complete analog with the standard (Wigner–Dyson)

classes, there are three types of chiral symmetries.

Class AIII: The ensemble of chiral Hamiltonians without any other constraint is

called a chiral unitary class.

Class CII: The ensemble of chiral Hamiltonians with time reversal symmetry and

T 2 = −1 is called a chiral symplectic class.

Class DI: The ensemble of chiral Hamiltonians with time reversal symmetry and

T 2 = +1 is called a chiral orthogonal class.

13.2.3 Bogoliubov-de Gennes (BdG) Classes

We consider a general form of a Bogoliubov-de Gennes Hamiltonian,

H =
1

2
(c†, c)

(

Ξ ∆

−∆∗ −Ξ T

)(

c

c†

)

, (13.10)

where Ξ = Ξ † as required by the Hermiticity of the Hamiltonian H † = H and ∆ =

−∆T for Fermi statistics. c can be for either spinless fermions or spin− 1
2

electron

c = (c↑, c↓).

BdG Hamiltonian can be classified into four subclasses: C and CI are primarily

relevant to spin singlet superconductors whereas D and DIII are primarily relevant

to spin triplet superconductors.

Class D: tx H T tx = −H , for example, a p ± i p wave pairing superconductor:
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H =
1

2

∑

k

(c
†
k , c−k)

(

ǫk − μ ∆0(kx ± iky)

∆0(kx ∓ iky) −ǫk + μ

)(

ck

c
†
−k

)

. (13.11)

Class DIII: tx H T tx = −H and isy H T (−isy) = H , for example, a superposition of

p + i p and p − i p wave pairing superconductor.

Class C: ry H T ry = −H , for example, a d ± id wave pairing superconductor.

Class CI: H∗ = H , for example, dx2−y2 or dxy wave pairing superconductor.

Note that tα, sα, and τα are all the Pauli matrices.

13.3 Characterization in the Bulk States

Following Schnyder et al. [4], we discuss the bulk characteristics of topological

insulators based on the spectral projection operator. In the presence of translational

invariance, the ground states of non-interacting fermion systems can be constructed

as a filled Fermi sea in the first Brillouin zone. From the eigenvalue equation in the

band theory,

H(k) |un(k)〉 = En(k) |un(k)〉 , (13.12)

the projection operator onto the filled Bloch states at a fixed k is defined as

P(k) =
∑

n∈ f illed

|un(k)〉 〈un(k)| . (13.13)

Then it is convenient to define

Q(k) = 2P(k) − 1, (13.14)

which satisfies the relations

Q2 = 1, Q† = Q (13.15)

and

T r Q = m − n, (13.16)

where m is the number of the filled states and n is the number of empty states. Depend-

ing on the symmetry class, an additional condition may be imposed on Q. Without

any such further conditions, the projector takes values in the so-called Grassmanian

Gm,m+n(C): the set of eigenvectors as a unitary matrix, a member of U (m + n).

Once we consider a projection onto the filled Bloch states, we have a gauge symme-

try U (m). Similarly, we have U (n) for the empty Bloch states. Thus, each projector

is described by an element of the coset

U (m + n)/ [U (m) × U (n)] ≃ Gm,m+n(C) ≃ Gn,m+n). (13.17)
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As Q(k) |un(k)〉 = + |un(k)〉 if n is filled, and Q(k) |un(k)〉 = − |un(k)〉 if n is

empty, an element of Gm,m+n(C) can be written as

Q = UΛU †,Λ = diag(1m − 1n) (13.18)

and U ∈ U (m + n). Imposing additional symmetry will prohibit certain type of maps

from the Brillouin zone to the space of the projectors.

13.4 Five Types in Each Dimension

Possible topologically non-trivial phases with discrete symmetries are listed in Table

13.2. It gives possible values of topological invariants of such a symmetry in the

dimension. An empty entry means that the system does not have a topological phase.

In the case all gapped Hamiltonians with the symmetry in the dimension can be

deformed into each other, without closing the bulk gap and without breaking any

existing symmetry. Z means that the topological invariant is an integer number,

Q = 0,±1,±2, . . . 2Z means that the topological invariant is an even integer, Q =

0,±2,±4, . . . Z2 means that there are only two distinct topological phases, trivial

or non-trivial with Q = ±1 (or Q = 0, 1, depending on convention).

A regular pattern appears in the Table 13.3 by reorganizing the ten classes into

two categories, two complex classes and eight real classes.

For class A, Z at d = 2 means the Chern number or TKNN number, and such a

system is quantum Hall effect. Z corresponds to the number of the edge states. In the

case the topological invariant Z always appears in an even dimension, and does not

exist in an odd dimension, which means that there is no quantum Hall effect in an odd

Table 13.2 Ten symmetry classes of single-particle Hamiltonians and possible topologically non-

trivial ground states characterized by Z and Z2 invariants. Z represents the group of an integer and

Z2 represents the group of (0, 1) or (−1,+1)

T P C d = 1 2 3

Standard A (unitary) 0 0 0 – Z –

AI (orthogonal) +1 0 0 – – –

AII (symplectic) −1 0 0 – Z2 Z2

Chiral AIII (unitary) 0 0 1 Z – Z

BDI (orthogonal) +1 +1 1 Z – –

CII (sympletic) −1 −1 1 2Z – Z2

BdG D 0 +1 0 Z2 Z –

C 0 −1 0 – 2Z –

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 – – 2Z
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Table 13.3 Periodic structure of the symmetry classes and possible topological phases

Class C P T d = 0 1 2 3 4 5 6 7

A Z Z Z Z

AIII 1 Z Z Z Z

AI 1 Z 2Z Z2 Z2

BDI 1 1 1 Z2 Z 2Z Z2

D 1 Z2 Z2 Z 2Z

DIII 1 1 −1 Z2 Z2 Z 2Z

AII −1 2Z Z2 Z2 Z

CII 1 −1 −1 2Z Z2 Z2 Z

C −1 2Z Z2 Z2 Z

CI 1 −1 1 2Z Z2 Z2 Z

dimensions. For class AIII, an example of d = 1 is the Su–Schrieffer–Heeger model.

Z represents the winding number. With increasing the dimension d, the topological

phase interchanges from

A → AI I I → A → · · · . (13.19)

For the eight real classese from AI to CI, topological invariants also appear in a

periodic structure with increasing dimension d, from Z to Z2, and 2Z ,

AI → E DI → D → DI I I → AI I → C I I → C → C I → AI. (13.20)

This is called Bott periodicity.

In short, there are five possible topological phases in each dimension. Among

them, there two topological phases with Z , one phase with 2Z , and two phases

with Z2.

13.5 Conclusion

Topological classification has exhausted all of the possible topological insulators and

superconductors. The topological phases exist from one dimension to three dimen-

sions, and from insulators to superconductors. Some materials have been known for a

long time, but their topological properties of some materials were only acknowledged

in recent years. More and more new topological materials have been discoveried.

In conclusion, we can say that

Each topological insulator or superconductor is governed by one modified Dirac equation.
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Appendix A

Derivation of Two Formulae

A.1 Quantization of the Hall Conductance

In this section we present a proof showing that the Hall conductance is quantized to

be νe2/h (ν is an integer) in (4.54). For simplicity, we first drop the band index first.

Given the definition of the Berry curvature, the Hall conductance is expressed as

σxy =
e2

h

1

2π

∫ 2π

0

dkx

∫ 2π

0

dky[∇k × A(kx , ky)]z, (A.1)

where the lattice constant is taken to be the unit. Therefore the conductance is deter-

mined by the Berry curvature integrated over the reduced Brillouin zone.

To evaluate the surface integral, the Stokes’s theorem can be applied with the

condition that the surface is simply connected. To this end, we illustrate the formation

of the torus from a rectangle with the periodic boundary condition, as shown in

Fig. A.1. In this way the surface integral can be reduced to a line integral around the

first Brillouin zone:

σxy =
e2

h

1

2π

∫ 2π

0

dkx

∫ 2π

0

dky

[

∂kx
Ay(kx , ky) − ∂ky

Ax (kx , ky)
]

=
e2

h

1

2π

∫ 2π

0

dky

[

Ay(2π, ky) − Ay(0, ky)
]

−
e2

h

1

2π

∫ 2π

0

dkx [Ax (kx , 2π) − Ax (kx , 0)] . (A.2)

Recalling that |u(kx , 0)〉 and |u(kx , 2π)〉 actually represent the same physical state

due to the periodicity in the reciprocal vector space, which can only differ by a phase

factor, |u(kx , 2π)〉 = exp[iθx (kx )]|u(kx , 0)〉, one has

Ax (kx , 2π) = 〈u(kx , 2π)|i∂kx
|u(kx , 2π)〉

= −∂kx
θx (kx ) + Ax (kx , 0). (A.3)
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Fig. A.1 Equivalence of the

first Brillouin zone and a

torus: a rectangle of the first

Brillouin zone with periodic

boundary conditions; b the

rectangle is rolled into a tube

along the ky direction; c the

tube is rolled into a torus

along the kx direction. The

four corners of the rectangle

are actually one point in the

torus surface

Similarly, taking |u(2π, ky)〉 = exp[iθy(ky)]|u(0, ky)〉, one obtains

Ay(2π, ky) = −∂ky
θy(ky) + Ay(0, ky). (A.4)

θx (kx) and θy(ky) are smooth functions. Using these two relations, the integral is

reduced to

σxy =
e2

h

1

2π

∫ 2π

0

dky

[

−∂ky
θy(ky)

]

+
e2

h

1

2π

∫ 2π

0

dkx

[

∂kx
θx (kx )

]

=
e2

h

1

2π

[

θy(0) − θy(2π) + θx (2π) − θx (0)
]

. (A.5)

On the torus surface of the first Brillouin zone, the four wave states |u(0, 0)〉,

|u(0, 2π)〉, |u(2π, 0)〉, and |u(2π, 2π)〉 actually represent the same states (see in

Fig. A.1). Using the phase matching relations of these states,
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eiθx (0)|u(0, 2π)〉 = |u(0, 0)〉, (A.6)

eiθx (2π)|u(2π, 2π)〉 = |u(2π, 0)〉, (A.7)

eiθy(0)|u(2π, 0)〉 = |u(0, 0)〉, (A.8)

eiθy(2π)|u(2π, 2π)〉 = |u(0, 2π)〉, (A.9)

one obtains

|u(0, 0)〉 = ei[θx (0)+θy(2π)−θx (2π)−θy(0)]|u(0, 0)〉. (A.10)

The single-valuedness of |u(0, 0)〉 requires that the exponent must be an integer

multiple of 2π, i.e.,

θx (0) + θy(2π) − θx (2π) − θy(0) = 2νπ (A.11)

with an integer ν (including 0). Therefore the Hall conductance must be quan-

tized when the band is fully filled. This integer ν is called the Thouless-Kohmoto-

Nightingale-Nijs (TKNN) number or the first Chern number, and it characterizes the

topological structure of the Bloch states |u(kx , ky)〉 in the parameter space (kx , ky).

A.2 A Simple Formula for the Hall Conductance

A simple two-band model has a general form in terms of the Pauli matrices σα,

H(k) = ǫ(k) +
∑

α=1,2,3

dα(k)σα. (A.12)

The energy spectra of the model are

E±(k) = ǫ(k) ± d(k) (A.13)

with d(k) =

√

∑

α=1,2,3 |dα(k)|2, and the corresponding eigenstates are

|k,+〉 =

(

cos θ
2
e−iφ

sin θ
2

)

(A.14)

and

|k,−〉 =

(

sin θ
2
e−iφ

− cos θ
2

)

, (A.15)

where θ = arccos
dz(k)

d(k)
and φ = arctan dx (k)

dy(k)
.
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In electric conduction, the conductivity σαβ is defined as

Jα(r, t) =
∑

β

σαβ(q,ω)Ξβ exp[i(q · r − ωt)], (A.16)

where Jα(r, t) is the electric current and Ξβ exp[i(q · r − ωt)] is the electric field.

In the linear response theory, the Kubo formula for the Hall conductance gives

σxy(q,ω) = +
i

ω
Πxy(q,ω) (A.17)

with the retarded correlation function of the current operator Jx (q, t) and Jy(q, t ′)

Πxy(q,ω) = −
i

V

∫ +∞

−∞

dtθ(t − t ′)eiω(t−t ′) 〈ψ| [Jx (q, t), Jy(q, t ′)] |ψ〉 , (A.18)

where V is the volume of the system. The dc conductivity is obtained by taking the

limit q → 0 and then ω → 0,

σxy = lim
ω→0

lim
q→0

σxy(q,ω). (A.19)

Usually the retarded correlation function can be calculated in the Matsubara for-

malism

Π M
xy (iων) =

1

V

1

β

∑

k,ν ′

T r
{

Jx (k)G[k, i(ων + ων ′)]Jy(k)G[k, iων ′ ]
}

(A.20)

with frequencies ων = 2νπ/β and ων ′ = (2ν ′ +1)π/β (β = kB T ). The Matstubara-

Green function is given by

G(k, iων) = [iων − H(k)]−1

≡
P+

iων − E+(k)
+

P−

iων − E−(k)
(A.21)

with

P± =
1

2

[

1 ±
∑

α=1,2,3

dα(k)σα

d

]

. (A.22)

Using the frequency summation over iων ′ ,

1

β

∑

ν ′

1

i(ων + ων ′) − En

1

iων ′ − Em

=
fk,m − fk,n

iων + Em(k) − En(k)
, (A.23)
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where the Dirac–Fermi distribution function fk,n = 1/{1+exp[β(En(k)−μ)]}, one

obtains

ΠM
xy(ων) =

1

V

∑

k,n,n′

〈k,n| Jx (k)
∣

∣k,n′
〉 〈

k,n′
∣

∣ Jy(k) |k,n〉
fk,n − fk,n′

iων + En(k) − En′(k)
.

(A.24)

Its analytical continuation to the retarded function is realized by replacing iωn →

�ω + iǫ,

ΠM
xy(ων) → ΠR

xy(ω). (A.25)

Using the L’Hospital’s rule,

lim
ω→0

Im
(

Π R
xy(ω)

)

ω
= Im

(

dΠ R
xy(ω)

dω

)

ω=0

(A.26)

and

lim
ω→0

d

�dω

[

1

�ω + iǫ + En − En′

]

= −
1

(En − En′)(En − En′ + iǫ)
, (A.27)

the Kubo formula for the dc Hall conductivity can be written as

σxy =
�

V
lim

ǫ→0+

∑

k,n 	=n′

( fk,n − fk,n′)I m
(

〈k,n| Jx (k)
∣

∣k,n′
〉 〈

k,n′
∣

∣ Jy(k) |k,n〉
)

(En(k) − En′(k))(En(k) − En′(k) + iǫ)
.

(A.28)

From the model in (A.12), the current operator Ji (k) = −evi (k) is given by

Ji (k) = −
e

�
∂ki

H(k) = −
e

�

(

∂ki
ǫ(k) +

∑

α=1,2,3

∂ki
dα(k)σα

)

. (A.29)

For n 	= n′, one has

〈k,n| Ji (k)
∣

∣k,n′
〉

= −
e

�

∑

α=1,2,3

∂ki
dα(k) 〈k,n| σα

∣

∣k,n′
〉

. (A.30)

Furthermore,

I m
(

〈k,n| σα |k,−n〉 〈k,−n| σβ |k,n〉
)

= nǫαβγ

dγ(k)

d(k)
. (A.31)

We limit our discussion in the case that two levels do not cross in the whole momentum

space such that ǫ → 0+ can be taken before the integral of k. Thus, the conductance

can be expressed as



256 Appendix A: Derivation of Two Formulae

σxy =
1

2Ω

e2

�

∑

k

ǫαβγ

[

∂kx
dα(k)

] [

∂ky
dβ(k)

]

dγ(k)

d3(k)
( fk,+ − fk,−). (A.32)

If there exists an energy gap between the upper and lower bands, and the lower band is

fully filled, i.e., Ek,− < μ < Ek,+, then fk,+ = 0 and fk,− = 1 at zero temperature.

The Hall conductance has the form

σxy = −
e2

h

1

4π

∫

dkx dky

(

∂kx
d(k)×∂ky

d(k)
)

·d(k)

d3(k)
. (A.33)

It is noted that the conductance may not be quantized in some continuous models

in which the Brillouin zone is not finite. For example a massive Dirac model has a

half-quantized conductance. This case does not occur in a lattice model.
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Time Reversal Symmetry

The time reversal symmetry demonstrates the invariance of physical laws under time

reversal transformation. The terminology was first introduced by E. Wigner in 1932.

B.1 Classical Case

Let us first consider a classic case: the motion of a particle subjected to a certain

force. Its trajectory is given by the Newtonian equation of motion,

m
d2r

dt2
= −∇V (r). (B.1)

If r(t) is the solution of the equation, then r(−t) is also the solution of the equation.

In other word, when we make the transformation t → −t , the Newtonian equation

of motion is unchanged. However, we should note any changes in the boundary

condition or initial conditions of the problem.

Maxwell’s equations and the Lorentz force F = −e(E + v × B) are invariant

under the time reversal provided that

v → −v, j → −j,ρ → ρ (B.2)

and

B → −B, E → E. (B.3)

Maxwell’s equations are

∇ · D = ρ,∇ × E +
∂B

∂t
= 0, (B.4)

∇ · B = 0,∇ × H −
∂D

∂t
= I, (B.5)
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where D = ǫ0E + P and H = B/μ0 − M. Therefore, the magnetic field changes its

sign and the electric field remains unchanged under time reversal.

B.2 Quantum Case

In quantum mechanics, the Schrödinger equation is written as

i�
∂Ψ (x, t)

∂t
=

(

−
�

2

2m
∇2 + V

)

Ψ (x, t), (B.6)

in which the Hamiltonian in the right hand side is invariant under the time reversal.

If Ψ (x, t) is a solution of the equation, Ψ (x,−t) is not a solution of the equation

because of the first order time derivative and the imaginary sign of the left hand side.

However, Ψ ∗(x,−t) is a solution. One can check it by using the solution of a free

particle, Ψ (x, t) = cei(p·x−Et)/�. The Ψ (x,−t) = cei(p·x+Et)/� is also a solution of

the Schrödinger equation. However, the momentum is still p, NOT −p.

Definition: the transformation θ

|α〉 → |α̃〉 = θ |α〉 , |β〉 →

∣

∣

∣β̃
〉

= θ |β〉 (B.7)

is said to be anti-unitary if

〈

β̃|α̃
〉

= 〈β|α〉∗ ; (B.8)

θ (c1 |α〉 + c2 |β〉) = c∗
1θ |α〉 + c∗

2θ |β〉 . (B.9)

In this case the operator θ is an anti-unitary operator. Usually, an anti-unitary operator

can be written as

θ = U K , (B.10)

where U is a unitary operator and K is the complex conjugation operator, which is

defined as

Kϕ = ϕ∗K .

Here, ϕ can be either a function or an operator.

B.3 Time Reversal Operator Θ

Let us denote the time reversal operator by Θ. Consider

|α〉 → Θ |α〉 , (B.11)
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where Θ |α〉 is the time reversed state. More appropriately, Θ |α〉 should be called

the motion-reversed state. For a momentum eigenstate |p〉 , Θ |p〉 should be |−p〉

up to a possible phase factor. Θ is an anti-unitary operator. We can see this property

from the Schrödinger equation of a time reversal invariant system,

i�
∂

∂t
Ψ (x, t) = HΨ (x, t), (B.12)

provided that ΘiΘ−1 = −i and Θ ∂
∂t

Θ−1 = ∂
∂(−t)

. The transformed momentum

operator p, the position x, and the angular momentum J are

ΘpΘ−1 = −p, (B.13)

ΘxΘ−1 = x, (B.14)

ΘJΘ−1 = −J. (B.15)

Note that for p = −i� d
dx

, ΘpΘ−1 = −p.

From the spherical harmonic Y m
l (θ,φ), one has

Y m
l (θ,φ) →

(

Y m
l (θ,φ)

)∗
= (−1)mY −m

l (θ,φ). (B.16)

Therefore the eigenstate |l, m〉 of the orbital angular momentum and its z-component

has the relation,

Θ |l, m〉 = (−1)m |l,−m〉 . (B.17)

B.4 Time Reversal for a Spin 1
2

System

Under the time reversal, t → −t . Does applying the time reversal operation twice

return us to the original states? Yes, but Θ2 is not always equal to 1. For a spin 1
2

system,

ΘσαΘ−1 = −σα, (B.18)

where α = x, y, z. Note that

σyσxσy = −σx , (B.19)

σyσyσy = +σy, (B.20)

σyσzσy = −σz . (B.21)

By convention, σy is taken to be purely imaginary, as in (2.6), and σx and σz are real.

We have Kσy = −σy K and Kσx,z = σx,z K . Therefore the time reversal operator

can be constructed by combining σy and the complex conjugation operator K ,

Θ = iσy K . (B.22)

http://dx.doi.org/10.1007/978-981-10-4606-3_2


260 Appendix B: Time Reversal Symmetry

Its inverse matrix is

Θ−1 = −Θ = −iσy K . (B.23)

One can check the relation,

Θ2 = −1. (B.24)

Consider the eigenstate |n,+〉 of S · n with the eigenvalue +�/2,

|n,+〉 = e−i Szα/�e−i Syβ/� |+〉 , (B.25)

Θ |n,+〉 = Θe−i Szα/�e−i Syβ/�Θ−1Θ |+〉 . (B.26)

As ΘSαΘ−1 = −Sα and ΘiΘ−1 = −i,

Θ |n,+〉 = e−i Szα/�e−i Syβ/�Θ |+〉 = e−i Szα/�e−i Syβ/� |−〉 = |n,−〉 . (B.27)

where Θ |+〉 = |−〉 with an eigenvalue − 1
2
. On the other hand,

|n,−〉 = e−i Szα/�e−i Sy(π+β)/� |+〉 = e−i Szα/�e−i Syβ/�e−i Syπ/� |+〉 . (B.28)

Noting that K acting on |+〉 gives |+〉 . We have

Θ = e−iπSy/�K = iσy K . (B.29)

In general, for a system with the angular momentum operator of the eigenvalue

j , the time reversal operator is

Θ = ie−iπJy K , (B.30)

where Jy is the y-component of orbital angular momentum operator. The operator

satisfies the relation

Θ2 = (−1)2 j . (B.31)

Kramers degeneracy: the energy states for an odd number of electrons in a time

reversal invariant system has at least a double degeneracy.

This theorem is determined by the fact that the total spin of an odd number of

electrons is always half of an odd number of �. The time reversal operator has always

the relation Θ2 = −1.



Appendix C

The Dirac Matrices and the Dirac Gamma

Matrices

In the Dirac representation, the four Dirac matrices are

αx =

(

0 σx

σx 0

)

, αy =

(

0 σy

σy 0

)

, αz =

(

0 σz

σz 0

)

, β =

(

σ0 0

0 −σ0

)

. (C.1)

The four Dirac Gamma matrices have the form

γ1 =

(

0 σx

−σx 0

)

, γ2 =

(

0 σy

−σy 0

)

, γ3 =

(

0 σz

−σz 0

)

, γ0 =

(

σ0 0

0 −σ0

)

.

(C.2)

The relation between the Dirac matrices and the Dirac Gamma matrices are

γi = βαi ; γ0 = β. (C.3)

The gamma matrices satisfy the anticommutation relation,

{γμ, γν} = γμγν + γνγμ = 2ημν I4, (C.4)

where ημν is the Minkowski metric with signature (+,−,−,−) and I4 is the identity

matrix. The product of the four Gamma matrices defines

γ5 = iγ0γ1γ2γ3 =

(

0 σ0

σ0 0

)

. (C.5)

γ5 anticommutes with the four Gamma matrices, and is useful in discussion of

quantum mechanical chirality. It is not one of the gamma matrices of Cl1,3(R). The

number 5 is a relic of old notation in which γ0 was called γ4.

Under the time reversal symmetry Θ = iαxαz K , the four Dirac matrices obey

αx → −αx , β → β. (C.6)

© Springer Nature Singapore Pte Ltd. 2017

S.-Q. Shen, Topological Insulators, Springer Series in Solid-State Sciences 187,

DOI 10.1007/978-981-10-4606-3

261



Index

A

Adiabatic condition, 62

Adiabatic evolution, 59

Aflack-Khomoto-Lieb-Tasaki state, 194

Aharonov-Bohm effect, 120

Ampere’s law, 164

Anderson-Brinkman-Morel state, 9, 183

Anderson insulator, 237

Angle-resolved photoemission spec-

troscopy, 7

Anomalous Hall conductance, 4

Anomalous Hall effect, 2

Antiparticle, 18

ARPES, 127, 148, 212

Axion equation, 7

B

Büttiker formula, 103

Band insulators, 8

Band inversion, 10

BCS theory, 173

Berry connection, 53

Berry curvature, 4, 54, 55, 58, 60, 72, 97

Berry phase, 2, 53, 60, 83, 133

Bi1−x Sbx , 11, 126, 127, 210

Bi2Se3, 6, 96, 127, 129, 148

Bi2Te3, 6, 95, 127, 129

Bloch state, 51

Bloch’s theorem, 51

Bloch wave, 51

Bogoliubov-de Gennes (BdG) Hamiltonian,

173

Bogoliubov-de Gennes equation, 10, 176

Bogoliubov transformation, 175

Born approximation, 227

Bose-Einstein condensation, 174

Bott periodicity, 249

Bound states, 19, 157

Brillouin zone, 35, 52, 59, 92, 127, 157

Bulk-boundary correspondence, 212

Bulk-edge correspondence, 4, 214

Bulk-edge relation, 28

C

Cd3As2, 11, 212

Cd2Sb3, 13

CdTe, 109

Charge pump, 61

Chern number, 4, 28, 52, 55, 62, 91, 92, 94,

95, 137

Chiral anomaly, 11, 222

Chiral edge state, 9, 177

Chirality, 207, 208

Chirality symmetry, 83

Chiral magnetic effect, 226

Chiral symmetry, 81

Clifford algebra, 17

Complex conjugate operator, 199

Composite fermions, 4

Compressibility, 179

Continuity condition, 20, 21

Continuous model, 35

Cooper pairs, 9, 10

Cux Bi2Se3, 185

D

Debye energy, 174

Dimensional modified Dirac equation, 31

Dirac Gamma Matrices, 261

Dirac cone, 7, 30, 75

Dirac equation, 10–12, 17, 19, 22, 23, 30, 44

© Springer Nature Singapore Pte Ltd. 2017

S.-Q. Shen, Topological Insulators, Springer Series in Solid-State Sciences 187,

DOI 10.1007/978-981-10-4606-3

263



264 Index

Dirac Gamma matrices, 99

Dirac matrix, 17, 18, 37, 261

Dirac model, 83

Dirac semimetal, 11, 13, 208, 210

Dirichlet boundary condition, 19, 25, 113,

143, 158

Drude conductivity, 228

E

Edge state, 3, 101, 104, 107, 112

Effective Medium Theory, 237

Eigensystem, 13

Einstein relation, 228

Electric polarization, 59

End states, 25

Equal Spin Pairing, 182

Extrinsic spin Hall effect, 3

F

Fano factor, 236

Faraday law, 66

Fermi arc, 11, 216

Fermi-Dirac distribution function, 59

Fermi liquid theory, 179

Fermi surface, 11

Ferromagnetic insulator, 92

Filling factor, 3

Finite size effect, 148

First Bessel function, 167

First Brillouin zone, 28

Fractional quantum Hall effect, 4, 9

G

GaAs, 3

Gauss’ law, 164

Gauss’s theorem, 209

GdBiPt, 9

Green function, 77

Group Z2, 51

Group Z, 51

H

Haldane model, 5, 92, 96, 98, 99

Half quantized hall conductance, 138

Half quantized vortex, 189

Half quantum vortex, 192

Hall conductance, 3, 4, 6, 28

Hall effect, 1–3, 6, 13

Hall resistance, 1, 2
3He, 178

4He, 178

Helical edge states, 8, 27, 31, 51, 112

Helicity, 207, 208

Heusler compounds, 9

Hexagonal warping effect, 133

HgCr2Se13, 11

HgTe, 5, 109, 127, 129

HgTe/CdTe, 8, 109, 117, 118, 128

Hubbard model, 9

I

InAs/GaAs, 117, 118

InAs/GaSb, 5

InGaAs, 3

In-gap bound state, 169

Integer quantum Hall effect, 3, 28, 40, 42,

66, 67

Intrinsic spin Hall effect, 3

Inversion symmetry, 72, 210

Ising model, 88

J

Jackiw-Rebbi solution, 19

Jordan–Wigner transformation, 88, 89

Josephson effect, 202

Josephson junction, 202

K

Kane-Mele model, 98–100

Kitaev model, 87

Kitaev’s Toy Model, 193

Knight shift, 185

Kramers degeneracy, 6, 65, 68, 260

Kramers pair, 69, 108

Kubo formula, 59, 138

L

Landau bands, 223

Landau degeneracy, 223

Landauer-Büttiker formalism, 139

Landauer-Büttiker formula, 101, 105, 116,

118, 122

Landau gauge, 141

Landau level, 3, 4, 92

Landau Theory, 12

Lattice model, 33, 35, 37, 40, 42, 48

Laughlin argument, 66

Laughlin wave function, 4

Liquid helium 3He, 9, 173

Lorentz force, 1, 2



Index 265

M

Magnetic flux, 161

Magnetic flux quantization, 173

Magnetic monopole, 55, 165, 208

Magneto-electric effect, 7

Magnetoresistance, 224

Magnetotransport, 223

Majorana bound state, 199

Majorana fermion, 10, 11, 87, 178, 190

Massless Dirac cones, 145

Matsubara formalism, 254

Maxwell’s equation, 7, 59, 89

Meissner effect, 173

Metal-insulator transition, 8

Metamaterial, 90

Mobility gap, 5, 231

Modified Bessel function, 163

Modified Dirac equation, 25, 75, 111, 155

Moore-Read quantum Hall state, 9, 174

Mott insulator, 9

Multi-scattering processes, 121

N

Na3Bi, 11, 212

Negative magnetoresistance, 11

No-go theorem, 209

Non-Abelion Statistics, 203

Nuclear magnetic resonance, 9

O

Ohm’s law, 115

Open boundary condition, 21, 35

P

Pair annihilation, 240

Parity, 44, 50

Particle-hole symmetry, 8, 10, 87, 173, 244

Particle-hole transformation, 88

Pauli exclusion principle, 18, 51

Pauli matrices, 18, 30

Pbx Sn1−x Te, 125

PbTe, 125

Peierls instability, 8

Peierls substitution, 112

Periodic boundary condition, 34, 35, 75

Pfaffian, 70

Polyacetylene, 8, 81, 85, 90

p-wave pairing superconductor, 87

p-wave superconductor, 10

Q

Quadratic correction, 24

Quantum adiabatic theorem, 57

Quantum anomalous Hall effect, 1, 5, 7, 91,

95, 97, 218

Quantum computation, 205

Quantum conductance, 3, 5

Quantum diffusive regime, 223

Quantum Hall conductance, 4, 55

Quantum Hall effect, 3, 4, 8, 98, 118

Quantum percolation, 169

Quantum phase transition, 13

Quantum spin Hall system, 67, 104

Quantum Spin Hall effect, 1, 5, 6, 10, 12, 91,

98, 107, 109, 115, 118–120, 128

R

Rashba spin-orbit coupling, 10, 202

Reciprocal lattice vector, 34

Resonant spin Hall effect, 3

Reversal symmetry, 133

Rice–Mele model, 63

S

Sau–Lutchyn–Tewari–Das Sarma Model,

199

Sb2Te3, 95, 130

Scanning tunneling microscopy, 199

Schrödinger equation, 52, 56, 57

Shubnikov-de haas oscillation, 136, 228

Skew-symmetric matrix, 72

Skymion, 25

SmB6, 8

SnTe, 125

Spherical harmonic Bessel function, 156

Spin current, 15, 48, 105, 120

Spin Hall conductance, 5, 6

Spin Hall effect, 2

Spin-orbit coupling, 5, 8, 10, 13, 65, 86, 92,

125, 213

Spin-orbit force, 2

Spin pump, 64

Spin susceptibility, 179

Spin transverse force, 2, 4

Spin-triplet Superconductor, 10, 184

Sr2RuO4, 10, 184

STM, 134

Stokes’ theorem, 54, 66, 251

Streda formula, 94

Strong topological insulators, 126

Structure inversion asymmetry, 146

Superconducting proximity effect, 10, 198



266 Index

Surface quantum hall effect, 137

Surface states, 5, 27, 29–31, 51, 125, 131,

140

Su–Schrieffer–Heeger model, 63, 81, 86, 88,

90, 214

SU(2) symmetry, 13

s-wave superconductor, 10

Symmetry classes, 243

T

TaAs, 11, 13

The modified Bessel function of the second

kind, 159

Thouless charge, 61

Thouless-Kohmoto-Nightingale-Nijs

(TKNN), 28, 59

Tight binding approximation, 33

Tight-binding model, 33

Time reversal invariant momenta, 44, 49, 50,

71

Time reversal polarization, 71

Time reversal symmetry, 4–6, 8, 10, 23, 68,

91, 244, 257

TKNN number, 91

Topological Anderson insulator, 8, 231

Topological band insulators, 8

Topological classification, 243

Topological defect, 163

Topological Dirac semimetal, 211

Topological insulator, 5, 6, 12, 13

Topological invariant, 3, 51

Topological Mott insulators, 9

Topological phase, 3

Topological phases of matter, 13

Topological phase transition, 13

Topological photonic crystals, 13

Topological quantum phase, 4, 12

Topological quantum phase transition, 33

Topological quantum transition, 84

Topological superconductor, 10, 173

Topological Weyl semimetal, 207, 212

Transport relaxation time, 228

Tunneling spectroscopy measurements, 10

Two-node model, 214

U

Unitary transformation, 23

UPt3, 184

U(1) symmetry, 13

W

Wannier state, 60

Weak antilocalization, 135, 223

Weak localization, 224

Weak topological insulators, 125

Weyl equations, 11, 207

Weyl fermions, 11, 207

Weyl semimetals, 11, 13

Wigner-Seitz unit cell, 93

Witten Effect, 164

Wormhole Effect, 163

Y

Yu-Shiba state, 153

Z

Z2 classification, 109

Z2 index, 46, 68

Z2 invariant, 73

Zeeman field, 10

Zero energy mode, 38, 161, 190

Zero mode solution, 21


	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Introduction
	1.1 From the Hall Effect to the Quantum Spin Hall Effect
	1.2 Topological Insulators as a Generalization  of the Quantum Spin Hall Systems
	1.3 Beyond Band Insulators: Disorder and Interaction
	1.4 Topological Phases in Superconductors and Superfluids
	1.5 Topological Dirac and Weyl Semimetals
	1.6 Dirac Equation and Topological Insulators
	1.7 Topological Insulators and Landau Theory of Phase Transition
	1.8 Summary
	1.9 Further Reading
	References

	2 Starting from the Dirac Equation
	2.1 Dirac Equation
	2.2 Solutions of Bound States
	2.2.1 Jackiw-Rebbi Solution in One Dimension
	2.2.2 Two Dimensions
	2.2.3 Three and Higher Dimensions

	2.3 Why not the Dirac Equation?
	2.4 Quadratic Correction to the Dirac Equation
	2.5 Bound State Solutions of the Modified Dirac Equation
	2.5.1 One Dimension: End States
	2.5.2 Two Dimensions: Helical Edge States
	2.5.3 Three Dimensions: Surface States
	2.5.4 Generalization to Higher-Dimensional Topological Insulators

	2.6 Summary
	2.7 Further Reading
	References

	3 Minimal Lattice Model for Topological Insulators
	3.1 Tight Binding Approximation
	3.2 Mapping from a Continuous Model to a Lattice Model
	3.3 One-Dimensional Lattice Model
	3.4 Two-Dimensional Lattice Model
	3.4.1 Integer Quantum Hall Effect
	3.4.2 Quantum Spin Hall Effect

	3.5 Three-Dimensional Lattice Model
	3.6 Parity at the Time Reversal Invariant Momenta
	3.6.1 One-Dimensional Lattice Model
	3.6.2 Two-Dimensional Lattice Model
	3.6.3 Three-Dimensional Lattice Model

	3.7 Summary
	References

	4 Topological Invariants
	4.1 Bloch's Theorem and Band Theory
	4.2 Berry Phase
	4.3 Quantum Hall Conductance and the Chern Number
	4.4 Electric Polarization in a Cyclic Adiabatic Evolution
	4.5 Thouless Charge Pump
	4.6 Fu--Kane Spin Pump
	4.7 Integer Quantum Hall Effect: The Laughlin Argument
	4.8 Time Reversal Symmetry and the Z2 Index
	4.9 Generalization to Two and Three Dimensions
	4.10 Phase Diagram of the Modified Dirac Equation
	4.11 Further Reading
	References

	5 Topological Phases in One Dimension
	5.1 Su--Schrieffer--Heeger Model for Polyacetylene
	5.2 Topological Ferromagnet
	5.3 p-Wave Pairing Superconductor
	5.4 Ising Model in a Transverse Field
	5.5 One-Dimensional Maxwell's Equations in Media
	5.6 Summary
	References

	6 Quantum Anomalous Hall Effect  and Quantum Spin Hall Effect
	6.1 Quantum Anomalous Hall Effect
	6.1.1 Two-Dimensional Dirac Model and the Chern Number
	6.1.2 Haldane Model
	6.1.3 Experimental Realization

	6.2 From the Haldane Model to the Kane-Mele Model
	6.3 Transport of Edge States
	6.3.1 Landauer-Büttiker Formalism
	6.3.2 Transport of Edge States

	6.4 Stability of Edge States
	6.5 Realization of the Quantum Spin Hall Effect  in HgTe/CdTe Quantum Wells
	6.5.1 Band Structure of HgTe/CdTe Quantum Wells
	6.5.2 Exact Solution of Edge States
	6.5.3 Experimental Measurement

	6.6 Quantized Conductance in InAs/GaAs Bilayer Quantum Well
	6.7 Quantum Hall Effect and Quantum Spin Hall Effect:  A Case Study
	6.7.1 Quantum Hall Effect (ν=2)
	6.7.2 Quantum Spin Hall Effect

	6.8 Coherent Oscillation Due to the Edge States
	6.9 Further Reading
	References

	7 Three-Dimensional Topological Insulators
	7.1 Family Members of Three-Dimensional Topological Insulators
	7.1.1 Weak Topological Insulators: PbxSn1-xTe
	7.1.2 Strong Topological Insulators: Bi1-xSbx
	7.1.3 Topological Insulators with a Single Dirac Cone: Bi2Se3 and Bi2Te3
	7.1.4 Strained HgTe

	7.2 Electronic Model for Bi2Se3
	7.3 Effective Model for Surface States
	7.4 Physical Properties of Topological Insulators
	7.4.1 Absence of Backscattering
	7.4.2 Weak Antilocalization
	7.4.3 Shubnikov-de Haas Oscillation

	7.5 Surface Quantum Hall Effect
	7.6 Surface States in a Strong Magnetic Field
	7.7 Topological Insulator Thin Film
	7.7.1 Effective Model for Thin Film
	7.7.2 Structural Inversion Asymmetry
	7.7.3 Experimental Data of ARPES

	7.8 HgTe Thin Film
	7.9 Further Reading
	References

	8 Impurities and Defects in Topological Insulators
	8.1 One Dimension
	8.2 Integral Equation for Bound State Energies
	8.2.1 δ-Potential

	8.3 Bound States in Two Dimensions
	8.4 Topological Defects
	8.4.1 Magnetic Flux and Zero Energy Mode
	8.4.2 Wormhole Effect
	8.4.3 Witten Effect

	8.5 Disorder Effect on Transport
	8.6 Further Reading
	References

	9 Topological Superconductors and Superfluids
	9.1 Complex (p+ip)-Wave Superconductor for Spinless �
	9.2 Spin Triplet Pairing Superfluidity: 3He-A and -B Phases
	9.2.1 3He: Normal Liquid Phase
	9.2.2 3He-B Phase
	9.2.3 3He-A Phase: Equal Spin Pairing

	9.3 Spin-Triplet Superconductor: Sr2RuO4
	9.4 Superconductivity in Doped Topological Insulators
	9.5 Further Reading
	References

	10 Majorana Fermions in Topological Insulators
	10.1 What Is a Majorana Fermion?
	10.2 Majorana Fermions in p-Wave Superconductors
	10.2.1 Zero Energy Mode Around a Quantum Vortex
	10.2.2 Majorana Fermions in Kitaev's Toy Model
	10.2.3 Quasi-One-Dimensional Superconductors

	10.3 Majorana Fermions in Topological Insulators
	10.4 Sau--Lutchyn--Tewari--Das Sarma Model  for Topological Superconductors
	10.5 4π-Josephson Effect
	10.6 Non-Abelion Statistics and Topological Quantum Computing
	10.7 Further Reading
	References

	11 Topological Dirac and Weyl Semimetals
	11.1 Weyl Equations and Weyl Fermions
	11.1.1 Weyl Equations
	11.1.2 A Single Node and Magnetic Monopole

	11.2 Emergent Dirac and Weyl Semimetals
	11.2.1 Dirac Semimetal
	11.2.2 Topological Dirac Semimetal
	11.2.3 Topological Weyl Semimetal

	11.3 Graphene: A Topological Dirac Semimetal
	11.4 Two-Node Model
	11.4.1 Model
	11.4.2 The Chern Number and Fermi Arc
	11.4.3 Quantum Anomalous Hall Effect

	11.5 Tight-Binding Model and Topological Phase Transition
	11.6 Chiral Anomaly
	11.7 Exotic Magnetotransport
	11.7.1 Three-Dimensional Weak Antilocalization
	11.7.2 Negative Magnetoresistance
	11.7.3 Linear Magnetoconductance Near the Weyl Nodes
	11.7.4 High Mobility and Large Magnetoresistance

	11.8 Further Reading
	References

	12 Topological Anderson Insulator
	12.1 Band Structure and Edge States
	12.2 Quantized Anomalous Hall Effect
	12.3 Topological Anderson Insulator
	12.4 Effective Medium Theory for Topological Anderson Insulator
	12.5 Band Gap or Mobility Gap
	12.6 Summary
	12.7 Further Reading
	References

	13 Summary: Symmetries and Topological Classification
	13.1 Ten Symmetry Classes for Non-interacting  Fermion Systems
	13.2 Physical Systems and the Symmetry Classes
	13.2.1 Standard (Wigner--Dyson) Classes
	13.2.2 Chiral Classes
	13.2.3 Bogoliubov-de Gennes (BdG) Classes

	13.3 Characterization in the Bulk States
	13.4 Five Types in Each Dimension
	13.5 Conclusion
	13.6 Further Reading
	References

	Appendix A Derivation of Two Formulae
	Appendix B Time Reversal Symmetry
	Appendix C The Dirac Matrices and the Dirac Gamma Matrices
	Index

