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An exotic feature of the fractional quantum Hall effect is the emergence of anyons, which are
quasiparticle excitations with fractional statistics. In the presence of a symmetry, such as U(1)
charge conservation, it is well known that anyons can carry fractional symmetry quantum numbers.
In this work we reveal a different class of symmetry realizations: i.e. anyons can “breed” in multiples
under symmetry operation. We focus on the global Ising (Z2) symmetry and show examples of
these unconventional symmetry realizations in Laughlin-type fractional quantum Hall states. One
remarkable consequence of such an Ising symmetry is the emergence of anyons on the Ising symmetry
domain walls. We also provide a mathematical framework which generalizes this phenomenon to

any Abelian topological orders.

PACS numbers: 73.43.-f, 05.30.Pr, 11.30.-j
I. INTRODUCTION

In an electronic system where each underlying electron
carries an elementary electric charge e, textbooks tell us
that any measured electric charge should be a multiple
of e. However, strong interactions between electrons and
the associated collective electron motion can drastically
alter this picture. One striking example is the discovery
of the fractional quantum Hall (FQH) effect!, where the
low-energy quasiparticles take a fraction of an electron
charge e each?®. This phenomenon - collective excita-
tions carrying symmetry quantum numbers that are frac-
tions of those of the elementary particles - is termed frac-
tionalization®. In the case of Laughlin states (FQH states
at filling v = ﬁ7 k=1,2,...), an elementary quasi-
particle can be effectively viewed as a “fraction” ( ﬁ)
of an electron: it is neither a boson nor a fermion, but

rather obeys fractional statistics®* 6 = 2,:;17’8 and is
»”9

hence dubbed an “anyon Therefore it is not so sur-
prising that when global U(1) symmetry associated to
charge conservation is present, each anyon can have a
fractional charge as well.

On the other hand, U(1) charge conservation is not es-
sential for the FQHE: Laughlin’s states have been shown
to be stable against arbitrary weak perturbations!'®,
which could break any symmetry. For instance we can
consider Laughlin’s states in systems with a smaller sym-
metry group G, = Zy = {g,g> = e}, i.e. an Ising-type
symmetry. In this case each electron has to form a repre-
sentation of G, that is to say it carries an integer quan-
tum number of the Ising symmetry. Just as in the case
of U(1) charge conservation symmetry, the anyons, being
fractions #—&-1 of an electron, can carry fractional charge
of the Ising symmetry, i.e. they can obtain a Berry phase
ei7/(2k+1) ynder the symmetry operation g. In this
work, we will expose a more exotic way in which Ising
symmetry can act on Laughlin’s FQH states and their
cousins, the chiral spin liquids (CSLs)!!'2.

Specifically, in the Laughlin state at v = ﬁ,
there are 2k + 1 distinct excitations, labeled (a) with
a=1,2---,2k+ 1. In particular (a) can be viewed as
the bound state of a “elementary” anyons (1) (or 5%+
of an electron), with fractional statistics 6, = 2‘}547_71 35
We will construct realizations of this system that come
with a natural Ising (Zs) symmetry under which the
elementary anyon (1) transforms into a different anyon
(m) for some special m. In other words, the anyons

“breed” under the Ising symmetry: (a) -5 (ma)! Note
that such a process does not conserve U(1), which, as
we said, is not a symmetry of our model. A similar
phenomenon also occurs in the CSL corresponding to the
v = i bosonic state, which hosts 2k different anyons
(a mod 2k). We will reveal the physical basis for this
exotic realization of the Ising symmetry, and analyze
two explicit examples: one for Laughlin’s FQH state in
a 3-orbital fermion system, and the other for a CSL in a
spin-1 magnet. Significant measurable consequences of
this strange Ising symmetry will also be discussed.

II. GENERAL DISCUSSION

We first review statistics in ordinary realizations of
the FQHE and CSL; in the next section we will write
down models with the same topological order but with
unconventional Ising Zy symmetry. For Laughlin’s FQH
states with v = ﬁ“ or CSLs with v = i7 their many-
body wavefunctions on a disc geometry? can be written
25 P Laugniin ~ L1, (5 — 27)/” expl— 3, [22/4] where
z; = x; + iy, is the complex two-dimensional coordinate
of i-th electron (in FQH states) or f-spins (in spin-1/2
CSLs). An elementary anyon (1) is created as a “quasi-
hole” in the incompressible FQH fluid, whose wavefunc-
tion is @4, = [[;(2i — w)®raughiin With w being the
coordinate of the anyon (quasi-hole).



The anyons do not breed in arbitrary multiples m.
Indeed, in our unconventional realization of Laughlin’s
FQH state, two applications of g must bring (1) back
to itself, i.e. (m?) = (1). Thus m? — 1 = 0 mod-
ulo 2k + 1. In fact, gl,:;ll must also be even. A sim-
ple reason for this is that the Ising symmetry must pre-
serve the fractional statistics of the anyons. In our odd-
denominator v = 2k+1 FQH state, the anyon (a) has

fractional statistics 6, = mva®"®. Meanwhile its mutual
(braiding) statistics®® with anyon (b) is 0,5, = 2mvab.
All of these statistical angles are physically measurable!3
modulo 27 and should remain invariant under any sym-
metry operation. In particular, 6,, = #; modulo 27, so
that

2

m°—1
k1 0 mod (1)

For example, at one third filling (v=! = 2k +1 = 3),
m = 5 gives a solution to (1). An even more non-trivial
solution is, for example, m =4 for v = & (k =7). In
this case one elementary anyon (1) can “give birth to a
quadruplet" (4).

For bosonic CSLs with v = 2k’ the microscopic de-
grees of freedom are bosonic spins rather than fermions.
The formulae for self and mutual statistics are as in the
fermionic case (0, = mva® and 6,;, = 27vab, but (2)k
is now a boson. A constraint on m again follows from g
being required to preserve topological spin:

g . m2—1
2k

=0 mod 2. (2)

There is always a nontrivial solution m = 2k — 1 to (2).
For example when v = % (k = 2), the only nontrivial
solution to (1) is m = 3, which means each elementary
anyon can give birth to a triplet ((1) — (3)) under Ising
symmetry. But in more complicated cases there can be
other allowed multiples in which anyons can breed under
the Ising symmetry. For instance, when v~ = 2k = 12,
there are 3 inequivalent nontrivial solutions to (2): m =
5,7,11. In the next section we will explore this example
in depth, and see how to actually realize this exotic Ising
symmetry in a reasonable physical system.

We want to make one more comment before delving
into the examples. The filling fraction v, which equals
the Hall conductance 0., in proper units, is only well-
defined for FQH states and CSLs with a U(1) symmetry.
When such a U(1) charge/spin conservation is broken,
we simply use v to denote a FQH state/CSL which
hosts v~! distinct types of anyons {(a mod v~1)}, with
fractional statistics 6, and mutual statistics éa’b. In
other words, we use v to label a gapped state which
has the same topological order!®'* as Laughlin state?
@ 1qughiin With filling fraction v.

III. EXAMPLES

The first example has the topological order of Laugh-
lin’s FQH state at v = 1/3, and is realized in a 3-orbital
fermion system. It has the following many-body wave-
function in a disc geometry!®

{ZI} H H (1)

I,J=1i<j

1202

(J) Kr, o= i (3)

where z( ) = (I) + 1y( ) is the complex coordinate of
the i—th fermlon in the I-th orbital. When K;; < 0

the above expression actually denotes (with z(I) = EI) —
(I
iy;)

[Z(I) _ (J)}—‘KI,Jl — [2_(1)

2 ( 2](_J)]|K1.J|
so that ®, is well-defined. The following 3 x 3 integer
matrix K in (3)

-1

K=1|0 K= (4)
2

W =

)

0 2
1 0
0 -1

N O =
O w o
— O N

is a different representation!®'® of Laughlin’s original

fermionic wavefunction for FQH states?, but it supports
the same set of anyon excitations and hence encodes the
same topological order. To be precise, a quasihole exci-
tation in the I-th orbibal can be created at coordinate
w(l), whose wavefunction is @45 = Hl [zz(l — w(I)]q)l,.
In such a multi-component FQH state, K~—! determines
the statistics of anyon excitations!?. Specifically the di-
agonal elements of the matrix K—! encode the (self) frac-
tional statistics of quasiholes of every component in units
of 7, while the off-diagonal elements encode the mutual
statistics between quasiholes of different components. It
is easy to show'® that a quasihole in either the 1st or 3rd
orbital has fractional statistics® § = 7/3, while the quasi-
hole in the 2nd orbital is an electron with 8 = 7. Also,
quasiholes from the 1st orbital and 3rd orbital have non-
trivial mutual statistics # = 2w /3. Therefore a quasihole
in the 1st orbital is nothing but anyon (1) in Laughlin’s
v = 1/3 FQH state, while a quasihole in the 3rd orbital
corresponds to (5) ~ (2). Moreover (3) has the same Hall

conductance gy = %% as Laughlin state, if each fermion
in 2nd/3rd orbital carries the same electric charge e as
an electron and each fermion in 1st orbital carries charge
—e!8. With only U(1) charge conservation, such a state
is indistinguishable from the Laughlin state ®qughiin at
one third filling!

Now let us consider an Ising symmetry g which
exchanges the 1st and 3rd orbital. From (4) it is clear
that the many-body wavefunction (3) remains invariant
under this Ising symmetry operation. Clearly anyon (1)
becomes (5) under Ising symmetry g: in other words,
anyons breed in quintuplets (m = 5) under Ising sym-
metry when v = 1/3! In fact, the 3-orbital FQH state



(3) could potentially be realized by e.g. fermionic cold
atoms in optical lattices?®, where the Ising symmetry of
orbital exchange is present.

The second example is spin-1 CSLs with v = % It
is the simplest CSL which can support more than one
pattern in which anyons breed. As mentioned earlier,
there are three inequivalent nontrivial solutions to (2):
m = 5,7,11. This is because in the v = 1—12 Laughlin
state, four distinct anyons (1), (5), (7) and (11) share the
same fractional statistics § = 7/12 mod 2x. The many-
body wavefunction for a spin-1 CSL in the S* basis still
has the form (3), where zi([) denotes the coordinate of
i-th spin with S* = 41,0, —1 for I = 1,2,3. It turns out
that several choices of the matrix K in (3) can give states
which support the set of anyon excitations of the v =
% state, and moreover different choices of such K make
manifest the different possible Ising symmetries that can
be realized. Let us now explore these choices in more
detail.

First of all, the matrix K®), when used in (3)

0 -1 3
Ko =[-1 2 -1
3 -1 0

9

describes a CSL that supports the same set of anyon
excitations'® {(a mod 12)} as the v = - Laughlin state.
Specifically a quasihole in the S* = +1 sector corre-
sponds to anyon (1) and a quasihole in the S* = —1
sector is an anyon (5), both with fractional statistics
th = 05 = 5. Meanwhile a quasihole in S* = 0 sector
is an anyon (3) with statistics 63 = 2Z. Under the Ising
symmetry g = e'" 25 which rotates spin-1’s along
the z-axis by 7, anyons breed in quintuplets: (1) 5, (5).
Note that S* = 0 quasiholes remain invariant under Ising
symmetry since (3) % (15 mod 12) = (3).

A different representation'® of the v = &5 CSL is (3)
with the following matrix K(7:

0 -1 2
-1 4 -1
2 -1 0

my-1_ L
(K ) - 12

K = .(6)

NN =
N = DN
— N~

Here a quasihole in the S* = +1 sector is an anyon (1),
an S% = 0 quasihole is an anyon (4) while an S% = —1
quasihole corresponds to an anyon (7). Therefore under
the Ising spin-flip g = e!™2:5 the anyons breed in
septuplets: (1) % (7). Again, the S* = 0 quasiholes (4)
remain invariant under this Ising symmetry since (4) %
(28 mod 12) = (4).

In another representation of the v = 1—12 CSL, under the
Ising symmetry g = e'™ 2r 5% | anyons breed in multiples
of m = 11. In fact, as discussed earlier, more generally
in the v = - CSL anyons can breed in multiples of
m = 2k — 1. This Ising symmetry can be realized in the
representation'® (3) of the v = 5= spin-1 CSL with the

Figure 1: (color online) A pair of anyons (blue dots) are cre-
ated in the (unique) ground state of the FQH state (3) on the
sphere: (a) lies in subsystem A and (—a) in B. Anyons breed
in multiples of m under the Ising symmetry operation. When
the Ising symmetry operation is only performed on area A,
the anyon (a) becomes (ma) and an extra anyon (a — ma)
emerges on the boundary (the black line) separating subsys-
tems A and B.

following matrix K:

0 1 —k o (1 k1
K=(101] (K) =2 (k& k|.@
k1 0 2k\ 1k 1

Here an S* = +1 quasihole is the anyon (1), an S* =0
quasihole is the anyon (k) and an S* = —1 quasihole is
the anyon (2k —1). The S* = 0 quasiholes (k) remain in-
variant under the Ising symmetry since (k) % (k(2k —1)
mod 2k) = (k). These CSLs can be realized in spin-1
systems on various lattices?!22.

IV. MEASURABLE CONSEQUENCES AND
DOMAIN WALL ANYONS

As discussed in the beginning, the existence of anyons
allows symmetry to be realized and detected in an un-
usual way, such as fractional charges®™® in the presence
of U(1) charge conservation. In our case anyons “breed”
in multiples, or more precisely, distinct anyons (or dif-
ferent superselection sectors?®) exchange under the Ising
symmetry! This unconventional Ising symmetry has dra-
matic measurable effects, both in the bulk and on the
boundary of the system?*.

One particular consequence of the unconventional Ising
symmetry g is illustrated in Figure 1. Consider a pair of
anyon excitations created from the (unique) ground state
on a sphere S. To be specific suppose an anyon (a) is
created in region A while the other anyon (—a) = (—a
mod v~ 1) lies in region B = S\ A. Now let us perform
the Ising symmetry operation g only on subsystem A, so



that an accompanying “domain wall” is created on the
boundary 0A separating two regions A and B. Since
under the Ising symmetry the anyon (a) is transformed
into (ma), conservation of topological charge implies that
an extra anyon (a — ma) must be at large somewhere in
the system. In fact this new anyon (@ — ma) stays on
the domain wall A between the two regions, as shown
in Figure 1. The existence of domain wall anyons is a
remarkable effect of such an exotic Ising symmetry.

In addition to the above phenomena, this unconven-
tional Ising symmetry also has important measurable ef-
fects on the degenerate ground states and on the bound-
ary excitations of the system. However in this paper we
will not discuss those effects and simply refer the inter-
ested readers to Ref. 24 for further discussions.

V. GENERALIZATIONS TO ARBITRARY
ABELIAN TOPOLOGICAL ORDERS

The ideas presented in this letter can be generalized to
arbitrary Abelian topological orders, which always have
U(1)" Chern-Simons “K-matrix” representations'® and
can be analyzed using the theory of lattices and quadratic
forms?®. In this section we study symmetries in bosonic
Abelian topological phases from this generalized perspec-
tive. We first describe how a lattice with an even integral
symmetric bilinear form encodes the fusion and braid-
ing structure of the anyons, and then demonstrate that
the group of braided auto-equivalences - that is, permu-
tations of the anyons that preserve fusion and braiding
structure - is simply the orthogonal group of a certain
“torsion quadratic form”. We then relate this algebraic
structure to the geometric orthogonal group of an inte-
gral quadratic form, albeit one on an extended space of
fields. We start by introducing convenient notation that
will facilitate our discussion.

A. Lattices and Abelian Anyons

Let K be an N x N symmetric integer matrix which
is even, i.e. all the diagonal entries are even. Consider
the integer lattice Z¥ C RY. K defines an inner prod-
uct: if {er} is a basis for L then (e;,e;) = Kr;. We
can then consider the dual lattice L* ¢ RY, defined to
consist of those vectors whose inner product with all the
vectors in L is an integer. We denote the dual basis
e = K;Jle‘] so that (ej,es) = dr;. The following
notation is convenient: given k € RN, we can expand

k= Z krej. (8)
T

The column vector (k) will be denoted k. Thus, in this
notation (I, k) = 17K~ k.

Clearly L C L*, so we can form L*/L. This is a fi-
nite abelian group whose elements correspond to the frac-

tional abelian anyons in our theory. Note that each ele-
ment of L*/L has a representative in the unit cell deter-
mined by the basis {e;}. That is, given [* € L*, there ex-
ists a unique [* such that I* —[* € L and 0 < (I*,e%) < 1
for all J. We henceforth abuse notation slightly and re-
fer to I* € L*/L; by this we mean that [* = [*, and are
actually referring to its coset in the quotient.

Since our goal is to study automorphisms of L*/L that
preserve braiding and fusion rules, let us describe how
to extract this data - in the form of F and R matrices,
or, more formally, a unitary modular tensor category?3
(UMTC) - from K. For completeness, we check that
this data satisfies the pentagon and hexagon coherence
conditions of a UMTC. To facilitate the discussion, we
introduce some more terminology. First, consider the
map Q : L*/L — U(1) defined by

I* — exp (mQ(l*)) = exp (m(l*,l*)) e UL). (9)

This map simply assigns to each anyon its topological
spin. It is well defined because L is an even lattice. Let
us denote | det K| by |K|. Each {* € L*/L has finite order
m which is a divisor of |K]|, i.e. there is a divisor m of
|K| such that ml* € L. Thus the image of ) actually lies
in Zyk| C U(1), where the inclusion is

r € Zok| — exp (rir/|K|) (10)

We will from now on use the additive notation appropri-
ate to Zgk| for the range of Q (i.e. we will be adding
phases rather than multiplying their exponentials). In
this additive notation, () satisfies

Q(r*) = r*Q(I*) (11)

for any r € Z. Such a function is known as a ‘torsion
quadratic form’. In order to define the R matrix, we have
to somehow extend @ to a ‘symmetric torsion bilinear
form’. This is easy when |K| is odd, but more subtle
when |K]| is even, so we treat the two cases separately.

When |K] is odd, then the order m of any I* € L*/L is
necessarily odd. Therefore (I*,1*) = (ml*,ml*)/m? has
even numerator and odd denominator, so that the image
of @ actually lies in Zk| C Zgjk| C U(1). Define

ey B

QU+ 1) = Q) - Q()) (12)

Here B takes values in Z k|, in other words emiBUTET) —

exp (27rir/|K|
(9) of @, we see that B is bilinear. It is also obviously
symmetric, and satisfies B(I*,1*) = Q(I*). Such a B is
an extension of @) from a torsion quadratic form to a
‘symmetric torsion bilinear form’.

Returning to the construction of the F' and R matrices,
we can now set all the F' matrices to 1, and let

) where r € Zjk|. From the definition



R(*,k*) = B(I*, k*) (13)

We claim that these satisfy the pentagon and hexagon
equations. Indeed, the pentagon equations are trivial,
while the hexagon equations simply express the bilinear-
ity of B and its conjugate. Also, the S-matrix elements
are simply given up to normalization by 2B(I*, k*). Non-
degeneracy of 2B implies non-degeneracy of S. We have
thus constructed a valid MTC.

The even |K| case is more complicated, because there
is now an obstruction to defining a bilinear B, basically
because 2 € Zk | is not invertible. Indeed, we can define

2B(I", k%) = QU + k%) = Q") — Q(KY), (14)

valued in Z k|, which is bilinear, but for each pair [*, k*
we now have two choices of B(I*, k*) (namely, if 2r = s
modulo |K| then also 27/ = s modulo |K| with ' =
r + |K|/2 an integer since |K| is even). In general it
is impossible to make these choices in a way compatible
with bilinearity - this is analogous, for example, to the
fact that we cannot take the square root of z over the
entire complex plane in a way compatible with continuity.

Nevertheless, the failure of bilinearity can be compen-
sated by appropriate signs in the F-matrix in such a way
that the entire structure obeys the pentagon and hexagon
equations. We describe this construction in detail in Ap-
pendix B.

B. Braided Auto-equivalences

Now that we have shown how to extract the UMTC
structure from K, we study which permutations of the
anyons are compatible with this UMTC structure. Po-
tential symmetry actions will be restricted to permuta-
tions of this form. Let us first make some general remarks
that apply regardless of the parity of |K|. First, in order
to preserve fusion rules, a putative braided equivalence g
must be a group automorphism of the group L*/L. Sec-
ond, g must preserve topological spins, since these are
topological invariants, i.e. g must preserve the torsion
quadratic form @ on L*/L. Now, there is a theorem
(Proposition 9.4 in Ref. 25) that any such automorphism
g of L* /L lifts to a stable isomorphism from L and L& M,
where M is a unimodular lattice - in fact, M can be taken
to be a direct sum of hyperbolic planes®.

Unwound, this means the following. Form the exten-
sion K, of K to N + 2N’ dimensions by adding a direct
sum N’ copies of the two by two matrix

H:(?é) (15)

K.=KaoHY (16)

where N’ is a positive integer. The extended lattice cor-
responding to K, is simply L, = L & M, while its dual
L} = L*® M since M is unimodular. Hence the quotient
L?/L. can be canonically identified with L*/L. Now,
suppose W is a N +2N' by N + 2N’ unimodular integer
matrix (i.e. W has integer entries and determinant 1)
which satisfies:

WKW =K,. (17)

Then W defines an isometry which maps the lattices
L., L} to themselves, and hence defines an automorphism
gw of L:/L., = L*/L. Now the claim is that given any
group automorphism ¢ : L*/L — L*/L preserving the
torsion quadratic form @, there exists some N’ and W
constructed as above for which ¢ = gy. Thus, the ab-
stract algebraic objects we started with, namely auto-
morphisms of the torsion quadratic form @, have a ge-
ometrical interpretation as isometries, provided we add
enough extra ‘trivial’ dimensions. Note that adding ex-
tra dimensions may already be necessary even with one
by one K matrices. For example, if K = 12 as in our ex-
ample above, then x — 5z mod 12 is an automorphism
of Q which can not be represented geometrically in one
dimension. However, it can be represented geometrically
once one adds one copy of the hyperbolic plane, so that

010
K.=1100 (18)
00 12
Indeed, in this case
3 -2 12
W=| -2 3 -12 (19)
1 -1 5

does the job.

We have shown that any putative braided auto-
equivalence of the UMTC associated with L* /L must at
least be an automorphism of the torsion quadratic for
Q@ defining the topological spins. Now we state a con-
verse: any automorphism of the torsion quadratic form
actually defines a valid braided auto-equivalence. When
|K| is odd this is quite easy to show, because any au-
tomorphism of the torsion quadratic form automatically
preserves the bilinear form B(I*,k*), and hence the R
matrices. Since the F matrices are all equal to 1, g triv-
ially preserves them, and thus defines a braided automor-
phism of L*/L. When |K]| is even, the argument is more
subtle, but the conclusion remains the same.

Thus we have completely characterized the braided
auto-equivalences of a bosonic theory with K-matrix K -
they are just the automorphisms of its torsion quadratic
form. Furthermore, we have shown that any such auto-
morphism can be lifted to an isometry of a stably equiv-
alent K-matrix, generalizing the examples given in the
beginning of this paper.



VI. DISCUSSION

In this work we presented a class of exotic realizations
of global Ising symmetry in FQH states that host the
same set of anyon excitations {(¢ mod v~!)} as Laugh-
lin states with filling fraction v = ﬁﬂ or v = ﬁ Un-
der the Ising symmetry operation, anyons can “breed” in
multiples of m, i.e. (a) % (ma). Examples in v = ﬁ
FQH state and v = ﬁ chiral spin liquids were demon-
strated. We also discussed significant measurable conse-
quences of this Ising symmetry, e.g. the fact that anyons
can emerge on the “domain wall” of the Ising symmetry.
These symmetry-enriched FQH states may potentially
be realized in fermions in optical lattices or in spin-1
magnets. Such a phenomenon, i.e. anyons exchanging or
breeding under symmetry operations, can be generalized
to an arbitrary Abelian topological order.

After the completion of this work we became aware of
Ref. 30 in which similar ideas are introduced.
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Appendix A: Why are Laughlin states ®rqugniin
equivalent to 3-component states ¢,7?

In this section we explain in detail why Laughlin’s

states? at filling fraction v = ﬁ (orv=35)

(pLaughlin ({21}) = H(Zi - Zj)l/y exp[— Z |Zl‘2/4](A1)

are equivalent to the following 3-component fractional
quantum Hall (FQH) states'®

[ IT" -

1,J=1i<j

12012 (I)|2

AN e S (A2)

e, ({#}) =

with proper choices of symmetric integer matrix K. By
“equivalent” we mean the two gapped states (Al) and
(A2) supports the same set of anyon excitations” ®. In
other words they share the same topological order!419,

First of all, a fermionic Laughlin state (A1) with
v = Tl-ﬁ—l (so that many-body wavefunction is anti-
symmetric) is equivalent to (A2) with

2% +1
Ko = 1 (A3)

-1

which'6:'7 simply stacks a layer of integer quantum Hall
(IQH) state of Hall conductance 0., = 1 (in unit of €% /h)
and another layer of IQH state of o, = —1 on top of the
Laughlin state. This is because an IQH state of fermions
only hosts fermionic excitations it doesn’t bring in anyon
quasiparticles into v = zk T Laughhn s FQH state. And

the total Hall conductance o, = is the same after

)
stacking the two layers. In fact theseJ’Ewo states, i.e. (A1)
with v = T—&-l and (A2) with (A3) are mdlstlngulshable
in the presence only U(1) charge conservation.

Now notice that in wavefunction (A2) one can choose
how the three components (I = 1,2,3) of fermions are
defined. For examples with v = % (k = 1), when we
choose matrix (A3) in wavefunction (A2) we also choose
the definition of fermions for the 3-components: f;23.
We can redefine electron operators in a different basis:

e.g. define the new 3-component fermions as f5 ;3 = fa3

but f] ~ fi(f1)? (i.e. combine two holes of 3rd compo-
nent with one fermion of 1st component to form the new
fermion of 1st component). In this new basis the matrix
becomes

~10 2
K=X"KX=[0 1 0],
2 0 -1
1 00
X=|0 10|, detX=1. (A4)
201

in many-body wavefunction (A2). In general such
a change of basis (and redefinition of “electrons”) is
implemented!”31™3% by a N x N unimodular matrix
X € GL(N,Z) (note det X = £1) for a symmetric N x N
integer matrix K. The U(1) charge conservation can
be labeled by an integer charge vector3® qo = (1,1,1)T:
which means each fermion of any component carries unit
U(1) charge. Under a change of basis implemented by
GL(N,Z) transformation X the charge vector q changes
as

Q= (1,1,1)" - q=X"qy=(-1,1,1)".  (A5)
This means each new fermion of 1st component carries
U(1) charge —1, while each fermion of 2nd or 3rd com-
ponent carries unit U(1) charge. Therefore we’ve shown
that matrix K with charge vector q in (A2) represents
the same FQH state as matrix Ky with charge vector
qo in (A2), in the presence of U(1) symmetry. Both
representations are indistinguishable with the original
Laughlin state (A1) with v = 1/3.

Now let’ s turn to Laughlin’s chiral spin liquids (CSLs),
i.e. v = 3= in (Al), where the microscopic degrees of
freedom are bosonic spins instead of fermions. Like in
the fermion case, a two-dimensional trivial insulator of
bosons can be stacked on top of the CSL and it doesn’t
change the anyon excitations of the system at all. Such a
trivial boson insulator is given by the lower 2 x 2 part!'6:17



of the following matrix

2k
Ky=10
0

o = O

0
0 (A6)
1

In other words (A2) with this matrix Ko and original
Laughlin state (A1) with v = - are indistinguishable in
the absence of extra symmetries. Again one can change
the basis by GL(N,Z) transformations X, which yield

—k 1
) Xb = —k

0
1 1
0 1

00
K = X/K,X, = 1 0)A7)
—k 01

Moreover when v = 4 i.e. k = 6, (AG) has the follow-

ing two different representations

0 -1 3
K® =XTK,X; = -1 2 —1], (A8)
3 -1 0
1 00
X;=(-31 0 |eGL3,2).
2 1 -1
and
0 —1 2
K" =XIK,X,=|-1 4 -1/, (A9)
2 -1 0
1 00
Xo=[(-21 0 | eGL3,2).
3 2 —1

They are all indistinguishable with the original Laughlin

state (A1) with v = 5.

Appendix B: Fusion and Braiding rules for even |K]|

Here we give the technical construction of the F and R
symbols for the case of an abelian theory defined by a K
matrix with even |K|. The conventions are as in section
V. We start by defining the F symbols. First of all, as an
abstract abelian group L*/L splits as a direct product of
its Sylow p-subgroups over prime divisors p of |K|:

L*/L = HAp = Az X Aodd (B1)
p
where
Apdd = H A,. (B2)

p=>3

Here A, is defined as the set of all {* € L*/L whose
order is a power of p. Given [* € L*/L, let us denote

its decomposition with respect to (B2) by (13,1} 44). For
I*,k* € L*/L, we note that 2B(l%,k*,,) is killed when
multiplied by a power of 2 (using bilinearity in the first
variable together with the fact that the order of I3 is a
power of 2), and is also killed when multiplied by an
odd number (using bilinearity in the second variable,
whose order is odd). By Euclid’s algorithm there is a
linear combination of these equal to 1, which means that
2B(l5, kl4q) is itself 0. By symmetry 2B(k3, %) also
vanishes, and we obtain

2B(I*, k") = 2B(13, k3) + 2B(l3aq: koaa) (B3)
Thus Ay and Ayqq are orthogonal under 2B. We now
define B on Ay and Aoqq separately. On Agqq we can
proceed as in the previous section, since |Aqqq| is odd
and division by 2 is not a problem. For A,, we proceed
as follows. Given a value of 2B(l3,k3) € Zik| = j, we
set B(l5,k3) = j € Zyk). Note that this is effectively a
division by 2 if we look at Zjk| C Zgk| C U(1), and that
it is not a linear map Zjk| — Zyk|-

We can now define

B(l*vk*) :B(l;7k>2k)+B( de? gdd) (B4)
on all of L* /L. In order for this to be a useful definition,
we should at least make sure that B(I*,1*) = Q(I*), since
the latter is already defined on all of L*/L. This follows
from the fact that any torsion quadratic form (in partic-
ular @) respects the splitting into Sylow subgroups. The
proof of this fact is slightly more involved than that of
its analogue for torsion bilinear forms (B3) - the 2-Sylow
subgroup must be treated carefully (see Ref. 25, Section
I1.5) B, as defined in (B4), only fails to be bilinear on Ay;
the second term on the right hand side of (B4) is bilinear
by the arguments of the previous section since A,qq has
odd cardinality.

We now prove a technical result about A, which will
be important later. We view L C L* as embedded in
RY. We claim that there exists a vector subspace S C
RY with the following properties: 1) any vector [ € LN
S has even inner product with any other & € L and
2) (L*N S)/(LNS) C L*/L contains As. To see this,
chose a minimal set of elements eq,...,e, € L* which
generate As in L*/L, and let S be their span over R.
Then property 2 is automatic. Furthermore if [ € LN S,
then we can write [ = nie; + ...+ n,e, with integers n;.
We claim that [/2 € L*NS. For if not, then at least one of
the n; is odd, and since the order of e; is a power of 2 and
hence relatively prime to n;, by Euclid’s algorithm we can
express e; as a linear combination of the other e; modulo
L, violating the assumed minimality of the generating
set e1,...,e,. Thus [/2 has integer inner products with
all £ € L, meaning that [ has even inner products with
all k € L. We will from now on choose our unit cell of
L € RY in a way that is compatible with the choice of
S - specifically, we ensure that all the representatives of
As in our chosen unit cell also lie in S. This will become



important in checking the pentagon equation for the F
symbols we now construct.
Define, for I*,j*, k* € L*/L,

Note that the F-symbols defined in (B5) are in fact signs.
To check that they satisfy the pentagon equation, we
simply have to show that the 3-cochain defined by (B5)
is actually a 3-cocycle. We explicitly calculate

AF(I*,j* k*,m*) =
exp (mi(l5 + j3 — 15 + j5, k3 +mb — k3 +m3))

In order for this to vanish, we have to check that the
inner product above is an even integer. But both of the
vectors entering the inner product are in LN.S, and hence
the inner product is even by the technical result above.
Thus the F-symbol satisfies the pentagon identity, and
defines a cohomology class

[F] € H3(L*/L,Zs). (B8)

We can also look at the cohomology class of F in
H3(L*/L,U(1)).

Now we have to check the hexagon equation. Let us
consider a hexagon diagram which one either fuses j* and
k* and braids the product around [*, or braids j* and k*
individually and then fuses. This diagram contains three
phases that come from R-matrix moves and three signs
that come from F-matrix moves. We can check directly
that the (appropriately ordered) product of the R-matrix
phases is

exp (mi(l3, j3 + k5 — j3 +k3) (B9)
Meanwhile, the F-matrix phases multiply out to
Fl*7j*,k*Fj*,l*,k*Fj*’k*7l* = E*7j*7k* (Blo)

since Fjj« j« p= = Fj« = ;«. The F' and R matrix phases
cancel using (B5), so that the hexagon equation is satis-
fied. The other hexagon equation is simply the complex
conjugate of this.
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