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Anyon representation of the ground-state degeneracy of the quantum frustrated XY model
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We use the extension of the Jordan-Wigner transformation to planar systems to investigate the

quantum frustrated XY model for spin —,
'

on a square lattice. We find that this model is mapped into

the hopping Hamiltonian for a planar spinless electron in a transverse magnetic field. When we fix the

frustration parameter to be a rational number such that the electron density is proportional to the total

flux threading the plaquette, the model is equivalent to a ZN gauge theory of anyons. The ZN symme-

try of the anyon theory implies a degeneracy 2N for the ground state of the model considered. Since

we regard the frustration field as classical background, our approach has to be considered as a mean-

field theory of the frustrated spin model. We briefly discuss the eAect of quantum corrections to the

ground-state degeneracy.

In this paper we apply the recently proposed extension

of the Jordan-Wigner transformation to planar systems'

to investigate the quantum frustrated XY model for spin
—, on a two-dimensional square lattice. Our aim is to pro-

vide a mean-field theory description of the ground-state

degeneracy of this model. In fact, we shall regard both

the frustration and the Chem-Simons field introduced by

the Jordan-Wigner transformation' as classical back-

ground.

There are many motivations for our analysis. First of
all, frustrated spin Hamiltonians have been extensively

used to describe the dynamics of holes in strong-coupling

Heisenberg-Hubbard models for which a class of varia-

tional wave functions have been recently proposed and

extensive numerical work has been done. In this context,
the approach proposed in this paper leads to useful hints

on the class of wave functions describing the hole dynam-

ics. Another class of problems where the study of frus-

trated spin Hamiltonians could be relevant is provided by
the theories of the fractional quantum Hall effect

(FQHE) and anyonic superconductivity. 5 Both phenome-

na are due to a novel state of matter with properties rem-

iniscent of superfluidity. We conjecture that the frustrat-

ed XY model could be regarded as a useful lattice model

of the anyon superAuid. In the past spin-lattice models

have been successfully proposed to explain the peculiar

properties of liquid helium I t.

In the sequel we shall prove first that the Hamiltonian

of the quantum frustrated XY model can be mapped into

the hopping Hamiltonian for a planar spinless electron in

a transverse magnetic field. The latter Hamiltonian has

an extremely rich spectrum as shown by Hofstader, Wan-

nier, and Azbel. " Recently, it has been the object of
renewed interest ' because of its connections with the
Hartree-Fock theory of the t-j model. Our results pro-

vide an elegant proof of the "molecular field" computation
of Ref. 11. Second, following the constructions of Refs. 1,
9, and 12, we show that the quantum frustrated XYmodel
can be regarded as a theory of anyons' on the lattice in-

teracting with a ZN gauge potential when the frustration
parameter f is a rational number. .The statistical parame-
ter of the anyons 8 is related to the frustration by 8=2ttf.

H=+trJ g [m(r)+f]G(r, r')[ (rrn')+fl . (4)

Our analysis confirms and extends the results of Ref. 14,
allowing one to interpret the uniform frustration field as a
Chem-Simons gauge field. The scenario is similar to the

one advocated by Girvin for the mean-field theory of the

FQH E.
For anyons on a torus, the Z~ gauge symmetry has

been analyzed in Refs. 15 and 16.
The model Hamiltonian we posit to describe the quan-

tum frustrated XYmodel is

H=J g [S; U~l Sjl. (I)
&i,j )

In Eq. (1),i,j denote arbitrary lattice sites, (i,j ) is the

nearest-neighbor sum, and U;~ is a link gauge degree of
freedom describing the frustration field. '

In the follow-

ing we consider the ease in which J is a ferromagnetic cou-

pling. The extension to frustrated antiferromagnets

goes through with only minor modifications.

Equation (1) is required to be invariant under the U(1)
gauge transformation

5; A(S;,

U;j A;U;j Aj*, (2b)

with A;
—=ex pi 0;.

As a consequence of gauge invariance the partition
function has to depend only on the gauge-invariant quan-

tity rl„U;l constrained to equal

Q Utl —= ~tl Jg Ut;;U„; e (3)

In Eq. (3) f is the frustration parameter. It measures

the ratio between the flux threading the plaquette and the
unit magnetic fiux go=e/hc. Due to the invariance of the
theory under f f+n(n C Z) and f f we have—
P(f( —,

'

In its classical version, the Hamiltonian (1) provides an

elegant description of Josephson-junction arrays in a
transverse magnetic field. '" Via a Villain transforma-
tion, ' the classical Hamiltonian can be mapped into a lat-
tice plasma model of the form
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In Eq. (4) r and r' denote arbitrary points on the dual

lattice, G(r r—') Iog(r r—') as [r r'—
[ ~, and the

charges m(r) are restricted to integer values. The aver-

age value of the plasma charges over the entire lattice is

constrained to equal f.
To fermionize the spin system one notices that the

SO(:3) Lie algebra with irreducible s = —.
'

representation

can be realized by the fermionic variables y; and yt with

fy;, itl~] =b(i —j}and all other anticommutators vanish-

ing BS 8=m —4 =2' . (10)

Equation (9) is equivalent to the requirement of charge

neutrality of the Coulomb gas representation of the frus-

trated spin system and is satisfied by the gauge-invariant

states of the quantum frustrated LY model. As a conse-

quence, this model can be mapped into a theory of anyons

on the lattice interacting with a ZN gauge potential.

To construct the anyonic model one notices ' that if a

flux + threads a plaquette adjacent to a fermion, the par-

ticle with the flux (i.e., the anyon) obeys 8 statistics, '

S; =exp +i(2k+I)+8(i —j)Jp(j)
J

S;+ =y; exp i(2—k+1)+8(i j)J—o(j )
J

with S;— S;z ~ S;2 and Jo(j )= yj yj equal to 0 or l.
The fermionic version of (1) is then

(sa)

(sl )

In Eq. (10) 8 is the statistical parameter of the anyon

and f is the frustration parameter. The ensuing Hamil-

tonian for the anyons is

H=gP;e "P. ,
(ij )

with

A; (J) =A, (J ) + (2k + I )g [8(J+ i —z )

—8(j—z)]Jo(z) . (7)

In Eqs. (6) and (7) 8(i —j) is the angle between the

vector connecting sites i and j of the lattice and a refer-

ence direction. Since in a quantum theory Jo has eigen-

values 0 and I the ambiguity of 2n in the definition of 8
has no effect in Eqs. (6) and (7). Furthermore, k is an in-

teger, 8(0) 0, and A;(j) is the phase of the field U~.
In Eq. (7) the total gauge potential is the sum of the

frustration field and a Chem-Simons field, both of
which we regard here as classical background fields.

The electron hopping model described by Eq. (6) may

be derived from an action with a Chem-Simons term

whose coefficient is 8 n(2k+ I). The flux through the

plaquette of the Chem-Simons field equals n(mod2n).
The total flux threading the plaquette is constrained to

equal

Since we require the model described by (6) to be

periodic in A;(j) (i.e., A;(j) and A;(j) A;(j)+2xnj
with nJ arbitrary integer cannot be distinguished] time-

reversal invariance is broken except for the special cases

O, x. These cases correspond to the fully frustrated

(f= —.
'

) and the ordinary (f=0) quantum XV model, re-

spectively. For intermediate rational values of the frustra-
tion the ground state of (6} is expected to be a chiral spin

state. ' We recall that f has to be a rational number

when one imposes doubly periodic boundary conditions on

the lattice. In the following, we shall restrict to only such

values off.
In Ref. 10 it has been shown that the energy of the

chiral spin state reaches an absolute minimum when the

flux per plaquette equals the electron density per site, i.e.,
when

(9)

where 8;~ =2zfN with N the smallest integer such that Nf
is an integer.

Notice that for f=0 Eq. (11) provides a free theory of
hard-core bosons. This corresponds to the exact ground

state of the quantum XY model for spin —'. For f=0
Eq. (11) provides a description of the frustrated spin sys-

tem in term of free ferrnions with Aux m per plaquette.
The ground state is in this case the so-called AflIeck-

Marston flux phase. The case f=
4 corresponds to

semions in the proposed mean-field approximation.

The discrete symmetry ZN of the anyonic theory im-

plies a degeneracy 2N for the ground state of the quantum

frustrated LV model. For the classical model the

ground-state degeneracy has been investigated numerical-

ly for f= —,
'

and f= —,'. '"

As pointed out in Refs. I5 and 26, the origin of the

discrete symmetry ZN is topological. This is easily seen if

one notices that since the statistical parameter of the

anyons is 2' the pertinent one-dimensional unitary repre-

sentation of the braid group is given by

g(o'] =e'" g((cr') '] =e '"V (12)

with 8=2f. When 8=M/N with M and N prime integers

there are N distinct phases and the representation is finite

dimensional even though the group itself has infinite ele-

ments. The resulting N species of anyons are thus degen-

erate in energy. Due to Eqs. (5) to the symmetry f f-
the ZN symmetry of the anyonic theory implies that the

mean-field theory ground state of the quantum frustrated

LV model is 2N degenerate.
The above argument —together with the computation

of the ground-state energy of the classical frustrated XY
model' —leads to the conjecture that irrational values of

f should be treated as a sort of decompactification limit

(N ~)—analogous to the one of Ref. 27—of the

theory with rational frustration. We recall that f is con-

strained to equal a rational number when the boundary

conditions on the lattice are doubly periodic. The elusive

precise definition of this limiting procedure relevant for

many physical applications is the object of ongoing inves-

tigation.
Our approach treats both the frustration and the

Chem-Simons field as classical background fields; thus it

has to be regarded as a mean-field theory of the quantum
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frustrated XY model. It would be interesting to compute

the effects of quantum fluctuations at least on the

ground-state degeneracy of the frustrated XYmodel. Our

analysis reduces this problem to the evaluation of the

quantum corrections to the statistical parameter of anyons

on the lattice. In the continuum theory, when the matter

fields coupled minimally with a Chem-Simons field are

massive, the statistical parameter is not subject to renor-

malization. " Thus, an answer to this question depends

upon the specific choice of the Uii's. Explicit model com-

putations are now in progress.

A merit of our approach is that it provides a simple con-

structive argument by which the internal frustration field

can be regarded as a Chem-Simons field. The emerging

scenario is reminiscent of the Landau-Ginzburg theory of

the FQHE. It is natural to ask if the magnetic model we

considered in this paper may be considered as a spin-

lattice model of quantum Hall liquid. We shall report on

the results of the computation of the magnetic susceptibil-

ity in a separate paper.
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