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ABSTRACT

We construct twisted quantum bundles and adjoint sections on noncommutative T4, and in-

vestigate relevant D-brane bound states with non-Abelian backgrounds. We also show that the

noncommutative T4 with non-Abelian backgrounds exhibits SO(4, 4|Z) duality and via this du-

ality we get a Morita equivalent T4 on which only D0-branes exist. For a reducible non-Abelian

background, the moduli space of D-brane bound states in Type II string theory takes the form
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1 Introduction

Recent developments in nonperturbative string theories have provided new powerful tools to

understand supersymmetric gauge theories [1]. The Bogomol’nyi-Prasad-Sommerfeld (BPS)

brane configurations led to many exact results on the vacuum structure of supersymmetric

gauge theories. One may be interested in counting degeneracy of D-brane bound states of

type II string theory compactified on R1,9−d × X in which a gauge field strength F and a

Neveu-Schwarz B field on the brane are nonzero. Then p-branes wrapped on a compact p-

cycle Wp ⊂ X and their bound states look like particles in the effective R1,9−d spacetime.

Moreover, the degeneracy of the bound states is the same as the number of ground states in

the corresponding quantum field theory on the D-brane worldvolume [2].

The D-brane moduli space [3, 4] can be defined as a space of Chan-Paton vector bundle E

over X or a space of solutions to the equation given by

δλ = FMNΓMNξ + η = 0

for some pair of covariantly constant spinors ξ and η on R1,9−d ×X. The various RR charges

are given by the Mukai vector Q = v(E) = Ch(E)
√
Â(X) ∈ H2∗(X,Z) where Ch(E) =

Tr exp
[

1
2π

(F − B)
]

is the Chern character and Â(X) = 1 − p1(X)/24 is the A-roof genus for

four dimensional manifold X. Then the supersymmetric, BPS bound states, for example (D0,

D2, D4) bound states on T4 or K3, are allowed by the Chern-Simons couplings [5]
∫

X×R

CRR ∧Q.

It was shown in [6, 7] that noncommutative geometry can be successfully applied to the com-

pactification of M(atrix) theory [8] in a certain background. In those papers, it was argued that

M(atrix) theory in a 3-form potential background with one index along the lightlike circle and

2 indices along Td is a gauge theory on noncommutative torus, specifically (d+1)-dimensional

noncommutative super Yang-Mills (NCSYM) theory. Many more discussions of M- and string

theory compactifications on these geometries followed, for example [9, 10, 11, 12, 13, 14, 15].

One obvious advantage of NCSYM theory defined on Td is that the T-duality, SO(d, d|Z),

of type II string theory compactified on torus becomes manifest [6, 7, 13, 14, 15]. Morita

equivalence between two noncommutative torus [10, 11] encompasses the Nahm transformation

part of T-duality, not clearly observed in conventional Yang-Mills theory. Using this symmetry,

it may be possible to systematically count D-brane bound states on T4 or K3 as ground state

configurations for the supersymmetric gauge theory.

For compactifications on T2 and T3, generic U(N) bundles on it admit vanishing SU(N)

curvature [6, 12, 13]. However, for compactifications on tori of dimension 4 or larger, not
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all bundles allow vanishing SU(N) curvature so we have to consider more generic bundles

with nonvanishing SU(N) curvature. It turns out [16, 17] that one can construct twisted

SU(N) gauge bundle on T4 with fractional instanton number. However, in discussing the

U(N) gauge theory as D-brane dynamics, it is understood that the total instanton number

is integral since the instanton number is related to D0-brane charges inside D4-branes, which

should satisfy Dirac quantization due to the existence of D6-brane in type IIA string theory

[18]. In [19, 20], ’t Hooft solutions on twisted bundles on commutative tori were realized by

D-brane configurations (D-brane bound states) wrapped on tori in type II string theory, and it

was shown that U-duality relates their bound states.

In general one can consider gauge bundle on T4 with non-Abelian constant curvature [17].

In that case, non-Abelian backgrounds can be obviously supersymmetric for self-dual or anti-

self-dual fields since the supersymmetry of D-brane world volume theory may be given by

δλ = FMNΓMNξ.

Thus, in order to study the BPS spectrums of the NCSYM theory on the non-Abelian back-

grounds, it will be useful to construct the corresponding gauge bundles. In the presence of

non-Abelian backgrounds as well as Abelian backgrounds, the gauge bundle may be twisted

by the background magnetic fluxes. While Abelian backgrounds universally twist U(N) gauge

bundle, in the case of non-Abelian backgrounds where the magnetic fluxes in U(N) are decom-

posed into U(k) part and U(l) part [17], the magnetic flux in U(k) part twists U(k) ⊂ U(N)

gauge bundle and that in U(l) part does U(l) ⊂ U(N) gauge bundle. This causes two different

deformation parameters to appear.

The Chern character maps K-theory to cohomology i.e. Ch : K0(X) → Heven(X,Z) and

K1 to odd cohomology and Ch(E) = Ch0(E) + Ch1(E) + Ch2(E) when X is 4-dimensional and

E is a vector bundle over X. Here Ch0(E) is the rank of E, Ch1(E) is the first Chern class

and Ch2(E) corresponds to the instanton number. Ch1(E) is integral winding number when

the torus is commutative and it is not integer anymore when the torus is noncommutative but

Ch2(E) still remains integral even if the torus becomes noncommutative [10, 11, 14]. However

D-brane charges take values in K(X), the K-theory of X [21], which constitutes a group of

integer Z. The (4+1)-dimensional U(N) SYM theory can be interpreted as dynamics of N

D4-branes. Six magnetic fluxes are D2-branes wound around 6 two-cycles of T4. Instantons

are D0-branes bound to D4-branes. Thus, even when NS-NS two-form potential background is

turned on, the physical D-brane numbers should be integers. In addition, the rank, 6 fluxes,

and instanton (altogether, eight components) make a fundamental multiplet of the Weyl spinor

representation of SO(4, 4|Z) [14].

Since the explicit constructions of twisted bundles and adjoint sections in the literatures have
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been performed only for Abelian backgrounds, we will construct them for constant non-Abelian

backgrounds in this paper. In section 2, we construct twisted bundles on noncommutative T4.

In section 3, adjoint sections on the twisted bundle will be constructed. In section 4, we show

that the modules of D-brane bound states exhibit an SO(4, 4|Z) duality and the action of this

group gives Morita equivalent T4 on which only D0-branes exist. Section 5 devotes conclusion

and comments on our results. In appendix, we present some details of the representation of

SO(4, 4|Z) Clifford algebra.

2 Twisted Quantum Bundles On T4

To define the noncommutative geometry, we understand the space is noncommutative, viz.

[xµ, xν ] = −2πiΘµν . (1)

Then the noncommutative T4, which will be denoted by T4
Θ, is generated by translation oper-

ators Uµ defined by Uµ = eixµ and satisfies the commutation relation

UµUν = e2πiΘµνUνUµ. (2)

Also, we introduce partial derivatives satisfying

[∂µ, x
ν ] = δν

µ, [∂µ, ∂ν ] = 0.

We construct quantum U(N) bundles on T4
Θ following the construction of [12, 13] and [17].

Start with a constant curvature connection

∇µ = ∂µ + iFµνx
ν , (3)

where Greek indices run over spatial components only. In this paper we allow the U(N)

gauge fields with nonvanishing SU(N) curvature in order to consider non-Abelian backgrounds.

Following the ansatz taken by ’t Hooft [17], we take the curvature Fµν as the Cartan subalgebra

element:

Fµν = F (1)
µν + F (2)

µν , (4)

where F (1)
µν = TrFµν and F (2)

µν ∈ u(1) ⊂ su(N). The constant curvature is given by

Fµν = i[∇µ,∇ν ]. (5)

And one can calculate to get

F = (2F + 2πFΘF ). (6)
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Note that both F and Θ are antisymmetric 4 × 4 matrices.

The gauge transformations of fields in the adjoint representation of gauge group are insen-

sitive to the center of the group, e.g. ZN for SU(N). Thus, for the adjoint fields in SU(N)

gauge theory, it is sufficient to consider the gauge group as being SU(N)/ZN . However, there

can be an obstruction to go from an SU(N)/ZN principal fiber bundle to an SU(N) bundle

if the second homology group of base manifold X, H2(X,ZN ), does not vanish [22]. In order

to describe such a nontrivial U(N) bundle, it is helpful to decompose the gauge group into its

Abelian and non-Abelian components

U(N) =
(
U(1) × SU(N)

)
/ZN . (7)

It means that we identify an element (g1, gN) ∈ U(1)×SU(N) with (g1c
−1, cgN), where c ∈ ZN .

Therefore one can arrange the twists in U(N) to be trivial by cancelling them between SU(N)

and U(1) [19]. This requires consistently combining solutions of SU(N)/ZN with U(1) solutions

as to cancel the total twist.

To characterize the generic U(N) gauge bundle on T4
Θ, we allow the gauge bundle be periodic

up to gauge transformation Ωµ, i.e.

∇µ(x
α + 2πδα

ν ) = Ων(x
α)∇µ(x

α)Ω−1
ν (xα). (8)

Consistency of the transition functions of the U(N) bundle requires the so-called cocycle con-

dition

Ωµ(xα + 2πδα
ν )Ων(x

α) = Ων(x
α + 2πδα

µ)Ωµ(xα). (9)

However the SU(N) transition function Ω̃µ(xα) may be twisted as [16]

Ω̃µ(xα + 2πδα
ν )Ω̃ν(x

α) = Zµν Ω̃ν(x
α + 2πδα

µ)Ω̃µ(xα), (10)

where Zµν = e−2πinµν/N is the center of SU(N).

Write Ωµ(x) as a product of an x-dependent part and a constant part

Ωµ(x) = ei(P
(1)
µν +P

(2)
µν )xν

Wµ, (11)

where P (1)
µν is antisymmetric and proportional to the identity in the Lie algebra of U(N) while

P (2)
µν is an element of u(1) ⊂ su(N). And constant N × N unitary matrices Wµ are taken as

SU(N) solutions generated by ’t Hooft clock and shift matrices. For comparision, our P (2)
µν

in (11) corresponds to the constant SU(N) field strength αµν in ’t Hooft ansatz in [17] if we

consider commutative T4.

In the case of vanishing su(N) cuvature, F (2)
µν = P (2)

µν = 0, an explicit construction of

gauge bundles with magnetic and electric fluxes was given in [14]. For the nonvanishing su(N)
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curvature case, following ’t Hooft solution [17] we consider diagonal connections which break

U(N) to U(k) × U(l) where each block has vanishing SU(k) and SU(l) curvature. We also

consider the groups U(k) and U(l) as U(k) = (U(1)×SU(k))/Zk and U(l) = (U(1)×SU(l))/Zl,

respectively. Thus the twists of SU(k) or SU(l) part can be trivialized by each U(1) part. Since

the U(1) in U(N) is the direct sum of U(1) in U(k) and U(1) in U(l), the SU(N) twist tensor

should be a sum of SU(k) and SU(l) twist tensors.

Here we take the generator σ in u(1) ⊂ su(N) as

σ =
(
l 1k 0
0 −k 1l

)
, (12)

where k× k matrix 1k is the identity in U(k) and l× l matrix 1l is that in U(l). Then we take

the SU(N) connection to be proportional to σ. Since the U(N) gauge field in (3) contain only

the matrix σ and the identity matrix 1N in U(N) and so commutes with Wµ, in checking (8),

Wµ are irrelevant in our situation and we have

P = 2πF (1N + 2πΘF )−1 = 2π(1N + 2πFΘ)−1F, (13)

where Pµν = P (1)
µν + P (2)

µν . From the ansatz of Ωµ (11) and the cocycle condition (9), we obtain

the following commutation relation for Wµ

WµWν = e−2πiMµν/NWνWµ, (14)

where M is given by

M = M (1) +M (2) = N(2P − PΘP ). (15)

Here, an integral matrix M (1)
µν is coming from the trace part of U(N), and M (2)

µν which is also

integral is proportional to σ.

We now construct the solutions a la ’t Hooft for bundles with a constant curvature back-

ground (4) on T4
Θ. The greatest common divisor of (Mµν , N) is invariant under SL(4,Z) and

we take it as q. Also, we assume the twist matrix M and the flux P have the form of q copies

of U(n) matrices m and P̃ defined by

m = n(2P̃ − P̃ΘP̃ ), P = 1q ⊗ P̃ , (16)

where 1q is a q-dimensional identity matrix. In other words,

N = q n, M = q 1q ⊗ m, (17)

where n is the reduced rank. In this case, it is convenient to consider transition functions Ωµ

and Wµ as the following block diagonal form [13]

Ωµ = 1q ⊗ ωµ, Wµ = 1q ⊗ W̃µ, (18)
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where ωµ and W̃µ belong to U(n) and SU(n), respectively. Thus we will consider only one copy

described by U(n) transition functions ωµ.

Let us define SU(n) matrices U and V as follows

Ukl = e2πi(k−1)/n δk,l, Vkl = δk+1,l, k, l = 1, · · · , n, (19)

so that they satisfy UV = e−2πi/nV U . For T4
Θ with vanishing SU(n) curvature where we can

put F (2)
µν = P (2)

µν = 0, there are solutions of the form

W̃µ = UaµV bµ , (20)

where aµ and bµ are integers. In order for the U(n) twists to be trivial as in (9), the SU(n)

twists nµν should be balanced with the U(1) fluxes mµν = mµν1n. Thus, the equation (14)

gives

nµν = mµν = aµbν − aνbµ mod n. (21)

In the case of commutative T4, ’t Hooft solutions with nonvanishing SU(n) curvature are

described by breaking U(n) to U(k) × U(l) so that background gauge fields live along the

diagonals of the U(k) and U(l) [17]. Here we have taken n as n = k+ l. For T4
Θ, we now adopt

a ’t Hooft type solution given by

W̃µ = U
aµ

1 V
bµ

1 U
cµ

2 V
dµ

2 , (22)

where aµ, bµ, cµ and dµ are integers to be determined. The matrices U1,2 and V1,2 acting in the

two subgroup SU(k) and SU(l) satisfy the following commutation rules

U1V1 = e−2πi/kIkV1U1,

U2V2 = e−2πi/lIlV2U2, (23)

[U1, U2] = [U1, V2] = [V1, U2] = [V1, V2] = 0,

where n× n matrices Ik and Il have the forms respectively

Ik =
(

1k 0
0 0

)
, Il =

(
0 0
0 1l

)
. (24)

As discussed above, the triviality of the U(n) twists requires a balance between the SU(n)

twists nµν and the U(1) fluxes m(1)
µν , which leads to the identification nµν1n = m(1)

µν . Similarly,

since each block has vanishing SU(k) or SU(l) curvature, the fluxes m(k)
µν in U(k) and m(l)

µν in

U(l) have to cancel the twists n(k)
µν in SU(k) and n(l)

µν in SU(l) respectively, which leads us the

identification as in (21)

n(k)
µν = m(k)

µν , n(l)
µν = m(l)

µν . (25)
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Following the identification (25), one can solve the total SU(n) twists nµν in terms of two sets

of twists n(k)
µν and n(l)

µν , and the SU(n) fluxes m(2)
µν as in [17]. Using (23) the equation (14) gives

nµν

n
1n =

n(k)
µν

k
Ik +

n(l)
µν

l
Il −

m(2)
µν

n
. (26)

Taking the trace on the above equation, we get

nµν = n(k)
µν + n(l)

µν , (27)

where

n(k)
µν = aµbν − aνbµ mod k,

n(l)
µν = cµdν − cνdµ mod l. (28)

Recall that the Pfaffians given by twists n(k)
µν and n(l)

µν satisfy

1

8
ǫµναβn(k)

µν n
(k)
αβ = 0 mod k,

1

8
ǫµναβn(l)

µνn
(l)
αβ = 0 mod l (29)

due to triviality of the SU(k) and SU(l) parts. However, the total SU(n) twists may satisfy

1

8
ǫµναβnµνnαβ 6= 0 mod n (30)

since it is not trivial in this construction. And the 0-brane charge is given by

C = k · Pf(n(k)/k) + l · Pf(n(l)/l) = C(k) + C(l) (31)

which is an integer, due to the triviality of each sector [19]. Therefore, our construction corre-

sponds to D-brane bound states involved with (4, 2, 2) or (4, 2, 2, 0) system depending on the

value of C in the language of [19]. The (4, 2, 2) system is a bound state of 4-branes and 2-branes

with non-zero intersection number but no zero branes. The (4, 2, 2, 0) system is a bound state

of 4, 2, and 0-branes with non-zero 2-brane intersection number.

For an explicit construction of these systems, we may choose

n
(k)
34 = n

(l)
12 = 0, n

(k)
12 6= 0, n

(l)
34 6= 0

for (4, 2, 2), and

n
(k)
12 = p(k), n

(k)
34 = k, n

(l)
12 = l, n

(l)
34 = p(l)

for (4, 2, 2, 0). Here, the 0-brane charge in the (4220) case is given by p(k) + p(l). Notice that

in this construction, the (4, 2, 2) system can be contained in the (4, 2, 2, 0) system as a special

case.
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Since some work in this direction in the vanishing SU(N) curvature case [14] was already

done via van Baal construction [23], below we also show how we can construct a (4, 2, 2, 0)

system a la van Baal in our case.

The equation (14) is covariant under SL(4,Z). Using this symmetry we can always make the

matrix m = m(k) +m(l) to a standard symplectic form by performing a SL(4,Z) transformation

R,

m = Rm0R
T , (32)

where we choose m0 as

m0 =




0 m1 +m3 0 0
−m1 −m3 0 0 0

0 0 0 m2

0 0 −m2 0


 . (33)

Since m0 = m
(k)
0 +m

(l)
0 , we take the matrices m

(k)
0 and m

(l)
0 as

m
(k)
0 =




0 m1 0 0
−m1 0 0 0

0 0 0 m2

0 0 −m2 0


 , m

(l)
0 =




0 m3 0 0
−m3 0 0 0

0 0 0 0
0 0 0 0


 . (34)

Here we have taken a simple U(l) solution for convenience.

Since we consider a special diagonal connection which breaks U(n) to U(k)×U(l) and each

block has vanishing SU(k) or SU(l) curvature, the twisted bundle can be decomposed into

U(k) part and U(l) part and the construction in [23] can be applied to each part separately.

Introduce qi = gcd(mi, k), l0 = gcd(m3, l) (i = 1, 2) and ki = k/qi, l1 = l/l0. In [23], it was

shown that twist-eating solutions of the type

W̃µW̃ν = e−2πimµν
0 /nW̃νW̃µ, (35)

where
m

µν
0

n
=

m
(k)
0 µν

k
Ik +

m
(l)
0 µν

l
Il, can only exist if k1k2|k. We thus write k = k1k2k0. When this

restriction is satisfied, it is straightforward to check that the following solution satisfies (35),

W̃1 = U
m1/q1

k1
⊗ 1k2 ⊗ 1k0 ⊕ U

m3/l0
l1

⊗ 1l0

W̃2 = Vk1 ⊗ 1k2 ⊗ 1k0 ⊕ Vl1 ⊗ 1l0

W̃3 = 1k1 ⊗ U
m2/q2

k2
⊗ 1k0 ⊕ 1l

W̃4 = 1k1 ⊗ Vk2 ⊗ 1k0 ⊕ 1l, (36)

where SU(ki) matrices Uki
and Vki

are defined as

(Uki
)ab = e2πi(a−1)/ki δa,b, (Vki

)ab = δa+1,b, a, b = 1, · · · , ki,

(Ul1)cd = e2πi(c−1)/l1 δc,d, (Vl1)cd = δc+1,d, c, d = 1, · · · , l1, (37)

so that they satisfy Uki
Vki

= e−2πi/kiVki
Uki

and Ul1Vl1 = e−2πi/l1Vl1Ul1 .
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3 Adjoint Sections On Twisted Bundles

According to the correspondence between a compact space X and the C∗-algebra C(X) of

continuous functions on X, the entire topological structure of X is encoded in the algebraic

structure of C(X). Continuous sections of a vector bundle over X can be identified with

projective modules over the algebra C(X). Thus, in order to find the topological structure of

the twisted bundle constructed in the previous section, it is necessary to construct the sections

of the bundle on T4
Θ. Furthermore as noted in [6], if Dµ and D′

µ are two connections then

the difference Dµ −D′
µ belongs to the algebra of endomorphisms of the T4

Θ-module. Thus an

arbitrary connection Dµ can be written as a sum of a constant curvature connection ∇µ, and

an element of the endomorphism algebra:

Dµ = ∇µ + Aµ.

From the relation (8), we see that A is also an adjoint section. Thus the algebra of adjoint

sections can be regarded as the moduli space of constant curvature connections.

In this section we will analyze the structure of the adjoint sections on the twisted bundles

on T4, closely following the method taken by Brace et al. [13] and Hoffman and Verlinde [14].

According to the decomposition (17), we take the adjoint sections of U(N) as the form

Φ(xµ) = 1q ⊗ Φ̃(xµ). (38)

The sections Φ̃ on the twisted bundle of the adjoint representation of U(n) are n-dimensional

matrices of functions on T4
Θ which is generated by (2), endomorphisms of the module, and

satisfy the twisted boundary conditions

Φ̃(xµ + 2πδµ
ν ) = ωνΦ̃(xµ)ω−1

ν . (39)

Suppose that the general solution for the n-dimensional matrices Φ̃(xµ) has the following

expansion

Φ̃(xµ) =
∑

n1···n4∈Z

Φ̃n1···n4Z
n1
1 Zn2

2 Zn3
3 Zn4

4 . (40)

We also try to find the solutions of the following form

Zµ = eixνXν
µ/n

6∏

α=1

Γsµ
α

α (41)

where sµ
α (α = 1, · · · , 6) are integers and X is a matrix to be determined. Here, according to

the basis taken in Eq. (36), we define the SU(n) matrices Γα as follows

Γ1 = Uk1 ⊗ 1k2 ⊗ 1k0 ⊕ 1l,
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Γ2 = Vk1 ⊗ 1k2 ⊗ 1k0 ⊕ 1l,

Γ3 = 1k1 ⊗ Uk2 ⊗ 1k0 ⊕ 1l,

Γ4 = 1k1 ⊗ Vk2 ⊗ 1k0 ⊕ 1l,

Γ5 = 1k ⊕ Ul1 ⊗ 1l0 ,

Γ6 = 1k ⊕ Vl1 ⊗ 1l0 . (42)

One can directly check that the solution (40) is compatible with the boundary condition

(39) if the matrix X is taken as

X = QN

where Q and the integer matrix N are defined as

Q−1 = 1n − P̃Θ, (43)

Nµ
ν

n
=
N (k)µ

ν

k
Ik +

N (l)µ
ν

l
Il, (44)

and

N (k)µ
ν = (−m1s

µ
2 , q1s

µ
1 , −m2s

µ
4 , q2s

µ
3) mod k,

N (l)µ
ν = (−m3s

µ
6 , l0s

µ
5 , lδ

µ
3 , lδ

µ
4 ) mod l.

Let F = 1q ⊗ F̃ . Using Eqs. (6), (13), and (16), the following identity can be derived

Q2 = 1n + 2πF̃Θ = (1n −mΘ/n)−1,

= Q(k)2Ik +Q(l)2Il, (45)

where

Q(k)2 = (1 −m(k)Θ/k)−1,

Q(l)2 = (1 −m(l)Θ/l)−1.

Using the identity, the constant curvature (6) can be rewritten as

F̃ =
1

2π
(n1n −mΘ)−1m =

1

2π
m(n1n − Θm)−1. (46)

Then, using the relation [13]
∫

T4
d4xTrΦ(x) = (2π)4

(
k|detQ(k)|−1TrqΦ

(k)
0000 + l|detQ(l)|−1TrqΦ

(l)
0000

)
,

where Φ
(k)
0000 and Φ

(l)
0000 are the zero modes of the expansion (40), one can check that, as it should

be, the 0-brane charge C in (31) is equal to

C =
1

8π2

∫

T4
d4xTrF ∧ F . (47)
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Now let us calculate the commutation relations staisfied by Zµ’s, which are generators of

the algebra of functions on a new torus, denoted by T4
Θ′. From the explicit form (41), the

commutation relation of the generators Zµ’s can be found as

ZµZν = e2πiΘ′

µνZνZµ, (48)

where

Θ′ = n−2NTQT ΘQN − n−1L, (49)

and the integer matrix L is defined by

Lµν

n
=
L(k)

µν

k
Ik +

L(l)
µν

l
Il, (50)

L(k)
µν = q1(s

µ
1s

ν
2 − sν

1s
µ
2 ) + q2(s

µ
3s

ν
4 − sν

3s
µ
4 ) mod k,

L(l)
µν = l0(s

µ
5s

ν
6 − sν

5s
µ
6 ) mod l.

The deformation parameters Θ′
µν on T4

Θ′ given by (49) can be decomposed into U(k) part and

U(l) part:

Θ′
µν = Θ

′(k)
µν Ik + Θ

′(l)
µν Il. (51)

Here, Θ′(ι) (ι = k or l) can be rewritten as a fractional transformation [13]

Θ′(ι) = Λ
(ι)
0 (Θ) ≡ (AιΘ +Bι)(CιΘ +Dι)

−1, (52)

where

Λ
(ι)
0 =

(
Aι Bι

Cι Dι

)
(53)

and the four dimensional matrices are defined by

Aι = n−1
ι (NT

ι + LιN
−1
ι m0 ι), Bι = −LιN

−1
ι , Cι = −N−1

ι m0 ι, Dι = nιN
−1
ι (54)

with notation nk = k, nl = l. One can check that each Λ
(ι)
0 is an element of SO(4, 4|Z), which

is a T-duality group of the type II string theory compactified on T4;

Λ
(ι) T
0 JΛ

(ι)
0 = J,

J =
(

0 14

14 0

)
. (55)

For (4, 2, 2) or (4, 2, 2, 0) backgrounds where the magnetic fluxes take the form of diagonal

matrices breaking the gauge group to U(k)×U(l), Eq.(51) implies that the moduli space for the

D-brane bound states is described by two noncommutative parameters Θ
′(k) and Θ

′(l). Thus

we expect that it takes the form (T4
Θ

′(k))
p/Sp × (T4

Θ
′(l))

q/Sq with p and q determined by ranks

and fluxes [3, 4].
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4 SO(4, 4|Z) Duality and Morita Equivalence

In this section we analyze the bound states with nonzeroD0-brane charge, C 6= 0, corresponding

to the (4, 2, 2, 0) system. For the given fluxes m0 in (34), we take the integral matrices L(k) and

L(l) to be as close to the inverses of m
(k)
0 and m

(l)
0 as possible, respectively:

L(k) =




0 −q1b1 0 0
q1b1 0 0 0
0 0 0 −q2b2
0 0 q2b2 0


 , L(l) =




0 −l0b3 0 0
l0b3 0 0 0
0 0 0 0
0 0 0 0


 , (56)

where b1, b2, and b3 are integers such that a1k−b1m1 = q1, a2k−b2m2 = q2, and a3l−b3m3 = l0,

respectively. Here, we define m̃i = mi/qi and m̃3 = m3/l0, so that aiki − bim̃i = 1 and

a3l1 − b3m̃3 = 1. Then the set of integers sµ
α in (50) can be chosen to satisfy (56)

sµ
1 = (0, 1, 0, 0), sµ

2 = (b1, 0, 0, 0),

sµ
3 = (0, 0, 0, 1), sµ

4 = (0, 0, b2, 0),

sµ
5 = (0, 1, 0, 0), sµ

6 = (b3, 0, 0, 0). (57)

Also, for the above given set, the matrices N (k) and N (l) are given by

N (k) =




q1 0 0 0
0 q1 0 0
0 0 q2 0
0 0 0 q2


 , N (l) = l0




1 0 0 0
0 1 0 0
0 0 l1 0
0 0 0 l1


 . (58)

From (54), the SO(4, 4|Z) transformations Λ
(ι)
0 in (53) can be found as

Λ
(k)
0 =




a112 0 b1ε 0
0 a212 0 b2ε

−m̃1ε 0 k112 0
0 −m̃2ε 0 k212


 , (59)

Λ
(l)
0 =




a312 0 b3ε 0
0 12 0 0

−m̃3ε 0 l112 0
0 0 0 12


 , (60)

where 12 and ε are 2 × 2 identity and antisymmetric (ε12 = −ε21 = 1) matrices, respec-

tively. Since the general solution for an aritrary matrix m in (32) is obtained by SL(4,Z)

transformation R, the corresponding SO(4, 4|Z) transformations Λι can be given by the set

(Rm0R
T , RN, L) [13]. With (53), the SO(4, 4|Z) transformation Λι can be found as

Λι = Λ
(ι)
0

(
RT 0
0 R−1

)
. (61)
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Under the SO(4, 4|Z) transformation (59) or (60), the rank, 6 fluxes, and instanton (eight

components altogether) make a fundamental multiplet of the Weyl spinor representation of

SO(4, 4|Z) and this multiplet is mapped to Morita equivalent tori by the action of SO(4, 4|Z)

[10, 11, 13, 14]. For convenience, the explicit construction will be performed only for the

SO(4, 4|Z) matrix (59) since, for the matrix (60), it is essentially similar, and so we will drop

the index (ι) from here.

Since the vector and spinor representations of SO(4, 4|Z) are related by

S−1γiS = Λi
jγj, i, j = 1, · · · , 8, (62)

where the gamma matrices satisfy

{γi, γj} = 2Jij, (63)

the spinor representation S(Λ) corresponding to the transformation Λ = Λ0Λ(R) in (61) is a

product of S(Λ0) corresponding to Λ0 and S(R) corresponding to Λ(R)

S(Λ) = S(Λ0)S(R). (64)

On T4, the rank k, 6 fluxes mµν , and U(k) instanton number, C = Pf(mµν)/k, make a

fundamental multiplet of the Weyl spinor representation of SO(4, 4|Z). We write such an

8-dimensional spinor ψ as

ψ = k|0 > +
1

2
mµνa†µa

†
ν |0 > +

C

4!
ǫµνρσa†µa

†
νa

†
ρa

†
σ|0 >, (65)

with the fermionic Fock basis defined in the Appendix. Explicitly we take the spinor basis

ψα (α = 1, · · · , 8) as follows

ψα = (k,m34, m42, m23, m12, m13, m14, C). (66)

Using the result in the Appendix, S(R) acts on this spinor as

ψ0 = S(R)ψ = (k,m2, 0, 0, m1, 0, 0, C̃), (67)

where C̃ = m1m2/k. Note that the instanton number C̃ = m̃1m̃2k/k1k2 is integral since k1k2|k
[23]. Now one can check that, using the result in the Appendix, S(Λ) acts on this spinor as

ψ′ = S(Λ0)S(R)ψ = S(Λ0)ψ0,

= (k0, 0, 0, 0, 0, 0, 0, 0). (68)

Since the transformation S(Λ) is an isomorphism between Fock spaces described by quantum

number ψ, (68) implies that the quantum tori with quantum number ψ is (Morita) equivalent to

14



that of ψ′. Similarly, the quantum tori described by the matrix (60) will be mapped to Morita-

equivalent tori with quantum number (l0, 0, 0, 0, 0, 0, 0, 0). Thus it implies that the moduli

space of (4, 2, 2, 0) system as well as (4, 2, 2) system in U(N) super Yang-Mills theory can be

mapped to D0-brane moduli space and so it takes the form (T4
Θ

′(k))
qk0/Sqk0 × (T4

Θ
′(l))

ql0/Sql0.

This prediction is also consistent with the fact that the moduli space for the reducible con-

nections takes the form of a product of smaller moduli spaces [4]. For a direct generalization,

one can consider a generic constant background which breaks U(N) to
∏

a U(ka). Then, we

expect that the moduli space of D-brane bound states in Type II string theory takes the form
∏

a(T
4
Θ

′(a))
qa/Sqa

.

5 Conclusion and Comments

We studied the modules of D-brane bound states on noncommutative T4 with non-Abelian

constant backgrounds and examined the Morita equivalence between them. We found that the

quantum tori with various D-brane charges is (Morita) equivalent to that of D0-branes. For

a generic constant background which breaks U(N) to
∏

a U(ka), it was shown that the moduli

space of D-brane bound states in Type II string theory takes the form
∏

a(T
4
Θ

′(a))
qa/Sqa

.

The construction in this paper has only involved constant D-brane backgrounds. The non-

commutative instantons on T4 may share some properties with noncommutative instantons

on R4 [24] such as the resolution of small instanton singularity. Unfortunately the explicit

construction of full instanton modules seems very hard, not due to the noncommutativeness

of the geometry, but rather due to the non-Abelian properties of instanton connections. It

would be very nice to give a construction also for these non-Abelian instantons since it was

claimed in [25] that the moduli space of the twisted little string theories of k NS5-branes at

Aq−1 singularity [26], compactified on T3 is equal to the moduli space of k U(q) instantons on

a noncommuative T4.

Some interesting problems remain. The present construction may be generalized to the

noncommutative K3 and instanton solutions on it. The instanton configurations on noncom-

mutative T4 or K3 should be relevant to the microscopic structures of D1-D5 black holes with

BNSNS field background, since the counting of microscopic BPS bound states can be related to

the number of massless fields parameterizing the moduli space of the bound states [27]. It is

also interesting since the type IIB string theory on AdS3 ×S3 ×X with nonzero NS-NS B field

along X, where X is K3 or T4, corresponds to the conformal sigma-model whose target space

is the moduli space of instantons on the noncommutative X [28].

Another interesting problem is the deformation quantization of Matrix theory on noncom-

mutative T4 [15]. Although the algebra of functions on T4 is deformd by so-called ∗ product,
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the fuctions can be Fourier expanded in the usual way. In that case, ∗ product between Fourier

expanded functions will be relatively simple. We hope to address these problems soon.

6 Appendix

To construct the spinor representation S(Λ), we introduce fermionic operators a†µ = γµ/
√

2 and

aµ = γ4+µ/
√

2 satisfying anti-commutation relations

{aµ, a
†
ν} = δµν , {a†µ, a†ν} = {aµ, aν} = 0, µ, ν = 1, · · · , 4. (69)

Since the SL(4,Z) transformation does not affect the rank and the instanton number and

the SL(4,Z) is isomorphic to SO(3, 3|Z), we expect, in the spinor basis (65), that the spinor

representation S(R) corresponding to Λ(R) in (61) has the following form

S(R) =




1 0 0
0 SO(3, 3|Z) 0
0 0 1


 . (70)

Indeed, according to [11], the operator Λ(R) corresponding to Λ(R) is given by

Λ(R) = exp(−aµλ
µνa†ν), (R)µν = exp(λµν), (71)

and then the spinor representation Sαβ(R) is defined as

Λ(R)|β >=
8∑

α=1

|α > Sαβ(R). (72)

Obviously, acting on the rank (β = 1) and the instanton (β = 8) basis, Sα1(R) = S1α(R) = δα1

and Sα8(R) = S8α(R) = δα8. After a little algebra, we can find the 6×6 matrix in (70) denoted

as H(R) = H3H2H1 ∈ SO(3, 3|Z)

H1 =
(
CT

12 0
0 C−1

12

)
, H2 =

(
13 0
A 13

)
, H3 =

(
13 B
0 13

)
,

A =




0 −R14 R13

R14 0 −R11

−R13 R11 0


 , B =




0 d14 d13

−d14 0 0
−d13 0 0


 , (73)

where Cµν is a 3×3 matrix formed by removing µ-th row and ν-th column from the 4×4 matrix

R, dµν = det(Cµν), and we normalized the matrix C12 to be SL(3,Z) by absorbing determinant

factor in the above definition.

Next we will construct the spinor representation S(Λ
(k)
0 ) corresponding to Λ

(k)
0 in (59). Let

us make a block-wise Gauss decomposition of Λ
(k)
0

Λ
(k)
0 =

(
14 0
C 14

)
·
(
G 0
0 G−1

)
·
(

14 D
0 14

)
,

= ΛC · ΛG · ΛD, (74)
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where antisymmetric matrices C, D and a symmetric matrix G are given by

C = −
( m1

a1
ε 0

0 m2

a2
ε

)
, D =

(
b1
a1
ε 0

0 b2
a2
ε

)
, G =

(
a112 0

0 a212

)
, (75)

and ε is an antisymmetric 2 × 2 matrix. Then the corresponding spinor operator Λ
(k)
0 will be

given by

Λ
(k)
0 = exp(

1

2
Cµνa†µa

†
ν) · exp(−hµνa†µaν) · exp(

1

2
Dµνaµaν), (76)

where (G)µν = exp(hµν). Thus the representation S(Λ
(k)
0 ) can be obtained by a product of each

spinor representation,

S(Λ
(k)
0 ) = S(ΛC) · S(ΛG) · S(ΛD), (77)

where

S(Λ
(k)
0 ) =




a1a2 −a1b2 0 0 −a2b1 0 0 b1b2
−a1m̃2 a1k2 0 0 b1m̃2 0 0 −b1k2

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−a2m̃1 b2m̃1 0 0 a2k1 0 0 −b2k1

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

m̃1m̃2 −m̃1k2 0 0 −m̃2k1 0 0 k1k2




. (78)

Similarly,

S(Λ
(l)
0 ) =




a3 0 0 0 −b3 0 0 0
0 a3 0 0 0 0 0 −b3
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−m̃3 0 0 0 l1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 −m̃3 0 0 0 0 0 l1




. (79)

Here we used the definition (62) in order to drop the global factors such as 1/a1a2 and 1/a3.
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