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Topological superconductivity in Rashba semiconductors without a Zeeman field

Panagiotis Kotetes∗

Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures (CFN),
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

In this manuscript I present new hybrid devices based on multi-wire/channel Rashba semiconduc-
tors, which harbor Majorana fermions (MFs) without a Zeeman field. In contrast, magnetic fluxes,
supercurrents or electric fields can be employed, yielding an enhanced device manipulability. The
generic topological phase diagram for two-nanowire/channel systems, exhibits features of quantum
criticality and a rich interplay of phases with 0, 1 or 2 MFs per edge. The most prominent and
experimentally feasible implementation, relies on the already existing platforms of InAs-2DEG on
top of a Josephson junction. Appropriate design of the latter device, allows phases with 1 or 2
MFs, both detectable in zero-bias anomaly peaks with a single or double unit of conductance. The
absence of the Zeeman field in these devices could be assisting for a Kondo-peak-free interpretation.

PACS numbers: 74.78.-w, 74.45.+c, 85.25.-j

Introduction. The perspective of topological quan-
tum computing (TQC) [1], has motivated a plethora
of proposals for engineering topological superconductors
(TSCs) based on semiconductors with strong Rashba
spin-orbit coupling (SOC) [2–7]. Among them, a de-
vice involving a Rashba nanowire (NW) [3], lies in the
spotlight of current research. The latter setup, requires
a sufficiently strong Zeeman field in order to enter the
TSC phase with 1MF per edge. The first encouraging
zero bias anomaly (ZBA) MF-findings have been already
reported [8, 9], which are however, still under debate [10].

A promising route for resolving this controversy is to
explore alternative TSC platforms, which build upon the
same materials used in these experiments, but with the
Zeeman field replaced by some other control knob, such
as a supercurrent flow or an electric field. The latter
appear less harmful for the bulk SC and possibly more
versatile for TQC. For instance, existing TQC protocols
rely on sufficiently strong antiparallel magnetic fields, on
a nanoscale level [11], which can be difficult to achieve
in the lab. In contrast, harboring MFs all-electrically,
can be advantageous for braiding and developing TSC-
circuits. Notably, replacing the Zeeman field can also as-
sist to exclude the possibility of a Kondo ZBA peak [10],
leaving less room for misinterpreting MF fingerprints.

In this work, I propose a new type of artificial TSCs
consisting of conventional SCs in proximity to quasi-1d

semiconductors (with dimensions Lx ≫ Ly ≫ Lz), such
as InAs and InSb. The quasi-1d nature of the semicon-
ductor is instrumental for engineering a TSC without a
Zeeman field [7]. As depicted in Fig. 1, the semiconduc-
tor can consist of either two NWs or a multi-channel film
placed on top of a Josephson junction of two conventional
SCs. A crucial requirement is to interrupt the interface
separating the semiconductor from the SCs by an insu-
lator, forming a loop (ABΓ∆). Via threading magnetic
flux (Φflux) through this loop, MF bound states appear,

∗Electronic address: panagiotis.kotetes@kit.edu

FIG. 1: (a)/(b) Side/Full view of two Rashba NWs and (c)
Side view of a Rashba semiconducting film, both on top of a
Josephson junction. The interface is interrupted by an insu-
lating loop (ABΓ∆). Threading magnetic flux (Φflux) through
the loop, leads to Majorana bound states extended along the
y axis and localized at the edges along the x axis. The re-
quired magnetic flux can be generated by: i. a supercurrent
flow (Jsc) through the junction or ii. an electric field (EAB),
generated by gates (sg) placed aside of the semiconductor.

which are localized at the edges of the primary dimen-
sion of the semiconductor (x axis) and extended along
the secondary one (y axis). Aside from using a solenoid,
one can generate the required flux via: i. a supercurrent
flow Jsc through the Josephson junction or ii. an electric
field EAB generated by the side gates which contact the
semiconductor, and act as a capacitor’s plates. For the
latter two implementations, the area of the loop can be
infinitessimaly small. Remarkably, devices similar to the
one in Fig. 1(c), have been already realized with InAs
2DEG [12], rendering the present proposal feasible.

Starting from a microscopic model, I first extract the
generic topological diagram for this type of engineered
TSCs. Both the two-NW and two-channel implementa-
tions which I consider here, can be mapped to each other
and are characterized by a phase diagram supporting 0, 1
or 2 MFs per edge. The phase with 2MFs per edge is pro-
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tected by chiral symmetry [5, 13] and meets the zero- and
single- MF phases at two quantum tricritical points of the
parameter space, which I identify. By adopting parame-
ter values, representative of InAs and InSb, I make firm
predictions for experimentally realizing and optimizing
the present MF platforms. I find that the most promising
device relies on a two-channel semiconducting film which
supports both 1 and 2 MF-phases. On the other hand,
two coupled NWs can harbor a single MF per edge only
if they are in contact, while a single three-channel wire
appears not to support MFs for the currently achieved
promimity induced superconducting gap. For clarity, I
discuss first the technically more transparent two-NW
model, since the others can be mapped to it.
Two Rashba nanowires on top of a Josephson junction.

For the implementation of Fig. 1(a), I consider the model
Hamiltonian: H =

∫
dx [Hψ(x) +Hc(x) +Hψc(x)] with:

Hψ(x) =
∑

n=±

ψ̂†
n [ε(p̂x) + vp̂xσy − neVAB/2] ψ̂n

+ ψ̂†
+ (t⊥ + iv⊥σx) e

i e
~
ΦAB ψ̂− +H.c. , (1)

Hc(x) =
∑

n=±

ĉ†n [ε̃(p̂x)− neV∆Γ/2] ĉn

+ t̃⊥e
i e
~
Φ∆Γ ĉ†+ĉ− +

∑

n=±

∆̃eiϕnc†n↑c
†
n↓ +H.c. ,(2)

Hψc(x) = T
(
ei

e
~
ΦA∆ ψ̂†

+ĉ+ + ei
e
~
ΦBΓ ψ̂†

−ĉ−

)
+H.c. , (3)

where in the above I suppressed the x argument of the

fermionic field operators: ψ̂†
n(x) = (ψ†

n↑(x) , ψ
†
n↓(x)) and

ĉ†n(x) = (c†n↑(x) , c
†
n↓(x)), creating electrons on the NWs

and the SCs, respectively. The σ Pauli matrices act on
spin-space. The two parallel single-channel NWs, placed
at distance Ly, are labelled with n = ± (see Fig. 1(a)).
I also introduced: ε(p̂x) = p̂2x/2m − µ, t⊥, v, v⊥ deno-
ting: kinetic energy measured from the chemical poten-
tial, inter-NW hopping, intra- and inter-NW SOC, corre-
spondingly. Similarly, ε̃(p̂x) and t̃⊥ denote the respective
terms for the electrons of the SCs. Furthermore, I in-
cluded the spin-singlet superconducting order parameters
∆̃eiϕ± , where I assumed a phase difference δϕ = ϕ+−ϕ−,
that contributes to a supercurrent flow (Jsc) through the
Josephson junction. I also added appropriate voltage
drops (Vab) and Peierls’-phases (Φab), for all the pairwise
coupled elements (a, b) of the hybrid device. Each cross-
section of the hybrid device (see Fig. 2(a)), constitutes
a superconducting quantum interference device, with the
coupled NWs playing the role of the second weak link,
similar to other experimentally realized setups [14].
Flux & Supercurrent. For the rest, I demand VAB =

V∆Γ = Φ∆Γ = ΦA∆ = ΦBΓ = 0, which according to

Ref. [15], imposes: EAB = Φ̇flux, E∆Γ = 0, ΦAB = −Φflux,

with the electric field Eab = Vab − Φ̇ab (here ḟ ≡ ∂f/∂t).
We additionally obtain δϕ = Jsc, i.e., equal to the su-
percurrent Jsc flowing through the junction [16]. Thus
only the gauge invariant quantities, Φflux and Jsc, appear
in the Hamiltonian. Threading flux is usually achieved

FIG. 2: (a) Cross-section of Fig. 1(b) with couplings: NW-
NW (t⊥), SC-SC (t̃⊥), and NW-SC (T). Each cross-section
behaves as a superconducting quantum interference device
and the total system transits to a TSC phase for a suffi-
cient amount of flux (Φflux). The required flux can be pro-

duced by an electric field EAB ≡ Φ̇flux or a supercurrent
Jsc ≡ 2eΦflux/~. (b) Induced multi-component superconduc-
ting gap on the NWs, when flux is generated by a supercur-
rent. For Jsc = π, time-reversal symmetry is violated, since
the intra- and inter-NW gaps exhibit a π/2-phase locking.

by employing a solenoid or an electric field yielding

Φflux =
∫ t
t0
dt′EAB(t′). Nonetheless, in the particular

setup it can alternatively arise via inducing a supercur-
rent flow equal to Jsc = 2eΦflux/~ [15]. Flux can be
induced electrically using a capacitor (side gates) which
discharges in the presence of an appropriately attached
resistive circuit. A discharging initiated at t0, leads to
a flux Φflux = τEAB(t0), with τ the characteristic dis-
charging time. Note that the supercurrent flow has to
be kept zero during the discharging process. Conversely,
we have to ensure that EAB = 0 when inducing flux via
a supercurrent flow. Generally, the simultaneous control
of both quantities is required for achieving a TSC.
Effective NW model. I proceed with integrating out the

superconducting degrees of freedom, following Ref. [17].
For this, I will consider ΦAB = −Φflux ≡ −πφ and
δϕ = Jsc = 0, where I introduced the normalized flux
φ = Φflux/Φ0 (Φ0 = h/2e). For the integration pro-
cedure, it is more convenient to introduce “bonding”
and “anti-bonding” type of linear combinations for the
electronic operators of the SCs: ĉb,a = (ĉ+ ± ĉ−)/

√
2,

with corresponding Fermi-level density of states, νb,a. As
a result, intra- and inter-NW spin-singlet superconduc-
ting pairing is proximity induced on the NWs, which

reads: ∆
∑

n ψ
†
n↑ψ

†
n↓ + ∆⊥(ψ

†
+↑ψ

†
−↓ + ψ†

−↑ψ
†
+↓) + H.c.,

with ∆⊥ = ∆(νb − νa)/(νb + νa) (see [15]). The effective
Hamiltonian for the NWs, leading to a TSC [7], reads:

ĤTSC(p̂x) = ε(p̂x)τz + vp̂xτzσy −∆τyσy

+
(
t⊥τzκx − v⊥κyσx

)
eiπφτzκz −∆⊥τyκxσy , (4)

where I employed the spinor Ψ̂†(x) = (ψ†
+↑(x), ψ

†
+↓(x),

ψ†
−↑(x), ψ

†
−↓(x), ψ+↑(x), ψ+↓(x), ψ−↑(x), ψ−↓(x)). The

τ and κ Pauli matrices act on Nambu and NW (±)
spaces. Note that if we had instead chosen ΦAB = 0 and

https://www.researchgate.net/publication/222198434_Schon_G_Zaikin_A_D_Quantum_coherent_effects_phase_transitions_and_the_dissipative_dynamics_of_ultra_small_tunnel_junctions_Phys_Rep_198_237-412?el=1_x_8&enrichId=rgreq-079d0637-d7a4-4afd-9d2a-9e2f85f0347b&enrichSource=Y292ZXJQYWdlOzI2NTg1MjcxODtBUzoxODI5MzczNjY1NzMwNTZAMTQyMDYyNzA3NTE0Nw==
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δϕ = Jsc = 2πφ, we would have obtained an equivalent
description sketched in Fig. 2(b), with the transformed
intra-NW gaps ∆e±iJsc/2, and the inter-NW gap ∆⊥.

Symmetry analysis. For investigating the symmetries
of the Hamiltonian in Eq. (4), I will first consider φ = 1/2
and ∆⊥ = 0. In this case, the Hamiltonian enjoys

the symmetries: Ξ = τxK & Ξ̃ = τxκyσyK (charge-

conjugation), Θ = κxK & Θ̃ = iκzσyK (time-reversal)

and Π = τxκx & Π̃ = τxκzσy (chiral). Here K denotes

complex conjugation. Note that Ξ2 = Ξ̃2 = Θ2 = +I

and Θ̃2 = −I. Essentially Θ̃ effects the usual time-
reversal symmetry (T ) leading to MF Kramers pairs.
The two chiral symmetries lead to a unitary symmetry

O ∝ ΠΠ̃ = κyσy, which commutes with the Hamiltonian,
allowing its diagonalization into two sub-blocks. Via the
unitary transformation U = (κz + κyσy)/

√
2, I diago-

nalize O and obtain the two resulting κ = ± blocks,

ĤU
κ (p̂x) = ε(p̂x)τz + vp̂xτzσy + κt⊥σy − v⊥τzσz −∆τyσy,

describing two decoupled single-channel Rashba NWs in
the presence of a superconducting gap ∆ and an effec-
tive block dependent Zeeman field Bκ = (0, κt⊥,−v⊥),
with parallel and perpendicular components to the SOC
polarization. Both Hamiltonians belong to symmetry
class D with the charge-conjugation symmetry Ξ. If
the value of t⊥ is such, so that the energy spectrum is
fully gapped, each sub-subsystem harbors a single MF

per edge when
√
t2⊥ + v2⊥ >

√
∆2 + µ2. Due to the un-

derlying Kramers degeneracy, both subsystems become
topological together, yielding a T -invariant TSC.

The addition of ∆⊥ yields the BDI symmetry class
with symmetries: {Ξ,Θ,Π}. Consequently, a finite ∆⊥

ensures that we can obtain at least one MF per edge,
even for δϕ = π. In fact, for a finite supercurrent (as
in Fig. 2(b)) realizing a π-junction, the intra-NW gaps
become imaginary (±i∆) and the inter-NW gap remains
real (∆⊥). Thus the multi-component superconducting
gap violates T intrinsically, offering a unique mechanism
for obtaining single-MF phases without a Zeeman field.

TSC mechanism. The catalytic effect of the supercur-
rent (or flux) is reflected in the conversion of the inter-
NW Rashba SOC, into the Zeeman term v⊥τzσz, which
is complete for a π-junction [7]. The emergent Zeeman
term is polarized perpendicular to the intra-NW SOC
vp̂xτzσy , akin to the situation encountered in strictly 1d
NW-models [3]. In fact, the inter-NW SOC is here de-
cisive for obtaining MFs, since the intra-NW SOC po-
larization is the same for both NWs. This is in stark
contrast to the T -preserving models of Ref. [6] where
the inter-NW hopping becomes crucial. Note that a su-
percurrent flow has been also recently proposed in Ref.
[18] as an indispensable ingredient for engineering a TSC,
while other works [19, 20] have highlighted its role as a
tool for either tailoring [19] or mapping [20] MF-phases.

Phase diagram. For investigating the related topologi-
cal phase diagram, I rely on chiral symmetry and block
off-diagonalize the Hamiltonian of Eq. (4) via the unitary

transformation (τz + τxκx)/
√
2. I obtain the respective

FIG. 3: Topological phase diagrams (TPDs), in v⊥−t⊥ plane,
for InSb (InAs case is almost identical). Here µ = 0 and ∆ =
250µeV. (a) TPD for ∆⊥ = 90µeV and φ = 1/2 (Jsc = π).
Four distinct phases appear with N = 0,±1, 2. |N | denotes
the number of MFs per edge. The 1MF-phases (blue & yellow)
are enclosed by the critical lines ∆2 = t2⊥+(∆⊥±v⊥)

2, defined
by the bulk gap closings at k = 0, with an example shown
in (c) for (v⊥, t⊥) = (300, 136)µeV. The N = −2 phase is
protected by chiral symmetry and arises from gap closings at
the inversion connected points, ±k∗, with an example shown
in (b) for (v⊥, t⊥) = (300, 233)µeV. The N = +1 and N =
−2 phases, overlap, yielding a 1MF-phase with N = −1. The
latter region is enclosed by two parallel lines given by t⊥ ≃
√

∆2 −∆2

⊥
and t⊥ ≃ ∆. Thus two quantum tricritical points

appear: P1 = (∆⊥,∆) and P2 = (2∆⊥,
√

∆2 −∆2

⊥
), where

the phases with 0,1 and MFs per edge meet. (d) TPD for
∆⊥ = 50µeV and φ = 1/2. Results similar to (a), but with
the window for the 1MF-phase suppressed, since it depends on
∆⊥. For ∆⊥ = 0, the 1MF-phase disappears, since Kramers
degeneracy is restored and only MF pairs are allowed. (e)
TPD for ∆⊥ = 50µeV and φ = 0.45. Significantly away from
the π-junction, the critical points P1,2 vanish, as the N = +1
and N = −2 do not overlap anymore.

k-space Hamiltonian Ĥ′(k) = τ+Â(k) + τ−Â
†(k), with

the off-diagonal block projectors τ± = (τx ± iτy)/2 and

Â(k) = ε(k)κx + v~kκxσy + (v⊥σx − it⊥κz) sin (πφ)

+ (t⊥ + iv⊥κzσx) cos (πφ)− i(∆ +∆⊥κx)σy . (5)

The relevant Z topological invariant, N , is defined as the
winding number of D(k) ≡ Det[Â(k)] [5]. By employing
the unit vector ĝ(k) = (0, Dℑ(k)/D(k), Dℜ(k)/D(k)), N
is defined as [18]

N =
1

2π

∫
dk

(
ĝ(k)× ∂ĝ(k)

∂k

)

x

. (6)
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In Fig. 3, I present a series of v⊥−t⊥ topological phase
diagrams, obtained for µ = 0 and representative values
[8] for InSb NWs with proximity induced superconducti-
vity, i.e. v~ = 0.20eVÅ, m = 0.015me and ∆ = 250µeV.
Fig. 3(a) was obtained for φ = 1/2 and ∆⊥ = 90µeV.
Here we find three phases with 0, 1 or 2 MFs per edge.
The phase with a single MF is bounded by the lines
∆2 = t2⊥ + (∆⊥ ± v⊥)

2, which are given by the gap
closing condition for the inversion-symmetric wave-vector
k = 0. A particular gap closing is shown in Fig. 3(c)
for (v⊥, t⊥) = (300, 136)µeV. On the other hand, the
phase with two MFs is associated with gap closings at
two non-inversion-symmetric wave-vectors, ±k∗, which
are however connected by inversion. I present a relevant
gap closing in Fig. 3(b) at (v⊥, t⊥) = (300, 233)µeV. The
phase with 2 MFs is topologically protected, as long as
chiral symmetry Π = τxκx persists [5]. This symmetry
could be violated by a mismatch of the intra-NW gaps
which would enter in Eq. (4) with a term ∼ τyκzσy .

For (~k)2/2m≫ v~k, one finds that the gap closings at

±k∗ occur at parts of the parallel lines t⊥ ≃
√
∆2 −∆2

⊥

and t⊥ ≃ ∆, shown in Fig. 3(a). It is straightfor-
ward to infer that the phases with N = +1 (blue)
and N = −2 (red), overlap, leading to the phase with
N = −1 (yellow). As a result, two quantum tricriti-
cal points emerge (see also [21]), where the phases with
0, 1 and 2 MFs meet. The coordinates for these two
points read: P1 ≃ (∆⊥,∆) and P2 ≃ (2∆⊥,

√
∆2 −∆2

⊥).
The phase diagram of Fig. 3(d(e)) was retrieved for
∆⊥ = 50µeV and φ = 1/2(0.45). We observe that the tri-
critical points appear only for φ = 1/2, while away from
this value the TSC region becomes suppressed. Note also
that if t⊥ ≃ 0, the window for a single MF-phase reads:
∆−∆⊥ < v⊥ < ∆+∆⊥. Thus maximizing the inter-NW
induced gap enhances the robustness of the TSC phase.

Predictions for experiments. In reality, the NWs have a
finite diameter d ∼ 110nm [8, 22]. If the NWs are in con-
tact, we can assume t⊥ ∼ ~

2/(2mL2
y) and v⊥ ∼ v~/Ly.

In this case, for φ = 1/2 and ∆⊥ = 90(50)µeV, the
1MF-phase can be realized if 105nm < Ly < 150nm

(109nm < Ly < 131nm). Setting instead v~ = 0.15eVÅ
andm = 0.024me, allows us to address the InAs case. By
rescaling k, one finds that the topological phase diagrams
for InAs almost coincide with those of Fig. 3. For φ = 1/2
and ∆⊥ = 90(50)µeV, the 1MF-phase appears in InAs
NWs for 82nm < Ly < 115nm (86nm < Ly < 102nm).
Thus the 1MF-phase is accessible only when the NWs
are placed next to each other (Ly ≃ d). Otherwise, t⊥
and v⊥ become much weaker, as they are given by the
exponentially decaying overlap of the NW wavefunctions.
Finally, the 2MF-phase appears experimentally inacces-
sible for the particular setup, since it would require for
the NWs to be closer than their diameter (Ly < d).

Two-channel Rashba semiconducting film on top of a

Josephson junction. Similar and even more promising
results are obtained in the case of a two-channel Rashba
semiconductor. For carrying out the analysis, I will here
consider that the flux is generated electrically. Similar

results can be obtained if a supercurrent flow is instead
assumed. The effective Hamiltonian reads (see [15]):

H =

∫
dr ψ̂†(r)

[
π̂2

2m
− µ(t, y) + v (π̂ × σ) · ẑ

]
ψ̂(r)

+

∫
dr
[
∆(y)ψ†

↑(r)ψ
†
↓(r) + H.c.

]
, (7)

with π̂ = p̂ + eA + ~∇ϕ/2. Here A = Ay ŷ defines the
vector potential in the film (equivalent to ΦAB), while
ϕ = ϕ(t, y) is the phase of the bulk superconductor.
Moreover, µ(t, y) = µ − ~ϕ̇/2 − Uconf(y) + eVsg(t, y),
consisting of a chemical potential µ, a phase contribu-
tion, a confining potential Uconf(y) and the electrostatic
side gate potential Vsg(t, y). Here I consider an infi-
nite well confining potential Uconf(y) = +∞ for y < 0
and y > Ly, which yields the confinement channel wave-

functions 〈y|n〉 =
√
2/Ly sin(nπy/Ly) with n = 1, 2, . . .

and ǫn ≡
〈
n|p̂2y/2m|n

〉
= (~πn)2/2mL2

y. The pro-
ximity induced superconducting gap ∆(y) is zero for
y ∈ [(Ly − b)/2, (Ly + b)/2] and equal to ∆̄ otherwise
(b ≡(AB); see Fig. 1(c)). The particular spatial profile
is required for retrieving a T -violating multi-component
gap, similar to ∆ and ∆⊥ encountered in the NW case.
For the present discussion, I will restrict to the low-

est two confinement channels, {2, 1}, and employ the κ

Pauli matrices for acting in their subspace. After ef-
fecting the unitary transformation (κz + κx)/

√
2, the

corresponding Hamiltonian becomes identical to that of
Eq. (4) with the following mappings [15]: µ → µ −
5ǫ1/2, t⊥ → 3ǫ1/2, v⊥ → −8v~/3Ly, ∆ → ∆c ≡
(∆2 + ∆1)/2, ∆⊥ → δ∆/2 ≡ (∆2 − ∆1)/2 and φ →
−(32Ly/9π

2Φ0)
∫ t
t0
dt′Ey(t′), where I have introduced the

superconducting gaps:

∆c = ∆̄

[
1− b

Ly
− sin(πb/Ly)

π
sin2

(
πb

2Ly

)]
, (8)

δ∆

2
= ∆̄

sin(πb/Ly)

π
cos2

(
πb

2Ly

)
(9)

and ∆n =
∫ Ly

0
dy 〈y|n〉2 ∆(y), with n = 1, 2. At this

point I will place the chemical potential symmetrically
within ǫ1 and ǫ2, i.e. µ = 5ǫ1/2, which is achieved by
an appropriate gate voltage offset. This value has been
proposed [4] as a sweet spot for two-channel models, at
which the device becomes robust against charge fluctua-
tions. Evenmore, we can maximize the TSC window via
maximizing δ∆. This occurs for b/Ly = 1/3, yielding
∆c ≃ 3∆̄/5 and δ∆/2 ≃ ∆̄/5, which I assume below.
Predictions for experiments. The most prominent

realization of this setup is based on already existing
2DEG devices [12]. I assume that φ = 1/2, while I
set ∆̄ = 400µeV, which implies ∆c = 240µeV and
δ∆/2 = 80µeV. Under these conditions, the 1MF-phase
is stabilized for InAs when 315nm < Ly < 388nm. On
the other hand, for InSb the 1MF-phase appears for
400nm < Ly < 499nm. In stark contrast to the double-
NW case, here the 2MF-phase becomes experimentally
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accessible, approximately when: 294nm < Ly < 312nm
for InAs and 370nm < Ly < 395nm for InSb.
Three-channel Rashba nanowire on top of a Josephson

junction. The above analysis can be extended to InSb
nanowires, which appear to be multi-channel [8, 22]. In-
stead of a film, here I consider a single nanowire with
square cross-section: Lx ≫ Ly = Lz = d ∼ 110nm [8].
The confinement channels are now labelled by (n, s), with
n(s) corresponding to the y(z) axis sinusoidal wavefunc-
tions [15]. The lowest energy level is the (1, 1), while
directly above that, we find the two degenerate levels
(2, 1) and (1, 2). For Rashba SOC, only the levels (2, 1)
and (1, 1) couple, and the level (1, 2) can be neglected
for the analysis of the topological properties [15]. As be-
fore, the 1MF-phase boundaries will be determined by
the relations ∆2 = t2⊥ + (∆⊥ ± v⊥)

2.
Predictions for experiments. For b = Ly/3 and a che-

mical potential symmetrically placed inbetween the levels
(2, 1) and (1, 1), I find that the 1MF-phase is realized for
a proximity induced gap: 5.2meV < ∆̄ < 5.8meV. Thus
it seems currently impossible to engineer a TSC with a
single InSb wire, via the proposed mechanism. The rea-
son is the large energy splitting ∼ 3meV of the two cou-
pled channels, compared to the recently experimentally
achieved induced superconducting gap ∼ 0.6meV [22].
Conclusions. To summarize, I proposed a new class

of MF platforms, relying on quasi-1d semiconductors.
The particular dimensionality allows replacing the Zee-
man field with supercurrents or electric fields. Double-

nanowire setups, which can support 1MF-phases when
the nanowires are parallel and in contact to each other,
appear experimentally accessible [22]. In contrast, a sin-
gle multi-channel InSb nanowire can not be used for har-
boring MFs with the currently achieved proximity in-
duced superconducting gaps. However, there are other
multi-channel implementations promising experimental
feasibility and enhanced versatility. In fact, InAs 2DEG
devices in proximity to a Josephson junction have been
already achieved three decades ago, and constitute ideal
candidates for realizing the particular MF proposal. Ac-
cording to the present analysis, they can exhibit an in-
terplay of phases with 1 or 2 MFs per edge, depending
on the width of the device. The MF-window is opti-
mized when the proximity effect is interrupted for a width
(AB)= Ly/3. Further optimization requires a supercur-
rent value of Jsc = π, which could be imposed by connec-
ting the Josephson junction to a large superconducting
ring pierced by a suitable amount of flux. Alternatively,
an electric field τEy(t0)Ly = 9π2Φ0/64 can be applied
across the film. For τ ∼ 1µs(ns) and Ly ∼ 400nm, a weak
field ∼ 70µV(mV)/cm is required, opening new perspec-
tives for all-electrical control on MF devices.
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Supplemental Material

Appendix A: Gauge transformation properties of the double nanowire Hamiltonian: Flux & Supercurrent

For clarity, I write here in an extended form the Hamiltonian presented in the manuscript, concerning the setup
involving the two single-channel nanowires:

Hψ(x) =
∑

n=±

ψ̂†
n

[
ε(p̂x) + vp̂xσy − ne

VAB
2

]
ψ̂n + ψ̂†

+ (t⊥ + iv⊥σx) e
i e
~
ΦAB ψ̂− + ψ̂†

− (t⊥ − iv⊥σx) e
−i e

~
ΦAB ψ̂+ , (A1)

Hc(x) =
∑

n=±

{
ĉ†n

[
ε̃(p̂x)− ne

V∆Γ

2

]
ĉn + ∆̃

(
eiϕnc†n↑c

†
n↓ + e−iϕncn↓cn↑

)}
+ t̃⊥

(
ei

e
~
Φ∆Γ ĉ†+ĉ− + e−i

e
~
Φ∆Γ ĉ†−ĉ+

)
, (A2)

Hψc(x) = T
(
ei

e
~
ΦA∆ ψ̂†

+ĉ+ + ei
e
~
ΦBΓ ψ̂†

−ĉ− + e−i
e
~
ΦA∆ ĉ†+ψ̂+ + e−i

e
~
ΦBΓ ĉ†−ψ̂−

)
. (A3)

To ensure full generality I have added appropriate voltage drops (Vab) and Peierls’-phases (Φab), for all the pairwise
coupled elements (a, b) of the hybrid device. Note that for compactness I have suppressed the x dependence of the
field operators.
In order to illustrate the connection between the flux piercing the loop ABΓ∆ and the supercurrent flow, I perform

the following gauge transformation ψ̂n(x) = enieχ/2~ψ̂′
n(x) and ĉn(x) = enieα/2~ĉ′n(x), with χ and α independent of

x. In the new gauge: V ′
AB = VAB − χ̇, Φ′

AB = ΦAB − χ, V ′
∆Γ = V∆Γ − α̇, Φ′

∆Γ = Φ∆Γ − α, Φ′
A∆ = ΦA∆ − (χ− α)/2,

Φ′
BΓ = ΦBΓ + (χ − α)/2 and ϕ′

n = ϕn − neα/~, where ḟ denotes the time derivative of f . To this end, I demand:

V ′
AB = V ′

∆Γ = Φ′
∆Γ = Φ′

A∆ = Φ′
BΓ = 0, which imposes: EAB = Φ̇flux, E∆Γ = 0, Φ′

AB = ΦAB − χ ≡ −Φflux, ϕ
′
n =

ϕn−neα/~ ≡ ϕn−neΦ∆Γ/~, with the electric field Eab = Vab−Φ̇ab. We additionally obtain δϕ′ = δϕ−2eΦ∆Γ/~ = Jsc,
i.e., equal to the supercurrent Jsc flowing through the junction [1]. Thus only Φ′

AB ≡ −Φflux and δϕ′ ≡ Jsc, persist in
the gauged Hamiltonian, which is the one that has been considered in the manuscript.
For the rest, I will consider that Φflux and Jsc are time-independent. In the steady state, their connection can be

demonstrated by performing the additional gauge transformation χ→ χ−Φflux and α → α−Φflux, yielding Φflux → 0
and Jsc → Jsc + 2eΦflux/~. Therefore, threading flux Φflux, which is usually achieved by employing a solenoid or an

electric field yielding Φflux =
∫ t
t0
dt′EAB(t′), is also equivalent to effecting a supercurrent flow equal to Jsc = 2eΦflux/~.

Appendix B: Proximity induced superconductivity on the nanowires

The total Hamiltonian of the system reads H =
∫
dx [Hψ(x) +Hc(x) +Hψc(x)]. For retrieving the proximity

induced superconducting gap, one has to integrate out the superconducting degrees of freedom. Here I will follow the
method of Refs. [2]. For the integration, I consider that Jsc = 0 and only a flux Φflux is finite. At this point, I focus
on the last two parts of the complete Hamiltonian

Hc(x) =
∑

n=±

[
ĉ†n

(
p̂2x
2m̃

− µ̃

)
ĉn + ∆̃

(
c†n↑c

†
n↓ + cn↓cn↑

)]
+ t̃⊥

(
ĉ†+ĉ− + ĉ†−ĉ+

)
, (B1)

Hψc(x) = T
(
ψ̂†
+ĉ+ + ψ̂†

−ĉ− + ĉ†+ψ̂+ + ĉ†−ψ̂−

)
(B2)

and transfer to the bonding and anti-bonding basis ĉb,a = (ĉ+ ± ĉ−)/
√
2, which yields

Hc(x) =
∑

n=a,b

[
ĉ†n

(
p̂2x
2m̃

− µ̃n

)
ĉn + ∆̃

(
c†n↑c

†
n↓ + cn↓cn↑

)]
, (B3)

Hψc(x) = T



(
ψ̂+ + ψ̂−√

2

)†

ĉb +

(
ψ̂+ − ψ̂−√

2

)†

ĉa +H.c.


 , (B4)

with µ̃b = µ̃ − t̃⊥ and µ̃a = µ̃ + t̃⊥. The latter difference in chemical potentials, leads to different density of states
at the Fermi level, νb,a. Moreover, in this new diagonalized basis, the bonding and anti-bonding fermions of the
superconductor can be integrated out independently, exactly as prescribed in [2]. In the latter works, it has been
additionally shown that the corresponding proximity induced gaps, ∆b and ∆a, are proportional to the density of
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states νb,a. By neglecting for the present discussion the arising renormalization effects [2], we obtain the proximity
induced superconducting gaps on the nanowires

∆b

ψ†
+↑ + ψ†

−↑√
2

ψ†
+↓ + ψ†

−↓√
2

+ ∆a

ψ†
+↑ − ψ†

−↑√
2

ψ†
+↓ − ψ†

−↓√
2

+ H.c. = ∆
∑

n=±

ψ†
n↑ψ

†
n↓ +∆⊥(ψ

†
+↑ψ

†
−↓ + ψ†

−↑ψ
†
+↓) + H.c. , (B5)

with ∆ = (∆b + ∆a)/2 and ∆⊥ = (∆b − ∆a)/2. By taking into account that ∆b,a ∝ νb,a, we obtain the relation
presented in the manuscript: ∆⊥ = ∆(νb − νa)/(νb + νa).

Appendix C: Effective Hamiltonian for the setup involving a two-channel Rashba semiconducting film

The effective Hamiltonian for this hybrid device, also presented in the manuscript, has the form:

H =

∫
dr ψ̂†(r)

{(
p̂+ eA+ ~∇ϕ/2

)2

2m
− µ+ Uconf(y)− eVsg(t, y) +

~ϕ̇

2
+ v

[(
p̂+ eA+ ~∇ϕ/2

)
× σ

]
· ẑ
}
ψ̂(r)

+

∫
dr ∆(y)

[
ψ†
↑(r)ψ

†
↓(r) + ψ↓(r)ψ↑(r)

]
. (C1)

The present effective Hamiltonian has been retrieved by integrating out the superconducting degrees of freedom as in
Sec. B and according to Ref. [2]. Furthermore, a particular gauge has been chosen, so that the supercurrent Jsc and
the electric field across the Josephson junction are zero, similarly to the discussion of Sec. A. Here A = Ayŷ defines
the vector potential inside the semiconducting film (equivalent to ΦAB), while ϕ = ϕ(t, y) constitutes the phase of
the bulk superconductor. The spatial dependence of the superconducting phase yields ∇ϕ = ∂yϕŷ. By additionally
assuming conditions equivalent to ΦA∆ = ΦBΓ = 0, i.e. the vector potential across the interface is zero, we obtain

∫ Ly

0

(
Ay +

~

2e

∂ϕ

∂y

)
dy = −Φflux . (C2)

Similarly to the nanowire case, if we set Vsg(t, y) = ~ϕ̇/2e, we obtain
∫ Ly

0
Eydy = Φ̇flux.

The consideration of an infinite well confining potential Uconf(y) = +∞ for y < 0 and y > Ly, allows us to introduce

the confinement channel wavefunctions 〈y|n〉 =
√
2/Ly sin(nπy/Ly) with n = 1, 2, . . . and ǫn ≡

〈
n|p̂2y/2m|n

〉
=

(~πn)2/2mL2
y. The latter can be employed as a basis for expanding the field operators. By focusing on the two

lowest confinement channels, we obtain an approximate Hamiltonian. Care has to be taken, so that the approximate
Hamiltonian follows the same gauge transformation rules as the parent Hamiltonian of Eq. C1. In fact, the minimal
coupling scheme p̂ → p̂ + eA must be properly modified. For this reason, I first project the Hamiltonian of Eq. C1
onto the lowest confinement channels, for Vsg = Ay = ϕ = 0. This yields

Ĥfilm(p̂x) =

(
p̂2x
2m

− µ+
ǫ2 + ǫ1

2

)
τz + vp̂xτzσy +

ǫ2 − ǫ1
2

τzκz −
8v~

3Ly
κyσx −

∆2 +∆1

2
τyσy −

∆2 −∆1

2
τyκzσy , (C3)

with the κ Pauli matrices acting on the subspace {2, 1} and ∆n =
∫ Ly

0
dy 〈y|n〉2 ∆(y) given by

∆2 = ∆̄

[
1− b

Ly
+

sin(πb/Ly)

π
cos(πb/Ly)

]
and ∆1 = ∆̄

[
1− b

Ly
− sin(πb/Ly)

π

]
. (C4)

In order to introduce the gauge potentials, I will first retrieve the expression for the polarization operator in this
basis. The polarization operator reads Py = −ey and in this basis has the representation Py = 16eLyτzκx/9π

2.
In the presence of a homogeneous time-dependent electric field, Ey, the Hamiltonian acquires an additional −PyEy
term. In the latter case, we can infer the coupling of the two-channel system with the electrostatic potential and
the superconducting phase, which reads, Py∂y(Vsg − ~ϕ̇/2e). Here we assume that the gradients of the electrostatic
potential and superconducting phase are constants. To retrieve the coupling to the vector potential, Ay , we have to

first obtain the expression for the paramagnetic current operator Jy = Ṗy. The latter time derivative can be retrieved
using the Heisenberg equation of motion for the polarization operator, calculated using the non-superconducting, and
therefore gauge invariant, part of the Hamiltonian in Eq. C3. Thus, we have

Jy =
i

~

[(
p̂2x
2m

− µ+
ǫ2 + ǫ1

2

)
τz + vp̂xτzσy +

ǫ2 − ǫ1
2

τzκz −
8v~

3Ly
κyσx,

16eLy
9π2

τzκx

]

= − 2

~

16eLy
9π2

(
ǫ2 − ǫ1

2
κy +

8v~

3Ly
τzκzσx

)
. (C5)
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The current above provides the linear correction to the Hamiltonian with respect to Ay + ~∂yϕ/2e. Consequently,
the interchannel terms become modified in the following manner

ǫ2 − ǫ1
2

τzκz −
8v~

3Ly
κyσx → ǫ2 − ǫ1

2
τzκz −

8v~

3Ly
κyσx − Jy

(
Ay + ~∂yϕ/2e

)

=

(
ǫ2 − ǫ1

2
τzκz −

8v~

3Ly
κyσx

)[
1 + i

2

~

16eLy
9π2

(
Ay +

~

2e

∂ϕ

∂y

)
τzκx

]
. (C6)

The above linear term is useful for calculating the linear response to the external fields, e.g. conductivities, but can
not yield the desired gauge transformation properties. To serve the latter purpose, it has to get exponentiated, i.e.

ǫ2 − ǫ1
2

τzκz −
8v~

3Ly
κyσx →

(
ǫ2 − ǫ1

2
τzκz −

8v~

3Ly
κyσx

)
Exp

(
−i 32

9π2

eΦflux

~
τzκx

)
, (C7)

where I additionally made use of Eq. C2 by considering that Ay is spatially homogeneous. If we now set the total elec-

trostatic potential to zero, i.e. Vsg − ~ϕ̇/2e = 0, Eq. C2 additionally provides LyEy = Φ̇flux ⇒ Φflux = Ly
∫ t
t0
dt′Ey(t′).

Therefore, the normalized flux in the particular case reads φ = −(32/9π2)Φflux/Φ0, with Φ0 = h/2e. We imme-
diately notice the difference compared to the nanowire case, in which φ = Φflux/Φ0. The projection to the lowest two
confinement channels yields an effective flux piercing the loop ABΓ∆, equal to −32Φflux/9π

2 ≃ −0.36Φflux.

Under the aforementioned conditions and after effecting the unitary transformation (κz+κx)/
√
2, the Hamiltonian

becomes

Ĥfilm(p̂x) =

[
p̂2x
2m

−
(
µ− 5ǫ1

2

)]
τz + vp̂xτzσy +

(
3ǫ1
2
τzκx +

8v~

3Ly
κyσx

)
eiπφτzκz −∆cτyσy −

δ∆

2
τyκxσy , (C8)

with ∆c = (∆2 +∆1) /2 and δ∆ = ∆2 − ∆1. Therefore, this Hamiltonian can be mapped to the one of Eq. (4)
of the manuscript, where the parameters of Eq. (4) correspond to: µ → µ − 5ǫ1/2, t⊥ → 3ǫ1/2, v⊥ → −8v~/3Ly,

φ→ −(32Ly/9π
2Φ0)

∫ t
t0
dt′Ey(t′), ∆ → ∆c and ∆⊥ → δ∆/2.

Appendix D: Effective Hamiltonian for the setup involving a three-channel Rashba semiconducting wire

In this paragraph I derive the effective Hamiltonian for a hybrid device involving a three-dimensional Rashba
semiconducting wire, where three confinement channels have to be taken into account within a low energy description.
For simplicity, I will here consider a wire with square cross-section Ly = Lz ≡ d. As I show below, out of the three
channels, only two are coupled and can lead to non-trivial topological properties, as in the purely two-channel case
of a semiconducting film. The remaining channel decouples and cannot support Majorana fermions. The derivation
will be performed first for Ay = ϕ = Vsg = 0. The starting point is the Hamiltonian

H =

∫
dr ψ̂†(r)

[
p̂2

2m
− µ+ Uconf(y, z) + v (p̂× σ) · ẑ

]
ψ̂(r) +

∫
dr ∆(y)

[
ψ†
↑(r)ψ

†
↓(r) + ψ↓(r)ψ↑(r)

]
. (D1)

Here I assumed that the superconducting gap varies only with y, due to the blocked proximity effect by an insulating
layer as in the case of the semiconducting film. The consideration of an infinite well confining potential Uconf(z, y) = 0
for {y, z} ∈ {[0, d], [0, d]} and +∞ otherwise, allows us to introduce the confinement channel wavefunctions 〈y, z|n, s〉 =
(2/d) sin(nπy/d) sin(sπy/d) with n, s = 1, 2, . . . and ǫn,s ≡

〈
n, s|

(
p̂2y + p̂2z

)
/2m|n, s

〉
= (~π)2(n2 + s2)/2md2. The

latter can be employed as a basis for expanding the field operators. In order to focus on the low energy sector of the
Hamiltonian, the three lowest channels have to be taken into account. The energetically lowest level is (1, 1) while
the two above, (2, 1) and (1, 2), are degenerate. This yields

Ĥwire(p̂x) =

(
p̂2x
2m

− µ+ ǫ1 +
ǫ2 + ǫ1

2

)
τz + vp̂xτzσy +

ǫ2 − ǫ1
2

τz




1 0 0
0 1 0
0 0 −1


− 8v~

3Ly




0 0 0
0 0 −i
0 i 0


σx

− ∆2 +∆1

2
τyσy −

∆2 −∆1

2
τy




−1 0 0
0 1 0
0 0 −1


 σy , (D2)

with the basis {(1, 2), (2, 1), (1, 1)}. Note that I used ǫ1,2 and ∆1,2 defined in Sec. C, with Ly = d. As seen above,
in the absence of gauge potentials, the channel (1, 2) decouples from the other two. In order to infer if this situation
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persists for finite gauge potentials, I calculate the polarization operators Py = −ey and Pz = −ez in this basis. I
retrieve

Py =
16ed

9π2




0 0 0
0 0 1
0 1 0


 and Pz =

16ed

9π2




0 0 1
0 0 0
1 0 0


 . (D3)

For the situation considered in this manuscript, the electric field Ez in the semiconducting wire is zero. Thus for
only Ey finite, the channel (1, 2) decouples even in the presence of gauge potentials and the Hamiltonian for the two
remaining coupled channels, (2, 1) and (1, 1), is identical to the two-channel film case of Sec. C. Note that the channel
(1, 2) can not support Majorana fermions. If the proximity induced gap becomes z dependent, then it is possible for
the (1, 1) and (1, 2) channels to couple. Nonetheless, even then the presence of the (1, 2) channel does not change
the qualitative topological characteristics and only brings some quantitative modifications in the phase diagram. In
order for this channel to become topologically relevant, a different type of spin-orbit coupling has to considered, which
includes also the p̂z momentum. As a matter of fact, only interchannel coupling induced by spin-orbit interaction,
which will be converted into an effective Zeeman term, can lead to new topological properties due to the addition of
the (1, 2) channel.

[1] G. Schön and A. D. Zaikin, Quantum Coherent Effects, Phase Transitions and Dissipative Dynamics of Ultra Small Tunnel
Junctions, PHYSICS REPORTS (Review Section of Physics Letters) 198, Nos. 5 & 6, 237-412 North-Holland (1990).

[2] T. D. Stanescu, J. D. Sau, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 81, 241310(R) (2010); A. C. Potter and P. A.
Lee, Phys. Rev. B 83, 184520 (2011).


