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The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique

minimum in the single-particle dispersion where macroscopic number of bosons can condense. Here, we consider

a family of tight-binding models with macroscopically degenerate lowest energy bands, separated from other

bands by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively

low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner

crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained

by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent

mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic

momentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our

findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

DOI: 10.1103/PhysRevB.93.144508

I. INTRODUCTION

Interactions take the center stage when the kinetic energy

of particles is quenched. The most prominent example is the

fractional quantum Hall effect, where the Coulomb interaction

lifts the degeneracy of a partially filled Landau level and leads

to the formation of topological fractionalized states. There,

the kinetic energy of particles is quenched due to the magnetic

field that localizes them within the magnetic length, leading to

the formation of flat bands—the Landau levels. Flat bands also

appear in some tight-binding lattice models, as is the case for

the kagome lattice. Hence a question naturally arises—what

kind of exotic states can emerge in such systems?

The problem of interacting bosons in frustrated lattices

with a flat band has been a subject of significant theoretical

interest [1–7]. For exactly degenerate single-particle spectrum,

there is no preferred momentum state for the Bose condensa-

tion to occur. Depending on the specific model and parameter

regime, bosonic ground states in such frustrated lattices

may include chiral composite-fermion states of hard-core

bosons [7–9] and chiral superfluid/Mott insulator states [10]

which spontaneously break time-reversal symmetry, fractional

Chern insulators [4,6], and other exotic broken symmetry

states [1–3,5,11,12].

From the experimental standpoint, rapid advance of ar-

tificial condensed matter systems such as cold atoms and

interacting photons in a circuit QED system have enabled

not only the realization of geometrically frustrated lattices but

also lattices subject to synthetic gauge fields [13–24]. These

recent developments make the search for accurate theoretical

approaches and concrete proposals timely.

In this paper, we focus on a modified kagome lattice

model, constructed in a way to allow controlled treatment

thanks to a spectral gap. This gap can be generated by

inserting an additional gauge flux into each hexagon of

the kagome lattice [25]. We show that the single-particle

eigenstates comprising the gapped flat band can be chosen

as localized loop states, which typically break the lattice D6

point group symmetry. Previous works in the context of the

Bose-Hubbard model have primarily considered the simple

kagome lattice [1,5,8,9,11,26–30]. There, the lowest band is

flat but gapless since it is in contact with another band at

the Ŵ point [1,3,5]. This makes the analysis of the interacting

problem quite subtle due to the ability of particles to leak easily

into the higher band.

The introduced gap enables a well-controlled projection

onto the flat-band subspace [1,31–34] in the weak-interaction

regime, U ≪ |t |, and yields an effective low-energy Hamilto-

nian applicable to a wide filling range. This is analogous to

the lowest-Landau level projection employed in the fractional

quantum Hall effect. Depending on the filling fraction of

the lattice, we find three types of exotic nematic phases. At

close packing of maximally compact loop states, a nematic

Wigner crystal is the exact ground state of the system. In

the specific case of π flux and higher filling fraction, our

mean-field treatment predicts transitions to a nonuniform

nematic supersolid followed by a uniform nematic superfluid

phase.
The nematic superfluid phase is quite unusual since it is not

featureless but contains internal structure in its microscopic
many-body wave function. The lattice rotational symmetry
is spontaneously broken due to the anisotropic correlations
among the loop orbitals. Such anisotropic internal structure
is encoded in the momentum distribution, i.e., the Fourier
transform of the real-space correlation function. In addition to
the standard delta-function peak, there is an anisotropic and
squeezed continuous background in the momentum distribu-
tion. It clearly reveals a novel nematic Bose condensation and
can be detected through time-of-flight imaging in the context
of ultracold atoms. In addition, we show that the nematicity
can also manifest itself in macroscopic quantities, namely the
anisotropic superfluid stiffness tensor and superflow, which
can be probed with phase imprinting techniques in ultracold
atom setups [35].

From a broader perspective, the possibility of such mi-

croscopic liquid crystalline phases has been pointed out

previously in the context of strongly correlated electronic ma-

terials [36,37]. While in this article we focus on translationally

invariant/periodic states, additional rich physics is associated

with topological defects [38] and warrants future studies.
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FIG. 1. (a) Kagome lattice with positive hopping and flux φ

penetrating each hexagon. (b) Tight-binding energies as a function of

φ (Hofstadter butterfly). The lowest flat band is gapped for noninteger

φ/2π and reaches its maximum gap size at π flux.

The paper is organized as follows. Section II shows the

interacting boson model we study throughout the paper.

Section III discusses the single-particle eigenstates of the

model, including the gapped flat band structure and the

presence of localized loop eigenstates in real space and

their specific properties such as “flux quantization,” with

the detailed derivation shown in Appendix A. In Sec. IV,

we work out the exact Wigner-crystal ground states below

the close-packing filling of loop states. In Sec. V, we study the

quantum phases beyond the close-packing filling. We apply

a flat-band projection based on the construction of mutually

orthogonal and spatially compact Wannier states, with the

details of construction shown in Appendix C. We then perform

a subsequent mean-field analysis in the Wannier basis, which

predicts the existence of nematic superfluid and supersolid

phases. In Sec. VI, we show the novel signatures of the nematic

superfluidity, namely, the anisotropic momentum distribution

and the anisotropic superflow. The detailed calculations of

the momentum distribution can be found in Appendix F. We

conclude our work and provide a brief outlook in Sec. VII.

II. MODEL

The Bose-Hubbard model on the kagome lattice subject to

gauge flux (Fig. 1) is described by the Hamiltonian

H =
∑

〈r,r′〉
(|t |eiArr′ b

†
r′br + H.c.) + U

∑

r

b†rb
†
rbrbr, (1)

where b
†
r creates a single boson on the site labeled r. The first

term is the tight-binding Hamiltonian Htb determining the band

structure of the noninteracting bosons. We denote the hopping

amplitude by |t | to stress that it is positive (frustrated).1

The gauge potential Arr′ defined on each nearest-neighbor

bond 〈r,r′〉 determines the flux φ = ∑

�〈r,r′〉 Arr′ threading

each plaquette in the lattice. The second term in H captures

the repulsive Hubbard interaction on each site with strength

U > 0.

1In ultracold-atom experiments, the natural negative hopping can

be turned positive by threading triangles of the kagome lattice with a

π flux.

FIG. 2. Band structure of kagome lattice tight-binding models at

0 and π flux S. (a) 0-flux model. There is a band touching of the

lowest flat band with the higher dispersive band occurred at the Ŵ

point (kx = 0,ky = 0). (b) π -flux model. The total six bands in this

model, corresponding to its six-site unit cell. Note that the lowest flat

band(s) are doubly degenerate and gapped from the higher dispersive

bands, with the minimum gap being � ≈ 0.55|t |.

III. SINGLE-PARTICLE EIGENSTATES

A. Gapped flat band in the presence of flux

We first discuss the tight-binding band structure for U = 0.

In the absence of external flux, the single-particle spectrum has

a lowest flat band as shown in Fig. 2(a). However, the flat band

touches the higher dispersive band at the Ŵ point [k = (0,0)].

Once flux φ is inserted into each hexagon of the kagome lattice,

the single-particle spectrum E(φ) takes the typical Hofstadter

butterfly form (Fig. 1). For noninteger φ/2π , the lowest band2

remains flat but acquires a gap that reaches its maximum size

of � ≈ 0.55|t | at π flux [Fig. 2(a)]. At this point, time-reversal

(TR) symmetry is intact and the model can be realized with

real-valued hopping of positive and negative sign. The energy

and degeneracy of the flat band are independent of the flux.

The latter is given by the number of hexagons in the lattice,

Nsite/3 (Nsite denoting the number of sites).

B. Localized loop eigenstates

The presence of the flat band is directly linked to the

existence of degenerate eigenstates that form localized loops.

2The term “band” is applied loosely here. For rational flux, the unit

cell is enlarged and the flat band decomposes into multiple ones. No

such simple picture applies to irrational flux.
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FIG. 3. (a)–(c) Maximally compact loop eigenstates for φ = 0,π and π/2. Thick bonds in (b) mark links with negative hopping −|t |. “±”

denotes the sign of the wave-function amplitude on the corresponding sites. Note that for (b) and (c), the sites in the interior of the loops have

zero amplitude.

The localization mechanism, called caging [39,40], is due to

the destructive interference of the wave-function amplitude

anywhere outside the loop [3]. In the kagome lattice with

positive hopping, the flat band and localization persist as long

as there is no flux through triangles.

To be systematic, we list three important properties of the

single-particle eigenstates in the flat band of the tight-binding

kagome Hamiltonian: (1) the energy of the single-particle

eigenstate is exactly −2|t |. (2) The elementary flat-band

eigenstates are single-particle loop states that have equal

probability on each involved site. The amplitudes on the

adjacent sites outside the loop (on the outward and inward

triangles) cancel due to destructive interference (caging). Any

other (nonelementary) flat-band state can be composed as a

linear superposition of loop states. (3) “Flux quantization”:

any loop eigenstate encloses an integer number of flux

quanta,

φL =
∑

loop
� Arr′ =

∑

loop

φ ∈ 2πN. (2)

Here, the direction of the gauge potentials Arr′ is chosen to be

counterclockwise (�) around the loop.

Previous studies [1,3,31,32] have focused on the zero-

flux case and identified the state with amplitudes of equal

magnitude but alternating signs on the hexagon loop as

maximally compact eigenstates [see Fig. 3(a)]. While the

existence of a flat band and localized eigenstates remains

unharmed by the flux through hexagons, we find that the shapes

of loop states must change. Specifically, in the spirit of the

flux-quantization condition (property 3), maximally compact

loop eigenstates encircling two and four hexagons in Figs. 3(b)

and 3(c), respectively. Note that the orientation and the shape

of the maximally compact loop states are not generally unique

for φ �= 0.

The main focus of this paper is the case of flux φ = π

where the TR symmetry is intact and maximally compact loop

states are dimers encircling two hexagons. By a convenient

gauge choice Arr ′ = π on decorated bonds [Fig. 1(b)], all

hopping elements are real and given by |t | on regular and

−|t | on decorated bonds. In this gauge, the amplitudes of loop

eigenstates simply alternate in sign across positive-hopping

bonds and are identical across decorated negative-hopping

bonds. In the following, we consider the occupation of these

states by multiple bosons and refer to the maximally compact

loop states as loop orbitals (LOs).

IV. EXACT NEMATIC WIGNER CRYSTAL

GROUND STATE

We next turn to the interacting case, accounting for on-site

boson repulsion due to the Hubbard term

V =
∑

r

Vr =
∑

r

Ub†rb
†
rbrbr. (3)

Since the interaction is local, we note that any many-body state

of the form

|ψ〉 =
∏

m∈A
L†

m|0〉 (4)

with single-particle occupation of a set A of nonoverlapping

LOs is an exact ground state of the interacting system for filling

ν = |A|/Nsite.3 Here, the operator L
†
m creates a single particle

occupying the LO labeled by m. Indeed, the above product

state is an eigenstate with eigenenergy −2|t | per particle and

interaction does not contribute since double occupancy of sites

is avoided.

Once the filling reaches close packing, the ground state

becomes an incompressible Wigner crystal [2]. No additional

particle can be placed on the lattice without incurring an

interaction-induced energy increase due to unavoidable over-

lap. At the critical filling νc of close packing, bosons occupy

maximally compact LOs while avoiding double occupation.

As discussed above, maximally compact LOs may break the

lattice point group symmetry (here, D6), which directly leads

to ground states with spontaneously broken lattice symmetry.

In general, the filling fraction νc for close packing depends

on flux. In the π -flux case, maximally compact LOs are dimers

and close packing occurs at νc =1/15. Due to the three possible

orientations of a dimer [Fig. 1(b)] and the freedom to use

one Wigner crystal representative [Fig. 1(d)] and produce four

other inequivalent ones by translations to four neighboring

hexagons, we predict that the ground state is overall 15-fold

degenerate. These ground states are nematic Wigner crystals.

Here, nematicity refers to the emergence of dimers that break

the lattice rotation symmetry. In this aspect, the π -flux case is

dramatically different from the 0-flux case studied before in

the context of both the boson model and the antiferromagnetic

3Note: for filling below close packing, there will generally be a large

number of degenerate ground states.

144508-3



GUANYU ZHU, JENS KOCH, AND IVAR MARTIN PHYSICAL REVIEW B 93, 144508 (2016)

FIG. 4. (a) Illustration of a nematic Wigner crystal ground state,

which breaks C6 lattice rotational symmetry for φ = π and at close-

packing filling νc = 1/15. (b) Illustration of the hard-core loop gas for

φ = π . The average density is slightly lower than the close-packing

filling νc.

Heisenberg spin model,4 where the ν = 1/9 Wigner crystal [1]

and the m = 7/9 valence-bond crystal [27] ground states do

not exhibit any nematicity. We note that the nematic Wigner

crystal state can also be found in the magnetization plateau of

the corresponding spin model in the presence of both positive

and negative XY interaction (see Appendix B).

We note that for φ = π and filling below νc, bosons form

an infinitely compressible hard-core loop gas with macro-

scopic degeneracy determined by all possible configurations

of nonoverlapping loops [31,32]. One such configuration is

depicted in Fig. 4(b), where an extra particle can be added to an

unoccupied loop orbital without costing any interaction energy.

Hence the chemical potential, i.e., energy cost per extra particle

μ = ∂E
∂N

, is fixed to be the flat-band energy −2|t | and hence

does not change with the filling, i.e., ∂μ

∂ν
= 0. Equivalently, we

get ∂ν
∂μ

= ∞, which means infinite compressibility. As shown

in Fig. 4(b), by adding a local perturbation, certain loops can

move freely to a nearby vacancy (dashed loops) and hence

make a transition to another state with the same ground-state

energy. The shown state (and other states which connect to

this state by a local perturbation) breaks the lattice rotational

symmetry and hence is also nematic. Finally, we mention that

there are infinitely many incompressible glassy states below

νc, which cannot be connected to other ground states by a

local perturbation. We will leave the discussion of these glassy

states to future work.

V. NEMATIC SUPERFLUID AND SUPERSOLID

A. Flat-band projection and construction of Wannier orbitals

In the following, we exclusively focus on the π -flux case.

For filling above close packing, interaction cannot be avoided

anymore and hence no exact solution in the above manner is

possible. To make approximations, we derive a low-energy

effective Hamiltonian by adapting the approach by Huber

4Note that the Wigner crystal state is first discovered in the spin

context, and termed as valence-bond crystal. It is the exact ground

state corresponding to the m = 7/9 magnetization plateau [27] of the

antiferromagnetic kagome Heisenberg model in an external magnetic

field. See Appendix B for details.

and Altman [1], consisting of a projection onto the subspace

spanned by flat-band eigenstates. In our case of nonzero flux,

however, we forego the more subtle situation of an ungapped

band encountered in Ref. [1]. In the presence of a gap and

in the weak-interaction limit, boson occupation is to a good

approximation limited to the flat band and the projection

is appropriate unless the filling fraction becomes too large

(details depend on the ratio U/|t |).
To facilitate the projection, we construct an orthonormal

basis of the flat band. For π flux, the unit cell is doubled and

contains a left and right hexagon, L and R, which differ by

the relative positions of negative-hopping bonds [Fig. 5(a)].

Due to the unit-cell doubling there are, strictly speaking, two

degenerate flat bands. Accordingly, we choose two sets of

maximally compact dimer LOs aligned in the e3 direction

[Fig. 5(a)] as our basis for the two degenerate flat bands. We

distinguish left-dimer states only containing L hexagons from

right-dimer states only containing R hexagons. Although these

sets of LOs together form a basis of the two degenerate flat

bands, not all basis states are mutually orthogonal. We thus

need to determine appropriate superpositions of the dimer LOs

to form a set of mutually-orthogonal Wannier orbitals (WOs).

As usual, there is not a unique set of WOs and different choices

can vary significantly in their real-space localization. Since we

will ultimately employ local-decoupling mean-field theory, it

is particularly important to obtain well-localized WOs.5

Our construction scheme for suitable WOs involves an

important step of orthogonalizing the sets of left and right

LOs by means of a symmetrized version of the Gram-Schmidt

procedure (see Appendix C for details). The results for two

adjacent WOs are depicted in Fig. 5(b). The major part of the

real-valued WO amplitude is essentially concentrated on each

original dimer [Fig. 5(a)]. From there, the amplitudes decrease

rapidly (asymptotically in an exponential fashion). This is in

contrast to the slower power-law decay of WO amplitudes in

the 0-flux case, which is caused by the touching of bands [1].

The WOs we obtain respect translational symmetry (in terms of

probability), TR symmetry, and preserve the mirror symmetry

along their major axes, just as the original dimer LOs. They

weakly break mirror symmetry along their minor axes.

We define the creation operator for occupation of these

Wannier orbitals by

w
†
j ≡

∑

r

wj (r)b†r, (5)

where the Wannier function wj (r) gives the amplitudes of

the dimer-type WO centered at position j of the effective

triangular lattice [Fig. 5(a)] on each site r of the underlying

kagome lattice. The flat-band projection corresponds to the

inverse transformation

b†r →
∑

j

w∗
j (r)w

†
j , (6)

5Note that it is possible to construct C6 symmetric but less compact

localized orbitals as our flat-band basis. However, the mean-field

ansatz with such orbitals has a much larger interaction energy cost

due to the larger overlap and hence is not energetically favorable (see

Appendix G for details).
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FIG. 5. (a) The two types of dimer LOs used to construct the Wannier basis. Disks in orange/blue (light/dark gray) represent positive/negative

amplitudes of the LO. The shaded area on top shows a single unit cell, containing two hexagons, L and R. The centers of LOs form a triangular

lattice (bottom). (b) Two neighboring orthogonal Wannier orbitals. The area of each disk is proportional to the amplitude of the wave function

on that site. Bottom panels show four types of effective interactions: (c) on-site repulsion, (d) density-density repulsion, (e) assisted hopping,

and (f) ring exchange.

where the Wannier states of the dispersive bands have been

dropped as an approximation. Upon projection and switching

to the grand-canonical ensemble, the effective Hamiltonian

takes the form

H → Heff =
∑

j

(−2|t | − μ)w
†
j wj +

∑

ijkl

Iijklw
†
i w

†
j wkwl,

(7)

where μ is the chemical potential. For convenience, we may

define the shifted chemical potential μ′ = μ + 2|t | which

absorbs the energy constant of the flat band. The coefficients

Iijkl ≡ U
∑

r w∗
i (r)w∗

j (r)wk(r)wl(r) determine the strength of

the effective interaction terms and involve overlaps of four

Wannier functions centered on specific sites i, j , k, and l

of the triangular lattice. Due to the localization of WOs, the

interaction is short range and falls off rapidly with growing

spatial distance between the four sites. We note that Iijkl is

translationally invariant and real-valued (since the constructed

Wannier functions are real-valued themselves).

The distinct spatial configurations of the four dimer WOs

labeled i through l give rise to different types of interaction

terms. Whenever all four indices coincide, the contribution

corresponds to an effective onsite repulsion
∑

j U ′w†
j w

†
j wj wj

with strength U ′ = Ijjjj = 0.11U . Among the set of all

effective interaction terms, this on-site repulsion term has the

largest strength. The next sub-leading terms come from two

other types of effective interaction, namely, density-density

repulsion VDD = ∑′
i,j I d

ij ninj [Fig. 5(d)], and assisted hopping

VAH = ∑′
i,j

∑

k I ah
ijkw

†
i wj nk [Fig. 5(e)]. Here, nj ≡ w

†
j wj

denotes the Wannier number operator, and the primes on sums

signal that those terms with coinciding summation indices are

to be omitted. The strengths of density-density interaction and

assisted hopping depend on the specific arrangement of the

involved WO dimers. The largest contributing terms are I d
0,e1

=
0.0483U and I ah

0,e1,−e3
= −0.055U , and thus significantly

smaller than the on-site repulsion strength U ′.
Within the low-density regime ν < 1/3 (i.e., νeff < 1 in the

effective triangular lattice), we therefore employ a hard-core

approximation which forbids double occupation of WOs [1].

Within this approximation, interaction terms with repeated

Wannier operators on the same site, w
†
j w

†
j or wj wj , drop

out. This includes effective on-site interaction as well as

pair hopping
∑′

i,j Iiijj w
†
i w

†
i wj wj . Besides density-density

repulsion and assisted hopping, the only remaining interaction

type is ring-exchange [Fig. 5(f)], in which the Wannier

functions are centered on four different sites on the triangular

lattice. We find that the maximum strength of ring exchange

is 0.00814U , which is significantly weaker than both density-

density repulsion and assisted hopping.

B. Mean-field theory

While density-density repulsion favors density-wave order

and formation of a Wigner crystal, assisted hopping may lead

to melting and formation of a superfluid. In addition, this

competition also allows for an intermediate supersolid phase

in which both types of order are present. Here, we study the

competition between different types of orders within mean-

field theory (MFT). We adopt the Gutzwiller approach [41]

and employ a product ansatz consistent with the hard-core

constraint

|ψMF〉 =
∏

j

(fj,0 + fj,1w
†
j )|0〉, (8)

which decouples sites on the effective triangular lattice of

WOs. The mean-field ansatz naturally captures the nematic
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Wigner crystal phase since it is a product of single-particle

states with occupation of nonoverlapping LOs (in this case

approximated by WOs). Above close packing, mean-field

solutions continue to break the C6 symmetry due to the

anisotropic nature of the Wannier orbitals.

To describe states with density-wave order such as the

nematic Wigner crystal, we must allow for the dependence of

the mean-field amplitudes fj,n on the spatial index j . To obtain

mean-field solutions, we decouple the effective Hamiltonian,

replacing density-density interaction and assisted-hopping

terms by

VDD →
∑

i,j

′
2I d

ij ni〈nj 〉,

VAH →
∑

i,j

′ ∑

k

I ah
ijk〈w†

i 〉〈wj 〉nk

+
∑

i,j

′ ∑

k

I ah
ijk(w

†
i 〈wj 〉 + H.c.)〈nk〉. (9)

(We have verified that inclusion of ring-exchange does not

lead to significant changes.) With this, we obtain a mean-

field Hamiltonian
∑

i hi({ψj },{nj }), where hi depends on

the mean-field order parameters ψj = 〈wj 〉 and nj = 〈nj 〉
on each site of the triangular lattice. Starting from a random

initial set of order parameters on a lattice of 200 sites with

periodic boundary conditions, we repeatedly solve for the

eigenstates and recalculate order parameters until reaching

self-consistency (see Appendix E for details).

For a range of chemical potentials, we calculate results for

the mean filling 〈ν〉 ≡ ∑

i ni/Nsite, density-wave order param-

eter 〈χdw〉 defined as the difference between maximum and av-

erage density taking into account the six surrounding sites, and

the mean superfluid order parameter 〈ψsf〉 ≡ ∑

i ψi/Nsite. The

key results from this calculation are presented in Fig. 6. MFT

reproduces the exact nematic Wigner crystal [Fig. 6(b)] for

μ′ ≃ 0.05U at close packing 〈ν〉 = 1/15, showing maximum

density-wave order 〈χdw〉 = 1 and vanishing superfluidity

〈ψsf〉 = 0. Below close packing, MFT produces a gradual

change of average filling and superfluid order, which differs

from the exact solution discussed above based on LOs. The

exact solution exhibits a density plateau at νc containing the

entire nematic Wigner crystal phase, and a vertical jump

corresponding to the hard-core loop gas phase, which is more

appropriately represented in the canonical ensemble.

Above μc, superfluid order sets in and 〈ψsf〉 grows gradually

while, at the same time, the density-wave order parameter

〈χdw〉 remains nonzero and decays slowly, overall suggesting

a second-order transition to a nematic supersolid [Fig. 6(c)]

in which a fraction of the bosons condense on interstitial

sites between the Wigner-crystal structure. Further on at

μc2 ≃ 0.18U , the density-wave order 〈χdw〉 abruptly drops to

zero, accompanied by a sudden increase in the superfluid order

〈ψsf〉. This indicates a sudden melting of the Wigner-crystal

structure and a first-order transition into a superfluid phase

[Fig. 6(d)].

Based on our MFT, we predict that the superfluid phase

is nematic since condensation of bosons is based on hopping

among anisotropic dimer WOs. Within the superfluid phase,

phase angles θi = Arg[ψi] form stripes in which neighboring
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FIG. 6. (a) Mean-field phase diagram and plot of average density

〈ν〉, 〈νeff〉 on the effective triangular lattice, average density-wave

order 〈χdw〉 (blue dots) and average superfluid order 〈ψsf〉 (red

squares) vs chemical potential. Dashed lines show the exact solution

with LOs. (b-d) Results from MFT for ground states in the three

phases. The area of depicted dimers is proportional to the local

occupation number ni , arrows show the phase angle θi . Results are

obtained for a lattice of 200 sites using a self-consistency calculation.

stripes differ by a π -phase difference. The nematic supersolid

has similar phase stripes, the only difference being that

sites with maximum density have an additional π -phase flip.

Finally, we find a narrow region in which the nonmonotonic

dependence of the density on the chemical potential suggests

phase coexistence between the superfluid and supersolid.

VI. THE SIGNATURES OF NEMATIC SUPERFLUIDITY

AND DETECTION METHODS

The interesting aspect of the uniform superfluid phase is

that it is nematic. Its internal structure, i.e., the correlation

in the loop/Wannier orbitals, is encoded in the momentum

distribution, which can be probed through time-of-flight (TOF)

imaging in the context of cold-atom experiments. The nematic-

ity can also be identified through macroscopic quantities, such

as the superfluid stiffness tensor and the anisotropic superflow,

which can be probed with phase imprinting technique [35].

In the following two sections, we discuss microscopic and

macroscopic signatures, along with methods to detect them.

A. Momentum distribution and time-of-flight experiments

The microscopic signature, i.e., the ground-state momen-

tum distribution 〈nq〉, as mentioned above, can be directly

measured experimentally through the time of flight images.

It serves as a useful probe of the correlation properties of

the ground state. The momentum distribution is equal to the

Fourier transform of the single-particle density matrix:

〈nq〉 = 1

Nsite

∑

r1,r2

eiq·(r1−r2)
〈

b†r1
br2

〉

. (10)
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F.B.Z.

FIG. 7. TOF image probing the momentum distribution of the

superfluid phase. Besides the anisotropic background revealing

the internal correlations of loop orbitals, the delta-function peaks

correspond to the condensate in k space. Only the four peaks

(corresponding to equivalent points in the reciprocal space) on the

first-Brillouin zone boundary (yellow box) are shown.

Recall that for the nematic Wigner crystal (NWC) ground state,

the wave function can be expressed as |NWC〉 = ∏

j∈A L
†
j |0〉.

Here, j is the label of the loops and A is the set of

nonoverlapping loop states forming the crystal. Since the loops

do not overlap, we have the correlation 〈b†r1
br2

〉 �= 0 if and only

if r1 and r2 are sites on the same loop. Thus we get

〈nq〉NWC = 1

Nsite

∑

j∈A

∑

α,α′
eiq·(rα−rα′ )〈0|Ljb

†
αbα′L

†
j |0〉, (11)

where b†α represents the boson operator on the loop (α =
1,2,3, . . . ,10). There are two types of loops: one encircles

the left hexagons and the other encircles the right hexagons,

as shown in Fig. 5(a). As we can see, the nonzero contri-

butions for the single-particle density matrix in Eq. (11) are

±〈0| 1
10

bαb†αbα′b
†
α′ |0〉 = ± 1

10
, where “±” is determined by the

sign of the overlap of wave function amplitudes.

Now we discuss the momentum distribution of the nematic

superfluid phase (see Appendix F for derivation). It is shown

in Fig. 7. The continuous background originates from the

correlation within the loop orbitals; apart from a prefactor

it is identical to NWC. It is squeezed in the direction of

the major axis (along which the loop is elongated). This

continuous background encodes the internal correlation of the

loop/Wannier orbitals. The delta-function peaks (represented

by white circles) originate from the Bose condensation. Only

the four equivalent peaks on the boundary of the first Brillouin

zone are shown in the plot. Such a momentum distribution of

a uniform superfluid implies a novel scenario of Bose conden-

sation, where the ground state is unstable against developing

an additional nematic order which, spontaneously breaks the

lattice rotational symmetry. Therefore, in the corresponding

TOF experiment, one expects that the sample prepared under

similar conditions repeatedly would spontaneously pick up one

of the three directions in which the image pattern is squeezed.

B. Superfluid stiffness tensor and anisotropic superflow

Now we discuss the macroscopic signature of the nematic

superfluid phase. We consider the superfluid stiffness tensor

ρIJ = ∂2E
∂�θI ∂�θJ

|�θI,J =0, where I,J = 1,3 refer to the direc-

tions along e1 and e3. Note that e3 direction is special because

it aligns with the major axis of the dimers. To study this

quantity, we apply phase differences �θ1 and �θ3 across the

boundaries of the finite sample (16 × 16), as shown in Fig. 8(a).

Experimentally such phase difference can be achieved with

the phase imprinting technique developed in the cold atom

setup [35].

The phase differences across the boundaries induce super-

flow in the corresponding directions and hence increase the

kinetic energy. The contour plot in panel (b) shows the mean-

field energy as a function of the phase differences, namely,

E(�θ1,�θ3). The superfluid stiffness tensor corresponds to

the curvature of the energy profile in the vicinity of the

origin. The anisotropy of the energy contours suggests that

the superfluid stiffness is also anisotropic. To see this more

clearly, we make cuts along the x and y axis (blue solid and

red dashed line). We then show the energy profile along the

two cuts, namely, E(�θ1,0) and E(0,�θ3), in panel (c). It

is obvious that, in the vicinity of the origin, the curvature

of the blue solid line is larger than that of the red dashed

line, which means that ρ11 ≡ ∂2E

∂�θ2
1

|�θ1=0 is larger than ρ33 ≡
∂2E

∂�θ2
3

|�θ3=0. This suggests that the superfluid stiffness along

the two directions is different. Now we consider the first

derivative, jI ≡ ∂E
∂�θI

, which is the current generated when

3 2 1 0 1 2 3

3

2

1

0

1

2

3

0.073

0.071

0.069

0.067

0 1 2 3

0.072

0.068

0.064

FIG. 8. (a) Applying phase differences �θ1 (in the e1 direction) and �θ3 (in the e3 direction) across the boundaries of the finite sample

(16 × 16). The configuration of phase angles illustrates the situation of �θ1 = �θ3 = π . (b) Contour plot showing the mean-field energy

distribution as a function of the phase differences, i.e., E(�θ1,�θ3). The energy profiles along the two cuts (blue solid and red dashed lines),

E(�θ1,0) and E(0,�θ3), are shown in (c).
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applying a phase difference at direction I . We can see that,

not far away from the origin, j1 is always larger than j3.

This is consistent with the results in Appendix D, where we

show that the effective nearest-neighbor hopping along the

major axis (e3 direction) is zero in the nematic superfluid

phase (within mean-field approximation). Only successive

hopping along other directions will contribute to superflow

in the e3 direction. On the other hand, the large effective

nearest-neighbor hopping in the other two directions (e1 and

e2) leads to larger superflow in those directions. In sum, the

anisotropy of the two macroscopic quantities, the superfluid

stiffness and superflow, reveals breaking of discrete rotational

symmetry and hence microscopic nematicity of the superfluid

phase.

VII. CONCLUSION

We studied the emergence of nematic phases in a kagome

lattice with a gapped flat band, obtained when a flux π is

threaded through each hexagon of the lattice. Single-particle

localized loop states can be combined to construct many-

body eigenstates below a critical filling. This critical filling

corresponds to close packing of nonoverlapping loop states

and marks the formation of a nematic Wigner crystal ground

state. For larger filling, the effective Hamiltonian based on

flat-band projection using dimer-shaped Wannier orbitals and

subsequent mean-field treatment predict nematic supersolid

and superfluid phases. The latter is a uniform quantum liquid

with anisotropic internal structure, which is encoded in the

momentum distribution and can be probed by time-of-flight

experiment. Interesting future directions include the study

of phases at higher density, especially the possibility of

a featureless Mott insulator [42] at 1/3 filling, resonating

valence bond states and fermionized ground states in the

strong-interaction regime.
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APPENDIX A: DERIVATION OF THE PROPERTIES

OF LOOP EIGENSTATES

In this Appendix, we show the derivation of some properties

of loop eigenstates stated in Sec. III B. The flux quantization

condition (property 3) can be derived from properties 1

and 2 as follows. The positive-hopping tight-binding lattice

Hamiltonian in the presence of an additional gauge field A has

the form

Htb =
∑

〈r,r′〉
|t |eiArr′ b

†
r′br + H.c. ≡

∑

〈r,r′〉
Trr′ , (A1)

FIG. 9. Illustration of a generic single-particle loop eigenstate,

where r and r′ label sites on the loop, and l labels a site outside the

loop where destructive interference (illustrated by red dashed lines)

occurs.

where Trr′ is the hopping operator on the nearest-neighbor

bond 〈r,r′〉. Assuming that there exist single-particle wave

functions of the loop eigenstate type, they can be expressed as

|ψL〉 =
∑

r∈L

ψrb
†
r|0〉, (A2)

where the summation index r runs over all sites on the loop L.

When acting with the Hamiltonian Htb on the loop eigenstates,

we can split the expressions into two parts, namely,

Htb|ψL〉 =
∑

〈r,r′〉∈L

Trr′ |ψL〉 +
∑

〈r,r′〉∈L,l/∈L

[Trl + Tr′l]|ψL〉.

(A3)

The first sum includes hopping along the bonds 〈r,r′〉 on the

loop L, while the second sum corresponds to hopping from

the bonds 〈r,r′〉 on the loop to the adjacent sites l on the

outward/inward triangles, as illustrated in Fig. 9 by red dashed

lines. The cancellation of the probability amplitude outside the

loop (caging, property 2) requires the second sum to be zero

(see Appendix A), while the requirement of eigenenergy being

−2|t | (property 1) implies the first sum being equal to
∑

〈r,r′〉∈L

|t |[eiArr′ ψrb
†
r′ + e−iArr′ ψr′b†r]|0〉

= −2|t ||ψL〉 ≡
∑

〈r,r′〉∈L

−|t |[ψr′b
†
r′ + ψrb

†
r]|0〉. (A4)

The above equation leads to the following relation between

the amplitudes of neighboring sites:

ψr′ = −ψre
iArr′ . (A5)

That is, the wave function has equal probability on every

site along the loop, and adjacent sites differ by a minus sign

and an additional phase shift due to the gauge potential Arr′

on the bond 〈r,r′〉. Note that in the 0-flux case (Arr′ = 0),

Eq. (A5) simplifies to alternating signs on the loop, including

the hexagon loop state shown in Fig. 3(a). By applying Eq. (A5)

around the loop and requiring the probability amplitude ψr to

be single-valued, we derive the flux quantization condition for

a loop eigenstate (property 3), namely,

φL =
∑

〈r,r′〉
� Arr′ = 2πn, n ∈ N. (A6)
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Now we consider the cancellation of the second sum in

Eq. (A3), which leads to caging, and get

[Trl + Tr′l]|ψL〉 = |t |[eiArlψrb
†
l + e−iAr′ lψr′b

†
l + H.c.]|0〉

= 0. (A7)

This in turn leads to ψr′ = −ψre
i(Arl+Alr′ ). Combined with

Eq. (A5), we get

φ� = Arl + Alr′ + Ar′r = 0. (A8)

Thus we have just shown the necessary condition for the

persistence of lowest flat band with energy −2|t |, which we

stated in the beginning of Sec. III B, is that the flux threading all

the outward/inward triangles must be zero (gauge-equivalent

to π flux in the negative hopping model).

To understand one additional feature of the loop state, now

we consider the gauge-invariant current operator on the bond

〈r,r′〉 (from site r to site r′), namely,

Jrr′ = 2|t |i[b†r′bre
iArr′ − H.c.]. (A9)

Its expectation value is given by

〈ψL|Jrr′ |ψL〉 = 2|t |i[ψ∗
r′ψre

iArr′ − H.c.], (A10)

which equals zero after applying Eq. (A5). Therefore, for any

flux value φ, the loop states in the flat band carry no current, and

thus do not break time-reversal (TR) symmetry, even though

the Hamiltonian itself breaks TR except at φ = 0,π . From

the butterfly spectrum in Fig. 1(b), we observe that the lowest

flat band does not change as a function of φ, which leads to

zero current due to the linear response formula of the current

J = ∂E
∂φ

= 0. The fact that there is no current can also be

understood in another way, i.e., the Chern number for the

lowest flat band is always zero. This is in contrast to the higher

bands near φ = 0 [Fig. 1(b)], which are essentially Landau

levels with nonzero Chern numbers C = 1,2,3, etc.

APPENDIX B: CONNECTION TO FRUSTRATED

SPIN MODELS

Although the current paper focuses on the interacting boson

models, some of the results, such as the Wigner crystal phases,

also apply for the frustrated spin models corresponding to the

same type of frustrated lattice. Here, we consider the frustrated

anisotropic Heisenberg model with spin-s in the presence of

external magnetic field:

H =
∑

〈ij〉

[

J⊥
ij

(

Sx
i Sx

j + S
y

i S
y

j

)

+ J z
ijS

z
i S

z
j

]

− h
∑

j

Sz
j . (B1)

Here, J⊥
ij determines the XY interaction and J z

ij determines

the zz (Ising) interaction. The isotropic situation (J⊥
ij = J z

ij )

corresponds to the usual Heisenberg model. The external

magnetic field h acts as the chemical potential of magnons

and has nothing to do with the gauge flux which we discuss

throughout the whole paper. To make the connection with the

boson model more explicit, we rewrite it as

H =
∑

〈ij〉

[

1

2
J⊥

ij (S+
i S−

j + S−
i S+

j ) + J z
ijS

z
i S

z
j

]

− h
∑

j

Sz
j . (B2)

From above, one can see that the transverse XY interaction

can be written as a flip-flop term, which in the s = 1
2

case

actually corresponds to hopping of hard-core bosons. The zz

term induces nearest neighbor interactions between hard-core

bosons. If the magnetic field h is sufficiently large, the ground

state is the magnon vacuum |0〉 = | ↑↑↑ · · · ↑↑↑〉. For the

flat-band hopping models, a single magnon on the loop m is

created by the operator L
†
m = ∑

j∈m ψjS
−
j out of the magnon

vacuum |0〉, where ψj represents the wave function amplitude

on each site of the loop. Just like in the case of on-site

interacting bosons, the magnon loop gas and the loop crystal

are the eigenstates of the Hamiltonian (the zz term does not

change that since the adjacent loops do not occupy neighboring

sites.

Indeed, for the antiferromagnetic Heisenberg model (J⊥
ij =

J z
ij > 0), a valence-bond crystal phase (equivalent to the

Wigner crystal) formed by nonoverlapping hexagon loop

magons has been found in Ref. [27] (earlier than its boson

analog). This valance-bond crystal phase, in the spin-1/2 case,

corresponds to the m = 7/9 magnetization plateau (m = 0

corresponds to no polarization; m = ±1 corresponds to full

polarization in the up/down direction), and is equivalent to

the 1/9 state of the interacting boson model. We note that the

valence-bond crystal phase is not limited to spin-1/2 case, but

actually exists for arbitrary spin s [27].

To implement the π -flux model described in the main text,

one can choose different signs of the transverse coupling Jij

according to the hopping signs of the corresponding boson

model. Thus there will be a nematic valence-bond crystal

(at 13/15 magnetization plateau) in the spin model, which

corresponds to 1/15 nematic Wigner crystal in the boson

model. To make sure the density-density interaction between

magnons is repulsive and hence stabilizes the valence-bond

crystal as the ground state, it is preferable that the zz interaction

is positive, namely, J z
ij > 0. However, we caution that, if the

anisotropy ratio |J z
ij/J

⊥
ij | is sufficiently small, the sign of the zz

term does not matter since the zz term can be treated as a small

perturbation. To experimentally realize such a sign-tunable

spin model, a promising candidate is the nitrogen-vacancy

center array [43], although in that case the spin-spin interaction

is not restricted to nearest-neighbors but has a power-law decay

due to its dipole-dipole nature.

Besides the nematic Wigner crystal (nematic valence-bond

crystal) phase, the nematic supersolid or superfluid phases

may also occur in the spin systems. However, due to the hard-

core nature of the spin system (especially for spin 1/2), the

projection approach may break down at certain critical filling.

Only below that critical filling, the predicted phase for the

weakly-interacting boson model is expected to apply.

APPENDIX C: CONSTRUCTION OF ORTHOGONAL

WANNIER ORBITALS

For the π -flux case, the unit cell is doubled with respect

to the 0-flux case and hence includes six sites (labeled as A,

B, C, D, E, and F), as shown in Fig. 10(a). Hence the lowest

flat bands are doubly degenerate, which means that there is an

arbitrary choice to decompose the two flat bands, since for each

k one can arbitrarily choose two orthogonal Bloch vectors in
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B
C

D

E
F

A

sign flip

FIG. 10. (a) The unit cell of the π -flux kagome lattice, which contains two hexagons and six sites. (b) Illustration of two Wannier functions

transformed from the two Bloch vectors �β1,k and �β2,k via Eq. (C5). (c) The contour plot, which shows the distribution of the A component of

the Bloch vector �γ1,k in k space. There are diagonal discontinuity cuts in the k space. (d) The improved distribution in panel (c) after a sign flip

in every other strip. Now the discontinuities are removed. (e) Illustration of the symmetrized Gram-Schmidt process.

the two-dimensional degenerate subspace. A sensible choice

of basis has to be physically motivated and has to respect

certain symmetries.

For the sake of convenience, we choose loops along the e3

direction as our preferred flat band basis (total number Nsite/3

equals the number of flat-band degeneracy). The operators

L
†
s,R, which create the two types of loops within each unit cell,

can be represented by the original lattice boson operators as

L
†
1,R = b

A†
R − b

B†
R + b

C†
R − b

E†
R − b

E†
R−a2

+ b
F †
R−a1

− b
F †
R−a1+a2

+ b
B†
R+a2

− b
A†
R+2a2

+ b
C†
R+a2

,

L
†
2,R = b

B†
R+a1

− b
B†
R+a1−a2

− b
C†
R − b

C†
R+a2

+ b
D†
R − b

D†
R+2a2

+ b
E†
R + b

E†
R+a2

− b
F †
R + b

F †
R+a2

. (C1)

Here, the index s = 1,2 labels the loops encircling left/right

hexagons. The wave functions of the two types of loops are

already shown in Fig. 3(a). Here, the lattice vectors R ≡ (m,n)

labels the enlarged six-site unit cell and the lattice vectors

a1 ≡ (1,0) and a2 ≡ (0,1) translate the cells in the two oblique

directions [shown in Fig. 10(a)].

One can construct two classes of Bloch states by a

translationally invariant superposition (with a particular wave

vector k) of the two types of loop states respectively, i.e.,

L
†
s,k =

∑

R

e−ik·RL
†
s,R. (C2)

Here, left/right label s = 1,2 can also be thought as the band

index and in this particular case labels the two degenerate flat

bands. The generated state L
†
s,k|0〉 =

∑

l
ul

s,kb
l†
k |0〉 can be

represented by a six-component Bloch vector �us,k, where we

have l = A,B . . . ,F and b
l†
k =

∑

R
e−ik·Rb

l†
R . The two Bloch

vectors got from the two chosen loop states are represented as

�u1,k = (1 − e−i2k·R2 ,−1 + e−ik·R2 ,1 + e−ik·R2 ,0,

− 1 − e−ik·R2 ,eik·R1 − eik·(R1−R2))T ,

�u2,k = (0,e−ik·R1 − e−ik·(R1−R2),−1 − e−ik·R2 ,

1 − e−i2k·R2 ,1 + e−ik·R2 ,−1 − e−ik·R2 )T . (C3)

However, the Bloch vector �us,k is not yet normalized. We

call the normalized Bloch vectors �βs,k, and define the normal-

ized Bloch state as |βs,k〉 = L̃
†
s,k|0〉 =

∑

l
β l

s,kb
l†
k |0〉, where

the redefined operator L̃
†
s,k now becomes canonical bosonic

operators satisfying the commutation relation [L̃s,k,L̃
†
s,k′ ] =

δk,k′ . Thus we get a set of orthonormal Bloch states for each

of the two flat bands, and can be transformed into two sets of

Wannier states as

w
†
s,R = 1√

Nsite

∑

k

eik·RL̃
†
s,k ≡

∑

R′,l

wl
s,R(R′)bl†

R′ , (C4)

where the Wannier wave function is given by

wl
s,R(R′) = 1√

Nsite

∑

k

eik·Rβ l
s,ke

−ik·R′
. (C5)

Here, the Wannier wave function sits on the coordinate (R′,l).
The coordinate (R,s) labels where the center of the wave

function locates. We note that the more detailed notations,

w
†
s,R and wl

s,R(R′), which we use here, are equivalent to the

more compact notations we have used in the main text, namely,

w
†
j and wj (r). The direct correspondence is r ≡ (R′,l) and

j ≡ (R,s). The two sets of wave functions are illustrated in

Fig. 10(b), where the s = 1 one encircles only the left hexagons

in every unit cell and the s = 2 one encircles only the right

hexagons. The major part of the real-valued Wannier functions

are essentially the two dimer loop states, which we start with.

The amplitude tail spreads out and decays exponentially along

the major axis of the loop which ensures orthogonalization.

However, the two sets of Wannier functions are not mutually

orthogonal to each other (for example, those neighboring ones

will still have finite overlap) since the two sets of Bloch vectors

are not mutually orthogonalized yet.

For each k, one can orthogonalize the two Bloch vectors

through the Gram-Schmidt process, i.e.,

|γ1,k〉 = |β2,k〉 − |β1,k〉〈β1,k|β2,k〉
||β2,k〉 − |β1,k〉〈β1,k|β2,k〉|

, (C6)

which generates a normalized |γ1,k〉 orthogonal to |β1,k〉.
Similarly, one can get a normalized |γ2,k〉, which is orthogonal

to |β2,k〉. Therefore one can choose either orthogonal pair as
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the flat-band basis. However, from either choice, the acquired

Wannier wave functions belonging to the two bands have com-

pletely different shapes and hence lose translational symmetry.

To preserve translational symmetry and being closer to a dimer

shape, we can make a symmetric superposition as

|α1,k〉 = 1√
2

[|β1,k〉 + eiθk |γ2,k〉],
(C7)

|α2,k〉 = 1√
2

[|β2,k〉 + eiθk |γ1,k〉],

where |α1,k〉 and |α2,k〉 are the mutually orthogonal sets

of Bloch states we choose. The additional free choice of

phase factor eiθk will give rise to different Wannier states.

The sensible choice of the phase factor makes sure that the

Bloch vectors are analytically continuous in k space, which

ensures that the generated Wannier function is exponentially

localized [44] and hence is more compact.

The Bloch states generated from the Gram-Schmidt pro-

cess, |γs,k〉, are unfortunately not analytically continuous. For

example, as shown in Fig. 10(c), the A component of one of

the Bloch vectors, γ A
1,k, has a diagonal discontinuity cut in its

real part. Same cut happens for its imaginary part and most of

the other components of |γ1,k〉, and |γ2,k〉.
Thus, one has to take advantage of the additional phase

factor eiθk to remove the discontinuity. In this particular case,

a simple sign flip of every other strip in the k space, which

can be expressed as a square-wave function: sgn[sin[(kx,ky) ·
(1,

√
3)]], is able to remove the discontinuity [see Fig. 10(d)].

In addition, we employ an extra phase factor eik·a2 to ensure no

breaking of TR symmetry and closeness in shape to the dimer

loop state. Thus our choice of phase factor eiθk for Eq. (C7) is

eik·a2 sgn[sin[(kx,ky) · (1,
√

3)]] (a k-independent relative sign

or phase factor does not affect the probability distribution of the

Wannier functions). This particular choice yields the complete

Wannier basis illustrated in Fig. 3(b).

Our Wannier orbitals (WOs) preserve the mirror symmetry

(in terms of probability) with respect to its major axis, similar

to the original loop orbitals (LOs), which they are based on.

However, due to the additional phase factor we choose to

keep the analytical continuity, the mirror symmetry along the

minor axis is slightly broken. We can see that the lower part

of the WO has slightly larger probability than the upper part.

If we replace part of the phase factor eik·a2 with e−ik·a2 , the

shape of the WO will be flipped with respect to the minor

axis, namely the higher part will have larger probability.

We also note that we do not claim that we have found

the maximally compact WOs, even though the construction

is based on the maximally compact LOs. In general, it

should be possible to numerically/analytically determine such

maximally compact WO, which also preserve both types

of mirror symmetries. Thus our current approach is just a

simple mathematical construction, which aims to approximate

the maximally compact WOs, since the shape we have

acquired is not too far from the original LOs, which they are

based on.

Finally, we note that since we have successfully found a

complete orthogonal Bloch or Wannier basis from superpo-

sition of the dimer loop states, we have explicitly shown the

completeness of the loop states which is mentioned in property

2 of Sec. III B.

APPENDIX D: SUMMARY OF TERMS IN THE EFFECTIVE

HAMILTONIAN

Here we classify all types of effective interaction
∑

ijkl Iijklw
†
i w

†
j wkwl , not limited by the hard-core constraint.

The types of terms are following: (1) on-site repulsion:

Vonsite =
∑

j

U ′w†
j w

†
j wj wj , (D1)

where U ′ = Ijjjj ≈ 0.11U is the largest energy scale in the

effective Hamiltonian.

(2) Density-density repulsion:

VDD =
∑

(i,j )

2I d
ij w

†
i wiw

†
j wj =

∑

i,j

′
I d
ij w

†
i wiw

†
j wj , (D2)

where (i,j ) means sum over pairs of sites (i �= j ). Thus (i,j )

and (j,i) correspond to the same term and should not be double

counted. Now we determine the coefficients I d
ij of the effective

interaction. Four terms in the effective interaction correspond

to the pair (i,j ), namely, Iijj iw
†
i w

†
j wj wi + Iij ij w

†
i w

†
j wiwj +

Ijij iw
†
j w

†
i wj wi + Ijiij w

†
j w

†
i wiwj = 4Iijj iw

†
i wiw

†
j wj . Thus

we get I d
ij = 2Iijj i .

(3a) On-site pair-hopping (involving two different sites):

VPHa =
∑

(i,j )

I
p

ij (w
†
i w

†
i wj wj + H.c.) =

∑

i,j

′
I

p

ij w
†
i w

†
i wj wj ,

(D3)

where I
p

ij = Iiijj .

(3b) Off-site pair-hopping (involving three different sites):

VPHb =
∑

(i,j )

∑

k �=i,j

[

I
p

ijk(w
†
i w

†
j + w

†
j w

†
i )wkwk + H.c.

]

=
∑

i,j,k

′
I

p

ijk[w
†
i w

†
j wkwk + H.c.], (D4)

where I
p

ijk = Iijkk .

(4a) Assisted-hopping (involving three different sites):

VAHa =
∑

(i,j )

∑

k �=i,j

I ah
ijk(w

†
i wj w

†
kwk + H.c.) (D5)

=
∑

i,j,k

′
I ah
ijkw

†
i wj w

†
kwk. (D6)

Four terms (and their H.c.) in the effective interaction

correspond to the pair (i,j ), namely, Iikjkw
†
i w

†
kwj wk +

Iikkj w
†
i w

†
kwkwj + Ikijkw

†
kw

†
i wj wk + Ikikj w

†
kw

†
i wkwj =

4Iikjkw
†
i wj w

†
kwk . Thus we get I ah

ijk = 4Iikjk (i �= j �= k).

(4b) Assisted-hopping (involving only two different sites):

VAHb =
∑

(i,j )

[

I ah
ijj (w

†
i wj+H.c.)w

†
j wj + I ah

jii(w
†
i wj+H.c.)w

†
i wi

]

=
∑

i,j

′
I ah
ijj (w

†
i wj + H.c.)w

†
j wj . (D7)
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Here, we have I ah
ijj = 2Iijjj , due to the presence of two

terms of each type, e.g., Iijjj w
†
i wj w

†
j wj + Ijjij w

†
j wj w

†
i wj =

2Iijjj w
†
i wj w

†
j wj .

(5) Ring-exchange interaction:

VRing =
∑

(i,j ),(k,l)

I
Ring

ij,kl (w
†
i w

†
j wkwl + H.c.). (D8)

Here,
∑

(i,j ),(k,l) means each term in the sum selects two pair

of sites (none of the four sites coincide), one pair with creation

operators and the other pair with annihilation operators. Due to

the fact that (i,j ) and (j,i) correspond to the same thing, there

are 2 × 2 = 4 terms from effective interaction correspond to

the same type. Thus we get I
Ring

ij,kl = 4Iijkl . Note that, for

each plaquette (i,j,k,l), there are (4
2) = 4 different types of

terms, due to the different choices of creation and annihilation

operators.

After imposing the hard-core approximation, namely re-

placing the Wannier operators w
†
j by the Pauli operator

σ+
j , only the density-density repulsion (2), assisted hopping

involving three different sites (4a) and the ring-exchange

interaction (5) survive. Other types of terms vanish due to

the doubling of Pauli operators on the same site, namely

(σ+
j )2 = 0. We list the leading terms of these types in Fig. 11.

There are certain pairs of effective terms illustrated in

Fig. 11, which are associated with a mirror reflection along

the major axis (e3). For the density-density repulsion, terms in

such a pair have exactly the same coefficients. For the assisted

hopping, terms in the mirror pair have the same magnitude

for coefficients, but may have opposite signs. In particular,

for the assisted hopping in row (b) (hopping along the major

axis e3), terms in all the mirror pairs have opposite signs. One

can see that for uniform density case (e.g., nematic superfluid)

and within the mean-field approximation, the assistive number

operator of the dimer (green) can be replaced by a constant

number. Thus the mirror terms will cancel out exactly and

there will be no effective hopping along the major axis (e3)

of the dimer. The finite effective hopping of the dimers only

occur in the other two directions (e1 and e2). Therefore, in a

nematic superfluid, the hopping of the bosons is anisotropic.

APPENDIX E: DETAILS OF THE SELF-CONSISTENT

MEAN-FIELD THEORY ON A LARGE LATTICE

With the decoupling of effective interaction mentioned

in the main text, we search for the self-consistent solution

on a large periodic lattice (torus) with randomized initial

distribution of the mean-field order parameters. We use a local

update algorithm: (1) randomly pick up a site i in each step and

find the local ground state |g〉i of the decoupled Hamiltonian

hi({ψj },{nj }). (2) Calculate the expectation values of the

corresponding Wannier operator and Wannier number operator

and use them as updated order parameters for site i, i.e.,

ψi =i 〈g|wi |g〉i and ni =i 〈g|ni |g〉i ;
(3) Repeat the previous two steps until the order parameters

on each site have converged and hence reach the self-consistent

mean-field solution.

We have done calculations on lattices with different types

of geometry, as shown in Figs. 12(a)–12(c) (with the periodic

boundary conditions illustrated by the wires). For all the cases,

the nematic Wigner crystal states are produced (as shown in

the figure), as well as the other two phases. However, the

convergence time of the simulation differs from the lattice

geometry. We find lattice (a) has the fastest convergence,

possibly due to the fact that it respects the mirror symmetry of

the dimers along their major axis. Therefore we use lattice (a)

to calculate all the curves shown in Fig. 4(a). For each chemical

potential, we do several independent simulations with different

randomized initial conditions and pick the one with the lowest

energy as our solution. This is due to the fact that sometimes the

configuration may be trapped in certain local energy minimum

and stops evolving into the true mean-field solution. The

complete image of the simulation results (a nematic supersolid

state and a nematic superfluid state) from Figs. 4(c) and 4(d)

is shown in Figs. 12(d) and 12(e).

APPENDIX F: CALCULATION OF MOMENTUM

DISTRIBUTION FOR NEMATIC SUPERFLUID AND

SUPERSOLID PHASES

For the nematic superfluid and supersolid phases, the

calculation in the above manner becomes more sophisticated

since the correlation between particles on different loops also

contributes significantly. A more convenient way is to do the

calculation in the Wannier basis, since the mean-field wave

function for these two types of ground states is already known

and can be expressed by Eq. (8). The coefficients fj,0 and

fj,1 are determined by the numerical self-consistent solution

discussed in Sec. V B and Appendix E. Now we see that the

single-particle density matrix takes the following form:

〈ψ |b†r1
br2

|ψ〉

= 〈0|
∏

j1

(

f ∗
j1,0

+ f ∗
j1,1

wj1

)

∑

j,j ′
[w∗

j (r1)w
†
j ][wj ′(r2)wj ′]

×
∏

j2

(

fj2,0 + fj2,1w
†
j2

)

|0〉. (F1)

Here, we have already rewriten the original bosonic operators

in terms of Wannier operators by flat-band projection Eq. (6).

One can find that the nonzero contributions in Eq. (F1) and

simplify it to

〈ψ |b†r1
br2

|ψ〉 =
∑

j

|fj,1|2(1 − |fj,0|2)〈0|wjb
†
r1
br2

w
†
j |0〉

+
∑

j,j ′

′
fj,0f

∗
j,1f

∗
j ′,0fj ′,1w

∗
j (r1)wj ′(r2).

The first term originates from the correlation between

particles in the same Wannier orbital. It is proportional (up to

a constant prefactor) to the single-particle density matrix we

calculated in Sec. VI A for the NWC states [inside Eq. (11)]

with the approximation that replaces the loop orbitals (Lj )

with the Wannier orbitals (wj ). For either nematic superfluid

or nematic supersolid states, the background contribution to

the momentum distribution from this term (after a Fourier

transform), denoted by 〈n(1)
q 〉, does not change up to a constant

prefactor. More concretely, this background contribution for

superfluid and supersolid states is reduced since a certain
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I.   Onsite Repulsion:

0.115 

II.    Density-Density Repulsion:

2×0.0242 2×0.0240 2×0.00888 2×0.00203 2×0.00136 2×0.00899 2×0.0242 

Mirror Mirror

2×0.00899 

Mirror

III.    Assisted hopping terms:

(a).     NN Hopping term 1 :

-0.0138×4 -0.00850×4 0.00177×4 0.00139×4 

0.0138×4 0.00850×4 -0.00177×4 0.00139×4 0.00365×4 -0.00330×4 -0.00179×4

(b).     NN Hopping term 2:

0.00358×4 -0.00358×4 0.00774×4 -0.00774×4 0.0101×4 -0.0101×4 0 0 

IV.   Ring-exchange interaction:

0.00204×4 0.00204×4 0

Mirror Mirror Mirror Mirror Mirror Mirror Mirror

Mirror Mirror Mirror

0.00365×4 0.00330×4 0.00179× 4

2×0.00136 

(a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8)

(a1m) (a2m) (a4m) (a5m) (a6m) (a7m) (a8m)

(b1) (b1m) (b2) (b2m) (b3) (b3m) (b4) (b5)

 -0.00250×4

0.00250×4

Mirror

(a3m)

FIG. 11. Table summarizing the leading terms and their coefficients (in units of Hubbard interaction strength U ) of the effective onsite

repulsion and the other three types of effective interactions which survive under the hard-core constraint.

portion of the occupation moves to the condensation peaks

as will be explained in the following paragraphs.

The second term originates from the correlation between

particles in different Wannier orbitals. Clearly, it only becomes

nonzero when fj,0, fj,1, fj ′,0, and fj ′,1 are all nonzero. Thus,

this term disappears for the NWC phase where each Wannier

orbital is in a number state (Fock state), either with n = 0 or

n = 1. It becomes nonzero when certain Wannier orbitals are in

superposition states, which implies superfluidity and presence

of off-diagonal long-range order. The Fourier transform of the

second term can be expressed as

〈

n(2)
q

〉

= 1

Nsite

∑

j,j ′

′
fj,0f

∗
j,1f

∗
j ′,0fj ′,1e

iq·(Rj −Rj ′ )

×
∑

r1

eiq·(r1−Rj )wj (r1)
∑

r2

e−iq·(r2−Rj ′ )w∗
j ′(r2). (F2)

Here, Rj refers to the coordinate of the center of Wannier or-

bital j [equivalent to the composite label (R,s) in Appendix C].

Note that the Fourier transform of the Wannier function is the
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FIG. 12. (a)–(c) The nematic Wigner crystal ground states from self-consistent mean-field calculations on three different lattices. The

periodic boundary condition is illustrated by the wires. The lattices contain 200, 225, and 225 sites, respectively. (d) and (e) The nematic

supersolid and nematic superfluid states calculated form the self-consistent mean-field theory on the periodic lattice shown in (a).

Bloch function [inverse transform of Eq. (C5)], therefore we

get

1√
Nsite

∑

r1

eiq·(r1−Rj )wj (r1) =
∑

l

β̃ l
s(j )(q). (F3)

Here we have already performed an additional summation

over the ten Bloch vector components labeled by l (note that
∑

r1
actually corresponds to a double sum

∑

R1

∑

l , where R1

labels all the unit cells and l labels the sites in each unit cell).

The label s(j ) (which depends on the Wannier center j ) is the

band index. In the π -flux case, it labels left (s = 1) and right

(s = 2) Bloch/Wannier states (two degenerate flat bands) as

mentioned in Appendix C. Therefore we can further simplify

the above expression as

〈

n(2)
q

〉

= Nsite

⎡

⎣

1√
Nsite

∑

j

ψ∗
j eiq·Rj

∑

l

β̃ l
s(j )(q)

⎤

⎦

×

⎡

⎣

1√
Nsite

∑

j ′
ψj ′e−iq·Rj ′

∑

l

β̃∗l
s(j ′)(q)

⎤

⎦. (F4)

Here, we have expressed the result in terms of ψj = 〈wj 〉 =
eiϕj 1

2
sin(θj ), namely the mean-field superfluid order param-

eter parameterized by the two Bloch-sphere angles of a

pseudo-spin- 1
2

(equivalent to hard-core boson). We can also

express the mean-field parameters as fj,0 = cos(θj/2) and

fj,1 = eiϕj sin(θj/2), which implies the relation ψj = fj,0fj,1.

Now we first consider the simple 0-flux case, when there

is only one flat band. Hence the summation of the Bloch

components is site-independent. We can factorize the above

expression into

〈

n(2)
q

〉

0-flux
= Nsite|ψ(q)|2 ·

∣

∣

∣

∣

∣

3
∑

l=1

β̃ l(q)

∣

∣

∣

∣

∣

2

, (F5)

where ψ(q) is the Fourier transform of the superfluid order

parameter ψj on the effective triangular lattice. Thus for the

superfluid and supersolid phases, the momentum distribution

will have the same set of delta-function peaks as those acquired

from Fourier transforming the superfluid order parameter on

the effective triangular lattice. However, an additional form

factor | ∑l β̃
l(q)|2 changes the weights of the delta-function

peaks (e.g., in the supersolid phases). The simplicity here is

essentially due to the fact that, for the 0-flux kagome lattice and

the effective triangular lattice have the same reciprocal lattice.

In the π -flux case, there are two degenerate bands due to

doubling of unit cell size, and the size of the first Brillouin

zone is reduced by half. In this case, we can split the effective

triangular lattice into two sublattices: one corresponds to

the centers of the left Wannier states, labeled by jL, and the

other corresponds to the centers of the right Wannier states,

labeled by jR . Note that these two sublattices correspond to

the same reciprocal lattice of the π -flux kagome lattice, the

size of which is reduced by half. Thus we can re-express the

momentum distribution as

〈

n(2)
q

〉

π-flux
=Nsite|ψL(q)

6
∑

l=1

β̃∗l
s=1(q)+ψR(q)

6
∑

l=1

β̃∗l
s=2(q)|2,

where ψL(q) and ψR(q) corresponds to the Fourier transform

of the order parameters on the left and right effective

sublattices. The delta-function peaks of the momentum
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distribution come from the momentum peaks of the superfluid

order parameter of both sublattices.

The continuous backgrounds in the three phases (nematic

Wigner crystal, nematic superfluid, and nematic supersolid)

have the same pattern up to a constant prefactor. On top of that,

the nematic superfluid and supersolid have additional delta-

function peaks in their momentum distributions, originating

from 〈n(2)
q 〉. While the superfluid phase has only one peak in

each Brillouin zone, the supersolid phase actually has five

peaks in each Brillouin zone.

APPENDIX G: LOCALIZED ORBITALS

PRESERVING C6 SYMMETRY

In Sec. V, we have constructed a Wannier basis close to

the maximally compact dimer LOs. Our effective flat-band

projected Hamiltonian is represented on this basis. In principle,

there are an infinite number of Wannier bases one can

choose to construct effective Hamiltonians. These effective

Hamiltonians are equivalent and only differ by a basis change.

However, the mean-field ansatz and the mean-field decoupled

Hamiltonian [see Eq. (9)] constructed from different bases are

not equivalent. Therefore the nematic phase acquired in Sec. V

is a direct consequence of choosing a mean-field ansatz based

on anisotropic WOs oriented in the same direction.

Here we show that it is actually also possible to construct a

localized orbital which preserves the C6 rotational symmetry

of probability distribution. The most compact C6-symmetric

orbital can be constructed by the superposition of six dimer

loop orbitals as shown in Fig. 13. In Fig. 13(a), we have six

dimer loop orbitals (with the amplitude labeled for each site)

sharing the same left hexagon. The superposition of the six

orbitals generate a C6-symmetric orbital in panel (b), centered

on the left hexagon. We note that in order to preserve the

C6 symmetry of probability, one has to introduce relative

phase between the orbitals, and in this example a π/2 phase.

This leads to the imaginary number i in certain amplitudes

and breaking of TR symmetry. In this case, the time-reversal

partner is obtained by turning i into −i. This orbital also

preserves the C6 symmetry and has the opposite current. The

reason of TR-symmetry breaking is that the C6-symmetric

orbital includes seven (odd number) π fluxes, which gives rise

to the doubly degenerate eigenstates with opposite chirality.

A similar construction can generate a C6-symmetric orbital

centered on the right hexagon, by the superposition of the six

surrounding dimer loops. Thus, for each unit cell, one can

generate a C6-symmetric orbital centered on right hexagons

with the same probability distribution. These orbitals form a

complete and spatially uniform basis of the gapped flat band

and can also be orthogonalized to form Wannier orbitals.

The physical reasoning on the choice of maximally compact

dimer LOs/WOs, instead of C6-symmetric ones, is based on

the energetic consideration that particles can avoid each other

by occupying the maximally compact orbitals with at most one

particle. In the case of Wigner crystal and supersolid phases as

shown in Fig. 6, the orbitals with large occupation probability

do not overlap with each other (ignoring the exponential tails).

Therefore the energetic advantage of being nematic is obvious.

For the uniform nematic superfluid phase, all the LOs/WOs are

equally populated. Due to the fact that dimer LOs enclose two

hexagons (while the number of dimer LOs are equal to the

number of hexagons), there is a significant overlap between

neighboring dimer LOs. Still, the overlap is not as large as

the case of more extended C6-symmetric orbitals, as shown

in Fig. 13. Therefore nematicity is still energetically favorable

even for the uniform phase.

FIG. 13. (a) Six dimer loop orbitals (with amplitudes labeled for each site) sharing the same left hexagon. (b) A C6-symmetric localized

orbital centered on the left hexagon. The orbital is superimposed by the six dimer loop orbitals in (a). (c) A C6 symmetric localized orbital

centered on the right hexagon. The orbital has the same probability distribution as the one in (b).
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