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Abstract 
      Here we review our latest results on DC magnetic 

behavior of large SIS and SNS type Josephson 

junction arrays paying special attention to the 

influence of disorder on establishment of the so-called 

Self-Organized Criticality (SOC) regime in the 

magnetic flux distribution within the arrays. Our 

experiments clearly demonstrated that, contrary to 

some theoretical predictions, a local distortion of 

SNS-type arrays does not necessarily lead to 

formation of SOC states with flux avalanches. 

Besides, we         have observed a substantial asymmetry in
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magnetic dynamics with pronounced hysteretic behavior of the magnetization 

loops in SNS-type arrays..  

 

1. Introduction 
 Josephson structures have given rise to a new scientific and technological 

trend and their study (both experimental and theoretical) remains one of the 

most interesting and actual problems of the modern solid state and low-

temperature physics. The phenomenon of Josephson generation in these 

structures makes it possible to fill in the gap in a frequency range of tens and 

hundreds of MHz with a tunable coherent submillimetric radiation. These 

structures can be used to preserve and process information based on magnetic 

flux quanta – RSFQ-logic and ultimately realize the idea of quantum 

computing. In this regard, it is interesting to mention that a heterodyne 

radiation detector with a working frequency of 500 GHz able to receive very 

weak signals (~10-13 W) has been already produced and successfully tested [1].  

 The magnetic dynamics of Josephson junction array (JJA), as the basis for 

a practical application of these structures, has been reported in numerous 

theoretical studies (see, e.g., [2-15] and further references therein) while the 

experimental investigations of Josephson arrays and Josephson stacks are still 

limited mainly to the study on voltage-current characteristics. It is worth noting 

that the behavior of magnetic moments has been the subject of study in just a 

few experimental works [16-24] including our own efforts [20-24].   

 The experimental results for the magnetic properties and the processes of  

JJA magnetization clearly indicate that the magnetic dynamics in regular 

networks differs substantially from the theoretical predictions. First of all, 

according to theoretical calculations, in the absolutely regular JJA, no dynamic 

state of Self-Organized Criticality (SOC) type can be realized as far as its 

magnetization is concerned. However, such a state has been recorded 

experimentally. Besides, the asymmetry of magnetization processes observed 

in JJAs is also at odds with the current theory. Let us consider these two 

phenomena in much detail, including their experimental observation and 

comparison with theoretical predictions. 

 

2. Josephson arrays: Topology and preparation 
 Schematically, the studied JJAs are the regular square superconducting 

networks with Josephson junctions inserted into their edges. The arrays of two 

main designs (with SIS and SNS type junctions) and different forms of 

superconducting islands (octagon and cross) were studied (see Figures 1-3). 

Configuration in the form of a cross displayed a greater cell inductance and a 

four times larger junction area which allowed for higher critical currents, in 

comparison with the octagon configuration.  
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Figure 1. Geometry of Josephson SIS-type junction network. The insert shows a 

voltage-current characteristics of an individual SIS-junction at T=4.2 K.  

 

 
 
Figure 2. Geometry of Josephson SNS-type junction networks. The insert shows a 

voltage-current characteristics of an individual SNS-junction at T=4.2 K. 

 

 The arrays were produced using conventional film technologies. First, the 

Nb film of a thickness of ~100 nm was precipitated by the method of 

magnetron sputtering in the constant current discharge in the argon atmosphere 

with a pressure of about 10-2 mbar. Then, photolithography with subsequent 

chemical etching in a mixture of hydrofluoric and nitrogen acids was used to 

prepare a    lower superconducting layer structure. The insulating layer of silicon 
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Figure 3. A fragment of the photo of SIS-type junction network. 

 

oxide (silicon monoxide SiO) of a thickness of ~150 nm was precipitated using 

the thermal vacuum evaporation method. The lift-off photolithography was 

employed to produce windows in the SiO film in which a Josephson junction 

was then formed. The opening of windows, the spreading of photoresistive 

layer and the formation of image for subsequent lift-off were followed by ionic 

surface cleaning. The controlled oxidation of Nb surface in a mixture of argon 

with oxygen resulted in the formation of the tunnel NbOx interlayer for SIS 

junctions, and in the case of the SNS ones, the interlayer of “dirty” Cu0.95Al0.05 

metal was used. The upper lead layer was obtained using a method similar to 

vacuum evaporation, that is right after the formation of the tunnel interlayer (in 

one vacuum cycle) with subsequent structure formation by means of lift-off 

photolithography. Unfortunately, it is impossible to directly apply Nb to the 

upper layer because of the very high temperature necessary for its deposition 

on a substrate. At this temperature, a complete degradation of the preliminarily 

produced NbO layer was registered. 

 The technology of SNS-type array production is almost identical to the 

aforementioned technology for producing SIS-type arrays. However, there are 

two important distinctions. The formation of windows in the layer of silicon 

oxide was not followed by the oxidation of Nb surface. Instead, the magnetron 

sputtering was used to produce a layer of a thickness of about 160 nm from  

Cu0.95Al0.05. The       last layer, in this case, consisted of Nb (instead of lead) in order 
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Table 1. Comparative characteristics of the of SIS (Nb–NbOx–Pb) and SNS (Nb–

Cu0.95Al0.05–Nb) type  Josephson junction arrays. 

 
Type of junction SIS1  SIS2  SISk  SNS 

 

Number of meshes in 

array Mesh size, µm2 

Junction area,  µm2 

Critical current at 4.2 K, A 

Normal resistance, Ω 

Mesh inductance, H 

Junction capacity, pF 

  

100 × 100 

 20 × 20 

 ~7 

~80 

10 

~2.5×10–12  

~1 

 

 

 100 × 100 

 20 × 20  

~7  

~150  

20 

 ~2.5×10–12 

 ~1  

 

64 × 64 

20 × 20 

~25 

~1800 

~0.7 

~10–11 

~3 

 

100 × 100 

20 × 20 

~7 

1500 

10–3 

~2.5×10–12 

~0.01 

 

to provide a high stability of samples and a slightly higher temperature of a 

superconducting junction. 

 Table 1 summarizes the comparative characteristics of our SIS-type and 

SNS-type arrays. It is worth mentioning that the SIS-type arrays were short-

lived and the changes in parameters were noticeable already after two months. 

In contrast, the SNS-type arrays were rather stable and preserved their 

properties for more than two years. 

 

3. Experimental technique 
 The magnetic moment of the JJA is rather small due to the smallness of 

Josephson currents. Its value at temperatures of about 6 – 6.5 K does not 

exceed 10-11 A·m2. Hence, only sensitive enough SQUID-magnetometers can 

measure such small moments and their variations with magnetic field. This 

magnetometer is based on a high-frequency SQUID (see Figure 4). Our home-

made magnetometer manifests a series of peculiarities in the design of pickup 

coils of flux transformer, in the method of compensating their astaticism, and 

in the design of a solenoid.  Conventional pickup flux transformer coils are 

usually symmetric first-order gradiometers. Our design differs in that it was 

produced in the form of a symmetric second-order gradiometer [25,26]. As 

distinct from the classical circuit, the central coil was divided into two 

identical separated coils, resembling the Helmholtz ones. This offered some 

preferences. Namely, the microphone noise was decreased, a parasite signal of 

a sample rod was effectively compensated by the second-order gradiometer, 

and the dependence of the signal on the position of the sample was weaker.  

 The solenoid consisted of two superconducting parts, i.e., the outer one 

was short-circuit and the inner one was non-circuit. A certain field value was 

frozen in   the short-circuit solenoid and the non-circuit one was used for continuous 
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Figure 4. Overview of SQUID-magnetometrs. 

 

field variations within some limits. The astaticism of the carefully produced 

pickup coils was about 3·10-4. To reach additional compensation, we 

introduced a small coil of several copper wire turns winded around the same 

mandrel as the flux transformer with mutual inductance. This coil was 

switched on sequentially with the non-circuit solenoid. The number of turns in 

it (in our case, six) was taken to compensate, to a maximum extent, the 

astaticism of the system of the pickup coils. During the work, the current was 

passed through the additional coil which differed from the solenoid one and 

was proportional to it with some coefficient which could be varied within 

certain limits. Thus, the slope of the magnetization curves can be varied by 

adding the field-proportional value to the sample signal which almost fully 

compensated      the contribution of the screening currents of superconducting Nb  
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Table 2. SQUID – magnetometer characteristics. 

 

 Temperature range                                     1.5 – 270 K 

 Temperature measurement accuracy          0.2  K 

 Magnetic fields  range                                10-3 – 5x102 Oe 

 Magnetic moment  sensitivity                    10-13 Am2 

 Sample size                                                 4 mm diameter, 5 mm length 

 Helium expenditure                                    3.5 liters per 10 hours 

 

and Pb film electrodes. As a result, only the contribution from the currents 

passing through the Josephson array remained in the magnetic moment 

measured. Note that without this apparatus compensation, it is almost 

impossible to distinguish a weakly pronounced signal structure against the 

background of the large general slope of the magnetization curve during 

further treatment of the recorded signal. 

 To decrease drifts and interferences, the liquid helium containing the flux 

transformer, the solenoid, and a superconducting magnetic screen, was 

transferred to a superfluid state by pumping the vapor out. To this end, the 

measurements were performed mainly at night. The temperature was measured 

using a Cu+0.1%Fe - Cu+0.1%Ge thermocouple with a sensitivity of about 10 

μV/К at helium temperatures. In this case, the superconducting transitions in  

both Nb and Pb and the point at which helium converted into the superfluid 

state (which was seen as a sharp decrease in low-frequency magnetometer 

noise) served as the reference  points. 

 The SQUID-magnetometer was calibrated using the samples with the 

magnetic moments of well-known values. When the magnetic moment 

sensitivity is of the order of 10-13 Аm2, the magnetometer allows measurements 

not only under the conditions for measuring the temperature dependence of the 

moment with the field frozen in the superconducting solenoid, but also at 

constant temperature in the regime of the field sweep. Thus, we could steadily 

obtain the full hysteresis loops with a good reproducibility of results. Table 2 

summarizes the basic parameters of our SQUID-magnetometer. 

 

4. Experimental results 
 The magnetic behavior of the JJAs with SIS and SNS type junctions is 

quite different [22]. The magnetic properties of the JJAs are mainly determined 

by flux quantization in a superconductor, which makes a vivid description in 

terms of fluxon dynamics more convenient. Fluxons are the magnetic flux 

quanta. The interaction of fluxons with a periodic potential of the array as well 

as their interaction with each other determine most of the peculiarities of the 

magnetic dynamics of the JJA. 
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 Figures 5-8 show the typical results of the measurement of the magnetic 

moments of two SIS- type arrays with a continuously (at constant rate) 

changing field (hysteresis loops) within about ± 1 Oe and at temperatures 2 - 7 

K. Before the measurements, the arrays were cooled down in a field of less 

than 0.1mOe which provided the absence of the Abrikosov vortices in 

superconducting films. Figures 5 and 6 demonstrate the hysteresis loops of the 

SIS-type arrays for two samples with various critical currents of the junctions 

at various temperatures. A change in the direction of the field sweep makes the 

screening currents in the array reverse their direction and the array rapidly 

acquires its critical state. As a result, a smoothed field configuration in the 

array resembles the profile obtained from the conventional Bean model: a pit at  

 

 
 

Figure 5. Magnetization curves for the SIS2 array for various temperatures. 

 

 
 

Figure 6. Magnetization curves for the SISk array for various temperatures. 
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the center is obtained with increasing field while a pile of fluxons is obtained 

with decreasing field. However, this pattern is observable only in fairly low 

fields. For higher fields (above 1 Oe), the magnetic moment of the array 

decreases (ultimately reaching a zero value) due to field-induced suppression 

of the critical current of the junction. In the upper part of the temperature range 

studied, the periodic peaks are observed in the hysteresis loops of the array 

(see Figures 5 and 6). The distance between the peaks corresponds to the 

penetration of one flux quantum through one cell, namely ΔН=Ф0/а2. Note that 

the periodicity of the magnetic array properties follows from the corresponding 

symmetry of the Hamiltonian of the array related to the transformation Ĥ → Ĥ 

+Φ0/a
2. Exactly in-between the high peaks, small tubercles are observed, i.e., a 

unique second harmonics which corresponds to a change in the flux in the 

array, on the average, in one fluxon per each two cells. This obviously 

corresponds to the distribution of added flux quanta in the array in the form of 

quite stable staggered rows [27,28]. The array is supposed to contain also 

harmonics of higher orders related to a periodic formation of fluxon 

superarrays (with corresponding periods) which, however, were not observable 

against noise due to their smallness. As follows from Figure 5, the hysteresis 

loop displays minor asymmetry. In this case the peaks are smaller with 

decreasing field than those observed in the curve with increasing field. 

 In the lower part of the temperature range from 2К to 5К (depending on 

the critical junction current), the hysteresis loops manifest the noise-like jumps 

of the magnetic moment whose amplitude (unlike temperature fluctuations) 

increases with decreasing temperature. First, these jumps are observed at the 

vertices of periodic peaks of the magnetic moment and then they propagate 

laterally to form first compact periodic groups with a period identical to that 

observed in high-temperature curves. As the temperature continues to drop, 

these groups join to form a continuous “chatter”. Figure 7 depicts an enlarged 

fragment of the magnetization curve. According to this figure, the noisy 

behavior is actually a monotonous increase in the magnetic moment with 

decreasing field, interrupted by sharp staggered falls. On the other hand, as the 

field increases, a continuous decrease in the moment is suddenly interrupted by 

its staggered increase. After these jumps, the array gains (or loses) the flux 

quanta (whose number in our case reached hundreds of fluxons) resulting in 

the evident electromagnetic radiation. A characteristic time for successful 

monitoring of the avalanche evolutionary process should be of the order of the 

characteristic Josephson times for the junctions under the studiy (which is of 

the order of 10-12 s). We have failed to resolve such fast processes because the 

working frequency band for our SQUID magnetometer was about 10 Hz, 

meaning that a drastic change in the moment appeared as an exponential 

relaxation with a characteristic response time of just about 0.1 s. 
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Figure 7. A fragment of magnetization curves of the SISk array at 4.1K; magnetic 

moment jumps (magnetic flux avalanches) are cleary seen. 

 

 
 
Figure 8. Hysteresis loops for the SIS1 array (containing 100x100 cells) at T=4.15 K in 

fields up to ±15mOe. 

 

 Figure 8 shows the random jumps (avalanches) that are independent of the 

field sweep. More precisely, this figure presents the magnetization curves for a 

continuous change in the external field within small limits ±15 mOe at 2.15К. 

 The upper curve consists of four complete cycles following each other. 

The lower curve consists of two cycles. All the curves have the regions in 

which a monotonous change in the magnetic moment is interrupted by 

spontaneous sharp falls followed by a monotonous dependence up to the next 

jump. These jumps are well observed. They occur at random values of the field 

and demonstrate significant scattering in their amplitudes. Of special interest is 

the existence of monotonous and fairly reproducible regions of 5-6 mOe in the 

curves in which the transition to another branch of the loop occurs after  

turning  the field direction.  
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5. Self-Organized Criticality (SOC) and avalanche 

statistics 
 A statistic analysis of jumps in the magnetization curves indicates the 

existence of SOC in the studied arrays. Due to a constant sweep rate, the field 

can be identified with the time also fixed during experiment. 

 

 
 
Figure 9. Distribution of magnetic moment jumps (flux avalanches) with respect to the 

amplitude in SIS-type junction network at T=4.1 K; n is a slope of straight line (with 

exponent n1) , N is the number of avalanches.  

 

 
 
Figure 10. Distribution of time intervals with respect to time interval in Log scale; dots 

(experiment), solid line (fit with the slope n2 = -3.2). 
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Figure 11. The Fourier spectrum for fragments in the magnetization curve 

corresponding to flux avalanches. 

 

 Figure 9 shows the density of the probability for appearance of avalanches 

depending on their amplitude on a double logarithmic scale. For low 

amplitudes we observe a power-like distribution P1(A) = P1 An1. The same 

form is also observed  for high amplitudes but with another exponent P2(A) = 

P2 A
n2. The exponent is negative and fractional, and |n1| <|n2|. Thus, as follows 

from this figure, the dependence of distribution density on the avalanche 

amplitude has a crossover which is most pronounced in the case of a fairly 

large body of the data. 

 The density of time distribution among neighboring avalanches, and 

identical avalanches display a power character with nonintegral exponents (see 

Figure 10). It is interesting to point out that the Fourier spectrum for fragments 

of the magnetization curve in which the avalanches manifest themselves has a 

Flicker-noise type 1/fα – character (see Figure 11).  

 

6. Discussion of results on SIS type arrays 
 It is worth mentioning that the self-organized criticality (SOC), observed 

in our experiments on SIS-type arrays (via avalanche relaxation) along with 

the obtained power dependences are widely available in the nature. To mention 

just a few examples, they are observed in the dynamics of granular materials, 

biological evolution, earthquakes, forest fires, landscape formation, solar flare, 

river networks, mountain ranges, volcanic activity, traffic jams, plasmas, 

superconductors, stock markets, brain functions, spreading epidemics etc. 

However, these dependences have first become the subject of study only 
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recently. Namely, in 1987 Bak, Tang and Wisenfeld [29] proposed a 

phenomenological model describing a thermodynamic system with avalanches. 

The phenomenon of the dynamic state of a thermodynamic system resulting in 

the formation of such avalanches was called the Self-Organized Criticality 

(SOC). The latter is related to the fractal properties of the spatial distribution of 

objects, displays scaling with varying system parameters, and possesses 

characteristic correlation functions related to avalanche spectrum. It is worth 

noting that the appearance of avalanches does not depend on the value of either 

external effect or fluctuations, and even a small action can provoke a huge 

avalanche (catastrophe). Another peculiarity is the fact that, despite chaotic 

motion, the system is self-organized, that is on average it acquires a constant 

parameter (e.g., the slope of the sand pile or the magnetic moment of the 

Josephson array). Thus, the system can sustain its own critical state which 

means that the SOC and the other parameters of the system do not require any 

adjustment. Note that the amplitude distribution of avalanches exhibits a power 

like character. Thus, the probability of large avalanches whose scale is limited 

only by system dimensions is rather high. The aforementioned objects (similar 

to the ones in the SOC state) can be considered as discrete systems with a great 

number of energy levels which are moved out of balance under the action of 

external factors. At some moment, these systems acquire a particular critical 

dynamic state which is more stable than equilibrium state and thus has lower 

entropy. The stationary state in such systems is sustained by avalanches. Notice 

that this general approach (based on nonlinear Lorentzian equations [30]) is 

purely phenomenological. It does not take into account any real  interactions and 

hence, though useful for some qualitative predictions, this theory has little in 

common with reality. During the last 15 years after the pioneering studies on 

SOC [29,31,32],  many different theoretical models have appeared that imitate, 

quite successfully, various natural phenomena, such as earthquakes  [33,34], 

intercrossing phase transitions [35-39], quark-hadron phase transitions  [40], rain 

phenomena [41], the propagation of forest fires [42,43],  the crises in economy 

[44],  the development of populations in biology [45], etc. Since the systems of 

this type include biosphere, society, infrastructures of various types, military and 

industrial complexes, and other hierarchical systems, the results from the studies 

on SOC are highly important for analyzing the potentials for control and 

development of the methods for protection against catastrophes. 

 In the scientific literature, some doubt has been cast on the adequacy of the 

Self-Organized Criticality theory as determined by the founders of the concept 

[29].  Hence, the term Self-Organized Complexity (SOCX) is often used 

instead of the Self-Organized Criticality (SOC). In particular, in some works, 

the distribution of avalanches with amplitude is different from the power like 

behavior typical for SOC. Both the examination based on the analysis of the 

statistic dependences of various processes (performed in [46]) and the 
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experiment on the study of the inner local avalanches of the magnetic flux in  

thin Nb films [47] clearly indicate that the dependence of the probability of 

avalanches on amplitude is often better described in terms of the stretched 

exponential function P(x) ~ exp(-(x/x0)
μ), where μ is a constant. In this case, 

there is a characteristic scale of avalanches x0, and an avalanche size 

distribution function is highly inhomogeneous. At present, the experimental 

data on SOC are obtained for a limited range of artificial objects, including  the 

studies on the dynamics of growing sand pile [48], the motion of a piece of 

emery cloth over neylon carpet [49], the film boiling of nitrogen at the surface 

of high-temperature superconductor (HTSC) near the transition to a 

superconducting state [35-39],  and the plastic deformation of a loaded metallic 

rod [50,51]. More recently, one of the creators of the SOC theory Kurt 

Wisenfeld together with John Linder suggested that the Josephson arrays are 

the ideal artificial objects for studying this universal phenomenon [52]. On one 

hand, this is due to the fact that the processes in the arrays can be calculated on 

the basis of fundamental physical laws that make it possible to deeply understand 

the origin of these processes, including the SOC nature. On the other hand, the 

arrays are convenient objects for experimental investigations. They can be 

modified starting from the change in the parameters of the interaction between 

the elements forming the array up to its total configuration.  

 The extensive theoretical studies on the dynamics of regular and irregular 

arrays were performed by Ginsburg and Savitskaya [7-15].  Their calculations 

for the behavior of array magnetization are based on a discrete sine-Gordon 

equation. Using the power character of avalanche distribution as a criterion, they 

have managed to determine the conditions under which the SOC can manifest 

itself in the arrays. Namely, they found that the condition under which the SOC 

state can be observed reduces to the inequality λ(T)<<a (or k=λ/a<<1), where λ(T) = Φ0/(πμ0jC(T))  is the Josephson penetration depth of the field into the 

array, а is the array period, and jC(T) is the critical current of a single junction. 

The aforementioned inequality is equivalent to the inequality LI0(T)/Ф0>>1, 

where L is the inductance of one cell and I0(T) is the depinning current density. 

 As follows from these conditions, varying temperature (and thus, the 

critical current), one can pass to the region where the SOC state should exist 

(see Figs. 5 and 6). The criterion LI0(T)/Ф0>>1 was verified by direct 

measurements. The depinning current of fluxons was estimated from the half-

width of magnetization hysteresis loops using a simplified assumption that the 

currents in the array pass over concentric square circuits. In this case, the width 

of the loop is proportional to the depinning current. According to this 

estimation, the temperature, at which the penetration depth of magnetic field 

into the array, λ(T), becomes equal to the array parameter a, is Tс ~ 6K (see 

Figure 5). This value corresponds to the temperature below which the random 
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jumps are observed in the magnetization curve. For the array shown in Figure 

6, the depinning current is higher, so that this temperature becomes closer to 

the transition temperature of the upper lead junctions.  

 It is of interest to consider the dynamics of the motion of the system of 

fluxons in these two temperature domains.  At high enough temperature, where 

LIC<<Φ0,, one cell cannot retain a flux quantum and each fluxon is distributed 

over several cells. This corresponds to the condition k >>1 (weak pinning). In 

this case, the fluxons penetrate into the array in the form of hypervortices, 

covering many cells. The interaction between fluxons upon weak pinning leads 

to their deep penetration to the array with almost uniform distribution. The 

field profiles in the array in this case are maxima that are almost uniformly 

distributed over the array at the centers of the hypervortices (see, e.g., [53,54]). 

When k >>1, the fluxon extends over many cells, and the dynamics of the 

Josephson vortices can be described within a continuous (hydrodynamic) limit 

where the states with minimal energy are realized. This theoretical model is in 

excellent agreement with our observations because the curves shown in Figure 

5 agree even in details with those calculated for the large values of the 

Josephson penetration depth (Cf. with  Fig.14 from [3]).  

 On the other hand, when the value of the critical current is large, and 

LIC>>Φ0 (where L is the cell inductance, and IC is the critical current in the 

Josephson junction), each cell can retain the flux of more than one quantum, 

and each cell can contain only the integer number of fluxons. The dynamics of 

fluxon motion in such a regime can be described as the motion of discrete 

quasiparticles localized within one cell and possessing a certain effective mass. 

This corresponds to k <<1 (the strong pinning state). An increase in the 

external magnetic field in cell contours (with initially zero current) causes an 

increase in the screening current and thus, in the magnetic moment of the cell. 

When the current reaches a critical value, a fluxon enters the cell and its 

magnetic moment decreases in jumps, the magnetic field penetrates the array 

almost discretely and synchronously over almost square contours. A system of 

fluxons is, in this case, in metastable states that are far from equilibrium. In 

this case, the field profile forms a quadrangular pit by steps from contour to 

contour and resembles the Bean field distribution in a volumetric type II 

superconductor. Recently, an interesting study on the penetration of magnetic 

flux into Nb films based on magnetooptics technique has been published 

[55,56]. A laborious analysis of the field profile performed there indicated the 

realization of the self-organized criticality in a given system. 

 

7. Discussion of results on SNS type arrays 
 Figure 12 shows the hysteresis loops of the SNS-type array in the upper 

region of  the temperature interval, where λ(T)>a. As compared with the SIS- type 



S.M. Ishikaev & E.V. Matizen 16

 
 

Figure 12. Magnetization curve of the SNS array at 5.7 – 8 K. 

 

array, in this case we observe a substantial asymmetry in the magnetic flux 

dynamics. As the absolute value of the field increases, the character of the 

behavior of the magnetic moment in SNS-type array remains almost the same 

as the behavior of the SIS-type array moment. The magnetization curve also 

shows the periodic peaks located at the “pedestal” (Cf.. with Figure 5 for the 

same temperature interval). As the absolute field value decreases, the 

characteristic peaks become less pronounced (in fact, they are actually absent). 
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The third upper hysteresis loop (shown in Figure 12) differs from the other 

loops. It displays neither sharp peaks nor asymmetry. In this case, the principle 

difference of the initial magnetic state of the system is that the array under 

study was cooled down below the superconducting transition temperature in a 

magnetic field of about 180 mOe, which caused the freezing of the Abrikosov 

vortices in Nb films. Obviously, the additional field created by these vortices 

interacts with the Josephson vortices and have a substantial effect on their 

motion. In Figure 13 the hysteresis loops are presented for temperatures at 

which λ(T)<a. In comparison with the SIS-type array, these loops show no 

jumps of the magnetic flux and the magnetic moment changes quite smoothly. 

More broad and relatively low maxima (in place of former sharp peaks) are 

observed in the magnetization curve because the self-fields of the currents in 

the SNS-type arrays (as the currents themselves) become rather important at 

low temperatures and have a considerable effect on fluxon distribution. In 

other words, the magnetic field in the array becomes, in this case, highly 

inhomogeneous, leading to the smearing of the peaks. The shape of the loops 

approaches in this case a classical form for a type II superconductor. 

 We have repeatedly studied the curve of the SNS-type array hysteresis in 

order to verify the fact that upon slow field sweep the regular peaks appear 

only with increasing absolute value of the field and are not observable with its 

decrease. Figure 14 shows the hysteresis curves obtained for various field 

sweep rates: 30, 150, and 100 in arbitrary units. 

 The middle curve (150) shows the particular hysteresis loops for various 

initial points: (1) an increase in the field from 0 field to point F, (2) a decrease 

in the      field from F to G, (3) an increase in the field from G to F, (4) a decrease 

 

 
 

Figure 13. Magnetization curve of the SNS array at 3.7 – 5.7 K. 
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Figure 14. Magnetization curve of the SNS array for various sweep rates. 

 

in the field from F to A, (5) an increase in the field from A to F, (6) an increase 

in the field from F to B, (7) an increase in the field from B to F, etc. All the 

curves superimpose well one another. Hence, we can conclude that at any 

initial field from which the measurements of the hysteresis curve are started, 

the peaks are observed with increasing field and are unobservable with 

decreasing field. Thus, we demonstrated that in the presence of a constant 

field, the magnetic dynamics asymmetry remains constant. This experiment 

proves that the penetration of the magnetic flux into the array causes periodic 

formation of regular spatial configurations of fluxons and the reverse process 

occurs randomly. In this case, the mean magnetic moment (which almost 

corresponds to the “pedestal” value) is symmetric. 

 To understand the reasons for the absence of SOC and the existence of the 

hysteresis loop asymmetry, we have tried to break the order of SNS-type array 

cell location, both within the array and along its edges. The first reason for 

doing this is the well-known fact that, according to the theory [7-15], the 

disorder in the location of the cells is enough to cause the SOC regime. Thus, 

by inducing the order breakdown, we expected to trigger this phenomenon. 

The second reason was the hope to change the regime of the motion of vortices 

upon their escape from the array. 

 Figure 16 shows the SNS-type array hysteresis loops with a different 

number of cells removed from the central region. In this case, the cells were 

removed mechanically by scribing. The removed region was in the form of a 

square with uneven sides that were, on average, parallel to the outer sides of 

the array. As it is clearly seen in the figure, the phenomenon of SOC does not 

manifest itself in this particular case. 
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Figure 15. Temperature dependence of current in the SIS array. Triangles  correspond 

to the estimates of current from the magnetic moment of the array,  squares denote the 

data obtained  from direct measurements of the critical  current in a single junction. 

 

 
 

Figure 16. The SIS-type array with distorted cells in the center. 
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Figure 17.  SIS array with distorted cells in the periphery: the initial array (circles), the 

removed angles (solid line), the removed angles and distorted sells at the boundary 

(squares). 

 

 Presumably, the asymmetry of the hysteresis curve is related to the 

conditions at the boundaries of the array under which some barrier layers can 

arise to prevent the flux quanta from moving. To verify this assumption, we 

have first removed the angles of the square network and then broken the cells 

at its periphery. Figure 17 clearly demonstrates that these distortions failed to 

decrease the magnetization curve asymmetry and even caused its slight 

increase. To better understand the problem regarding the influence of disorder 

in the arrays on SOC appearance, we have measured magnetic moment by 

magnetizing granular films and  HTSC ceramics at 4.2 K in order to reveal an 

avalanche-like motion of the magnetic flux which was quite probable 

according to [7-15]. Our results have failed to reveal any signals of avalanches 

probably due to the fact that the intragrain junctions in the HTSC-ceramics 

consist mainly of SNS-type junctions. 

 

8. Conclusion 
 In the present work, we have tried to pay special attention to the magnetic 

properties of the Josephson junction arrays under the action of relatively small 

magnetic fields (0-100 Oe) and over the available temperature range (2-10K). 

 Our experiments clearly indicate that in the arrays, the slowly varying 

magnetic field causes a specific dynamic situation that converts into the so-

called Self-Organized Criticality (SOC) regime with decreasing temperature. 

Recall that in [16-19], the mutual-inductance technique was used to reveal the 
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uniformly separated peaks of the magnetic flux with increasing field and the 

scanning SQUID microscopy made it possible to reveal spontaneous 

(catastrophic) temperature-independent penetrations of the magnetic flux into 

the arrays with unshunted junctions. We have experimentally demonstrated 

that in the SIS-type arrays there are two temperature domains in which the 

behavior of the magnetic moment varies. In the first domain, the uniformly 

distributed peaks of the magnetic field are observed in the magnetization curve 

which almost coincides with a theoretical description [3]. In the second 

domain, we observed the random jumps of the magnetic moment that are the 

avalanches of the magnetic flux displaying specific statistics. The avalanche 

distribution in the values of their amplitudes and time between the neighboring 

avalanches has a power character with nonintegral exponents of order of unity. 

The density of the fluctuation spectrum of magnetization curve also exhibits  a 

power-like Flicker noise type behavior (~1/fα) with a negative nonintegral 

exponent of the order of unity. Even though this behavior is in fair agreement 

with the SOC theory, quantitatively the observed dependence markedly differs 

from the theoretical predictions [29]. Namely, the distribution of avalanches 

with amplitude displays a pronounced crossover. The distribution density of 

large avalanches decreases much faster with increasing amplitude than the 

distribution density of avalanches of minor amplitudes. It is interesting to point 

out that a somewhat similar phenomenon was detected by Gutenberg and 

Richter [57] in geophysics. As it is generally accepted, a fast decrease in the 

distribution density of large avalanches should occur due to the finite size of 

the Josephson array which means that the number of the field-induced fluxons 

in such an array is limited. Thus, a natural physical limitation is imposed on 

the size of large avalanches, which is in agreement with the calculations made 

by Ginsburg and Savitskaya [7-15], where such a drop of avalanche 

distribution density was predicted. 

 There is however a substantial disagreement between our experimental 

data and the theory of Ginsburg and Savitskaya. They claim [14] that the 

appearance of SOC in the magnetization of Josephson junction array  depends 

not on the scattering in the critical currents of separate junctions but on the 

breakdown in the periodicity of the array parameter a. Moreover, this 

breakdown should exceed the errors in the technology of array production, 

which amount to less than 5%. 

 At the same time, our experimental studies on SNS-type arrays have 

revealed a series of peculiarities that do not follow from the available 

theoretical works. Let us mention the most important ones. First of all, we have 

failed to reveal any magnetic flux avalanches in the SNS-type array despite the 

fact that the main criterion for the existence of SOC (with  λ(T)<<a) was 

satisfied. Besides, we have observed a substantial asymmetry in magnetic 

dynamics which indicates a different character of motion at which the 
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penetration of the magnetic flux into the array actually occurs. More precisely, 

the flux penetration was found to have a more ordered character as compared 

with a fairly disordered process during its escape. 
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Abstract 
      By employing mutual-inductance technique and 
using a high-sensitive home-made bridge, we have 
thoroughly investigated (both experimentally and 
theoretically) the temperature and magnetic field 
dependence of complex AC susceptibility of  artificially 
prepared  highly ordered (periodic) two-dimensional
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Josephson junction arrays (2D-JJA) of both shunted and unshunted Nb–AlOx–
Nb tunnel junctions as well as disordered three-dimensional arrays (3D-JJA). 
This paper reviews some of our latest results regarding the influence of non-
uniform critical current density profile on magnetic field behavior of AC 
susceptibility in 2D-JJA, and the origin of remanent magnetization in 
disordered 3D-JJAs.  
 

1. Introduction 
 Many unusual and still not completely understood magnetic properties of 
Josephson junctions (JJs) and their arrays (JJAs) continue to attract attention of 
both theoreticians and experimentalists alike (for recent reviews on the subject 
see, e.g. [1-5] and further references therein). In particular, among the 
numerous spectacular phenomena recently discussed and observed in JJAs we 
would like to mention the dynamic temperature reentrance of AC susceptibility 
[2] (closely related to paramagnetic Meissner effect [3,4]) and avalanche-like 
magnetic field behavior of magnetization [5,6]. More specifically, using highly 
sensitive SQUID magnetometer, magnetic field jumps in the magnetization 
curves associated with the entry and exit of avalanches of tens and hundreds of 
fluxons were clearly seen in SIS-type arrays [6]. Besides, it was shown that the 
probability distribution of these processes is in good agreement with the theory 
of self-organized criticality [7]. It is also worth mentioning the recently 
observed geometric quantization [8] and flux induced oscillations of heat 
capacity [9] in artificially prepared JJAs as well as recently predicted flux 
driven temperature oscillations of thermal expansion coefficient [10] both in 
JJs and JJAs. At the same time, successful adaptation of the so-called two-coil 
mutual-inductance technique to impedance measurements in JJAs provided a 
high-precision tool for investigation of the numerous magnetoinductance (MI) 
related effects in Josephson networks [11-14]. To give just a few recent 
examples, suffice it to mention the MI measurements [12] on periodically 
repeated Sierpinski gaskets which have clearly demonstrated the appearance of 
fractal and Euclidean regimes for non-integer values of the frustration 
parameter, and theoretical predictions [13] regarding a field-dependent 
correction to the sheet inductance of the proximity JJA with frozen vortex 
diffusion. Besides, recently [14] AC magnetoimpedance measurements 
performed on proximity-effect coupled JJA on a dice lattice revealed 
unconventional behaviour resulting from the interplay between the frustration f 
created by the applied magnetic field and the particular geometry of the 
system. While the inverse MI exhibited prominent peaks at f = 1/3 and at f = 
1/6  (and weaker structures at f = 1/9, 1/12, . . ) reflecting vortex states with a 
high degree of superconducting phase coherence, the deep minimum at f = 1/2 
points to a state in which the phase coherence is strongly suppressed. 
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 More recently, it was realized that JJAs can be also used as quantum 
channels to transfer quantum information between distant sites [15-17] through 
the implementation of the so-called superconducting qubits which take 
advantage of both charge and phase degrees of freedom (see, e.g., [18,19]  for 
a review on quantum-state engineering with Josephson-junction devices). 
 Artificially prepared two-dimensional Josephson junctions arrays (2D-
JJA) consist of highly ordered superconducting islands arranged on a 
symmetrical lattice coupled by Josephson junctions (figure 1), where it is 
possible to introduce a controlled degree of disorder. In this case, a 2D-JJA can 
be considered as the limiting case of an extreme inhomogeneous type-II 
superconductor, allowing its study in samples where the disorder is nearly 
exactly known. Since 2D-JJA are artificial, they can be very well 
characterized. Their discrete nature, together with the very well-known physics 
of the Josephson junctions, allows the numerical simulation of their behavior.  
 Many authors have used a parallelism between the magnetic properties of 
2D-JJA and granular high-temperature superconductors (HTS) to study some 
controversial features of HTS. It has been shown that granular superconductors 
can be considered as a collection of superconducting grains embedded in a 
weakly superconducting - or even normal - matrix. For this reason, granularity 
is a term specially related to HTS, where magnetic and transport properties of 
these materials are usually manifested by a two-component response. In this 
scenario, the first component represents the intragranular contribution, 
associated to the grains exhibiting ordinary superconducting properties, and the 
second one, which is originated from intergranular material, is associated to 
the weak-link structure, thus, to the Josephson junctions network [20-25]. For 
single-crystals and other nearly-perfect structures, granularity is a more subtle  
 

 
 
Figure 1. Photograph of unshunted (left) and shunted (right) Josephson junction arrays. 
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feature that can be envisaged as the result of a symmetry breaking. Thus, one 
might have granularity on the nanometric scale, generated by localized defects 
like impurities, oxygen deficiency, vacancies, atomic substitutions and the 
genuinely intrinsic granularity associated with the layered structure of 
perovskites. On the micrometric scale, granularity results from the existence of 
extended defects, such as grain and twin boundaries. From this picture, 
granularity could have many contributions, each one with a different volume 
fraction. The small coherence length of HTS implies that any imperfection 
may contribute to both the weak-link properties and the flux pinning. This 
leads to many interesting peculiarities and anomalies, many of which have 
been tentatively explained over the years in terms of the granular character of 
HTS materials. One of the controversial features of HTS elucidated by 
studying the magnetic properties of 2D-JJA is the so-called Paramagnetic 
Meissner Effect (PME), also known as Wohlleben Effect. In this case, one 
considers first the magnetic response of a granular superconductor submitted to 
either an AC or DC field of small magnitude. This field should be weak 
enough to guarantee that the critical current of the intergranular material is not 
exceeded at low temperatures. After a zero-field cooling (ZFC) process which 
consists in cooling the sample from above its critical temperature (TC) with no 
applied magnetic field, the magnetic response to the application of a magnetic 
field is that of a perfect diamagnet. In this case, the intragranular screening 
currents prevent the magnetic field from entering the grains, whereas 
intergranular currents flow across the sample to ensure a null magnetic flux 
throughout the whole specimen. This temperature dependence of the magnetic 
response gives rise to the well-known double-plateau behavior of the DC 
susceptibility and the corresponding double-drop/double-peak of the complex 
AC magnetic susceptibility [26-31]. On the other hand, by cooling the sample 
in the presence of a magnetic field, by following a field-cooling (FC) process, 
the screening currents are restricted to the intragranular contribution (a 
situation that remains until the temperature reaches a specific value below 
which the critical current associated to the intragrain component is no longer 
equal to zero). It has been experimentally confirmed that intergranular currents 
may contribute to a magnetic behavior that can be either paramagnetic or 
diamagnetic. Specifically, where the intergranular magnetic behavior is 
paramagnetic, the resulting magnetic susceptibility shows a striking reentrant 
behavior. All these possibilities about the signal and magnitude of the 
magnetic susceptibility have been extensively reported in the literature, 
involving both LTS and HTS materials [32-35]. The reentrant behavior 
mentioned before is one of the typical signatures of PME. We have reported its 
occurrence as a reentrance in the temperature behavior of the AC magnetic 
susceptibility of 2D-JJA [36,37]. Thus, by studying 2D-JJA, we were able to 
demonstrate that the appearance of PME is simply related to trapped flux and 
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has nothing to do with manifestation of any sophisticated mechanisms, like the 
presence of pi-junctions or unconventional pairing symmetry. 
 The paper is organized as follows. In Section 2 we briefly review the 
theoretical background for the numerical simulations based on a unit cell 
containing four Josephson junctions. In Section 3 we describe the influence of 
non-uniform critical current density profile on magnetic field behavior of AC 
susceptibility and discuss the obtained results. In Section 4 we study the origin 
of the so-called remanent magnetization in disordered 3D-JJAs based on both 
conventional and high-temperature superconductors. And finally, in Section 5 
we summarize the main results of the present work. 
 

2. Theoretical background for simulations 
 We have found that all the experimental results obtained from the 
magnetic properties of 2D-JJA can be qualitatively explained by analyzing the 
dynamics of a single unit cell in the array [36,37].  In our numerical 
simulations, we model a single unit cell as having four identical junctions, each 
with capacitance CJ, quasi-particle resistance RJ and critical current IC. If we 
apply an external field of the form: 
 

)tcos(hH ACext ω=           (2.1) 
 

then the total magnetic flux, TOTΦ , threading the four-junction superconducting 

loop is given by: 
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0μ  being the vacuum permeability, I is the circulating current in the loop, and 
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Here, )t(iφ  is the superconducting phase difference across the ith junction, 0Φ  

is the magnetic flux quantum, and IC is the critical current of each junction. In 
the case of our model with four junctions, the fluxoid quantization condition, 
which relates each )t(iφ  to the external flux, reads: 
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where n is an integer and, by symmetry, we assume that [36,37] : 
 

i4321 φ≡φ=φ=φ=φ           (2.5) 
 
In the case of an oscillatory external magnetic field of the form of Eq. (2.1), 
the magnetization is given by: 
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              (2.6) 
 
It may be expanded as a Fourier series in the form: 
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We calculated 'χ  and "χ  through this equation. Both Euler and fourth-order 
Runge-Kutta integration methods provided the same numerical results. In our 
model we do not include other effects (such as thermal activation) beyond the 
above equations. In this case, the temperature-dependent parameter is the 
critical current of the junctions, given to good approximation by [39,40]: 
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is the analytical approximation of the BCS gap parameter with CBTk76.1)0( =Δ . 

We simulated 1χ as a function of temperature and applied magnetic fields 

keeping in mind that 1χ depends on the geometrical parameter Lβ  (which is 

proportional to the number of flux quanta that can be screened by the 
maximum critical current in the junctions), and the dissipation parameter Cβ  

(which is proportional to the capacitance of the junction) 
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3. Influence of non-uniform critical current density 
profile on magnetic field response of AC 
susceptibility in ordered 2D-JJAs 
 So far, most of the investigations have been done assuming an ideal 
(uniform) type of array. However, it is quite clear that, depending on the 
particular technology used for preparation of the array, any real array will 
inevitably possess some kind of non-uniformity, either global (related to a 
random distribution of junctions within array) or local (related to inhomogeneous 
distribution of critical current densities within junctions). For instance, recently a 
comparative study of the magnetic remanence exhibited by disordered (globally 
non-uniform) 3D-JJA in response to an excitation with an AC magnetic field hAC 
was presented [41]. The observed temperature behavior of the remanence curves 
for arrays fabricated from three different materials (Nb, YBa2Cu3O7 and 
La1.85Sr0.15CuO4) was found to follow the same universal law regardless of the 
origin of the superconducting electrodes of the junctions which form the array. In 
this section, through an experimental study of complex AC magnetic 
susceptibility χ(T,hac) of the periodic (globally uniform) 2D-JJA of unshunted 
Nb–AlOx–Nb junctions, we present evidence for existence of the local type non-
uniformity in our arrays [42]. Specifically, we found that in the mixed state 
region χ(T,hac) can be rather well fitted by a single-plaquette approximation of 
the over-damped 2D-JJA model assuming a non-uniform (Lorentz-like) 
distribution of the critical current density within a single junction. 
 Our samples consisted of 100 × 150 unshunted tunnel junctions. The unit 
cell had square geometry with lattice spacing a = 46 μm and a junction area of 
5 × 5 μm2. The critical current density for the junctions forming the arrays was 
about 600 A/cm2 at 4.2 K, giving thus IC = 150 μA for each junction. We used 
the screening method in the reflection configuration to measure the complex 
AC susceptibility "i' χ+χ=χ  of our 2D-JJA (for more details on the 
experimental technique and set-ups see [36,37]). Figure 2 shows the obtained 
experimental data for the complex AC susceptibility )h,T( acχ  as a function of 
hac for a fixed temperature below TC. As is seen, below 50 mOe (which 
corresponds to a Meissner-like regime with no regular flux present in the 
array) the susceptibility, as expected, practically does not depend on the 
applied magnetic field, while in the mixed state (above 50 mOe) both 

)h,T(' acχ  and )h,T(" acχ  follow a quasi-exponential field behavior of the single 
junction Josephson supercurrent (see below). 
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Figure 2 
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Figure 2. The dependence of both components of the complex AC magnetic 
susceptibilities on AC magnetic field amplitude hAC for different temperatures: (a)     
T= 4.2 K, (b) T = 6 K, and (c) T = 8 K. Solid lines correspond to the fitting of the 2D-JJA 
model with non-uniform critical current profile for a single junction (see the text). 
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 To understand the observed behavior of the AC susceptibility, in principle 
one would need to analyze the flux dynamics in our over-damped, unshunted 
2D-JJA. However, given a well-defined (globally uniform) periodic structure 
of the array, to achieve our goal it is sufficient to study just a single unit cell 
(plaquette) of the array. (It is worth noting that the single-plaquette 
approximation proved successful in treating the temperature reentrance 
phenomena of AC susceptibility in ordered 2D-JJA as well as magnetic 
remanence in disordered 3D-JJA [29,41]. The unit cell is a loop containing 
four identical Josephson junctions. Since the inductance of each loop is 

aL 0μ=  = 64 pH and the critical current of each junction is IC = 150 μA, for 
the mixed-state region (above 50 mOe) we can safely neglect the self-field 
effects because in this region the inductance related flux [43] )t(LI)t(L =Φ  is 
always smaller than the external field induced flux S)t(B)t( acext ⋅=Φ . Here I(t) 

is the total current circulating in a single loop,  2aS≈  is the projected area of a 
single loop, and )tcos(h)t(B ac0ac ωμ=  is an applied AC magnetic field. 

Besides, since the length L and the width w of each junction in our array is 

smaller than the Josephson penetration depth 
0c0

0
j dj2πμ

Φ=λ  (where jc0 is the 

critical current density of the junction, 0Φ  is the magnetic flux quantum, and 

ξ+λ= L2d  is the size of the contact area with )T(Lλ  being the London 

penetration depth of the junction and ξ an insulator thickness), namely L ≈ w ≈ 

5μm and ≈λ j  20μm (using jc0 = 600 A/cm2 and =λL
39 nm for Nb at T = 

4.2 K), we can adopt the small junction approximation [43] for the gauge-
invariant superconducting phase difference across ith junction. Assuming by 
symmetry that i4321 φ=φ=φ=φ=φ , we have: 
 

x
d)t(B2

)t,x(
0

ac
0i ⋅φ

π+φ=φ
         (3.1) 

 

where 0φ  is the initial phase difference. The net magnetization of the plaquette 
is )t(SI)t(M S= , where the maximum upper current (corresponding to 

20 π=φ ) through an inhomogeneous Josephson contact reads: 
 

)t,x(cos)y,x(dyjdx)t(I i

w

0 c

L

0S φ= ∫∫         (3.2) 
 
For the explicit temperature dependence of the Josephson critical current 
density we use Eqs.(2.8) and (2.9) from the previous Section. 
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In general, the values of )h,T(' ACχ  and )h,T(" ACχ  of the complex harmonic 
susceptibility are defined via the time dependent magnetization of the plaquette 
as follows: 
 

)t(M)tcos()t(d
h

1
)h,T('

2

0
AC

ac ∫ π ωωπ=χ
        

(3.3) 

 

)t(M)t(sin)t(d
h

1
)h,T("

2

0
AC

AC ωωπ=χ ∫ π

       
(3.4) 

 
Using Eqs. (3.1)–(3.4) to simulate the magnetic field behavior of the observed 
AC susceptibility of the array, we found that the best fit through all the data 
points and for all temperatures is produced assuming the following non-
uniform distribution of the critical current density within a single junction [43]  
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It is worthwhile to mention that in view of Eq. (3.2), in the mixed-state region 
the above distribution leads to approximately exponential field dependence of 
the maximum supercurrent )/exp()0,(),( 0hhTIhTI ACSACS −≈  

which is 

often used to describe critical-state behavior in type-II superconductors [27]. 
Given the temperature dependencies of the London penetration depth )T(Lλ  
and the Josephson critical current density )T(j 0c , we find that: 
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(3.6) 

 
for the temperature dependence of the characteristic field near TC. This 
explains the improvement of our fits (shown by solid lines in figure 2) for high 
temperatures because with increasing the temperature the total flux distribution 
within a single junction becomes more regular which in turn validates the use 
of the small-junction approximation. 
 To further study the penetration of the magnetic field in our samples, we 
have analyzed the so-called susceptibility spectra (see Figs. 3-5). In this case 

"χ  is a function of 'χ , taken at a fixed temperature. The analysis of this 
spectrum for different temperatures allows follow the evolution of the 
magnetic flux profile in a particular sample. Ishida and Mazaki [44] have 
proposed a critical state model based on a superconducting multiconnected 
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structure which has associated a symmetric curve of "χ  as a function of 'χ  
with its maximum centered at 5.0)'( =−χ . On the other hand, Gotoh et al.  [45] 
and Chen et al. [46] have shown that, for other critical states like Bean, 
exponential, and Kim models, the curve of "χ  as a function of 'χ  is 
asymmetric. The first authors have shown that, for the Bean case, )'(" χχ   has a 
maximum value of 239.0"=χ  at 375.0)'( =−χ . Figure 3 is related to an 
experiment performed at T = 4.2 K. It shows a curve that can be divided into 
two parts. The first one is symmetric and centered at 571.0)'( =−χ , as shown 
by the solid line. The second one is almost constant and oscillates around 

0" ≈χ . Figure 4 is very similar to Fig. 3; its symmetric part (centered at 
567.0)'( =−χ ) is larger than that in Fig. 3. In both figures the symmetric curve 

represents the contribution of a multiconnected superconductor, as expected 
for a 2D-JJA. According to Chen et al. [46], Bean´s model is the low-p limit of 
the exponential and Kim models. Figure 5, which corresponds to an 
experiment perfomed at T = 8.0 K, has its best fitting for p = 0.13, so at this 
temperature both models, Bean and exponential, are equivalents. This 
equivalence allows us to compare curve (5) to the result of Gotoh et al. [45] 
deduced for the Bean model, as follows. This figure shows an asymmetric 
curve with the expected shape for the exponential critical state model [46]. In 
this case, after its maximum value, )'(" χχ  should have a linear dependence. 
has its first part centered at 262.0)'( =−χ  and has a maximum value of 

239.0"=χ . As explained before JJA samples never reach complete Meissner   
at 1)'( =−χ , which  happens at 7.0)'( =−χ  (S.I. units). In this case, the value of  
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Figure 3. Curves for the susceptibility spectra, )'(" χχ , of an unshunted JJA for T = 
4.2 K. 
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Figure 4. Curves for the susceptibility spectra, )'(" χχ , of an unshunted JJA for T = 6.0 K. 
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Figure 5. Curves for the susceptibility spectra, )'(" χχ , of an unshunted JJA for T = 
8.0 K. 
 

262.0)'( =−χ  observed in JJA corresponds to a value of 374.0)'( =−χ  
associated to superconducting materials in the Bean critical state. Thus, Figure 
5 shows the evolution of the critical state from a multiconnected-like to the 
Bean (or the exponential) critical state model. 
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4. On the origin of the remanent magnetization in 
disordered 3D-JJAs   
 The tridimensional disordered Josephson junction arrays (JJAs) fabricated 
from either conventional (LTS) or high-T_c (HTS) superconductors are known 
[47,48] to exhibit the so-called temperature-dependent magnetic remanence, 
MR(T) upon excitation by a magnetic field. Typically [30], the magnetized 
state occurs in a rather narrow window of temperatures, the extent of which 
depends on the critical current, IC(T), of the junctions. Besides, there is a 
threshold value for the magnetic field in order to drive the JJA to the state 
where flux is retained after suppression of the field [30]. 
 In this Section we present a comparative study of three different samples 
with a rather spectacular remanent behavior and suggest a possible interpretation 
of the observed temperature dependence of the remanent magnetization of both 
LTS and HTS tridimensional disordered JJAs. Our analysis shows that all the 
experimental data can be rather well fitted using the explicit temperature 
expressions for the activation energy and the inductance-dominated contribution 
to the magnetization of the array within the so-called phase-slip model [49-51]. 
Three samples were prepared from selected material, respectively of Nb, 
YBa2Cu3O7 (YBCO) and La1.85Sr0.15CuO4 (LSCO). All three exhibit the 
predicted remanence and other characteristic features of Josephson arrays. 
Fabrication routes as well as the experimental routines employed for the 
magnetic measurements are described elsewhere [47,48]. In short, the 
corresponding (e.g., niobium) powder was separated according to grain size 
(using a set of special sieves, with mesh gauges ranging from 38 to 44 μm), then 
uniaxially pressed in a mold to form a cylindrical pellet of 2.5 mm radius by 2.0 
mm height. This pellet is a tridimensional disordered JJA in which the junctions 
are weakly-coupled grains, i.e., weak-links formed by a sandwich between (Nb) 
grains and a (Nb-oxide) layer originally present on the grain surface. The 
measurements were made using a Quantum Design MPMS-5T SQUID 
magnetometer featuring the regular DC extraction magnetometer and an AC-
susceptibility module. The remanence was obtained measuring the sample 
magnetization after application and removal of a train of sinusoidal pulses. Using 
the field scan routine we measured the remanent magnetization as a function of 
the excitation field. For an ordinary superconductor of any kind, from a single 
crystal to a totally disordered granular sample, the only possibility of a 
remanence after the application of the AC field would be a residual 
magnetization due to flux eventually pinned inside the specimen. This 
contribution, however, is expected to be small and practically independent of the 
excitation field. We have verified the above characteristics measuring MR(h, T) 
for a variety of samples. In particular, the powder used to fabricate our arrays 
have the typical response of ordinary superconductors, so that the effects 
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described below are entirely due to the formation of the 3D-JJA. The typical 
experimental data for Nb samples are shown in Figure 6 which clearly 
demonstrate anisotropic character of the disordered 3D-JJA. The experimental 
results for all three samples (along with the model fits, see below) are 
summarized in Figure 7 which suggests that the observed behavior seems to 
follow a universal temperature pattern, irrespective of the type of 
superconductor of which the array is made. Let us turn to a possible 
interpretation of the obtained results. Since the observed remanent 
magnetization (RM) in our samples (JJAs) appears only below the so-called 
phase-locking temperature TJ (which marks the establishment of phase 
coherence between the adjacent grains in the array and always lies below a 
single grain superconducting temperature TC), it is quite reasonable to assume 
that origin of RM is related to thermal fluctuations of the phases of the 
superconducting order parameters across an array of Josephson junctions (the 
so-called phase-slip mechanism [49-51]). In the present approach we consider 
the sample as a single plaquette with four Josephson junctions (JJs), each of 
which is treated via an effective single junction approximation. Within this 
approximation, the phase-slip scenario yields then 
 [ ] RRR MTITMMTMTM −=−≡Δ − 2/)()()()( 2

00 γ                 (4.1) 
 

for the observed remanent magnetization. Here, M0(T) is an inductance-
induced contribution to the magnetization of the array (see below),  γ(T) = 
U(T)/kBT is the normalized barrier height for thermal phase slippage, I0(x) is 
the modified Bessel function, and MR = M(TJ) is a residual temperature-
independent contribution (notice that, according to Eq.(4.1), ΔMR (TJ) =0). 
 For temperatures below TJ (where the main events take place, see Fig.7), the 
Bessel function can be approximated  leading to a simplified version of Eq.(4.1): 
 [ ] [ ]TkTUTkTUTMTM BB /)(exp/)()(2)( 0 −= π                 (4.2) 
 

Figure 7 shows the temperature dependence (in reduced units, τ=T/TJ) of the 
normalized remanent magnetization mr(T) = ΔMR(T)/ΔMR(Tp) where Tp is the 
peak temperature ΔMR(T) is defined via Eqs. (4.1) and (4.2). The data for 
YBCO-and Nb-based JJAs are found to be well fitted with the following 
explicit expression for the array magnetization: 
 ( ) ( )[ ]42/54 1exp1)( ttAtM −−−= α                               

(4.3) 

 
where t = T/TC. The best fits through all the data points (shown in Fig.7 by 
solid and dotted lines for YBCO- and Nb-based JJAs, respectively) using 
Eq.(4.3) and the known critical parameters: 
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Figure 6. Sample anisotropy of a 3D-JJA of Nb, revealed in measurements of the 
remanence versus temperature for different orientations of the AC excitation field (h). 
Main graph: data normalized to peak values. Inset: “as measured” data.  
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Figure 7. Temperature dependence of the normalized remanent magnetization mr(T), 
showing the experimental data for three different samples and the corresponding fittings 
(see text). 
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YBCO:  TC = 90 K ,  TJ = 82 K,  Tp = 0.88 TJ; 
LSCO:  TC = 36.5 K ,  TJ = 19.87 K,  Tp = 0.7 TJ; 
Nb:  TC = 9.1 K ,  TJ = 8.2 K,  Tp = 0.92 TJ; 
 

yield the following estimates of the model parameters: αYBCO = 7,  αLSCO = 2, 
and  αNb = 9. 
 To understand the observed behavior of the remanent magnetization, we 
need to specify the temperature dependencies of the activation energy U(T) 
and the inductance-dominated contribution M0(T) to the magnetization of the 
array. Starting with the YBCO- and Nb-based arrays, it is reasonable to assume 
that [36,37] U(T) = Φ0IC(T)/2π and M0(T)=LIC(T)/μ0S, where IC(T) is an 
average value of the critical current, L is an average inductance of the 
Josephson network, S is an effective (in general, temperature-dependent, see 
below) projected area of the contact, Φ0 is the flux quantum, and μ0 is the 
vacuum permeability. In turn, the temperature dependence of the critical 
current is dictated by the corresponding dependence of the London penetration 
depth, namely: 
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Finally, to arrive at the fitting expression given by Eq.(4.3), we have to assume 
that the projected area S is also temperature dependent (which is not unusual), 
viz. S(T) = πd(T)l with d(T) and l being the thickness and the length of a SIS-
type sandwich, respectively (d(T) = 2λL(T) + ξ, where λL(T) is the London 
penetration depth and ξ is the thickness of an insulating layer; in ceramics l 
plays the role of an average grain size rg; typically, l >> λL(T) >> ξ). 
 The above considerations bring about the following relationships between 
the fitting and the model parametres: 
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At the same time, the phase locking temperature TJ, defined via the equation 
U(TJ) =kBTJ, is related to the critical temperature TC as follows:  
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5. Conclusion 
 In conclusion, in this review paper we presented some of our recent results 
on novel interesting phenomena related to the magnetic properties of ordered 
two-dimensional unshunted Nb–AlOx–Nb Josephson junction arrays (2D-JJA) 
and disordered three-dimensional Josephson junction arrays (3D-JJA) based on  
conventional (Nb) and high-temperature (YBa2Cu3O7 and La1.85Sr0.15CuO4) 
superconductors.  First of all, we demonstrated experimental evidence for the 
influence of the junction non-uniformity on magnetic field penetration into the 
periodic 2D array of ordered unshunted Josephson junctions. By using the 
well-known AC magnetic susceptibility technique, we have shown that in the 
mixed-state regime the AC field behavior of the artificially prepared array is 
reasonably well fitted by the single-plaquette approximation of the over-
damped model of 2D-JJA assuming inhomogeneous (Lorentz-like) critical 
current distribution within a single junction. On the other hand, our 
experimental and theoretical results have demonstrated that the temperature 
dependence of the magnetic remanence in disordered 3D-JJA is universal, 
regardless of the origin of the superconducting electrodes of the junctions 
which form the array.  
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Abstract 
      The so-called unconventional Josephson π-junctions 
can be used in a loop or in more complex arrays. If 
such loops contain an odd number of π-junctions, 
spontaneous currents arise in zero magnetic field. The 
two possible spinning modes give rise to two 
magnetization states which can be fine-tuned by local 
magnetic fields in experimentally manufactured high-
Tc junction arrays. In this review, we present our latest 
results regarding  a study of quite a simple unconventional
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array: a ring containing an even number of unconventional loops.  From 
theoretical point of view, this device is analogous to an annular Josephson 
junction with a ”built-in” natural degeneracy. Due to their peculiar 
topological and physical protection properties, such arrays could be used as 
natural qubit circuitry for basic building blocks of quantum computing design. 
 

1. Introduction 
 Among many different types of superconducting devices, the so-called π-

junctions [1] are probably the most intriguing ones. In a π-junction, a physical 

mechanism (such as a d-wave symmetry of high-Tc materials [2] or pairing 

interaction in Superconducting-FerromagneticSuperconducting (SFS) junctions 

[3]), will cause a π shift in the phase-current relation. These unconventional 

junctions are the necessary components for more complex π -circuitry devices 

like π-SQUIDs [4], π-loop arrays [5, 6, 7, 8, 9], and π junction based filters 

[10]. A π-SQUID is a single π-loop with one conventional and one π-junction. 

Generally speaking, a π-loop is an unconventional superconducting loop which 

contains an odd number of π-junctions. In zero field, the fundamental state of a π-loop has two energy degenerate magnetization states corresponding to two 

spontaneous current states: clockwise and counterclockwise [11]. In the limit 

of large loop inductance, these states appear as localized half-flux quanta Φ0 

/2, with Φ0 = h/2e being the conventional flux quantum. Spontaneous currents 

have been observed in high-Tc films and grain boundaries  [12] as well as in π-

SQUIDs [13]. It can be shown that the fundamental state of an array of π-loops 

is an antiferromagnetic (AF) configuration of half-flux quanta [6, 8]. A closely 

related device is the so-called 0 − π long Josephson junction [15, 16, 17, 18, 

19, 20] (here 0 means a conventional junction). It can be considered as a 

continuous “long junction” version of simpler π-loop. The simplest 0 − π 

junction is made of two sections (which are joined together), one conventional 

and one with a π-shift. The resulting discontinuity, 0 − π boundary, between 

conventional and π section is the place of spontaneous currents in 0 − π 

junction. It can be shown that half-flux quanta (or semifluxons), localize at 0 − π discontinuities in a long 0 − π junction [17].  It is also possible to study more 

complex 0 − π long junctions made of several conventional and π sections 

[18]. These systems will show magnetization states made up of chain of 

semifluxons with different polarity, analog of half-flux quanta state in discrete 

arrays [7]. These states have been observed in “engineered” [5, 9, 14] 

unconventional devices. Recently, using new fabrication techniques for Y BCO − I − Nb ramp-edge junctions, “zigzag” 1D and 2D arrays of mixed π/conventional junctions have been also realized and characterized [5, 16].  
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Such devices can be modeled as long 0 − π Josephson junction with many 0 − π boundaries [17] or 1D/2D Josephson junction arrays with randomly 

distributed π-loops. The local spontaneous magnetization was visualized using 

a SQUID microscope (SSM) [5]. The AF state was clearly seen in 1D case and 

a prevalent antiferromagnetism was observed also in 2D case [21, 11]. The 

antiferromagnetic fundamental state found in 2d system is nothing else but a 

checkerboard state which is found in zero field for 2d mutually coupled 

Josephson junction arrays with π-loops. Signature of this state is present also 

in mixed π conventional arrays as shown in [21, 11]. Unconventional devices 

have been realized also with SFS junctions [9] and local injection of current in 

a low-Tc device [14]. The interest for unconventional devices is related to the 

possibility of use the local magnetization in π-loops as the building blocks for 

a qubit device [22].  The search for a reliable superconducting qubit device has 

been a hot topic in recent years (see Ref. [41]). Until now the best decoherence 

times of the order of 100 ns have been reached with a ’mixed’ device which 

use both ’charge’ and ’flux’ variables for the biasing of a decoupled optimal 

point in the parametric double well potential (see Ref. [44]). A similar 

technique was recently applied to a four-junction ring with decoherence 

measured via spin-echo technique, above 1µs [22]. The main advantage of an 

unconventional qubit device is that it works in absence of an external field 

bias. These systems and some of their variants have been named ’quiet’ qubits 

[23]. In particular, for developing a qubit device, π-junctions based on SFS 

junctions have been proposed [24]. An important step toward ’quiet’ high-Tc 

qubits, is the recent demonstration of Macroscopic Quantum Tunneling and 

Energy Level Quantization in a biepitaxial YBCO Josephson junction [25].  

Also intrinsic BSSCO devices, formed by many nanoscopic junctions, have 

shown interesting quantum properties [26].  

 At the same time, in recent years, the search for a “protected qubit” has 

been intensified. It can be traced to the seminal works by Kitaev [27] and by 

Ioffe et al. [28], [29]. The basic idea is that a topological object, say a magnetic 

“flux” configuration over an array of Josephson junction, could have at the 
classical level (before the quantum effects come into play) the following 

properties: i) some solution sectors are excluded by assigning them different 

topological charges; ii) its Hamiltonian is decoupled from external 

perturbations in the limit of large N, where N is the array dimension 

(continuous case can be considered as N goes to ∞); iii) the system is 

insensitive to some perturbations which are topological invariants of the 

system. On the other hand, the application to large Josephson junction arrays 

of the concept of protected states is  “at the limits of the present technology for 

such devices” [29]. Indeed, a “protected” qubit which uses 2D Josephson 
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junction arrays seems far from becoming a workable device. With respect to 

“protected” qubit, approach based on unbiased unconventional arrays seems 

more promising. In Ref. [5] is shown that control/read-out phase of half-flux 

quanta, which are the fundamental operation on a qubit system apart from 

isolated quantum evolution, can easily be realized using the local magnetic 

field induced by the SSM head. But, apart from their natural degeneration in 

zero magnetic field which rests on two degenerate AF configurations, they do 

not offer true advantages with respect to conventional devices, such as the 

simplest single-loop “flux” qubit or conventional arrays. Naturally, to fully 

exploit the topological protection, the unconventional arrays should be 

incorporated into the design developed in Ref. [29], which is not an easy 

task. The use of topology for making a robust qubit, insensitive to external 

world, has been also discussed by Wallraff et al. [30]. They have shown that 

fluxons in annular Josephson junctions can also behave as quantum objects 

at low temperature and could be used in principle as qubits when subject to a 

magnetic field induced potential [31]. This last approach can be considered 

as an extension of “flux” qubits in which a soliton (i.e., a fluxon) is carrying 

the bit signature. Among the advantages of this approach is that, contrary to 

traditional “flux” qubits, fluxons in annular junctions carry a topological 

“charge”, (the socalled winding number n identified as the number of flux 

quanta threading in annulus) which naturally selects only a family of 

solutions of the system and make them intrinsically stable against external 

perturbations.  

 In this Chapter, we would like to address an alternative simplest scheme 

which uses π -loop arrays but with the topology of an annular Josephson 

junction like in Ref. [30]. We will show that a (closed) ring of unconventional 

loops has both protection properties, induced by its non-trivial topology, and 

the natural degeneration needed for a qubit “flux” device. These properties are 

integrated in a single device giving arise to a robust scheme which can be 

scaled to multi-qubit devices. As low-Tc devices, they will be alternative to the 

use of long Josephson junction as in Ref. [31]. The remaining of the Chapter is 

organized as follows. In Section 2, we introduce a model for a ring of 

unconventional loops array and discuss its relation with unconventional arrays 

and junctions analyzed in Ref.s [17, 18, 7]. In Section 3, we consider the 

classical half-flux quanta states on the ring and classify them according to 

magnetization and winding number n. In Section 4, we evaluate the 

dependence of states and their energy on a static magnetic field. In particular, 

we will show how protection arises in the limit of large N. In Section 5, we 

discuss the obtained results along with a preliminary analysis of quantum 

behavior of ring arrays (which is currently in progress [32]). Some final 

conclusions are drawn in Section 6.  
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2. The model 
 The first and the simplest device based on π-junctions is the so-called π-

SQUID, which is shown in Fig.1a. A π-SQUID is a loop with one π-junction 

and one 0 (conventional) junction. π-SQUID was realized and studied by many 

groups [4, 13]. From a formal point of view, the π-SQUID operation is 

equivalent to that of a conventional SQUID with a Φ0/2 flux trapped in its loop 

due to the π-shift introduced by the π-junction. The fundamental state of a π-

SQUID is formed by two energy degenerate current states, clockwise and 

counterclockwise, around the loop.  In Fig.1b a 1D Josephson junction annular 

array is formed by N = 8 loops with two junctions, alternatively π or 0. With 

respect to an open array [7], the loop line is closed on itself giving an annular 

configuration similar to an annular long Josephson junction [30].  We call this 

all-π Annular Josephson Junction Array (AJJA) because it is made exclusively 

by π-loops. All-π AJJA is the direct generalization of simple π-SQUID. The 

continuous analog of   π-SQUID is the so-called 0 − π junction [15] which is 

 

 
 

 
 
Figure 1. Examples of π Annular Josephson Junction Arrays (AJJA): a) a simple π-

SQUID; b) a N = 8 ring all-π array; c) the 0 − π junction; d) a k = 8 ring k π-array with 

control lines. Notice that c-type is shown only partially because it should surround the 

whole array.  
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formed by two sections equivalent to a 0 (conventional) long Josephson 

junction and to a π long Josephson junction, respectively (see Fig.  1c). In view 

of the analogy between the long junctions and the small inductance 1D arrays, 

we can think of an 0 − π junction also as an 1D array of N conventional small 

inductance loops followed by an 1D array of N ′ small inductance π-loops (see 

the inset of Fig. 1c). This system will have a single π-loop at the boundary 

between 0 and π sections [7]. Using the 0 − π junctions as building blocks, a 

general version of π AJJA can be formed alternating 0 and π sections (i.e., a 

sequence of loops with all 0 or all π junctions with a π-loop at any boundary 

between the sections). We call these k-π AJJA, where k is the number of π-

loops in the array (see Fig. 1d). It should be noted that, differently from the 

open π-arrays [7], the annular π-arrays will always have an even number of π-

loops, by construction. The minimal annular 0 − π junction will necessarily 

have two π-loops along a diameter (for equal length of π and 0 section). This 

corresponds to a 2-π AJJA. An asymmetric configuration with different length 

of sections can also be considered [18].  

 To model a ring π-array, we start from its classical energy. This can be 

written as the sum of Josephson energy and the magnetic field energy:  
 

   
       (1)

 
 

where ϕj is the gauge invariant phase difference in the j − th junction in the 

array (hereafter referred simply as the phase); V (ϕj, ϕj,t) is the generalized 

Josephson energy term of the j − th junction and φj, φj,ext are respectively the 

normalized total magnetic flux and the normalized external magnetic flux in 

the j − th loop, i.e., φj = Φj /Φ0. As usual, EJ = I0Φ0/2π is the Josephson energy 

per junction and β = 2πI0L/Φ0 with I0 the junction critical current and L the 

loop inductance.  Here we assume that all junctions have the same critical 

current I0 and all loops the same self-inductance L. The effects of spread and 

difference in mean critical current for the conventional and π-junctions are 

discussed at the end of Section 5. The two sums in Eq. (1) are intended to N for 

a N-junctions ring array. In Eq. (1) we assume that there are no mutual 

inductance terms, this assumption is correct only if the array loops are not very 

large (i.e. self-inductance L is not too large), however the energy (1) can be 

used also for relatively large L by simply re-normalizing the self-inductance by 

next-neighbor mutual ones [33]. In any case, we assume that loops contain a 

maximum flux equal to a single flux quantum Φ0, so there are no situations in 

which more than a flux quantum can be found in the array loops. This will 
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exclude multi-quanta solutions (these solution will appear for large β and in 

simplest loops are known as metastable states) and set a limit on the self-

inductances which depends on N, but practically means that β should not be 

much larger than 1. In the following we will give some estimates of the 

minimum value of β = βmq where multiquanta solution sets in. It is found that βmq ∼ 6 is the limit in all practical cases.  Under these circumstances, the next-

neighbor approximation can be safely used.  

 The generalized Josephson energy term is written as the charging energy 

over the junction capacity C (supposedly equal for each junction as for critical 

currents and self-inductances) plus a Josephson washboard potential:  
 

   
       (2)

 
 

where times are normalized to Josephson plasma frequency  

and γj = I j /I0 is the normalized bias current in the j − th junction. The index 

k(j) is 0 for conventional junction and 1 for π-junctions. The normalized flux φj 

can be written in term of the flux quantization in the j − th loop:  
 

            
(3)

 
 

The quantum numbers nj can be chosen to reduce the variation of phases 

within 2π in the loop by defining Δ as the difference operator mod 2π. This is 

generally acceptable for β not very large because the phase differences are 

small and nj is almost always zero, with the notable exception of nN. In fact, 

after one turn around the ring is completed, the build-up of the phases can end 

in a 2π multiple, so nN ≡ n can be identified as the winding number of the ring 

(i.e., the number of 2π phase slips around the ring). We use only integer 

winding numbers though it is possible in principle also consider situations in 

which the winding number is semi-integer (see Ref. [20]) closing the arrays at 

one of 0 − π boundaries. However, this will result in difficulty to realize 

practically a 0 − π boundary as a true discontinuity and besides, the 

”localization of a winding number” is a meaningless concept in a long annular 

junction. With these assumptions, the energy can be written in the form:  
 

  
       (4)

 
 

where we have introduced the frustration fj = φj,ext /2π. We note that the sign of 

linear term in the loop frustration depends on the sign of phase differences 



G. Rotoli 52

around the loop. This term will be responsible for removing the degeneration 

of the energy states in a paramagnetic and a diamagnetic state. If the frustration 

is uniform, fj = f, we find: −4π ΣΔϕj fj = −4πΔϕf which is zero for a ring with 

zero winding number n = 0. This implies that, differently from the open arrays  

[7], a uniform magnetic field  (normal to the array plane) does not have effects 

on a ring array with n = 0. This is a property that can be traced to the topology 

of the ring array which does not have ’ends’. In the following we will discuss 

more carefully the field spatial configurations that are most effective in 

perturbing the fundamental state of the ring arrays. Naturally the same property 

is found in the annular long junctions, but the real difference is that in the 

annular junction the field is transverse, i.e., it is in the junction plane rather 

than orthogonal to it (see Ref.  [30]). Depending on the geometry of the 

junctions in a ring π-array, a transverse component cannot be generally 

excluded but for a planar array it will act on the junctions if their barrier is 

normal to the array plane, rather than on the loops, which are in the array 

plane. Since the flux in the loops is the important quantity for a flux device, the 

perturbation induced by a transverse field can be considered as a higher order 

correction. When a non-uniform magnetic field is imposed over a ring π-array, 

its response is in general similar to single loop: paramagnetic and diamagnetic 

solutions are formed and the energy degeneration is removed. So for all π-

arrays we assume that a local field can be put into the array loops, generated by 

a small coil in a loop, or more loops, of the array (see Fig.  1a). Alternatively a 

non-uniform field configuration can be generated in k-π-arrays by controlling 

the lines near the array (see Fig. 1b).  From Eq. (4) the continuous limit can be 

derived taking Δx = β1/2 and defining the normalized magnetic field as ηj = 

2πfj/β1/2. This term will be equal to the normalized magnetic field at boundary: 

η ≡ (2π/Φ0)λJ λBext (see Ref. [7]) with λJ the array Josephson penetration 

length and λ equal to the penetration length in the direction perpendicular to 

the array.  The exact value of λ depends on the geometry of the array, it can 

range from London length λL, for grain boundaries array [7], to roughly the 

loop (mean) diameter D. The above Δx can be identified as the normalized 

lattice space of the array, i.e., Δx = D/λJ. The array normalized length can be 

written also as l = NΔx = Nβ1/2 for N large. In the following we use also the 

normalized length of π or 0 sections defined as a = (N/k)β1/2.  

 The ”equations of motion” for the phases can be derived by the energy 

given by Eq. (4) by a standard variational approach. At the ”classical” level we 

must include the dissipation due to the quasi-particle tunneling. This can be 
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modeled as an Ohmic dissipation corresponding to the standard RSJ model for 

a Josephson junction. This implies that the term containing the time derivatives 

of the phases is ϕj,tt + αϕj,t, where α is a normalized conductance. Finally, we 

obtain the modified Discrete Sine-Gordon equation (mDSG) for an N 

Josephson junction one-dimensional ring π-array:  
 

 
(5)

 
 

where  is the frustration in the j    

±-th loop preceding (-) or following (+) the 

j-th junction and with the condition that ϕN = ϕ1 + 2πn (see Eq. (3)). As 

expected for ring arrays, there is no effect of a uniform (normal) magnetic field 

because last term of Eq. (5) is zero in all loops in this case. Some property of 

the continuous limit case can be deduced for system with very small β (< 

0.01).  The corresponding form of Eq. (5) for open arrays was deduced in the 

continuous limit by Goldobin et al. [17] in the context of analysis of ’zigzag’ 

arrays. For a ring junction, the same continuous equation applies with the 

boundary condition ϕ (0, t) = ϕ (l, t) + 2πn. In the following we calculate the 

local magnetization using the solutions of Eq. (6). In particular for N loops 

system it can be calculated as:  
 

       
       (6)

 
 

where the last term is the mean frustration. So in a ring π-array for zero 

winding number the magnetization is always negative and reduces to the mean 

frustration.  

 

3. Classical ring array states  
 Firstly, we study the zero-field classical solutions of Eq. (6).  These can be 

classified in fundamental states and higher energy ”excited” states. Following 

Ref. [18] we indicate the local magnetization state with an arrow indicating the  

”spin” of the associated magnetic moment to the π-loop, or 0 − π boundary, 

i.e., we set Ĺ (say) for the positive magnetization and Ļ for the negative one.  

The magnetization will be near Φ0 /2 (half flux quantum or semifluxon in long 

junctions) for large β or long sections, a > 1, and going to zero for small β or  

a << 1. For a single loop with identical junction the magnetization can be 

written as  where γ is the normalized current. This implies that the 
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magnetization is going to zero for low β, being the current of the order of one.  

On the other hand, for large β we have γ ∼ π/β so magnetization is of the order 

of half flux quantum [11].  To understand the nature of Eq. (6) solutions we 

note that for large β the coupling is going to zero. (Practically, the value of β 

needed to fully develop half-flux quanta into an all π array, would be near β ∼ 

10. In this case also multi-quanta solutions appear and the simple next-

neighbor approximation for loop interaction is questionable.  However, we do 

not use these values of β in the following analysis, but discuss the large β case 

just to analyze the nature of mDSG solutions.) In this limit the loops are 

weakly interacting and the solution will be roughly the sum of the solutions for 

the single loops forming the array. This is especially true in the case of all π-

arrays (Fig.1b) where the basic solutions of mDSG Eq. (6) for a large β consist 

of a collection of half-flux quanta localized in the array loops. Among these 

solutions with different energies, the minimum energy solution will be the 

fundamental state of the system.  It is clear that for β going to infinity all the 

solutions with an arbitrary distribution of half-flux quanta over the array will 

have the same energy with no contribution from magnetic energy in Eq.(6) 

because the Josephson energy is the same whatever is the junction, 0 or π. 

However, for finite large β a residual interaction will split the energies. We 

have two possible solutions:  the anti-ferromagnetic solution ĹĻ . . . with a 

sequence of currents circulating in the opposite directions in the two loops, and 

the ferromagnetic solution ĹĹ . . .  with a sequence of currents circulating in the 

same direction. The magnetic energy is maximum for the ferromagnetic 

solution because in order to build this solution the phase differences have to be 

larger to form the sequence of Ĺ magnetic moments. Therefore, 

antiferromagnetic ordering will be preferred in the fundamental state of the 

system. The situation does not change for lower β because the energy split 

between ferromagnetic and antiferromagnetic solutions increases as 1/β. 

Naturally, for any sequence of spins, another arrangement with the same 

energy exists with all spins flipped, so any state is at least double degenerate 

like the fundamental state of simple π-loop. A magnetic image of the 

fundamental state in an open 1d array is shown in Ref.  [5]. When connection 

between loops was cut, the array did not show the antiferromagnetic state, but 

a random sequence of half-flux quanta. This implies that the circuit-type 

models shown in Fig. 1 are likely to provide the most correct description of π-

arrays physics.  

 In a ring array only an even number of π-loops can exist, so there are only 

even number of spin arrangements, e.g., the minimum ring all π-array with N = 

2 will have two π-loops with a fundamental state ĹĻ or ĻĹ. For this array the 
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only other states are the ferromagnetic states ĹĹ and ĻĻ, which are built up 

by a (delocalized) fluxon π + π = 2π or an antifluxon −π − π = −2π. These 

ferromagnetic states carry a kink (like in annular junction case), so they 

need a winding number n = ±1 to set up. For k-π AJJA (see Fig.1d) the 

description of states is similar to all-π AJJA: the magnetization peaks 

localize at boundary between 0 and π sections [17].  In the k-π AJJA the 

width of magnetization peaks depends on equivalent normalized length a of 

the array sections. For a  1 or larger, half-flux quanta appears as an 

isolated cusp singularity localized at 0 − π boundaries [7]. For a  1 the 

half-flux quanta merge and local magnetization is no longer equal to Φ0/2, 

but a description as a sequence of spins ĹĻ . . . is still valid in many cases 

as we show below.  

 In general for a given k (N for all π) a ring π-array will have 2k − 2 

different types of excited states that correspond to all arrangements of spin 

chains in the array. It should noted that not all the excited states will be stable 

for β ≤ 1 in all π-arrays. Due to larger distance between π-loops in k-π AJJA 

excited states are stable at smaller β. In the continuous limit the system 

sometimes can undergo antiferromagnetic-flat phase transition if its physical 

length becomes smaller than λJ. In Ref. [17] this limit was evaluated for the 

continuous case in term of the minimal length of 0 (π) sections of the system. 

And for large k it was found that the limit is around β = 1 as is expected on 

intuitive grounds. The classification of magnetization states for k = 4 and k = 6 

(or N = 4 and N = 6) is reported in Table 1 where also some critical values of β 

for the stability are given. Most excited states in ring π-arrays have solutions 

with a winding number different from zero (see Table 1). Winding number 

 
Table 1. Classification of states in k = 4 and k = 6 ring arrays. n is the winding number. 

The number of states for topology is given in third and seventh columns. Critical βc values 

are given for unstable solutions (when known). A j-spin solution is a solution with j 
contiguous spins over the ring.  is the critical value of β for k − β-AJJA (see text).  
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can be thought of as a kink localized at the end of spin sequence, e.g., for N = 4 

n = 1 the state could be formally written as ĹĹĹĻ(ĻĻ). The conservation of the 

spin sum, which is always zero, indicates the correct wrapping of the phase 

around the loop. A fully ferromagnetic solution will be written as, e.g., 

ĹĹĹĹ(ĻĻ)(ĻĻ) corresponding to a winding number n = 2 in this particular case.  

 To calculate the local magnetization and the energy of a given state we 

integrate numerically Eq.(6) to find the phases for all junctions. Initially the 

phases of conventional junctions are set to 2πl j, l j integer, and the phases of π-

junctions to 2πl j ± π, which are the stable equilibrium points of the single 

junction potentials.  For any choice l j, a sequence of spontaneous currents 

circulating around the π-loops is selected.  was chosen in the 

interval 0.05 − 0.25, which is comparable with the interval proposed in Ref.  

[17]. In some cases different α was used to generate the same static solution to 

check the stability of static solution against different initial conditions and 

numerical errors. We choose λj = 0 because we are interested in unbiased 

arrays driven by magnetic field only. In absence of bias currents, the system 

naturally sets in a static equilibrium solution after few plasma periods. Near 

critical βc for excited states this process becomes slower, so longer integration 

times are needed.  

 

3.1. All-π AJJA 
 The energy (per loop) of states in all π-arrays, as function of π and for      
N = 2, 4, 6, is reported in Fig. 2. For larger N the fundamental state and the 

ferromagnetic state tend to have the same energy and magnetization (see Fig. 

2).  On the other hand, we see that the energy gap between AF and FM states 

increases for small β as expected. The FM state energy is dominated by 

magnetic part that goes like 1/β. In particular, it would be noted that 

ferromagnetic state with phases equal to jπ with j ∈ [0, N − 1] and winding 

number n = N is an exact solution of Eq.(6). The energy (per loop) is purely 

magnetic and it is simply equal to π2/β.  

 The phases ϕj and the magnetizations mj of the fundamental states ĹĻ . . . 
are shown in Fig. 3 for the same values of N as in Fig. 2. They appear as 

discrete peaks each indicating the magnetization in any of the array loops.  For 

low β the magnetization is going to zero and the phase tends to be flat.  

Anyway, the vanishing of magnetization is a smooth curve as shown in the 

inset of Fig. 2a. There is no abrupt transition to a flat phase in this case. AJJA 

have an even number of 0 − π boundaries, but formally they correspond to the 

case in which a = b/2 and ac = 0 [34]. Both the phases and the magnetization in  
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Figure 2. Energy per loop, E/N, of a N = 2, 4, 6 all-π AJJA, energy is normalized to 1/N 

and α = 0.25:  (a) N = 2, 4 with AF and FM states and n = 0, 1 states for N = 4; the inset 

shows the magnetization of π-loops; (b) N = 6 with the same states as in case (a) plus 

the n = 2 states. For unstable n = 0, 1 states  the curve ends before reaching the lowest 

calculated β which is 0.001 in this case. Stable states exist for arbitrary low β values.  

 

Fig.3 appear to be independent from N. This is a consequence of high 

symmetry of a ring array with no ’border’, so that the N = 2 solution (Fig. 3a) 

replicates itself in the next loop pair (Fig.3b,c). This property is true for 

arbitrary N arrays.  

 The N = 2 ferromagnetic state can be also obtained by introducing a 

localized kink, in spin notation , added to second loop of AF state ĹĻ for β  < 

6.22 and setting n = 1. Below this value the multi-quanta states are unstable 

and decay to a ferromagnetic one. For larger N this instability occurs at larger β (see below). This is a first example of the process ⇑ + Ļ=Ĺ that, as we show 

in the following sections, is the main mechanism for changing magnetization 

states (see also [18, 19, 32]).  

 For N > 2 the energy spectrum of all-π AJJA will include also the excited 

states.  The nearest states in energy to the fundamental state are n = 0 states. In 

Fig. 4a,b we report some n = 0 states for N = 4, 6. The k- ak pairs ĹĹĻĻ become 

unstable for β < βc. In analogy with an annular long junction, there exists a 

’minimal distance’ at which the pair can exist governed by ’equivalent length’ 

given by Nβ1/2. This means that, below the critical βc, the k-ak is unstable and 

the only stable solution is the fundamental state. For N = 4 the k-ak is unstable 

for βc  2.52 as is reported also in Table I. The same happens for βc  3.96 

and βc  4.41 for N = 6 depending on the type of n = 0 state considered (k-ak 

or triplet, see Table I). The higher values of βc for N = 6 k-ak are likely due to 

presence of a spurious spin pair ĹĻ which is not present for N = 4. The n = 0  
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Figure 3. Simulated phase and magnetization of a N = 2, 4, 6 all-π AJJA with βL = 4, 1, 

0.25 and α = 0.25, in all cases a last loop to be identified with first one has been added 

for better visualization of ring solution:  (a) N = 2 phase; (b) N = 2 magnetization; (c) N 

= 4 phase; (d) N = 4 magnetization; (e) N = 6 phase; (f ) N = 6 magnetization.  

 

branches on energy vs β plot (see Fig. 2) end at the critical βc. It is interesting 

to note that in this last case the only zero winding number stable solution of 

Eq. (6) is the fundamental state in a ring array, so if sectors with different n 

have proven to be excluded the only states are fundamental ones in this case. It 

is worthwhile to remember that this is not the case of open π-arrays, which can 

be subject to spin flips toward the higher energy states without a topological 

constraint.  

 The energy of ĹĻĹĹ(ĻĻ) state for N = 4 is also shown in Fig. 2b. Due to the 

ring symmetry all ’3-spin’ states for N = 4 have the same energy. The same 

happens for ’2-spin’, ’3-spin’ or ’4-spin’ states for N = 6. In Fig. 4c-f are 

shown the magnetization and the phases in some selected cases. For N = 6 the 

’3-spin’ and ’4-spin’ states are unstable toward the minimum energy solution  
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Figure 4. Simulated phase and magnetization of a N = 4, 6 all-π AJJA with α = 0.25, in 

all cases a last loop to be identified with first one has been added for better visualization 

of ring solution: (a) N = 4 n = 0 magnetization with β = 4, 1; (b) N = 6 n = 0 

magnetization with β = 4; (c) N = 4 n = 1 magnetization with β = 4, 1, 0.25; (d) N = 6 n 

= 1 magnetization with β = 4, 1, 0.25; (e) N = 4 n = 1 phase with β = 4, 1, 0.25; (f ) N = 

6 n = 1 magnetization with β = 4, 1, 0.25.  

 

which is the ’2-spin’ below the critical βc reported in Table I. In Fig.4d β is 

reduced from 4 to 0.25 and states sweep from ’4-spin’ to ’2-spin’. It is seen 

that the magnetization of unpaired loop for small β becomes positive (see Fig.  

4c), so the ’spin’ interpretation becomes problematic for very small β in these 

cases. For n ≠ 0 states the phase acquire a finite gradient for small β. This is 

necessary to fulfill the periodicity condition for the phase, i.e., ϕN = ϕ1 + 2πn.  

Solutions with a constant phase gradient appears for very small β and the 

magnetization spreads over the whole ring. This is clearly shown in Fig. 4e,f 

where the phase corresponding to n = 1 states is reported. In Fig. 2b the energy 

of n = 2 ’5-spin’ state for N = 6 is also reported. This solution is stable due to 

the change in winding number.  
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 The n ≠ 0 states can be obtained adding a localized kink ⇑ in some loop. 

This changes winding number and generates the excited states. The addition of 

a kink in the fundamental state in larger ring π -arrays, beside the change in 

winding number, gives rise (for some interval of β) to fractionalization 

phenomenon [6], i.e., the kink splits in a ’2+2-spin’ configuration with . . . 

ĹĹĻĹĹ . . . .  The paired spins tends to repel each other with the lowering of β. 

This is shown in Fig.  5 where the case of a N = 16 array is reported. In AJJA 

the fractionalized state is identical to a n = 1 state when β is smaller than 

critical value for multi-quanta state (see Fig. 5). In fact, for large β, a multi-

quanta solution exists in which the kink occupies a single loop of the array 

(actually this is not predicted by authors of Ref.[6] because they study lower β 

cases and their continuous-like approximation in the calculation of stability is 

not valid for very large β). This happens roughly for βmq ≥ 9.3 at N ≥ 4 which 

represents the minimum β for the existence of stable multi-quanta solutions. 

We have shown just some n ≠ 0 states for low N, but in the following we 

assume that the topological condition on winding number implies that only n = 

0 states are involved in the flipping process from one fundamental state to 

other one. So we can avoid studying in detail the n = 0 states. For large N most 

 

 
 
Figure 5. Simulated phase and magnetization of a N = 16, 64 all-π AJJA with α = 0.25: 

(a) N = 16 n = 1 phase with β = 10, 4, 1, 0.25; (b) magnetization for (a); (c) N = 64 n = 1 

magnetization with β = 10, 4, 1, 0.25; (d) magnetization for (c).  
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Figure 6. Energy of n = 0 states of a N = 16 all-π AJJA with α = 0.25. 

 

 
 
Figure 7. Simulated magnetization of a N = 16, 64 all-π AJJA with α = 0.25: (a) N  = 

16 n = 0 phase with β = 1.2 and 4 at maximum distance of k-ak; (b) N = 16 n = 0 phase 

with β = 1.9 and 4 at distance 4 of k-ak; (c) N = 16 n = 0 phase with β = 2.4 and 4 at 

distance 2 of k-ak; (d) N = 16 n = 0 phase with β = 4 at minimum, distance of k-ak; (e) 

N = 16 n = 0 phase with β = 3 and 4 triplet state; (f ) N  = 64 n = 0 phase with β = 0.6, 1 

and 4 at maximum distance of k-ak.  
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of the states will have non-zero winding number, whereas the n = 0 sector will 

have only relatively few solutions.  

 In Fig. 6 we show the energy of n = 0 sector for N = 16, the AF 

fundamental state branch is reported for comparison.  Energy gaps always tend 

to increase, but the branches terminate at a critical βc. In particular the lowest 

energy n = 0 state above the fundamental state involves a pair k- ak . . . ĻĻ . . . 
ĹĹ . . . in which kinks are separated by an equal distance, in an annular 

configuration at the ends of a diameter. This k −ak is unstable below β = 1.19 

for N = 16 and below β = 0.61 for N = 64. In Fig. 7 magnetizations of n = 0 

states for N = 16 and N = 64 are shown. These involve k −ak pairs in which the 

separation is shorter and they are unstable also for large β ranging from 1.93 to 

3.97 for the minimum distance. In this last case the kinks occur at the adjacent 

loops . . . ĻĻĹĹ . . . and the critical βc ∼ 4 is essentially independent from loop 

number for N ≥ 6. Other n = 0 configurations can exist involving more than 

half-flux or integer flux quanta, e.g. triplet like . . . ĻĻĻ . . . ĹĹĹ . . .  (see Fig.  7e) 

or state with more than a k-ak pair, but their stability range is smaller than single 

k-ak states and the energy is higher as we have just seen for the case N = 6.  
 

3.2. k-π AJJA 
 The energy for similar states in k = 2, 4, 6 arrays is shown Fig.8 where N = 

32, 64, 96 with N/k = 16. Local magnetization and phase are reported in Fig.  

9: similarly to all π-arrays the system replicates itself in the next period. On the 

other hand, the magnetization in k π-arrays tends to be localized near the π-

loops giving rise to the continuous like structure of half flux quanta reported in 

the literature [17]. This also implies that for FM state the is no longer a 

constant along the array. For large β half flux quanta appears like isolated 

spikes separated by flat phase regions. In this case the energy (Fig. 8) is simply 

the sum of isolated half-flux quanta and all states appear degenerate because 

there is no distinction between Ĺ and Ļ states. Only for small values of β, 

practically corresponding to the continuous limit, the splitting of energies 

becomes relevant. In Fig.8 this occurs roughly at β   1/16  corresponding to a  

= (N/k) β1/2  4 for the section length. For this value of β the total 

magnetization over the section a is  i.e., 71% of half-flux 

quantum. The total magnetization vs β is reported in the inset of Fig.8a.  

 Again for k > 2 and low β the excited states are not all stable: there exist 

critical values βc (see Table I and Fig. 8) where k-ak and some of higher 

energy n = 0 excited states are unstable and decay respectively toward 

fundamental and lowest energy stable n = 0 excited states. The corresponding  
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Figure 8. Energy of a N = 2, 4, 6 Josephson junction for a k-π AJJA N/k = 16, energy is 

normalized to 1/N and is α = 0.25: (a) k = 2, 4 with AF and FM states and n = 0, 1 

states for k = 4, the inset shows the magnetization of π-loops; (b) k = 6 with the same 

states as in case (a) plus the n = 2 state. For unstable n = 0, 1 states the curve ends 

before reaching the lowest calculated β. Stable solutions can be continued to arbitrary 

low β values.  

 

branches in Fig. 8 end at some critical βc. Plots of of some excited states for N 

= 4, 6 are reported in Fig. 10a-d.  

 Localized kinks in the k-π AJJA also show the fractionalization 

phenomenon as is seen in Fig. 10e for intermediate values of β for the k = 16 

case. We find that fractionalization occurs in the interval 2.87 < β < 5.95.  

Larger β gives multi-quanta solutions (see Fig. 10e). In fact, on the small β 

side the solutions do not spread. This is different from the all-π AJJA case. The 

kink itself detaches from original π-loop and regains its shape moving in the 

flat phase region. Finally, for small β < 0.76 it annihilates on near half-flux 

quanta giving rise to a n = 1 solution (see Fig. 10f). This behavior is possible 

due to existence in k −β AJJA of flat phase regions in which conventional SG 

kinks can be added without (or weakly) interacting with the half-flux quanta 

structure of fundamental state if β is sufficiently large (and so is section length 

a). We again see how the annihilation of a full flux quantum (fluxon) involved 

in the spin flip mechanism of localized half-flux quanta [18, 19, 32].  

 In Fig. 11 we show the energy of n = 0 sector solutions for k = 16, N/k = 

16. Apart from numerical differences the behavior is very similar to all-π 

arrays case: energy gaps increase and unstable branches terminate at a critical βc. The maximum separation k-ak is unstable below β ∼ 0.008 for k = 16 

corresponding to a ∼ 1.43 and below β = 0.004 for k = 64 corresponding to a = 

1.01.  In Fig. 12a lowest energy k-ak n = 0 solution for N = 16 is shown. As in  
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Figure 9. Simulated phase and magnetization of a k = 2, 4, 6 k-π AJJA with βL  = 4, 1, 

0.25, N/k = 16 and α = 0.25, in all cases a last loop to be identified with first one has 

been added for better visualization of ring solution: (a) N = 2 phase; (b) N = 2 

magnetization; (c) N = 4 phase; (d) N = 4 magnetization; (e) N = 6 phase; (f ) N = 6 

magnetization.  

 

all-π array higher energy solutions involve k-ak pairs in which the separation is 

shorter. They are unstable also for a larger β (see Fig. 11). In Fig. 12b a 

solution with higher energy is also shown, this corresponds to a localized k − 

ak pair ĹĹĻĻ.  In Fig. 12c the lowest energy k-ak n = 0 is shown for an array 

with k = 64, k and ak structures are separated by 30 alternating spins. As is 

mentioned above when the spin distance becomes smaller than Josephson 

length, i.e., a  1, the k-ak pairs become unstable. In Fig. 12d the detail of first 

kink of Fig. 12c is shown. From Fig. 12d we see how the stability limit is 

approached:  kinks,  ĹĹ, or antikinks  ĻĻ, tend to merge and surrounding spins 

show a strongly modified magnetization, i.e., the kinks locally disrupt the AF 

state by generation of screening currents before the annihilation occurs at 

shorter length. Below the stability limit these pairs move from one site to another 
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Figure 10. Simulated phase and magnetization of a k = 4, 6, 16 k-π AJJA with α = 0.25 

and N/k = 16, in all cases a last loop to be identified with first one has been added for 

better visualization of ring solution: (a) k = 4 n = 0 magnetization with β  = 0.25, 

0.0625, 0.01; (b) k = 6 n = 0 magnetization with β = 0.25, 0.0625; (c) k = 4 n = 1 

magnetization with β = 0.25, 0.0625, 0.01; (d) k = 6 n = 1 magnetization with β = 0.25, 

0.0625, 0.01; (e) k = 16 n = 1 magnetization with an added kink; (f ) k = 16 n = 1 

magnetization with an added kink. 

 

in the array by flipping the surrounding flattened spins, until they annihilate 

each other.  Also other n = 0 configurations can exist involving more half-flux 

or integer flux quanta, e.g. triplet like . . . ĻĻĻ . . . ĹĹĹ . . .  or solution with 

more than a k-ak pair, but again their stability range is smaller than k-ak pair 

solutions and the energy is higher.  

 

4. Arrays in magnetic field 
 Apart from uniform field, which does not have effects on ring arrays at n = 

0, there is a large number of different field configurations which can alter the 

energy of fundamental and excited states described above. As we will see below 

the degeneration of AF state is removed in field and an energy split occurs between 
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Figure 11. Energy of n = 0 solutions of a k = 16 k-π AJJA with α = 0.25 and N/k = 16. 

The fundamental state branch is shown for comparison.  

 

 
 
Figure 12. Simulated phase and magnetization of a k = 16, 64 k-π AJJA with α  = 0.25 

and N/k = 16: (a) k = 16 n = 0 d = 6 magnetization with β = 0.25, 0.0625, 0.025; (b) k = 

16 n = 0 d = 0 magnetization with β = 0.25, 0.0625, 0.0081; (c) k = 64 n = 0 d = 30 

magnetization with β = 0.25, 0.0625, 0.0047; (d) detail of (c) near the first kink.  
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a paramagnetic solution (higher energy) and a diamagnetic solution (lower 

energy) [7]. It would be noted that in AJJA the lower energy solution, derived 

from AF fundamental state, will be always diamagnetic because there is an 

even number of half-flux quanta and so there is no net magnetic initial 

magnetic moment. From Eq.(6) we see that the field can act in any of N 

different loops of the array (see Fig. 1b). This picture applies to both all-π and 

k-arrays. However, if we assume that k-arrays are made of very small loops (as 

continuous limit would imply) the access to single loop is problematic and 

field is likely to act on the array via control lines (see Fig. 1d).  In the 

following we study the effect of field on the fundamental AF states.  

 It is found that for any degeneration removing field spatial distribution a 

critical value of field exists at which the higher energy paramagnetic solution 

is unstable toward the diamagnetic solution. This occurs at relatively high 

values of field and it is the mechanism which permits the array to swap 

between the two fundamental states. As we will see below in the dynamics 

section this mechanism is very similar to that of current biased arrays [19, 14], 

which involves kink (anti-kink) in the flip mechanism.  

 

4.1. All-π AJJA 
 For all-π AJJA we assume that the field act indirectly in N different loops, 

so in principle one should consider any arbitrary frustration vector fj. Anyway 

here we want to separate the effect of a localized random field (LRF) from 

effect of an external imposed control field (CF). The first one may occur in any 

of the subsets of the array loops as a noise fluctuation. Flux noise is due to 

external sources and to intrinsic dissipative processes in the array itself, i.e., 

quasiparticle currents here schematically accounted for by dissipation α in 

Eq.(5). These currents circulating in the array loops also generate flux noise in 

the array which can simply be accounted for as a random fluctuating 

frustration vector fj. As usual we can assume that intrinsic noise is a Gaussian 

uncorrelated noise.  The simplest LRF is a frustration acting in a single array 

loop, i.e., a 00000f 000..., or, shortly, LRF1. Below we study also the effect of 

LRF involving a larger number of loops with a spatial correlation longer than 

one loop. These can be described as 00000f ..  ..f 000..., or LRFnf.  

They are obviously less unlikely to occur than single loop frustration if we 

think of noise fluctuations. It is interesting to note that only odd nf correlation 

lengths really remove the degeneration of fundamental AF state. In fact, an 

even nf correlation length frustration involves an even number of spins so the 

screening currents which are generated are identical for the two AF states. On 

the other hand, a CF can have a particularly symmetric configuration which is 

imposed from outside on the array. As typical CF configuration we can choose 
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a sequence of zero and f alternating in the array loops, i.e., fj equal to 0f 0f 0f 0f 
.... This can be realized using a specially designed control coil which is 

mutually coupled to even number array loops (see also Discussion section 

below). CF is a rather unlikely configuration if compared with a generic LRF 

because implies an highly correlated static field with the spatial period of just 

two loops.  

 In Fig. 13 we show the effect of a LRF1 frustration f in the 8-th loop of a N 

= 16 all-π AJJA. In Fig. 13a the local magnetization is shown. The magnetic 

field adds to local one half-flux quanta, giving rise to a local paramagnetic, 

mj≠N/2 > mN/2 > 0, or local diamagnetic solution, mN/2 < mj≠N/2 < 0. Mean 

magnetization is negative as expected in both cases from Eq. (7) and is equal 

to −f /N. In Fig. 14 the energy of fundamental states of some ring arrays is 

reported as function of field η in the LRF1 case for different values of N. The 

energy of paramagnetic solution is higher than energy of diamagnetic solution. 

The two branches appear until the critical field ηc for stability of paramagnetic 

solution is reached as indicated by arrows in Fig. 14. At ηc a spin flip process 

occurs.  Flip can be local involving only the frustrated loop and generating a   

n = 0 excited state, this occurs for values of β larger than critical βc for          

the stability of n = 0 excited states. If β is smaller the whole array switches to 

 

 
 
Figure 13. Simulated magnetization vs magnetic field for an all-π AJJA with β  = 0.25 
N = 16: a) local frustration in 8-th loop (LRF1); b) local frustration in the last seven 

loops (LRF7).  
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Figure 14. Energy vs magnetic field for an all-π AJJA with β = 0.25 with N = 4 

(circles), N = 16 (triangles), N = 64 (squares) with a LRF1 spatial distribution.  

 

diamagnetic lower energy solution (this is the case of Fig. 14). For a LRF1 

frustration the critical field increase with N (see Fig. 14) because the complete 

flip needs more energy. We found ηc = 0.94 for N = 4 and ηc = 2.52 for N = 

16.  (For N = 64 the critical field is about 6.44 and is not shown in Fig. 14).  

 Moreover, the energy split is a decreasing function of N. In fact, for N = 4 

the split is a relevant fraction of the energy (> 8%) just at η = 0.63. But for N = 

64 the split is only about 0.5 % at the same values of field. Doubling N the 

split roughly halves. So an energy’protection’ from LRF1 frustration will arise 

in the limit of large N. From noise point of view this implies that for large N 

the system is unsensitive to simple uncorrelated field fluctuations in a single 

loop; a property well-known for conventional SQUID arrays [37]. Energy 

splits as function of β and frustration f for the LRF1 case are reported in Fig.  

15a,b for N = 16 and 64 below critical field. Smaller β further reduce the split.  

For N = 16 the energy split goes to zero meaning that no higher energy states 

are present. The critical field ηc is practically independent from N due to AJJA 

topology which reproduces the symmetry of the elementary loops over the 

whole array.  

 A different case is shown in Fig. 13b where frustration was applied on a N 

= 16 in seven adjacent loops, i.e., a nf = 7 frustration (LRF7). The 

corresponding energy splits are reported again in Fig. 15c,d. As is seen the 

split is not larger than the LRF1 split. This can be due to the fact that screening 

currents, which are responsible for the effective energy split, generate only 

locally where the frustration is changing, so a LRF7 is comparable with a 

LRF1 in terms of change in energy. If after critical field is reached and the 
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energy split is not zero, the system relaxes from an excited state, following 

other branches depending on β. However, this occurs almost everywhere for 

two higher β values, 1 and 4, where higher energy states are stable (we note 

that the limits described in the previous section are valid for zero field, in 

presence of field they can change). Only for a relatively large field in the        

N = 64 LRF7 case an excited state is generated.  

 Finally, we report in Fig. 16 the results of application of a control field to 

all-π arrays. The most relevant difference from Fig. 14 is that the split is 

practically independent from N. This is because control field is acting over the 

whole array, maximizing the effect of frustration in any loop. Also critical field  

 

 
 
Figure 15. Energy split vs magnetic field for all-π arrays: a) LRF1 N = 16; b) LRF1     

N = 64; c) LRF7 N = 16; d) LRF7 N = 64.  

 

 
 
Figure 16. Energy vs magnetic field for all-π AJJA with N = 16 and N = 64 with 

control field (CF) spatial distribution: a) dependence on N at β = 0.25; b) dependence 

on β at N = 16. 
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is N independent and smaller than LRF cases critical field. This property of 

control field is useful in the practical design of devices because critical control 

field sets a relatively small, N -independent field which is the minimal field at 

which the system can flip due to an external influence. Using a square loop 

area of 4 µm2 and β = 0.25 we obtain Bc  288mG with a critical current of 

about 30µA (using Ketchen approximate value of square washer inductance 

[38]). In comparison, the LRF1 critical field for the same parameters with N = 

16 is Bc  1037mG.  

 

4.2. k-π AJJA 
 In k-π AJJA we assume that spatial distribution of field is determined by 

control lines, which generate an external field. The details of spatial 

distribution of field can be not easy to derive in this case, but, we can assume 

that these do not have a significant role in determining the general response of 

system. Among different configurations of control lines the layouts most 

comparable to previous all-π array case are those plotted in Fig. 1d. The s-type 

is threading a single 0 − π boundary, so is similar to previous LRF1 case 

because it affects a single ”spin”. Similarly m-type can be compared to LRF nf 

case because it spreads the field over a large number of ”spins”. Finally, the c-

type is the analog of control field CF. Remembering that Eq.  (5) is sensitive to 

”derivative” of field, we see that if the period 2N/k is relatively long the field 

can affect the system also where there are only 0 or π loops. This is not 

possible in simplest all-π AJJA.  

 The effect of a s-type control line on a k = 2 array with N/k = 16 and β =  

0.25 is shown in Fig. 17 where three different spatial configurations of field 

have been chosen. In Fig. 17a (circles ο) the frustration is not zero only in the 

control line whose length extends over  7  loops with the  0-π boundary in the 

central loop. This rather abrupt field change causes the jumps in both 

’paramagnetic’ and ’diamagnetic’ solutions. In Fig. 17a (stars ) a smoothed 

magnetization is obtained using a smeared frustration with the same total 

frustration, i.e. . The frustration was assumed to vary linearly from 6 to 2 

loops before the 0 − π crossing (see the inset in Fig. 17a). The smeared 

frustration solution is visually more appealing, but is not substantially different 

from the other solution. Difference in the mean magnetization is zero for equal 

total frustration. The chosen linear distribution is rather arbitrary because the 

exact distribution depends on exact layout of control lines. For this hereafter 

we use spatial configurations similar to that used in Fig. 17a (circles ο) 

assuming that the differences with more realistic smeared configurations are 

not modifying the gross behavior of the k-π AJJA.  
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Figure 17. Simulated magnetization vs magnetic field for a k-π AJJA with β  = 0.25:  a) 

k = 2 local magnetization for two different frustration vectors shown in the inset: the 

plot with circles represents not-zero frustration in seven loop around the 0-π boundary; 

the plot with squares is a smeared version with a linear growth around the central loops; 

in the inset the two frustration vectors are schematically shown out of scale; b) s-type 

control line around the 8th π − 0 boundary; c) m-type control line around seven π − 0 

boundaries from 8th to 14th.  

 

 
 
Figure 18. Energy vs magnetic field for a k-array with β = 0.01 with k = 4 (circles), k = 

16 (triangles), k = 64 (squares).  
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 In Fig. 17b,c the effect of a s-type and m-type control lines on a k = 16, 

N/k = 16, β = 0.01 AJJA is shown. The results are very similar to all-π arrays 

apart from jumps described above. A s-type control line seven loop long is 

used in Fig. 17b. For the s-type control line the energy of solutions for 

different k is reported in Fig. 18. Energy protection in the sense of a smaller 

energy split sensitivity to field is again obtained for large N. In particular we 

found that energy split is 15% at field of 0.62 for the k = 4 array and is 1% for 

k = 64 array. Details of energy split for k = 16, 64 are given in Fig. 19. Smaller β have been chosen because this implies a large energy split from higher 

energy exited states which otherwise can influence the fundamental state 

mixing. However, for larger fields the split does not become zero also for 

small β indicating that some excited states have been established in the system.  

 Finally, we report in Fig. 20 the results of application of a control field (c-

type) to k-π AJJA. Again the split is practically independent from N, so that no 

protection effect arises using c-type control lines in k-arrays. In normalized 

units the critical field is about  1.6 at β = 0.01 and up to  2.4 for β = 

0.0625.  It is worthwhile to remember that field normalization implies that ηc = 

2 is the so-called Josephson field [35] where the magnetic field completely 

penetrates a long Junction. The minimal critical field for flip is generally larger 

than corresponding field for all-π AJJA if the device dimension has to be the  

 

 
 
Figure 19. Energy split vs magnetic field for k-arrays: a) s-type k = 16; b) s-type k = 

64; c) m-type k = 16; d) m-type k = 64.  
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Figure 20. Energy vs magnetic field for k-arrays with k = 16 and k = 64 with c-type 

control line (CF): a) dependence on k at β = 0.01 for k = 4, 16, 64 no difference arises; b) 

dependence on β at k = 16 for β = 0.0625 (diamond), β = 0.0156 (stars), β = 0.01 (circles).  

 

 
 
Figure 21. Configurations for a qubit ring unconventional array: (a) basic configuration 

with N = 8; (b) coupled ring arrays; (c) a mixed charge-flux device with N = 8; (d) a 

basic mixed charge-flux device with N = 2. 

 

same, so using an area of 4/256 = 1.56 · 10−2 µm2 the critical field for c-type is 

equal to Bc = 33G for β = 0.01. However, such devices will be at nanometer 

scale and their fabrication still would be problematic at the present state of the 

art. In the long Junction approximation assuming λJ of 100µm and λL around 
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10nm, we find Bc = 5.27G for c-type control line and Bc = 9.39G for s-type 

control line.  

 

5. Discussion 
 Unconventional junction arrays with the properties described in the 

previous sections can be used as building blocks for qubit devices [8]. Other 

proposals are the use of annular configurations in advanced superconducting 

circuitry as memory elements [20] or plasma bandgap devices [36]. Here we 

briefly discuss the first possibility also in view of some recent progress 

reported in Ref. [32]. The use of multi-junctions devices is not new:  the 

analysis of practical π-SQUID configurations for the qubit implementation 

often involves more than two junctions like the ”quiet” qubit of Ioffe et al. 

[23]. The idea is simply to use the degenerate AF fundamental states as the 

qubit states |0 > and |1 >. For a π AJJA with n = 0 a possible way to get the 

tunneling between fundamental states would be the creation and annihilation of  

(virtual) kink-antikink pairs  ⇑⇓ in which the kink annihilates over a negative 

magnetization state Ļ flipping its magnetization to a positive state, i.e., ⇑ + 

Ļ=Ĺ, and viceversa for the antikink, i.e., ⇓ + Ĺ = Ļ [32]. This flipping process 

involves creation and subsequent annihilation of kinks in the array which is a 

known classical process as shown in the previous section (see also Ref.s [19, 8, 

20]). For example, for N = 4 and N = 6 the transition occurs via the following 

sequence of double flips:  

 

ĹĻĹĻ→ĹĹĻĻ→ĻĹĻĹ 
 

ĹĻĹĻĹĻ→ĹĹĻĻĹĻ→ĹĹĻĹĻĻ→ĻĹĻĹĻĹ 

 

In general there are N/2 double flips to pass from |0 > to |1 >.  But the above 

tunneling processes have (N/2)! paths along which they can occur, so its rate 

should be roughly proportional to (N/2 − 1)!ΩT where ΩT is the tunneling rate 

of the single kink-antikink process [32].  

 Excited states above the fundamental state can inferfere with the flipping 

quantum process if they are stable. The system could possibly flip out to an 

excited states if it is lower in energy. For fixed winding number this occurs 

toward n = 0 states which are also the lowest in energy. In addition to the 

”spectroscopical” interest, it would be better to have a device with a minimum 

number of excited states. Naturally, it is possible to exclude these states using 

low β arrays. This is relatively more easy to do in the all-π AJJA, where 

fabrication techniques can determine the β very accurately, than in k-π AJJA 

(or in long junctions) where the Josephson length depends on distributed 
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inductances along the array. Moreover, for all-π AJJA critical β for stability of 

the excited states is higher than in the k-π AJJA. In this last case the 

requirement of no-stable excited states implies a very low β which can be 

difficult to realize due to the stray inductance of superconducting films 

forming the array [38].  In all-π AJJA the most suitable configurations will be 

likely an N = 16 or N = 64 array with a β between 0.25 and 0.5. A higher 

number of loops or a lower β can render the requirement on the fabrication 

more difficult to achieve. Moreover, the local magnetization becomes very 

small for β → 0 in both all- and k-π AJJA, so that the signature of fundamental 

state becomes more difficult to control and it is likely to be more sensitive to 

flux noise.  

 In an all-π AJJA, with the above β and N, the controls can be realized as 

depicted in Fig. 21a (see also Ref. [8]) for an N = 8 array. The CF coil applies 

the control field to the array.  According to previous sections the control field 

can cause the system to flip between two fundamental states. So CF can be 

used to prepare the system in a known state before the quantum evolution takes 

place. The control field can be used also to read-out the system state 

controlling, after the quantum evolution is gone, if the state is the same of 

initial preparation or not.  

 Read-out could be also realized by means of the independent coils CN. 

One or more of these coils can be the input coils of external SQUID detector 

that can read the flux in selected array loops.  Some of the same CN coils can 

be used to couple the ring array to other similar devices in order to build a 

multi-qubit device as shown in Fig. 21b. Quantum computing device with 

more than a single qubit have been realized and tested [39]. On the other hand, 

in recent years theoretical work on qubit candidates has continued with the 

proposal of new single qubit devices. For example, new tetrahedral 

configurations for qubit have been studied [40]. The coupling is schematically 

shown as an ”eight” coil giving an antiferromagnetic coupling between qubits.  

This is the optimal configuration to form a C-NOT port, which is the basis of 

the quantum computing logic [41]. The coil was added just in two of the single 

qubit loops, this maybe the way to satisfy the requirement of ”loosely” coupled 

qubits [42]. In fact, with the possibility to vary both N and the coil windings a 

large interval of couplings can be obtained.  Naturally, if a good fabrication 

technique is able to produce a device of the type shown in Fig.  21a, then it 

should not be a problem to extend this procedure to have multi-qubits formed 

by different ring arrays.  Finally, a CB coil is also depicted for the tuning of 

critical current of array junctions. As the energy scale of the system is Φ0I0 

(ICB)/2π, where ICB is the current in CB coil, the energy barrier for flipping is 

proportional to this factor. Due to the exponential dependence of the tunneling 
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rate on the energy scale, a control of barrier is needed in conventional qubits to 

permit fine adjustments of the tunneling rate. A way to realize the barrier 

tuning is described in Ref. [8]. This uses small SQUIDs instead of single 

junction in the array branches. In this case CB is a coil which puts flux in the 

small SQUIDs and so varies their critical current. Alternatives to the use of 

SQUIDs for controlling the junction currents can be also considered. An 

interesting combination would be a realization of a charge-flux device as 

depicted in Fig. 21c. In this configuration the additional degree of freedom is 

due to charge devices, i.e., Cooper pair boxes, on the external superconducting 

loop of the array. The Cooper pair boxes ring arrays were studied in Ref.  [43]. 

Here this sub-system is integrated with an unconventional array to provide a 

flux degree of freedom. For EC ∼ EJ the system could be considered a protected 

analog of the ”quantronium” described in Ref. [44]. The simplest symmetric 

configuration is shown in Fig. 21d for N = 2.  

 The operation mode of single qubit π AJJA is the following. Firstly the 

system is prepared in one of its fundamental states by using the coil CF. Then 

the current in the coil is switched off and leads are possibly isolated from the 

external noise via thermal switches. Next stage is the quantum mixing phase: 

using CB coil the energy barrier is lowered until coherent oscillations set on.  

To make the mixing evident we can use C1 (or C1 and C2) coils to add a 

variable small local frustration to the system and sweep it across zero in order 

to maximize the mixing of two fundamental states. An optimal design of 

parameters will be necessary to reduce the needs of large currents via the CB 

coil. Finally, the read-out phase is accomplished using again C1 (or CF itself 

as describe above).  

 Finally we consider the differences between an unconventional and a 

conventional ring array.  Slightly different conventional AJJA was realized 

in Ref. [45] for the study of the breather solutions in ladder arrays.  

However, from a formal point of view these are very similar except for the 

four junction per loop instead of two junction per loop studied here. It is well 

known that a fully frustrated system, with f = 1/2, shows a checkerboard 

solution [46]. In large β one dimensional arrays this is nothing else but an 

alternating sequence of halfflux quanta along the array, i.e., a solution 

similar to fundamental state of unconventional arrays ĹĻĹ .....  Therefore, a 

fully frustrated conventional array should behave similarly to an 

unconventional one.  However, AJJAs are not sensitive to an uniform field. 

To obtain a state similar to fundamental state of π AJJA, the frustration has 

to alternate from −f to f along the array. This implies a relevant difference in 

the conventional case: the fundamental state is no longer degenerate for 

small values of β. In fact, to be flipped to its reversed counterpart ĻĹĻ ... the 

conventional array need the magnetic field to be reversed.  So the need for 
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unconventional junctions is justified by the zero field nature of degenerancy 

in unconventional AJJA.  

 The development of a reliable quantum device based on π-arrays rests on a 

detailed knowledge and reproducibility of results of systems containing π-

junctions. There are three main ways to realize the π-junctions in the ring 

array. For the obviuos reason that qubits should be quiet, non-equilibrium π-

junctions based on SNS junctions are not mentioned as a possible alternative. 

Firstly, unconventional d-wave-I-d -wave biepitaxial junctions can be realized 

using YBCO [47]. The values of critical current range from about 1mA to 

10mA and capacity is about 0.1pF [25, 47]. Dissipation effects are far from 

being completely analyzed in these systems. In the case of high-Tc junctions 

the normal resistance is typically low. However, we must ask ourselves 

whether these losses are important during qubit operation when no transport 

occurs through the junction. It can be argued (see [48]) that dissipation in high-

Tc devices is smaller than indicated by its normal resistance. A recent 

indication of this behavior is the discovery of MQT effect in YBCO biepitaxial 

junctions with an estimated R of 600Ω in presence of rf-pump [25]. An 

alternative is the use of d-wave-I-s-wave junctions [16], which have similar 

current and capacity figures, but an apparently higher dissipation (about 20Ω 

for RN). Finally, unconventional S − F − S junctions can be realized using a 

ferromagnetic barrier (like Ni − Cu) between conventional s-wave 

superconductors [3].  

 Another important point to be raised is that 0 and π junctions should be 

symmetric, i.e., they should have roughly the same critical current for the 

system to be workable, otherwise a transition to a flat solution occurs [6]. This 

transition is induced by the larger (dominating) critical current junctions, 

which pull the whole array to a flat solution.  In ”zigzag” arrays realized in 

Ref. [16] this condition was easy to satisfy. However, a relatively high 

tolerance is possible up to 20% of difference in critical current for values of β 

between 0.1 and 1.0 in all-π AJJA case. These figures tend to be more tight for 

low β when the system is more rigid. A similar discussion is valid for the 

spread in critical currents: a maximum spread of about 15% is needed in all-π 

AJJA in order to have a well defined fundamental state.  
 

6. Conclusion 
 π AJJAs are the simplest objects with a non-trivial topology and a 

degenerate fundamental state in which protection in Hamiltonian arises for 

large N. We have shown how the fundamental states, the excited states, and the 

spin flip process, both local and global, dominate the nature of both static and 

dynamic solutions on π AJJA. Lowest energy stable states can be classified, at 
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least as the configuration of a ”spin chain”, with different number of k − ak at 

zero winding number (n = 0). Also higher energy state exists for winding 

number n different from zero. Finally, the emergent classical dynamics of 

unconventional junctions is an important recent topic. The basic process of 

half-flux quanta flipping via addition of full kink appears to be the basic 

mechanism for the flip between different states of ring array. Both for current 

driven arrays [20] and for frustration driven arrays (see the previous Section). 

The quantum behavior of a ”macroscopic” chain of spins along an 

unconventional array is a completely new topic which in principle would 

permit quantum experiments in the coupling of ”macroscopic spins”. The 

”quantum spectroscopy” of macroscopic spin chains allows to see if and how 

the excited states form band and bandgaps structures with increasing energy 

and it is of great interest for developing both classical and quantum devices 

based on unconventional arrays [36]. The particular problem of quantum 

mixing between the two fundamental states is of primary interests also for a 

qubit device based on ring unconventional arrays [32],[49].  
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Abstract 
      Josephson junctions can be considered as 

nonlinear oscillators which, for obvious practical 

purposes, should be synchronized. Synchronization of 

coupled Josephson junctions can be described by 

using an analog of the Kuramoto model for nonlinear 

coupled oscillators. The connection between the super-

conducting elements and a well established framework 

for synchronization offers a unique possibility for 

experimental  verification  of  the  model  predictions. 
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In this review paper, we will present our recent results on the practical 

consequences of the Kuramoto model as far as the experimentally accessible 

information is concerned. As an important application example, we will also 

discuss the modeling of the utility grid for transmission of electrical power via 

Josephson junctions based systems of synchronized nonlinear oscillators. 
 

1. Introduction 
 Synchrony of periodic phenomena does not occur in the linear world. On 

the other hand, in Nature we often encounter periodic signals that 

spontaneously entrain. From these two observations one syllogizes the 

nonlinear character of many natural oscillators, even if the underlying 

dynamical model is not known. Examples of spontaneous synchronization are 

numerous [40], from the now classic case of far east fireflies that blink 

simultaneously to the more technological examples of Josephson Junctions (JJ) 

elements, that are the main subject of this Chapter. In the latter case the 

underlying dynamical model is well known, and therefore it is an actively 

studied model for scholars of synchronization. JJ possess some features that 

are generic for coupled nonlinear oscillators and make them one of the favorite 

playground for nonlinear scientists. The general character stems from the 

single JJ electrical behavior and the consequent dynamical equations for 

coupled elements. In fact, it is possible to couple JJ among themselves in a 

somewhat obvious scheme: series connection to a resonant cavity [8, 10]. The 

series coupling approach leads to a correspondence with a well known 

paradigm for coupled oscillators, the Kuramoto Model (KM) [1]. The interplay 
between KM and JJ physics is most interesting for the wide applicability of the 
KM model and the experimental availability of JJ. Moreover, JJ are, as circuit 
elements, flexible enough to be arranged in very different schemes including 
such common experimental set-ups as, for instance, ladders [11] or two-
dimensional arrays [8, 10]. It has also been proposed [38] that there is a link 
between JJ and the problem of synchronization of oscillators over a network of 
connections with topologies that are not simply related to the two fundamental 
schemes of series or parallel connections [2]. Moreover, JJ are believed to be 
in relation with other systems such as the utility electrical power grid [23]. 
These relationships will be explored in this Chapter which is organized as 
follows. In Section 2, I will present the basic dynamics of JJ to establish a 
common language and to emphasize the physical aspects that are relevant for 
synchronization. In Section 3, I will show how JJ are coupled via a resonant 
cavity, and, in Section 4, I will sketch the mapping of such scheme on the KM 
and the most relevant (for JJ physics) mathematical properties of the KM. In 
Section 5, I will discuss some of the connections between JJ and other physical 
systems, while the concluding remarks are presented in Section 6. 
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2. Basic dynamics of Josephson junctions 
 Josephson junctions are nonlinear elements that convert a constant current 

into an ac term, which is the key feature that determines the capability of JJ to 

be synchronized by each other. But let me start with the basic equation: 
 

              (1) 
 

Eq. (1) describes a nonlinear relation between the current and the gauge 

invariant phase difference ϕ = ϑ1 − ϑ2 across two superconductors, see Fig. 1. 

Indirectly, eq. (1) also determines a nonlinear IV characteristic since ' is related 

to the voltage through the second Josephson equation: 
 

       
       (2)

 
 

 From these equations it is immediate to see why a JJ is a dc-ac converter, 

and therefore an oscillator: if one applies a constant voltage V in eq. (2), the 

differential equation dictates that: 
 

      
       (3)

 
 

which, inserted into (1), gives an oscillating current 
 

             (4) 
 

 It should be noticed that such discussion is mostly mathematical and 

not yet physical for a number of practical problems that are hidden by the 

mere equation manipulation performed in (3,4). First, JJ are 

superconducting elements, and it is practically impossible to apply an ideal 

voltage generator to the leads of fig. 1, for it would require an internal 

impedance of the generator much lower than the resistance of the 

superconductors. Second, the sandwich of superconductors separated by 

the insulator that forms a JJ constitutes also unavoidably a capacitance, 

hence a displacement current is to be considered for the ac treatment. 

Third, in a superconductor at finite temperature there are not only Cooper’s 

pairs that tunnel through the junction obeying eqs. (1,2), but also normal 

electrons that cross the discontinuity for a voltage difference: JJ is a 

resistance, as far as the normal electrons are concerned. The three 

channels, displacement current and tunnel of Cooper’s pairs and normal 

electrons, contribute to the total current as shown in fig. 2. 
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Figure 1. Sketch of a single JJ (out of scale). The superconductors 1 and 2, separated 

by a thin barrier, are described by two macroscopic wave functions that determine the 

Cooper’s pairs densities. The Josephson phase difference ϕ is the difference between 

the two phases: ϕ = ϑ1 − ϑ2. 

 

 
 
Figure 2. Lumped clements description of a JJ: the cross stands for the physical 

clement, while the J’’ in the rectangle rd presents the ideal Josephson effect as 

described by eqs. (1,2).  

 

 The lumped elements are described concisely by the current balance 

equation: 

 

            
(5)

 
 

If one applies a current generator Ib the solution of (5) for the phases 

determines the voltage through eq. (2). The very first general character of a JJ 

oscillator stems from the inspection of eq. (5), that is formally the same as a 

driven pendulum, a foremost oscillator studied by Galileo. If one is not content 

with historical preeminence, I would also like to draw the attention to another 

feature of eq. (5): it is an oscillator with a trigonometric nonlinearity. One 

might therefore speculate that eq. (5) is the first order truncation of a generic 

periodic nonlinear oscillator. 
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 The utility of a dc-ac converter is evident. Unfortunately when one plugs 

in the figures for typical JJ at, say, about 500GHz, one gets: 
 

 
 

Even for a 100% dc-ac conversion efficiency one obtains about a 1μW of 

emitted power, much less than the power required for many practical 

applications. Here the obvious idea: to synchronize several junctions to sum up 

the voltages (or the currents) and to reach the desired power output [8, 10]. 

 Synchronization of several JJ is hindered by the differences in the 

characteristic parameters of the junctions [33]. The critical current Ic can 

change significantly even from device to device in the same production batch: 

spreads of 5% are considered ambitious achievements. Specifically the tunnel 

currents (both the supercurrent that determines Ic and the normal current that 

determines R) depend exponentially upon the thickness t of the barrier that 

separates the two superconductors, and are therefore very sensitive to the 

fabrication parameters. Because of the relation between Ic, R, and the 

superconducting gap Δ, the product of the two parameters is roughly constant [9]: 
 

             (6) 
 

Consequently, one wants to synchronize oscillators that have different natural 

frequencies. It is relatively easy to see the effect of the changes of Ic and R on 

the frequency in the overdamped case (i.e., with negligible capacitance βc  0; 

the analysis of the underdamped case is mathematically more involved, but it 

leads to the same qualitative result). If we denote with  and Rj the 

parameters of the jth element, its rotation speed j can be obtained from eq. (5): 

 

      
       (7)

 
 

So if for instance in a particular junction Rj is larger than the average 

resistance, then  is smaller because of the relationship (6) and the frequency 

(7) is increased with respect to the average velocity of the other junctions; the 

opposite is true if the junction resistance Rj is larger. One can therefore speak 

of a collection of oscillators with some average rotation velocity Ω0 and some 

distribution of values that will depend on the fabrication procedure. 

 To treat the interaction mechanism that might lead to synchronization, it is 

useful to introduce normalized units [9]. One defines the Josephson frequency ωj  
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       (8)

 
 

via the normalize time: τ = ωjt. It is also useful to adopt the dissipation 

parameter α 
 

              
(9)

 
 

It is also common to use the McCumber parameter βc = α−2, thus the 

overdamped case of negligible capacitance corresponds to βc  0. With the 

definition of the normalized bias current: 
 

        
     (10)

 
 

eq. (5) finally reads: 
 

           
(11)

 
 

3. Coupling schemes for Josephson systems 
 One can couple several JJ by connecting them with some geometry, for 

instance in parallel (as shown in fig. 3) or in series (as shown in fig. 4). The 

first coupling leads to the Frenkel-Kontorova model [13], which corresponds 

to a chain of pendula coupled by springs (see fig. 5). 

 The physical origin of the restoring ”force”, analogous to the Hooke 

elastic response, is the fluxoid quantization [29, 31]: 
 

           
(12)

 
 

In eq. (12) Φ0 = h/2e is the elementary flux quantum, and Φ is the total flux in a cell, 

due to the flux induced by the external magnetic field minus the flux generated by the 

screening current  circulating in the ith cell, see fig. 3. So eq. (12) reads: 
 

     
     (13)

 
 

From eq. (13) one retrieves the screening current  that contributes to the  

bias current of eq.(11).     The presence of the screening currents thus forces the 



Josephson junctions synchronization 89 

 
 
Figure 3. Schematic picture of a parallel array of JJ. The screening currents IS circulate 

in a superconducting path and couple the junctions through fluxoid quantization. 

 

 
 
Figure 4. Electrical scheme for the series connection of JJ through an external load. 

The current ILOAD deviated in the load couples the junction through the current 

balance (14). 

 

junctions in a parallel array to have the same average speed, because the 

difference in the LHS of eq. (13) cannot increase indefinitely. Synchronization, 

at least on average, is therefore guaranteed in parallel arrays. This property has 

been exploited [48, 19, 51] to reduce the behavior of two-dimensional arrays, 

that are a combination of parallel rows connected in series, to the behavior of 

series connected arrays, see fig. 6. 

 Series coupling is due to the current balance, i.e. the current flowing 

through the junctions is the same for all junctions and amounts to the generator 

current IG minus the current deviated through the load, IL, see fig. 4: 

 

          
(14)

 
 

The voltage applied to the load (VLOAD) is due to the sum of all voltages of the 

individual junctions: 
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(15)

 
 

In eq. (15) all terms are treated on an equal footing: the load cannot distinguish 

which junction occupies which position. This is the basic feature for the global 

coupling of all junctions coupled by each other. Inserting (15) in (14) and the 

resulting bias in eq. (11) one gets for a generic junction j: 
 

   
     (16)

 
 

Eq. (16) is peculiar: all junctions are coupled to all other junctions in the same 

manner and through the same term, the current deviated through the shunt. 

Putting it in another way, eq. (16) tells us that each junction is affected by the 

average velocity of the array, or that a sort of mean field approach is exact for 

series connected JJ. According to the vivid narrative of [40] when Wiesenfeld 

showed to Strogatz that a series arrays of JJ realizes the mean field exactly, 

Strogatz replied that a whole set of tools developed to treat the interaction 

among oscillators with an average approach had found a preferred system of 

application. Before describing the chief mean field approach, the Kuramoto 

Model [1], let me comment on two special properties of the global coupling 

(16). First, the very symmetry of the equations leads to the attractor crowding 

[47]. Suppose one finds a solution of (16), for instance, the so-called splay 

states: 
 

          (17) 
 

For the symmetry of the system there will be other (N − 1)! solutions obtained 

by permutations. Such enormous number of coexisting attractors is not a 

unique feature of JJ. If you insert your favorite oscillator in (16) instead of the 

sine nonlinearity, the factorial growth of the number of solutions will hold true.  

 

 
 
Figure 5. The mechanical analog of parallel arrays (see fig. 3): a chain of pendulums 

connected by springs corresponds to an harmonic lattice. 
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Figure 6. The logic of the reduction of two-dimensional array to one-dimensional series 

arrays: each row, being synchronized by the presence of screening currents, is 

assimilated to an effective single junction [51]. 

 

However, overdamped (βc  0) JJ coupled through a resistor (ZLOAD = RLOAD) 

have a special property of their own, called ”neutral stability” [32, 45, 46]: the 

maximum Liapunov exponent vanishes for a whole range of the parameters. 

This property is a consequence of the complete integrability of the overdamped 

eq. (16) with a pure resistive load. Notice that both properties are harmful for 

synchronization: the coherent state is neutrally stable (in the Liapunov sense) 

and the solutions (17) are metastable because they share the same energy. 

 

4. Connection between Josephson arrays and the 
Kuramoto Model 
 As mentioned in the previous Section there exists a ”mean field” model for 

synchrony. In 1975 Kuramoto has proposed a model for disordered oscillations 

[27], now known as the Kuramoto Model (KM): 
 

          
(18)

 
 

There is a striking difference between JJ as described by eq. (16) and KM: in 

eq. (18) the oscillators are linear, while the coupling is nonlinear. However, 

the key nonlinearity is shared by both models, and in fact the mapping of JJ 

on the KM has been proved first with an averaging method [50] for            

the overdamped case and more recently with a simpler method that has   

allowed the mapping also in the underdamped case [16]. To be more 

specific, one usually assumes that the coupling load is a series RLC resonator 

[32], see fig. 7. 
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Figure 7. Electrical scheme for JJ series connected to an RLC resonator. 

 

 If we denote with q the charge (normalized to Ic/ωj) on the capacitor and 

take into account the differences in the critical currents of the various 

junctions, eq. (16) can be rewritten as: 
 

    
     (19)

 
 

The resonator dynamics is governed by the linear equation: 
 

      
     (20)

 
 

Here Q is the quality factor and Ω the resonance frequency. The parameter βL 

describes the intensity of the coupling of the resonator with the array. Eqs. 

(19,20) are not obvious. The approach proposed by [50] is to consider the 

overdamped (βc  0) case of eq. (11) since the analytical solution of the 

isolated junction is relatively simple. In fact if one performs the change of 

variables [50]: 
 

      
     (21)

 
 

the phases θj perform a uniform rotation, with Ωj being the frequency of the jth 

unperturbed oscillator that depends upon the value of  However, the 

coupling among the junctions, when plugged into the new variables, is not as 

simple as in (16). In an approximate treatment based on averaging, it amounts 

to the sum of the sine of the difference of the θ variables, exactly the same 

structure as in eq. (18). The average procedure supplies the required change 
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from the nonlinear oscillators with linear coupling of eq. (16) to the linear 

rotators and nonlinear coupling as in eq. (18). The mathematical procedure of 

the mapping on the KM introduces also an important formal difference, the 

appearance of a phase θ0 in the transformed variables: 
 

          
(22)

 
 

However, the qualitative behavior of eq. (22) is very similar to the original 

model (18). The analytical procedure also provides the correspondence 

between JJ and KM parameters, namely the coupling constant K: 
 

    

     (23)

 
 

and the phase angle θ0: 
 

         

(24)

 
 

Using a different approach, Dhamala and Wiesenfeld have extended the 

correspondence to underdamped JJ. It turns out that underdamped JJ can be mapped 

onto the massless KM eq. (18), and also in this case the explicit transformation 

 

 
 
Figure 8. The resonance figure of the lumped circuit RLC whose frequency is denoted 

by Ω. The rotation frequencies of the JJ are spread around Ω0 in an interval ∼ ΔΩ. 
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of the parameters is available [16]. A key property of the system is the 

position of the average frequency of the JJ, Ω0 =< Ωj > with respect to the 

frequency of the resonator Ω, see fig. 8. The junctions are oscillating in the 

interval ΔΩ if no resonator is coupled. The averaging approach [50] assumes 

that the coupling is weak enough to not alter significantly the relative 

position of Ω0 and Ω, or that the two frequencies are close enough to remain 

unchanged by the interaction. 

 As mentioned several times the mapping of the JJ onto KM brings hopes 

of an experimental verification of the analytical predictions of the KM. 

Therefore, let me summarize the most preeminent feature of the KM, the 

transition to a synchronized state, referring to [1] for a detailed analysis. A way 

to describe the degree of synchrony of a dynamic state is to compute a sort of 

an order parameter, r: 
 

           
(25)

 
 

 Its meaning is rather obvious in the two limiting cases. Suppose one starts 

with many uncoupled oscillators, K = 0 in eq. (18), then all θj are randomly 

spread and for N → ∞ one obtains r → 0. In the opposite case, if all θj are 

synchronous and identical, eq. (25) gives |r| = r0 = 1 for K → ∞, this limit is 

intuitively reasonable for one expects that with increasing the coupling more 

and more all rotators will be eventually forced to move synchronously. The 

most interesting feature of the Kuramoto analysis is the analytical prediction of 

 

 
 
Figure 9. Behavior of the modulus of the order parameter |r| as a function of the 

coupling strength K (normalized to the critical coupling Kc) for the KM (18). 
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the transition from |r| = 0 for uncoupled (K = 0) oscillators to completely 

synchronized system |r| = 1 for strongly coupled (K → ∞) oscillators. For 

unimodal and symmetric distributions g(Ω) of the natural frequencies the 

prediction says that up to a critical value Kc = 2/πg(Ω0) the system stays 

incoherent, or |r| = 0. For a Lorentzian distribution of the frequencies  
 

              
(26)

 
 

one gets Kc = 2Γ. The other nontrivial prediction is the smooth behavior of |r| 

above Kc: 

 

       
     (27)

 
 

 This behavior thus results in a second order phase transition, and is 

represented in fig. 9. Notice that the full synchronized state is only reached 

asymptotically for infinite coupling, in contrast with the observation that 

natural systems do reach a synchronous state also for a finite value of the 

coupling [17]. 

 By comparing the analytical results with the experiments on JJ one should 

consider the translation of the analytical properties into experimentally 

available, or realistically manageable, information. The first difficulty is the 

measure of the degree of synchrony, or the order parameter r. Josephson 

elements are very rapid, they operate typically around 1mV and therefore 

through eq. (2) at hundreds of GHz. It is hence impossible to sample the 

waveform and to directly evaluate r through eq. (25). To circumvent this 

difficulty one measures the irradiated power, because the power emitted by the 

junctions is indirectly related to the degree of coherence. An incoherent not 

emitting array should be characterized by a low r, while ”perfect” coherent 

emission with optimal power delivered should be characterized by a high value 

of r, possibly approaching 1. The second difficulty stems from the tenability of 

the coupling constant K. Inspection of its expression (23) in terms of the JJ 

parameters reveals that the only parameter that can be changed externally 

during an experiment is the generator current. In Ref. [50] it has been predicted 

that the degree of coherence should change dramatically sweeping the bias, see 

fig. 10. One should be able to observe a reentrant behavior: first the power 

sharply increases above the critical current, up to a maximum value; if one 

keeps increasing the bias the degree of synchronization returns to 0. However, 

to my knowledge, nobody has yet tried an experimental verification of this 
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Figure 10. Sketch of the dependence of the modulus of the order parameter |r| upon the 

external normalized bias for a series array of JJ coupled to an RLC cavity, eq. (27). 

 

prediction. I believe that the main difficulty in the experimental verification of 

this behavior of r(γG) is possibly the change in frequency that comes along the 

bias sweep. Microwave circuits are not easily realized with uniform properties 

in such a wide range of frequencies. Putting it in another way, the lumped 

circuit element equivalent of an actual distributed structure would not have the 

same parameters during the bias sweep. 

 However, for one reason or another, the experiments have followed a 

rather different path. The main results have been found by the Maryland group 

using arrays that are twodimensional and underdamped [8]. It has been shown 

that the extra dimension does not alter significantly the mapping on the KM 

[21, 48], and we have already mentioned that the mapping of the underdamped 

arrays can be performed onto the KM (18). The point is that for underdamped 

arrays the high slope of the IV characteristics fixes the frequency, and one 

cannot explore a whole range of bias current as in fig. 10. Instead Barbara et al 

[8] have tried another interesting approach exploiting the hysteretic behavior of 

low dissipation arrays to modify the coupling between the junctions: to change 

the number of active oscillators. Due to hysteretic dynamics, there are in fact 

two stable states, one corresponding to a rotating solution and another to a 

static solution. Because of the voltage relation, eq. (2), by measuring the 

voltage it is possible to recognize the fraction of active oscillators, while 

recording the output power one can infer on the order parameter, to surmise on 

the degree of synchronization. The conclusions of Ref. [8] are striking: the 
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power output stays at zero (or below detection) for a certain number of active 

junctions, then suddenly increases up to the almost perfect synchronized state 

above such threshold. This is partially in contrast with the effect predicted by 

eq. (27), that describes a smooth, or second order (in the language of phase 

transitions) passage from the disordered to the ordered state. To verify if the 

observed behavior is in agreement with the general features of the KM one 

should discuss the role of the number of active oscillators on the coupling. In 

eq. (23) we do have N dependence, but the results are derived in the N → ∞ 

limit, therefore a naive translation to finite (and small) N would have a rather 

shaky ground. Recently the finite N behavior has been investigated by Pazó 

[37]. Unfortunately the analysis fails just around the transition from the 

disordered to the ordered state, and it is limited to compact support 

distributions of the natural frequencies Ωj, for which the transition is expected 

to be first order also in the infinite N limit. So the behavior of KM at low N 

with non-compact distributions remains an open question. While the Maryland 

experiment was performed I had the good fortune to be collaborating with 

Pedersen and Wiesenfeld, and we came up with a rather different approach 

[20], admittedly much less rigorous. We speculate that the key difference is in 

the hypothesis of weak coupling assumed in the traditional mapping of JJ onto 

the KM model. In [50] it is supposed that the JJ are oscillating around the 

peak of the resonance, and that the resonator forces the junctions to 

compromise to the same frequency, but does not pull them away from their 

natural frequencies. Seen from the resonator point of view, whether a 

junction is in a synchronized state or not will make little difference: it will 

anyway excite the cavity with roughly the same frequency, close to the 

optimal resonant mode. We assume a different point of view: suppose that 

the oscillators are displaced with respect to the cavity (and at higher 

frequency otherwise the system would never lock-in [49]). Suppose also one 

drops in the oscillators one by one. At the beginning the cavity is weakly 

excited because the driving terms act on the outskirt of the resonance; until 

the cavity is feebly oscillating the frequency of the junctions will also be 

little affected. However, at a critical value the exciting terms are enough to 

move the frequencies of the junctions towards the resonance, and then a 

positive feedback mechanism is triggered: the more the junctions move, the 

stronger the answer of the resonator, the larger the effect on the junctions 

and so forth.  

 The resulting behavior is shown in fig. 11, and it is in qualitative 

agreement with the findings of [8]. The transition of the order parameter 

resembles a first order transition: the modulus stays almost at zero up to a 

critical value of 15 active junctions. At such value the order parameter 

suddenly  jumps  to  almost 1,  and  the  power  delivered  to  the  cavity  starts  
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Figure 11. Order parameter r (squares, left axis) and power emitted (crosses, right axis) 

as a function of the number of active junctions for the system in fig. 7. The Q of the 

cavity is 100, the McCumber parameter reads βc = 10, the critical currents are 

Lorentzian distributed with Γ = 0.002 and detuning δ = 0.075. 

 

increasing (a similar approach has also been used by [25]). The simulations are 

performed with eqs. (16,20), assuming a positive detuning: 
 

            (28) 
 

In view of the success of the numerical experiments, we have tried to map the 

behavior on the KM following an heuristic approach [22]. A logical 

consequence of the basic assumption that the interaction is strong, should be 

that the coupling strength depends upon the degree of synchronization. Being 

unable to treat analytically the strong interaction we employed the argument in 

a phenomenological manner. To show how we did it, first let me rewrite the 

KM (18) in the following equivalent form [1, 39] [here r and ψ are the same as 

in eq. (25)]: 
 

     
     (29)

 
 

Let us assume that the coupling K has the property that the strength depends 

upon the dynamical state: the larger is the fraction of synchronous oscillators 

the larger is the resonator response because the oscillators move towards the 

peak of the resonance: 
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            (30) 
 

The parameter z is a new phenomenological parameter that describes this 

tendency of the phase locked states to favor the coupling. The standard KM is 

recovered for z = 1. The assumption leads to a modified Kuramoto model 

inserting eq. (30) in eq. (29): 
 

     
     (31)

 
 

This model can be obviously expressed in terms of the rotators variables: 
 

        
(32)

 
 

 The model is surprisingly tractable. In particular it predicts a first order 

phase transition for z > 1, and no phase transition for z < 1, see fig. 12. 

 The special case z = 1 is the only one to have a bona fide second order 

phase transition, while for z < 1 the behavior is only a resemblance of the 

second order phase transition, but is a smooth transition form the mathematical 

point of view. Assuming a Lorentzian distribution (26) the analytical 

prediction for the critical value of the coupling strength K0 above which 

(partial) synchronization occurs reads: 

 

 
 
Figure 12. Behavior of the modified KM given by eq. (32) for different values of the 

exponent z. 
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(33)

 
 

Above the value (33), the order parameter r jumps to 

 

       
     (34)

 
 

Moreover, the system in presence of noise has been investigated in [24], thus 

supplying a complete picture of this generalized version (32). Unfortunately, at 

the moment of this writing the value of z still cannot be derived from the 

Josephson junctions parameters. 

 

5. Connections with other systems 
 The idea to insert the oscillators one at a time is not only confined to the JJ 

arrays described in the experiment of [8]. Actually, the very same idea was 

investigated for long JJ, i.e. for structures that are enough extended to allow 

the phase difference ϕ to be spatially modulated [9, 35, 36]. The system is very 

similar [30, 34], but instead of the small point contacts here described, it is 

based on the spatially extended junctions (in the x direction in the sketch of 

fig. 1). A completely different analysis of the basic oscillators (that are 

modeled via a nonlinear return map derived with an energetic argument [28]) 

gave a threshold value for synchronization [18]. More recently, laser 

oscillators have been synchronized in the same manner, adding the pumping 

elements one by one [14]. Even if the system is rather different, the route to 

synchrony seems analogous. Also the much discussed problem of the 

oscillations of the ”London Millennium Bridge” (at the opening in the 

summer of 2000) has been related to the more and more people crowding on 

the passage of pedestrians (the event is recorded for instance on [5]). The 

sudden transition to large oscillations has been ascribed to the slow increase 

of the number of ”oscillators”, woman and man walking on the resonant 

structure above the Thames [41]. The reduction of the mechanical bridge 

oscillations and of the physiological (the pedestrians gait) systems to a 

version of the Kuramoto model seems to describe the phenomenon with a 

certain degree of accuracy, although, as one can easily imagine, human gait 

can be modeled only phenomenologically. 

 So far I have underlined the importance of the global coupling in the 

analysis of the KM. However, research has also been directed towards models 

that retain some memory of the individual bonds between the oscillators. In the 

KM framework, the following generalization has been proposed: 
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     (35)

 
 

The matrix Ki,j contains the information about the coupling between the ith and 

the jth oscillator, thus the original KM, eq. (18) is the particular case with Ki,j = 

K. This model, often referred as Local Kuramoto Model (LKM) is relevant for 

JJ that are connected in parallel [15], often referred as ladders, see fig. 3. In 

fact it has been demonstrated, again with the averaging method, that parallel 

arrays can be mapped onto a nearest neighbor version of the LKM [15]. Also 

in this case JJ are thus a practical realization [11, 12, 44] of a generic model for 

synchronization. 

 More recently the LKM has been proposed [6, 38] to describe also 

oscillators coupled over a network of connections with novel topological 

properties [2]. In this category we can speculate about the stability of the so-

called utility power grids that distribute electrical energy to consumers [23]. 

The main point of the analogy is the observation that energy flows from a 

generator to an utilizer only if there is a phase difference between the 

corresponding rotators. If one describes each machine with a phase angle, the 

power balance for the simplest system of just one generator θG and one utilizer θU (see fig.13) reads [26]: 
 

       
(36)

 
 

       
(37)

 
 

Here I is the moment of inertia, KD a dissipation parameter, and PMAX the 

maximum power that the transmission line can deliver between the two 

machines. These equations can be manipulated in normalized units and under 

the hypothesis of slow perturbation of the frequency of the distribution grid (50  

 

 
 
Figure 13. Schematic picture of a generator θG and utilizer θU machines in the power 

grid system. Both systems are rotating masses described by an angular variable θ with 

dissipation KD. The power transmitted depends upon the phase difference Δθ = θ2 − θ1, 

and cannot exceed some maximum value PMAX. 
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or 60 Hz), to arrive at the equations (dissipation is assumed to be the same in 

the two systems): 
 

          
(38)

 
 

          
(39)

 
 

If one was to consider a more complicated network of utilizers and generators, 

eqs. (38,39) were to be extended to assume the general form of eq. (35). 

Interestingly, in the simplest case of eqs. (38,39) the sum of the phases S = θG 

+ θU follows a linear equation: 
 

           (40) 
 

The difference of the phases D = θG − θU, that describes the stability of the 

system, has the same structure as a JJ, see eq. (11): 
 

          (41) 
 

So the analogy between JJ and power grids is twofold. Indirectly, through the 

LKM because both systems can be mapped onto such general model. More 

directly, because the stability of the most elementary connection, fig.13, is 

described by an equation that is formally the same as a single JJ. 

 Regarding the connections with other systems, I would like to mention 

another important analogy: the similarity between JJ and lasers. It was pointed 

out long ago that the coherent behavior of several JJ could be described with 

the same tools as the coherent behavior of quantum mechanical particles in a 

laser, adopting a semi-classical approximation [7, 42]. The quantum 

mechanical treatment of JJ in a cavity has been recently developed by Almaas 

and Stroud [3, 4], and it essentially confirms the dynamical picture of the 

classical treatments [20, 25]. Also the existence of the threshold has an analogy 

with laser behavior. Suppose one realizes a laser mixing of two kinds of 

molecules in a resonant cavity, see fig. 14. Suppose also that one of the two 

species is capable to resonate with the cavity, while the other is not (i.e., one 

spectrum contains two levels whose energy spacing is close enough to the 

cavity resonance to allow for the population inversion, while the other 

spectrum does not). One could think of the two gases as either ”active” 

oscillators or ”absorbing” oscillators. The equivalent experiment depicted in 

fig. 11 (see ref.[8]), should be performed varying the proportion of the two 

gases. Below a certain threshold of the concentration of the active molecules 

the amplification mechanism does not work: too much power is absorbed by 
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the passive molecules. The question about the order of the phase transition for 

such a system would translate as follows: above the threshold, a finite amount 

of power is available immediately (first order transition) or the power 

continuously increases from zero (second order transition)? 

 

6. Conclusion 
 In this Chapter I have tried to explain the rational behind the preference 

the scholars of synchronization have granted to JJ as model systems. Nonlinear 

scientists appreciate the general trigonometric periodic function that appears in 

the model equation, a property shared by many other systems, from 

mechanically coupled pendulums to practical applications,such as the utility 

power grid. However, I have underlined my point of view that JJ have another 

special property: as circuit elements they can be coupled together in such a 

way that each junction is only affected by the average dynamical state of the 

other junctions. The average mediated effect of the coupling is particularly 

useful in studies of the route towards synchronization where the main 

analytical technique, the Kuramoto model, is based on a mean field approach 

(and, of course, on a sinusoidal periodic function). The approximated 

equivalence of the JJ model equations and of the Kuramoto model is one of the 

principal reasons for the fame of JJ in the synchronization research. As a 

practical realization of the Kuramoto model, JJ have their advantages and 

disadvantages. For instance take the speed: it is surely useful to quickly reach 

the steady state, but somehow JJ are too fast: their dynamics is not actually 

available in the experiments and only average properties can be recorded. 

Another example of a double side characteristic is the fact that JJ are 

superconducting elements. On one hand, at low temperatures the noise level is 

low, on the other hand, it demands cryogenics facilities. Finally, let me touch 

upon another point, practical applications of synchronized JJ for microwave 

and THz electronics. I have focused on the theoretical usefulness of JJ, but I do 

not want to shadow the importance of their practical applications. Most of the 

research on JJ is powered by the needs of the technology, not by the curiosity 

of the theoreticians. However, hopes are that each side helps the other to 

achieve even more cooperation (one might say, synchronization of the efforts) 

on tackling the same issues. 
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Abstract 
      We review here our latest results on the 

investigation of the current-voltage characteristics 

and breakpoint phenomenon in the stacks with finite 

number of intrinsic Josephson junctions in layered 

superconductors. 

 

Introduction 

      Strongly anisotropic high-Tc superconductor (HTSC) 

is a natural stack of intrinsic Josephson junctions (IJJ) 

and shows the intrinsic Josephson effect [1, 2]. The phase 
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dynamics in the IJJ have attracted a much attention because of its rich and 

interesting physics from one side and perspectives of its applications from the 

other side. Different couplings between junctions, like inductive coupling in 

the presence of magnetic field [3], capacitive [4, 5, 6], charge-imbalance [7] 

and phonon [8, 9] couplings determine a variety of current-voltage 

characteristics (IVC) observed in HTSC. Individual junction’s area, its oxygen 

content and different coupling barrier layers could play an important role as 

well [10]. 

 Due to the coupling, the equations for phase-differences in IJJ form a non-

linear coupled differential equation. Its solution is classified by the number of 

rotating phases. The change of its number occurs intrinsically in this nonlinear 

equation, which leads to formation of branches in IVC. Although the number 

of rotating phases is the same, different patterns of distribution of rotating 

phases lead to slightly shifted branches. It is still an open question and a future 

problem which patterns are more easily realized among many possible patterns. 

 Capacitive mechanism of coupling between intrinsic Josephson junctions 

is based on the charging of the superconducting layers in the stack. The 

tunneling current creates the charge fluctuations on the superconducting layers 

which is related [4, 5, 6] to the gauge invariant scalar potential. The thickness 

of superconducting CuO2 layers is extremely small and comparable to the 

charge screening length μ, which becomes incomplete within the single 

superconducting layers. The charging of the superconducting layers can not be 

neglected and it leads to the generalized Josephson relation (GJR) between the 

gauge-invariant phase difference ϕl(t) and voltage Vl(t) between layers l and l 

+ 1. GJR takes into account that electric field generated inside a junction site 

affects the neighboring junctions and shows a coupling between Josephson 

oscillations in different barriers. This CCJJ model was used to analyze the 

current-voltage characteristics (IVC) of Bi-2212 superconductor, to explain the 

branch structure in IVC and the details of hysteresis jumps[4, 5, 6, 9, 10]. The 

equation for the interlayer phase difference was derived in [4] and solved 

numerically for finite system with 100 junctions to simulate the IVC. 

 It has been stressed [8] that capacitive coupling takes various values in 

HTSC and layered organic superconductors, that is, the capacitive coupling is 

tunable in this systems. Based on this fact, a systematic study for the dynamics 

of the CCJJ model, focusing on the dependence of phase dynamics on the 

strength of the capacitive coupling constant from weak to strong coupling 

regimes has been presented. A conclusion have been made that the dynamics 

of the localized rotating modes primarily determines the IVC of IJJ. Since the 

energy required to excite the localized rotating modes is increased with the 

capacitive coupling parameter, several junctions collectively rotate. As a  
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result, the equidistant multiple-branch structure disappears in the strong 

coupling systems. 

 As was shown in Ref.[7, 11], diffusion current plays an important role in 

the charge imbalance effect in the stack of IJJ. The CCJJ model including 

diffusion current was derived in Ref.[12] based on Euler-Lagrange equations 

obtained from effective action for system of IJJ. But the authors considered 

that a term corresponding to the diffusion current might be neglected. We 

investigated the total branch structure in the IVC of eleven IJJ in a stack and 

the coupling dependence of the branch slopes at different boundary conditions. 

Then we included the diffusion current in the total tunneling current and 

demonstrated that the equidistance of the branch structure could be 

restored.[13] 

 A simulation of the current-voltage characteristics (IVC) of a stacks of 

intrinsic Josephson junctions (IJJ)[1] at different values of the model 

parameters such as the coupling and dissipation parameters is a way to predict 

the properties of the IJJ. McCumber and Steward have investigated the return 

current as a function of dissipation parameter in a single Josephson junction a 

long time ago.[14] In the case of the system of junctions, the situation is 

cardinally different. The IVC of IJJ is characterized by a multiple branch 

structure and branches have a breakpoint region with its breakpoint current 

(BPC) and transition current to another branch. [15, 16] The BPC is 

determined by the creation of the longitudinal plasma waves (LPW) with a 

definite wave number k, which depends on the parameters α and β, the number 

of junctions in the stack, and boundary conditions. If we neglect the coupling 

between junctions, the branch structure disappears, and the BPC coincides with 

the return current. 

 In this Chapter, we review our recent results based on the description of 

IVC of the IJJ in the framework of CCJJ, CCJJ+DC and CIB models. We 

show that IVC have a breakpoint in their branches.[17] The BPC Ibp on the 

outermost branch as a function of the coupling α and dissipation β parameters 

for the stacks with a different number of IJJ is presented and demonstrated to 

possess a plateau with BPC oscillation. We show that the αβ-dependence of 

the BPC is an instrument to determine the mode of LPW created at the 

breakpoint in the stacks with a different number of junctions. 
 

2. Coupling between junctions in the stack of IJJ in 

layered superconductors 
2.1. Generalized Josephson relation 
 Tunnel junction is the capacitor at the same time, i.e. it has a charge Q = 

CV, where C = εS/4πd. Because a thickness of S-layers in HTSC is very small, 
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this charge is not screened and this fact leads to the coupling between 

junctions. The origin of coupling is the capacity of the junction, that is why 

such kind of coupling is called ”capacitive”. 

 We consider a system of superconducting layers with indices l and order 

parameter  with time-dependent phase χl(t). We define 

the gauge invariant phase difference as: 
 

   
       (1)

 
 

where Az(z, t) is the vector potential in the barrier. Here e denotes the 

elementary charge. The charge of the electron is −e. 

 For the time derivative of γl,l+1 we obtain the generalized Josephson relation: 

 

     
       (2)

 
 

Here 
 

             
(3)

 
 

is the voltage and Φl(t) is the so-called gauge invariant scalar potential defined by 

 

      
       (4)

 
 

where φl(t) is the electrical scalar potential. 

 The quantity  is the total energy required to transfer 

a Cooper pair from layer l to l + 1, eΦl can be considered as the shift of the 

chemical potential of the superconducting condensate with respect to an 

average chemical potential μ, i.e. the number of particles in the condensate is 

controlled by μ + eΦl. For equilibrium superconductors  and 

one has the usual Josephson relation  

 Relation between the charge ρi and the potential Φi is 

 

              
(5)
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where Φi is expressed through a scalar potential φi and derivative of phase θ by 

 

             
(6)

 
 

From (6) we come to the modified Josephson relation 

 

            
(7)

 
 

Using (5) and (7) we find 
 

    
       (8)

 
 

We can express ρ through the V by Maxwell equations 

 

           (9) 
 

and write 
 

          
(10)

 
 

Then MJR has a form 

 

   
     (11)

 
 

where  This formula shows the coupling between junctions: 

phase difference in the junction depends on the voltages in the nearest          

ones. 

 

2.2. Coupled system of equations 
 Taking the derivative and multiplying by C we find 
 

   
(12)

 
 

We can find C∂V/∂t from 



Yu.M. Shukrinov & F. Mahfouzi  112 

          
(13)

 
 

and substitute it in (12). Then we get after normalization on ωp 

 

 
              (14) 
 

We can re-write this equation in matrix form 
 

    
     (15)

 
 

with the matrix A having the form 
 

   

     (16)

 
 

where l′ runs over all N junctions, the parameter α gives the coupling between 

junctions, β is the dissipation parameter (β2 = 1/βc, where  is the 

McCumber parameter, ωp is the plasma frequency, and C is the capacity of the 

junction), I is the external current normalized to the critical current Ic, G = 1 + 

γ, = s/s0 = s/sN and s, s0, sN are the thickness of the middle, first, and last S 

layers, respectively. In Eq. (15) time is normalized to the plasma frequency 

ωp.[18] According to the proximity effect we consider that the thickness of the 

first and last layers is different from that of the layers inside the stack. 

Nonperiodic boundary conditions (BCs) are characterized by the parameter γ 

and the equations for the first and last layers in the system (15) are different 

from the equation for the middle S layer.[4, 18] For periodic BCs the matrix A 

has the form 

 

       

(17)
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2.3. Numerical procedure 
 We solve this system for stacks with different numbers N of intrinsic 

junctions. The numerical procedure has been done as follows. For a given set 

of model parameters N, α, β, γ we simulate the IVC of the system, i.e., Vl(I), 

increasing I from zero up and then down. A change in the parameters N, α, β, 

γ changes the branch structure in the IVC essentially. Their influence on the 

IVC in the CCJJ and CCJJ+DC models was discussed in Refs.[19, 13, 18]. To 

calculate the voltages Vl(I) in each point of the IVC (for each value of I), we 

simulate the dynamics of the phases ϕl(t) by solving the system of equations 

(15) using the fourth-order Runge-Kutta method. After simulation of the phase 

dynamics we calculate the dc voltages on each junction as 

 

      
     (18)

 
 

where Vl is normalized to V0 = ωp/(2e). The average of the voltage  is given by 

 

     
     (19)

 
 

where Tmin and Tmax determine the interval for the averaging. After completing 

the voltage averaging for current I, the current I is increased or decreased by a 

small amount  δI to calculate the voltages at the next point of the IVC. We use 

the distribution of phases and their derivatives achieved in the previous point 

of the IVC as the initial distribution for the current point. 

 Numerical stability was checked by doubling and dividing in half the 

temporal discretization steps Dt and checking the influence on the IVC. Finally 

we can obtain the total dc voltage V of the stack by 
 

            
(20)

 
 

At some current I some junction (or junctions) switches to the nonzero voltage 

state and gives some branch of the IVC. We plot the total IVC at different 

parameters of the problem. The details concerning the numerical procedure are 

given in [6, 18]. 

 

3. IVC in CCJJ model 
 The CCJJ model was described in detail in Ref.[18]. Let us consider the     

N + 1 superconducting layers (S-layers), numbered from 0 to N. The widths of 
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0-th and N-th S-layers are extended due to the proximity effect into attached 

normal metals. In cases of no applied magnetic field and small sample size in 

the a-b direction, the physical quantities are spatially homogeneous on each 

layer. In the framework of this model the resistive state in IJJ is realized as a 

state with definite number of rotating (R) or oscillating (O) junctions. If the l-th 

junction (ϕl ≡ ϕl,l+1) has a rotating phase, then 

 

           (21) 
 

            (22) 
 

 If the l-th junction has a oscillating phase, then 
 

            (23) 
 

           (24) 
 

The O-state is one of the new elements which appears in IJJ in comparison 

with one JJ. The O-state can be realized if number of junctions in the stack is 

more than 2. According to the GJR, the Josephson oscillation frequency  is 

determined not only by the voltage in the same junction but also by the 

voltages in neighboring junctions. Total voltage is not a sum of voltages on R-

junctions, but it is distributed among other junctions in the stack. The 

hysteresis jumps in the IVC are associated with the change of the distribution 

pattern of rotating phase motions. 

 In the CCJJ model the dynamics of the gauge-invariant phase difference ϕl 

between superconducting layers l and l + 1 is described by the equation: 
 

          (25) 
 

where I and Ic are the external dc current and the Josephson critical current, 

respectively. 

 To simulate an experiment which investigates the IVC of IJJ we should 

choose some initial conditions for phases and their derivatives and perform the 

current increasing and decreasing many times. Influence of value of the current 

step δI on the branch structure of IVC imply [6] that several bifurcation points 

are distributed in a very narrow region for controlling parameter I of equation 

(25). Results of such simulation are shown in Fig. 1b for the same stack as in 

Fig. 1a. To determine the state corresponding to the chosen branch, we analyze  



Breakpoint phenomenon in intrinsic Josephson junctions  115 

   
 
Figure 1. The total branch structure in the IVC of IJJ (a) and result of simulation of 

IVC at fixed initial conditions (b). The branch numbers correspond to the states with 

definite number and positions of the R- and O-junctions in the stack, presented in the 

Table of the Ref.[19]. 
 

   
 
Figure 2. IVC for one current increasing and decreasing process (a) and corresponding 

phase (b) and voltage (c) distributions (From Ref.[19]). 

 

the voltage and the average of the phase derivative distributions. Fig. 2a 

presents the IVC for δI = 0.01 for one increasing and decreasing circle. The 

current is gradually increased up to I/Ic = 3.2 and then gradually decreased. In 

the current increasing process, the IVC shows the jumps at I/Ic = 1.0, 1.4 and 

3.0. In the current decreasing process, there appear three jumps when the 

current becomes smaller than 0.3. 

 In order to explain this branch structure, we show in Fig. 2b average of the 

phase derivative, and in Fig. 2c the voltage distributions on each junction just 

after the jumps for the current increasing and decreasing processes. For the 
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branch 18, four junctions have highest voltage. The phases of the junctions 

with highest voltage increase approximately linearly in time, correspondingly 

to the phase rotating motion, while the other junctions have oscillating phase 

motion. When the time average of the derivative of phase is plotted in Fig. 2b, 

junctions with rotating and oscillating phases are clearly identified [18]. As we 

can see, the number of phase rotating junctions is six for branch 38 and eleven 

for branch 45. For the branches 33, 8 and 42 the number of junctions in 

rotating state is equal to 3, 6 and 8, respectively. As it was discussed in detail 

in Ref. 7 the hysteresis jumps are associated with the change of the distribution 

pattern of rotating phase motion. 

 The branches in the IVC of IJJ in CCJJ model demonstrate the breakpoint. 

In Fig. 3(left) we show the breakpoint on the outermost branches at different 

values of the coupling parameter α by arrows.[19] 

 The ”breakpoint region” (BPR) on the IVC of the stack of IJJ was 

demonstrated in Ref.[15] and it is explained as a result of resonance between 

Josephson and plasma oscillations. Simulation of the IVC of IJJ by different 

groups using different models shows the BPR on the outermost branch as well, 

but the authors did not mention it (see Fig. 4). To our knowledge, no precise 

experiments to observe the BPR have been done yet. The equation for the 

Fourier component of the difference of phase differences δl = ϕl+1,l − ϕl−1,l 

between neighboring junctions is[15, 16, 17] 
 

          (26) 
 

   
 
Figure 3. On the left: Breakpoint on the outermost branches in the IVC of IJJ in CCJJ 

model at different values of the coupling parameter α; on the right: Phase diagram in 

Ω(k) − β(k) space for the stack of IJJ at α = 1, β = 0.2 and γ = 0; 
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Figure 4. Demonstration of the breakpoint on the outermost branch in simulated 

IVcharacteristics in different models: (a) CCJJ model (Cf. Fig.3a in [6]); (b) charge 

imbalance (CIB) model (Cf. Fig.1 in [7]); (c) CIB model (Cf. Fig.2(left) in [20]); (d) 

CCJJ+DC model (Cf. Fig.1 in [15]). 

 

where τ = ωp(k)t, ωp(k) = ωpC, β(k) = β/C, Ω(k) = Ω/C and C =  

This equation shows a parametric resonance with changing its parameters β(k) and Ω(k). We note that in comparison with CCJJ+DC model, where β(k) = βC, the effective dissipation parameter β(k) in this model is less 

than β. We may conclude that with increase in α it is more favorable for 

the system to have the plasma waves. We solved the Eq. (26) numerically 

and result is presented in Fig. 3(right), where the resonance region for the 

stack of IJJ at α = 1, β = 0.2 and γ = 0 is shown. For Ω(k) and β(k) inside 

of the resonance regions the solution of the equation increases in time. It 

means that we observe a parametric resonance in this region. Outside of 

this region, starting from any initial condition, the solutions attenuate in 

time to zero. 
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4. IVC in CCJJ+DC model 
 In the CCJJ model with diffusion current 
 

       
     (27)

 
 

the total external current is equal to 
 

     
     (28)

 
 

To obtain the equation (28) we used the GJR 
 

     
     (29)

 
 

Total external current (28) in CCJJ+DC model differs from the current in CCJJ 

model (15) by third term in the right hand side. In CCJJ model it is equal to 

Vl/R. Finally, in CCJJ+DC model we obtain the next equation for the gauge-

invariant phase difference 
 

          
(30)

 
 

where I = J/Jc and we consider that critical current is the same for all junctions 

 

 To simulate an experiment which investigates the IVC of IJJ we define the 

initial conditions for phases and their derivatives and perform the current 

increasing and decreasing many times. The total branch structure in the IVC in 

framework of the CCJJ+DC model for the stack of 11 junctions at α = 1, β = 

0.2 and γ = 0 is shown in Fig. 5(left). 

 As we can see, the inclusion of the diffusion current in the CCJJ model 

leads to the equidistant branch structure. Changes in α and β do not effect the 

equidistance of the branch structure. We investigated the influence of the 

parameter γ and found that the increase in γ leads to the appearance of the 

additional branches and breaks the equidistance. At periodic boundary 

conditions the branch structure is equidistant. Fig. 5(right) shows the IVC for 

10 IJJ calculated by the equation Eq.(30) at α = 1, β = 0.2 and periodic 

boundary conditions. The parameter β is related to the conductivity of the 

insulating layer and determines the slope of the IVC. Variation in β in the 

framework of the CCJJ model [19] changes the hysteresis loop of IVC but preserve  
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Figure 5. The branch structure in IVC in CCJJ model with diffusion current at γ = 0 

(left) and at periodic boundary conditions (right) (From Ref.[13]). 

 

the main features of the branch structure. The nonequidistance of the branch 

structure cannot be removed by variation in β. In CCJJ+DC model change in β 

does not have effect on the equidistance of the branch structure. The coupling 

parameter α determines the nonlinear effects among phase differences. In the 

CCJJ+DC model in the parameters range we study here, the coupling 

parameter changes the return current of the branches. We consider that the 

origin of such behavior is a term in Eq.(30) proportional to the product of the 

coupling and McCumber parameters which is absent in the CCJJ model. In the 

CCJJ+DC model the value of the endpoints of the branches is the same for all 

branches and does not depend on _. Situation is changed [20] if we take into 

consideration the nonequilibrium effects created by tunneling current injection 

[7]. In this case the new branches appear and the current endpoints for 

branches depend in different way on disequilibrium parameter. At small value 

of the disequilibrium parameter the branch structure is close to the equidistant 

one and just a small splitting of some branches exists [20]. 

 

5. IVC in Charge Imbalance Model 
 In the CIB model the dynamics of the gauge-invariant phase difference 

ϕl,l+1 between superconducting layers l and l + 1 is described by the equation 

 

  
(31)

 
 

and kinetic equations 
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     (32)

 
 

In these equations J is the external current in Jc units, parameter b determines 

the injection of quasiparticles from boundaries, ψl - the charge imbalance 

potential on superconducting layers [7], α - the coupling parameter, β is 

related with the McCumber parameter βc as  - the 

nonequilibrium parameter,  -the plasma frequency, τqp - the 

charge imbalance relaxation time, γd = s/s0 = s/sN and s0, sN are the thickness of 

the first and last S-layers, respectively. The Laplacian on the boundaries is 

defined as ∇(2) f0,1 = f1,2 − (1 + γ)f0,1, ∇
(2) fN−1,N = fN−2,N−1 − (1 + γ)fN−1,N. 

 To obtain the voltage we use the generalized Josephson relation 
 

    
     (33)

 
 

We have solved numerically this system of equations using fourth order 

Rounge-Kuta method in the presence of very small noise with maximum 10−10. 

Results of two simulations of the total branch structure for the stack of 10 IJJ 

at different values of η and ζ are shown in Fig. 6. The structure in the IVC is 

close to the equidistant one and the both IVC demonstrate the breakpoint regions 

 

   
 
Figure 6. The total branch structure in the IVC of 10 IJJ for different values of 

nonequilibrium parameter η. 
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on their outermost branches. The detailed investigation of the influence of the 

model parameters on the vortex structure in the CIB model will be presented 

somewhere else. 

 In the CIB model we find the equation for the Fourier component of the 

difference of phase differences  between neighboring 

junctions 

 

   
(34)

 
 

where the dimensionless parameters ψ′ and η(k) are defined as ψ′ = 2(1 − 

cos(k))ψ  and η(k) = 2(1 − cos(k))η. Other parameters have the same form as 

in CCJJ model. As we can see, the dynamical equations are different for 

different modes k even at α = 0. To find the resonance regions for parameters 

of the system, we have solved the equation (34) numerically. The results of 

calculations are presented in Fig. 7. The decrease in Ω(k) means the decrease 

in the voltage, so we may conclude from the Fig. 7(left) that for β(k) smaller 

than some value β0, the increase in η(k) increases the voltage value of the 

breakpoint, while for β(k) bigger than β0, the increase in η decreases the 

breakpoint voltage. Fig. 7(right) demonstrates a decrease of the breakpoint 

voltage with the increase in β. 

 

   
 
Figure 7. Left - Resonance regions Ω(k) − β(k) diagram at different values of the 

nonequilibrium parameter; Right - Resonance regions Ω(k) − η(k) diagram at different 

values of β. 
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6. Breakpoint Phenomenon 
6.1. Breakpoint in the IVC 

 Fig. 8 shows the IVC of a stack of 10 IJJ at α = 1, β = 0.2 and γ = 0. The 

dash line corresponds to the result of calculations without noise (round of error 

less than 10−15), while the solid line corresponds to the result of calculations 

with a small noise in the current with its maximum in the interval (−10−8, 

+10−8). As we can see, a branch structure is not observed without noise at these 

values of model parameters. Opposite, in case with noise the branching of IVC 

with equidistant branch structure is observed. Later we will return to the 

discussion of the noise effect on the branching in the IVC. 

 In the inset of Fig. 8 we have shown the outermost branch near the 

breakpoint where the curves with noise and without noise separate from each 

other. 

 

   
 

Figure 8. (a) IV-characteristic of a stack of 10 IJJ at α = 1, β = 0.2 and γ = 0. From 

Ref.[15]; (b) Parametric resonance region in Ω(k) − β(k) diagram. Black dots (stripe) 

correspond to the breakpoint current Ibp in the IVC for k = π at different values of 

parameters α and β. (From Ref.[16]) 

 

6.2. The origin of the breakpoint on the outermost branch 
 To explain the observed features of the finite-stack IVC let us discuss the 

origin of the breakpoint on the outermost branch. The hysteresis jump in the 

IVC is associated with a change of the distribution pattern of rotating phase 

motions.[18] But the question of why a change in the current leads to a change 

in the distribution pattern of the rotating phase motions is still open. 
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 As we mentioned above, the outermost branch in the IVC corresponds to 

the state of the stack with all junctions in the rotating state. Let us write an 

equation for the difference of the phase differences δl = ϕl+1 − ϕl for the 

outermost branch. 

 By subtracting Eq. (15) for the (l + 1)th from that for the (l)th junction we get 
 

   
     (35)

 
 

Here ∇(2) fl = fl+1 + fl−1 − 2fl is the discrete Laplacian. Consider the linear 

approximation sin(ϕl+1) − sin(ϕl) ≈ δl cos(ϕ), where  is the 

Josephson frequency, and V is the total voltage of the stack, we obtain 
 

         (36) 
 

 Expanding δl(t) in the Fourier series 
 

       
     (37)

 
 

the linearized equation for the Fourier component of the difference of the 

phase differences δk between neighbor junctions can be written in the form[15] 
 

          
(38)

 
 

where τ = ωp(k)t, ωp(k) = ωpCα, β(k) = βCα, Ω(k) = Ω/Cα and Cα =  

 The important fact for us is that this linearized equation manifests a 

parametric resonance in the system of IJJs. In Fig. 8(left) we plot the resonance 

region for this equation on the β(k) − Ω(k) diagram. The dark stripe on this 

figure is actually the distribution of the dots, corresponding to the positions of 

the breakpoints of the outermost branch. Using the breakpoint values of the 

voltage in the equation Ω(k) = Ω/Cα = V/NCα, we obtain this distribution of the 

breakpoints by the variation of the coupling parameter α in the interval (1,2) 

with a step 0.1 and the dissipation parameter β in the interval (0.01,0.34) with 

the step 0.01 at each value of α. The breakpoints are inside the resonance 

region, i.e., the resonance between the Josephson and plasma oscillations is 

approached at the breakpoint current Ibp. As a result, the plasma mode is 

excited by the Josephson oscillations. We can prove this statement directly. By 

the Maxwell equation, div(E/d) = 4πρ, we express the charge ρl on the 

superconducting (S) layer l by the voltages Vl,l−1 and Vl,l+1 in the neighboring 
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insulating layers  The investigation of the time 

dependence of ρl demonstrates that with periodic BCs in the stacks with 10 

IJJs a LPW with k = π is realized. The wavelengths of the standing LPWs that 

can be realized in a stack with N junctions are N/n lattice units in the z 

direction, where n changes from 1 to N/2 for stacks with an even number of 

junctions and from 1 to (N − 1)/2 for odd N. The voltage of the stack at the 

breakpoint is related to the wave number k of the LPW by the formula 

 so the largest breakpoint voltage V in the 

current decreasing process corresponds to the creation of a LPW with k equal 

to π (π mode) for stacks with even numbers of IJJs and modes with k = (N − 1) π/N for stacks with odd N. 

 

6.3. IVC for stacks with different numbers of IJJs 
 The outermost branch corresponds to the state of the stack with all 

junctions in the rotating (R) state [18] and it is the upper branch in the IVC. 

The values of the breakpoint current Ibp and transition current Ij (the jumping 

point to the next branch in the IVC) on the outermost branch are shown by 

arrows in Fig. 9a. The distance between these two values we call as the width 

wbp of the BPR. We have found that the breakpoint current Ibp and BPR width 

wbp depend on the parameters α and β, the boundary conditions, and the 

number of junctions in the stack. Let us first describe the main features of the 

BPR which follow from the results of the simulation. As we can see in Fig. 9a, 

at γ = 0 both Ibp and Ij increase with N, but the increase of Ibp is monotonic. 

The IVC of the stacks with even N has larger wbp at small N. The width of the 

 

   
 
Figure 9. (a) IVC of the outermost branch for stacks with different numbers N of IJJs at 

γ = 0; (b) the same at periodic BCs. (From Ref.[16]) 
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BP region is decreased with N. There is a saturation of N-dependence of the Ibp 

at large N. The IVC with periodic boundary conditions (Fig. 9b) shows the 

same behavior for the Ibp and BPR width wbp for the stacks with odd N as in the 

nonperiodic case, but for the stacks with even N the value of Ibp does not 

depend on N and the BPR for these stacks is absent. In the stack with 10 IJJs a 

LPW with k = (N − 1)π/N is created and it leads to an increase of Ibp with N 

and its saturation to a value corresponding to the π mode. As Fig. 9 shows, 

with periodic BCs we observe the same value of Ibp in all the stacks with even 

N. This is in agreement with our suggestion that in this case a LPW with k = π  

is created. We check it directly as well, by the time dependence of ρl. We find 

that at periodic BCs in the stacks with even N the charge on the nearest 

neighbor layers has the same value and opposite sign which means that a LPW 

with k = π is realized. In the stacks with odd N the π-mode cannot exist, so the 

LPW with the largest k equal to (N − 1)π/N is created. The creation of different 

modes of the LPW leads to different Ibp, and this fact explains the difference in 

the IVC with periodic BCs of the stacks with even and odd numbers of IJJs. 

With increase in N the wave number k reaches the limiting value π and it leads 

to the increase in Ibp that we observe in Fig. 9(right). Finally, we note that in 

the case of coupling between junctions the parameter β cannot be determined 

in the usual way by the return current, because it depends now on two 

parameters β and α. The dependence of Ibp and the BPR width wbp on the 

dissipation and coupling parameters opens an opportunity to develop a new 

method for determination of these parameters for stacks of IJJs. 

 

6.4. The α and β dependence of the breakpoint current 
 A system of dynamical equations in the capacitively coupled Josephson 

junctions model with diffusion current (CCJJ+DC model)[12, 13] 
 

   
     (39)

 
 

for the gauge-invariant phase differences ϕl(t) between superconducting layers 

(S-layers) for the stacks with a different number of intrinsic junctions has been 

numerically solved. 

 The CCJJ+DC model is different from the CCJJ model[4, 18, 19] by the 

last term on the right hand side. This coupled Ohmic dissipation term might be 

derived by the microscopic theory[12] or phenomenologically by the inclusion 

of the diffusion current between S-layers and leads to the equidistant branch 
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structure in the IVC.[13] The details concerning the system (39) are presented 

in Ref.[13] Here we use the periodic boundary conditions considering the first 

S-layer as a neighbor of the last one. The simulated IVC have the breakpoint 

on their outermost branches. We have calculated the β-dependence of the BPC 

Ibp at fixed value of α, changing β in the interval (0,1) by step 0.005. The result 

of the calculation at α = 0, 1 and 5 is presented in Fig. 10a. 

 At α = 0, the IVC does not manifest the multibranch structure, and the 

breakpoint coincides with the return current. The curves at α ≠ 0 have new 

features in comparison with the case without coupling. Particularly, they show 

a stronger increase of the Ibp at small β, a plateau at Ibp   0.83 and the 

oscillation of the Ibp on this plateau, and a transition to the non-hysteretic 

regime (second plateau) at smaller β. These features are discussed below. We 

change the coupling parameter α in the interval (0,8) by step 0.1 and repeat the 

calculations of the β-dependence of Ibp. By this method, we build the three-

dimensional picture of the αβ-dependence of the Ibp for a stack with 10 IJJ, 

which is shown in Fig. 10b. We see two plateaus on this dependence and the 

oscillations of the Ibp on the first one as a function of α and β. We note the next 

features for the β-dependence : i) At α equal to zero, our results for β-

dependence of the Ibp coincide with the previous simulation of the β-

dependence of the return current[14]; ii) at small β, the β-dependence is getting 

sharper with the increase in α; iii) the oscillations of the Ibp are getting stronger 

at larger α; iiii) with the increase in α, the transition to the non-hysteretic 

regime (to the second plateau) is approached at smaller β. For the α-dependence 

 

   
 
Figure 10. (a) The β-dependence of the BPC Ibp of the outermost branch in the IVC at 

different values of coupling parameter α; b) The αβ-dependence of the Ibp for a stack of 

10 IJJ. (From Ref.[17]) 
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of the Ibp we may note: i) At small β, the _-dependence is monotonic, and Ibp is 

increasing with α; ii) at some β, the oscillations of Ibp appear, iii) with the 

increase in β, the transition to the non-hysteretic regime is observed at smaller α. The value of the Ibp changes strongly at small α and β. On the first plateau, 

the variation of the Ibp consists of  3 ÷ 4 percent of the value of Ic for N = 10. 

As we can see below, it depends on the number of junctions in the stack and 

decreases with N. 

 Let us analyze in more detail the α- and β-dependence of the Ibp. Fig. 10a 

demonstrates the general features of β-dependence of the Ibp at different values 

of the coupling parameter. To clearly show these features, we demonstrate in 

Fig. 11a in an increased scale the β-dependence of the Ibp at α = 3. We can see 

clearly four maximums of Ibp on this curve. Using the Maxwell equation 

div(E/d) = 4πρ, we express the charge ρi on the superconducting layer i by the 

voltages Vi,i−1 and Vi,i+1 in the neighbor insulating layers  

Solution of the system of equations (39) gives us the voltages Vi,i+1 in all 

junctions in the stack, and it allows us to investigate the time dependence of 

the charge on each S-layer. We analyze the time dependence of the charge 

oscillations on S-layers at β equal to 0.24, 0.27, 0.3 and 0.4 (around each maxima). 

 

 
 
Figure 11. a) The β-dependence of the Ibp for a stack with 10 IJJ at α = 3; b) The α- 

dependence of the Ibp at β = 0.3; c) The charge distribution among the layers 

corresponding to the different plasma modes in the stack of 10 IJJ at α = 3 and β = 

0.24, 0.27, 0.3, 0.4. (From Ref.[17]) 
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The charge distributions among the S-layers in the stack at a fixed time 

moment at the breakpoint of the outermost branch are presented in Fig. 11c. 

The charge oscillations on S-layers correspond to standing LPW with k equal 

to π, 4π/5, 3π/5 and 2π/5, relating to the four different intervals of the β      

with four maximums in this region. Fig. 11b shows the α-dependence of Ibp at  β = 0.3, and it demonstrates four regions corresponding to the different modes 

of LPW. 

 The ideas and results presented above have strong support from the results 

of investigation of the α- and β-dependence of the Ibp in the case of a different 

number of IJJ in the stack. The minimal wavelength λ which might be realized 

in the discrete lattice at periodic boundary conditions is two lattice units. So, in 

the stack with N junctions, the LPW with k = 2πn/N may exist, where n is an 

integer from 1 to N/2 for even N and from 1 to (N−1)/2 for odd N. Because of 

the term (1 − cos k) in (40), the LPW with k corresponding to the highest Ibp in 

the decreasing current process is created. In Ref.[16], we showed that, at small 

values of α and β at periodic boundary conditions for stacks with even N, the π-mode of LPW is created, but for stacks with odd N the LPW with k = (N − 1) π/N is observed. Here we consider a case of strong coupling between junctions, 

and the results are different from the previous consideration. 

 

6.5. Modeling of the α and β dependence of the BPC 
 To prove our results and test the idea that at the breakpoint a parametric 

resonance is approached and plasma mode is excited by Josephson oscillations, 

we have modeled the αβ-dependence of the Ibp in the CCJJ+DC model. The 

equation for the Fourier component of the difference of phase differences 

 between neighbor junctions is[15] = 

0, where τ = ωp(k)t, ωp(k) = ωpC, β(k) = βC, Ω(k) = Ω/C and  

This equation shows a resonance with changing its parameters β (k) and Ω(k). 

 In Fig. 12a, we have plotted the parametric resonance region for this 

equation on the diagram β(k) − Ω(k). Using this diagram, we determine the 

curve which corresponds to the edge of the resonance region. This curve is 

shown in Fig. 12a by dots. We consider that the point on this curve 

corresponding to maxΩ(k) at a fixed value of β(k) gives us the value of the Ωbp(k) which corresponds to the breakpoint voltage. Taking into account the 

relations for the outermost branch  and Vbp/N 

= Ibp/β, we get 

 

        (40) 
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Figure 12: a) Parametric resonance region in Ω(k)−β(k) diagram. The value Ω(k) = Ωbp(k) corresponds to the breakpoint voltage on the outermost branch; b) Result of 

modeling of the αβ-dependence of the Ibp for plasma modes with k = π and k = 2π/5 for 

a stack of 10 IJJ; c) The modeled α-dependence of Ibp for stack with 10 IJJ at β = 0.3 

corresponding to the creation of the LPW with different k; d) The modeled β-

dependence of Ibp at α = 3. From Ref.[17] 

 

 As an example, using the expression (40) for Ibp, we have plotted in 

Fig.12b the threedimensional αβ-dependence of the Ibp for two plasma modes 

with k = π and k = 2π/5 for a stack with 10 IJJ. Using the formulas (40), we 

have calculated the α-dependence of the Ibp at β = 0.3 for plasma modes with 

different wave numbers k. The corresponding curves are presented in Fig. 12c. 

We will see that these results of modeling coincide qualitatively with the 

results of simulation presented Fig.10 and Fig.11. Both kinds of curves show 

the same behavior. We can see the increase in the distance between the 

maximums of Ibp and their sloping with increase in k in simulated and modeled 
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curves. Fig. 12d shows the modeled β-dependence of Ibp at α = 3. This 

dependence is in agreement with the results of simulation as well, and it 

demonstrates the oscillations of the Ibp, but it does not reflect the decrease in 

the values of Ibp maximums, which is shown in Fig. 11a. This is a result of the 

approximations we have used to obtain the linearized equation for the Fourier 

component of the difference of phase differences for neighbor junctions.[15] 

The theoretical considerations which we use to model the αβ- dependence of 

the Ibp, lead to the conclusion that there are regions on the αβ-dependence of 

Ibp which correspond to the creation of the LPW with a different wave number 

k and explain the origin of the Ibp oscillations. 

 

6.6. Group behavior. The k − αβ method 
 Fig. 13 shows the result of simulation of the outermost branch in the IVC 

near the breakpoint for a stack with α = 3, β = 0.3 and N from N = 3 to N = 15. 

 We can see that the value of Ibp depends on the number N of IJJ in the 

stack, excluding the stack with N = 3n, where n is an integer number. Time 

dependence analysis of the charge oscillations on the S-layers shows that, at 

the breakpoint in the stacks with N = 3n, the LPW with k = 2π/3 is created. In 

the stack with N = 4, we observe the LPW with λ = 4. We will not touch the 

question concerning the breakpoint region in the IVC presented in Fig. 13. It 

will be considered in detail somewhere else. We may note another interesting 

group behavior of the IVC, presented in Fig. 13. There is a monotonic increase 

of the Ibp with N for stacks with N = 3n + 1, n ≥ 1. The same monotonic behavior 

 

 
 
Figure 13. The simulated IVC of the outermost branch in the stacks with a different 

number of junctions at α = 3, β = 0.3. (From Ref.[17]) 
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was observed for stacks with N = 3n + 2. Below, we explain these results using 

the idea of LPW creation at the breakpoint. Comparison of the α- or β-

dependence of the Ibp for stacks with a different number of IJJ give us a simple 

method to determine the wave numbers k of the LPW. 

 Fig. 14a shows the β-dependence of the Ibp at α = 3 for the stacks with 

3,6,9 and 12 IJJ. It demonstrates that, in some intervals of β, the stacks with 

different N have the equal value of the Ibp. Particularly, all stacks have the 

equal values of the Ibp in some interval around β = 0.3. According to the results 

of modeling for the stack with given N, the intervals on the curves of the α- 

and β-dependence corresponding to the different modes of the LPW, follow in 

decreasing order in k. Because the interval around β = 0.3 corresponds to the 

regions around the maximum on the β-dependence of the Ibp for stack with N = 

3, the second maximum for the stacks with N = 6 and N = 9, and the third 

maximum for the stack with N = 12, we may conclude that in this interval the 

LPW with k = 2π/3 is created. For stacks with N = 6 this interval is continued 

until β = 0.365. Using this method of the wave number determination, which 

we call as k − αβ-method, we can determine all modes of LPW which might 

be created in stacks with different parameters α and β and a different number 

of IJJ. Particularly, we find that on the β-dependence the interval (0, 0.27)   

and the region β > 0.41 correspond to the creation of the π- and π/3- modes    

of LPW, respectively. From the α-dependence of the Ibp which is presented in 

 

 
 
Figure 14. a) The simulated β-dependence of the Ibp for the stacks with 3, 6, 9 and 12 

IJJ at α = 3. The region corresponding to the creation of the LPW mode with wave 

number k = 5π/6 is shown by arrows. b) The simulated α-dependence of the Ibp for the 

stacks with 5, 10 and 15 IJJ at β = 0.3. (From Ref.[17]) 



Yu.M. Shukrinov & F. Mahfouzi  132 

Fig. 14b for stacks with 5, 10 and 15 IJJ, we find that the interval around the 

maximum with 2.35 and the region α > 4.82 correspond to the creation of the 

4π/5- and π/5- modes of LPW, respectively. Using the k − αβ-method, we find 

the values of k for IVC presented in Fig. 13. In the stacks with N = 3n (dash-

dotted curves in Fig. 13), the LPW with the same wave number k = 2π/3 are 

created. For the stacks with N = 3n + 1 (solid curves), we obtain k = 2(N − 

1)π/3N. This value limits to 2π/3 with an increase in N from the side of smaller 

values of k. In the stacks with N = 3n+2 (dash curves), we get k = 2(N 

+1)π/3N, which limits to 2π/3 from the side of bigger values of k. So, the idea 

of the LPW creation at the breakpoint explains the group behavior of IVC in 

Fig. 13. The value of Ibp depends on k, but does not depend on N at chosen 

parameters α and β; i.e., the creation of the same mode in the stacks with 

different N leads to the same value of Ibp. We may predict a different 

commensurability manifestation in the IVC of stacks with a different number 

of IJJ. This is a generalization of the commensurability effect we have 

observed in Ref.[16] at small α and β.  

 Let us now discuss this group behavior of the outermost branches in IVC 

of the stacks with a different number of IJJ in the layered superconductors with α = 3 and β = 0.35.[21] Fig. 15 shows the result of simulation of the outermost 

branch in the IVC near the breakpoint for a stack with N from N = 3 to N = 30. 

We can see that the value of Ibp depends on the number N of IJJ in the stack, 

excluding the stack with N = 4n, where n is an integer number. The k − αβ-

method and time dependence analysis of the charge oscillations on the S-layers 

show that, at the breakpoint in the stacks with N = 4n, the LPW with k = π/2 is 

created. There is a different monotonic increase of the Ibp with N for stacks 

with N = 4n+1, N = 4n+2 and N = 4n+3, n ≥ 1, which demonstrate a group 

behavior of the IVC, presented in Fig. 15. These results find the explanation in 

the framework of the idea of LPW creation at the breakpoint.  

 In agreement with time dependence analysis we find that in the stacks with 

N = 4n, the LPW with the wave number k = π/2 are created and all outermost 

branches in Fig. 15a have the same value of BPC. For the stacks with N = 

4n+1, which outermost branches of IVC are shown in Fig. 15b, we obtain k = 

(N − 1)π/2N. This value limits to k = π/2 with an increase in N from the side of 

smaller values of k. In the stacks with N = 4n + 2, which IVCs are shown in 

Fig. 15c, we get k = (N +2)π/2N, which limits to k = π/2 from the side of 

bigger values of k. And finally, for the stacks with N = 4n + 3 (see Fig. 15d), 

we obtain k = (N + 1)π/2N, which limits to k = π/2 from the side of bigger 

values of k as well. So, all outermost branches of IVC in the stack with α = 3 

and β = 0.35 are distributed in four groups and the idea of the LPW creation at 

the breakpoint explains this group behavior of IVC in Fig. 15. 
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Figure 15. The simulated IVC of the outermost branch at α = 3, β = 0.35 in the stacks 

with a different number of junctions: (a) N=4n; (b) N=4n+1; (c) N= 4n+2; (d) 4n+3, 

where n is integer number. (From Ref.[21]) 

 

6.7. Breakpoint on the other branches. One oscillating 

junction 
 Let us now discuss briefly the breakpoints on the other branches of the 

IVC. As we mentioned above, the resistive state in the system of IJJs is 

realized as a state with different numbers of R and O junctions.[18, 19] The 

different positions of R and O junctions in the stack (different configurations) 

correspond to different states of the IJJs system. Equidistant positions of the O 

junction from the ends of the stack (for example, stacks with first or tenth O 

junction) lead to the same state. So there are five different states in the stack 

with one O junction corresponding to the different position of this junction. 

Figure 16 shows the BPR on the branches of the IVC of stacks with one O 

junction in the case of ten IJJs at α = 1, β = 0.2, and γ = 0. Equidistant 

positions of the O junction from the ends of the stack lead to the same value of  
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Figure 16. BPR on the branches of the IVC of stacks with one oscillating junction in 

the case of ten IJJs at α = 1, β = 0.2, and γ = 0. The top curve corresponds to the real 

scale of voltage, but the others are shifted down for clarity by two units. (From 

Ref.[17]) 

 

Ibp and the same width of the BPR. The shift of the O junction from the end of 

the stack to its center decreases the Ibp of the corresponding state. We can 

establish a delay of LPW creation in the current-decreasing process when the 

position of the O junction is shifted to the center of the stack. 

 We consider that the origin of such behavior is as follows. This one 

oscillating junction separates the stack into two parts with different numbers of 

R junctions which are weakly coupled through the O junction. With a decrease 

in current, the first LPW is created in the part with the largest Ibp (with the 

largest number of junctions). The shift of the O junction and the decrease in 

the number of R junctions in this part lead to a decrease of Ibp as Fig. 10 

demonstrates. The increase of the number of junctions in the second part might 

manifest a second breakpoint which is related to the creation of a LPW in this 

second part of the stack. This situation is observed for N = 10 when the O 

junction occupies the fifth or sixth site in the stack. The width of the BPR in 

the other branches of the IVC depends essentially on the state of the stack. For 

the other branches, the increase in the number of O junctions in the stack 

decreases the number of effective junctions for creation of the LPW and leads 

to a decrease of the return current. This fact explains why we can obtain a total 

branch structure in the hysteresis region, because in the other case we would 

not be able to observe it in the simulation. The correspondence between the 

position of the O junction in the stack and the value of Ibp opens the possibility 
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for junction diagnostics, i.e., by measuring the value of Ibp we can answer the 

question of which junction in the stack goes into the R or O state. From the 

other side, the monitoring of the transitions between branches is useful for 

understanding the phase dynamics in a system of IJJs. 

 

7. Conclusion 
 In this review we presented the results of the numerical calculations of the 

current-voltage characteristics of intrinsic Josephson junctions to clarify their 

dependence on the coupling constant and dissipation parameter β (β2 = 1/βc, 

where βc is McCumber parameter). We showed that coupling between 

junctions changes crucially the dependence of the return current on a 

dissipation parameter. Particularly, it leads to the appearance of the plateau on 

the β-dependence of the BPC on the outermost branch and the oscillation of 

the BPC as a function of β. Using the idea that at the breakpoint the parametric 

resonance is approached and a longitudinal plasma wave is created, we 

modeled the α- and β-dependence of the BPC and obtained good agreement 

with the results of the numerical simulation. We demonstrated that the study of 

the α- and β-dependence of the BPC for the stacks with a different number of 

IJJ gives us the instrument to determine the wave number of the LPW. 
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