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Abstract

Some granular disordered superconductors, namely diamond-like carbon–
silicon films containing tungsten, show one or more small, clearly detectable
peaks in resistivity curves at lower temperatures than that of the superconducting
main transition, Tc. Based on the concept of cluster superconductivity and on
the percolation theory, we carried out extensive numerical simulations that relate
the appearance of the peak-type re-entrant superconductivity to the absence of
superconducting percolative paths crossing the entire sample. The numerical
determination of such paths allowed us to compute the maximum supercurrent
density jc to flow through the sample in the temperature region below Tc.

1. Introduction

Re-entrant and quasi-re-entrant superconductivity phenomena have drawn much interest from
a theoretical and applicative point of view.

For the former, the interest shown for these phenomena is due to their fundamental
importance in highlighting new aspects of the quantic nature of electrons in solids. In
fact, the study of these effects enabled the discovery of several antagonistic mechanisms to
superconductivity: magnetic ordering, clustering (decreasing the volume and total energy of
the superconducting phase by charge carrier localization), electrostatic energy increase and
decrease of the superconducting coupling of the system.

For the latter, the study of re-entrant phenomena provides additional important information
on Josephson junction array (JJA) properties. A re-entrant superconductivity transition has
been observed, for the first time, in magnetic superconductors of the type HoMo6S8 and
ErRh4B4 [1], in which re-entrance came from the concurrence of magnetic ordering and
superconductivity. This observation of a new effect in magnetic superconductors has offered
the possibility of studying the various experimental situations that can occur, i.e. coexistence
between the two phenomena or destruction of the superconducting phase. The extremely
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different re-entrant transitions of the superconductor–dielectric type have been observed and
studied in granular metallic systems (Al, Ga, In, Bi, etc) at temperatures T < Tc, demonstrating
electron localization on single grains [2, 3].

Usually non-homogeneous materials are modelled as systems consisting of metal grains
embedded in an insulating matrix [4–6]. In this case the superconductivity may be considered
homogeneous when ζ < ξ , where ξ is the effective superconducting coherence length of
the medium and ζ is the correlation length characterizing the proximity of the system to the
percolation threshold; for ζ > ξ the superconductivity is essentially inhomogeneous. If ξ

is greater than the metal grain size, then the superconducting phase may be expected to be
characterized by strong spatial fluctuations of the local critical temperature determined by
the value of the correlation length ζ for the infinite conducting cluster; the superconducting
phase can then be modelled as consisting of superconducting grains having different critical
temperatures. When temperature decreases, the total volume of the superconducting phase
increases; when it reaches the percolation threshold an infinite cluster is formed and a
superconducting transition occurs.

Despite experimental evidence [2, 3, 7–13], there is still some dispute whether granular
superconductors can show the re-entrance phenomenon.

The first theoretical analysis of re-entrant phenomena in granular superconductors has
been executed by Abeles, Šimanek and Efetov [14–16]. They reproduced the experimental
situations taking into account the self-capacitances of the grains, but subsequent improvements
gave different results; accordingly, they took into account the interplay of self-capacitances,
inter-granular capacitances and the presence of charge excess on grains [17].

Let us underline that the theoretical analysis of the superconducting–dielectric transition
at temperatures T < Tc has been presented only for a periodic system, in which the metallic
grains are placed at the vertices of a crystal lattice. According to the theoretical analysis, at
low temperatures these systems are governed by the competition between two energies EC and
EJ . For a couple of grains i, j, EC is the energy of the Coulombian blockage

E
i,j

C =
1

2

QiQj

Cij

(1)

(Qi , Qj represent the charge excesses for grains i and j , respectively, both when self-
capacitances (i = j ) or inter-granular capacitances (i �= j ) are considered) and EJ is the
characteristic energy of Josephson coupling for nearest-neighbouring grains (i = j ± 1)
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with �(T ) = �(0)(1 − T/Tc)
1
2 giving the superconducting gap �(T ) at temperatures

T < Tc, where �(0) is the gap at T = 0 K, e the charge of a single electron, h̄ the Planck
constant, kB the Boltzmann constant and R

i,j

N the resistance for a single electron tunnelling
between neighbouring grains [31]. The phase diagram showing the transition confinement
from superconducting to dielectric state in disordered JJA has been mapped in the plane
kBTc/zĒJ − EC/zĒJ (for z nearest-neighbouring grains) [15–17]. The analysis developed in
these works is able to describe the main features of the superconducting–dielectric transitions
observed in granular metal systems like Al, In, Ga, Bi, etc. This analysis predicts that granular
metals remain in the dielectric state at low temperatures T → 0 K. In recent years much
experimental and theoretical interest has been manifested for two-dimensional periodical
networks artificially fabricated by planar technology (see [18, 19] and references therein).
These are ordered systems and may be better described by the theoretical analysis developed
in [15–17] for a periodic JJA.
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During the last decade a new class of granular superconductors has been found consisting
of grains of transition metals (W, Mo, Nb, Cr) immersed in a diamond-like carbon–silicon
dielectric matrix [20–22]. The system C–Si–W has been studied in detail, and it has shown a
new quasi-re-entrant phenomenon that manifests as small peaks of resistance �(R) ∼ 10−3Rn

(Rn being the normal resistance immediately over Tc) extending for �(T ) ∼ 0.1 K
In the C–Si–W system one or two peaks have been observed in the temperature range

1 K < T < Tc; for T < 1 K the system remains in the superconducting state at least down
to 16 mK [22, 23]. The C–Si–W system manifests a quasi-re-entrant phenomenon, since
besides the main superconducting transition—sometimes incomplete— a non-zero resistance
also appears in the temperature regions bounded by the main superconducting transition and
the peaks themselves [22–25]. This quasi-re-entrant phenomenon is indicated as the ‘peak-
type’ one. Experimental study demonstrates that quasi-re-entrant peaks are not observed in
magnetic susceptibility (χ ) measurements carried out using a resolution �(χ)/χ ∼ 10−3 [26].
The superconducting main transition in susceptibility χ(T ) is shifted by ∼1.5 K towards
zero with respect to the main transition in resistance R(T ) (figures 2 and 3 in [26]) and a
strong non-ohmic behaviour is observed in the proximity of the peaks [24, 25]. The critical
magnetic field for quasi-re-entrant peaks is always less than that of the main superconducting
transition. In a recent paper [26] we proposed and analysed the possible mechanisms of the
re-entrant ‘peaks-type’ transitions. These mechanisms are based on the Coulombian blockage
(superconductor–insulator transition) and on the Josephson coupling unblockage (insulator–
superconductor transition). The proposed mechanisms have been successfully used for the
numerical simulation of the re-entrant ‘peaks’ position on the temperature scale for one and
two peaks cases. The present paper is devoted to the experimental measurements of the critical
current for macroscopic samples and to the numerical simulation of the critical current in a
single current path and for all superconducting paths in the bulk superconductor. ‘Peak-like’
re-entrant phenomena properties are summarized in [26]. It is important to pay attention to the
fact that in our samples the resistance of the peak is very small (amounting to units of µ� cm).
In other words the blockage of the superconducting current regards only a relatively small
number of grains among the ones forming the infinite superconducting cluster. This means
that the re-entrant phenomenon has a local mesoscopic character and cannot be analysed as
a transition involving the whole system. In contrast with other systems, in our samples the
network of superconducting grains is disordered, with the grain radii and distances randomly
distributed around some mean values. That is the reason why a numerical simulation is more
appropriate than a theoretical analysis to investigate the sample behaviour. According to
our intentions, the numerical simulation should reproduce all the experimental characteristics
shown by our samples: the peaks’ existence, their behaviour in a magnetic field, the strong
non-ohmic characteristics. At the moment, the numerical simulation has been able to prove
the existence of one or two peaks and allowed the calculation of the superconducting critical
current jc. The former result has been illustrated in a previous work of ours [26], the latter is
the object of this paper.

2. Experimental

Films of the C–Si–W system with thickness about 0.5 µm were grown on polycrystalline
dielectric substrates (thickness about 250 µm) using plasma decomposition of organosiloxane
vapours in a dc diode reactor. Tungsten, whose concentration x could reach about 40%, was
introduced into the growing film using magnetron sputtering. Details on the growth process
can be found in [20–22]. All specimens consisted of films 2 mm long, 2 mm wide and 0.5 µm
thick (giving a section of 10−5 cm2 ), with tungsten concentration varying from 5–10 to 40
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at.%; contacts to the films were prepared using silver paint. In order to improve their adhesion
and stability to the thermocycling in a wide temperature range, the films with prepared contacts
were heated up to 200–250 ◦C over a period 10–15 min. Such a treatment does not lead to
any change in the structural and electrophysical properties of the investigated films [20, 22].
The electroconductivity measurements were performed by the application of the usual four-
terminal technique both in dc and ac lock-in regimes [22]; the susceptibility measurements
were carried out using an astatic coil magnetometer in a magnetic field perpendicular to the
films. Low-angle electron and x-ray diffractions confirmed the amorphous structure of the
films for all tested compositions. The analysis of the emission spectrum of a W-edge coated
with a diamond-like film proved the absence of ordering in the structure. At low concentration,
silicon and transition metals enter the α-C–Si matrix in their free elemental form. The metal
presence in the films consists of uniformly dispersed small-particles clusters. Using transition
metals one has to deal with a complex system made up of polymer, metal, metal carbide, metal
silicide and even metal oxide when no diffusion barrier is deposited on the film surface to
prevent post-deposition oxidation. The electrical and superconducting properties of such a
composite system, with different concentrations of tungsten, are determined by percolation
among metallic clusters in a uniform dielectric polymer matrix and have been studied in
detail in [20,22]. In principle, the superconducting phase in the aforementioned films may be
constituted by any type of conductor, in particular:

(i) Experiments on amorphous thin W films [27] have shown the bulk Tc (12 mK [28]) can
be increased by two orders of magnitude up to 2 or 3 K. It has been suggested [28] that
this enhancement may be due to the presence of tungsten oxide having Tc close to 3 K.
Another explanation of the enhanced superconductivity in amorphous W thin films might
be derived from Ginzburg’s surface-state superconductivity [29];

(ii) The tungsten–carbon compounds W2C and WxC1−x for 0.45<x<0.5 are superconductors
showing a Tc in the range 2–10 K [30];

(iii) The tungsten–silicon compound W0.6Si0.4 is also a superconductor with a Tc = 2.8 K [27].
The superconducting incursions are most likely of the (ii) type since carbides have been
detected that lead to critical temperatures of the main transitions as high as 3.9 K for certain
W concentrations. At low W concentrations the samples show either one re-entrant peak
or no peak at all. The samples with concentrations in the range 25–40 at.% manifest two
re-entrant peaks; they have a room temperature resistivity in the range 105–103 µ� cm.

3. Results of the critical current measurements

We carried out a series of measurements of the critical current Ic versus temperature in samples
C–Si–W showing one or two re-entrant peaks (figures 1 and 2); in addition we measured and
analysed the re-entrant peak resistance and the critical current versus temperature (figure 3)
and the current–voltage characteristic (CVC) (figure 4) for the sample showing one peak. The
behaviour of re-entrant resistance R versus temperature is shown in figures 1 and 2 (see [22])
for two typical samples with one and two peaks. The characteristic temperatures of these two
sample are:

• The main superconducting transition temperature: Tc = 3.49 K;
• The Coulombian blockage temperature (temperature at peak’s beginning): Tb ≃ 2.25 K;
• The temperature of the unblockage due to Josephson coupling: Tub ≃ 2.15 K; for the

sample showing one peak;
• The main superconducting transition temperature: Tc = 3.43 K;
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Figure 1. Main superconducting transition and typical re-entrant peak (inset) in one-peaked
samples (sample no 1).

• The first Coulombian blockage temperature (temperature at first peak’s beginning):
Tb1 ≃ 2.03 K;

• The first Josephson unblockage temperature: Tub1 ≃ 1.95 K;
• The second Coulombian blockage temperature (temperature at second peak’s beginning):

Tb2 ≃ 1.71 K;
• The second Josephson unblockage temperature: Tub2 ≃ 1.66 K; for the sample showing

two re-entrant peaks.

In some preceding papers of ours [22–26], devoted to the study of peak-like re-entrant
transitions, we established:

(1) Re-entrant peaks show up as a single or two narrow ones (≃0.1 K wide) and in all samples
peaks are observed at T > 1 K;

(2) Peaks are associated with the quasi-re-entrant superconducting phenomenon, i.e. the main
superconducting transition is often incomplete, a non-zero resistance appearing in the
temperature regions bounded by the main transition and the peaks themselves;

(3) The height of each peak is much smaller than the height of the main transition, being of
the order of 10−3 Rn (some thousands of µ� cm).

Note that the re-entrant peak (figures 1 and 2) is asymmetrical: the side corresponding to
the Coulombian blockage (the one at higher temperature) is steeper than the one corresponding
to unblockage due to Josephson coupling. This difference highlights that the blocking and
unblocking mechanisms are intrinsically different and so is their dependence on temperature.
Measurements of CVC show hysteresis phenomena. With increasing current a sudden
appearance (jump) of a voltage takes place at a certain current value Ic1 , with decreasing
current the voltage disappears at a lower current value than Ic2 and such that Ic1 − Ic2 ≃ (0.2–
0.5) mA (see the CVC with hysteresis measured in sample no 1 at T = 3.26 K, figure 4). The
CVC under and near tension jumps is presented in figure 5 on a wider scale. The upgoing
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Figure 2. Main superconducting transition and typical re-entrant peaks in two-peaked samples
(sample no 2).

Figure 3. Re-entrant peak resistance (◦) and critical current (•) versus temperature (sample no 1).

critical current dependence below and over the re-entrance peak is shown in figure 3 in which it
can be seen that the critical current rapidly decreases near the re-entrance peak. CVC showing
upward–downward inversion for T ≃ 2.41 K is shown in figures 6 and 7 on a larger and a
smaller scale, respectively. It is possible to see that, before jumping, CVC begins to increase
very rapidly (figures 5 and 7). The amplitude of the jump for upgoing temperature is 70–
200 mV; over the jump the tension continues linearly increasing (the CVC corresponds to a
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Figure 4. CVC in sample no 1 atT1 = 3.26 K (◦) andT2 = 3.27 K (•). For currents I1 = 1.50 mA
and I2 = 1.53 mA jumps and hysteresis of CVC are observed.

Figure 5. Same as figure 4 on a smaller scale. A sudden increase of tension and jumps are observed
for a current value ∼1.5 mA.

CVC for ohmic conductance). In addition to hysteresis phenomena manifesting as voltage
jumps in the CVC, measurements show the irreproducibility of the CVC and Ic(T ) curves in
their small details: irreproducibility arises as a difference in values measured with upgoing
or downgoing temperature, although showing a smaller order of amplitude with respect to the
jumps in CVC.
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Figure 6. CVC showing hysteresis at T ≃ 2.41 K.

Figure 7. Part of CVC for sample no 1 near tension jumps for increasing and decreasing current
at T ≃ 2.41 K.

4. Results. Numerical simulation for critical supercurrent

As the basis of the numerical simulations aimed to determine the critical supercurrent, we have
generated several numerical samples representing a set of spherical, non-overlapping grains,
with randomly distributed positions such that their radii and distances obeyed two Gaussian
random distributions. Two main, different sets have been used to simulate samples with one or
two distinct grain species. For the samples with one grain species we generated two random
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Figure 8. Two neighbouring superconducting grains in the dielectric matrix separated by the
distance Si,j (Josephson junction in a granular superconductor).

Gaussian distributions for radii and intergranular distances characterized by mean values R̄

and σ̄ such that R̄ = 220 Å, δ̄ = 10 Å with spread 3σR = 110 Å and 3σδ = 5 Å, respectively;
whereas for the samples with two grain species we generated two random Gaussian distributions
for radii and one for the intergranular distances characterized by mean values R̄1, R̄2 and σ̄

such that R̄1 = 220 Å, R̄2 = 248 Å, δ̄ = 10 Å with spread 3σR1 = 110, 3σR2 = 124
and 3σδ = 5 Å, respectively. Once a simulation sample is generated, the critical current Ic
is calculated by means of an algorithm searching for the maximum superconducting current
that can flow through the macroscopical superconducting paths. Let us analyse the single
Josephson junction for one pair of neighbouring grains with radii Ri and Rj , separated by a
distance Sij (figure 8). Since grains are spherical, it results that the dielectrical barrier between
them is not constant. To describe such a barrier in a Josephson junction, Abeles [14] proposed
to approximate it by a plane capacitor of section

σ = πα(R
i,j

min)
2 (3)

with R
i,j

min = min{Ri, Rj } and the geometrical factor α ≃ 0.3–0.6. This approximation is
reasonable enough, since the maximal contribution to the tunnelling current given by Cooper
pairs comes from the centre of the junction, where the barrier thickness is minimal. In this
case the value Sij represents the average thickness of the barrier (figure 8).

The critical supercurrent I i,j
c for a pair of grains i, j can be expressed by the following

formula [31]

I i,j
c =

π

2eRi,j

N

�(T ) tanh
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�(T )

2kBT

)

=
2e

h̄
E

i,j

J (4)

(see formula (2)). The physical meaning of formula (4) may be explained using an equivalent
expression

I i,j
c =

2eσnsh̄

mδ
e−Sij /δ (5)

wherem is the mass of a single electron, ns is the density of Cooper pairs in the superconducting
grains and δ is the characteristic constant of the barrier between two grains defining its height
U0:

δ =
h̄

√
2mU0

. (6)

It is known that both U0 and σ are determined by the dielectric matrix in which the
superconducting grains are immersed.
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Typical values of I
ij
c vary in the range 1–100 µA [32]. Since ab initio computations

for δ can determine only its magnitude order, the critical current computations, containing
a factor e−Sij/δ , can only be determined with some approximation. However this factor
contains the same value of the parameter δ for all junctions. It is known that in granular
superconductors, near the Anderson transition, the determination of the actual value for δ is
possible from a comparison of experimental values of the critical current with the results of
numerical calculations; as a matter of fact the variation of δ in the tunnelling factor Sij/δ, due
to different grain dimensions, is given by [40]

Tc

Tc0

= 1 − 0.48
̺

̺m

kBTc0

ǫF
(7)

where Tc0 represent the critical temperature of the bulk as a whole, ̺ and ̺m represent Mott’s
resitivity and its maximal value, respectively, ǫF is the Fermi energy. Since it results

�δ

δ
=

�Tc

Tco

≃
kBTco

ǫF
≪ 1 (8)

the same value δ can be taken for all grains.
The problem is then the calculation of the critical supercurrent Ic flowing through the

whole simulated system. We define the critical current for a path as the smallest I i,j
c value for

the grains pairs (i, j) forming it. Our definition for the critical current is justified by the fact
we are interested in avoiding local transition into the dielectric state. Were all superconducting
paths disjoint, the total critical current would simply be given by the sum of the critical currents
through single paths. In general, though, paths intersect and share edges and/or nodes and the
critical current flowing through the entire sample must be determined by maximizing the current
passing through, while maintaining the superconducting state. This is physically reasonable,
because the system tries to maintain the superconducting state as long as possible, for it is more
convenient from an energetic point of view. The idea is, when crossed by a certain current, the
system looks for all the possible paths to keep the global superconducting phase. The transition
into the dielectric state starts locally only when all superconducting paths are saturated.

Thus, once the network connecting one electrode to the other is determined, the
mathematical problem to be solved consists of the constrained maximization of the current
that can be injected into one electrode and drained from the other one. The maximum critical
current that can flow through the granular superconductor C–Si–W has been evaluated by
means of computer simulations based on a model we developed to relate the re-entrance peaks
to the absence of superconducting percolation paths joining the electrodes of our simulation
samples [26].

The simulated samples have been generated as sets of non-overlapping spherical grains
whose radii and relative distances obeyed Gaussian distributions. Lx, Ly, Lz being the
dimensions of a sample, a number of grains proportional to the area LyLz, located in proximity
of the plane x = 0 and an equal number of grains near the plane x = Lx were considered to form
the electrodes. A granular system, as a whole, is a superconductor at a given temperature if it
is possible to transport Cooper pairs from one electrode to the other: this implies the existence
of at least a percolation path over superconducting grains crossing the entire granular system.
When paths are disjoint, the maximum critical current crossing the system consists of the
sum of the maximum allowed critical current flowing through each single path; obviously the
maximum supercurrent allowed to flow through a path corresponds to the minimum critical
intergranular current I i,j

c on that path. In general, however, paths are not disjoint and the current
flows through a complex network; the problem then must be solved by the determination of
the maximum supercurrent injected by one electrode and drained from the other one such that
each intergranular current I i,j

c is not exceeded. The first task performed by our simulations has
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been the determination of the superconducting percolation paths—if any—running through
the sample (connecting the electrodes) at a given temperature T ; building a graph out of the
sample has been accomplished by means of the association of a node to each grain and an edge
to each pair of connected neighbouring grains, the connection condition for two neighbouring
grains i, j being fulfilled if one of the conditions

kBT � Ei,j
c (9)

kBT < Ei,j
c and zE

i,j

J > Ei,j
c + kBT (10)

holds.
In addition to obtaining detailed information on the paths, the process also allows us to

build a network assigning each arc (i, j ) a capacity equal to the critical current I
i,j
c defined

in equation (3). Then the determination of the maximum supercurrent through the system
can be obtained solving a maximum net flow problem: given a network G = (N , A) with
non-negative capacities ui,j associated to each arc (i, j) ∈ A, with s, t ∈ N the source and
terminal (drain) node, respectively, then a flow v is determined such that:

max v

∑

{j :(i,j)∈A}
xi,j −

∑

{j :(i,j)∈A}
xj,i =

{

0 if i ∈ N − {s, t}
−v if i = t

0 � xi,j � ui,j .

(11)

The correspondence between our granular system and the network has been built
associating each grain to a node in N , each pair of connected grains to an arc (i, j) ∈ A,
defining ui,j = I

i,j
c and introducing s and t as two fictitious nodes linked to all nodes belonging

to the injection and drain electrode, respectively, by arcs of infinite capacity. The maximum
critical current flow has then been obtained by the well known Ford–Fulkerson method [33]
flanked by an ‘ad hoc’ network reduction method developed to transform the network into a
simpler, equivalent one. Results of the simulation for the critical current Ic versus temperature
for the sample no 1 are shown in figure 9 (the scale for the current density was determined by
comparison with experimental data for Jc). The simulation shows that the temperature range
2.0–2.2 K corresponds to the critical current Ic = 0. This range defines the position of the
re-entrance peak on the temperature scale with rather good precision. The critical supercurrent
Ic(T ), over and below the re-entrance peak, may be approximated by the function I

i,j
c (see

formula (4)). The simulation results for the critical current in sample no 2 having two re-
entrance peaks are shown in figure 10. To perform such a simulation, we generated a sample
made up of two types of superconducting grains whose radii were Gaussianly distributed
around two different mean values R̄1 and R̄2. The single contributions of lower and higher
critical temperatured grains are shown in figure 10(a) by solid and crossed curves; their total
contribution is shown in figure 10(b). Note that in the temperature region below the second
peak (the one at lower temperature) the conductive phase volume is larger and grows faster
with decreasing temperature than the same volume both in the region between the two peaks
and between the first peak and the main superconducting transition.

5. Discussion

First of all, let us pay attention to the good agreement, both qualitative and quantitative,
between the experimental data and the results from the numerical simulation for the critical
supercurrent. These results, together with the good agreement between the numerical
study of the superconducting percolation paths and the positions of re-entrance peaks [26],
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Figure 9. Numerical simulation results of the critical current versus temperature for sample no 1
(one re-entrance peak). The region around T ∼ 2 K in which Ic = 0 corresponds to the re-entrance
peak. Experimental data are also reported (+) for comparison.

Figure 10. Numerical simulation results of the critical current versus temperature for sample no 2
(two re-entrance peaks). (a) Contributions from paths entirely formed from either first (solid line)
or second type grains (crosses); (b) total grains network contribution to supercurrent. The intervals
around T ∼ 2 and 1.5 K in which Ic = 0 correspond to the first and the second re-entrance peaks.
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led to the conclusion that the mechanisms proposed to explain the peaked re-entrant
superconductivity phenomenon in C–Si–W adequately describe the actual situation in these
granular superconductors. Note the difference between the simulation to determine the
percolation paths through the macroscopical sample [26] and the simulation to determine
the critical supercurrent. In fact, the simulation for the percolation paths regards the
situation in which an infinitesimal supercurrent flows through the sample because the infinite
cluster forms a superconducting shunt between the electrodes. The increase of the current
leads to an immediate break of weak links of the cluster. In other words, the approach
used in the simulation for the critical supercurrent has been the determination of the
superconducting cluster using the maximum, finite value of the supercurrent for which the
film is a superconductor; this implies the evaluation of the critical supercurrent through
each Josephson junction of the sample. The determination of the critical supercurrent in
the sample constitutes a richer characterization of the superconducting cluster in Si–C–W than
the determination of the superconducting paths for an infinitesimal supercurrent. The results
of critical supercurrent measurements and CVC for C–Si–W films at different temperatures are
shown in figures 3–7 demonstrating a strong dependence on temperature (a strong dependence
on the proximity of the peak). To analyse the experimental data we suppose that the C–Si–
W films are disordered JJA made up of a great number of Josephson contacts between close
grains. The CVC of a set of junctions [34] can be reduced to the CVC of a single Josephson
junction in such a way that it is equivalent to JJA of the C–Si–W film. From Josephson effect
theory [34–38] it is known that its description is usually provided by the RCSJ (resistively and
capacitively shunted junction) model in which a physical Josephson junction is represented by
an ideal one described by the equation

I = Ic0 sin ϕ (12)

where ϕ is the the phase difference across the barrier and Ic0 the maximum critical current
shunted by an impedance RN and a capacitance C (figures 11(a), (b)). The impedance RN

accounts for dissipation in the finite voltage regime without affecting the lossless dc regime,
where C reflects the geometric shunting capacitance between two electrodes. The derivation of
the tunnelling current was given by Josephson [35] and was reviewed by Barone e Paternò [36];
for a constant dc bias V0 the result is:

I = I0(V0, T ) sin ϕ + [σ0(V0, T ) + σ1(V0, T ) cos ϕ]V0. (13)

The second term in equation (13) results from quasi-particle tunnelling and may be described as
a normal current in parallel with the supercurrent. Within the RCSJ model, the time dependence
of the phase ϕ in the presence of an extremely supplied bias current can be derived by equating
the bias current I to the total junction current from the three parallel channels as follows [37]:

I = Ic0 sin ϕ + V/RN + C
dV

dt
. (14)

In this equation Ic0 has been introduced as a coefficient of sin ϕ, the notation Ic denoting an
observable critical current. Equation (14) is equivalent to the second-order differential equation

d2ϕ

dτ 2
+

1

Q

dϕ

dτ
+ sin ϕ = I/Ic0 (15)

where τ is a dimensionless time variable τ = ωpt with

ωp =
(

2eIc0

h̄C

)1/2

(16)

being the so-called plasma frequency of the junction and Q is the ‘quality’ factor:

Q = ωpRNC (17)
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Figure 11. Resistive model circuits for Josephson and ohmic current: (a) voltage feed regime,
(b) current feed regime.

where the parameter Q is identical to β
1/2
c where βc is a frequency parameter introduced by

Stewart [38] and Mc Cumber [39]. Let us now analyse the influence of circuit parameters on
the CVC for dc regimes. In general there are two factors involved: the nature of the external
circuit driving the junction, and the form of the background current which the junction would
carry in the absence of a supercurrent. We write the background current as IN (V ) and assume
it is in parallel with the Josephson current, so that the governing equations are:

I = Ic0 sin ϕ + IN (V ) (18)

h̄
dϕ

dt
= 2 eV. (19)

There are two extreme forms of external circuit conditions: voltage feed and current feed. With
voltage feed (figure 11(a)), V is fixed and the current to be determined, whereas with current
feed (figure 11(b)), the current is fixed and V is to be determined. Experiments generally use
current feed, since the dc impedance of the junction is low. It is also possible to simplify the
problem by taking the background current as ohmic

IN = GNV (20)

where GN is the normal conductance of the junction. On the other hand, for current feed, ϕ is
no longer linear in time and consequently Ic0 sin ϕ does not average to zero. Since I is fixed,
the substitution for V in (17) using (18) gives

h̄

2e
GN

dϕ

dt
+ Ic0 sin ϕ = IN (V ) (21)

where IN (V ) is ohmic. From the time average of dϕ/dt , the result is [38, 39]:

(GnNVdc)
2 + I 2

c0
= I 2. (22)

Equation (22) describes the CVC for the current feed regime (see figure 11(b)). As I increases,
Vdc gradually approaches the background value. The parameter βc that enters the CVC
description in the current-fed regime (see figure 12) is the reduced capacitance:

βc =
2eIc0Cβc

h̄G2
N

. (23)

As shown in figures 4–7 the CVC obtained from critical current measurements in C–Si–W films
are similar to the CVC of the Josephson contact in the current-fed regime. It is worth noticing
that these CVC show hysteresis phenomena too [38]. All this allows us to conclude that
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Figure 12. CVC for a current-fed junction with a capacitance in parallel. Note that current is
plotted along the horizontal axis. Each curve is labeled by the corresponding value of βc , where
βc is the capacitance in reduced units: βc = 2eIc0Cβc/h̄G

2
N .

the C–Si–W films under examination—constituted by a large number of Josephson junctions
connected in a disordered way—can be represented by an equivalent single junction with well
defined parameters Ic0 , βc,GN , C with Ic0 the critical current, 1/GN the normal impedance,
and the constant Cβc

· 1/GN describing the characteristic time of response to the perturbation.
Let us evaluate the average capacitance C̄ using the plane capacitor approximation for an
average Josephson junction constituted by two grains [26]:

C̄p = απ
ǫ0ǫr

S̄ij

R̄2
i . (24)

Taking average values for C–Si–W films from [26]: ǫ0 = 8.85 × 10−12 C2 N−1 m−2, ǫr = 19,
R̄i = 220 Å, S̄i,j = 10 Å, α = 0.5, it results:

C̄p = 1.27 × 10−16 F. (25)

Let us evaluate the equivalent capacitanceCβc
using experimental parameters for CVC in C–Si–

W films and formula (23). Using the experimental parameters for sample no 1 (Ic0 = 1.5 mA,
Vdc = 75 mV, RN = Vdc/I0 = 50 �) we obtain Cβc

= 0.88 × 10−16 βc F while using
formula (23) and typical values for sample no 1: I0 = 1.5 × 10−3 A, Vdc = 75 × 10−3 V,
Rn = Vdc/I0 = 50 �, we obtain:

Cβc
= 0.9 × 10−16βc F. (26)

The dimensionless parameter βc for a similar CVC in figure 11 is equal to 2–4. From the
comparison of the CVC for the film C–Si–W and the one for a single Josephson junction results
a surprising consequence: the capacitance C̄p of the single Josephson contact is practically
the same order of magnitude as the equivalent capacitance of a large number of Josephson
contacts linked in a JJA. At the same time the impedanceRN of the single contact is ∼15–30 K�

(see [26]) and exceeds the equivalent impedance for the JJA in the C–Si–W by ∼103 times. It is
obvious that the equivalent parameters in the JJA depend on the kind of connections of a large
number of Josephson junctions in the film where impedance and capacitance for different
single contacts can be connected either in series or in parallel with respect to supercurrent
direction in JJA. The relation Cp ∼ Cβc

may demonstrate that the probabilities of parallel and
serial capacitance connections are the same, whereas for the impedance of a single junction
the higher probability is obtained for the parallel connection. Let us finally calculate the
magnitude of the Q parameter that allows us to characterize the type of Josephson junctions
obtained in granular superconductor films C–Si–W. It is known [36] that for Q ≫ 1 the CVC
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of the Josephson contact becomes hysteresic; this can be observed in the CVC of C–Si–W film
samples. Let us evaluate the Q for the C–Si–W samples presented in this paper. The plasma
frequency (16) for sample no 1 is ωp = 2.1 × 1014 Hz; using the relation Q = ωpRnC and
RN ≃ 5 × 104 �, C ≃ βc × 10−16 F, it results Q ∼ 103 ≫ 1. According to Tinkam [37] this
means that Josephson junctions in C–Si–W films are underdamped junctions with the CVC
of the hysteresic type. The equivalent impedance decrease is in agreement with the increase
of the critical current Ic0 that characterizes the JJA of the film. This value of Ic0 (for parallel
junctions) is much larger than the average critical current for a single junction. It is also possible
to estimate the time constant T for a single contact and for the whole system of junctions in
the C–Si–W; taking C ≃ 10−16 F and RN ≃ 50 � for the JJA and RN ≃ 2 × 103 � for a
single contact, we obtain Tsingle ≃ 2 × 10−13 s and TJJA ≃ 5 × 10−15 s: the charge diffusion
in JJA occurs 102 times faster than in the single contact and this difference is completely due
to the higher value of the impedance for a single Josephson contact.

6. Conclusions

We have experimentally studied the critical supercurrent Ic0 and the CVC in granular
superconductors C–Si–W in which a peak-type re-entrant superconductivity is observed. Ic0

and CVC measurements have been carried out on samples showing one or two re-entrance
peaks. The dependence of the critical current on temperature has been analysed in the intervals
between the main transition and the first peak, between the first and the second peak, and
below the second peak; it resulted that both Ic0 and CVC are non-reproducible and manifest
hysteresis phenomena on a mesoscopical scale. We have developed a simulation model for the
critical current as a function of temperature and showed the good agreement of the simulation
results with the experimental data from the samples with one or two re-entrance peaks. We,
finally, have determined all basic parameters: critical current Ic0 , plasma frequency ωp, single
contact capacitance C, quality factor Q, normal impedance RN for a single junction, time
constant T . We also proposed an hypothesis of connection for single junctions and analysed
the possibility of equating the capacitance of a single junction to the characteristic capacitance
of the whole JJA.
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