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We utilise a magneto-mechanical levitated massive resonator in the quantum regime to prepare highly macro-

scopic quantum superposition states. Using these macroscopic superpositions we present a novel interferometry

protocol to perform absolute gravimetry with a sensitivity that exceeds state of the art atom-interferometric and

corner-cube gravimeters by a factor of 20. In addition, our scheme allows probing the gravitational field on a

length scale eight orders of magnitude smaller than other methods.

PACS numbers: 85.85.+j, 42.50.Lc, 45.80.+r, 74.25.Ld

I. INTRODUCTION

Absolute gravimetry measures the local acceleration due to

gravity on a test body. Precision gravimetry has numerous

applications ranging from metrology, geophysics, geodesy

and inertial sensing [1–3], through to precision measurements

of the fine-structure constant in Quantum Electrodynamics

(QED) [4], the gravitational constant [5–7], testing alterna-

tive theories of gravity and quantum gravity [8–10], and po-

tentially searching for gravitational waves [11, 12]. One of

the prototypical standard instruments used, the Scintrex FG-

5, is based on a free falling corner cube combined with a

Mach-Zehnder interferometer and atomic clock [13]. By

utilising advanced isolation techniques this instrument can

achieve an absolute gravimetry precision of ∼ 15 µGal Hz−1/2,

(1 µGal = 10−8 ms−2 ∼ 10−9 g). However atom based inter-

ferometers have been demonstrated to exceed this with ini-

tial experiments yielding a precision of ∼ 8 µGal Hz−1/2 [14],

and more recently, using an optimised active isolation sys-

tem, a precision of ∼ 4.2 µGal Hz−1/2 [15]. Proposals us-

ing large area atomic interferometers or by extending the

duration of the free-fall via micro-gravity/space based se-

tups, predict that atomic gravimeters might reach precisions

of ∼ 10−4 µGal Hz−1/2 [16, 17], but so far the best precision

demonstrated is that achieved by Hu et al. [15]. Both of these

techniques require long (∼ 1m), fall drops and thus they give

a spatially averaged result.

In this work we describe how one can perform absolute

gravimetry using a quantum magnetomechanical system con-

sisting of a magnetically trapped superconducting massive

mechanical resonator in vacuum whose motion is controlled

and measured by a nearby RF-SQUID or flux qubit. By driv-

ing the mechanical massive resonator to be in a macroscopic

superposition of two different heights we are able to execute

an interferometry protocol which has the potential to achieve

a gravimetry precision of ∼ 0.22 µGal Hz−1/2, with a spatial

resolution of a few nanometres. Furthermore, this value is

limited only by the coherence time of the flux qubit, offering

the possibility of significant improvements to the precision in

the future.

Our scheme is based on engineering large spatial superpo-

sitions of a massive object. Generating macroscopic quan-

tum superpositions has been a much sought after goal both

from the viewpoint of studying fundamental issues relating to

the classical/quantum boundary but also towards using such

superpositions for enhanced sensing. Examples include ex-

periments indicating the quantum matter-wave nature of indi-

vidual high-weight organic molecules and quantum motional

oscillations of membrane based optomechanical systems [18].

Quantum magnetomechanics (as opposed to optomechanics),

uses magnetic forces as opposed to light forces, towards engi-

neering the quantum motion of systems. One significant ad-

vantage of the former is the greatly reduced motional noise

with passive magnetic forces as compared with scattered light

induced noise in optomechanical systems. The reduced noise

in magnetomechanical systems uniquely permits the engi-

neering of ultra-high (∼ 109), motional Q-factors in magnet-

ically levitated massive resonators [19, 20], while incorpo-

rating magnetostrictive elements one can design hybrid quan-

tum systems to couple microwave and optical quantum signals

[21].

In the following we first describe the model magnetome-

chanical quantum system consisting of a superconducting ring

stably trapped and levitated in vacuum within the inhomoge-

neous magnetic field generated by a small magnetic sphere.

The motion of this ring can be cooled [19], and coherently

controlled via an inductively coupled nearby superconducting

flux qubit which is controlled via a superconducting electri-

cal circuit. We next introduce a metrological interferometry

protocol where we drive, via the flux qubit, the generation of

counter-oscillating vertical motional cat states of the trapped

massive ring. We show that by measuring the state of the qubit

at the end of the interferometry dynamics one can obtain a di-

rect measurement of the accrued phase shift and from this, the

local acceleration due to gravity. To achieve a high precision

and dynamic range for this metrology we tune the spatial scale

of these counter-oscillating superposition states via adjusting

the currents in the flux qubit. Through this we are able to pro-

pose a protocol that can estimate the local acceleration due to

gravity over a large dynamic range and with very high pre-

cision. We estimate the ultimate possible precision we could

hope to achieve in the near future assuming progress in ex-

tending the coherence times of flux qubits. We then discuss

various sources of noise and decoherence and discuss briefly

the possibilities for an experimental implementation.
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II. MODEL

We first discuss in more detail the physical setup for our

magnetomechanical gravimeter. We study the three dimen-

sional (3D) trapping of the ring, the oscillation frequency and

stability, the inductive coupling between the ring resonator

and the flux qubit, the desired characteristics of the perma-

nent magnet providing the inhomogeneous trapping flux, the

materials and dimensions for the ring resonator, and the co-

herence properties and operation of the flux qubit. This will

lead on to our description of the actual metrology protocol in

the following section.

A. Setup

As depicted in Fig 1a, we consider a small permanent mag-

net whose purpose is to provide a highly spatially inhomoge-

neous magnetic field. We choose a sphere, radius Rs, volume

V , to have uniform magnetization M = Mẑ, where ẑ is ori-

ented vertically upwards. We have found that 3D magnetome-

chanical trapping can occur with various shaped magnets such

as cones and spheres, but we choose the sphere for simplicity

as the resulting fields, fluxes and potentials can be derived an-

alytically.

We consider this magnet to be rigidly fixed while the under-

lying flux-pinned ring resonator can oscillate freely. Trapped

a distance zeq below the center of the sphere is a ring (which

we will denote as the resonator), of radius Rr of superconduct-

ing wire of thickness 2a (circular cross section), lying in the

x̂ − ŷ plane with self-inductance Lr. Small spatial oscillations

of this resonator will lead to small changes in the relative po-

sition of the centre of the ring with respect to the centre of

the sphere. As the resonator moves through the inhomoge-

neous magnetic field the enclosed flux due to the sphere will

change and the Meissner effect will cause supercurrents to be

generated within the ring to maintain the overall enclosed flux

Φ, constant in time. The magnetic fields generated by these

supercurrents will interact with the sphere’s magnetic fields

causing a mechanical restoring force on the resonator leading

to trapping of the resonator in all three directions [19].

Located below the resonator is a superconducting flux

qubit. The flux qubit generates counterpropagating supercur-

rents which can be in quantum superposition. The currents cir-

culating in the flux qubit generate a magnetic field and these

couple via mutual inductance Mrq to the currents flowing in

the resonator. With this coupling one can use the flux qubit

to cool the motional state of the resonator [19], but in ad-

dition one can use the flux qubit to coherently drive/control

the motion of the resonator. We will use this latter capabil-

ity to perform the interferometry protocol. The precision in

the gravimetry protocol is directly related to how strong we

can engineer this resonator-qubit coupling and this coupling

decreases as the resonator-qubit separation increases.

Provided the resonator is initially cooled to superconduct-

ing temperatures at some distance from the sphere, it will have

zero magnetic flux threading it, and no persistent supercur-

rents. When it is moved into place below the sphere, supercur-

FIG. 1. Schematic of the gravimeter setup. A small permanent mag-

net (blue sphere) with uniform magnetization in the upwards vertical

direction produces a strong spatially inhomogeneous magnetic flux

(shown as a vector field). A small superconducting ring (resonator

- yellow), is trapped via the Meissner effect below the sphere. Cur-

rents in a flux qubit (grey) on a substrate (white) couple inductively

to the motion of the trapped ring and the qubit can be used either to

cool or coherently control the motion of the ring. The state of the

qubit is readout using a DC SQUID - not shown.

rents will be induced to ensure that it continues to have zero

flux threading it, even though it is directly below the sphere.

We will work with a resonator that is the same size or larger

than the flux qubit as well as being in very close proximity

to it, ensuring that the qubit is shielded from any flux noise

arising in the magnet.

B. Oscillation frequencies and stability

We now analyse the mechanical trapping of the resonator

in 3D and estimate the resonator’s vertical trapping frequency

and discuss the transverse trapping dynamics. We assume the

magnetisation of the sphere is along the ẑ axis, i.e. M =Mẑ.

In cylindrical coordinates (ρ, φ, z), with the origin at the centre

of the sphere, the vector potential for such a homogeneously

magnetized sphere is A(r) = µ0MVρ (ρ2+z2)−3/2φ̂/4π , where

V is the sphere volume. Since B = ∇ × A we have B(r) =

µ0MV(ρ2 + z2)−5/2(3z ρ, 0, 2 z2 − ρ2)/4π, in cylindrical coor-

dinates. To calculate the vertical trapping frequency ω, we

require the force exerted on the resonator ring as a function of

displacement from the equilibrium point. This force arises due

to the fact that when the ring moves, the magnetic flux thread-

ing it flux will change. As flux lines can’t pass through the

superconducting ring, however, a current arises in the ring to
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restore the flux, and this current gives rise to a Lorentz force.

Since the resonator ring is horizontal, the flux through it

will be given by the line integral

Φ =

∮

A(r) · dr =
µ0MVR2

r

2(R2
r + z2)3/2

, (1)

where Rr is the radius of the resonator ring. Changes in

current in the resonator as it moves vertically are related to

changes in flux via

dIr

dz
= − 1

Lr

dΦ

dz
, (2)

where Lr is the self inductance of the ring and is given by

Lr = µ0Rr(ln[8Rr/a] − 2), where the “−2” factor indicates we

assuming all the current is on the surface of the resonator.

Taking the equilibrium vertical position point z = zeq, then

for small displacements the current in the resonator is Ir =

(z − zeq) · dIr/dz|z=zeq
where, using (2),

dIr

dz

∣

∣

∣

∣

∣

z=zeq

=
3µ0MVR2

r zeq

2L(R2
r + z2

eq)5/2
. (3)

The Lorentz force from the current, magnitude Ir, flowing

through a small element dl of the wire is given by dF =

(Ir dl) × B. Assuming the resonator is circular, sitting hori-

zontally, and is co-axial with the ẑ−axis, the line element dl

will always be perpendicular to B = Bradialρ̂ + Baxialẑ. Hence

the vertical force on the resonator for small vertical displace-

ments from equilibrium z − zeq, is

Fz = −Ir

∫ 2π

0

BradialRrdφ = −
9µ2

0
M2V2R4

r z2
eq(z − zeq)

4Lr(R2
r + z2

eq)5
. (4)

Finally, the equation of motion in the z direction is

d2z

dt2
=

Fz

m
= −ω2(z − zeq) (5)

for small displacements, providing an harmonic restoring

force. Comparing (4) and (5) we find the vertical oscillation

frequency

ω =
3µ0MVR2

r zeq

2

√

mLr(R2
r + z2

eq)5

. (6)

We also need to consider transverse trapping and oscillations

firstly to establish that the resonator is indeed trapped in all

three directions, and secondly to determine if there is any cou-

pling between the vertical and horizontal motions. If this cou-

pling exists then by cooling the vertical motion one cools the

entire motion of the resonator, but such couplings can also

lead to unwanted energy leakage from the coherent vertical

dynamics to the transverse modes, leading to decoherence of

our vertical superposition states.

As shown in Appendix C, to lowest order the trapping po-

tential is given by

V =
1

2
mω2z2 +

1

3
γ(x2 + y2)z +

1

4
β(x4 + y4), (7)

which describes a type of cross-mode coupling. For pa-

rameters described in Appendix A we find (mω2/2, γ, β) =
(1.73 × 10−2 J, 1.98 × 103 Jm−1, 2.65 × 108 Jm−2).

The horizontal trapping at equilibrium (z = zeq) exhibits ex-

tremely slow oscillations. The period is amplitude-dependent,

with higher amplitudes having shorter periods, but even with

an unrealistically large amplitude of a 10 µm the period is ∼ 50

seconds. This means that the horizontal dynamics are essen-

tially frozen out when compared with the fast vertical dynam-

ics of the resonator.

C. Inductive coupling to the qubit

The coupling between the resonator and the qubit is deter-

mined by the mutual inductance between the currents flowing

in the qubit and the small currents flowing in the resonator, the

latter being dependent on the vertical position of the resonator.

This coupling is of the form Ĥcoupling = ~λ(â+ â†)σ̂z/2, where

σ̂z describes the direction of the current in the qubit, â, the an-

nihilation operator for vertically trapped motional resonator

phonons, and the coupling strength λ is defined as

λ =

√

2

m~ω
Mrq

dIr

dz
|z=zeq

Iq, (8)

where Mrq is the mutual inductance between the resonator and

the qubit, Iq is the current in the qubit, dIr/dz describes how

the induced current in the resonator changes with respect to

its vertical displacement from the equilibrium point zeq, and m

is the mass of the resonator.

The mutual inductance between two parallel rings, one co-

axial above the other, radii Rr and Rq, and co-axial separation

d, is

Mrq = µ0

√

4RrRq

η(d)

(

K (η(d))

1 + β(d)
− E (η(d))

)

, (9)

where η(d) ≡ 2β(d)/(1+β(d)), β(d) = 2RrRq/(R
2
r +R2

q+d2), K

is the elliptic integral of the first kind and E is the elliptic inte-

gral of the second kind. Although Mrq scales as 1/d3 for large

separations, we will work in the regime where d < Rr,Rq,

so as to maximise the inductive coupling strength. Using

Eqs. (3), (6), (8) and (9) we obtain

λ =

√

3MVµ0

~















R4
r z2

eq

mL3
r (R2

r + z2
eq)5















1/4

Mr,q Iq , (10)

where zeq is the vertical distance from the centre of the sphere

to the resonator. The coupling λ is proportional to the square

root of the magnetisation and directly proportional to the cur-

rent in the qubit.

Maximising λ requires the size of the qubit and resonator

to be near identical Rq≃Rr. Assuming both are circular we

obtain the results shown in Figure 2. In addition, provided that

we have control over the radius of the magnetic sphere, the

maximal value for λ is obtained when the radius of the sphere

is twice the radius of the qubit and resonator, i.e. Rsphere =

2Rq = 2Rr.
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FIG. 2. Value of the inductive coupling strength λ between the res-

onator and qubit for a fixed resonator radius of 5 µm and a fixed

sphere radius of 10 µm as we vary the qubit radius. Maximal λ re-

quires Rr = Rq. System parameters as given in Appendix A.

D. Materials for the setup

To reduce damping loss of the resonator’s motion due to

induced eddy currents in the spherical magnet one can con-

sider the magnet to be made from a suitable magnetic insula-

tor, e.g. Yttrium-Iron-Garnet (YIG), which possesses a satu-

ration magnetization of µ0M∼ 0.17 T. Due to the resonator’s

close proximity to the magnetised sphere and the fact that in-

ductive coupling to the qubit results in large current densities,

we require it to be composed of a superconductor with a high

critical current and a high critical magnetic field. Further, to

avoid decoherence due to flux pin dragging of the sphere’s

magnetic field as the resonator oscillates [22], we require a

Type-I rather than a Type-II superconductor. For these reasons

we choose lead, which has a critical temperature Tc ∼ 7 K and

critical field Hc ∼ 0.08 T, and limit the magnetisation of the

sphere to this field strength. Qubits are typically fashioned

from either Aluminium or Niobium with the latter having the

advantage of a higher critical magnetic field Hc∼ 0.83 T thus

permitting the qubit to remain superconducting in the pres-

ence of the magnetic sphere.

E. Qubit subsystem

The superconducting qubit subsystem we use is essentially

a flux qubit. This is a superconducting loop containing a

Josephson-junction (JJ). The flux qubit is driven by a mag-

netic flux which is generated by an external nearby circuit and

recent versions of the flux qubit involve two identical JJs and

a smaller JJ. This three junction design allows for large per-

sistent currents with a small geometrical size (and thus induc-

tance) of the superconducting loop and results in an operation

which is less sensitive to noise.

Recalling the operation of an RF-SQUID (similarly a

flux qubit) [23], one applies a controlled external magnetic

flux bias to yield an effective double-welled potential for

the Hamiltonian of the qubit whose lowest energy symmet-

Λ
�2
Π
@G

H
zD

0.0 0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

System scale Α

FIG. 3. Behaviour of the inductive coupling strength between the

motion of the resonator and qubit λ, as a function of overall system

size, assuming the largest current that can be achieved using a flux

qubit of a specific size. We take Rr = Rq = 5αµm, Rsphere = 10αµm,

a = 1.0αµm. Static parameters: d = 2 µm, r0 = 1 µm (see Table I).

ric/antisymmetric wave functions act as a two level system.

These states correspond to oppositely circulating currents in

the qubit loop and are split in energy depending on the height

of the double well tunnel barrier. This splitting is quantified

by the quantity υ = L/LJ − 1, where L is the geometric in-

ductance of the qubit, and LJ is the Josephson inductance.

Roughly speaking, LJ is controlled by the size and thickness

of the junction, while L is set by the size and shape of the

qubit loop. The energy splitting between the two levels in-

creases as υ → 0, which means we need L∼ LJ in order to

operate in a regime where the two qubit levels are sufficiently

split in energy. Since the inductance of a circular wire loop

of radius R is roughly proportional to R ln(R), one cannot en-

gineer very large qubit loops while still retaining the relation

L∼ LJ . As the inductive coupling also is proportional to the

current in the qubit we require this also to be large but this is in

conflict with large loop area as Imax ∼Φ0/2L. Thus there is a

trade-off between the maximal current and physical size of the

qubit — each contributing to the overall inductive coupling.

For definiteness one can study the resonator-qubit inductive

coupling strength λ as one scales up the physical size of the

qubit/resonator/magnet (see Figure 3), and curiously the op-

timal scale yielding the largest coupling strength is achieved

when the flux qubit circular loop is quite small with radius

∼ 5–10 µm.

F. Cooling to the ground state

In order to put our resonator into a cat state and use it as a

gravimeter, it is necessary to ensure that we can begin with it

in the motional ground state. This in turn requires that we have

mechanism to cool it from its initial non-equilibrium state to

the ground state by removing energy.

Details of the cooling scheme we use can be found in Refs.

[19, 24], which we will briefly summarize here. We cool by

coupling a two level system (the qubit) to the resonator, with
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the qubit coupled to a bosonic thermal bath. The Hamiltonian

for the coupled system is

Ĥ = −~δ
2
σ̂z +

~Ω

2
σ̂x + ~ωâ†â +

~λ

2
(â + â†)σ̂z (11)

where Ω is the Rabi frequency with which we drive the qubit,

δ is the detuning of the driving field from resonance with the

qubit frequency splitting ωq, â is the annihilation operator for

the resonator oscillation modes and the σ̂x,z are the standard

spin-1/2 Pauli operators.

The open systems dynamics of the qubit-resonator system

is described in Appendix B and is characterised by Γ and Γ⊥,

the amplitude damping rates of the resonator and qubit respec-

tively. The initial state of the resonator is modelled as a coher-

ent state with amplitude α =
√

Nth where the initial occupa-

tion number is Nth = (e~ω/kBTr − 1)−1 with Tr an effective bath

temperature for the environment of the resonator. In the limit

where λ ≪ Γ⊥, ω, the final phonon occupation number for the

resonator, n f , is given by

n f = Nth[ζ + (1 − ζ)/(1 + ζ exp[I1/(Nthζ(λ/ω)2)])]. (12)

Here ζ = Γ/Γc(0) and the renormalized cooling rate is Γc(α) =

iλ(~S z
1
/α − ~S z

−1
/α∗), with I1 = 2

∫ ∞
0

dααΓ̃c(αω/λ) and Γ̃c =

Γc(α)/Γc(0). The qubit polarization Fourier components, ~S z
1

and ~S z
−1

, are given by the solutions to the Bloch equations for

the qubit. In the Lamb-Dicke regime (λ
√

Nth + 1/2 ≪ Γ⊥, ω)

one can obtain an effective master equation for the resonator

after tracing out the qubit. This gives a new effective resonator

damping rate Γcool = Γc + Γ with Γc = S (ω) − S (−ω) where

S (ν) denotes the qubit fluctuation spectrum and is given by

S (ν) =
λ2

2
Re

∫ ∞

0

eiνtdt[〈σ̂z(t)σ̂z(0)〉0 − 〈σ̂z(0)〉20], (13)

where 〈·〉0 denotes the steady state expectation. The resulting

steady state phonon occupation of the resonator in the Lamb-

Dicke regime is [24]

nLD = ΓNth/Γc + N0, (14)

where N0 = S (−ω)/Γc.

In Figure 4 we plot the performance of this cooling scheme

for our system, showing both the full cooling solution and a

simplified cooling solution that makes the assumption that we

are always in the Lamb-Dicke regime, i.e. Eq. (14) holds for

all initial resonator temperatures. The plot shows that even

with initial phonon occupation numbers as high as ∼ 109 we

can cool the resonator to the ground state, with an average

final occupation number of 0.16.

The timescale governing the cooling is given by the effec-

tive resonator cooling rate Γcool. For our system, using pa-

rameters given in the caption of Figure 4, we obtain Γcool =

27 kHz. We note this cooling rate scales as λ2, and we have

chosen a very conservative coupling rate of λ = 10 kHz. As

our system is capable of coupling strengths of up to λ∼ 1 GHz,

the cooling can be made much faster if required.

100 103 106 109 1012 1015
10-2

100
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104

106
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F
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o
cc
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u
m
b
er

FIG. 4. Cooling performance of our system. Horizontal dashed black

line shows the phonon occupation of the qubit in a temperature bath

of Tq = 100 mK, solid blue line shows the final phonon occupa-

tion number of the resonator after cooling assuming the Lamb-Dicke

regime is valid, and the solid red line shows the exact cooling solu-

tion (note blue and red lines overlap for low initial occupation num-

bers). The diagonal dotted black line shows the line where initial

and final occupation numbers are the same; any part of the blue or

red curves below this represents cooling. The plot shows that even

with initial phonon occupation numbers as high as ∼ 109 we can cool

the resonator to the ground state, with an average final occupation

number of 0.16. We have assumed the standard resonator parame-

ters given in Table I, and take Ω = ω/2, δ = −
√
ω2 −Ω2, λ/2π =

104 Hz, decoherence times T1 = T2 = 70 µs, ωq/2π = 6 GHz, and

Γ = 2.70 × 10−8 Hz. See Appendix A for the definitions of system

parameters.

III. METROLOGY PROTOCOL

A. Description

We now describe in general terms the operation of the

gravimetry protocol. We then go into more details regarding

the precision one might expect using a simple interferomet-

ric protocol. Before starting the protocol one must prepare

the resonator in a levitated 3D trapped state and in the ground

state of vertical motion as described above. We arrange, via

tuning the frequency of the qubit for instance, to turn off the

resonator-qubit coupling and to initialize the qubit in the state

|+x〉 = (|1〉 + | − 1〉)/
√

2. Next the resonator-qubit coupling

is turned on. Notice that the effect of the qubit in ±1 eigen-

states of σ̂z, | ±1〉, is to apply slightly different constant forces

on the resonator in the vertical direction. These forces cause

slight displacements in the trapping potential of the resonator

providing for spatial superposition states which evolve in state

dependent traps displaced from each other in the vertical di-

rection. We then let the resonator evolve in these state depen-

dent traps and after a specific duration the resonator will return

to its initial height (which we denote as “one slosh”). However

because of the slight difference in heights of the two traps a

phase difference will accrue and when the resonator returns to

its original height one will obtain constructive/destructive in-
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terference. This interference can be probed by again quickly

turning off the resonator-qubit coupling and by measuring the

qubit along the x̂−axis of its Bloch sphere. We will see that

the phase difference will be directly proportional to the abso-

lute acceleration due to gravity and we conclude with a rough

estimate of the precision one might expect under a naive in-

terferometric estimation protocol. In the following section we

detail a more sophisticated estimation protocol that can yield

far greater precision and dynamic range in the gravimetry.

We now consider the protocol outlined above to measure

absolute gravitational acceleration (shown diagramatically in

Figure 5). As depicted in Fig. 5(a), we begin with the system

in the state Ψ(t < 0) = |α = 0〉r |+x〉q, where the subscripts r

and q refer to the state of the resonator and qubit respectively.

That is, we begin with the resonator in a harmonic oscilla-

tor ground state, and the qubit in a superposition of counter

circulating currents. Then at time t = 0 we apply the cou-

pling Hamiltonian Ĥcoupling = ~λ(â + â†)σ̂z/2, which imposes

a constant force in the ẑ−direction on the resonator depending

on the qubit state. The full Hamiltonian of the system without

a driving field on the qubit is

Ĥ =
~ωq

2
σ̂z + ~ωâ†â +

~λ

2
(â + â†)σ̂z + mgẑ. (15)

Rewriting in the position representation using â + â† = ẑ/z0

where z0 =
√
~/2mω gives

Ĥ =
~ωq

2
σ̂z+

p̂2

2m
+

1

2
mω2(ẑ−zeq)2+

~λ

2z0

(ẑ−zeq)σ̂z+mgẑ, (16)

where z = zeq is the equilibrium position of the resonator.

Finally, completing the square and noting that (σ̂z)2 = 1 gives

Ĥ =
~ωq

2
σ̂z +

p̂2

2m
+

1

2
mω2 (ẑ + lσ̂z)2 − mglσ̂z, (17)

where we have dropped an additive constant, defined

l = λz0/ω, (18)

and we have shifted the origin of the z coordinate to the po-

sition zeq − g/ω2. In this form, we see that because σ̂z has

eigenvalues ±1, we now have a double well potential, with

the wells centred at ±l (see Figure 5).

The resonator wave function now finds itself high on the

harmonic potential slope, and experiences a state dependent

force (see Fig 5(b)). This means the wave packet will split

into a superposition of two wave packets and each of these

packets will oscillate in its state dependent trap t = π/ω
(Fig 5(c)).

We wait for the oscillation to complete (Fig 5(d)), yielding

the product state

Ψ(t = 2π/ω) =
1
√

2

(

eiφ |1〉 + e−iφ| − 1〉
)

q
⊗ |α = 0〉r, (19)

where the accumulated phase is

φ = (2mgl − ~ωq)
2π

~ω
. (20)

The expression for this phase assumes that g doesn’t change

over the distance of oscillation.

If we continue waiting, the system will undergo a series of

n oscillations and following the rapid turn off of the coupling

λ (Fig 5(e)), we obtain the following reduced pure state for

the qubit,

ρ̂q =
1

2

[

1 e2inφ

e−2inφ 1

]

. (21)

The expectation value for σ̂x is

〈σ̂x〉 = Tr
[

ρ̂qσ̂
x
]

= cos(2nφ) ≡ f (φ) . (22)

When functioning as a Ramsey interferometer, the phase sen-

sitivity we obtain by measuring the state of the qubit is given

by

∆φ =
δ〈σ̂〉
d f (φ)

dφ

=

√

〈σ̂x2〉 − 〈σ̂x〉2
2n sin 2nφ

=

√

1 − f (φ)2

2n sin(2nφ)
=

1

2n
. (23)

Referring back to (20) we see that this means ∆φ = 1/2n =

4πml∆g/~ω, where we have assumed precise knowledge of

ω,ωq,m, l (methods to pre-determine these will be detailed

later). This gives an uncertainty in g of

∆g =
~ω∆φ

4πml
, (24)

and

∆g

g
=
~ω

8nmgπl
=

~ω2

8πn m gλz0

. (25)

Finally, we are constrained by the coherence time of the qubit,

τc. Specifically, we require the total evolution time to satisfy

2n × τ < τc, which gives

∆g

g
≥ ~ω

2τcmgλz0

=
~

2τclmg
. (26)

B. Phase estimation scheme

The main issue with the protocol as described so far is that

when measuring the phase, we only get an answer modulo 2π,
but the actual phase we care about is many times that, result-

ing a phase ambiguity. As an example, using the parameters

in Appendix A, we have a cat state separation of 2l = 1.9 nm,

ω = 24.8 kHz and a resonator mass of m = 1.12 nanograms,

so that one slosh takes τ = 2π/ω = 40.3 µs and the accrued

phase (after subtracting the known phase ωqτ accumulated

due to the qubit splitting) is

φ = 2mglτ/~ = 7.94 × 109 rad . (27)

To solve the problem of phase ambiguity, rather than measur-

ing φ, we choose to measure a much smaller phase, arising

from a much smaller displacement of the resonator. Specifi-

cally, we choose a displacement small enough such that the
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(a) (e)

− l l

(b)

| − 1i |1i

− l l

(d)

| − 1i |1i

− l l

(c)

| − 1i |1i

FIG. 5. Illustration of one stage of the splitting protocol for gravimetry. Shown are the spin dependent harmonic trapping potentials along the

ẑ direction and the one dimensional spatial wave function for the resonator as a function of z. This protocol is repeated M(K, k) times for each

value of the qubit resonator coupling λk = 2kλ0, for k = 0, . . .K where λ0 is a minimal value of the coupling. (a) At t < 0 the resonator is

prepared in the ground motional state with an rms width z0 and frequency ω. The qubit is not coupled to the resonator (λk = 0). (b) At time

t = 0 the qubit in prepared in the superposition state |+x〉 and the interaction λk is turned on. The trapping potential is now state dependent with

minima located at ±l = ±λkz0/ω. (c) After half an oscillation period, the state dependent motional wave packets are maximally separated by a

distance 4l. (d) After a full oscillation period, the wave packets recombine, localised at the origin with the accumulated gravitationally induced

phase φk mapped onto the qubit. (e) The interaction is turned off and the qubit is measured. For ⌈M(K, k)⌉ rounds the qubit is measured in the

basis {|±x〉} basis and for the other ⌊M(K, k)⌋ rounds in the basis {(|1〉 + e−iπ/M(K,k)| − 1〉)/
√

2, (eiπ/M(K,k)|1〉 − | − 1〉)/
√

2} providing an estimate

φ̂k of the phase φk. After the last stage the resonator returns to a ground state of the trapping potential.

phase φ0 we measure during the interferometric process is

0 ≤ φ0 < 2π. We then use the nonadaptive phase estima-

tion scheme of Ref. [25] to obtain this unambiguous phase

with the same degree of precision as we would if we could

measure the much larger phase φ without the 2π phase ambi-

guity.

The scheme works by determining φ0 via successive dou-

blings of this phase, each providing another binary bit of pre-

cision to the final estimate. Doubling is achieved by doubling

the current in the resonator, resulting in twice the resonator

displacement. Each of the doubled phases is measured M

times using the interferometric protocol described above but

subjecting the qubit instead to a projective measurement along

the x̂−axis of the Bloch sphere at the end of each of the M

interferometry-measurement runs. Information from each of

these measurements is used to refine the best estimate of the

phase φ0 that has been obtained so far.

In detail, this works as follows: suppose we want to mea-

sure the phase φ0. We define φk = 2kφ0, with k = 0 . . .K.

Then for each φk we make M(K, k) interferometric measure-

ments with specific phase offset, with M(K, k) given by

M(K, k) = MK + µ(K − k), (28)

where MK is the number of measurements for the 2K phase

shift and µ is a constant. Note that because the measurement

protocol is non-adaptive, the measurements can be done in any

order. For each round k, half (or a nearest integer thereof) of

the M(K, k) measurements should be done in the qubit basis

|±x〉 = (|1〉 ± | − 1〉)/
√

2 and the other half should be done

in the {(|1〉 + e−iπ/M(K,k)| − 1〉)/
√

2, (eiπ/M(K,k)|1〉 − | − 1〉)/
√

2}
basis. At stage k = K, the phase is localised to an arc of size

2π/(3 × 2K) and the last estimate is used as the final estimate

φ̂0.

We quantify the phase uncertainty by the square root of the

Holevo variance [26]:

∆φ0 ≡
√

|〈ei(φ0−φ̂0)〉|−2 − 1 ≈ 2 sin(|φ0 − φ̂0|/2) ≈ |φ0 − φ̂0|,
(29)

where the approximations hold when the variance is small. It

is shown [25] that the precision obtained with the nonadaptive

measurement protocol with the choice MK = 2 and µ = 3

provides a scaling of twice the Heisenberg limit [27]:

∆φ0≃
2π

N
, (30)

where

N=

K
∑

k=0

M(K, k) 2k =

K
∑

k=0

(2 + 3(K − k)) 2k

= 5 × 2K+1 − 3K − 8, (31)

which is the cumulative accrued phase in units of φ0, during

the complete estimation procedure. To ensure the phase φ0 is

less than 2π we require φ0 = 2mgl0τ/~ < 2π, where 2l0 is the

mean separation of the cat states, and τ is the interferometry

slosh time, corresponding to one complete oscillation in the

harmonic potential. Since τ = 2π/ω we obtain the condition

l0 <
~ω

2mg
. (32)

From Eq. (18) we see that

λ = l

√

2mω3

~
, (33)

which means to get a displacement of l = l0 and an associated

phase φ = φ0 we require a coupling strength of

λ0 =

√

ω5~

2mg2
. (34)

To obtain each of the doubled phases required for the protocol

requires similar doubling of this coupling strength, i.e. λ =

2k λ0 is required to produce the phase φk = 2k φ0.

C. Parameter determination

While our measurement protocol and phase estimation

scheme gives us a phase, this phase must still be converted
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to a value for g via Eq. (20). Clearly, in order to obtain a pre-

cise estimate of g, we must know the parameters m, ω, ωq and

λ to the same level of precision. These quantities can be mea-

sured offline with any additional resources, and will not affect

the time taken for the phase estimation protocol.

One way to obtain information on these parameters is to

observe the effect on the evolution of the qubit. If the qubit is

not driven, i.e. Ω = 0, then the equations of motion associated

with the Hamiltonian (15) are

dâ

dt
= −iω â − iλ

2
σ̂z − i

√

mg2

2~ω
dσ̂x

dt
= 2ωq σ̂

y − λ(â + â†)σ̂y

dσ̂y

dt
= −2ωq σ̂

x + λ(â + â†)σ̂x

dσ̂z

dt
= 0.

(35)

If we assume the resonator starts in the ground state then we

have 〈â(0) + â†(0)〉 = 0. Denoting σi = 〈σ̂i〉 and a = 〈â〉,
Eqs. (35) have the solution

a(t) + a∗(t) =
λσz(0)

ω
(cos[ωt] − 1)

σx(t) = σx(0) cos ξ + σy(0) sin ξ

σy(t) = σy(0) cos ξ − σx(0) sin ξ

σz(t) = σz(0) ,

(36)

where

ξ = 2ωqt +
σz(0)λ2

ω
− σ

z(0)λ2 sin[ωt]

ω2
. (37)

These solutions have intricate time-dependent structure,

meaning an arbitrary number of independent datapoints can

be obtained by measuring, say, σ̂x on the qubit. Provided the

qubit preparation and measurement process has only statisti-

cal errors and not systematic ones, arbitrarily precise values

of ωq, ω and λ can be obtained by fitting a suitably large num-

ber of measurement results against the theoretically expected

profile.

In order to measure the mass of the resonator, techniques

such as those described by Schilling are likely to perform well

[28, 29]. These schemes utilize electro-optical measurement

of oscillation period of a levitated superconducting oscillator,

exactly the same situation as described by our scheme.

Of course, if other simpler or more precise methods are

available that can provide values for any of these parame-

ters, they can be used in the calibration process and reduce

the number of parameters that need to be fitted.

IV. PRECISION

Using Eq. (30) and Eq. (24) the gravimeter precision ob-

tained after one full cycle of the phase estimation scheme is

∆g

g
=

~ω

2mgl0N
, (38)

where l0 is the cat state displacement associated with a gravi-

tational phase 0 ≤ φ0 < 2π, and N, the cumulative accrued

phase over the entire cycle (in units of φ0). We note that

through the use of this non-adaptive protocol one obtains a

precision that scales as N−1 rather than the usual N−1/2. Ex-

pressing N in terms of the upper doubling factor K using (31)

yields

∆g

g
=

~ω

2mg(lmax/2K)

1

5 × 2K+1
=

~ω

20 mglmax

, (39)

where lmax is the separation of the cat states corresponding to

the maximum coupling strength λmax = 2Kλ0 generated. The

optimal value of the upper doubling factor K is determined

by requiring that the Kth doubled fundamental phase 2K φ0 is

comparable with the overall accrued phase, i.e.

φ0 =
1

2K

2mglmax

~

2π

ω
< 2π, (40)

which means we need

K > log2

(

2mglmax

~ω

)

. (41)

This is the precision we obtain after a single phase estimation

cycle incorporating N projective qubit measurements. Each

measurement involves initializing, evolving, and measuring

the resonator over a fixed time duration which does not change

throughout the cycle because we utilize a harmonic oscil-

lator slosh period that is constant irrespective of the spatial

displacements of the wells. Thus as we execute a complete

N-measurement estimation cycle we only alter the double

well displacements via λk but each of the N interferometry-

measurement runs take the same duration of time. This per-

mits us to quote an effective per-root-Hertz precision if we

then repeat the entire estimation cycle many times.

In order obtain this per-root-Hertz precision, we need to

know how long this phase estimation cycle takes. First con-

sider the time τexp for one interferometery run. This consists

of: (i) a qubit reset time τreset to the |1〉 state, (ii) a single

qubit rotation gate time τrot to the |+x〉 state, (iii) coherent

evolution for one period of oscillation τ, (iv) single qubit ro-

tation Û from either the |±x〉 basis or the {(|1〉 + e−iπ/M(K,k)| −
1〉)/
√

2, (eiπ/M(K,k)|1〉 − | − 1〉)/
√

2} basis to the σz basis over a

time τrot, and finally (v) measurement of the qubit for a time

τmeas. To obviate low frequency dephasing noise one could

echo out noisy phases accumulated on off diagonal elements

of the qubit state by inserting two additional steps between

(iii) and (iv): (iiia) flipping the qubit state with a σx gate over

a time τrot, and (iiib) evolving the qubit for a time τ while de-

coupled from the oscillator, and then replacing Û in step (iv)

with the conjugated gate σ̂xÛσ̂x. The total time for one run

including the echo pulse is then

τexp = τreset + 3τrot + 2τ + τmeas. (42)

The total time required for one full phase estimation cycle is

τφ = τexp

K
∑

k=0

M(K, k) =
τexp

2

(

3K2 + 7K + 4
)

. (43)
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This means the per-root-Hertz sensitivity is

∆g

g

∣

∣

∣

p.r.Hz.
=

~ω

20 mglmax

√
τφ

=
~ω

20 mglmax

√

τexp

2

(

3K2 + 7K + 4
)

. (44)

Using (41), in the K ≫ 1 limit we obtain

∆g

g

∣

∣

∣

p.r.Hz.
≈ 1

10α

√

3τexp

2
log2(α), (45)

where

α = 2mglmax/~ω. (46)

So in the final analysis, the precision depends only on the

parameter α, which we want to make as large as possible.

Thus we want a separation l as large as possible, which in

turn means engineering λ to take values as large as possible.

Lowering ωwill also improve precision, but conflicts with our

requirement that one slosh is completed within the coherence

time of the qubit. Longer qubit coherence times would allow

the precision to be improved. Finally, we want to make each

preparation / evolve (slosh) / measure sequence as quick as

possible.

To obtain a quantative estimate of the precision our scheme

can achieve, we assume the system parameters listed in Ta-

ble I. Using (32) we see that with our assumed parame-

ters we require l0 < 0.75 × 10−18 m. This means we have

K = log2 (lmax/l0) = 30.2, indicating that we perform 31 dou-

blings during the phase estimation protocol, increasing our

initial phase from φ0 to 2Kφ0.

We take thickness of the resonator loop wire as a free pa-

rameter to be chosen in fabrication. Changing this parameter

has the effect of changing the mass of the resonator, which

in turn alters the mechanical oscillation frequency. The fre-

quency as a function of wire radius for our assumed system

parameters is plotted as the red curve in Figure 6. Chang-

ing the resonator mass will also change the precision, as it

affects all the parameters ω, λ, z0, and l. The per-root-Hertz

precision as a function of the resonator wire thickness is plot-

ted as the blue curve in Figure 6. This precision compares

favourably with the best free-fall corner cube measurements

(∆g/g = 1.5 × 10−8 Hz−1/2 [13]) and cold atom interferome-

ters (∆g/g = 4.2 × 10−9 Hz−1/2 [15]). We note, however, that

this precision was obtained in the limit of no decoherence; we

will consider the effect of decoherence on our sensitivity in

Section V G.

V. DECOHERENCE

We now review the various potential sources of decoher-

ence and their effects on the performance of the gravimetry

protocol.
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FIG. 6. Mechanical oscillation frequency ω (red) and the per-root-

Hertz sensitivity of our gravimeter in the absence of decoherence

(blue) as a function of the resonator loop wire radius. Increasing the

radius increases the mass of the resonator, which in turn reduces the

oscillation frequency. Sensitivity increases rapidly as the thickness

increases. This is due to a larger radius wire giving the resonator a

larger mass and increasing the oscillation period. This in turn results

in a strong coupling to the gravitional field, and a longer time spent

sampling that field. System parameters are as given in Table I.

A. Quality Factor

In the subsequent discussions we make use of the quality

factor Q of the mechanical oscillations of our resonator. One

usual definition of Q is given by

Q =
~ω2

P
, (47)

where P is the power loss, ω is the oscillation frequency and

~ω is the energy of the system. In our protocol, however,

the resonator is not in the motional ground state — the res-

onator is oscillating back and forth with a large amplitude

(several nanometers). As we begin the interferometry proto-

col (or slosh), with the resonator high up on a potential hill,

we have V(l) = 1
2
mω2l2 where l = λz0/ω is the displacement

from equilibrium, and z0 =
√
~/2mω is the harmonic oscilla-

tor ground state extent. This means for our system we have

V = ~λ2/4ω. Associating this potential energy with the en-

ergy in (47) we obtain

Q ≈ ~λ
2

4P
. (48)

We also note that for all the calculations in this section we use

the system parameters described in Appendix A.

B. Qubit dephasing

The effect of qubit decoherence on the evolution of the

joint qubit-resonator system is solved for in Appendix B. The

main result is that the off diagonal elements of the qubit den-

sity matrix, which carry the gravitationally induced phase
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accumulation, will experience exponential decay by a fac-

tor e−τ/T2 where T2 is the qubit dephasing time. Dephasing

rates vary greatly with the superconducting circuit architec-

ture. Recent experiments with superconducting flux qubits

in 3D microwave cavities have reported decoherence times of

T echo
2
> 19 µs [30], while decoherence times of T echo

2
> 100 µs

have been reported for transmon qubits in 3D cavities [31].

C. Decoherence due to eddy currents in the magnet

As the resonator oscillates, carries currents, and is in close

proximity to the magnetised sphere, it will inductively induce

eddy currents in the sphere, which will result in power loss

as the magnetic material has electrical resistance. In order to

estimate this effect we consider infinitesimal horizontal loops

of radius R′ inside the sphere and placed at a distance h from

the bottom of the sphere. The electromotive force induced in

each of such loops due to the resonator motion is given by

|ǫ | = Ml,s(R
′, h) dIr/dt, where Ml,s is the mutual inductance

between the horizontal loop of the resonator and the horizontal

infinitesimal loop of the sphere.This gives an upper bound on

the power loss as

P ≤
∫

ǫ2

ρ2π
dR′ dh

=

(

µ0

4π

)2 2π3R4
r I2

rω
2

ρ

∫ 2Rs

h=0

dh

∫

√
R2

s−(Rs−h)2

0

dR′
R′3

(r0 + h)6

=

(

µ0

4π

)2 2π3R4
r I2

rω
2

ρ

4R5
s

15r3
0
(r0 + 2Rs)3

, (49)

where r0 is the minimum distance from the bottom of the

sphere to the centre of the resonator, and ρ is the resistivity

of the magnetic material. Our sphere is composed of YIG,

which has ρ = 1012Ωm; we take the Ir to be the largest cur-

rent reached in the resonator (occurring at full displacement),

i.e. Irmax∼ 48 µA. This gives the power loss due to eddy cur-

rents in the YIG sphere as P = 6.2 × 10−38 W, which via (48)

corresponds to a quality factor of Q = ~ω2/P = 3.1 × 1022.

D. Dipole radiation

An oscillating loop carrying current will emit electromag-

netic radiation, dissipating energy from our system. We treat

our resonator loop as a dipole, with a current given by I =

Irmaxeiωt. The power loss of an oscillating dipole due to ra-

diation is given by P = RradI2/2, where Rrad =
π
6

(

Rrω

c

)4
Z,

where Z = 377Ω is the impedance of the vacuum. Us-

ing the parameters in Appendix A we obtain a power loss of

P = 2.5 × 10−41 W, corresponding to Q = 7.5 × 1025.

E. Background gas collisions

In the limit where the mean free path of the gas molecules

is sufficiently large, the damping rate is given by [32]

Γ = 2 ρgas A uav/mg, (50)

where ρgas is the density of the gas, A = 2πRr2a is the cross-

sectional area of the resonator interacting with the gas, mg

is the mass of a gas molecule, and uav =
√

2kBT/mg is the

average velocity of a gas molecule. In order to be in this

limit, the system must have a Knudsen number Kn > 10

[33]. Using the parameters in Appendix A, our system has

Kn∼ 109, far into regime where Eq. (50) is valid. Taking

mg = 3.98 × 10−26 kg (nitrogen molecule), T = 0.1 K, a res-

onator ring radius of 5 µm, a resonator wire radius of 1.0 µm,

and area of A = 6.28 × 10−11 m2, and a pressure of 10−9 Pa,

Eq. (50) yields Γgas = 2.7 × 10−8 Hz and an associated

Q = 9.2 × 1011.

F. Coupling to torsional modes

Coupling of the vertical (z) centre of mass (z−COM) oscil-

lation mode to other bending/twisting/torsional modes of the

resonator also allows energy to leak from the z−COM phonon

mode. Of these alternative motional modes one can consider,

the lowest frequency mode is the torsional mode which has

frequencies

ν =
1

2π

√

EA

2µR2
r

√
1 + n2 , (51)

where n > 0 is the integer valued mode number, A is the

cross sectional area of the wire, µ = ρπa2 is the mass per

unit circumference, and E is the Young’s modulus of the

wire. We take E = 16 × 109 Pa, ρ = 11340 kg/m3 giving

µ = 3.56 × 10−8 kg/m. This gives the lowest frequency mode

as ν = 1.89 × 108 rad/s, which is ∼ 1200 times larger than ω,

indicating cross-coupling to other modes is negligible.

G. Effects of decoherence on the protocol

We now examine the effects of decoherence on the joint

state of the resonator and the qubit as well as the effects of

noise during the qubit preparation and readout stages. We as-

sume a motional damping environment for the resonator and a

damping and dephasing environment for the qubit. These are

the dominant sources of decoherence in the system.

Other error processes include: noisy qubit initialisation in

state |1〉Q, noisy implementation of a qubit unitary rotation Û,

and imperfect measurement. Noisy initialization can be mod-

elled as erroneously preparing a mixed input state by mixing

in the complement to the ideal state with probability pinit de-

scribed by the map: E(init) = (1 − pinit)|1〉〈1| + pinit| − 1〉〈−1|.
A noisy qubit rotation is modelled as a map where with
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probability 1 − prot the correct unitary opaerator Û is ap-

plied and with probabiliy prot the qubit is completely depo-

larized: E(rot)(ρ̂) = (1 − prot)Ûρ̂Û
† + prot12, Noisy measure-

ment is modelled as flipping the qubit with some probability

pmeas before performing a perfect measurement: E(meas)(ρ̂) =

(1 − pmeas)ρ̂ + pmeasσ̂
xρ̂σ̂x. In a spin echo sequence, the qubit

would be coupled to the resonator for a time τ = 2π/ω de-

scribed by the map E(evA), then the coupling would be set to

zero, the qubit would be flipped with a σ̂x gate, and the sys-

tem would freely evolve for a period τ described by the map

E(evB). The composition of all these error processes in a full

spin echo sequence gives a final output measurement of the

desired value of cos(φ) of

〈σ̂x〉 = tr[σ̂xE(meas) ◦ E(rot) ◦ E(evB) ◦ E(rot)

◦E(evA) ◦ E(rot) ◦ E(init)(ρ)]

= f cos(φ).

where we have introduced the cumulative per round fidelity

f = e−4π/ωT2 e−4πΓl2/z2
0
ω(1− 2pinit)(1− prot)

3(1− 2pmeas). (52)

This form for the fidelity is valid when the rotation gate times

and measurement times are small compared to the period of

the resonators oscillation which is usually the case. If not then

the factor e−4π/ωT2 should be replaced by e−τexp/T2 .

To determine the decoherence rate Γ we sum the rates Γi

for resonator damping described above using Γi = ω/2πQi,

with the quality factors {Qi} factors taken from the previous

sections. This gives us Γrad = 3.3 × 10−22 s−1 (dipole radia-

tion); Γeddy = 8.1 × 10−19 s−1 (eddy currents in sphere); and

Γgas = 2.7 × 10−8 s−1 (background gas collisions). Putting

these damping rates into Eq. (B10) yields the following de-

coherence factors after a single resonator oscillation with the

maximum separation:

4πl2max

z2
0
ω
×[Γrad, Γeddy, Γgas]∼ [7.9×10−17, 1.9×10−13, 6.5×10−3],

indicating that collisions with background gas molecules is

the most significant form of amplitude damping. However

even then this damping yields a 99.4% fidelity after a single

oscillation period.

Each stage k of our protocol involves estimating the value

of the phase by estimating the probability the qubit is in state

|M〉, i.e. an estimation of pM = (1 ± cos(φk))/2. Given the

reduced polarisation of the qubit due to errors (Eq. 52), the

procedure is akin to estimating the probability p that a biased

coin lands heads subject to noise such that each observation

gets flipped with probability pnoise = (1 − f )/2. This sce-

nario of estimating the bias of a noisy coin was studied in Ref.

[34] where it was shown that a hedged maximum likelihood

method provides a good estimate of an unknown p given a

known pnoise. The effect of the reduced visibility due to finite

fidelity is to increase the number of measurements per stage,

M(k,K) by a factor of 1/ f 2 in order to keep the same overall

precision of our protocol. Note this multiplicative factor is in-

dependent of the stage k since the the operation time always

involves single sloshes whose period is solely determined by
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FIG. 7. Performance of our gravimeter as a function of the resonator

loop wire radius taking into account current experimental prepara-

tion, readout, and dephasing times. Solid blue line shows per-root-

Hertz precision; dashed blue line shows the time required for a full

∆g/g measurement, taking into account the requirement for more

measurements as fidelity decreases; red dashed line indicates current

best absolute gravimeter precision [15]. In principle precision can be

increased without limit, but at some point long term equipment drift

or the timescale of the phenomenon of interest will become an issue.

For that reason we take a 1 µm resonator wire radius as a plausible

upper limit. System parameters are as given in Table I.

the resonator frequency ω. The overall effect on the precision

is then

∆g

g

∣

∣

∣

p.r.Hz.
=

~ω

10 f mglmax

√

τexp

2

(

3K2 + 7K + 4
)

. (53)

In order to determine the fidelity, we need to know qubit

operation times, qubit error rates, and dephasing time. Re-

cent experiments using superconducting transmon qubits in

three dimensional microwave have shown dephasing times

of T echo
2

= 70 µs, reset times τreset = 3 µs and error rates

preset ≤ 0.005 [31]. All the other operations needed for fault

tolerant quantum computation have been demonstrated with

superconducting qubits as well. In Ref. [35] the following

operation times and errors were reported for transmon qubits:

τrot = 40 ns, τmeas = 4 µs, prot ≤ 0.003, pmeas ≤ 0.09.

Assuming a flux qubit with the same operation times and

using Eq. (52) along with Eq. (42) to obtain τexp, Eq. (53) al-

lows us to determine the ultimate sensitivity of our gravimeter,

taking into account qubit errors, readout and preparation time

and decoherence. The result is plotted in Figure 7 showing

for a resonator wire thickness of 1µm an achievable precision

of
∆g

g

∣

∣

∣

p.r.Hz.
= 2.21 × 10−10 Hz−1/2. Even with the decrease in

fidelity as we increase resonator mass, the per-root-Hertz pre-

cision still increases monotonically with this increase, albeit

at a slower rate than the perfect decoherence-free case shown

in Figure 6.
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VI. CONCLUSION

We have presented a scheme for absolute gravimetry utilis-

ing quantum magnetomechanics and Schrödinger cat states.

The protocol interferometrically measures the differential

gravitational phase accrued between the two heights of a

macroscopic quantum resonator placed into a vertical spatial

superposition. With realistic materials and current reported

values for superconducting qubit coherence times we obtain a

sensitivity of ∆g/g = 2.21 × 10−10 Hz−1/2 for the thickest res-

onator wire we considered, which is over an order of magni-

tude better than the ∆g/g = 4.2×10−9 Hz−1/2 achieved by cur-

rent state-of-the-art absolute gravimeters which rely on atom

interferometry [15]. Furthermore, this sensitivity can be sub-

stantially improved on, primarily by improving the coherence

time of the flux qubit, but also by using lower temperatures

and more complicated magnet-resonator geometries.

Our scheme involves the production a series of Schrödinger

cat states, the largest of which is a superposition of 1.1 ×
10−12 kg masses displaced by ∼ 105 times the width of their

center of mass wave function. While these are very fat cats by

Schrödinger cat standards, the result is that the gravity mea-

surement is made over a distance of only 1.9 × 10−9 m, allow-

ing the technique to probe spacial regions eight orders of mag-

nitude smaller than current schemes involving springs, falling

corner cubes and atom interferometry [36].

The precision is constrained by the dynamic range of the

qubit-resonator coupling parameter, as well as the coherence

time of the qubit. The coupling strength is limited at the low

end by the current noise floor of the qubit, and at the high

end by the critical current value of the qubit and the inhomo-

geneity of the magnetic field of the sphere levitating the res-

onator. We chose a spherical geometry for the magnet as this

allowed analytic results, but there is certainly scope to gen-

erate fields with higher inhomogeneities through more com-

plicated geometries. The noise floor of the qubit is largely

governed by its temperature; we have assumed a temperature

of 0.1 K. Lower temperatures would be challenging but would

proportionally increase sensitivity.

It is likely that improving the dephasing coherence time of

the qubit is the best route to improved sensitivity, as this is

the dominant source of decoherence. Longer coherence times

allow for longer oscillation periods of the resonator which

can easily be arranged by increasing its mass, allowing both a

larger coupling to the gravitation field and a longer time spent

sampling that field over a single oscillation.
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Appendix A: Symbols and values
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TABLE I. System parameters and the values used in the main text for precision gravimetry.

Symbol Value Definition

Φ0 = 2.07 × 10−15 Wb flux quantum

g = 9.81 m s−2 acceleration due to gravity

m = 1.12 × 10−12 kg resonator mass (Pb)

ω/2π = 24.8 kHz resonator frequency

z0 = 1.74 × 10−14 m ground state rms width of resonator

Rq = 5 µm radius of qubit loop

Rr = 5 µm radius of resonator ring

Rsphere = 10 µm radius of magnetized sphere

a = 1.0 µm radius of resonator wire

d = 2.0 µm distance between resonator centre of mass and qubit

r0 = 1 µm minimum distance from sphere surface to centre of mass of resonator

zeq = 11 µm equilibrium position of resonator

V = 4.19 × 10−15 m3 volume of magnetised sphere

M = 8.76 × 102 A m−1 magnetisation of YIG sphere

ρ = 1012Ωm resistivity of magnetised sphere made of YIG

lmax = 9.5 × 10−10 m largest size of Schrödinger cat

λmax/2π = 1.35 GHz maximum qubit-resonator coupling

λ0/2π = 0.63 Hz minimum qubit-resonator coupling

Lr = 2.25 × 10−11 H resonator self inductance

Lq = 1.38 × 10−11 H qubit self inductance

Mrq = 6.75 × 10−12 H mutual inductance between resonator and qubit

ωq/2π = 6 GHz qubit energy level splitting

Φ = 2.37 × 10−12 Wb flux through the resonator

Tq = 100 mK temperature of qubit system

Iqmax = 75 µA maximum current in qubit

Iq0 = 3.5 × 10−14 A minimum current in qubit

Irmax = 48 µA maximum current in resonator

τexp = 87.8 µs time for one complete prepare / evolve / measure run

τc = 70 µs coherence time of the qubit

T1 = 70 µs qubit T1 coherence time

T2 = 70 µs qubit T2 coherence time

Γgas/2π = 2.7 × 10−8 Hz resonator amplitude damping rate due to background gas collisions

Γeddy/2π = 8.1 × 10−19 Hz resonator amplitude damping rate due to induced eddy current losses

Γrad/2π = 3.3 × 10−22 Hz resonator amplitude damping rate due to magnetic dipole radiation

Appendix B: Open System Dynamics

The open systems dynamics of the joint qubit-resonator

system is given by the master equation

˙̂ρ(t) = L̂(ρ(t)) (B1)

with the Louivillian

L̂ = − i

~
[Ĥ, ρ(t)] + L̂r + L̂q.

Free evolution is governed by the Hamiltonian

Ĥ =
~ωq

2
σ̂z +

p̂2

2m
+

1

2
mω2 (ẑ + lσ̂z)

2 − mglσ̂z,

and amplitude damping of the resonator and amplitude and

phase damping of the qubit are described by:

L̂r =
Γ

2
D̂[â]

L̂q =
Γ⊥
2

(Nq + 1)D̂[σ̂−] +
Γ⊥
2

NqD̂[σ̂+] +
Γ‖

4
D̂[σ̂z] ,

(B2)

with the map D̂ defined as

D̂[Ô](ρ̂) ≡ 2Ôρ̂Ô† − {Ô†Ô, ρ̂}.

The equilibrium phonon occupation of the qubit environment

is Nq = (e−~ωq/kBTq − 1)−1 where Tq is the qubit phonon

bath temperature. The decay rates are related to the usual

decoherence times according to T−1
1
≡ Γ⊥(2Nq + 1) and
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T−1
2
≡ T−1

1
/2 + Γ‖. We treat the environment of the resonator

as zero temperature meaning the resonator only loses energy

to the environment. This is justified as it is not clamped to any

material and we assume the surrounding cavity is in the elec-

tromagnetic vacuum state. Any temperature dependence of

damping due to background gas collisions can be encorpeated

into the value of damping rate Γgas as described in Sec. V E.

At each measurement run, the joint state of the qubit and

resonator is prepared in the initial state

ρ̂(0) =
1

2













1 1

1 1













q

⊗ |0〉r〈0| , (B3)

where |0〉r is the motional ground state of the resonator. At

this point we can make some simplifications. We are inter-

ested in obtaining a worst case scaling for the decoherence of

our protocol which would occur when the size of the initial

Schrödinger cat state is largest, i.e. l = lmax. The time evo-

lution is only over one period of oscillation τ = 2π/ω of the

resonator and we assume that Γ⊥,Γ‖ < ω and Γ ≪ ω. It is con-

venient to divide the Louivillian into two parts: L̂ = L̂1 + L̂2:

L̂1 = −
i

~
[Ĥ, ·] + L̂r +

Γ‖

4
D[σ̂z]

and

L̂2 =
Γ⊥
2

(Nq + 1)D[σ̂−] +
Γ⊥
2

NqD[σ̂+]

During evolution by L̂1, the operator σ̂z is a conserved quan-

tity and we can solve for the joint evolution of the qubit and

resonator exactly. Evolution by L̂2 describes pure amplitude

damping of the qubit. We then approximate the evolution of

the system over one resonator oscillation period τ as the com-

position of maps:

E(evA)(ρ̂(0)) ≡ eL̂τ(ρ̂(0)) ≈ eL̂2τ ◦ eL̂1τ(ρ̂(0)).

We first consider evolution by L̂1. The qubit dephasing

simply introduces decay of off diagonal qubit states. Damping

maps coherent states to coherent states and since we begin in

a superposition of coherent states, at any time t we can write

the joint state in the interaction picture ρ̂I(t) = eiĤtρ̂e−iĤt as

ρ̂I(t) =

1
∑

M,M′=−1

cM,M′e
− γQ

2
|M−M′ |t |M〉〈M′| ⊗ Â

M,M′

I
(t),

where the eigenbasis of σ̂z is |M = ±1〉 and

Â
M,M′

I
(t) = |αM

I (t)〉〈βM′

I (t)| .
To derive the evolution during decay we use the characteristic

function

X(t) = TrR[AM,M′

I
(t)eΛâ

†
I e−Λ

∗âI ] ,

where the trace is taken over the resonator’s motional degree

of freedom such that

Ẋ(t) = TrR[ ˙̂AM,M′

I
(t)eΛâ

†
I e−Λ

∗âI ]

= ΓTrF[(âI Â
M,M′

I
(t)â

†
I

− 1

2
â
†
I
âI Â

M,M′

I
(t) − 1

2
Â

M,M′

I
(t)â

†
I
âI)e

Λâ
†
I e−Λ

∗âI ] .

Using the relations

e−Λ
∗ââ† = (â† − Λ∗)e−Λ∗â, âeΛâ† = eΛâ† (â + Λ) ,

we obtain

Ẋ = −Γ
2

(

Λ∗
∂X̂

∂Λ∗
+ Λ
∂X̂

∂Λ

)

= −Γ
2

(

βM′∗
I (t)Λ − αM

I (t)Λ∗
)

X . (B4)

To solve for the dynamics, we make the ansatz:

X(t) = Ce−λ
∗αM

I
(t)eλβ

M′∗
I

(t) . (B5)

From the reflection symmetry of the state dependent traps, the

magnitudes of the coherent states correlated with the qubit

states are equal at all time so we can write βM′

I
(t) = αM′

I
(t).

Evaluating the time derivative of X(t) and setting this equal to

Eq. (B4) we have

αM
I (t) = (e−Γt/2 + 1)

λM

2ω
.

This solution simply reflects the fact that the initial coherent

state for the spatially localised oscillator with mean position

gz0/ω
2 is a displaced coherent state with respect to the poten-

tial minimum with respect to qubit state M of the Hamiltonian

Ĥ. Using the characteristic equation we can write

X(t) = TrR[AM,M′

I
(t)eΛâ

†
I e−Λ

∗âI ] = TrR[AM,M′

I
(0)eΛâ

†
I
(t)e−Λ

∗âI (t)] .

The diagonal terms evolve as

eL̂r t[|αM
I (0)〉〈αM

I (0)|] = |αM
I (t)〉〈αM

I (t)| .

The off-diagonal terms evolve as

eL̂r t[|αM
I (0)〉〈α−M

I (0)|]
= |αM

I (t)〉〈α−M
I (t)| 〈αM′

I (0)|αM
I (0)〉1−e−Γt

= |αM
I (t)〉〈α−M

I (t)| exp[−1

2
(|αM

I (0)|2 + |α−M
I (0)|2

− 2αM
I (0)αM′∗

I (0)]1−e−Γt

= |αM
I (t)〉〈α−M

I (t)| exp[−2λ2/ω2]1−e−Γt .

(B6)

Transforming back to the Schrödinger picture, the state

written explictly in the qubit basis is:

ρ̂(t) =
1

2













|α1(t)〉〈α1(t)| eicteκ(t)|α1(t)〉〈α−1(t)|
e−icteκ(t)|α−1(t)〉〈α1(t)| |α−1(t)〉〈α−1(t)|













Q

,

(B7)

where

|αM(t)〉 = |(1 + e−Γt/2eiωt)λM/2ω〉 ,

the coherently evolved phase is

c = 2mgl/~ − ωq ,
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and

eκ(t) = exp[−2λ2/ω2]1−e−Γt e−Γ‖t .

We seek a form for the joint state after one oscillation period

τ = 2π/ω. Since 2πΓ/ω = Q−1 ≪ 1, we can approximate

αM(2π/ω) ≈ αM(0) and 1 − e−Γ2π/ω ≈ Γτ, so that

eL̂1τ(ρ̂(0)) =
1

2













1 eiφe−(Γ‖+γ)τ

e−iφe−(Γ‖+γ)2π/ω 1













q

⊗ |0〉r〈0| ,

(B8)

where the coherent phase is

φ =
2π

ω
(2mgl/~ − ωq) , (B9)

and the decoherence is governed by the factor

γ =
2Γl2

z2
0

. (B10)

As expected, the dephasing grows with the square of the cat

state separation.

Evolution according to L̂2 is a map that acts only on the

qubit and can be solved for explicitly giving

E(evA)(ρ̂(0)) ≈












T1Γ⊥(1 + Nq − e−τ/T1

2
) 1

2
eiφe−γτe−τ/T2

1
2
e−iφe−γτe−τ/T2 T1Γ⊥(Nq +

e−τ/T1

2
)













q

⊗|0〉r〈0| ,
(B11)

Appendix C: Transverse trapping

When considering the horizontal movement of the res-

onator we break the cylindrical symmetry, meaning it is eas-

ier to work in Cartesian coordinates. We find the mag-

netic vector potential and field of the magnetic sphere to be

A(r) = µ0MV (x2 + y2 + z2)−3/2 [−y, x, 0]/4π, and B(r) =

µ0MV (x2 + y2 + z2)−5/2 [−3xz, 3yz, x2 + y2 − 2z2]/4π. Due

to the coordinate system, rather than a circular resonator, we

consider a square resonator of width 2w, and wire radius a,

and assume it is displaced sideways along the x−axis a small

amount δx. We can calculate the flux through the resonator

at this position via Eq. (1), and expand the result in a Taylor

series in δx. To third order we get

Φ(δx) =
2µ0w2M

π(w2 + z2)
√

2w2 + z2

+
µ0w2MV(5w6 − 11w4z2 − 18w2z4 − 6z6)

π(w2 + z2)3(2w2 + z2)5/2
δx2

+O[δx4] . (C1)

The zeroth-order term is a constant for motion along the

x−direction and can be ignored. Using (2) modified for

x−directional motion we obtain the dependence of the induced

current on δx,

I(δx) = − wMV(5w6 − 11w4z2 − 18w2z4 − 6z6)

4(w2 + z2)3(2w2 + z2)5/2(log[2w/a] − 0.774)
δx2 ,

(C2)

where we have used the fact that self-inductance of a square

loop is L = 2µ0w(log[w/a] − 0.774)/π. Using the Lorentz

force law as in the previous section, we can integrate the loop

current in the presence of the magnetic field and obtain the

resulting force. Renaming the small displacements δx∼ x and

similarly for y, z from the equilibrium point (0, 0, zeq), we find

that to lowest order the x−component of this force Fx = −β x3,

β > 0, and at equilibrium the resonator is transversely trapped

in a pure anharmonic potential. As these forces come from a

conservative potential we can integrate along paths to obtain

the leading terms for the potential of the system

V =
1

2
mω2z2 +

1

3
γ(x2 + y2)z +

1

4
β(x4 + y4) , (C3)

which describes a type of cross-mode coupling. For pa-

rameters described in Appendix A we find (mω2/2, γ, β) =

(1.73 × 10−2 J, 1.98 × 103 Jm−1, 2.65 × 108 Jm−2).
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