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Abstract

By mapping a Hubbard-like model describing a two-component polymer in the presence of strong

enough electron-phonon interactions (κ) onto the system of two coupled nonlinear Schrödinger

equations with U(2) symmetry group, some nontrivial correlations between topological solitons

mediated charge Q and spin S degrees of freedom are obtained. Namely, in addition to a charge

fractionalization and reentrant like behavior of both Q(κ) and S(κ), the model also predicts

a decrease of soliton velocity with κ as well as spin-charge conversion effects which manifest

themselves through an explicit S(Q,Ω) dependence (with Ω being a mixing angle between

spin-up and spin-down electron amplitudes). A possibility to observe the predicted effects in

low-dimensional systems with charge and spin soliton carriers is discussed.
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INTRODUCTION

In an attempt to better understand the underlying transport mechanisms in conduct-

ing polymers, based on the Su-Schrieffer-Heeger (SSH) model and its modifications [1–8],

some extensive numerical simulations have been carried out in recent years (see, e.g., [9–11]

and further references therein). In particular, Förner et al. [9] confirmed that, at the self-

consistent field level, the soliton velocity decreases with the inclusion of electron-electron

interactions into the conventional SSH calculations. At the same time, recently performed

thorough analysis by Ma and Schollwöck [11] on the relationship between electron-electron

interactions and charged soliton transport in conjugated polymers under the influence of

an external time-dependent electric field revealed that the dependence of the stationary ve-

locity of a charged soliton on the on-site Coulomb interactions U and the nearest-neighbor

interactions V is due to the extent of delocalization of the charged soliton defect.

Besides, some novel phenomena have been observed or predicted to occur in nodal antifer-

romagnetic insulators (with spin-charge-separated solitons, which are similar to that in the

quasi one-dimensional conductor polyacetylene) and other low-dimensional physical systems

with nontrivial topology, including charge and spin fractionalization phenomena, doping

mediated boson-fermion mutations of mobile half skyrmion quasiparticles, etc [12–19].

On the other hand, recent experimental and theoretical results on charge-spin exchange

effects in quasi-1D organic charge transfer salts have re-kindled the interest to their un-

usual transport properties [20] which in many respects resemble the behavior of conducting

polymers.

In this paper we consider the influence of electron-phonon interactions on soliton medi-

ated spin-charge correlation effects within a tight-binding approximation of the SSH-based

extended Hubbard Hamiltonian describing a two-component polymer. First, we show that

treating electron correlations on the ground state only allows to map the microscopic model

onto the system of two coupled nonlinear Schrödinger equations (NLSE) with U(2) symmetry

group (which is known to describe many different phenomena, including ”dark” solitons in

self-focusing media [21], two-component Bose gas with repulsion [22], etc). Next, we obtain

exact topological soliton solutions (kinks) of NLSE corresponding to non-trivial boundary

conditions. And finally, we discuss the charge Q and spin S properties of the obtained solu-

tions. In particular, we shall demonstrate that in addition to a reentrant like dependence of
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both Q and S on electron-phonon coupling parameter κ and decrease of soliton velocity with

κ, the model also predicts a charge fractionalization as well as some interesting spin-charge

exchange (conversion) effects.

THE MODEL

Let us consider a modified Hubbard model (based on the SSH Hamiltonian) describing

a two-component polymer (with two magnetic sublattices, A and B) in the presence of

strong enough electron-phonon interactions. The effective Hamiltonian of the system under

consideration can be cast into the following form (Cf. [22]):

H = He +Hph +He−ph (1)

where

He = −t0
∑

nσ

(

c+Anσ c
B
n+1σ + c+Bnσ c

A
n+1σ + h.c.

)

+
U

2

∑

a=A,B

∑

nσ

nanσn
a
n−σ (2)

Hph =
M

2

∑

n

Ṙ2

n +
α

2

∑

n

(Rn+1 −Rn)
2 (3)

and

He−ph = I
∑

nσ

(un+1 − un)
(

c+Anσ c
B
n+1σ + c+Bnσ c

A
n+1σ + h.c.

)

(4)

Here, c+nσ(cnσ) is the creation (annihilation) operator of π-electron with spin σ in a Wan-

nier state of the n-th atom, t0 is the hopping integral between nearest neighbors, U is the

repulsive interaction between electrons of the same atom, M is the mass of a monomer, α

is the elastic constant, Rn = Rn0 + un is the position of the n-th atom (with un being the

deviation from its equilibrium position Rn0), n
A
nσ = c+Anσ c

A
nσ is the number operator, and I is

the amplitude of electron-phonon interactions.

The Heisenberg equations of motion for cAnσ(t) read:

ih̄ċAiσ =
[

cAiσ,H
]

= UcAiσn
A
i−σ + [t0 + I(ui − ui+1)] c

B
i+1σ + [t0 + I(ui−1 − ui)] c

B
i−1σ (5)

By introducing properly defined ground state |0 > for the problem at hand, we can map

the above operator equations onto their c-number counterparts on wave function amplitudes

φiσ =< 0|ciσ|0 > (assuming a standard products decoupling procedure [22]) which obey the

conventional Hamilton equations of motion:

ih̄φ̇A,Bjσ = UφA,Bjσ |φA,Bj−σ|2 + [t0 + I(uj − uj+1)]φ
B,A
j+1σ + [t0 + I(uj−1 − uj)]φ

B,A
j−1σ (6)
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As usual, these equations should be completed by the lattice vibrations:

MR̈j = α(Rj+1 − 2Rj +Rj−1) + I
∑

σ

[φ∗A
jσ (φ

A
j+1σ − φAj−1σ) + φ∗B

jσ (φ
B
j+1σ − φBj−1σ) + c.c.] (7)

Let us consider a continuous approximation of the initial discrete model (1) when the

lattice parameter a→ 0. In this approximation we have:

Rj±1 → u(x, t)± aux(x, t) +
a2

2
uxx(x, t) + ..., (8)

φj±1σ → φσ(x, t)± aφσx(x, t) +
a2

2
φσxx(x, t) + ...

In such a way, the equations of motion (6) and (7) become:

ih̄φ̇A,Bσ = UφA,Bσ |φA,B−σ |2 + 2 (t0 − Iaux)φ
B,A
σ +

a2

2
φB,Aσxx (9)

and

Mü = αa2uxx + 2Ia
∑

σ

∂

∂x

(

|φAσ |2 + |φBσ |2
)

(10)

To emphasize the role of the electron-phonon interaction in the charge transfer mecha-

nism, we neglect the Coulomb repulsion of electrons (assuming U ≪ t0), taking electron

correlations on the level of the ground state only. In particular, for the antiferromagnetic

ground state, this leads to the constraint φB−σ = φAσ ≡ φσ. Furthermore, keeping in mind

only wave-like solutions for both electron amplitudes φσ(z) and displacement field u(z) with

z = x− vt, the first integral of Eq.(10) reads:

uz + 2Iad
∑

σ

V (φσ) = C (11)

where V (φσ) = |φσ|2 + |φ−σ|2, d−1 ≡ αa2 −Mv2, C is the integration constant (see below),

and σ = (↑, ↓).
In view of this result, Eq.(9) produces the Hartree-Fock (HF) type system with the self-

consistent potential:

ih̄φ̇σ + a2Tφ
′′

−σ +

[

2T − 4I2a2d
∑

σ

V (φσ)

]

φ−σ = 0 (12)

where T = CIa− t0 > 0.

Finally, introducing the spin mixture amplitudes Φ±(x, t) = φ↑±φ↓, we obtain the system

of two coupled nonlinear equations:

ih̄Φ̇+ + a2TΦ
′′

+ − 2
[

−T + I2a2dV (Φ±)
]

Φ+ = 0

ih̄Φ̇− − a2TΦ
′′

− + 2
[

−T + I2a2dV (Φ±)
]

Φ− = 0 (13)
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with V (Φ±) = |Φ+|2+ |Φ−|2 which can be readily cast into the canonical form of the U(2)

NLSE model [21–23]:

iψ1t̃ + ψ1x̃x̃ − 2(|ψ1|2 + |ψ2|2 − ρ2)ψ1 = 0

iψ2t̃ + ψ2x̃x̃ − 2(|ψ1|2 + |ψ2|2 − ρ2)ψ2 = 0 (14)

with ψ1 ≡ Φ+, ψ2 ≡ Φ∗
−, κ = I2a2d/T , and ρ2 = 2

κ
. Hereafter, x̃ =

√

κ
2a2
x and t̃ =

(

Tκ
2h̄

)

t

stand for dimensionless space-time variables.

By introducing a two-component vector ψ(x, t) =
(

ψ1

ψ2

)

, we can rewrite the system (14)

in the compact form

iψt + ψxx − 2[(ψ̄ψ)− ρ2]ψ = 0 (15)

with an explicit U(2) inner product (ψ̄ψ) ≡ |ψ1|2 + |ψ2|2. It can be easily verified that

Eq.(15) is generated by the Hamiltonian H = ψ̄xψx+(ψ̄ψ−ρ2)2. Thus, any transformations

ψ′ = Rψ of the vector ψ which conserve the inner product (ψ̄′ψ′) = (ψ̄ψ) are the symmetry

transformations of the system because they will also conserve the Hamiltonian H and will

not change Eq.(15). In our particular case, U(2) symmetry describes intrinsic degrees of

freedom with a possibility of mixing between spin-up and spin-down electron amplitudes.

To study the evolution of the system from the antiferromagnetic ground state, it is natural

to consider the non-vanishing (that is constant at both limits) boundary conditions

lim
x→±∞

ψ(x, t) = ψ±, lim
x→±∞

ψx(x, t) = 0 (16)

leading to (ψ̄+ψ+) = (ψ̄−ψ−) = ρ2.

RESULTS AND DISCUSSION

Turning to the analysis of the above-obtained U(2) NLSE system describing transport

properties of the original Hubbard model, notice first of all that it is electron-phonon inter-

action I which is actually responsible for nonlinear character of the dynamics. Indeed, as

it can be easily verified, the system (16) possesses the kink (topological or ”dark” soliton)

type solution [21–23]:
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ψ(x, t) = ψ+

(

λ− iν tanh νz

λ− iν

)

(17)

where z = x̃ − 2λt̃ with νz ≡ γ(x − vt). The dimensionless spectral parameters λ and

ν obey the boundary conditions imposed constraint λ2 + ν2 = ρ2 and are related to the

decaying length γ and kink velocity v as follows, ν = γa and λ = v/v0 (with v0 = 2aT/h̄

being some characteristic velocity).

Before we proceed any further, let us briefly discuss the ground state properties of the

system (16) whose energy is given by E =
∫

+∞
−∞ dx[ψ̄xψx+ (ψ̄ψ− ρ2)2]. It can be shown [24]

that a trivial ”vacuum” solution with ψv = 0 is unstable under the assumed boundary

conditions. Instead, a stable ground-state solution of this model (which has a zero energy)

is given by ”condensate” amplitudes (with a constant density ρ which is related to the

electron-phonon coupling constant κ within our model as ρ =
√

2

κ
): ψ1c = 1√

2
ρeiθ1 and

ψ2c =
1√
2
ρeiθ2 (where θ1,2 are constant phases). In turn, using the method of Ref. [24], it can

be also demonstrated that the above-introduced kink solution is a stable excitation (based

on the ”condensate” background) for all velocities and has the energy EK = 2

3
(1 + 2

κ
)ν3.

Besides, it is worthwhile to mention that the U(2) NLSE model with non-vanishing boundary

conditions is an integrable system [25] which is another confirmation of the soliton stability.

Let us return now to the initial physical model of this paper and discuss the above-

obtained exact results in terms of electron amplitudes. Performing step by step a series of

transforms, from Eq.(17) we obtain finally:

φ↑(z) = φ+↑

(

1− ν2e−νz

ρ2 cosh νz

)

+ iφ+↓

(

λνe−νz

ρ2 cosh νz

)

(18)

and

φ↓(z) = φ+↓

(

1− ν2e−νz

ρ2 cosh νz

)

+ iφ+↑

(

λνe−νz

ρ2 cosh νz

)

(19)

for spin-up and spin-down kink-type state amplitudes, respectively.

In turn, the above amplitudes contribute to the formation of kink-mediated charge-

density-wave (CDW)

n(z) = |φ↑|2 + |φ↓|2 = n0

(

λ2 + ν2 tanh2 νz

ρ2

)

(20)
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and spin-density-wave (SDW)

µ(z) = |φ↑|2 − |φ↓|2 = µ0

(

λ2 + ν2 tanh2 νz

ρ2
− 2λ2ν2e−2νz

ρ4 cosh2 νz

)

(21)

+ 2λνµ1e
−νz

(

λ2 cosh νz + ν2 sinh νz

ρ4 cosh2 νz

)

sinΩ

local profiles, where

n0 = lim
z→+∞

n(z) = |φ+↑|2 + |φ+↓|2 (22)

µ0 = lim
z→+∞

µ(z) = |φ+↑|2 − |φ+↓|2

µ1 = 2|φ+↑||φ+↓| =
√

n2
0 − µ2

0

and Ω = arg φ+↑ − arg φ+↓ is the mixing angle.

The evolution of the local profiles of kink mediated CDW and SDW with electron-phonon

constant κ (for λ = 1 and Ω = 0) is shown in Fig.1 and Fig.2, respectively (recall that

ν =
√
ρ2 − λ2 with ρ2 = 2

κ
).

Furthermore, based on the above local densities, n(z) and µ(z), it is natural to introduce

the kink-carrying net topological charge

Q = Q0

∫

+∞

−∞
dz

[

n(z)− n0

n0

]

= −2ν

ρ2
Q0 (23)

and spin

S =
∫

+∞

−∞
dz

[

µ(z)

µ0

]

=
2ν(λ2 − ν2)

ρ4
+

4λν2

ρ4
f(p,Ω) (24)

Here, f(p,Ω) =
√

(1− p2)/p2 sinΩ with p = µ0/n0 = (|φ+↑|2−|φ+↓|2)/(|φ+↑|2+|φ+↓|2) being
an effective spin polarization.

The analysis of the above expressions reveals that both charge Q and spin S depend on

electron-phonon constant κ, namely

q(κ) ≡ Q(κ)

Q0

= −
√
2κ− λ2κ2 (25)

and

S(κ) = (λ2κ− 1)
√
2κ− λ2κ2 − λκ(λ2κ− 2)f(p,Ω) (26)

The dependence of q = Q/Q0 on κ for different values of kink velocity λ = v/v0 is shown in

Fig.3. Notice its reentrant behavior with minima corresponding to fractional charge values.
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FIG. 1: The dependence of the local profile of kink mediated CDW on electron-phonon constant

κ for λ = 1.
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FIG. 2: The dependence of the local profile of kink mediated SDW on electron-phonon constant κ

for λ = 1 and Ω = 0.
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κ
FIG. 3: The dependence of topological charge q on electron-phonon constant κ for different values

of kink velocity λ.

In turn, Fig.4 depicts evolution of the effective spin S with κ for different values of λ with

polarization p = 0.5 and mixing angle Ω = π
2
.

Moreover, by combining Eqs.(25) and (26) and treating the mixing angle Ω as a random

variable, we observe that kink mediated charge q and spin S degrees of freedom are actually

interdependent. More precisely, spin can be presented as a function of charge:

S(q,Ω) = Sav(q) + Sfl(q) sinΩ (27)
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FIG. 4: The dependence of topological spin S on electron-phonon constant κ for different values

of kink velocity λ (for Ω = π
2
and p = 0.5).

where

Sav(q) ≡< S >=
∫

2π

0

S(q,Ω)dΩ = q

(

Π2

1−
√
1− Π2

− 1

)

(28)

and

Sfl(q) ≡
√
< S2 > − < S >2 = qΠ









√

2
(

1−
√
1− Π2

)

− Π2

1−
√
1− Π2









f
(

p,
π

2

)

(29)

stand for an average and fluctuation contributions to S(q) dependence, respectively. Here,

Π ≡ qλ.

Notice that the average contribution < S > as a function of kink charge q (shown in Fig.5
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FIG. 5: The dependence of average kink spin < S > on kink charge q for different values of kink

velocity λ.

for different values of the kink velocity λ) exhibits some nontrivial behavior with a spinless

state (< S >= 0) corresponding to fractional values of the effective charge (q = 1

4
and 1

2
).

At the same time, it is important to point out that the fluctuation contribution Sfl strongly

depends on effective polarization p and completely disappears for totally polarized carriers

(that is Sfl(p = 1) = 0).

As for the soliton charge Q, due to its independence from the mixing angle, there are no

charge fluctuations (sinceQav ≡< Q >= Q, < Q2 >= Q2, and Qfl ≡
√
< Q2 > − < Q >2 =

0).
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FIG. 6: The dependence of the local profile of kink mediated displacement field on electron-phonon

constant κ (for λ = 1 and Ω = 0).

Besides, in view of Eq.(11), kink electron amplitudes (18) and (19) also participate in

formation of angle-dependent kink-mediated lattice displacement field

u(z) = u∞ tanh νz cosΩ (30)

where u∞ = Cν/ρ2 with C = 2Iad being the integration constant introduced earlier in

Eq.(11). Notice that the above displacement field u is created by the same electron-phonon

interaction I (recall that ν =
√
ρ2 − λ2 with ρ2 = 2

κ
and κ ∝ I2) which is responsible for

nonlinear electron transport behavior within this model. The evolution of the local profile

of kink mediated displacement field u(z) with κ (for λ = 1 and Ω = 0) is shown in Fig.6.

Notice also that (contrary to the soliton charge Q) the averaged over the mixing angle

Ω displacement field has a zero mean value uav(z) ≡< u >= 0 with a possibility of lattice

fluctuations ufl(z) ≡
√
< u2 > − < u >2 = 1

2
u∞ tanh νz. Furthermore, by rewriting Eq.(21)

in the form of Eq.(27), that is µ(z) = µav(z)+µfl(z) sinΩ, we arrive at the following scaling

relation between kink mediated CDW, SDW and displacement field:
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[

µ(z)− µav(z)

µfl(z)

]2

+

[

u(z)

ufl(z)

]2

=

[

n(z)

nav(z)

]2

(31)

Let us estimate now the main parameters of the model using some typical experimen-

tal values. Notice in this respect that in the adiabatic approximation (αa2 ≫ Mv2) we

have d−1 ≃ αa2 resulting in κ ≃ I2/αT for the electron-phonon coupling constant with

κ dependent transition amplitude T = CIa − t0 ≃ (2I2ρ2/α) − t0 ≃ 2ρ2Tκ − t0. Given

ρ2 = 2/κ, this leads to the following modification of the bare amplitude t0 in our model:

T ≃ t0/(2κρ
2 − 1) ≃ t0/3. Recall that in the limit of weak electron-phonon coupling [26],

T ≃ t0, κ ≃ I2/αt0 and v0 ≃ 2at0/h̄. Moreover, assuming [8] t0 = 2.5eV , I = 4eV/Å,

a = 1.2Å, and α = 20eV/Å2 for hopping integral, electron-phonon, lattice and power

constants, we obtain κ = I2/αT ≃ 0.5 and v0 = 2aT h̄ ≃ 104m/s for estimates of the

electron-phonon coupling constant and characteristic kink velocity within our model, re-

spectively. Hence, like electron-electron correlations [11], electron-phonon interactions also

result in decreasing of the soliton velocity v = λv0, making it even harder to observe soliton

motion in conjugated polymers [3, 8]. Notice that the maximum value of the dimension-

less electron-phonon parameter κm = 2 (allowed by the model considered here) corresponds

to Im =
√

2αt0/3 ≃ 6eV/Å. This value is quite typical for many realistic low-dimensional

conducting materials, providing thus an optimistic possibility for experimental verification

of the predicted here interesting charge-spin conversion effects.

And finally, some discussion is in order regarding the relationship between the classical

SSH model and its two-component vector generalization considered here. First of all, the

ground state of our vector model is quite different from the classical case of the so-called

degenerate ground-state (DGS) polymers considered in the original SSH model. The latter

is known [1] to support topological soliton excitations (given by either neutral spin-1
2
or

charged spinless states) in the form of a domain wall separating the two DGS structures.

Recall that the continuum version of the original SSH model [26] is mapped onto a Dirac

type Hamiltonian which preserves the electron-hole symmetry of the original discrete SSH

model, leading thus to a ”relativistic” energy spectrum and very distinctive ground state

(with mutually exclusive CDW and SDW configurations). At the same time, a continuum

limit of the vector model presented here results in a Schrödinger Hamiltonian with ”non-

relativistic” spectrum which does not explicitly preserve the electron-hole symmetry of the

original discrete model. Instead, the resulting system (14) possesses a new degree of freedom
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(given by a mixing angle Ω) which triggers the interference effects between spin-up (φ+↑)

and spin-down (φ+↓) electron amplitudes.

Turning to the influence of the HF approximation on the soliton type structure of the

resulting continuum system (14), it is instructive to observe that, within continuum ap-

proximation, a topological nature of soliton excitation is a result of assumed non-vanishing

”condensate” type boundary conditions (with ρ2 ∝ κ−1 ̸= 0) imposed on the solution of

Eq.(14) rather than a direct consequence of the HF approximation itself. Indeed, it can

be easily verified (see [21–23] for discussion) that for substantially depleted ”condensate”

(when ρ2 ∝ κ−1 → 0), kink solution (also known as a ”dark” soliton) becomes unstable

prompting the system (14) to choose a more stable conventional (non-topological) soliton

solution of the localized type (also known as a ”bright” soliton). Thus, based on the results

of the present investigation, we can conclude that (i) a stronger electron-phonon interaction

should result in a stronger localization of the soliton excitation, and (ii) a long-range order

of the SDW within the HF approximation is a consequence of a rather weak electron-phonon

coupling constant κ leading to strong ”condensate” effects of the topological soliton (with

ρ2 ∝ κ−1 ̸= 0).

In conclusion, within a tight-binding approximation, the influence of electron-phonon in-

teractions on soliton-like excitations in two-component extended Hubbard model was stud-

ied. By mapping the original model onto the system of two coupled nonlinear Schrödinger

equations with U(2) symmetry group, some interesting correlations between soliton medi-

ated charge Q and spin S degrees of freedom were obtained.
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