
Physica 137A (1986) 282-294 
North-Holland, Amsterdam 

N O N L I N E A R  or -MODELS W I T H  N O N C O M P A C T  S Y M M E T R Y  

GROUP IN THE THEORY OF A NEARLY IDEAL BOSE GAS 

O . K .  P A S H A E V  and  S . A .  S E R G E E N K O V  

Joint Institute for Nuclear Research, Dubna, USSR 

Received 5 November 1985 

A classical version of the Heisenberg spin model on the noncompact SU(1, 1)/U(1) manifold is 
constructed which is gauge equivalent to the NLSE. It is found that the gauge transformations 
generated by the Jost solutions to the NLSE linear problem allows one to obtain solutions of 
the appropriate tr-model. Spin-wave and soliton solutions and related energy, momentum and 
magnetization integrals are found. The spin-waves describe a precession motion on the pseudo- 
sphere S TM with the Bogolubov frequency, and the soliton solution describes a deviation from the 
precession motion plane. The soliton excitation spectrum when condensate density vanishes is 
reduced to that of the 0(3) Heisenberg ferromagnet. In the case of unlimited length of the 
magnetization vector the first one gives rise to the hole excitation spectrum of an antiferromagnet, and 
magnetizations related to the upper and lower sheets of the hyperboloid compensate each other. 

The investigation has been performed at the Laboratory of Computing Techniques and 
Automation, JINR. 

1. Introduction 

The  use of  sigma models  with field values on n o n c o m p a c t  manifolds  has 

a t t rac ted  much  interest  recently1).  Such models  arise in field theories  of  
• 3 

gravity 2) and ex tended  supergravl ty  ), in the A n d e r s o n  localization p rob lem 4) 

and in string modelsS).  It  is well k n o w n  that  the classical He i senberg  fe r romag-  

net  mode l  in the con t inuum limit can be fo rmula ted  in the fo rm of  a nonl inear  

0 ( 3 )  o--model6).  The  ques t ion  arises: if the He isenberg  model  on n o n c o m p a c t  

manifolds  is considered,  to which physical mode l  may  it be re la ted? O n e  can 

study this p rob lem in one  dimension,  when  the isotropic He isenberg  mode l  

becomes  the integrable systemT). As  is well known,  the classical integrable 

systems may  be m a p p e d  into the q u a n t u m  ones  which are exactly solvable via the 

q u a n t u m  spectral  t ransform.  M o r e o v e r ,  there  exists a gauge equivalence 

be tween  some comple te ly  integrable  equat ions .  In the f r amework  of  the gauge 

equivalence the connec t ion  be tween  the 0 ( 3 )  He i senberg  f e r romagne t  model  
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(described by the isotropic Landau-Lifshitz equation) and the attractive non- 

linear Schr6dinger equation (NLSE) has been establishedS'9). Furthermore, the 

gauge equivalence between the easy-axis type anisotropic Landau-Lifshitz 

equation and the isotropic Landau-Lifshitz equation 1°) as well as the attractive 

type NLSE has been found 11-13). 

It is important to notice that the classical spin S manifolds for the isotropic 

model essentially depend on the sign of the anisotropy term in the corresponding 

anisotropic model1°). For example, in the case of the easy-plane Heisenberg 

model with S 2= 1 and hence S ~ SU(2)/U(1),  the gauge-equivalent isotropic 

Heisenberg model is defined on a noncompact manifold belonging to SL(2, C)/  

U(1) 10), and the corresponding NLSE describes a mixture of attractive and 

repulsive Bose gases14'15). Moreover, the attractive gas configurations are 

determined by the repulsive ones and the corresponding constraint on the 

appropriate field variables leads to an exotic NLSE modification16). 

On the other hand a reasonable question is: what Heisenberg model is 

gauge-equivalent to the repulsive NLSE? As has been shown 17"~8) the corres- 

ponding model is described by the isotropic Landau-Lifshitz equation with 

classical spin which belongs to the noncompact SU(1, 1)/U(1) manifold with the 

constant negative curvature (the Lobachevsky plane). 

In the present paper using the gauge transformations generated by the Jost 

solutions of the NLSE linear problem we obtain solutions of the 0(2 ,  1) 

Heisenberg model. Two type solutions are found: spin-waves and solitons. The 

spin-waves describe a precession motion on the pseudosphere S LI= 

SU(1, 1)/U(1) about the z axis with the Bogolubov frequency and the soliton 

solution describes a deviation from the precession motion plane. The related 

energy, momentum, magnetization integrals and corresponding spectrum will be 

found. It is shown that the spin-wave spectrum is determined by the Bogolubov 

dispersion (as in the theory of a weakly nonideal Bose gas) and the soliton 

spectrum has two remarkable limits. In the first one, when the pseudospin vector 

S evolves in a neighbourhood of the lowest point of the upper sheet of S 1"~ 

(which corresponds to the vanishing condensate density in the related Bose gas) 

the soliton excitation spectrum is reduced to that of the 0 (3)  Heisenberg 

ferromagnet and coincides with the exact one6). In the case of unlimited length 

of the pseudospin vector S this spectrum gives rise to the hole excitation 

spectrum of antiferromagnet~9). Moreover, in the latter case the magnetizations 

related to the upper and lower sheets of the hyperboloid compensate each other. 

These facts* allow to conclude that it may well be that the noncompact 

Heisenberg model has a more straightforward relation to theory of magnetism. 

* As is well known the two sublattice ferrimagnets establish a continuous transition between ferro- 

and antiferromagnets. 
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Besides, as it has been shown in the recent papers 2°) the classical dynamics of 

linearized two sublattice antiferro- and ferrimagnets is reproduced as a harmonic 

motion on the Lobachevsky plane (a noncompact manifold with the negative 

constant curvature). 

2. Formulation of the problem 

The noncompact Heisenberg model is governed by the isotropic Landau-  

Lifshitz equation 

1 
S t = ~ [S, Sxx ] , (1) 

where 

i s; ) , ,x S(x, t) = iS + _ Esu(1 ,  1) S -+ = - i S  y 

and 

d e t S = - l ,  S z= I .  

It follows from eq. (2) that the magnetization 

(S x, S y, S z) satisfies the condition 

( S Z )  2 - ( S X )  2 - ( S Y )  2 = 1 

(2) 

or pseudospin vector S = 

and does not have the fixed length S 2 = 2S~ - 1. Eq. (3) describes two sheet 

hyperboloid (pseudosphere $1'1). Let us expand the matrix S(x, t) into the basis 

of the su(1, 1) Lie algebra 

3 

S(x, t) = ~ S~(x, t )%,  (4) 
oe=l  

where 

g~o = diag(-1 ,  - 1 ,  1) is the Killing metrics, and f~t3v are the structure constants 

of the su(1, 1) algebra 

Tr(%ro)  = 2g~o , [%, to] = 2 i f~ ,% . (5) 

(a , /3 ,  y = 1,2, 3 ) ,  

(3) 
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In terms of the pseudospin field components  the equations of motion take the 

form 

S~ = ~ fOvSoSvxx . (6) 
/3,7 

These equations may be presented in the Hamiltonian form 

S~(x, t) = { n ,  S"(x,  t )} ,  

where the Poisson bracket algebra is 

{S~(x), S~(y)} = - f ~ v S r ( x ) ~ ( x  - y ) .  (7) 

The corresponding Hamiltonian function is 

a o  ¢ ¢  

H =  1 J dx S:g~S~x = 1 T r  J dx(Sx) 2 . (8) 

After  parametrizing S by two angle variables, 

S*(x, t) = sh O(x, t) cos tp(x, t ) ,  

SY(x, t) = sh O(x, t) sin ~(x, t ) ,  (9) 

St(x ,  t) = ch O(x, t) , 

the Hamiltonain function (8) becomes the energy of the free static scalar field 

l(x) defined in the Lobachevsky space with the metrics - d l  2 = d 0  2 + sh 2 0 d~0 2 

M= f (dt  2 
dx/  + s h 2  \-~x/ J" 

The model interpretation in the nonideal Bose gas picture is most obvious in 

terms of the pseudospherical projection, which is introduced through the 

relations 

S + _ 2 v ~ ¢  S ~ -  P + 1~12 (10 )  
p -  I~:l 2 '  p - I ~ l  2 , 

where ~(x, t) is the complex field defined on the plane (Re s ¢, Im so), and p is 

constant (p  > 0). It follows from eq. (10) that the upper sheet of the hyperboloid 

S z = + ~/1 + S+S - > 0 is mapped to the inner part of the circle with the radius 
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V~: D+ = {~(x, t): [~:12<p}, and the lower sheet S z=  - ~ / 1 +  S + S  - < 0  is 

mapped to the outer part of the same circle: D_ = { ~(x, t): I ~12 > P }. Moreover, 

the lowest point S~ = + 1 of the upper sheet is mapped to the centre of the circle 

= 0, and the highest point S ~ = - 1 of the lower sheet goes to infinity t ~1 --> ~. 

When the magnetization length grows unlimitedly and S~- -+-% the related 

points on the ~: plane approach to the circle circumference from the inner and 

outer sides I 1-o ~-0 correspondingly. Therefore in the points of the 

circumference (into which the "light cone" is mapped) we can define in addition 

the magnetization of the upper and lower sheets to compensate them reciprocal- 

ly. The Poisson bracket between the fields ~(x) and ~:*(x) is 

{ {(x), ~*(y)} = (p - I {12)26(x - y ) .  (11) 

It is easy to see that when [ {12 ~ P (in the neighbourhood of the point ~: = 0), the 

Poisson bracket (11) takes the canonical form as well as in the compact 0 (3)  

Heisenberg model. However in contrast to the latter case owing to the presence 

of the minus sign in eq. (11 ) there arises one more nontrivial possibility. When 

[{]2 p the bracket (11) vanishes. On the quantum level this fact should 

indicate to the presence of the macroscopic (classical) state which is similar to 

the Bose condensate in the Bogolubov theory of superfluidity. 

The field equations (6) in terms of ~:(x, t) take the form of a modified NLSE 

i { ,+  ~xx + 2  £,(£x)2 - 0  (12) 

and the Hamiltonian function (8) takes the form 

f I x[2 --2pfdxg(#,,*)l#xl H =  - 2 p  dx (p  _ 1 1=)2 (13) 

which looks like the Ernst Lagrangian function in the theory of axially symmetric 

gravity. Here g( ~, ~*) = (p - 1 12) -2 is the metrics of the Poincare model in the 

region D+(I~I 2 < p). It is interesting to note that Hamiltonian (13) describes the 

energy of the free complex scalar field ~(x) in the curved "charge space" with the 

constant negative curvature. 

. The gauge equivalence and solitons 

There is a gauge equivalence between the repulsive NLSE 

i bt +  bxx - -  2(l ,l 2 = o (14) 
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and the 0 ( 2 ,  1) Landau-Lifshitz equation (1) ~7a8). The linear problem (the 

Lax pair) corresponding to eq. (14) is 22,23) 

4P, x = Ul (X ,  t; h)dp,  , ~1, = V , ( x ,  t; a)q~l , (15) 

where 

(o 
U~(x ,  t; A) = -iAo- 3 + - ig,  0 / ' 

V l ( x , t ; A ) = ( 2 i A 2 + i ( [ ~ b [ 2 - p )  -2i)t~O* + g,** ) 

2ia~O+ q'x - 2 i a 2 - i ( l q ' l i - p )  " 

The integrability conditions for the system (15), 

Wl,- v,~ + W1, v,] = 0 ,  

leads to the NLSE (14). Let us consider the gauge transformation to new 

variables, 

U 2 = g - X U l g  - g - l g  x , 

V2 = g - ~ V l g  _ g - l g ,  , (16) 

cb 2 = g - 1 ~ 1  , 

which satisfy the following linear problem: 

qb2x = U2(x ,  t; A)q~ 2 , q~2, = V2(x ,  t; h)q~ 2 . (17) 

We choose as the gauge transformation function g ( x ,  t; ho) the normalized Jost 

solutions of the linear problem (15) with the fixed value h 0 of the spectral 

parameter  A: 

g ( x ,  t; h0) ---- ~,(x,  t; A = A0). (18) 

Then the matrix operators in eq. (16) becomes 

U2 = - i ( a  - a0 )S ,  

V2 = 2i(a 2 - h Zo)S - ( h - A o ) S S  x , (19) 

where 
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S(x,  t) = g - l ( x ,  t)~r3g(x, t) (20) 

and the integrability conditions for eqs. (17) give the Landau-Lifshitz equation 

1 
S t : ~ IS, Sx~ ] - 4AoS x . (21) 

By the coordinate transformations 

t ' = t ,  x ' = x - 4 A 0 t ,  (22) 

eq. (21) may be reduced to the form of the initial eq. (1) (with the appropriate 

changes of the boundary conditions). That is why we shall investigate eq. (1) 

below. 

The most important case of the repulsive Bose gas problem corresponds to the 

finite density gas p = limN__,~.L__,~ N / L  (the thermodynamical limit). On the 

classical level this leads to setting of the nonvanishing boundary conditions for 

the field variables O(x, t): 

{ ~b(x, t ) ~  ~_+ , 
qJx(X, t)---~ 0 ,  X----~ ___o0, 

where 10+ 12 = [q J-12 = P is the condensate density15'22). Using the Jost solutions 

of the linear spectral problem (15) z3) in the asymptotic form one gets 

nondiagonal boundary conditions for S(x,  t), 

1 [ ~ / ~  + 4p 20+ eiO(x't)'~ 
S(x,  t) ~+_> S+_(x, t) = k ~ -2qJ* e -i0(~'0 _ ~ / ~ / , /  (23) 

where k = 2 V ~ 0 -  p is the wave number, A 0 is the normalization point of the 

continuous spectrum of problem (15) (IA0l~>v'-~) and O ( x , t ) = k ( x + v t ) ,  

v = V ~  + 4p. Solutions (23) describe a precession motion of the pseudospin 

vector S around the z axis with the frequency oJ = k V ~  + 4p which corresponds 

to the Bogolubov excitation spectrum in a weakly nonideal Bose gas of finite 

density p. For fixed value of S z the evaluation is connected with the appearance 

of a phase a so that ~O_ = 0+ e iL The precessional motion of the pseudospin 

vector S in space describes a spin wave propagating with the velocity v. Its 

amplitude depends on the wave number k. Here it is important to emphasize two 

circumstances. First of all, the setting of the boundary conditions (23) is possible 

only in the case of the "reflectionless" scattering matrix of the auxiliary linear 

problem (15) related to NLSE (14). So in what follows we shall use the Jost 

solutions describing only the scattering of the plane waves with the "reflection- 
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less" potentials (i.e., the NLSE solitons). Then, the setting of the nonvanishing 

boundary conditions in the form of eq. (23) leads to the classical solutions of eq. 

(1) with infinite energy (as in the case of the plane waves). And only when 

k >> C-p, S_+ ~ tr 3 (the vanishing of the condensate), the energy of solutions may 

be finite. A similar situation takes place for the repulsive NLSE where the kink 

energy is divergent. After the substraction of the infinite condensate energy, the 

cancellation of divergencies leads to the finite result. 

Using the gauge equivalence it is easy t o  show 14) that any solution of eq. (1) 

may be transformed to the solution of eq. (14) through the relations 

~b(x, t) = 1(0~ + i s h  O" q~x)e i~<x'/) , (24) 

where 

_ 1 2 2 
&, = ch O. ~t ~ (Ox + s h 2  0" ~x - -  4p) ,  &x = ch 0. ~x 

(see eq. (9)). From eq. (24) it is easy to see that the problem of finding of NLSE 

solutions from the known solutions of the Landau-Lifshitz equation (1) is rather 

simple, while the inverse problem is more difficult. That is why we shall use 

another method corresponding in fact to solutions of this inverse problem. 

Namely, if we know the Jost solutions for the linear equations (15) which are 

related to NLSE (14) we may construct the corresponding solutions of eq. (1) 

via the relations (20). 

To construct a one-soliton solution of the noncompact 0(2 ,  1) Landau- 

Lifshitz equation (1) we use the Jost solutions of eq. (15) in the presence of one 
solitonE3): 

~(x,t;A,  A o ) : ( a  b ) 
b* a* ' 

(25) 

where 

( ) a(x, t; A, Ao) - e  -i~°(x-2x°t) ~b* - -  ~b+[p -I- (A - i v ) ( A  o - ~o)l 

 [(ao - + - 
b(x,t;A, Ao)=ei~°(x-2X°t)((Ao-~o)- (-~v - i~0)~ + eTZ~ ] '  

z = v ( x - 2 ( A -  2A0)t + Xo). 

Here, A is a spectral parameter connected with the velocity and amplitude of the 

NLSE kink solution, and 
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2 (IAl v ), (IAol V ). 

Subst i tut ing eq. (25) in eq. (20) we  find the  one-sol i ton  solut ion of  eq.  (1) in the 

fo rm 

S z ~o v2 
- sech 2 z ,  

2 o(Xo- x) 

S + = i 4 ' * (p  + XAo + ivff0) 
2p~o(V + i~o) 2 [(X - Ao) 2 + (v  th z + i~o)2l e -2i~°(x+2x°t) . 

(26) 

It  is easy  to check tha t  this so lu t ion  satisfies the b o u n d a r y  condi t ions  (23) if 

i~ _ P - AAo + i Vffo 
e - -  

p - AA o - iv~ o " 

4 .  I n t e g r a l s  o f  m o t i o n  

T h e  equa t ion  (1) is in tegrable  and hence  it has an infinite set of  integrals  of  

mot ion .  We are in te res ted  he re  only in the  first th ree  of  them:  the magne t i za t ion  

Mz along the  z axis, m o m e n t u m  H and ene rgy  E which are wri t ten  as follows: 

Mz = f dx(S~(x, t ) -  So) ,  

U = J dx(~-(x,  t) - ~ 'o) ,  (27) 

/ -  

E = f d x ( ~ ( x ,  t) - ~ o ) ,  

whe re  

i S + ~ S  - - S ~ S  + 

• r(x, t) = -~ 1 + S z ' 

~i((x, t) l z 2 ÷ - = - S x S x ] ,  

A o =  lim A ( x , t ) ,  A ( x , t ) = ( S  z , T r , ~ ) .  
Ixl--,~ 

T h e  var iables  S o, ~r o and  ~o descr ibe  the  "classical  v a c u u m  s ta t e"  re la ted  to the 
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condensate state. The dynamical variables (27) for the one-soliton solution (26) 

a r e  

/1 

Mz ~'o( Ao - A) ' 

v 

H = 4 arc sin ~/2(a o - a ) (a  o + ~o) ' (28) 

E = 4v = 4Vp - a 2 , 

with 

z A0 
S° ~'o' "no - 2 ( a o  ~'o), Ygo=-2P • (29) 

It is more convenient to express eqs. (28) and (29) in terms of the wave number 

k which defines projections of the magnetization vector M of the spin wave (23). 

As a result we have 

Mz(k, A) = 
4 ~ f p -  a 2 

k(~ r~  - + 4p - 2A) 

2(p - a 2) ] 1/2 

H(k,  ;t) = 4 arc sin (Vrf f~+4p72£7(~7+4p+k)  , (30) 

E(k, A)= 4~v/p - A 2 , 

and, respectively, 

S o _  V ~ + 4p k ' "n° = - (~k '~  + 4p - k ) ,  ~o = - 2 p .  (31) 

The solution (23) describes the spin wave with the Bogolubov dispersion law: 

to(k) = k V ~ - +  4p .  (32) 

When k-> V~ the magnetization density S o tends to unity, i.e. the pseudospin 

vector is near the minimum of the upper sheet of hyperboloid (the condensate is 

absent). The spin wave dispersion law in this case is to(k)-~ k z. When k 

x/-#(k/x/-p--~ 0), the density S O tends to infinity as (2X/-~/k)k_m, i.e. behaves like 

an average particle number of the Bose condensate 24) 
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) m . . . . ~  ~ . 
+ 

(akak)  i,--,o k 

Here the spin wave dispersion law becomes t o (k )=2x /~k  and describes 

collective motion of particles with the group velocity o(Iv t/> Iosl), where the 

sound velocity is 

d t o  

It should be noted that in contrast to the nonlinear spin wave with a finite 

amplitude (in the compact 0 (3 )  Heisenberg model25'26)), 

S+(x, t) = 3v/1 - (SZ) 2 e iC~x-'°t) , to = SZk 2 , 

which is unstable and decays into some number of solitons, in our case the 

similar wave (23) becomes stable. Another  peculiarity of the spin wave (23) lies 

in the fact that its energy density (31) coincides with NLSE condensate density 

and doesn't depend on k (due to the divergence cancellations as in U(1, 1) 

NLSE ~8)). So the "vacuum" solution in our system is infinitely degenerate in 

the wave number k. This is a consequence of the noncompactness of the 

pseudospin manifold and the complicated vacuum structure of the correspond- 

ing quantum system. 

5. Conclusion 

Let us come back to the soliton solution (26) and analyse its excitation 

spectrum. Excluding from eq. (30) parameter A one gets 

E . M  z = 8 ( 1 + ~ 1 +  4~2) " 2 H s l n  ~- .  (33) 

Here parameter k numerates the "vacuum" states (spin waves) for which the 

excitation spectrum is constructed. If the condensate density in the system is 

rather small, i.e. k 2 >> p, then the soliton dispersion law near the minimum of the 

upper sheet of the hyperboloid is 

16 H 
E ( I I )  = ~ sin 2 q-. 

1vl z 
(34) 

This result coincides with one obtained in the framework of the 0 (3 )  

Heisenberg model 25) and with the exact result for the Bethe spin complex6). In 
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this case M z characterizes the quantum number of solitons and is proportional to 

the particle effective mass (corresponding to the soliton for small H): 

H 2 

E ( H )  = M-- 7 . 

For large density p ~ k 2 the precession frequency tends to zero and Mz ~ ~. In 

this case eq. (33) does not permit the limiting transition k--~ 0 because M z is no 

longer a dynamical variable (the precession frequency vanishes). Hence, 

excluding the parameter A from the second and third equations of eqs. (30) we 

get the dispersion law of the soliton (26) in this case 

n (35) E ( H )  = 4x/-~ sin ~- , 

where 0 ~< H <~ 27r. 

This dependence E on H (up to a coefficient) coincides with the exact 

dispersion law for the antiferromagnon 19) and for small H gives* 

E(  H ) = 2 v ~ H  . 

So, similarly to the Bogolubov dispersion law which leads in two limiting cases to 

quadratic and linear behaviour, the dispersion law of our soliton solution (26) 

leads to ferromagnet and antiferromagnet types, respectively. As is well-known, 

on the level of linearized theory, the ferrimagnets have a similar behaviour. 

The exact coincidence of the spectra, the gauge equivalence with the repulsive 

Bose gas model, the compensation of the upper sheet and lower sheet 

magnetization when k ~ 0 indicate on a possible connection of our model with 

the antiferromagnets model. It is known 27) that the antiferromagnet phase in the 

X X Z  model corresponds to the repulsive lattice Bose gas, while its behaviour 

near the critical temperature can be described in the framework of a weakly 

imperfect Bose gas28). Moreover, as is pointed out in recent papers2°), the 

noncompact group 1-1 k ® SU(1, 1)~ plays the role of a dynamical group for the 

linearized two-sublattice antiferromagnet, and the corresponding classical 

dynamics of the model is described by harmonic motions in the Lobachevsky 

plane. 

It is well known 29) that the isotropic Heisenberg model of antiferromagnet is 

completely integrable. Hence, the mysterious coincidence of the spectra for 

intergable models (as, for example, in the case of the sine-Gordon and Thirring 

models) can indicate to a more intimate connection between them. 

* It should be noted that the two-sublattice Landau-Lifshi tz  model of the antiferromagnet gives 

linear dispersion law for the spin wave solution6). 
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