
“MIB-16” FPGA Based Design and Implementation of a 16-Bit

Microprocessor for Educational Use

ESMA ALAER, ALI TANGEL, MEHMET YAKUT

Electronics and Communication Engineering

Kocaeli University

Muhendislik Fakultesi Veziroglu Yerleskesi 41040, Izmit

TURKEY

esma-esen@hotmail.com atangel@kou.edu.tr myakut@kou.edu.tr

http://mf.kou.edu.tr/elohab

Abstract: - This paper presents a design and FPGA implementation of a 16-bit microprocessor core, so called

“MIB-16” using VHDL. The microprocessor can directly access to the memory which consists of 16-bit words,

addressed by a 16-bit word-address. Instructions are all multiples of 16-bit words, and are stored in this

memory. There are 16 general purpose registers (R0–R15), a program counter (PC) and a condition code

register (CC). The microprocessor can execute 16 instructions such as add, subtract, multiply, divide, load and

store. The complete design is realized and verified on Xilinx Spartan-3 Evaluation Board. “MIB-16” is suitable

especially for educational purposes and for FPGA based industrial digital system-on-chip ASIC solutions as

being an easy to use basic microprocessor core. Whereas, professional VHDL or Verilog based microprocessor

core libraries offered by the FPGA vendors are expensive, more complex to be modified, and consume too

many resources in an FPGA chip.

Key-Words: - Microprocessors, FPGA, VHDL, Digital System Design

1 Introduction
The increased complexity in electronic systems

requires the development of new design

methodologies. For this reason, traditional methods

of “use pencil and paper to design the circuit” and

“implement to do experiments” have been replaced

by “define and synthesis” methods [1].

 These new methods have resulted in

development of Hardware Description Languages

(HDLs). Nowadays, VHDL (Very High Speed

Integrated Circuit Hardware Description Language)

has become one of the most popular hardware

languages [2]. The source capacity (intensity) and

the maximum signal frequency of the reconfigurable

systems have been increased in parallel with the

developments in technology [3].

 After 1990s, field programmable gate arrays

(FPGAs) have also been popular in custom ASIC

design world due to having the fastest time to

market property. They also allow designer to

combine macro cell designs to form digital system-

on-chip solutions. Nowadays, there are different

design methods for a system implementation using

FPGA architectures. HDLs are the most preferable

methods among others due to resulting in reduced

design period and cost [4]. FPGAs have especially

led to the development of designs in high level

description languages like VHDL or Verilog, which

allow the designer to conceive the design at the level

of RTL without reference to the final technology or

vendor used for the final implementation [5].

 The earliest studies on microprocessor designs

go back to the invention of transistor in 1948s, and

it has still been continuing nowadays. The Intel’s

first child, 4004 in 1971, was able to run at 740 KHz

performance. However, recent microprocessor

designs have reached the performance of over 3

Giga Hertz.

 Several microprocessor designs based on FPGAs

are reported in the literature [3], [6], [7], [8]. In this

study, a complete design of an FPGA based 16-bit

microprocessor is presented especially for

educational purposes. This paper is the extended

version of the authors’ earlier work, [9].

2 FPGA Based Processor Design Steps

and Instruction Set
Fig.1 shows the FPGA design flow in general for

the FPGA ASIC solutions [10]. Fig.2 shows the

architecture of the designed microprocessor in this

study. The processor has 16-bit address bus and 16-

bit data bus. In addition, it has 16 general purpose

registers, a program counter, and a 3-bit status

register. Every word has 16-bit word length.

 3-bit status register is updated after every

arithmetic and logic operation. Z (zero) flag

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Esma Alaer, Ali Tangel and Mehmet Yakut

ISSN: 1790-1979 326 Issue 5, Volume 5, May 2008

indicates if the result of an operation is zero.

Similarly, N flag is for negative result. V flag is for

the indication of overflow situation. Fig.3 shows the

register structures of the designed processor. Fig.4

shows the schematic representation of the

behavioral models of each VHDL core library

elements specifically designed for the targetted

microprocessor.

Fig.1 FPGA Design Cycle in general

Fig.2 The architecture implemented

Fig.3 Register Structures

 The microprocessor has an external memory,

which has 16 bit word-length and 16 bit address bus

to store the instructions. All instructions have 16-bit

length. The PC register contains the address of the

next instruction to be executed. After each

instruction word is fetched, the PC is incremented

by one to point to the next word. The arithmetic and

logic instructions are listed in Table 1.

 Fig.4. Schematic representation of the designed
VHDL core library behavioral models

 Instruction set is divided into four sections which

are 4-bit each as shown in Fig. 5. The first section is

for opcode. r3 shows the address of the location

where the result is stored. r1 and r2 are source

register addresses, and i8 is an immediate two-

compliment integer operand.

Fig.5. Format for the arithmetic and logic

instructions

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Esma Alaer, Ali Tangel and Mehmet Yakut

ISSN: 1790-1979 327 Issue 5, Volume 5, May 2008

Table-1. Arithmetic and logic instructions

Instruction Name Function Opcode

Add Add r3 ← r1+r2 0000

Sub Subtract r3 ← r1-r2 0001

Mul Multiply r3 ← r1*r2 0010

Div divide r3 ← r1/r2 0011

Addq Add quick r3 ← r1+i8 0100

Subq Subtract quick r3 ← r1-i8 0101

Mulq Multiply quick r3 ← r1*i8 0110

Divq Divide quick r3 ← r1/i8 0111

Land LogicalAND r3 ← r1&r2 1000

Lor Logical OR r3 ← r1!r2 1001

Lxor Logical XOR r3 ← r1+r2 1010

Brq Branch quick if cond then

PC ← PC+i8

1011

 Table 2 shows the load and store instructions.

Load from memory and store into memory

instructions have two format depending on the

length of the displacement address. The format for

the long and short displacement are shown in Fig. 6-

a and 6-b, respectively.

 The op field is the op-code, r3 specifies the

register to be loaded or stored, r1 is used as an index

register, disp is a long immediate displacement, and

i8 is a short immediate displacement.

Table 2. Load and Store Instructions

Instructions Name Function Opcode

Ld Load r3 ←M[r1+disp16] 1100

St Store M[r1+disp16] ← r3 1101

Ldq Load quick r3 ← M[r1+i8] 1110

Stq Store quick M[r1+i8] ←r3 1111

Fig.6 Format for load and store instructions a) long

displacement b) short displacement

3 Instruction Executions

The I/O pin configuration for the microprocessor is

shown in Fig.7. Firstly, the processor puts the

address information of the data to be reached in the

memory to the address bus for the READ operation.

WE is kept at low (logic “0”) in this case. If the

data to be read is an instruction information, the

FETCH is set to active. Secondly, the information is

transferred to the data bus. If the read operation is

finished, READY signal is set to active. Otherwise,

READY signal is remained in passive mode until

the read operation is completed.

Fig.7 Pin configuration of the designed processor

 Fig.8 shows the signal waveforms for a READ

operation. The clock frequency is set to 50 MHz

which is the value on Spartan-3 Eval-board, on

which the processor is implemented. For the

WRITE operation, the memory address information

of the data to be written is firstly transferred to the

address bus. The FETCH signal is set to passive

mode and WE is tied to logic high. Secondly, the

data to be written is carried to the data bus; then the

WRITE operation starts. After the WRITE operation

is completed, the READY is set to active. Fig.9

shows the signal waveforms for the WRITE

operation.

 If the ADD operation is taken as an example of

the arithmetic operations, the process executes as

follows:

The microprocessor first reads the instruction for

ADD operation from the opcode. Two data to be

added are received from the defined registers, and

then added. The resultant information is written into

the defined register. The result is related to the flags

accordingly. Fig.10 shows the Model Sim

simulation code execution of the ADD operation.

 Here, a_bus shows the address of the next

instruction to be executed. d_in shows the input data

bus of the microprocessor, which includes the

instruction data. op1_bus and op2_bus indicates the

data to be added, reg_result indicates the result. The

flags are kept in alu_cc.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Esma Alaer, Ali Tangel and Mehmet Yakut

ISSN: 1790-1979 328 Issue 5, Volume 5, May 2008

Fig.8 Signals for the READ operation

Fig.9 Signals for the WRITE operation

Fig.10 Modelsim simulation of code execution for ADD operation

4 Conclusions

A 16-bit microprocessor so called “MİB_16” is

designed using VHDL, and also implemented on

Xilinx Spartan-3 Evaluation board. Simulation and

implementation tools used are Xilinx ISE and

Modelsim. There were some limitations encountered

when the program uploading and testing due to the

evaluation board limitations.

 Multiplication operation could be implemented

for the cases when the resulting number doesn’t

exceed 16-bit. Division operation is achieved only

for the cases when resulting numbers are without

residue. The arithmetic and logic operations are

performed in about 340 ns, load and store

commands are performed in 660 ns, quick load and

quick store commands are performed in 440 ns. In

other words, the performance of the microprocessor

realized is 3 MHz for the arithmetic and logic

operations; 1.5MHz for load and store operations;

and 2.3 MHz for quick load and store operations.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Esma Alaer, Ali Tangel and Mehmet Yakut

ISSN: 1790-1979 329 Issue 5, Volume 5, May 2008

 Table-3. Design Summary
Number of errors: 0

Number of warnings: 19

Logic Utilization:

Total Number Slice

Registers:

453 out of 3,840 11%

Number used as Flip

Flops:

87

Number used as

Latches:

366

Number of 4 input

LUTs:

2,260 out of 3,840 58%

Logic Distribution:

Number of occupied Slices: 1,227 out of 1,920

63%

Number of Slices containing

only related logic:

1,227 out of 1,227

100%

Number of Slices containing

unrelated logic:

0 out of 1,227

0%

*See NOTES below for an explanation of the effects

of unrelated logic

Total Number 4 input LUTs: 2,281 out of 3,840

59%

Number used as logic: 2,260

Number used as a route-thru: 21

Number of bonded IOBs: 34 out of 173

19%

IOB Flip Flops: 4

Number of Block RAMs: 1 out of 12

8%

Number of MULT18X18s: 1 out of 12

8%

Number of GCLKs: 2 out of 8

25%

Total equivalent gate count for

design:

89,497

Additional JTAG gate count

for IOBs:

1,632

Peak Memory Usage: 86 MB

 The clock frequency was set to 50 MHz, which is

the evaluation board value. In fact the processor can

work at higher clock frequencies. Another limitation

was the capacity of the RAM available on the Eval

Board, which resulted in reduction of the address

bus from 16-bit to 10-bit for the testing purposes

only.The RAM with the largest capacity uses 10-bit

address bus. The switches, surface mounted LEDs

and LCDs on the board are used for different

purposes during the verification of the complete

microprocessor. The design summary is given in

Table-3.

 It is believed that this processor core can also be

adapted into low-speed FPGA-based System On

Chip Industrial ASIC solutions beside its

educational use. Students can easily modify the

microprocessor such as replacing different

instruction commands, and they can use it in their

any FPGA implementation of digital system design

projects requiring a basic core processor inside.

References:

[1] Bezarra, E. A. Gough, M.P. “A Guide to

Migrating from Microprocessor to FPGA

Coping the Support Tool Limitations”,

ELSEVIER Microprocessor and Microsystems

23,1999, pp. 561-572.

[2] Herman, H. S., Srihari, C., Matthew, M.,

“Pipeline Reconfigurable FPGAs”, Journal of

VLSI Signal Processing Systems”,2000, pp. 24,

129-146.

[3] Borgatti, M., Lertora, F., Foret, B., Cali L., “A

Reconfigurable System Featuring Dynamically

Extensible Embedded Microprocessor, FPGA

and Customizable I/O”, IEEE Custom

Integrated Circuits Conference, 2002, pp. 13-16.

[4] Janiszewski, I., Baraniecki, R., Siekierska, K. “A

reusable microcontroller core’s design”, IEEE,

VHDL International Users Forum Fall

Workshop (VIUF ’99), 1999, pp. 14-21.

[5] Jurado-Carmona, F.J., Tombs, J., Aguirre, M.A.,

Torralba, A., “Implementation of a fully

pipelined ARM compatible microprocessor

core” XVII Design on Circuits and Integrated

Systems Conference, 2002, pp. 559-563.

 [6] Davidson, J. “FPGA Implementation of a

Reconfigurable Microprocessor” IEEE Custom

Integrated Circuits Conference, 1993, pp. 3.2.1-

3.2.4

[7] Sueyoshi, T., Kuga, M., and Shibamura, H.,

“KITE Microprocessor and CAE for Computer

Science”, Systems and Computers in Japan, Vol.

33, No. 8, 2002, pp.64-74.

[8] Pastor, J. S., Gonzalez, I., Lopez, J., Arribas,

F.G, Martinez, J. “A Remote Laboratory for

Debugging FPGA-Based Microprocessor

Prototypes”, Proceedings of the IEEE

International Conference on Advanced Learning

Technologies (ICALT’04),2004.

[9] Alaer, E., Tangel, A., Yakut, M. "MIB-16 FPGA

based Design and Implementation of a 16 Bit

Microprocessor for Educational Use", 6th

WSEAS International Conf. on Circuits,

Systems, Electronics, Control&Signal

processing, Cairo-Egypt, 2007, pp. 284-288.

[10] Cakıroglu, M. “Gerçek Zaman Sayma Birimi

Iceren SAU80C51 Mikro denetleyicisinin FPGA

Mimarileri Kullanilarak Geliştirilmesi”, MsC

Thesis, Sakarya University, Turkey, pp. 29-32,

(2003).

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Esma Alaer, Ali Tangel and Mehmet Yakut

ISSN: 1790-1979 330 Issue 5, Volume 5, May 2008

