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Preface

The goal of this book is to present methods for estimating the accuracy of real

measurements, that is, measurements performed in industry, trade, scientific re-

search – wherever the production process, quality control decision, or the interpre-

tation of an experiment depends on measurement accuracy. The necessity for this

book arises from the fact that the existing theory of measurement errors contains

significant gaps. In particular, the current theory focuses exclusively on multiple

measurements and overlooks single measurements. Meanwhile, single measure-

ments are the ones most commonly used in practice. Moreover, the current theory

is incomplete even within the scope of multiple measurements. For example, it does

not provide answers to such fundamental questions as how to translate the inac-

curacy of a measuring instrument into the inaccuracy of a measurement utilizing

this instrument, or how to find the full uncertainty of a measurement result, i.e., the

uncertainty that reflects both systematic and random errors.

The science of measurements – metrology – entered a period of rapid de-

velopment several decades ago, prompted by the growth in international trade,

globalization of industrial production, demands of medicine and pharmacology, the

increased attention to food quality and environment, and other needs of the modern

society. However, metrology will not fulfill these needs without removing the blind

spots mentioned above. I devoted many years of research filling these gaps. This

book generalizes and puts into a coherent whole the results of this effort.

The book develops the general theory of processing experimental measurement

data, which addresses the need to obtain the value of a quantity being measured and

the accuracy of this estimate. For the first time, this book presents the postulates

of the theory of measurements. It introduces the term measurement inaccuracy as a

general term that reflects measurement uncertainty in some situations and limits of

error (or even errors themselves) in others. The book shows the relationship between

the accuracy of measuring instruments and measurements utilizing these instru-

ments. It presents methods of estimating the accuracy of both single and multiple

measurements. Moreover, it formulates these methods in a systematic and unified

way by formulating and utilizing a new perspective that single measurements are

the basic type of measurements and multiple measurements represent a series of

repeated single measurements. This approach, besides being logical and intuitive,

makes accounting for the measuring instruments inaccuracy an inherent part of the
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vi Preface

calculations of the inaccuracy of the measurement. The book offers well-grounded

and practical methods for combining the components of measurement inaccuracy.

In particular, it describes how to combine the limits of elementary systematic errors

and how to estimate the overall measurement uncertainty accounting for both the

systematic and random errors.

As part of the general theory of measurements, the book develops the theory of

indirect measurements. For dependent indirect measurements, the book proposes the

method of reduction in place of the traditional method based on the Taylor series.

This method is more accurate, simpler, and most importantly allows to calculate the

confidence limits of the inaccuracy of these measurements, rather than just standard

deviation of the measurement result as in the traditional methods. At the same time

it removes the need to account for the correlation coefficient, which had been a

thorny issue in this area. The book also proposes a new method of transformation

for independent indirect measurements. The book further includes a discussion of

the applicability of the Bayes’ Theorem and Monte Carlo methods in measurement

data processing, the topics that have been actively discussed in the metrological

research papers.

As a result, this book can serve as a comprehensive reference for data processing

of all types of measurements, including single and multiple measurements, de-

pendent and independent indirect measurements, and combined and simultaneous

measurements. It includes many concrete examples that illustrate typical problems

encountered in measurement practice. Thus, the book encompasses the entire area

of measurement data processing, from general theory to practical applications.

The book contains nine chapters. Chapter 1 gives the general introduction to

measurements and metrology and outlines major changes that occurred in metrol-

ogy during the last two decades. Although this chapter is of introductory nature, it

presents some important general perspectives on the subject. In particular, it includes

a classification of measurements and measurement inaccuracy and formulates pos-

tulates of the theory of measurements.

Chapter 2 is devoted to measuring instruments. It describes conventional methods

of representing their metrological characteristics as well as the methods of con-

trolling these characteristics through calibration or verification. The chapter also

analyzes errors of large numbers of instruments of several types and shows that the

distribution functions of these errors are usually nonstationary.

Chapter 3 contains basic statistical methods of experimental data processing.

These methods are directly applicable to the idealized multiple measurements. They

are also necessary when using statistical models of elementary measurement errors

and for obtaining confidence intervals in the course of measurement uncertainty

calculations.

Chapter 4 is devoted to direct measurements. It presents a step-by-step proce-

dure for the calculations of the inaccuracy of single measurements. The calculation

of uncertainty of a multiple measurement is then derived as a summation of the

inaccuracy of the underlying single measurement with the random error of the mul-

tiple measurement, which is estimated from the repeated single measurements. The

chapter describes a new summation method and the advantages of the new method
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over the known methods of summating systematic and random errors. Finally, the

chapter briefly describes nonparametric and robust methods for processing direct

measurement data.

Chapter 5 presents the theory of indirect measurements. In particular, it describes

two new methods. The first one is the method of reduction, which handles indirect

measurements with dependent arguments. This method, which we proposed previ-

ously but which is not yet widely known, is the first to produce reliable estimates

of uncertainty of these types of measurements. At the same time, it eliminates the

need to calculate the correlation coefficients – a major stumbling block in these

measurements. The second method is the method of transformation for indirect mea-

surements with independent arguments, which compliments the known methods.

This chapter also applies the new general method for the summation of systematic

and random errors from Chap. 4 to indirect measurements, thus removing the need

to use the Monte Carlo method with its known limitations (the reliance on unknown

distribution functions and the complexity of implementation) for this purpose.

Chapter 6 treats simultaneous and combined measurements, using the well-

known least-squares method, which is commonly applied for these measurement

types.

Chapter 7 contains methods for combining measurement data or measurement

results. This problem arises when the same measurand is measured in different lab-

oratories, and the final result should reflect all these measurements. Along with a

traditional solution, which takes into consideration only random errors, Chap. 7 in-

cludes a method accounting for the systematic errors as well.

Chapter 8 includes a number of concrete examples of measurement data process-

ing and evaluating measurement accuracy. The book is targeted for practical use, and

these examples can serve as specific blueprints for addressing typical measurement

data processing needs faced by experimenters.

Finally, Chap. 9 presents concluding remarks, including our thoughts on the new

“International Vocabulary of Metrology – Basic and General Concepts and Associ-

ated Terms” [1] and analysis of the drawbacks of the “Guide to the Expressions of

Uncertainty in Measurement” [2].

This book is intended for anyone who is concerned with measurements in any

field of science or technology, who design technological processes and chooses in-

struments with appropriate accuracy as part of their design, and who design and

test new measuring devices. This book should also be useful to university students

pursuing science and engineering degrees. Indeed, measurements are of such funda-

mental importance for modern science and engineering that everyone in these fields

must know the basics of the theory of measurements and especially how to evaluate

their accuracy.

The book assumes reader’s familiarity with mathematical statistics, basic cal-

culus, and, in part of Sect. 2.5, control theory. A reader without control theory

background can skip this part of Sect. 2.5 without affecting the understanding of

the rest of the book.

In conclusion, I would like to thank Dr. Abram Kagan, Professor at the Univer-

sity of Maryland, College Park, for many years of collaboration and friendship. This
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book benefited from our discussions on various mathematical problems in metrol-

ogy. I would also like to thank Dr. Ilya Gertsbach, Professor at the Ben Gurion

University of Beersheva (Israel), for our discussions over the theory of indepen-

dent indirect measurements. I would like to express my special gratitude to my son,

Dr. Michael Rabinovich, Professor at Case Western Reserve University. He provided

support and assistance throughout my work on this book from editing the proposal

for publication to discussing new results and the presentation to editing the whole

book. This book would not be possible without his help.

Basking Ridge, NJ Semyon G. Rabinovich
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Chapter 1

General Concepts in the Theory
of Measurements

1.1 Basic Concepts and Terms

The theory of measurement accuracy is a branch of metrology – the science of

measurements. In presenting the theory we shall adhere, whenever possible, to the

terminology given in the International Vocabulary of Metrology – Basic and Gen-

eral Concepts and Associated Terms [1]. We shall discuss the terms that are most

important for this book.

A measurable quantity (briefly – quantity) is a property of phenomena, bodies,

or substances that can be defined qualitatively and expressed quantitatively. The

first measurable quantities were probably length, mass, and time, i.e., quantities

that people employed in everyday life and these concepts appeared unconsciously.

Later, with the development of science, measurable quantities came to be introduced

consciously to study the corresponding laws in physics, chemistry, and biology.

The term quantity is used in both the general and the particular sense. It is used

in the general sense when referring to the general properties of objects, for example,

length, mass, temperature, or electric resistance. It is used in the particular sense

when referring to the properties of a specific object: the length of a given rod, the

electric resistance of a given segment of wire, and so on. The principal feature of

quantities in the context of this book is that they can be measured. A measurand is

a quantity intended to be measured.

Measurement is the process of determining the value of a quantity experimentally

with the help of special technical means called measuring instruments.

The value of a quantity is the product of a number and a unit adopted for these

quantities. It is found as the result of a measurement. This definition can be ex-

pressed in the form of the equation:

Q D qŒQ�;

whereQ is the value of the measurand, ŒQ� is a unit adopted for the kind of quantity

represented by the measurand, and q is the number showing how many of these units

constitute the magnitude of the measurand. This equation is sometimes called the

basic measurement equation. Note that the unit is not indicated if the measurand is

dimensionless.

S.G. Rabinovich, Evaluating Measurement Accuracy: A Practical Approach,

DOI 10.1007/978-1-4419-1456-9 1, c
 Springer Science+Business Media, LLC 2010
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2 1 General Concepts in the Theory of Measurements

The basic measurement equation reflects the general objective of a measurement:

to express with a number a property of an object or natural phenomenon. Thus

measurements allow us to use mathematics in our practical activities and in the

exploration of nature.

The definitions presented above underscore three features of measurement:

1. The result of a measurement must always be a concrete denominated number

expressed in sanctioned units of measurements. The purpose of measurement is

essentially to represent a property of an object by a number.

2. A measurement is always performed with the help of some measuring instru-

ment; measurement is impossible without measuring instruments.

3. Measurement is always an experimental procedure.

The true value of a measurand is the value of the quantity, which, if known, would

ideally reflect, both qualitatively and quantitatively, the corresponding property of

the object according to the purpose of the measurement.

Measurement accuracy reflects the closeness between the measurement result

and the true value of the measurand. Measuring instruments are created by humans,

and every measurement on the whole is an experimental procedure. Therefore, re-

sults of measurements cannot be absolutely accurate.

Accuracy is a “positive” characteristic of the measurement, but in reality it is

expressed through a dual “negative” characteristic – inaccuracy – of the measure-

ment. The inaccuracy reflects the unavoidable imperfection of a measurement. The

inaccuracy of a measurement is expressed as the deviation of the measurement re-

sult from the true value of the measurand (this deviation is called the measurement

error) or as an interval that covers the true value of the measurand. We will call the

half-width of this interval uncertainty if it is obtained as a confidence interval (i.e.,

the interval that covers the true value with a certain probability) and limits of error

if it has no relation with probabilities. We shall return to these terms many times

later in this book.

The true value of a measurand is known only in the case of calibration of mea-

surement instruments. In this case, the true value is the value of the measurement

standard used in the calibration, whose inaccuracy must be negligible compared

with the inaccuracy of the measurement instrument being calibrated.

A measurement error can be expressed in absolute or relative form. The error

expressed in the absolute form is called the absolute measurement error. If A is the

true value of the measurable quantity and QA is the result of measurement, then the

absolute measurement error is � D QA�A. The absolute error can be identified by the

fact that it is expressed in the same units as the measurable quantity. Absolute error

is a quantity and its value may be positive or negative. One should not confuse the

absolute error with the absolute value of that error. For example, the absolute error

�0:3mm has the absolute value 0.3.

The error expressed in relative form is called the relative measurement error. The

relative error is the error expressed as a fraction of the value of the measurand:

" D . QA � A/ =A . Relative errors are normally given as percent and sometimes per

thousand (denoted by �). Very small errors, which are encountered in the most
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precise measurements, are customarily expressed directly as fractions of the mea-

sured quantity, given in parts per million (ppm).

In most cases, however, the true value of the measurand is unknown, and the in-

accuracy is expressed as an interval covering the true value. As mentioned above,

the boundaries of this interval are the uncertainty or limits of error, depending

on whether or not the interval was calculated using a probabilistic approach. The

interval limits are specified as the offsets from the measurement result; just like

measurement errors, these limits can be expressed in the absolute or relative form.

We should note that the above-mentioned equation for the absolute error is often

presented as the general definition of measurement error [1, 2, 6, 10].

From our discussion, it should be clear that this definition narrows the meaning

of the term measurement error.

The absolute measurement error or uncertainty, depends in general on the value

of the measured quantity, and for this reason, it is not a suitable quantitative char-

acteristic of measurement accuracy. Relative errors or uncertainties do not have this

drawback. For this reason, measurement accuracy can be characterized quantita-

tively by the inverse of the relative error or uncertainty expressed as a fraction (not

as a percentage) of the measured quantity. For example, if the limits of error of a

measurement are ˙2�10�3% D ˙2�10�5, then the accuracy of this measurement

will be 5 � 104. Note that the accuracy is expressed only as a positive number.

Although it is possible to introduce in this manner the quantitative characteristic

of accuracy, in practice, accuracy is normally not estimated quantitatively and it

is usually characterized indirectly with the help of the measurement error or the

uncertainty of measurement.

The quality of measurements that reflects the closeness of the results of mea-

surements of the same quantity performed under the same conditions is called the

repeatability of measurements. Good repeatability indicates that the random errors

are small.

The quality of measurements that reflects the closeness of the results of measure-

ments of the same quantity performed under different conditions, i.e., in different

laboratories (at different locations) and using different equipment, is called the

reproducibility of measurements. Good reproducibility indicates that both the ran-

dom and systematic errors are small.

Uniformity of measuring instruments refers to the state of these instruments in

which they are all graduated in the established units and their errors and other rele-

vant properties fall within the permissible limits. Unity of measurements refers to a

common quality of all measurements performed in a region (in a country, in a group

of countries, or in the world) such that the results of measurements are expressed in

established units and agree with one another within the estimated limits of error or

uncertainty.

Uniformity of measuring instruments is a necessary prerequisite for unity of mea-

surements. However, the result of a measurement depends not only on the quality of

the measuring instrument employed but also on many other factors, including human

factors (if measurement is not automatic). For this reason, unity of measurements

in general is the limiting state that must be strived for, but which, as any ideal, is

unattainable.
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1.2 The Basic Metrological Problems

Comparison is an age-old element of human thought, and the process of making

comparisons lies at the heart of measurement: Homogeneous quantities character-

izing different objects are identified and then compared; one quantity is taken to be

the unit of measurement and all other quantities are compared with it. This is how

measures, i.e., objects that exhibit quantities of unit size (or the size of a known

number of units) came about.

At one time, numerous independent units and measures were used in different

regions; even different cities each had their own units and independent measures.

Then it became necessary to know how different measures of the same quantity

type were related, in order to unify measurements across regions. This problem gave

birth to the study of measures, which later turned into the science of measurements –

metrology.

But the content of metrology, as that of most sciences, is not immutable.

Especially profound changes started in the second half of the nineteenth cen-

tury, when industry and science developed rapidly and, in particular, electrical

technology and instrument building began. Measurements were no longer merely

a part of production processes and commerce; they became a powerful means of

gaining knowledge – they became a tool of science. The role of measurements has

increased dramatically today, in connection with the rapid development of science

and technology in the fields of nuclear research, space, electronics, and so on.

The development of science and technology, contacts among peoples, and in-

ternational trade has prompted many countries to adopt the same units of physical

quantities. The most important step in this direction was the signing of the Metric

Convention [(Treaty of the Meter), 1875]. This act had enormous significance not

only with regard to the dissemination of the metric system, but also with regard to

unifying measurements throughout the world by means of the creation of interna-

tional measurement standards. The Metric Convention and the institutions created

by it – the General Conference on Weights and Measures (CGPM), the Interna-

tional Committee of Weights and Measures (CIPM), and the International Bureau

of Weights and Measures (BIPM) – continue their important work today. In 1960,

the General Conference on Weights and Measures adopted the international system

of units (SI) [1, 3]. Most countries now use this system.

The range of topics encompassed by modern metrology is shown in the block

diagrams in Fig. 1.1.

While many of the listed topics are self-explanatory, several warrant further ex-

amination. We expand on these topics below, beginning with some blocks in the

diagram of Fig. 1.1d.

1. The Study of Measurable Quantities and their Units

Measurable quantities are introduced in different fields of knowledge, in physics,

chemistry, biology, and so on. The rules for introducing and classifying them and

for forming systems of units and for optimizing these systems cannot be addressed
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a

b

Metrology

Specialized metrology

(various fields of

measurements)

Applied metrology
General (theoretical)

metrology

Fig. 1.1 Schematic picture of the basic problems of metrology: (a) metrology, (b) applied metrol-

ogy, (c) specialized metrology, and (d) general metrology
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Fig. 1.1 (continued)

in any of these sciences, and already for this reason, they must be included among

the problems addressed in metrology. An important result in this direction was the

creation of the International System of Units SI.

2. General Theory of Measurement Standards

The units of quantities are reproduced with the help of primary measurement

standards, which play an exceptionally important role in supporting the unity

of measurements. The measurement standard of each unit is physically created

based on the laws of specific fields of science and technology. Therefore, general
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metrology cannot answer the question of how a measurement standard should be

constructed. But metrology must determine the criteria when a measurement stan-

dard must be created and how it should be maintained and used. It must also study

the theory and methods of comparing measurement standards and monitoring their

stability, as well as methods for expressing their inaccuracy. Practice raises many

such purely metrological questions.

3. Theory of Transfer of the Sizes of Units into Measurement Practice

In order for the results of all measurements to be expressed in established units, all

means of measurement (measures, instruments, measuring transducers, measuring

systems) must be calibrated with respect to primary measurement standards. How-

ever, it is obviously infeasible to calibrate all these devices against primary standards

directly. This problem is solved with the help of a system of secondary measurement

standards, i.e., standards that are calibrated with respect to the primary standard,

and working measurement standards, i.e., standards that are calibrated with respect

to secondary standards. Thus the system of measurement standards has a hierarchi-

cal structure. The entire procedure of calibrating measurement standards and, with

their help, the measuring instruments is referred to as transfer of the sizes of units

into measurement practice. The final stages of transferring the sizes of units consist

of calibration of the scales of the measuring instruments, adjustment of measures,

and determination of the actual values of the quantities that are reproduced by them,

after which all measuring instruments are checked at the time they are issued and

then periodically during use.

The procedures involved in the transfer of the size of units into measurement

practice raise a number of questions. For example, how many gradations of accu-

racy of measurement standards are required? How many secondary and working

standards are required for each level of accuracy? How does the inaccuracy increase

when the size of a unit is transferred from one measurement standard to another?

How does this inaccuracy increase during the transfer from a measurement stan-

dard to a working measuring instrument? What should be the relation between the

accuracy of a measurement standard and a measuring instrument being calibrated

(verified) with respect to this standard? How should complex measurement systems

be checked? Metrology should answer these questions.

The other blocks in the diagram of Fig. 1.1d do not require any explanations. We

shall now turn to Fig. 1.1a.

Specialized metrology is comprised from specific fields of measurement. Exam-

ples of fields of measurements include linear–angular measurements, measurements

of mechanical quantities, measurements of electric and magnetic quantities, and

so on. The central problem arising in each field of measurement is the problem of

creating conditions under which the measurements of the corresponding quantities

are unified. For this purpose, in each field of measurement, a system of measurement

standards is created, and methods for calibrating and checking the working measur-

ing instruments are developed. The specific nature of each field of measurement

engenders many problems characteristic of it. These problems are the domain of

specialized metrology. However, there also arise many problems that are common
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to several fields of measurement. The analysis of such common problems and the

development of methods for solving them belong to general metrology.

Applied metrology incorporates the metrological service and legislative metrol-

ogy, and it is of great importance for achieving the final goals of metrology as a

science. The metrological service checks and calibrates measuring instruments and

certifies reference materials; in other words, it maintains the uniformity of measur-

ing instruments employed in the country. The functions of legislative metrology are

to enact laws that would guarantee uniformity of measuring instruments and unity

of measurements. One aspect of legislative metrology concerns the system of phys-

ical quantities and the units to be employed uniformly across a country, which can

only be established by means of legislation. Another aspect legislates the rules giv-

ing the right to manufacture measuring instruments and to check the state of these

instruments when they are in use.

This is a good point at which to discuss the development of measurement stan-

dards. A measurement standard is always a particular measuring device: a measure,

instrument, or measuring system. Such measuring devices were initially employed

as measurement standards arbitrarily by simple volition of the institution respon-

sible for correctness of measurements in the country. However, there is always the

danger that a measurement standard will be destroyed, which can happen because of

a natural disaster, fire, and so on. An arbitrarily established measurement standard,

which is referred to as a prototype measurement standard, cannot be reproduced.

As a result, scientists have for a long time strived to define units of measurement

so that the primary measurement standards embodying them could be reproducible.

For this, the units of the quantities were defined based on natural phenomena. Thus,

the second was defined based on the period of revolution of the Earth around the

sun; the meter was defined based on the length of the Parisian meridian, and so

on. Scientists hoped that these units would serve “for all time and for all peoples.”

Historically, this stage of development of metrology coincided with the creation of

the metric system.

Further investigations revealed, however, that the chosen natural phenomena are

not sufficiently unique or are not stable enough. This, however, did not undermine

the idea to define units based on natural phenomena. It was only necessary to seek

other natural phenomena corresponding to a higher level of knowledge of nature.

It was found that the most stable or even absolutely stable phenomena are char-

acteristic of phenomena studied in quantum physics; it was further found that the

physical constants can be employed successfully for the purpose of defining units

and the corresponding effects can be employed for realizing measurement standards.

The meter, the second, the ohm, and the volt have now been defined in this manner.

Based on achievements in quantum physics, the second is reproduced now by

the cesium atomic standard. According to NIST, it is so accurate that it takes almost

20 million years to accumulate the drift of 1 s. One needs to only recall that when

the distance between two markings on a platinum–iridium rod was adopted for the

meter, for the most accurate measurement of length, the inaccuracy was not less

than 10�6. When the meter was later defined as a definite number (1,650,763.73)
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of wavelengths of krypton-86 radiation in vacuum, this inaccuracy was reduced to

10�7–10�8. Today, the definition of the meter is based on the velocity of light in

vacuum, which now considered as exactly known physical constant. As a result, the

inaccuracy in measuring length has been reduced by another order of magnitude

(and can be reduced even more). Since 1990, the primary standard of the volt has

been based on the Josephson constant and quantum Josephson effect. Its inaccuracy,

expressed as one standard deviation, is 0.6 ppm. From the same time, the primary

standard of the ohm has been based on the Von Klitsing constant and quantum Hall

effect. Its inaccuracy is 0.2 ppm (one standard deviation). The accuracy of the stan-

dards of volt and ohm can further increase with the improvements in the accuracy

of measuring the constants mentioned above.

It is interesting to consider the situation with the standard of ampere – one of the

base units in SI. Its definition is based on the force between two wires through the

current flows. It is unknown how to reproduce this unit according to this definition

with sufficient accuracy. For example, NIST has achieved reproducing ampere in

this way only with the standard deviation of 15 ppm, and even this accuracy can be

maintained for 5 min. At the same time, ampere can obviously be reproduced us-

ing Ohm’s law, from the standards of volt and ohm, thus obtaining the accuracy of

around 0.7 ppm. In other words, one can create a standard of ampere that would be

20 times more accurate than what is possible through the absolute method (using di-

rect measurements) according to its definition. In other words, the primary standard

of ampere became unnecessary for measurements! Note that ampere still remains a

base unit of system SI and it is still needed for dimensional equations.

The numerical values of the basic physical constants are widely used in various

calculations, and therefore, these values must be in concordance with each other. To

this end, all values of fundamental physical constants obtained by experiments must

be adjusted. The most recent adjustment was carried out in 2002 and the results

were published in 2005 [40].

As one can see from the problems with which metrology is concerned, it is an

applied science. However, the subject of metrology – measurement – is a tool of both

fundamental sciences (physics, chemistry, and biology) and applied disciplines, and

it is widely employed in all spheres of industry, commerce, and in everyday life. No

other applied science has such a wide range of applications, as does metrology.

We shall return once again to specialized metrology. A simple list of the fields

of measurement shows that the measurable quantities and therefore measurement

methods and measuring instruments are extremely diverse. What then do the dif-

ferent fields of measurement have in common? They are united by general or

theoretical metrology and, primarily, the general methodology of measurement,

methods for processing measurement data, and evaluating the inaccuracy of mea-

surements. For this reason, the development of these branches of metrology is

important for all fields of science and for all spheres of industry that employ

measurements. The importance of these branches of metrology is also indicated

by the fact that a specialist in one field of measurement can easily adapt to and work

in a different field of measurement.
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1.3 New Forms of International Cooperation in Metrology

Modern development of metrology is driven, on one hand, by the ever-increasing

role of measurements in chemistry, biology, laboratory medicine, food production,

environmental protection, and monitoring, with ever-higher requirements for accu-

racy and, on the other hand, with the expansion of international trade and industry

globalization.

The accelerated development of international trade began with the emergence of

the European Union (EU), which resulted in the tariff-free trade zone encompassing

all its member countries. Then other regional trade agreements, such as North Amer-

ican Free Trade Agreement (NAFTA), appeared, targeting the removal of barriers in

international trade.

Besides international trade, another trend in modern economy is globalization of

industrial production. It is now common that a factory producing a certain product

is situated in one country but uses components from suppliers in other countries, has

research and development divisions yet in other countries, and maintains corporate

and administrative services still elsewhere.

This expansion of international cooperation dramatically increased the demand

for metrology and metrological services. It became obvious that the international

unity of measurements, i.e., when measurements of the same quantities in different

countries would agree with each other, can bring enormous cost savings. Just con-

sidering trade, Kaarls [30] notes that “. . . global trade in commodities amounts to

more than 12 trillion USD, of which 80% affected by standards and regulation. The

compliance costs are estimated to be about 10% of the product costs. The global

markets of clinical chemistry and laboratory medicine and pharmaceuticals have a

value of some 300 billion USD per year. Annual savings as a consequence of compa-

rable, more accurate measurements results. . . will easily amount up to many billions

of USD.”

Alongside traditional measuring instruments, there emerged a tremendous inter-

nationally distributed bank of reference materials and substances. Their preparation

and usage need to be regimented to ensure the unity of measurements in chem-

istry, laboratory medicine, and other areas with wide reliance on these materials. In

principle, methods of solving these issues are similar to those in traditional areas of

measurements, except for the extremely large number and variety of these materials.

The current stage of metrology development reflects the emergence of new in-

ternational and regional metrological agreements. These agreements are especially

important for developing nations, since every region usually includes at least one

country with a well-established metrological service and a modern metrological sci-

entific center.

New agreements can be divided into general and targeted. The former include

EUROMET (European Collaboration in Measurement Standards) and NORAMET

(North and Central American Cooperation in Metrology). Among the latter, we

should especially point out EURACHEM/CITAC. EURACHEM is a network of or-

ganizations in Europe having the objective of establishing a system for traceability
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of chemical measurements and the promotion of good quality practice, which was

initially organized by the EU. Subsequently, in 1993, the Cooperation of Interna-

tional Traceability in Analytical Chemistry (CITAC) was created as an international

addition to EURACHEM. Thus, EURACHEM/CITAC have the mission to improve

traceability in chemical measurements made anywhere in the world; in other words,

they aim at providing unity of chemical measurements on the global scale.

Several targeted agreements focus on bringing order to the process of assigning

rights to various laboratories to carry out certain types of important measure-

ments, that is, to regiment laboratory accreditations. These agreements include

ILAC (International Laboratory Accreditation Cooperation) and APLAC (Asia –

Pacific Laboratory Accreditation Cooperation). The work on regimenting labora-

tory accreditation is being carried out under the slogan “Measured or tasted once –

everywhere accepted!”

Other targeted agreements have the goal of facilitating the cooperation between

laboratories engaged in measurements in different countries, resolving disputes, etc.

When necessary, the laboratories establish working groups, which focus on specific

issues and issue clarifications of methodological and terminological nature. But the

most important role of regional bodies is the establishment of the procedure for

the comparison of standards of the member countries. These regional comparisons

avoid the direct comparison of national standards of all countries that joined the

Metric Convention with international standards in BIPM, which would be physically

impossible.

In addition to government-level agreements, successful nongovernment organi-

zations in developed countries are also expanding their international cooperation.

For example, National Conference of Standard Laboratories, which used to be a US

organization, became international (NCSLI).

Many of these organizations often face common problems, and they form joint

working groups to address them. CIPM provides support to these groups, and in

turn, members of these groups often serve as members of CIPM’s Consultative

Committees. We should also mention that BIPM organized a Joint Committee for

Guides in Metrology (JCGM), with BIPM’s Director serving as the Chair of the

Joint Committee. This committee has two working groups whose tasks include the

improvement of terminology and the development and advocating of the Guide to

the Expression of Uncertainty in Measurement (GUM) [2].

GUM represents the first recommendation for the estimation of inaccuracy of

measurements developed under the auspices of BIPM. Such a recommendation had

been long overdue and the need for is obvious: a uniform solution to this prob-

lem is necessary to correlate different measurement results regardless of where and

when they were obtained. Consequently, this recommendation found an enthusiastic

acceptance by the metrological community and became an unofficial international

standard. It turned out, however, that the recommendation had a number of draw-

backs [13,16,31,42,44], and Working Group 1 of JCGM set out in 2006 to prepare

its new edition.

In summary, the activities described above indicate vigorous development of

metrology and metrological service at the present time. The role of metrology in
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the modern society was the subject of an extensive report by Dr. Quinn, Director of

BIPM, titled “Metrology, Its Role in Today’s World.” This report was included as

the introductory chapter of monograph [36].

1.4 Postulates of the Theory of Measurements

Measurements are so common and intuitively understandable that one would think

there is no need to identify the foundations on which measurements are based. How-

ever, a clear understanding of the starting premises is necessary for the development

of any science, and for this reason, it is desirable to examine the postulates of the

theory of measurements.

When some quantity characterizing a specific object is being measured, this ob-

ject is made to interact with a measuring instrument. Thus, to measure the diameter

of a rod, the rod is squeezed between the jaws of a vernier caliper; to measure the

voltage of an electric circuit, a voltmeter is connected to it; and so on. The read-

ing of the measuring instrument – the sliding calipers, voltmeter, and so on – gives

an estimate of the measurable quantity, i.e., the result of the measurement. When

necessary, the number of divisions read on the instrument scale is multiplied by a

certain factor. In many cases, the result of measurement is found by a mathemati-

cal analysis of the indications of an instrument or several instruments. For example,

the density of solid bodies, the temperature coefficients of the electric resistance of

resistors, and many other physical quantities are measured in this manner.

The imperfection of measuring instruments, the inaccuracy with which the sizes

of the units are transferred to them, as well as some other factors that we shall study

below cause measurement errors. Measurement errors are in principle unavoidable,

because a measurement is an experimental procedure and the true value of the mea-

surable quantity is an abstract concept. As the measurement methods and measuring

instruments improve, however, measurement errors decrease.

The introduction of measurable quantities and the establishment of their units

lay at the foundation of measurements. Any measurement, however, is always per-

formed on a specific object, and the general definition of the measurable quantity

must be formulated taking into account the properties of the object and the objective

of the measurement. The true value of the measurable quantity is essentially intro-

duced and defined in this manner. Unfortunately, this important preparatory stage of

measurements is usually not formulated.

To clarify this question, let us consider a simple measurement problem – the

measurement of the diameter of a disk. First, we shall formulate the problem. The

fact that the diameter of a disk is to be measured means that the disk, i.e., the object

of study, is a circle. We note that the concepts “circle” and “diameter of a circle”

are mathematical, i.e., abstract, concepts. The circle is a representation or model of

the given body. The diameter of the circle is the parameter of the model and is a

mathematically rigorous definition of the measurable quantity. Now, in accordance

with the general definition of the true value of the measurable quantity, it can be
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stated that the true value of the diameter of the disk is the value of the parameter

of the model (diameter of the disk) that reflects quantitatively the property of the

object of interest to us; the ideal qualitative correspondence must be predetermined

by the model.

Let us return to our example. The intended usage of the disk predetermines the

permissible measurement error and the choice of an appropriate measuring instru-

ment. By bringing the object into contact with the measuring instrument, we perform

the measurement and obtain the measurement result. But the diameter of the circle

is, by definition, invariant under rotation. For this reason, the measurement must

be performed in several places. If the difference between the results of these mea-

surements is less than the permissible measurement error, then any of the obtained

results can be taken as the result of measurement. After the value of the measurable

quantity, a concrete number, which is an estimate of the true value of the measurand,

has been found, the measurement can be regarded as being completed.

But it may happen that the difference among the measurements in different places

exceeds the permissible error. In this situation, we must conclude that within the

required measurement accuracy, our disk does not have a unique diameter, as does a

circle. Therefore, no concrete number can be taken, with prescribed accuracy, as an

estimate of the true value of the measurable quantity. Hence, the adopted model does

not correspond to the properties of the real object, and the measurement problem has

not been correctly formulated.

If the object is a manufactured article and the model is a drawing of the arti-

cle (including all the dimensions and tolerances), then any disparity between them

means that the article is defective. If, however, the object is a natural object, then

the disparity means that the model is not applicable and it must be reexamined.

Of course, even when measurement of the diameter of the disk is assumed to be

possible, in reality, the diameter of the disk is not absolutely identical in different

directions. But as long as this inconstancy is negligibly small, we can assume that

the circle as a model corresponds to the object and therefore a constant, fixed true

value of the measurable quantity exists, and an estimate of the quantity can be found

as a result of measurement. Moreover, if the measurement has been performed, we

can assume that the true value of the measurand lies somewhere near the obtained

estimate and differs from it by not more than the limits of the measurement error.

Thus the idealization necessary for constructing a model gives rise to an unavoid-

able discrepancy between the parameter of the model and the real property of the

object. We shall call this discrepancy the threshold discrepancy.

As we saw above, the error caused by the threshold discrepancy between the

model and the object must be less than the total measurement error. If, however, this

component of the error exceeds the limit of permissible measurement error, then it is

impossible to make a measurement with the required accuracy. This result indicates

that the model is inadequate. To continue the experiment, if this is permissible for the

objective of the measurement, the model must be redefined. Thus, in the example

of the measurement of the diameter of a disk, a different model could be a circle

circumscribing the disk.
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Another example, the measurement of the thickness of a sheet of a material,

is given in GUM (sections D.3.2 and D.3.4). Without additional clarifications, the

problem statement assumes that the sheet has constant thickness. Then, the model

of the object comprises two parallel planes, and the distance between them is the

model parameter that defines the measurable quantity and its true value.

Now let us turn to the measurement. By choosing an appropriate measurement

instrument and bringing it in contact with the object, we obtain the value of the mea-

surand, i.e., the sheet thickness. To verify the appropriateness of the model, we need

to repeat the measurement in several points of the sheet. If the difference between

the readings turns out to be significant, that is, greater than the limits of permissible

measurement error, then the assumed model or the chosen model parameter do not

correspond to the properties of the object. Hence, the model or its parameter must

be redefined. Depending on the intended use of the sheet, a new parameter could be

the maximum thickness or the thickness in certain given points. In either case, the

model remains the same but the model parameters are different. In the former case,

the parameter is the maximum thickness, and in the latter case there are different

parameters in each point. Thus, in the latter case, we must view thickness measure-

ments in each point as separate measurements, each with its own true value.

Similar to the example of disk diameter, different results of measurement of the

sheet thickness indicate a discrepancy between the model and the object and hence

the need to reconsider the model and/or the definition of the true value. In fact, as

we just saw, the new definition may introduce multiple true values and consequently

replace a single measurement with several separate measurements. Moreover, the

new definition may lead to the necessity to use different measurement instruments,

for example, instruments with a reduced contact area in the sheet thickness scenario.

One important corollary from the above discussion is that the concept of the true

value is necessary to understand the process of measurement. The above discussion

also suggests that there is a single underlying true value in every measurement.

We consider this to be a fundamental principle of measurement and include it into

the postulates below. It also reflects a different understanding of the concept of the

true value from VIM [1]. We will carefully examine the VIM position on the concept

of true value in Sect. 9.2.

The above examples are simple, but they exhibit features present in any measure-

ment, although these features are not always so easily and clearly perceived as when

measuring lineal dimensions.

The foregoing considerations essentially reduce to three prerequisites of a

measurement:

1. A model must be specified that corresponds to the object under study, and some

parameter of the model must be defined to correspond to the measurand.

2. The model of the object must permit the assumption that during the time required

to perform the measurement, the parameter of the model corresponding to the

measurand is constant.

3. The error caused by the threshold discrepancy between the model and the object

must be less than the permissible measurement error.
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The above prerequisites do not include a basic assumption behind any measurement

that the general definition of the measurable quantity (e.g., length, time, electrical

resistance, or whatever quantity is being measured) has been already introduced, and

the corresponding measurement standards exist. The issues of measurable quantity

definitions and the availability of standards are not directly related to the problem

of estimating measurement accuracy, and for this reason, they are not studied here.

These issues are investigated in several works; we in particular refer the reader to

the book by B.D. Ellis [24] and the work of K.P. Shirokov [50].

Generalizing all three prerequisites, we formulate the following principle of

metrology:

A measurement of a measurable quantity of an object with a given accuracy can

be performed only if it is possible to associate, with no less accuracy, a determi-

nate parameter of the model with that measurable quantity.

We note that the value of the parameter of the model of an object introduced in this

manner is the true value of the measurable quantity.

The foregoing considerations are fundamental, and they can be represented in the

form of postulates of the theory of measurement [46], [52]:

(˛) The true value of the measurable quantity exists.

(ˇ) There is a single true value in each measurement.

(
 ) The true value of the measurable quantity is constant.

(ı) The true value cannot be found.

The threshold discrepancy between the model and the object was employed above

as a justification of the postulate (ı). However, other unavoidable restrictions also

exist on the approximation of the true value of a measurable quantity. For example,

the accuracy of measuring instruments is unavoidably limited. For this reason, it is

possible to formulate the simple statement: The result of any measurement always

contains an error.

We shall now discuss some examples of models that are employed for specific

measurement problems.

Example 1.1. Measurement of the Parameters of Alternating Current

The object of study is an alternating current. The model of the object is a sinusoid

i D Im sin.!t C '/;

where t is the time and Im, !, and ' are the amplitude, the angular frequency, and

the initial phase, and they are the parameters of the model.

Each parameter of the model corresponds to some real property of the object and can

be a measurable quantity. But, in addition to these quantities, several other param-

eters that are functionally related with them are also introduced. These additional

parameters can also be measurable quantities. Some parameters can be introduced
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in a manner such that by definition they are not related with the “details” of the

phenomenon. An example of such a parameter is the effective current

I D

s

1

T

Z T

0

i2dt;

where T D 2�=! is the period of the sinusoid.

A nonsinusoidal current is also characterized by an effective current. However,

in designing measuring instruments and describing their properties, the form of the

current, i.e., the model of the object of study must be taken into account.

The discrepancy between the model and the object in this case is expressed as

a discrepancy between the sinusoid and the curve of the time dependence of the

current. In this case, however, only rarely it is possible to discover the discrepancy

between the model and the object under study by means of simple repetition of

measurements of some parameters. For this reason, the correspondence between the

model and the object is checked differently, for example, by measuring the form

distortion factor. If the discrepancy is detected, the model is usually redefined by

replacing the sinusoid with a sum of a certain number of sinusoids.

Example 1.2. Measurement of the Parameters of Random Processes

The object of the study is some randomly changing quantity. The usual model is

a stationary ergodic random process on the time interval T . The constant parame-

ters of the process are the mathematical expectation EŒX� and the variance V ŒX�.

Suppose that we are interested in EŒX�. The value of this parameter in the mathe-

matical model of the process is the true value of the measurand in this case. It can

be estimated, for example, with the help of the formula

x D

0

B

B

B

B

@

n
X

iD1
xi

n

1

C

C

C

C

A

T

;

where T is the observational time interval, xi are the estimates of the realizations

of the random quantity, whose variation in time forms a random process at times

ti 2 T , and n is the total number of realizations obtained.

Repeated measurements on other realizations of the process can give somewhat dif-

ferent values of x. The adopted model can be regarded as corresponding to the

physical phenomenon under study, if the differences between the obtained estimates

of the mathematical expectation of the process are much smaller than the permissi-

ble measurement error. If, however, these differences are close to the error or exceed

it, then the model must be redefined, which is most simply done by increasing the

observational interval T .
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It is interesting to note that the definitions of some parameters seem, at first

glance, to permit arbitrary measurement accuracy (if the errors of the measuring

instrument are ignored). Examples of such parameters are the parameters of station-

ary random processes, the parameters of distributions of random quantities, and the

average value of the quantity. One would think that to achieve the required accuracy

in these cases, it is sufficient to increase the number of observations when perform-

ing the measurements. In reality, however, the accuracy of measurement is always

limited, and in particular, it is limited by the correspondence between the model and

the phenomenon, i.e., by the possibility of assuming that to the given phenomenon,

there corresponds a stationary random process or a random quantity with a known

distribution.

When a true value cannot be defined, then a measurement is impossible. For

example, in the last few years, much has been written about measurements of vari-

able and random quantities. However, these quantities, as such, do not have a true

value, and for this reason, they cannot be measured.

For a random quantity, it is possible to measure the parameters of its distribution

function, which are not random; it is also possible to measure the realization of a

random quantity. For a variable quantity, it is possible to measure its parameters that

are not variable; it is also possible to measure the instantaneous values of a variable

quantity.

We shall now discuss in somewhat greater detail the measurement of instan-

taneous values of quantities. Suppose that we are studying an alternating current,

the model of which is a sinusoid with amplitude Im, angular frequency !, and

initial phase '. At time t1, there is an instantaneous value in the model, i1 D
Im sin.!t1C'/, which corresponds to an instantaneous current. At a different time,

there will be a different instantaneous value, but at each moment, it has some definite

value.

Thus, there always exists a fixed parameter of the model corresponding to the

measurable property of the object.

Measurement, however, is not instantaneous. The measurable quantity (the cur-

rent in the above example) will change while the measurement is taken, and this

will generate a specific error of the given measurement. The objective of the mea-

surement determines a permissible level that the measurement error, including its

component caused by the change in the measurable quantity during the measure-

ment time, must not exceed. If this condition is satisfied, then the effect of the

measurement time can be neglected, and one can assume to have obtained an es-

timate of the measured instantaneous current, i.e., the current strength at a given

moment in time. In the literature, the expressions “measurement of a variable

quantity” and “measurement of a random quantity” often refer to, respectively, mea-

surement of instantaneous values and measurement of a realization of a random

quantity. Such usage of these expressions is obviously incorrect.

Measurable quantities are divided into active and passive. Active quantities are

quantities that can generate measurement signals without any auxiliary sources of

energy; i.e., they act on the measuring instruments. Such quantities are the EMF, the

strength of an electric current, mechanical force, and so on. Passive quantities cannot
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act on measuring instruments, and for measurements, they must be activated. Exam-

ples of passive quantities include mass, inductance, and electric resistance. Mass is

usually measured based on the fact that in a gravitational field, a force proportional

to the mass acts on the body. Electric resistance is activated by passing an electric

current through a resistor. When measuring a passive quantity of an object, the ob-

ject model is constructed for the active quantity (or quantities) that arises from the

activation of passive quantities.

1.5 Classification of Measurements

In metrology there has been a long-standing tradition to distinguish direct, indi-

rect, and combined measurements. In the last few years, metrologists have begun to

divide combined measurements into strictly combined measurements and simulta-

neous measurements [12].

Direct measurements are measurements in which the object of study is made to

interact with the measuring instrument, and the value of the measurand is read from

the indications of the latter. Sometimes the instrumental readings are multiplied by

some factor or adjusted by applying certain corrections.

In the case of indirect measurements, the value of the measurable quantity is

found based on a known functional dependence between this quantity and other

quantities called arguments. The arguments are found by means of direct and some-

times indirect measurements, and the value of the measurand is calculated according

to the known dependence. For example, the density of a homogeneous solid body

is found as the ratio of the mass of the body to its volume. To obtain the density,

the mass, and volume of the body – the arguments – are measured directly, and the

density is then computed from their measured values.

Sometimes direct and indirect measurements are not easily distinguished.

For example, an AC wattmeter has four terminals. The voltage applied to the

load is connected to one pair of terminals, whereas the other pair of terminals is

connected in series with the load. As is well known, the indications of a wattmeter

are proportional to the power consumed by the load. However, the wattmeter does

not respond directly to the measured power and its operation is based on the trans-

formation of the strengths of two electric currents into a mechanical rotation. Given

the principle of operation of the instrument, measurement of power by a wattmeter

should be regarded as indirect.

In our case, it is important, however, that the value of the measurable quantity

can be read directly from the instrument (in this case, the wattmeter). In this sense,

a wattmeter is in no way different from an ammeter. For this reason, in this book, it is

not necessary to distinguish measurement of power by a wattmeter and measurement

of the strength of current by an ammeter: We shall categorize both cases as direct

measurements. In other words, when considering a specific measurement as be-

longing to one or another category, we will ignore the internals of the measuring

instrument employed.
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A similar confusion may arise in the case of measurements performed with

a measuring system or a chain of measuring instruments. A simple example of

such measurements is the measurement of temperature with thermocouple and mil-

livoltmeter. The thermocouple produces for each temperature the corresponding

electromotive force (EMF) and the voltmeter measures this EMF. From the indi-

cation of the millivoltmeter and knowing the characteristics of the thermocouple,

one can determine the temperature being measured.

The last instrument in the chain from which the measurement result is read (the

millivoltmeter in our example) may be graduated directly in units of the measurand

(the temperature) or in other units (for instance, one could just use a general purpose

millivoltmeter in our example). In the former case, we would like to stress that the

entire chain should be viewed as a single (albeit complex) instrument, and it should

be calibrated as such. In particular, its intrinsic and additional errors should be rated

for the entire unit. Inaccuracy of the measurements in this case is estimated using

the methods for measurements with a single instrument as described in Chap. 4. In

the latter case, that is, if the last measuring instrument is graduated in different units,

this becomes an indirect measurement, and its inaccuracy is estimated according to

the methods presented in Chap. 5.

Simultaneous and combined measurements are rather similar types of mea-

surements. In both cases, their distinguishing property is that the objective of the

measurement is to obtain values of several quantities rather than a single quantity

as with direct and indirect measurements. Also, in both cases, measurable quan-

tities are found by solving a system of equations, whose coefficients and certain

terms are obtained as a result of measurements. Finally, in both cases, the method

of least squares (see Chap. 6) is usually employed. But the difference is that in the

case of combined measurements, several quantities of the same kind are measured,

whereas in the case of simultaneous measurements, quantities of different kinds are

measured at the same time. For example, a measurement, in which both the elec-

tric resistance of a resistor at temperature C20ıC and its temperature coefficient are

found using the direct measurements of the resistance and temperature performed

at different temperatures, is a simultaneous measurement. A measurement, in which

the masses of separate weights in a set are found based on the known mass of one

of them and by comparing with it the masses of different combinations of weights

from the same set, is a combined measurement.

Depending on the properties of the object of study, the model adopted for the

object, the definition of the measurable quantity given in the model, as well as

on the method of measurement and the properties of the measuring instruments,

the measurements in each of the categories mentioned above are performed either

with single or with repeated observations. The method employed for processing

the experimental data depends on the number of observations – are many mea-

surements required or are one or two observations sufficient? If a measurement is

performed with repeated observations, then, to obtain the result, the observations

must be analyzed statistically. On the other hand, statistical methods are not re-

quired in the case of measurements with single observations. For this reason, we

argue that the number of observations is an important classification criterion.
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We shall term measurements performed with single observations as single mea-

surements and measurements performed with repeated observations as multiple

measurements. These terms have a natural intuitive meaning in direct measurements

but need clarification for indirect measurements. An indirect measurement, in which

the value of each of the arguments is found as a result of a single measurement, must

be regarded as a single measurement. If, on the other hand, the values of the argu-

ments were obtained by multiple measurements, the whole indirect measurement is

considered a multiple measurement.

Measurements are also divided into static and dynamic measurements. Adhering

to the concept presented in [51], we shall classify as static those measurements in

which the measuring instruments are employed in the static regime and as dynamic

those measurements in which the measuring instruments are employed in the dy-

namic regime. The static regime of a measuring instrument is a regime in which

the output signal of the instrument can be regarded as constant. For example, for an

indicating instrument, the regime is static if the signal is constant for a time suffi-

cient to take the reading. A dynamic regime is a regime in which the output signal

changes in time, so that to obtain a result or to estimate its accuracy, this change

must be taken into account.

According to these definitions, static measurements include, aside from triv-

ial measurements of length, mass, and so on, direct measurements of the average

and effective (mean-square) values of alternating current by indicating instruments.

A typical example of dynamic measurements is tracking the value of a quantity as

a function of time by a recording instrument. Note that one can view such mea-

surement as an infinite set of single instantaneous measurements; in this case, each

instantaneous measurement would be considered static. Other examples of dynamic

measurements are measurement of the magnetic flux by the ballistic method and

measurement of the high temperature of an object based on the initial portion of the

transfer function of a thermocouple put into contact with the object for a short time

(the thermocouple would be destroyed if the contact time was long).

Static measurements also include measurements performed using digital in-

dicating instruments. According to the definition of static measurements, for a

measurement to be considered static, it is not important that the state of the elements

in the device changes during the measurement. The measurement will also remain

static when the indications of the instrument change from time to time, but each

indication remains constant for a period of time sufficient for the indication to be

read or recorded automatically.

A characteristic property of dynamic measurements is that to obtain results and

estimate their accuracy in such measurements, it is necessary to know a complete

dynamic characteristic of the measuring instrument: a differential equation, transfer

function, and so on. (The dynamic characteristics of measuring instruments will be

examined in Chap. 2.)

The classification of measurements as static and dynamic is justified by the dif-

ference in the methods employed to process the experimental data. At the present

time, however, dynamic measurements as a branch of metrology are still in the for-

mative stage.
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The most important characteristic of the quality of a measurement is accuracy.

The material base, which ensures the accuracy of numerous measurements per-

formed in the economy, consists of measurement standards. The accuracy of any

particular measurement is determined by the accuracy of the measuring instru-

ments employed, the method of measurement employed, and sometimes by the

skill of the experimenter. However, as the true value of a measurable quantity is

always unknown, the errors of measurements must be estimated computationally.

This problem is solved by different methods and with different accuracy.

In connection with the estimation of measurement accuracy, we shall distinguish

measurements whose accuracy (or, more commonly, inaccuracy) is estimated before

and after the measurement. We shall refer to them as measurements with a priori es-

timation of inaccuracy and measurements with a posteriori estimation of inaccuracy.

Measurements with a priori inaccuracy estimation must be performed accord-

ing to an established procedure. Measurements of this type include all mass

measurements.

Mass measurements (also called industrial measurements in [1]) are common.

Their accuracy is predetermined by the types (brands) of measuring instruments

indicated in the procedure, the techniques for using them, as well as the stipu-

lated conditions under which the measurements are to be performed. Note that, in

mass measurements, procedure for the a priori inaccuracy estimation is implicitly

reflected in the overall measurement procedure: the person performing the mea-

surement is interested only in the result of measurement, simply assuming that the

accuracy will be adequate as long as he or she follows the procedure.

A posteriori estimation of inaccuracy is characteristic for measurements when it

is important to know the accuracy of each result. We shall further divide measure-

ments with a posteriori estimation of inaccuracy into two groups: measurements

with universal estimation of inaccuracy and measurements with individual estima-

tion of inaccuracy.

Measurements with universal estimation of inaccuracy are measurements

in which the manufacturer specifications (rather than actual properties) of the

measuring instruments employed are taken into account. These properties hold

for all instruments of a given type; thus universal estimates remain valid when an

instrument is replaced with another instrument of the same type.

Measurements with individual estimation of inaccuracy are measurements in

which the inaccuracy estimation takes into account actual properties of the spe-

cific measuring instruments employed. These properties are usually established by

calibration laboratories and are listed in calibration certificates.

In both cases, the conditions under which the measurements are performed are

taken into account; this is done by obtaining and applying the influence quantities of

the measurement conditions. In many cases, the influence quantities are measured;

in other cases, they are estimated. We will refer to the measurements of influence

quantities as supplementary measurements. Distinguishing supplementary measure-

ments is useful for metrological purposes.

Here we would like to call attention to a fact whose validity and significance

will become obvious from further discussion. Suppose that several measurements
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are performed using the same measuring instruments but with different methods of

inaccuracy estimation. Although the same instruments are employed, these mea-

surements will have different accuracy. The inaccuracy established by individual

estimation will be less than the inaccuracy found by universal estimation.

The results of measurements with a priori and a posteriori inaccuracy estimation

will be only rarely equally accurate. However, when measurements employ mea-

suring instruments with different accuracy, the above conclusion will no longer be

true. For example, measurement of voltage with a potentiometer of accuracy class

0.005, performed as a mass measurement, i.e., with a priori inaccuracy estimation,

will be more accurate than measurement with an indicating voltmeter of class 0.5

and individual inaccuracy estimation.

Returning to the discussion of various measurement types, measurements are

often performed during the preliminary study of a phenomenon. We shall call

such measurements as preliminary measurements. The purpose of preliminary mea-

surements is to determine the conditions under which some characteristic of the

phenomenon can be observed repeatedly, so that its regular relations with other

properties of the object, systems of objects, or with an external medium can be stud-

ied. As the objective of natural sciences is to establish and study regular relations

between objects and phenomena, preliminary measurements are important in these

fields. In particular, the first task of a scientist who is studying some phenomenon is

usually to determine the conditions under which the phenomenon can be observed

repeatedly in other laboratories and can be checked and confirmed.

Preliminary measurements are also required to construct a model of the object

under study. For this reason, preliminary measurements are important in metrology

as well.

Enormous literature exists on different aspects of measurements. As just one

example, we can refer the reader to the book by Massey [38], which considered a

number of these aspects.

1.6 Classification of Measurements Errors

Measurement accuracy is characterized by measurement error, limits of error, or

uncertainty. A measurement of a quantity whose true value is A gives an estimate QA
of that quantity. The absolute measurement error � expresses the difference between
QA and AW �D QA � A. However, this equation cannot be used to find the error of a

measurement for the simple reason that the true value of the measurable quantity is

always unknown.

As mentioned previously, only in calibration of measuring instruments can one

assume that the true value of the measurand is known, by taking the value of

the measurement standard (often called “reference standard” in this context) as the

true value of the measurand. Even then, strictly speaking, one finds the error of the

device being calibrated and not of the measurement itself. The error of the measure-

ment device found during calibration is called a point estimate.
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In all other cases, the measurement accuracy is characterized by either limits

of error or uncertainty, that is, by intervallic estimates. The calculation of these

estimates is based on estimating errors contributed by various individual sources of

inaccuracy; the latter are called elementary errors of the measurement.

The necessary components of any measurement are the method of measurement

and the measuring instrument; in addition, measurements are often performed with

the participation of a person. The imperfection of each component of measurement

contributes to the measurement error. For this reason, in the general form,

� D �m C �i C �p;

where � is the measurement error, �m is the methodological error, �i is the instru-

mental error, and �p is the personal error.

Each component of the measurement error can in turn be caused by several fac-

tors. Thus, methodological errors can arise as a result of an inadequate theory of the

phenomena on which the measurement is based and inaccuracy of the relations that

are employed to find an estimate of the measurable quantity. In particular, the error

caused by the threshold discrepancy between the model of a specific object and the

object itself is a methodological error.

Instrumental measurement errors are caused by the imperfection of measuring

instruments. Normally the intrinsic error of measuring instruments, i.e., the error

obtained under reference conditions regarded as normal, is distinguished from ad-

ditional errors, i.e., errors caused by the deviation of the influence quantities from

their values under reference conditions. Properties of measuring instruments that

cause the instrumental errors will be examined in detail in Chap. 2.

Human participants are responsible for personal errors. The individual charac-

teristics of the person performing the measurement give rise to individual errors that

are specific to that person. For example, in a measurement of high temperature using

an optical pyrometer, a human must detect the moment when the image of a filament

vanishes on the screen of the pyrometer. This moment (as detected) will depend on

the person’s perception. Another typical example includes incorrect reading of an

instrument indication when it falls in-between graduation marks of the instrument

scale.

Thanks to improvements in the reading and regulating mechanisms of measuring

instruments, personal errors are usually insignificant for modern measuring instru-

ments. In particular, they are virtually nonexistent for digital instruments.

The foregoing classification of measurement errors is based on the cause of the

errors. Another important classification of measurement errors is based on their

properties. In this respect, systematic and random errors are distinguished.

A measurement error is said to be systematic if it remains constant or changes

in a regular fashion in repeated measurements of one and the same quantity. The

observed and estimated systematic error is eliminated from measurements by intro-

ducing corrections. However, it is impossible to eliminate completely the systematic

error in this manner. Some part of the error will remain and then this residual error

will be the systematic component of the measurement error.
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To define a random measurement error, imagine that some quantity is measured

several times. If there are differences between the results of separate measurements

and these differences cannot be predicted individually, then the error from this scat-

ter of the results is called the random error.

The division of measurement errors into systematic and random is important,

because these components are manifested differently and different approaches are

required to estimate them. Random errors are discovered by performing measure-

ments of one and the same quantity repeatedly under the same conditions, whereas

systematic errors can be discovered experimentally either by comparing a given

result with a measurement of the same quantity performed by a different method

or by using a more accurate measuring instrument. However, systematic errors are

normally estimated by theoretical analysis of the measurement conditions, together

with the known properties of a measurand and of measuring instruments. Other

specifics of the terms systematic and random errors are discussed in Sect. 4.2.

In speaking about errors, we shall also distinguish gross or outlying errors and

blunders. We shall call an error gross or outlying if it significantly exceeds the er-

ror justified by the conditions of the measurements, the properties of the measuring

instrument employed, the method of measurement, and the qualifications of the ex-

perimenter. Such measurements can arise, for example, as a result of a sharp, brief

change in the grid voltage (if the grid voltage in principle affects the measurements).

Outlying or gross errors in multiple measurements are discovered by statistical

methods and are usually eliminated from analysis.

Blunders occur as a result of errors made by the experimenter. Examples are a

slip of the pen when writing up the results of observations, an incorrect reading of

the indications of an instrument, and so on. Blunders are discovered by nonstatistical

methods, and they must always be eliminated from the analysis.

Measurement errors are also divided into static and dynamic. Static errors are

exhibited by static measurements. Dynamic errors are present in dynamic mea-

surements and are caused by the inertial properties of measuring instruments. For

example, if a varying quantity is recorded with the help of a recording instrument,

then the difference between the obtained function and the actual quantity as it

changes with time (taking into account the necessary scale transformations) is the

dynamic error of the given dynamic measurement. In this case, the dynamic error is

also a function of time, and the instantaneous dynamic error can be determined for

each moment in time.

We shall now study the case when the process is recorded by measuring individ-

ual instantaneous values. It is clear that if within the time of a single measurement,

the measurable quantity does not change significantly and the instantaneous values

of the process are obtained at known times and sufficiently frequently, then the col-

lection of points ultimately obtained gives an arbitrarily close approximation of the

continuous recording. Thus, there will be no dynamic error here.

The inertial properties of an instrument can be such, however, that the changes in

the measurable quantity during the time necessary to perform a point measurement

will lead to a definite error in the measurements of the point values. In this case,

the obtained collection of point values will deviate from the measurable quantity as
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it changes in time, and their difference, exactly as in the above case of a recording

instrument, will give the dynamic error. It is natural to call the errors of separate

point measurements as instantaneous dynamic errors.

1.7 General Approach to Evaluation of Measurement

Inaccuracy

Measurements are regarded metrologically to be better the lower their inaccuracy is.

However, measurements must be reproducible, because otherwise they lose their

objective character and therefore become meaningless.

The reproducibility of a measurement depends on proper estimates of its inaccu-

racy. For example, consider a measurement of the length of a certain object. Assume

an experimenter measures this length to be 3.000 m with proper limits of errors (as

warranted by the measurement instruments and procedure) to be ˙0:3 cm. If the ex-

perimenter estimates the limits of error too conservatively to be ˙0:5 cm, then the

accuracy of this measurement will be unnecessarily low, but it will be reproducible:

it will be confirmed if someone else measures this length with higher accuracy.

However, if the first experimenter erroneously estimates the limits of error to be

˙0:01 cm, this measurement will no longer be reproducible. A more accurate mea-

surement will refute it.

Thus, correctly estimated measurement inaccuracy permits comparing the ob-

tained result with the results obtained by other experimenters. The fact that the

correctness of a given estimate is later confirmed in a more accurate measurement

attests to the high skill of the experimenter. But the above argument exposes con-

tradictory tendencies. On one hand, every experimenter wants to present his or her

measurement as being as high quality as possible; on the other hand, the measure-

ment result must be reproducible, and this suggests conservative estimation of the

accuracy.

With regard to the above contradiction, we stress that while high quality of a mea-

surement is desirable, the reproducibility (or, said differently, reliability) of the

measurement is mandatory. Thus, it is better to err on the side of caution and be bi-

ased toward reliability, that is, conservative inaccuracy estimations. This conclusion

should be considered as the following principle of the estimation of measurement

inaccuracy:

The estimate of the inaccuracy of measurement must be an upper-bound estimate.

The inaccuracy estimation for any measurement result is based on the estimates of

elementary errors of this measurement. Therefore, to satisfy the above principle,

the estimates of the elementary errors must also be upper-bound estimates. At the

same time, combining the elementary errors into the overall inaccuracy estimate

of the measurement should be done without introducing unwarranted additional in-

accuracy exaggeration, so that the overall inaccuracy estimate is only minimally

exaggerated.
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We should also stress that the correctness of an estimate of inaccuracy of a mea-

surement cannot be checked based on data obtained in that same measurement. In

any given measurement, all obtained experimental data and other reliable informa-

tion, for example, corrections to the indications of instruments, are employed to

find the measurement result, and the error must be estimated with additional in-

formation about the properties of the measuring instruments, the conditions of the

measurements, and the theory. There is no point in performing a special experiment

to check or estimate the measurement error or uncertainty. It would entail organizing

in parallel with the given measurement a more accurate measurement of the same

measurable quantity. Then the given measurement would be meaningless: Its result

would be replaced by the result of the more accurate measurement. The problem of

estimating the error in the given measurement would be replaced by the problem

of estimating the error of the more accurate measurement; i.e., the basic problem

would remain unsolved.

The correctness of estimates of errors and uncertainty is nonetheless checked. It

is confirmed either by the successful use of the measurement result for the purpose

intended or by the fact that the measurement agrees with the results obtained by

other experimenters. As in the case of measurement of physical constants, the cor-

rectness of the estimates of uncertainties is sometimes checked with time as a result

of improvements in measuring instruments.

1.8 Presentation of Measurement Results

If QA is the result of a measurement and�U and�L are the upper and lower limits of

the error in the measurement, then the result of the measurement and the measure-

ment inaccuracy can be written in the form

QA; �U; �L:

For example, a measurement result and its inaccuracy could be represented as
QAD 1:153 cm, �U D C 0:002 cm, and�L D � 0:001 cm. Often, j�Uj D j�Lj D�.

Then, the result and the inaccuracy are written in the form QA˙�.

But more often, the inaccuracy is expressed as uncertainty. In this case, the cor-

responding probability that the error is within the specified limits must be given. For

uniformity, it is recommended that the probability be given in parentheses after the

value of the uncertainty or a symbol of a measurand.

For example, if a measurement gives the value of the voltage, 2.62 V, and the

uncertainty of this result, u D ˙2%, was calculated for the probability 0.95, then

the result will be written in the form

QU D 2:62V; u D ˙2%.0:95/
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or, in the more compact form,

U0:95 D .2:62˙ 0:05/V:

The compactness remark refers to the method for indicating the probability and is

unrelated to the fact that the uncertainty is given in the relative form in the first

case and in the absolute form in the second case. If the confidence probability is

not indicated in the measurement result, then the inaccuracy must be assumed to

have been estimated without the use of probability methods. Although an inaccuracy

estimate obtained without the use of probability methods can be reliable, it cannot be

associated with any probability value. Thus, the probability should not be indicated.

To repeat, in this case, we have the limits of error of a measurement rather than the

uncertainty.

The above representations of inaccuracy are desirable for the final result, in-

tended for direct practical application, for example, in quality control. In this case, it

is usually convenient to express the total inaccuracy estimation. In many cases, how-

ever, it is desirable to know not the total inaccuracy estimation but the characteristics

of the random and systematic components separately. Such a representation of the

inaccuracy makes it easier to analyze and determine the reasons for any discrepancy

between the results of measurements of the same quantity performed under different

conditions. An analysis of this kind is usually necessary in the case of measurements

performed for scientific purposes, for example, measurements of physical constants.

It is also desirable to record the components separately in those cases when the re-

sult of a measurement is to be used for calculations together with other data that are

not absolutely precise. For example, in indirect measurements, when the arguments

are measured directly, separate recording of the random and systematic errors of

the measurements of the arguments makes it possible to estimate more accurately

the uncertainty of the result of the overall indirect measurement. We will see this in

Chap. 5.

For scientific measurements, apart from the inaccuracy expressions given above,

it is helpful to describe the basic sources of error together with an estimate of their

contribution to the total measurement uncertainty. For a random error, it is of interest

to present the form and parameters of the distribution function of the observations

and how the distribution function was determined (the method employed for testing

the hypothesis regarding the form of the distribution function, the significance level

used in this testing, etc.).

The inaccuracy in the results of mass measurements is usually not indicated at

all, because it is estimated beforehand, and the estimation is known prior to the

measurement. In mass measurements, the number of significant digits in the result

of a measurement reflects the accuracy of the measurement.

In other measurements, the inaccuracy must be estimated and expressed

explicitly.

As measurement inaccuracy determines only the vagueness of the result, the

inaccuracy need not be known precisely. For this reason, in its final form, the inac-

curacy is customarily expressed with only one or two significant digits. Two digits
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are retained for the most accurate measurements and if the most significant digit

of the number expressing the inaccuracy is less than 3. However, in intermediate

calculations, depending on the computational operations performed, one or two sig-

nificant digits more than will be needed for the result should be retained so that the

rounding error would not accumulate and distort the result.

The numerical value of the measurement result must have the last decimal digit

of the same rank as the last digit in its inaccuracy estimation. There is no point

in including more digits, because this will not reduce the inaccuracy of the result.

But fewer digits, which can result from further rounding off the number, would

increase the inaccuracy thus artificially reducing the accuracy of the result below

that provided by the measurement employed.

For example, if the result of the measurement is 85.6342 and the limits of error

are ˙0:04, then the result should retain only four significant digits: 85.63. If the

same result has limits of error ˙0:012, then it should be expressed as 85.634.

If the rules presented above are used, then the number of significant digits in

the measurement result makes it possible to judge approximately the accuracy of a

measurement: the inaccuracy can reach at most three units in the next-to-last digit of

the result. Returning to the above example, if we only know the result of 85.634, we

can tell that according to the rules, the worse inaccuracy could have been ˙0:029.

Indeed, any higher inaccuracy would have caused one to retain fewer digits in the

result.

When retaining a proper number of significant digits in observations and mea-

surement results, one must round the numbers involved. The rounding should be

done according to the following rules:

1. The last retained digit is not changed if the adjacent digit being discarded is less

than 5. Discarded digits in the whole part of the number are replaced by 0’s and

dropped in decimal fraction part.

Examples. Rounding the number 32,453 to four significant digits results in the num-

ber 32,450. Rounding the number 165.245 to four significant digits results in the

number 165.2.

2. The last digit retained is increased by 1 if the adjacent digit being discarded is

greater than 5 or if it is equal to 5 and there are digits other than 0 to its right.

Examples. If three significant digits are retained, the number 18.598 is rounded to

18.6 and the number 152.56 is rounded to 153.

3. If the digit being discarded is equal to 5 and the digits to its right are unknown

or are equal to 0, then the last retained digit is not changed if it is even and it is

increased by 1 if it is odd.

Examples. If two significant digits are retained, the number 10.5 is rounded to 10

and the number 11.50 is rounded to 12.
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4. If the decimal fraction in the numerical value of the result of a measurement

terminates in 0’s, then the 0’s are dropped only up to the digit that corresponds

to the rank of the least significant digit of the numerical value of the inaccuracy

estimation.

The foregoing rules were established by convention, and for calculations performed

by humans, they are entirely satisfactory. In the case of calculations performed with

the help of computers, however, rounding depending on the evenness or oddness of

the last retained digit [rule (3)] is inconvenient, because it complicates the algorithm.

It has been suggested that this rule be dropped and the last retained figure not be

changed, irrespective of whether it is even or odd. This suggestion, however, has not

been adopted. The main objection is that such rounding, if applied consecutively to

intermediate results, can significantly distort the final result.

We shall now estimate the relative rounding error, based on the observation

that the limits of error caused by the rounding are equal to one-half the last digit

in the numerical value of the result of the measurement. Assume, for example, that

the measurement result is expressed as a number with two significant figures. Then

the minimum number will be equal to 10 and the maximum number will be equal

to 99. Therefore, the relative rounding error "2 of a result with two significant digits

will be 0:5% < "2 � 5%.

If the result of a measurement is expressed with three significant figures, this

error will fall in the range 0:05% < "3 � 0:5%, and so on. Thus, the limits of error

obtained above show the effect of rounding off the result on the measurement error.



Chapter 2

Measuring Instruments and Their Properties

2.1 Types of Measuring Instruments

Measuring instruments are the technical objects that are specially developed for

the purpose of measuring specific quantities. A general property of measuring in-

struments is that their accuracy is known. Measuring instruments are divided into

material measures, measuring transducers, indicating instruments, recording instru-

ments, and measuring systems.

A material measure is a measuring instrument that reproduces one or more

known values of a given quantity. Examples of measures are balance weights,

measuring resistors, measuring capacitors, and reference materials. Single-valued

measures, multiple-valued measures, and collections of measures are distinguished.

Examples of multiple-valued measures are graduated rulers, measuring tapes, re-

sistance boxes, and so on. Multiple-valued measures are further divided into those

that reproduce discrete values of the corresponding quantities, such as resistance

boxes, and those that continuously reproduce quantities in some range, for example,

a measuring capacitor with variable capacitance. Continuous measures are usually

less accurate than discrete measures.

When measures are used to perform measurements, the measurands are com-

pared with the known quantities reproduced by the measures. The comparison is

made by different methods, but so-called comparators are a specific means that

are used to compare quantities. A comparator is a measuring device that makes it

possible to compare similar quantities and has a known sensitivity. The simplest

comparator is the standard equal-armed pan balance.

In some cases, quantities are compared without comparators, by experimenters,

with the help of their viewing or listening perceptions. For instance, when measuring

the length of a body with the help of a ruler, the ruler is placed on the body and the

observer fixes visually the graduations of the ruler (or fractions of a graduation) at

the corresponding points of the body.

A measuring transducer is a measuring instrument that converts the measure-

ment signals into a form suitable for transmission, processing, or storage. The

measurement information at the output of a measuring transducer typically cannot

be directly observed by the experimenter.
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One must distinguish measuring transducers and the transforming elements of a

complicated instrument. The former are measuring instruments, and as such, they

have rated (i.e., listed in documentation) metrological properties (see below). The

latter, on the other hand, do not have an independent metrological significance and

cannot be used separately from the instrument of which they are a part.

Measuring transducers are diverse. Thermocouples, resistance thermometers,

measuring shunts, and the measuring electrodes of pH meters are just a few ex-

amples of measuring transducers. Measuring current or voltage transformers and

measuring amplifiers are also measuring transducers. This group of transducers is

characterized by the fact that the signals at their inputs and outputs are a quantity

of the same kind, and only the magnitude of the quantity changes. For this reason,

these measuring transducers are called scaling measuring transducers.

Measuring transducers that convert an analog signal at the input into a discrete

signal at the output are called analog-to-digital converters. Such converters are man-

ufactured either as autonomous, i.e., independent measuring instruments, or as units

built into other instruments, in particular, in the form of integrated microcircuits.

Analog-to-digital converters are a necessary component of a variety of digital de-

vices, but they are also employed in monitoring, regulating, and control systems.

An indicating instrument is a measuring instrument that is used to convert mea-

surement signals into a form that can be directly perceived by the observer. Based on

the design of the input circuits, indicating instruments are just as diverse as measur-

ing transducers, and it is difficult to survey all of them. Moreover, such a review and

even classification are more important for designing instruments than for describing

their general properties.

A common feature of all indicating instruments is that they all have readout de-

vices. If these devices are implemented in the form of a scale and an indicating

needle, then the indications of the instrument are a continuous function of the mag-

nitude of the measurable quantity. Such instruments are called analog instruments.

If the indications of instruments are in a digital form, then such instruments are

called digital instruments.

The above definition of digital instruments formally includes two types of de-

vices. The first type, which includes automatic digital voltmeters, bridges, and

similar instruments, performs all measuring transformations in a discrete form; in

the second type, exemplified by induction meters for measuring electrical energy, all

measuring transformations of signals occur in an analog form and only the output

signal assumes a discrete form. The conversions of measurement information into

a discrete form have several specific features. Therefore, only instruments in which

the measurement conversions occur in a discrete form are usually considered to be

digital instruments.

The indications of digital instruments can be easily recorded and are convenient

for entering into a computer. In addition, their design usually makes it possible to

obtain significantly higher accuracy than the accuracy of analog instruments. More-

over, when digital instruments are employed, no reading errors occur. However, with

analog instruments, it is easier to judge trends in the variation of the measurands.
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In addition to analog and digital instruments, there also exist analog-discrete

measuring instruments. In these instruments, the measuring conversions are per-

formed in an analog form, but the readout means are discrete (but not digital).

Analog-discrete instruments combine the advantages of both analog and digital

instruments. Mentioned above induction meters for measuring electric energy are

examples of such hybrid instruments.

In many cases, measuring instruments are designed to record their indications.

Such instruments are called recording instruments. Data can be recorded in the form

of a continuous record of the variation of the measurand in time, or in the form of

a series of discrete points. Instruments of the first type are called automatic-plotting

instruments, and instruments of the second type are called printing instruments.

Printing instruments can record the values of a measurand in digital form. Print-

ing instruments give a discrete series of values of the measurand with some time

interval. The continuous record provided by automatic-plotting instruments can be

regarded as an infinite series of values of the measurand.

Sometimes measuring instruments are equipped with induction, photo-optical, or

contact devices and relays for purposes of control or regulation. Such instruments

are called regulating instruments. Regulating units typically lead to some reduction

of the accuracy of the measuring instrument.

Measuring instruments also customarily include null indicators, whose primary

purpose is to detect the presence of a nonzero signal. The reason for them to be

considered measuring instruments is that a null indicator, such as a galvanometer,

can often be used as a highly sensitive indicating instrument.

A measuring system is a collection of functionally integrated measuring, comput-

ing, and auxiliary devices connected to each other with communication channels.

2.2 Metrological Characteristics of Measuring Instruments

We shall divide all characteristics of measuring instruments into two groups: metro-

logical, which are significant for using a measuring instrument in the manner

intended, and secondary. We shall include in the latter such characteristics as mass,

dimensions, and degree of protection from moisture and dust. We shall not discuss

secondary characteristics because they are not directly related with the measurement

accuracy, even though they sometimes influence the selection and application of an

instrument.

By metrological characteristics of a measuring instrument, we mean the char-

acteristics that make it possible to judge the suitability of the instrument for

performing measurements in a known range with known accuracy. A simple ex-

ample of a metrological characteristic common to all measuring instruments except

single measures (i.e., measures reproducing a single value of a quantity) is the mea-

surement range of the instrument. We will call metrological characteristics that are

established before or during the design and development of the instrument as nomi-

nal metrological characteristics. Examples of such a characteristic are the nominal
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value of a measure (10�, 1 kG, etc.), the measurement range of an instrument

(0–300 V, 0–1;200ıC, etc.), the conversion range of a transducer, the value of the

scale factor of an instrument scale, and so on.

The relation between the input and the output signals of indicating instruments

and transducers is determined by the transfer function. For indicating instruments,

this relation is determined by the instrument scale, whereas for measuring trans-

ducers, it is determined by a graph or an equation. If this graph or equation had

been determined and specified before the transducer was developed (or during its

development), then the graph or equation represents a nominal metrological charac-

teristic.

The real characteristics of measuring instruments differ from the nominal

characteristics because of fabrication inaccuracies and changes occurring in the

corresponding properties in time. These differences between nominal and real

metrological characteristics lead to the error of the instrument.

Ideally, a measuring instrument would react only to the measured quantity or to

the parameter of the input signal of interest, and its indication would not depend

on the external conditions, such as the power supply regime, temperature, and so

on. In reality, the external conditions do affect the indications of the instrument.

The quantities characterizing the external conditions affecting the indications of a

measuring instrument are called influence quantities.

For some types of measuring instruments, the dependence of the output signal

or the indications on a given influence quantity can be represented as a functional

dependence, called the influence function. The influence function can be expressed

in the form of an equation (e.g., the temperature dependence of the EMF of standard

cells) or a graph. In the case of a linear dependence, it is sufficient to give the co-

efficient of proportionality between the output quantity and the influence quantity.

We call this coefficient the influence coefficient. Influence coefficients and functions

make it possible to take into account the conditions under which measuring instru-

ments are used, by introducing the corresponding corrections to the obtained results.

The imperfection of measuring instruments is also manifested because when the

same quantity is measured repeatedly under identical conditions, the results can

differ somewhat from one another. If these differences are significant, the indications

are said to be nonrepeatable.

The inaccuracy of a measuring instrument is usually characterized by its error.

Taking an indicating instrument as an example, let the true value of a quantity at the

input of the instrument be At and the instrument indication be the value Ar . The

absolute error of the instrument will be

� D Ar � At :

If the indications of the repeated measurements of At are somewhat different, (but

not enough to be considered nonrepeatable), one can talk about a random component

of instrument error. For analog instruments, the random component of instrument er-

ror is normally caused by friction in the supports of a movable part of the instrument

and/or by hysteresis phenomena. The limits of this error component can be found
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directly if the quantity measured by the instrument can be varied continuously,

which is the case with, e.g., the electric current or voltage. The common method

involves driving the indicator of the instrument continuously up to the same scale

marker, once from below and once from above the marker. To compensate for fric-

tion (and/or hysteresis), the input signal that drives the indicator to the marker from

below needs to be higher than what it would have been without friction; the input

signal that drives the indicator to the same marker from above will be smaller. We

will call the dead band the absolute value of the difference between the two val-

ues of the measurand that are obtained in such a test corresponding to a given scale

marker of the instrument. The dead band gives the range of possible values of the

random component of instrument error, and one half of this length is the limiting

value of the random error.

There are also several instrument types, notably, weighing scales, whose indi-

cations cannot vary continuously. The random error of weighing scales is usually

characterized by the standard deviation [7]. This characteristic of an instrument is

calculated from the changes produced in the indications of the scales by a load with

a known mass; the test is performed at several scale markers, including the limits of

the measurement range. One method for performing the tests and the computational

formula for calculating the standard deviation of weighing scales are presented

in [7].

Measuring instruments are created to bring certainty into the phenomena stud-

ied and to establish regular relations between the phenomena. Thus, the uncertainty

created by the nonrepeatability of instrument indications interferes with using an

instrument in the manner intended. For this reason, the first problem that must be

solved when developing a new measuring device is to make its random error in-

significant, i.e., either negligibly small compared with other errors or falling within

permissible limits of error for measuring devices of the given type. We should note

here that because uncertainty of instrument indications represents only a random

component of its inaccuracy, the term “uncertainty” cannot replace the term “limits

of error” as applied to measuring instruments.

If the random error is insignificant and the elements determining instrument ac-

curacy are stable, then by calibration, the measuring device can always be “tied” to

a corresponding measurement standard and the potential accuracy of the instrument

can be realized.

The value of the measurand corresponding to the interval between two neighbor-

ing markers on the instrument scale is called the value of a scale division. Similarly,

the value of the least significant digit is the value of the measurand corresponding

to one increment of the least significant digit of a digital readout device.

The sensitivity of a measuring instrument is the ratio of the change in the output

value of the measuring instrument to the corresponding change in the input value of

the quantity that causes the output value to change. The sensitivity can be a nominal

metrological characteristic or an actual characteristic of a real instrument.

The discrimination threshold is the minimum change in the input signal that

causes an appreciable change in the output signal.
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The resolution is the smallest interval between two distinguishable neighboring

discrete values of the output signal.

Instability (of a measuring instrument) is a general term that expresses the change

in any property of the measuring instrument in time.

Drift is the change occurring in the output signal (always in the same direction)

in the absence of the input signal over a period of time that is significantly longer

than the time needed to perform a measurement with a given measuring instrument.

The presence of drift entails the need to reset the zero indication of the instrument.

The drift and the instability do not depend on the input signal, but they can de-

pend on the external conditions. The drift is usually determined in the absence of

the signal at the input.

The metrological characteristics of measuring instruments should also include

their dynamic characteristics. These characteristics reflect the inertial properties of

measuring instruments. It is necessary to know them to correctly choose and use

many types of measuring instruments. The dynamical characteristics are examined

below in Sect. 2.5.

The properties of measuring instruments can normally be described based on

the characteristics enumerated above. For specific types of measuring instruments,

however, additional characteristics are often required. Thus, for the gauge rods, the

flatness and degree of polish are important. For voltmeters, the input resistance is

important. We shall not study such characteristics, because they refer only to indi-

vidual types of measuring instruments.

2.3 Rating of the Errors of Measuring Instruments

Measuring instruments can only be used as intended when their metrological prop-

erties are known. In principle, the metrological properties can be established by two

methods. One method is to find the actual characteristics of a specific instrument.

In the second method, the nominal metrological characteristics and the permissible

deviations of the real characteristics from the nominal characteristics are given.

The first method is laborious, and for this reason, it is used primarily for the most

accurate and stable measuring instruments. Thus, the second method is the main

method. The nominal characteristics and the permissible deviations from them are

given in the technical documentation when measuring instruments are designed,

which predetermines the properties of measuring instruments and ensures that they

are interchangeable.

In the process of using measuring instruments, their real properties are checked

to determine whether these properties deviate from the established nominal charac-

teristics. If some real property deviates from its nominal value by an amount more

than allowed, then the measuring instrument is adjusted, refurbished, or discarded

and no longer used.

Thus, the choice of the nominal characteristics of measuring instruments and

the designation of permissible deviations of the real characteristics from them –
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rating of the metrological characteristics of measuring instruments – are of great

importance for measurement practice. The practice of rating the metrological char-

acteristics of measuring instruments has evolved over time, and we will examine

it next.

Both the production of measuring instruments and the rating of their character-

istics initially arose spontaneously in each country. Later, rules that brought order

to the rating process were established in all countries with significant instrument

production. The recommendations developed at this time by international organiza-

tions, primarily Publication 51 of the International Electrotechnical Commission

(IEC) and a number of publications by the International Organization of Legal

Metrology (OIML), were of great importance for standardizing the expression of

rated characteristics [8, 9]. The terminological documents are also extremely valu-

able for developing rating procedures [1, 10, 12].

We shall now return to the gist of the problem. The values of nominal metro-

logical characteristics, such as the upper limits of measurement ranges, the nominal

values of the measures, the scale factors of instruments and so on, are chosen from a

standardized series of values of these characteristics. A more difficult task is to rate

the accuracy characteristics: errors and instability.

Despite the efforts of designers, the real characteristics of measuring instruments

depend to some extent on the external conditions. For this reason, the conditions are

determined under which the measuring instruments are to be calibrated and checked,

including the nominal values of all influence quantities and the ranges of their per-

missible deviation from the nominal values. These conditions are called reference

conditions. The error of measuring instruments under reference conditions is called

the intrinsic error.

In addition to the reference conditions and intrinsic errors, the rated operating

conditions of measuring instruments are also established, i.e., the conditions under

which the characteristics of measuring instruments remain within certain limits and

the measuring instruments can be employed as intended. Understandably, errors

in the rated operating conditions are larger than errors under the reference condi-

tions. This change is characterized by specifying the limits of the additional error

(the additional error the instrument can have due to deviation of the corresponding

influence quantity from the reference condition), the permissible value of the cor-

responding influence quantity, or by indicating the limits of the permissible error

under the rated operating conditions (the overall possible error of the instrument).

The errors of measuring instruments are expressed not only in the form of ab-

solute and relative errors, adopted for estimating measurement errors, but also in

the form of fiducial errors. The fiducial error is the ratio of the permissible lim-

its of the absolute error of the measuring instrument to some standardized value

– fiducial value. The latter value is established by standards on separate types of

measuring instruments; we discuss these rules later in this section. The fiducial error

is somewhat similar to relative error but, since it is normalized to a constant stan-

dardized value, the fiducial error is constant across the entire measurement range of

the device. The purpose of fiducial errors is that they make it possible to compare

the accuracy of measuring instruments that have different measurement ranges. For



38 2 Measuring Instruments and Their Properties

example, the accuracy of an ammeter with a measurement limit of 1 A and permissi-

ble absolute error of 0.01 A has the same fiducial error of 1% (and in this sense, the

same accuracy) as an ammeter with a measurement limit of 100 A and permissible

absolute error of 1 A.

For measuring transducers, the errors can be represented relative to either the

input or output signals. Let us consider the relationship between these two error

representations.

Figure 2.1 shows the nominal and, let us assume, the real transfer functions of

some transducer. The nominal transfer function, as done in practice whenever pos-

sible, is assumed to be linear. We denote the input quantity by x and the output

quantity by y. They are related by the dependency

x D Ky;

where K is the nominal transduction constant.

At the point with true values of the quantities xt and yt , the true value of the

transduction constant will be Kt D xt=yt . Calculations based on the nominal con-

stant K , however, result in an error.

Let xa D Kyt and ya D xt=K be determined based on yt and xt (see Fig. 2.1).

Then the absolute transducer error with respect to the input will be

�x D xa � xt D .K �K1/yt :

Fig. 2.1 Nominal (curve 1)

and real (curve 2) transfer

functions of a measuring

transducer



2.3 Rating of the Errors of Measuring Instruments 39

The error with respect to the output is expressed analogously:

�y D ya � yt D
�

1

K
� 1

Kt

�

xt :

We note, first, that �x and �y always have different signs: If (K �Kt / > 0, then

(1=K � 1=Kt/ < 0.

But this is not the only difference. The quantities x and y can also have different

dimensions; i.e., they can be physically different quantities, so that the absolute input

and output errors are not comparable. For this reason, we shall study the relative

errors:

"x D �x

xt
D .K �Kt /

yt

xt
D K �Kt

Kt
;

"y D �y

yt
D .Kt �K/

KKt

xt

yt
D Kt �K

K
:

As Kt ¤ K , we have j"xj ¤ j"y j.
We denote the relative error in the transduction constant at the point (xt ; yt ) as

"k , where "k D .K �Kt /=Kt . Then

"x

"y
D �.1C "k/:

However, "k << 1, and in practice relative errors with respect to the input and output

can be regarded as equal in magnitude.

In measures, the rated error is determined as the difference between the nominal

value of the measure and the “true value” of the quantity reproduced by the measure;

the “true value” is obtained by another, known to be much more precise, measure-

ment. This is analogous to indicating instruments if one considers the nominal value

of a measure as the indication of the instrument.

It is interesting to note that single measures that reproduce passive quantities, for

example, mass, electric resistance, and so on, have only systematic errors. The error

of measures of active quantities (electric voltage, electric current, etc.) can have both

systematic and random components. Multiple-valued measures of passive quantities

can have random errors introduced by the switching elements.

To summarize, when the errors of measuring instruments are rated, the permis-

sible limits of the intrinsic and all additional errors are specified. At the same time,

the reference and rated operating conditions are indicated.

Of all forms enumerated above for expressing the errors of measuring instru-

ments, the best is the relative error, because in this case, the indication of the

permissible limit of error gives the clearest idea of the level of measurement ac-

curacy that can be achieved with the given measuring instrument. The relative error,

however, usually changes significantly over the measurement range of the instru-

ment, and for this reason, it is difficult to be rated.
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The absolute error is frequently more convenient than the relative error. In the

case of an instrument with a scale, the limit of the permissible absolute error can be

rated with the same numerical value for the entire scale of the instrument. But then

it is difficult to compare the accuracies of instruments having different measurement

ranges. This difficulty disappears when the fiducial errors are rated.

Let us now consider how the limits of permissible errors are expressed. For

our discussion below, we shall follow primarily [9]. The limit of the permissi-

ble absolute error can sometimes be expressed by a single value (neglecting the

sign):

� D ˙a;

sometimes in the form of the linear dependence:

� D ˙.a C bx/; (2.1)

where x is the nominal value of the measure, the indication of a measuring instru-

ment, or the signal at the input of a measuring transducer, and a and b are constants,

and sometimes by a general equation,

� D f .x/:

When the last dependence is complicated, it is given in the form of a table or

graph.

The fiducial error 
 (in percent) is defined by the formula


 D 100�=xN ;

where xN is the fiducial value.

The fiducial value is assumed to be equal to the following:

1. The value at the end of the instrument scale.

2. The nominal value of the measurand, if it has been established.

3. The length of the scale, if the scale graduations narrow sharply toward the end of

the scale. In this case, the error and the length of the scale are expressed in the

same units of length (e.g., centimeters).

4. The rules above are in accordance with Recommendation 34 of OIML [9]. How-

ever, Publication 51 of IEC [8] foresees that if the zero marker falls within the

scale, the fiducial value is equal to the (the span of the scale), which is a sum of

the end values of the scale (neglecting their signs). This is controversial and we

will discuss it in detail below.
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A better between these two recommendations is the one by OIML. Indeed, con-

sider, for example, an ammeter with a scale –100–0–100A and with a permissible

absolute error of 1 A. In this case, the fiducial error of the instrument will be 1%

according to OIML and 0.5% according to IEC. But when using this instrument,

the possibility of performing a measurement with an error of up to 0.5% cannot be

guaranteed for any point of the scale, which makes the interpretation of the fidu-

cial error confusing. An error not exceeding 1%, however, can be guaranteed when

measuring a current of 100 A under reference conditions.

The tendency to choose a fiducial value such that the fiducial error would be close

to the relative error of the instrument was observed in the process of improving IEC

Publication 51. Indeed, in the previous edition of this publication, the fiducial value

for instruments without a zero marker on the scale was taken to be equal to the

difference of the end values of the range of the scale, and now it is taken to be equal

to the larger of these values (neglecting the sign). Consider, for example, a frequency

meter with a scale 45–50–55 Hz and the limit of permissible absolute error of 0.1 Hz.

According to the previous edition of EIC Publication 51, the fiducial error of the

frequency meter was assumed to be equal to 1%, and the current edition makes it

equal to 0.2%. But when measuring the nominal 50-Hz frequency, the instrument

relative error indeed will not exceed 0.2% (under reference conditions), while the

1% error has no relation to the accuracy of this instrument. Thus, the current edition

is better. We hope that IEC will take the next step in this direction and take into

account the recommendation of OIML for setting the fiducial value of instruments

with a zero marker within the scale.

The limits of permissible relative error are rarely listed as rated but can be

computed. If the rated error is expressed as the fiducial error 
 (in percent), the

permissible relative error for each value of the measurand must be calculated ac-

cording to the formula

ı D 

xN

x
:

If the rated error is expressed as the limits of absolute error �, the limit of permis-

sible relative error ı is usually expressed in percent according to the formula

ı D 100�

x
D ˙c:

For digital instruments, the errors are often rated in the conventional form

˙ .b C q/; (2.2)

where b is the relative error in percent and q is some figure of the least significant

digit of the digital readout device. For example, consider a digital millivoltmeter

with a measurement range of 0–300 mV and with the indicator that has four digits.

The value of one unit in the least significant digit of such an instrument is 0.1 mV. If

this instrument is assigned the limits of permissible error ˙.0:5%C2/, then figure 2
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in the parentheses corresponds to 0.2 mV. Now the limit of the relative error of the

instrument when measuring, for example, a voltage of 300 mV can be calculated as

follows:

ı D ˙
�

0:5C 0:2 � 100
300

�

D ˙0:57%:

Thus, to estimate the limit of permissible error of an instrument from the rated

characteristics, some calculations must be performed. For this reason, although the

conventional form (2.2) gives a clear representation of the components of instrument

error, it is inconvenient to use.

A more convenient form is given in Recommendation 34 of OIML: According

to this recommendation, the limit of permissible relative error is expressed by the

formula

ı D ˙
h

c C d
�xe

x
� 1

�i

; (2.3)

where xe is the end value of the measurement range of the instrument or the input

signal of a transducer and c and d are relative quantities.

In (2.3), the first term on the right-hand side is the relative error of the instrument

at x D xe . The second term characterizes the increase of the relative error as the

indications of the instrument decrease.

Equation (2.3) can be obtained from (2.2) as follows. To the figure q, there cor-

responds the measurand qD, whereD is the value of one unit in the least significant

digit of the instrument’s readout device. In the relative form, it is equal to qD/x.

Now, the physical meaning of the sum of the terms b and qD/x is that it is the limit

of permissible relative error of the instrument. So,

ı D
�

b C qD

x

�

:

Using identity transformation, we obtain

ı D b C qD

x
C qD

xe
� qD

xe
D
�

b C qD

xe

�

C qD

xe

�xe

x
� 1

�

:

If we denote

c D b C qD

xe
; d D qD

xe
;

we obtain (2.3).

In application to the example of a digital millivoltmeter studied above, we have

ı D ˙
h

0:57C 0:07
�xe

x
� 1

�i

:

It is clear that the last expression is more convenient to use, and in general, it is more

informative than the conventional expression (2.2).
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Note that for standardization, the error limits are established for the total instru-

ment error and not for the separate components. If, however, the instrument has an

appreciable random component, then permissible limits for it are established sepa-

rately, in addition to the limits of the total error. For example, aside from the limits

of the permissible intrinsic error, the limits of the permissible dead band are also

established.

Additional errors (recall that these are errors due to the deviation of the corre-

sponding influence quantities from their values falling within the reference condi-

tion) of measuring instruments are rated by prescribing the limits for each additional

error separately. The intervals of variation of the corresponding influence quantities

are indicated simultaneously with the limits of the additional errors. The collec-

tion of ranges provided for all influence quantities determines the rated operating

conditions of the measuring instrument. The limits of permissible additional errors

are often represented in proportion to the values of their corresponding influence

quantities or the deviation of these quantities from the limits of the intervals deter-

mining their reference values. In this case, the corresponding coefficients are rated.

We call them the influence coefficients.

In the case of indicating measuring instruments, additional errors are often re-

ferred to by the term variation of indications. This term is used, in particular, for

electric measuring instruments [8].

The additional errors arising when the influence quantities are fixed are system-

atic errors. For different instruments of the same type, however, systematic errors

can have different values and, moreover, different signs. For this reason, the doc-

umentation for the overwhelming majority of instrument types sets the limits of

additional errors as both positive and negative with equal numerical values. For

example, the change in the indications of an electric measuring instrument caused

by a change in the temperature of the surrounding medium should not exceed the

limits ˙0:5% for each 10ıC change in temperature under rated operating conditions

(the numbers here are arbitrary).

If, however, the properties of different measuring devices of a given type are suf-

ficiently uniform, it is best to standardize the influence function, i.e., to indicate the

dependence of the indications of the instruments or output signals of the transduc-

ers on the influence quantities and the limits of permissible deviations from each

such dependence. If the influence function can be standardized, then it is possible

to introduce corrections to the indications of the instruments and thereby to use the

capabilities of the instruments more fully.

Figure 2.2 shows how the instrument errors depend on the values of an influence

quantity, assuming two basic alternatives for rating the additional errors. The upper

figure represents the case where the documentation lists the limits of the intrinsic

and additional errors. Such rating stipulates that the instrument accuracy is deter-

mined by the limits of the intrinsic error as long as the influence quantity is within

reference condition and by the sum of the limits of the intrinsic and constant limits

of the additional errors if the influence quantity is within rated operating condition.

The lower figure depicts the case when the documentation lists the limits of the

intrinsic error and the influence coefficients for the additional errors. Here, when
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Fig. 2.2 Two variants of rating limits of additional errors of measuring instruments. The interval

(x2, x3/ corresponds to reference conditions; the interval (x1, x4/ corresponds to the rated operating

conditions; d is the absolute value of the limits of permissible intrinsic error; c is the absolute value

of the limits of permissible error in the rated operating conditions; and (c–d ) is the absolute value

of the limits of permissible additional error

the influence quantity is outside the reference condition, the limits of the additional

error expand linearly with the deviation of the influence quantity from the refer-

ence condition (as long as the influence quantity stays within the rated operating

conditions).

It should be emphasized that the actual additional errors that can arise in a mea-

surement will depend not only on the properties of the measuring instrument but also

on the accuracy of obtaining the values of the corresponding influence quantities.

Often a measuring instrument has an electrical signal on its input. This input sig-

nal can be characterized by several parameters. One of them reflects the magnitude

of the measurand. This parameter is called the informative parameter: By measuring

its magnitude, we can find the value of the measurand. All other parameters do not

have direct connections with the magnitude of the measurand, and they are called

noninformative parameters.

Measuring instruments are constructed with the goal to make them insensitive

to all noninformative parameters of the input signal. This goal, however, cannot be

achieved completely, and in the general case, the effect of the noninformative pa-

rameters can only be decreased but not eliminated. But, for all noninformative

parameters, it is possible to determine limits such that when the noninformative

parameters vary within these limits, the total error of the measuring instrument will
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change insignificantly, which makes it possible to establish the reference ranges of

the noninformative parameters.

If some noninformative parameter falls outside the reference limits, then the er-

ror arising is regarded as another additional error. The effect of each noninformative

parameter is rated separately, as for influence quantities. Furthermore, rating the ad-

ditional errors arising from noninformative parameters is done based on the same

assumptions as those used for rating the additional errors caused by the influence

quantities.

The errors introduced by changes in the noninformative parameters of the input

signals are occasionally called dynamic errors. In the presence of multiple param-

eters, however, this term is not expressive. It is more intuitive to give each error a

characteristic name, as is usually done in electric and radio measurements. For ex-

ample, the change in the indications of an AC voltmeter caused by changes in the

frequency of the input signal is called the frequency error. In the case of the mea-

surements of the peak variable voltages, apart from the frequency errors, the errors

caused by changes in the widths of the pulse edges, the decay of the flat part of the

pulse, and so on are called the shape errors.

Another property of measuring instruments that affects their accuracy and is also

rated is stability. Stability, like accuracy, is a positive quality of a measuring in-

strument. Just as the accuracy is characterized by inaccuracy (error, uncertainty),

stability is characterized by instability. An important particular case of instability is

drift. Drift is usually not rated. Instead, when it is discovered, the zero indication of

the instrument is reset.

The first method of rating the instability involves stipulating the time period after

which the instrument must be checked and calibrated if needed. The second method

consists of indicating different limits for the error of the instrument for different

periods of time after the instrument was calibrated. For example, the following table

(taken with modifications from [18]) can be provided in the specifications of a digital

instrument:

Time after

calibration 24 h 3 months 1 year 2 years

Temperature 23˙ 1ıC 23˙ 5ıC 23˙ 5ıC 23˙ 5ıC

Limits of error ˙.0:01%

C1 unit/

˙.0:015%

C1 unit/

˙.0:02%

C1 unit/

˙.0:03%

C2 units/

In the last line entries, the first number in the parentheses specifies the percent of the

instrument indication and the second is a figure of the least significant digit (from

0 to 9). The second number lists the absolute error in units of the least significant

digit of the instrument. To find the corresponded part of the limits of error of that

instrument, one must calculate the value of this number in units of measurement. For

example, if the above table is given in the documentation of a millivoltmeter with the

range of 300 mV and 4-digit readout device, then the value of the least-significant

digit is 0.1 mV. Assume that a user utilizes this instrument 2 years after calibration

and the readout is 120.3 mV. Then, the limits of error of this instrument for this

measurement are ˙.120:3 � 0:0003 C 0:2/ D ˙0:24mV. The second number is

constant for a given instrument range. It was called the floor error in [18].
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Obviously, specifying how instrument accuracy changes with time since cali-

bration conveys more information about the instrument characteristics than simply

rating the interval between calibrations, and this extra information is beneficial to

the users.

Below is another example of specification of a digital multirange voltmeter, also

from [18] (the specification for only two ranges is shown).

Time after

calibration 24 h 90 days 12 months

Temperature

coefficient

Temperature 23˙ 1ıC 23˙ 5ıC 23˙ 5ıC 0–18 &

28–55ıC

Per 1ıC

10.00000 V – – ˙.35ppm

C5ppm/

˙.5ppm

C1ppm/

1000.000 V ˙.20ppm

C6ppm/

˙.35ppm

C10ppm/

˙.45ppm

C10ppm/

˙(5ppm

+ 1ppm)

The last two rows in the above table give the limits of error of the instrument de-

pending on the time from the calibration. The numbers in parentheses specify limits

of two additive parts of the error in ppm. A confusing aspect here is that the first

part is expressed as a relative error since the first number gives the limits of error

relative to the indication of the instrument for a given measurement, while the sec-

ond number specifies the error relative to the instrument range, the same as the floor

error in the previous example.

The last column specifies the limits of the additional error due to temperature

deviation from reference conditions. These limits are rated in the form shown in

the lower graph of Fig. 2.2: the limits of the additional error grow by the specified

amount for each 1ıC of temperature deviation.

We provide examples of using this table in Sect. 4.6 for a measurement under

reference temperature conditions and in Sect. 4.7 for a measurement under rated

conditions.

The above excerpts of instrument specifications show the importance of under-

standing conventions used by the manufacturer of the instrument in specifying the

instrument accuracy in its certificate. This is especially true if the manufacturer does

not follow recommendations for rating the accuracy of instruments that have been

issued by organizations such as OIML.

Rating of errors predetermines the properties of measuring instruments and is

closely related with the concept of accuracy classes of measuring instruments. The

purpose of this concept is the unification of the accuracy requirements of measuring

instruments, the methods for determining them, and the accuracy-related notation

in general, which is certainly useful to both the manufacturers of measuring in-

struments and to users. Indeed, such unification makes it possible to limit, without

harming the manufacturers or the users, the list of instruments, and it makes it easier

to use and check the instruments. We shall now discuss this concept in greater detail.
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Accuracy classes were initially introduced for indicating electric measuring in-

struments [8]. Later this concept was also extended to all other types of measuring

instruments [9]. In [1], the following definition is given for the term accuracy class:

The accuracy class is a class of measuring instruments or measuring systems that

meet certain stated metrological requirements intended to keep instrumental errors

or uncertainties within specified limits under specified operating conditions.

Unfortunately, this definition does not entirely reflect the meaning of this term.

Including measurement systems into the definition is incorrect because systems are

usually unique and thus are not divided into classes. Further, instrumental errors and

uncertainties are properties of measurements – not instruments – and hence should

not be used to define instrument classes. A better definition is given in the previous

edition of VIM: The accuracy class is a class of measuring instruments that meets

certain metrological requirements that are intended to keep errors within specified

limits.

Every accuracy class has conventional notation, established by agreement –

the class index – that is presented in [8, 9]. On the whole, the accuracy class is

a generalized characteristic that determines the limits for all errors and all other

characteristics of measuring instruments that affect the accuracy of measurements

performed with their help.

For measuring instruments whose permissible limits of intrinsic error are ex-

pressed in the form of relative or fiducial errors, the following series of numbers,

which determine the limits of permissible intrinsic errors and are used for denoting

the accuracy classes, was established in [9]:

.1; 1:5; 1:6; 2; 2:5; 3; 4; 5; and 6/� 10n;

where n D C1; 0;�1;�2; : : :; the numbers 1.6 and 3 can be used, but are not rec-

ommended. For any one value of n, not more than five numbers of this series (i.e., no

more than five accuracy classes) are allowed. The limit of permissible intrinsic error

for each type of measuring instrument is set equal to one number in the indicated

series.

Table 2.1 gives examples of the adopted designations of accuracy classes of these

measuring instruments.

In those cases when the limits of permissible errors are expressed in the form of

absolute errors, the accuracy classes are designated by Latin capital letters or roman

numerals. For example, [41] gives the accuracy classes of block gauges as Class

X, Y, and Z. Gauges of Class X are the most accurate; gauges of Class Y are less

accurate than Class X, and gauges of Class Z are the least accurate.

If (2.3) is used to determine the limit of permissible error, then both numbers c

and d are introduced into the designation of the accuracy class. These numbers are

selected from the series presented above, and in calculating the limits of permissible

error for a specific value of x, the result is rounded so that it would be expressed by

not more than two significant digits.
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Table 2.1 Designations of accuracy classes

Form of the

expression

for the error
Limit of permissible

error (examples)

Designation of the

accuracy class (for

the given example)

Fiducial error, if the

fiducial value is

expressed in units

of the measurand


 D ˙1:5% 1.5

Fiducial error, if the

fiducial value set

equal to the scale

length


 D ˙0:5% 0.5

Relative error,

constant

ı D ˙0:5% 0.5

Relative error,

increasing as the

measurand

decreases

ı D ˙
h

0:02C 0:01
�xe

x
� 1

�i

% 0.02/0.01

In conclusion, we shall formulate the basic rules for rating errors of measuring

instruments:

1. All properties of a measuring instrument that affect the accuracy of the results of

measurements must be rated.

2. Every property that is to be rated should be rated separately.

3. Rating methods must make it possible to check experimentally, and as simply

as possible, how well each individual measuring instrument corresponds to the

established requirements.

In some cases, exceptions must be made to these rules. In particular, an exception

is necessary for strip strain gauges that can be glued on an object only once. Since

these strain gauges can be applied only once, the gauges that are checked can no

longer be used for measurements, whereas those that are used for measurements

cannot be checked or calibrated.

In this case, it is necessary to resort to regulation of the properties of a collec-

tion of strain gauges, such as, for example, the standard deviation of the sensitivity

and mathematical expectation of the sensitivity. The sensitivity of a particular strain

gauge, which is essentially not a random quantity in the separate device, is a random

quantity in a collection of strain gauges. Since we cannot check all the gauges, a

random sample, representing a prescribed p percent of the entire collection (which

could be, e.g., all gauges produced in a given year), is checked. Once the sensitivity

xi of every selected gauge has been determined, it is possible to construct a statis-

tical tolerance interval, i.e., the interval into which the sensitivity of any random

sample of p percent of the entire collection of strain gauges will fall with a chosen

probability ˛. As ˛ ¤ 1 and p ¤ 1, there is a probability that the sensitivity of any

given strain gauge falls outside these tolerance limits. For this reason, the user must

take special measures that address such a case. In particular, several strain gauges,

rather than one, should be used.
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2.4 Dynamic Characteristics of Measuring Instruments

The dynamic characteristics of measuring instruments reflect the relation between

the change in the output signal and an action that produces this change. The most

important such action is a change in the input signal. In this case, the dynamic

characteristic is called the dynamic characteristic for the input signal. Dynamic char-

acteristics for various influence quantities and for a load (for measuring instruments

whose output signal is an electric current or voltage) are also studied.

Complete and partial dynamic characteristics are distinguished [27].

The complete dynamic characteristics determine uniquely the change in time of

the output signal caused by a change in the input signal or by other action. Examples

of such characteristics include a differential equation, transfer function, amplitude-

and phase-frequency response, and the transient response. These characteristics are

essentially equivalent, but the differential equation is the basic characteristic from

which the other characteristics are derived.

A partial dynamic characteristic is a parameter of the full dynamic characteris-

tic (introduced shortly) or the response time of the instrument. Examples are the

response time of the indications of an instrument and the transmission band of a

measuring amplifier.

Measuring instruments1 can most often be regarded as inertial systems of first or

second order. If x.t/ is the signal at the input of a measuring instrument and y.t/

is the corresponding signal at the output, then the relation between them can be ex-

pressed with the help of first-order (2.4) or second-order (2.5) differential equations,

respectively, which reflect the dynamic properties of the measuring instrument:

Ty0.t/C y.t/ D Kx.t/; (2.4)

1

!20
y00.t/C 2ˇ

!0
y0.t/C y.t/ D Kx.t/: (2.5)

The parameters of these equations have specific names: T is the time constant of

a first-order device, K is the transduction coefficient in the static state, !0 is the

angular frequency of free oscillations, and ˇ is the damping ratio. An example of

a real instrument whose properties are specified by the second-order differential

equation is a moving-coil galvanometer. In this instrument type, ¨o D 2  1=T0,

where T0 is the period of free oscillations (the reverse of the natural frequency) and

ˇ is the damping ratio, which determines how rapidly the oscillations of the moving

part of the galvanometer will subside.

Equations (2.4) and (2.5) reflect the properties of real devices, and for this reason,

they have zero initial conditions: for t � 0, x.t/ D 0 and y.t/ D 0, y0.t/ D 0 and

y00.t/ D 0.

1 The rest of this section requires familiarity with control theory. The reader can skip this portion

without affecting the understanding of the rest of the book.
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To obtain transfer functions from differential equations, it is first necessary to

move from signals in the time domain to their Laplace transforms, and then to obtain

the ratio of the transforms. Thus,

LŒx.t/� D x.s/; LŒy.t/� D y.s/;

LŒy0.t/� D sy.s/; LŒy00.t/� D s2y.s/;

where s is the Laplace operator.

For the first-order system, in accordance to (2.4), we obtain

W.s/ D y.s/

x.s/
D K

1C sT
;

and for the second-order system, from (2.5), we obtain

W.s/ D y.s/

x.s/
D K
�

1=!20
�

s2 C .2ˇ=!0/s C 1
: (2.6)

Let us consider the second-order equation in more detail. If in the transfer function

the operator s is replaced by the complex frequency j!.s D j!/, then we obtain the

complex frequency response. We shall now study the relation between the named

characteristics for the example of a second-order system. From (2.5) and (2.6), we

obtain

W.j!/ D K
�

1 � !2=!20
�

C j2ˇ!=!0
; (2.7)

where ! D 2�f is the running angular frequency.

The complex frequency response is often represented with its real and imaginary

parts,

W.j!/ D P.!/C j Q.w/:

In our case,

P.!/ D K.1 � .!2=!20//
.1 � .!2=!20//

2 C 4ˇ2.!2=!20/
;

Q.!/ D 2ˇ.!=!0/K

.1 � .!2=!20//
2 C 4ˇ2.!2=!20

:

The complex frequency response can also be represented in the form

W.j!/ D A.!/ej'.!/;

where A.!/ is the amplitude-frequency response and '.!/ is the frequency re-

sponse of phase. In the case at hand,
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A.!/ D
p

P 2.!/CQ2.!/ D K
q

.1 � .!2=!20//2 C 4ˇ2.!2=!20/

;

'.!/ D arctan
Q.!/

P.!/
D �arctan

2ˇ.!=!0/

1 � .!2=!20/
: (2.8)

Equation (2.8) has a well-known graphical interpretation using the notion of tran-

sient response. The transient response is the function h.t/ representing the output

signal produced by a unit step function 1.t/ at the input. (The unit step function,

which we denote 1.t/, is a function whose value is 0 for t < 0 and 1 for t � 0.)

As the input is not periodic, h.t/ is calculated with (2.4) or (2.5). Omitting the tech-

nical but, unfortunately, complicated calculations, we arrive at the final form of the

transient response of the instrument under study:

h.t/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 � e�ˇ� 1
p

1 � ˇ2
sin

 

�
p

1 � ˇ2 C arctan

p

1 � ˇ2
ˇ

!

if ˇ < 1;

1 � e�� .� C 1/ if ˇ D 1;

1 � e�ˇ�a
1

p

ˇ2 � 1
sinh

 

�
p

ˇ2 � 1C arctanh

p

ˇ2 � 1

ˇ

!

if ˇ > 1:

(Note that the cast case utilizes hyperbolic trigonometric functions.) In this expres-

sion, � D !0t is normalized time, and the output signal is normalized to make its

steady-state value equal to unity, i.e., h.t/ D y.t/=K . Thus, the formulas above and

the corresponding graphs presented in Fig. 2.3 are universal in the sense that they

do not depend on the specific values of !0 andK .

It should be noted that some types of measuring instruments do not have dynamic

characteristics at all; these include measures of length, weights, vernier calipers,

and so on. Some measuring instruments, such as measuring capacitors (measures

of capacitance), do not have an independent dynamic characteristic by themselves.

But when they are connected into an electric circuit, which always has some re-

sistance and sometimes an inductance, the circuit always acquires, together with a

capacitance, definite dynamic properties.

Measuring instruments are diverse. Occasionally, to describe adequately their

dynamic properties, it is necessary to resort to linear equations of a higher order,

Fig. 2.3 The transient

response of an instrument

described by a second-order

differential equation; ˇ is the

damping ratio
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nonlinear equations, or equations with distributed parameters. However, compli-

cated equations are used rarely, and it is not an accident. After all, measuring

instruments are created specially to perform measurements, and their dynamic prop-

erties are made to guarantee convenience of use. For example, in designing a

recording instrument, the transient response is made to be short, approaching the

steady state level monotonically or oscillating insignificantly. In addition, the scale

of the recording instrument is typically made to be linear. But when these require-

ments are met, the dynamic properties of the instrument can be described by one

characteristic corresponding to a linear differential equation of order no higher than

second.

Rating of the dynamic characteristics of measuring instruments is performed in

two stages. First, an appropriate dynamic characteristic to be rated must be chosen,

and second, the nominal dynamic characteristic and the permissible deviations from

it must be established.

For recording instruments and universal measuring transducers, a complete dy-

namic characteristic, such as transient response, must be rated: Without having the

complete dynamic characteristic, a user cannot effectively use these instruments.

For indicating instruments, it is sufficient to rate the response time. In contrast to

the complete characteristics, this characteristic is a partial dynamic characteristic.

The dynamic error is another form of a partial dynamic characteristic. Rating the

limits of a permissible dynamic error is convenient for the measuring instruments

employed, but it is justified only when the shape of the input signals does not change

much.

For measuring instruments described by linear first- and second-order differential

equations, the coefficients of all terms in the equations can be rated. In the simplest

cases, the time constant is rated in the case of a first-order differential equation, and

the natural frequency and the damping ratio of the oscillations are standardized in

the case of a second-order differential equation.

When imposing requirements on the properties of measuring instruments, it is

always necessary to keep in mind how compliance will be checked. For dynamic

characteristics, the basic difficulties have to do with creating test signals of prede-

termined form (with sufficient accuracy), or with recording the input signal with

a dynamically more accurate measuring instrument than the measuring instrument

whose dynamic properties are being checked.

If adequately accurate test signals can be created and used to obtain the dynamic

characteristic, i.e., a transient response as a response of a unit step function signal

and frequency response as a response of a sinusoidal test signal, then in principle

the instrument can be checked without any difficulties.

But sometimes the problem must be solved with a test signal that does not cor-

respond to the signal intended for determining the complete dynamic characteristic.

For example, one would think that tracing of signals at the input and output of a

measuring instrument could solve the problem. In this case, however, special dif-

ficulties arise: small errors in recording the test signal and reading the values of

the input and output signals often render the dynamic characteristic obtained from

them physically meaningless and not corresponding to the dynamic properties of the
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measuring instrument. Such an unexpected effect occurs because the problem at

hand is a so-called improperly posed problem. A great deal of attention is currently

being devoted to such problems in mathematics, automatics, geophysics, and other

disciplines. Improperly posed problems are solved by the methods of regularization,

which essentially consist of the fact that the necessary degree of filtering (smooth-

ing) of the obtained solution is determined based on a priori information about the

true solution. Improperly posed problems in dynamics in application to measure-

ment engineering are reviewed in [27].

A separate problem, which is important for some fields of measurement, is the

determination of the dynamic properties of measuring instruments directly when the

instruments are being used. An especially important question here is the question of

the effect of random noise on the accuracy with which the dynamic characteristics

are determined.

This section, then, has been a brief review of the basic aspects of the problem of

rating and determining the dynamic properties of measuring instruments.

2.5 Calibration and Verification of Measuring Instruments

Every country wishes to have trustworthy measurements. One of the most important

arrangements to achieve this goal is to have a system for keeping errors of all mea-

suring instruments within permissible limits. Therefore, all measuring instruments

in use are periodically checked. In the process, working standards are used either

to verify that the errors of the measuring instruments being checked do not exceed

their limits or to recalibrate the measuring instruments.

The general term for the above procedures is calibration. But one should

distinguish between a real calibration and a simplified calibration.

Real calibration results in the determination of a relation between the indications

of a measuring instrument and the corresponding values of a working measure-

ment standard. This relation can be expressed in the form of a table, a graph, or a

function. It can also be expressed in the form of the table of corrections to the indi-

cations of the measuring instrument. In any case, as the result of real calibration, the

indications of the working standard are mapped to the instrument being calibrated.

Consequently, the accuracy of the instrument becomes close to the accuracy of the

working standard.

Real calibration can be expensive, complex, and time-consuming.

Therefore, calibration is mostly used for precise and complex instruments. For

other instruments, the simplified calibration suffices.

The simplified calibration (also called verification) simply reveals whether the

errors of a measuring instrument exceed their specified limits. Essentially, verifica-

tion is a specific case of quality control, much like quality control in manufacturing.

And because it is quality control, verification results do have some rejects.

Further, verification can take the form of a complete or element-wise check.

A complete check determines the error of the measuring instrument as a whole.
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In the case of an element-wise check, the errors of the individual elements compris-

ing the measuring instrument are determined. The overall error of the measuring

instrument is then calculated using methods that were examined in [44].

A complete check is always preferable as it gives the most reliable result. In some

cases, however, a complete check is impossible to perform and one must resort to

an element-wise check. For example, element-wise calibration is often employed to

check measuring systems when the entire system cannot be delivered to a calibration

laboratory and the laboratory does not have necessary working standards that could

be transported to the system’s site.

The units of a system are verified by standard methods. When the system is

verified, however, in addition to checking the units, it is also necessary to check

the serviceability of the system as a whole. The methods for solving this problem

depend on the arrangement of the system, and it is hardly possible to make general

recommendations here. As an example, the following procedure can be used for

a system with a temperature-measuring channel comprising a platinum–rhodium–

platinum thermocouple as the primary measuring transducer and a voltmeter.

After all units of the system have been checked, we note the indication of the

instrument at the output of the system. Assume that the indication is C470ıC. For

the most common types of thermocouples, there exists known standardized trans-

fer function, while specific brands of thermocouple products have rated limits of

deviation from the standardized function.

From the standardized transfer function of the primary measuring transducer, we

obtain the output signal that should be observed for the given value of the measured

quantity. For our thermocouple, when the temperature of C470ıC is measured, the

EMF at the output of the thermocouple must be equal to 3.916 mV. Next, discon-

necting the wires from the thermocouple and connecting them to the voltage exactly

equal to the nominal output signal of the thermocouple, we once again note the

indication of the voltmeter. If it remains the same or has changed within the limits of

permissible error of the thermocouple and voltmeter, then the system is serviceable.

Of course, this method of checking will miss the case in which the errors of

both the thermocouple and voltmeter are greater than their respective permissible

errors but these errors mutually cancel. However, this result can happen only rarely.

Moreover, such a combination of errors is in reality permissible for the system.

Let us now consider complete check verification in more detail. Here, the values

represented by working standards are taken as true values, and the instrument indi-

cation is compared to these values. In fact, a working standard has errors. Therefore,

some fraction of serviceable instruments, i.e., instruments whose errors do not ex-

ceed the limits established for them, is rejected in a verification – false rejection –

and some fraction of instruments that are in reality unserviceable are accepted –

false retention. This situation is typical for monitoring production quality, and just

as with quality control, a probabilistic analysis of the procedure is useful to under-

stand the extent of a potential issue.

Without loss of generality, suppose for simplicity that the complete check verifi-

cation is performed by measuring the same quantity simultaneously using a working

standard (which in this case is an accurate measuring instrument) and the instrument
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being checked. Accordingly, we have

A D x � � D y � 
;

where A is the true value of the quantity, x and y are the indications of the in-

strument and working standard, and � and 
 are the errors of the instrument and

working standard. It follows from the above equation that the difference z between

the indications of the instrument and the standard is equal to the difference between

their errors,

z D x � y D � � 
: (2.9)

We are required to show that j�j � �, where � is the limit of permissible error of

the instrument. From the experimental data (i.e., from the indications), we can find

z; because 
 is supposed to be much smaller than �, we shall assume that if jzj � �,

then the checked instrument is serviceable, and if jzj > �, then it is not serviceable.

To perform probabilistic analysis of when the above assumption is wrong, it is

necessary to know the probability distribution for the errors of the checked and

standard instruments. Let us suppose we know these distributions. The probability

of a false rejection is

p1 D P fj� � 
 j > �jj� j��g;

and the probability of a false retention is

p2 D P fj� � 
 j � �jj� j>�g:

A false rejection is obtained for j�j � � when j� � 
 j > �, i.e.,

� � 
 > �; � � 
 < ��;

or


 < � ��; 
 > � C�:

If the probability density functions of the errors of the instrument and working stan-

dard are f .�/ and '.
/, respectively, then

p1 D
Z �

��
f .�/

 

Z ���

�1
'.
/ d
 C

Z C1

�C�
'.
/ d


!

d�:

A false retention is possible when j�j > �, i.e., when � > C� and � < ��.

In this case, j� � 
 j � �, i.e.,

� � 
 � �; � � 
 � ��;

or

� �� � 
 � � C�:
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Therefore,

p2 D
Z ��

�1
f .�/

 

Z �C�

���
'.
/ d


!

d� C
Z C1

�

f .�/

 

Z �C�

���
'.
/ d


!

d�:

Thus, if the probability densities are known, then the corresponding values of p1
and p2 can be calculated; one can furthermore understand how these probabilities

depend on the difference between the limits of permissible errors of the instrument

being checked and the working standard.

If, in addition, cost considerations are added, then one would think about the

problem of choosing the accuracy of the working standard that would be suitable

for checking a given instrument. In reality, when the accuracy of working standards

is increased, the cost of verification increases also. A rejection also has a certain

cost. Therefore, by varying the limits of error of working standards, it is possible to

find the minimum losses, and this accuracy is regarded as optimal.

Mathematical derivations aside, it is unfortunately difficult to estimate the losses

from the use of instruments whose errors exceed the established limits, when these

instruments pass the verification. In general, it is hard to express in monetary terms

the often-significant economic effect of increasing measurement accuracy. For this

reason, it is only in exceptional cases that economic criteria can be used to justify

the choice of the relation between the limits of permissible error of the working

standard and the checked instruments.

In addition, as has already been pointed out above, the fundamental problem is

to determine the probability distribution of the errors of the instruments and stan-

dards. The results, presented in Sect. 2.7 below, of the statistical analysis of data

from the verification of a series of instruments showed that the sampling data of the

instrument errors are statistically unstable. Therefore, the distribution function of

the instrument errors cannot be found from these data. However, there are no other

data; it simply cannot be obtained anywhere.

Thus, it is impossible to find a sufficiently convincing method for choosing the

relation between the permissible errors of the working standard and the instrument

to be checked. For this reason, in practice, this problem is solved by a volitional

method, by standardizing the relation between the limits of permissible errors. In

practice, the calibration laboratories accept that the accuracy of a working standard

must be four times higher than the accuracy of the checked instrument [18,26]. This

means that some instruments that pass the verification may have errors exceeding by

25% the permissible level. Yet more aggressive ratios between the limits of permis-

sible errors of the standard and the instrument, such as 1:10, are usually technically

difficult to achieve.

It turns out, however, that a change in the verification process can eliminate this

problem. Let us consider this method.

By definition, a serviceable instrument is an instrument for which jx � Aj � �

and an instrument is unserviceable if jx � Aj > �. Analogous inequalities are also

valid for a working standard: jy � Aj � �s , if the instrument is serviceable and

jy � Aj > �s if it is not serviceable.
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For x > A, for a serviceable instrument, x�A � �. But y��s � A � yC�s .

For this reason, replacing A by y ��s , we obtain for a serviceable instrument,

x � y � � ��s: (2.10)

Analogously, for x < A, for a serviceable instrument,

x � y � �.� ��s/: (2.11)

Repeating the calculations for an unserviceable instrument, it is not difficult to

derive the corresponding inequalities:

x � y > �C�s ; (2.12)

x � y < �.�C�s/: (2.13)

Figure 2.4 graphically depicts the foregoing relations. Let the scale of the checked

instrument be the abscissa axis. On the ordinate axis, we mark the points C� and

��, and around each of these points, we mark the points displaced from them by

C�s and ��s . If � and �s remain the same for the entire scale of the instrument,

then we draw from the marked points on the ordinate axis straight lines parallel to

the abscissa axis.

Region I corresponds to inequalities (2.10) and (2.11). The instruments for which

the differences x�y fall within this region are definitely serviceable irrespective of

the ratio of the errors of the standard and checked instruments. Inequalities (2.12)

and (2.13) correspond to regions II and III. The instruments for which the differ-

ences x � y fall within the regions II or III are definitely unserviceable.

Fig. 2.4 Zones of definite

serviceability (I), definite

rejection (II and III), and

uncertainty (IV and V) during

verification of measuring

instruments with the limit of

permissible error � based on

a working standard whose

limit of permissible error

is �s
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Some instruments can have errors such that

� ��s < jx � yj < �C�s :

These errors correspond to regions IV and V in Fig. 2.4. Such instruments essen-

tially cannot be either rejected or judged to be serviceable, because in reality, they

include both serviceable and unserviceable instruments. If they are assumed to pass

verification, then the user will get some unserviceable instruments. This can harm

the user. If, however, all such doubtful instruments are rejected, then in reality, some

serviceable instruments will be rejected.

For instruments that are doubtful when they are manufactured or when they are

checked after servicing, it is best that they be judged unserviceable. This tactic is

helpful for the users and forces the manufacturers to employ more accurate stan-

dards to minimize the rejects. But this approach is not always practical. When the

percentage of doubtful instruments is significant and the instruments are expensive

and difficult to fix, it is best to check them again. Here, several variants are possible.

One variant is to recheck the doubtful instruments with the help of more accurate

working standards. When this is impossible, the verification can also be performed

using other samples of working standards that are rated at the same accuracy as

those used in the initial check. As different working standards have somewhat dif-

ferent errors, the results of comparing the instruments with them will be somewhat

different. Thus, some doubtful instruments will move to the regions in Fig. 2.4 that

allow definitive verification outcomes.

Ideally, the best way to deal with the doubtful instruments is to increase the ac-

curacy of the working standard. However, the question then arises as to how much

the accuracy of the standard instruments should be increased. If there are no techni-

cal limitations, then the accuracy of the working standard can be increased until the

instrument can be judged as being either serviceable or unserviceable. However, the

limits of permissible error of the standard instrument rarely need to be decreased

beyond about 10 times less than the limit of permissible error of the instrument: The

errors of instruments are usually not stable enough to be estimated with such high

accuracy.

Rejection of instruments under verification is eliminated completely if instead of

verification the instruments are recalibrated. The accuracy of the newly calibrated

instrument can be almost equal to the accuracy of the working standard, which

makes this method extremely attractive. The drawback of this method is that the

result of a calibration is most often presented in the form of a table of corrections to

the indications of the instrument, which is inconvenient for using the instrument.

2.6 Designing a Calibration Scheme

Calibration is a metrological operation whose goal is to transfer decreed units

of quantities from a primary measurement standard to a measuring instrument.

To protect the primary standards and to support calibration of large numbers of
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instruments, this transfer is performed indirectly, with the help of intermediate

standards. In fact, intermediate standards may themselves be calibrated against pri-

mary standards not directly but through other intermediary standards. Thus, the sizes

of units reproduced by primary standards are transferred to intermediary standards

and through them to measuring instruments.

The hierarchical relations of standards with each other and with measuring in-

struments that are formed to support calibration can be represented as a calibration

scheme. Note that the discussion in this section also fully applies to verification

and verification schemes, which are the analog of calibration schemes in the con-

text of verification. The standards at the bottom of the calibration schemes, which

are used to calibrate measuring instruments, are called working standards; the in-

termediate standards, situated between the primary and working standards in the

scheme, are called secondary standards. For the purpose of the discussion in this

section, we will refer to secondary standards, working standards, and measuring

instruments together as devices.

Measurement standards belonging to a calibration scheme are divided into ranks.

The rank of a standard indicates the number of steps included in transferring the

size of a unit from the primary measurement standard to a given standard, i.e.,

the number of standards on the path from this standard to the primary standard

in the calibration scheme.

One of the most difficult questions arising in the construction of calibration

schemes is the question of how many ranks of standards should be provided. Three

main factors play a role in deciding this question: accuracy, cost, and capacity. As

the number of ranks increases, the error with which the size of a unit is trans-

ferred to the measuring instrument increases, because some accuracy is lost at every

calibration step. For this reason, to obtain high accuracy, the number of ranks of

standards should be reduced to a minimum. On the other hand, the more the number

of ranks the greater the overall capacity of the scheme in terms of the number of

measuring instruments it can calibrate. In addition, the higher the accuracy of stan-

dards, the more expensive they are, and the more expensive they are to use. Thus,

from the cost perspective, it is desirable to reduce the number of high-accuracy stan-

dards by increasing the number of ranks in the scheme.

One would think that it should be possible to find an economically optimal num-

ber of ranks of the calibration scheme. Such optimization, however, would require

information about the dependence between the cost of the equipment and labor and

the accuracy of calibration. This information is usually not available. For this reason,

in practice, the optimal calibration schemes cannot be determined, and calibration

schemes are commonly constructed in an ad hoc manner. However, a method pro-

posed below allows designing a calibration scheme in a methodical way at least to

satisfy its capacity requirements with the minimum number of ranks, and hence with

the highest possible calibration accuracy. Accuracy constrains permitting; one can

always then increase the number of ranks in the resulting scheme to reflect specific

economic considerations.

Figure 2.5 shows a typical structure of a calibration scheme. In the simplest case,

when all measuring instruments in the calibration scheme have similar accuracy,
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Fig. 2.5 A typical calibration

scheme structure

a calibration scheme can be represented as a chain; for example, the entire calibra-

tion scheme on Fig. 2.5 would consist of just branch 1. The chain has the primary

standard at the root, then certain number of secondary standards of the rank 1 below

that are periodically calibrated against the primary standard, followed by a larger

number of secondary standards of rank 2, each periodically calibrated against one

of the standards of rank1, and so on until the measuring instruments at the leafs of

the hierarchy.

However, some measuring instruments may be more accurate than others and

cannot be calibrated by working standards at the bottom of the chain. These instru-

ments must be “grafted” to the middle of the first branch, at the point where they can

be calibrated by a standard of sufficient accuracy. These instruments form branch 2

on Fig. 2.5. The standard at the branching point in the calibration scheme acts as a

secondary standard for one branch and a working standard for another.

Finally, there may be instruments of significantly different type than those in

other branches, whose calibration requires some auxiliary devices between them

and their working standards (such as scaling transducers in front of high-accuracy

voltmeter for high voltage). The auxiliary devices introduce accuracy loss in cali-

bration, and therefore they require the working standard to have a higher accuracy to

account for this loss. In other words, if normally the accuracy ratio of the measuring

instrument to working standard must be at most 1:4, (see Sect. 2.5 for the discus-

sion on this accuracy relationship), this ratio must be lower (e.g., 1:10) for these

instruments. To avoid the confusion, we place these instruments, along with the aux-

iliary devices, into distinct branches in the calibration scheme (such as branch 3 in

Fig. 2.5). Such a branch can be grafted to another branch at an intermediary standard

such that the ratio of its accuracy to the accuracy of the instruments corresponds to

the requirement specific to the instruments’ branch.

Secondary standards are usually calibrated with the highest possible accuracy, so

that they can be also used as working standards for more accurate types of measuring
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instruments if needed. However, there is inevitable loss of accuracy with each cali-

bration step. Consequently, different types of secondary standards are typically used

for different ranks, and calibration at different ranks has different performance char-

acteristics, such as time required to calibrate one device or time to prepare a standard

for calibration (see below). At the same time, the types of devices that can be used

at a given rank are usually known in advance, and it is only necessary to decide

how many of them to procure and how to arrange them in an appropriate calibration

scheme. Therefore, one can assume that the calibration frequency of secondary and

working standards of a given rank, and how long each calibration takes, is known.

Furthermore, we assume that the calibration frequency and time required to calibrate

are known for all measuring instruments. Finally, the keepers of primary standards

typically impose their own usage limits (e.g., they limit the number of calibrations

that can be performed against the primary standard in one year). We assume that

these limits are known as well.

We begin by considering the branch leading to the least accurate instruments as if

it were the only branch in the scheme (e.g., branch 1 in Fig. 2.5). We call this branch

a stem.

In such a single-branch calibration scheme, if the j th rank hasNj standards, then

the maximum number of devices in the rank (j C 1) that can be supported will be

NjC1 D Nj
�jTjC1
tjC1

; (2.14)

where TjC1 is the time interval between calibrations of a device of rank j C 1,

tjC1 is the time necessary to calibrate one device in the rank (j C 1), and �j is the

utilization factor of the standards of rank j , considered below. Note that at the first

calibration step, the number of secondary standards of rank 1 is determined as the

minimum between the number given by (2.14) and the restrictions imposed by the

keepers of the primary standards as mentioned earlier.

The utilization factor �j reflects the fraction of time a corresponding standard

can be used for calibration. In particular, �j reflects the fact that the standard may

only be used during the work hours; any losses of work time must also be taken into

account. For example, if some apparatus is used 8 h per day and 1 h is required for

preparation and termination, and preventative maintenance, servicing, etc. reduce

the effective working time by 10%, then

� D 8 � 1

24
� 0:9 D 0:2625:

Applying (2.14) to every step of the chain, we determine the capacity of the stem,

which is the maximum number of standards of each rank and ultimately the number

of measuring instrumentsN
.max/
m that can be supported by this calibration chain:

N .max/
m D N

.max/
0 N

.max/
1 � � �N .max/

m�1 D
m�1
Y

jD0
�j
TjC1
tjC1

; (2.15)
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where m is the total number of steps in transferring the size of a unit from the

primary standard to the measuring instrument, inclusively and N
.max/
j is the maxi-

mum number of devices at each rank that a “full” calibration scheme can have.

On the other hand, to design a calibration chain, that is, to decide on the number

of ranks in the calibration chain that can support a given number Ninstr of instru-

ments, one can use the following procedure.

To protect the primary standards, they are never used to calibrate the working

standards directly. Thus, at least one rank of secondary standards is always needed.

We compute the maximum number of the secondary standards of rank 1N1, which

could be calibrated against the primary standard in our calibration chain, using

(2.14). Next, we check using (2.14) again, if N1 secondary standards can support

calibration of Ninstr instruments. If not, we know that we need more ranks in the

calibration scheme.

In the latter case, we first check if the accuracy of the secondary standards of

the new rank will still be sufficient to calibrate the instruments, given the instru-

ments’ accuracy. If not, we have to assume that the calibration of the given number

of instruments is impossible with the required calibration frequency (this outcome

is extremely rare in practice). Otherwise, we apply (2.14) again to compute the max-

imum number of secondary standards of rank 2, N2, which can be supported by N1
standards of rank 1. [Note that we apply (2.14) twice because the calibration time

of a measuring instrument and secondary standard can be – and typically is – dif-

ferent]. We continue in this manner until we find the smallest number of ranks of

secondary standards that can supportNinstr measuring instruments.

We should mention that, after each iteration of the above algorithm, if the re-

sulting capacity of the calibration scheme is close to required, an alternative to

increasing the number of ranks is to raise the efficiency of calibration. This could

be achieved by either increasing standard utilization �j or by reducing the calibra-

tion time tj . If the desired number of supported instruments cannot be achieved by

increasing calibration efficiency, we proceed to increment the number of ranks.

Once we have determined the required number of ranks in the scheme, we com-

pute the actual necessary number of standards at each rank in the bottom–up manner,

starting from Ninstr and computing the number of the next rank up by a resolving

(2.14) relative to Nj :

Nj D NjC1
tjC1
�jTjC1

: (2.16)

Once we are done with the stem of the calibration scheme, we can add remaining

branches one at a time as follows. Let jattach be the rank of the lowest-accuracy

secondary standards on the stem suitable to calibrate the instruments of the new

branch, and N
.max/
jattachC1 be the maximum number of devices that could be serviced by

standards at this rank according to (2.15). Then, N .slack/ D N
.max/
jattachC1 � NjattachC1

gives the number of devices that could be added.

If the number of instruments at the new branch according to (2.16) does not

exceed N .slack/, we attach the new branch at rank jattach, add the necessary number

of standards at rank jattach, and, moving from this rank up one step at a time, add
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the necessary number of standards at each rank (we are guaranteed that there will

be enough capacity at each higher rank because the total number of devices at rank

jattachC1 does not exceed N
.max/
j

attachC1
).

Otherwise, that is, if the existing slack is insufficient, we must increase the capac-

ity of the stem by adding an extra rank to add capacity. Accordingly, we recompute

the number of devices at each rank of the stem in the bottom–up manner using

(2.16), for the new number of ranks. After that, we repeat an attempt to attach the

new branch from scratch.

If at some point we are unable to increment the number of ranks of the stem

because the standard at the newly added rank would have insufficient accuracy, we

would have to conclude that the given set of instruments is impossible to calibrate

with the required accuracy using the available types of standards and the limitations

on the use of the primary standard. However, given that the capacity of calibration

schemes grows exponentially with the number of ranks, this outcome is practically

impossible.

As the number of ranks increases, the capacity of the calibration network, rep-

resented by the checking scheme, increases rapidly. The calibration schemes in

practice have at most five of ranks of standards, even for fields of measurement

with large numbers of measuring instruments.

The relations presented above pertained to the simplest case, when at each step

of transfer of the size of the unit, the period of time between calibrations and the

calibration time were the same for all devices. In reality, these time intervals can be

different for different types of devices. Taking this into account makes the calcu-

lations more complicated, but it does not change their essence. We consider these

calculations next.

First, it is necessary to move from different time intervals between calibrations

of different types of devices to one virtual constant time interval Tvc and to find the

number of measuring instruments of each typeN vc
k

that must be checked within this

period. This is done using the obvious formula:

N vc
k D Nk

Tvc

Tk
:

Next, it is necessary to find the average time tav
j required to check one device for

each step of the checking scheme:

tav
j D

n
P

kD1
tkN

vc
k

n
P

kD1
N vc
k

: (2.17)

Here n is the number of different types of devices at the j th step of the checking

scheme.

We shall give a numerical example. Suppose it is required to organize a calibra-

tion of instruments of types A and B and the following data are given:
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1. Instruments of type A: NA D 3 � 104; the time interval between calibrations

TA1 D 1 year for NA1 D 2:5 � 104 and TA2 D 0:5 year for NA2 D 5 � 103; the

calibration time tA D 5 h.

2. Instruments of type B: NB D 105; TB D 1 year; the calibration time tB D 2 h.

3. Primary measurement standard: Four comparisons per year are permitted, and

the utilization factor of the primary standard is �0 D 0:20.

4. Secondary standards: the frequency of the calibration of secondary standards

of rank 1 is 2 years; i.e., T1 D 2 years; the time to perform one calibration is

60 h, and utilization factor �1 D 0:25. For the devices of rank 2, T2 D 2 years,

t2 D 40 h, and �2 D 0:25. The calibration parameters of higher-rank standards

are the same as those of the rank-2 standards.

The possible number of first-rank standards in this case is limited by the restrictions

on the primary standards use and can be found as

N
.max/
1 D N0f T1 D 8

because N0 D 1; f D 4 is the maximum number of comparisons with a reference

standard per year, and T1 D 2. Obviously, eight standards are not enough to check

130,000 measuring instruments. We shall now see how many ranks of standards will

be sufficient.

As the time between calibrations is different for different instruments, we pick

the illusory constant time interval Tvc D 1 year and find the number of instru-

ments that must be checked within this time period. Conversion is necessary only

for instruments of type A with TA2 D 0:5 years, since the calibration interval of the

rest of the instruments matches Tvc:

N vc
A2 D NA2

Tvc

TA2
D 5 � 103 � 1

0:5
D 10 � 103

Therefore,

X

kDA;B
N vc
k D NAB D NA1 CN vc

A2 CNB D 135 � 103

instruments must be calibrated within the time Tic.

Different amounts of time are required to calibrate instruments of types A and B.

The average calibration time tav
instr of these working instruments, in accordance with

(2.17), is

tav
instr D

.NA1 CN vc
A2/tA CNB tB

NAB

D 35 � 103 � 5C 100 � 103 � 2
135 � 103 D 2.78 h.

Now, using (2.14), we shall find the maximum number of second-rank standards:

N
.max/
2 D N1

�1T2

t2
D 8 � 0:25 � 2 � 6 � 103

40
D 600:
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The maximum number of instruments that can be calibrated with the above number

of rank-2 secondary standards is

N
.max/
instr D N

.max/
2

�2Tvc

tav
instr

D 600 � 0:25 � 365 � 24
2:78

D 472661:

Here, Tvc D 365 � 24 D 8:76 � 103 because 1 year D 365 days and ˜2 was

calculated for 24 h. The above number exceeds the total number of instrumentsNAB

to be calibrated; we thus conclude that two ranks are sufficient.

Next, we perform bottom–up calculations to find the necessary number of

standards at each rank. The number of rank-2 standards is

N2 D NAB

tav
instr

�2Tvc

D 135 � 103 � 2:78

0:25 � 365 � 24 D 171:

Similarly, one can check that all eight rank-1 secondary standards are needed, thus

concluding the design of this calibration scheme.

Calculations similar to those in the above example allow one to choose in a well-

grounded manner the structure of a calibration scheme and to estimate the required

number of secondary standards of each rank. Calibration schemes in practice usually

have extra capacity, which makes it possible to distribute secondary and working

standards to limit their transport, to maximize the efficiency of calibration.

2.7 Statistical Analysis of Measuring Instrument Errors

A general characteristic of the errors of the entire population of measuring instru-

ments of a specific type could be their distribution function. An important question

then is if it is possible to find this function from experimental data. The studies in

[47,54] have addressed this question using the data provided by calibration laborato-

ries on instrument errors they observed during calibration. These data thus reflected

the sample of instruments that were calibrated; because it is impossible to obtain the

errors of all instruments of a given type that are in use, the use of a sampling method

is unavoidable.

To establish a property of an entire group (general population) based on a sample,

the sample must be representative. Sample homogeneity is a necessary indicator of

representativeness. In the case of two samples, to be sure that the samples are homo-

geneous, it is necessary to check the hypothesisH0: F1 D F2, where F1 and F2 are

distribution functions corresponding, respectively, to the first and second sample.

The results of a calibration, as is well known, depend not only on the error of

the measuring instrument being calibrated but also on the error of the standard. For

this reason, measuring instruments calibrated with not less than a fivefold margin of

accuracy (i.e., using a standard at least five times more accurate than the instrument)

were selected for analysis.
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In addition, to ensure that the samples are independent, they were formed either

based on data provided by calibration laboratories in different regions of the former

USSR or, in the case of a single laboratory, on the data separated by a significant

time interval. The sample sizes were maintained approximately constant. Errors ex-

ceeding twice the limit of permissible error were deemed outliers and eliminated

from the analysis.

The test of hypothesis H0 was performed using the Wilcoxon and Siegel–Tukey

criteria with a significance level q D 0:05. The technique of applying these crite-

ria is described in Chap. 3. Table 2.2 shows the result of these tests obtained in the

study of [47]. The table includes two samples, obtained at different times, for each

instrument type. Rejection of the hypothesis is indicated by a minus sign, and ac-

ceptance is indicated by a plus sign. The symbol 0 means that a test based on the

given criterion was not performed.

The Wilcoxon and Siegel–Tukey criteria are substantially different: The former

is based on comparing averages, and the latter is based on comparing variances.

For this reason, it is not surprising that there are cases when the hypothesis H0
is rejected according to one criterion but accepted according to the other. The hy-

pothesis of sample homogeneity must be rejected if even one of the criteria rejects

it. Both samples of instruments of a given type were found to be homogeneous

only for the 566 wattmeters and standard manometers. For other measuring in-

struments, the compared samples were often found to be nonhomogeneous. It is

Table 2.2 The homogeneity hypothesis testing for samples of six types of measuring instruments

Samples

Calibrated

indication

(each

sample)

Result of hypothesis testing

Instrument type Year collected Size Wilcoxon Siegel–Tukey

Э59 Ammeter 1974 160 30 divisions C �
60 0 �

1976 160 80 0 �
100 C C

Э59 Voltmeter 1974 120 70 divisions � 0

1976 108 150 C C
566 Wattmeter 1974 86 70 divisions C C

1976 83 150 C C
TH-7 Thermometer 1975 100ıC 0 �

150ıC � C
1976 200ıC C C

Standard spring

manometer

1973 250

9.81 kPa C C
1976 250

P331 resistance

measure

1970 400 10 k� 0 �

100� 0 �
1975 400 10� 0 �
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interesting that the samples can be homogeneous on one scale marker, and inhomo-

geneous on another (see Э59 voltmeters and ammeters). TH-7 thermometers had

homogeneous samples in one range of measurement and inhomogeneous samples

in a different range. The calculations were repeated for significance levels of 0.01

and 0.1, but the results were generally the same in both cases.

The above experiment was formulated to check the stability of the distribu-

tion functions of the errors, but because the instruments in the compared samples

were not always the same, the result obtained has a different but no less impor-

tant meaning: It indicates that the samples are inhomogeneous. It means that the

parameters of one sample are statistically not the same as these parameters of an-

other sample of the same type of measuring instruments. Thus, the results obtained

show that samples of measuring instruments are frequently nonhomogeneous with

respect to errors. For this reason, they cannot be used to determine the distribution

function of the errors of the corresponding instruments.

This result is also confirmed by the study of [54], which compared samples ob-

tained from the data provided for Э59 ammeters by four calibration laboratories

in different regions of the former USSR. The number of all samples was equal to

150–160 instruments. The errors were recorded at the markers 30, 60, 80, and 100

of the scale. The samples were assigned the numbers 1, 2, 3, and 4, and the hypothe-

ses H0: F1 D F2, F2 D F3, F3 D F4, and F4 D F2 were checked (the pairs of

samples to compare were selected arbitrarily). The hypothesis testing was based on

the Wilcoxon criterion with q D 0:05. The analysis showed that we can accept the

hypothesis H0: F1 D F2 only, and only at the marker 100. In all other cases, the

hypothesis had to be rejected.

Thus, sampling does not permit finding the distribution function of the errors of

measuring instruments. Moreover, the fact that the sampling data are unstable could

mean that the distribution functions of the errors of the instruments change in time.

There are definite reasons for this supposition.

Suppose that the errors of a set of measuring instruments of some type, at the mo-

ment they are manufactured, have a truncated normal distribution with zero mean.

For measures (measuring resistors, shunts, weights, etc.), a measure with a too large

positive error makes this measure impossible to repair (one could fix a weight whose

mass exceeds the target by removing some material but one cannot repair a weight

whose mass is too low). Furthermore, as measures age, their errors trend toward pos-

itive errors (e.g., weights lose some material due to polishing off with use). This is

taken into account when manufacturing measures. For example, if in the process of

manufacturing of a weight its mass is found to be even slightly less than the nominal

mass then the weight is discarded. As a result, the distribution of the intrinsic errors

of measures as they leave the factory is usually asymmetric.

Instrument errors change in the course of use. Usually the errors only increase. In

those cases in which, as in the case of weights, the direction of the change of the er-

rors is known beforehand and is taken into account during manufacturing, the errors

can at first decrease, but then they will still increase. Correspondingly, changes in the

instrument errors deform the distribution functions of the errors. This process, how-

ever, does not occur only spontaneously. At the time of routine checks, measuring
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Fig. 2.6 Examples of possible changes in the probability densities of the errors of measuring

devices in time. The figure on the left shows an example of changes in error distribution of a batch

of measurement instruments; the figure on the right shows a possible change in error distribution

of a batch of weights

instruments whose errors exceed the established limits are discarded, which again

affects the distribution function of the errors of the remaining instruments.

The right-hand side of Fig. 2.6 shows the approximate qualitative picture of the

changes occurring in the probability distribution of errors of a batch of weights in

time. It shows the initial distribution of errors with all the errors being negative.

With time, as the measures wear off, their errors decrease, with some positive errors

starting to appear. As this trend continues, at some point some instruments start

being discarded (which is shown in the figure by a vertical cut-off line at +� error

limit). The process ultimately terminates when the measuring instruments under

study no longer exist: either their errors exceed the established limits or they are no

longer serviceable for other reasons.

The left-hand side of this figure shows an example of changes in error distribution

in a batch of measuring instruments. In this example, the errors generally increase

in time but the change is biased toward positive errors. Again, at some point instru-

ments start to be discarded, but most of the discarded instruments are those with

positive errors.

There are other evident reasons for this result. One reason is that the stock of

instruments of each type is not constant. On the one hand, new instruments that have

just been manufactured are added to the stock. On the other hand, in the verification,

some instruments are rejected, and some instruments are replaced. The ratio of the

numbers of old and new instruments is constantly changing. Another reason is that

groups of instruments are often used under different conditions, and the conditions

of use affect differently the rate at which the instrumental errors change.

The temporal instability of measuring instruments raises the question of whether

the errors of measuring instruments are in general sufficiently stable so that a col-

lection of measuring instruments can be described by some distribution function. At

a fixed moment in time, each type of instruments without doubt can be described by

distribution function of errors. But the problem is how to find this distribution func-

tion. The simple sampling method, as we saw above, is not suitable. Moreover, even
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if the distribution function could be found by some complicated method, after some

time, it would have to be redetermined, because the errors, and the composition

of the stock of measuring instruments, change. Therefore, we have to conclude that

the distribution of errors of measuring instruments cannot be found based on the

experimental data.

The results presented above were obtained in the former USSR, and instruments

manufactured in the former USSR were studied. However, there is no reason to

expect that instruments manufactured in other countries will have different statistical

properties.



Chapter 3

Statistical Methods for Experimental
Data Processing

3.1 Methods for Describing Random Quantities

The presence of random errors in measurements leads to the wide usage of the

concept of random quantity as a mathematical model for random errors and, equiv-

alently, for measurement results. The realization of the random error in a given act

of measurement is called the random error of a separate measurement, and the word

“separate” is often omitted for brevity. Where it can cause confusion between a

separate measurement and a complete measurement (which may comprise multiple

separate measurements), we will refer to the results of separate measurements as

observations.

Random quantities are studied in the theory of probability, a well-developed

field of mathematics. The properties of a random quantity are completely described

by the distribution function F.x/, which determines the probability that a random

quantity X will assume a value less than x:

F.x/ D P fX < xg:

The distribution function is a nondecreasing function, defined so that F.�1/ D 0

and F.C1/ D 1. It is said to be cumulative or integral.

Continuous and discrete random variables are distinguished. For continuous

random variables, together with the cumulative distribution function F.x/, the

differential function, usually called the probability density f .x/, is also widely

employed:

f .x/ D dF.x/

dx
:

We call attention to the fact that the probability density is a dimensional function:

dimf .x/ D dim
1

X
:

In the practice of precise measurements one most often deals with normal and uni-

form distributions. Figure 3.1a shows integral functions of these distributions, and

Fig. 3.1b shows the probability densities of the same distributions.

S.G. Rabinovich, Evaluating Measurement Accuracy: A Practical Approach,

DOI 10.1007/978-1-4419-1456-9 3, c
 Springer Science+Business Media, LLC 2010
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Fig. 3.1 (a) The probability distribution and (b) the probability density for a normal distribution

(on the left) and uniform distribution (on the right) of continuous random quantities

For the normal distribution, we have

f .x/ D 1

�
p
2�
e�.x�A/2=2�2

;

F .x/ D 1

�
p
2�

Z x

�1
e�.x�A/2=2�2 dx; (3.1)

The parameter �2 is the variance, and A is the mathematical expectation of the

random quantity. A normal distribution is fully determined by its mathematical ex-

pectation and variance, and is often denoted as N.A; �2/.

The value of F.x/ for some fixed xf gives the probability P fX < xf g D Pf .

When the graph of f .x/ is used to calculate this probability, it is necessary to

find the area under the curve to the left of the point xf . The left side of Fig. 3.1

illustrates finding Pf from cumulative distribution and density functions.

To avoid tabulating functions (3.1) for every specific values of � and A, cal-

culations widely rely on the standard normal distribution, which is obtained by

transforming the random quantity X to Z D .X � A/=� . Random variable Z is

normally distributed with mathematical expectation 0 and variance 1. Its probability

distribution and density functions are:

f .z/ D 1p
2�
e�z2=2; F .z/ D 1p

2�

Z 2

�1
e�y2=2dy: (3.2)
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Customarily, calculations related to normal distribution are based on the function

ˆ.z/ below, instead of (3.2):

ˆ.z/ D 1p
2�

Z z

0

e�y2=2dy (3.3)

Function ˆ.z/ is called the standard Gaussian function, and its values are given in

Table A.1 in the Appendix.

It is obvious that for z � 0

F.z/ D 0:5Cˆ.z/:

The branch for z < 0 is found based on symmetry considerations:

F.z/ D 0:5 �ˆ.z/:

The normal distribution is remarkable in that according to the central limit theorem,

the sum of a number of random quantities with arbitrary distributions tends to a

normal distribution as the number of random quantities grows to infinity. In practice,

the distribution of the sum of a comparatively small number of random quantities

already is found to be close to a normal distribution.

The uniform distribution is defined as

f .x/ D

8

<

:

0; x < d;
1
b�d ; d � x � b;

0; x > b;

F.x/ D

8

<

:

0; x < d;
x�d
b�d ; d � x � b;

1; x > b:

(3.4)

We shall also use the uniform distribution often.

In addition to continuous random variables, discrete random variables are also

encountered in metrology. An example of an integral distribution function and the

probability density of a discrete random variable are given in Fig. 3.2.

Distribution functions are complete characteristics of random quantities, but they

are not always convenient to use in practice. For this reason, random quantities

are also characterized by their numerical parameters called moments. The initial

moments mk (moments about zero) and central moments �k (moments about the

mean value) of order k are defined by the formulas

mk D EŒXk� D
Z 1

�1
xkf .x/dx;

mk D EŒXk� D
n
X

iD1
xki Pi : (3.5)
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Fig. 3.2 (a) The probability distribution and (b) the probability density of a discrete random

quantity

�k D EŒX � EŒx��k D
Z 1

�1
.x �EŒX�/kf .x/dx;

�k D EŒX � EŒx��k D
n
X

iD1
.xi � EŒX�/kpi : (3.6)

In the relations (3.5)–(3.8), the first formulas refer to continuous and the second to

discrete random quantities.

Of the initial moments, the first moment (k D 1) is most often employed. It gives

the mathematical expectation of the random quantity

m1 D EŒX� D
Z 1

�1
xf .x/dx;

m1 D EŒX� D
n
X

iD1
xipi : (3.7)

It is assumed that
Pn
iD1 pi D 1; i.e., the complete group of events is considered.

Of the central moments, the second moment (k D 2) plays an especially impor-

tant role. It is the variance of the random quantity

�2 D VŒX� D EŒ.X �m1/
2� D

Z 1

�1
.x �m1/

2f .x/dx;

�2 D VŒX� D EŒ.X �m1/
2� D

n
X

iD1
.xi �m1/2pi: (3.8)

The square root of the variance is called the standard deviation of the random

quantity

� D C
p

V ŒX� (3.9)

Correspondingly, V ŒX� D �2.
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The third and fourth central moments are also used in applications. They are

used to characterize the symmetry and sharpness of distributions. The symmetry is

characterized by the skewness a D �3=�
3, and the sharpness is characterized by

the excess e D �4=�
4. The latter is sometimes defined as e0 D �4=�

4 � 3 because

normal distribution has e D 3.

The normal distribution is completely characterized by two parameters:m1 D A

and � . For it, characteristically, a D 0 and e0 D 0. The uniform distribution is also

determined by two parameters:m1 D A and l D d � b. It is well known that

m1 D d C b

2
; V ŒX� D .d � b/2

12
D l2

12
: (3.10)

Instead of l , the quantity h D l=2 is often used. Then V ŒX� D h2=3 and �.X/ D
h=

p
3.

3.2 Requirements for Statistical Estimates

As mentioned in the previous section, the probability distribution function and the

probability density fully describe the properties of a random quantity. Unfortunately,

they are rarely available. Consequently, one has to estimate parameters of a random

quantity from statistical data, that is, from the observations of the random quantity.

Given a specific sample of observations, any estimate derived from this sample is

a specific number. However, across different samples, the estimate will be different,

and it is a random variable for a random sample. Thus, one can talk about statistical

properties of the estimates.

The estimates obtained from statistical data must be consistent, unbiased, and

efficient.

An estimate QA is said to be consistent if, as the number of observations increases,

it approaches the true value of the estimated quantity A (it converges probabilisti-

cally to A):
QA .x1; : : : ; xn/

n!1
! A:

The estimate of A is said to be unbiased if its mathematical expectation is equal to

the true value of the estimated quantity:

EŒ QA� D A:

In the case when several unbiased estimates can be found, the estimate that has

the smallest variance is, naturally, regarded as the best estimate. The smaller the

variance of an estimate the more efficient it is.

Methods for finding estimates of a measured quantity and indicators of the

quality of the estimates depend on the form of the distribution function of the

observations. For a normal distribution of the observations, the arithmetic mean

of the observations, as well as their median (which is the point xm such that
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P fX < xmg D P fX > xmg) can be taken as an estimate of the true value of the

measured quantity. The ratio of the variances of these estimates is well known [19]:

�2Nx=�
2
m D 0:64;

where �2Nx is the variance of the arithmetic mean and �2m is the variance of the median.

Therefore, the arithmetic mean is a more efficient estimate of A than the median.

In the case of a uniform distribution, the arithmetic mean of the observations or

the half-sum of the minimum and maximum values can be taken as an estimate ofA:

QA1 D 1

n

n
X

iD1
xi ; QA2 D xmin C xmax

2
:

The ratio of the variances of these estimates is also well known [19]:

V Œ QA1�
V Œ QA2�

D .nC 1/.nC 2/

6n
:

For n D 2, this ratio is equal to unity, and it increases for n > 2. For example,

for n D 10, it is already equal to (2.2), making the half-sum of the minimum and

maximum values in this case a more efficient estimate than the arithmetic mean.

3.3 Evaluation of the Parameters of the Normal Distribution

If the available data are consistent with the hypothesis that the observations belong

to a normal distribution, then it is sufficient to estimate the expectation EŒX� D A

and the variance �2 to describe fully the distribution. We will discuss methods of

obtaining these estimates in this section.

When the probability density of a random quantity is known, its parameters can

be estimated by the method of maximum likelihood. We shall use this method to

find the estimates above.

The elementary probability of obtaining some specific observation xi in the inter-

val xi ˙�xi=2 is equal to fi .xi ; A; �/�xi , where fi is the value of the probability

density function with parameters A and the � for point xi . Assume that all obser-

vations are independent. Then, the probability of encountering all experimentally

obtained observations with �x1; � � � ; �xn is equal to

Pl D
n
Y

iD1
fi .xi ; A; �/�x1 � � ��xn:

The idea of the method is to take for the estimate of the parameters of the distribution

(in our case, A and �), the values that maximize the probability Pl . These values

are found, as usual, by equating to zero the partial derivatives of Pl with respect to
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the parameters being estimated. The constant cofactors do not affect the solution,

and for this reason, only the product of the functions fi is considered; this product

is called the likelihood function:

L.x1; : : : ; xnIA; �/ D
n
Y

iD1
fi .x1; : : : ; xnIA; �/:

We now return to our problem. For the available group of observations x1; : : : ; xn,

the values of the probability density will be

fi .xi ; A; �/ D 1

�
p
2�
e�.xi �A/2=2�2

:

Therefore,

L D
�

1

�
p
2�

�n

exp

 

� 1

2�2

n
X

iD1
.xi � A/2

!

:

To find the maximum of L, it is convenient to investigate ln L:

lnL D �n
2

ln 2� � n

2
ln �2 � 1

2�2

n
X

iD1
.xi � A/2:

The maximum of L will occur when @L=@A D 0 and @L=@�2 D 0:

@L

L@A
D 1

�2

n
X

iD1
.xi �A/ D 0;

@L

L@.�2/
D � n

2�2
C 1

2�4

n
X

iD1
.xi � A/2 D 0:

From the first equation, we find an estimate for A:

QA D Nx D 1

n

n
X

iD1
xi : (3.11)

The second equation gives the estimate Q�2 D .1=n/
Pn
iD1 .xi � A/2. But A is un-

known; taking instead of A its estimate Nx, we obtain

Q�2� D 1

n

n
X

iD1
.xi � Nx/2:

Let us now check to see whether the obtained estimates are consistent and unbiased.

Because all xi are drawn from the same distribution, the mathematical expectation
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of the i th observation in a random sample is equal to A for every i : E.xi / D A.1

For this reason,

EŒ QA� D 1

n

n
X

iD1
E.xi / D A:

Therefore, QA is an unbiased estimate of A. It is also a consistent estimate, because

as n ! 1, QA ! A, according to the law of large numbers.

We shall now investigate Q�2� . In the formula derived above, the random quantities

are xi and Nx. For this reason, we shall rewrite it as follows:

Q�2� D 1

n

n
X

iD1
.xi �AC A� Nx/2

D 1

n

X

iD1
Œ.xi � A/2 � 2.xi � A/. Nx � A/C . Nx �A/2�

D 1

n

n
X

iD1
.xi �A/2 � 2

n

n
X

iD1
.xi �A/. Nx � A/C 1

n

n
X

iD1
. Nx �A/2

D 1

n

n
X

iD1
.xi �A/2 � . Nx � A/2;

because
1

n

n
X

iD1
. Nx � A/2 D . Nx �A/2

and
2

n

n
X

iD1
.xi � A/. Nx �A/ D 2

n
. Nx � A/

n
X

iD1
.xi � A/ D 2. Nx �A/2:

We shall find EŒ Q�2� �. To this goal, the following relations must be used. By defini-

tion, according to (3.8), we have E.xi � A/2 D �2. Therefore,

E

"

1

n

n
X

iD1
.xi � A/2

#

D 1

n
E

"

n
X

iD1
.xi � A/2

#

D �2:

For the random quantity Nx, we can write analogously E. Nx � A/2 D V Œ Nx�. We can

express V Œ Nx� in terms of �2 as follows

V Œ Nx� D V

"

1

n

n
X

iD1
xi

#

D 1

n2

n
X

iD1
V.xi / D 1

n
V ŒX� D �2

n
:

1 With a slight abuse of notation, we use xi to denote the i th observation in both a specific sample

(where it is just a number) and in a random sample (where it is a random variable).
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Thus,

EŒ Q�2� � D �2 � �2

n
D n � 1

n
�2:

Therefore, the obtained estimate Q�2� is biased. But as n ! 1, EŒ Q�2� � ! �2, and

therefore, this estimate is consistent.

To correct the estimate, i.e., to make it unbiased, Q�2� must be multiplied by the

correction factor n=.n � 1/. Then we obtain

Q�2 D 1

n � 1

n
X

iD1
.xi � Nx/2: (3.12)

This estimate is also consistent, but, as one can easily check, it is now unbiased.

Some deviation from the maximum of the likelihood function is less important for

us than the biasness of the estimate.

The standard deviation of the random quantity X is � D
p

V ŒX�, and it is not

a random quantity. Instead of �2 we must use the estimate of the variance from

(3.12) – a random quantity. Extracting the square root is a nonlinear procedure; it

introduces bias into the estimate Q� . To correct this estimate, a factor kn, depending

on n as follows, is introduced:

N 3 4 5 6 7 10

kn 1.13 1.08 1.06 1.05 1.04 1.03

So,

Q� D kn

v

u

u

t

1

n� 1

n
X

iD1
.xi � Nx/2: (3.13)

The following formula gives approximately the same result [28]:

Q� D

v

u

u

t

1

n � 1:5

n
X

iD1
.xi � Nx/2:

As the number of observations is rarely large, the error in the determination of

the standard deviation can be significant. In particular, this error is typically sig-

nificantly larger than the biasness introduced into the estimate by the square root

extraction. For this reason, in practice, the latter can usually be neglected and the

correction factor kn not employed. Thus, instead of (3.13), the estimate of the stan-

dard deviation is commonly found as the square root of the variance given by (3.12).

Therefore, the estimate of the standard deviation is calculated as follows:

Q� D

v

u

u

u

t

n
P

iD1
.xi � Nx/2

n � 1
: (3.14)
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We have obtained estimates of the parameters of the normal distribution, but they

are also random quantities: When the measurement is repeated, we obtain a differ-

ent group of observations with different values of Nx and Q� . The spread in these

estimates can be characterized by their standard deviations �. Nx/ and �. Q�/. We

already obtained above that V Œ Nx� D �2=n. Therefore,

�. Nx/ D
p

V Œ Nx� D �p
n
: (3.15)

By replacing � in (3.15) with its estimate from (3.14), we can obtain an estimate of

�. Nx/, denoted as Q�. Nx/ or, more commonly, S Nx or S. Nx/:

S. Nx/ D

v

u

u

u

t

n
P

iD1
.xi � Nx/2

n.n � 1/
: (3.16)

Uncertainty of the estimate given in (3.16) depends on the number of measurements

n and on the confidence probability ˛. The method of computing this uncertainty is

described in Sect. 3.5.

This uncertainty can be sizable; for example, for n D 25 and ˛ D 0:80, the

uncertainty of this estimate is about 20%; for n D 15 and ˛ D 0:80, it is about 30%.

However, this uncertainty is not taken into account when estimating the uncertainty

of the measurement result. It would be interesting to understand why this does not

cause problems in practice.

3.4 Elimination of Outlying Data

If in the group of observations, one or two differ sharply from the rest, and no slips

of the pen, reading errors, and similar blunders have been found, then it is necessary

to decide whether they are extreme events that should be excluded. This problem

is solved by statistical methods based on the assumption that the distribution from

which the observations are drawn is normal. The methodology for solving the prob-

lem is presented in the standard [4].

The solution scheme is as follows. An ordered series x1 < x2 < � � � < xn is

constructed from the obtained observations. The candidate to be tested for outlier is

obviously x1 or xn. From all xi , we calculate Nx and, using (3.14), the estimate of

the standard deviation of this group of observations, S . We next compute how much

the potential outlier candidate deviates from the mean value:

t1 D Nx � x1
S

(3.17)
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and

tn D xn � Nx
S

: (3.18)

Now we select the candidate to be tested that has the bigger deviation among the

two above. Let us assume that it is x1. We resort to the Table A.3 reproduced in Ap-

pendix, which is read as follows. For a given number of observations n and chosen

percentage q (referred to as significance level) and corresponding value T , q is the

probability that t1 exceeds T .

In other words, if the value of t1 is greater than T for a selected significance

level, then the corresponding value of x1 can be discarded: The probability that a

“legitimate” observation (i.e., an observation belonging to the distribution) would

produce t > T is less than or equal to the adopted significance level. Thus, the

significance level gives the probability that we erroneously discard an observation

that in fact belongs to the distribution.

If we want to estimate probability of encountering an outlier in a future similar

measurement, we must take into account that the outlier can be either too big or too

small. Either observation can occur with an equal probability, due to the symmetry

of the normal distribution. Thus, the probability of encountering either of them is

equal to 2q.

The described procedure is quite useful and is widely employed in statistical data

processing. But one could say that an “abnormal” observation may actually reflect

some unknown feature of the subject under study and thus should not be discarded

lightly. Let us consider this issue in more detail.

Imagine a measurement in which an observation occurred that seems atypically

different from others. What will an expert performing this measurement do? First,

he or she will check if any physical properties of the object under study, or any other

physical reasons, might have caused the unusual observation. If this check does not

lead to an explanation for this observation, the expert will analyze all the aspects

of the measurement procedure, measurement conditions, and records documenting

the measurement execution. If there is still no rational explanation for the unusual

observation, the expert will conduct a statistical analysis using methods described

earlier in this section, to check if this observation could be an outlier. If this anal-

ysis confirms that the observation is an outlier, it can be discarded. However, in

especially important cases, such as when the decision can affect public safety, the

expert may chose to continue the experiment collecting more observations. More

observations may reveal physical or other reasons behind the abnormality. If not,

the expert will repeat the statistical analysis, this time using all the accumulated

data, and based on its result, will make the final decision on accepting or discarding

the observation. When will the expert stop collecting more data? Only his or her

experience and intuition will tell. Unfortunately, there is no prescribed procedure

here to follow. However, there are the following two general reasons to discard the

observation detected as an outlier by statistical analysis:

1. A real measurement as a rule consists of a small number of observations, and the

probability of them including more than one outlier is extremely small. There-

fore, this outlier cannot be compensated with another one having the opposite

sign.
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2. Because the outlier deviates significantly from the rest of the results, it skews

the average value of the set of data. In other words, not only does it increase the

inaccuracy of a measurement, but also affects the measurement result.

Thus, if there are no physical reasons for the outlying result, it must be discarded.

Example 3.1. Assume ten repeated measurements of the current strength in mA

gave the following results: 10.07, 10.08, 10.10, 10.12, 10.13, 10.15, 10.16, 10.17,

10.20, and 10.40. The value 10.40 differs sharply from the other values. We shall

check to see whether or not it can be discarded. We shall use the criterion presented,

though we do not have the data that would allow us to assume that these observations

satisfy the normal distribution.

The mean and standard deviation of this group of observations are Nx D 10:16mA

and S D 0:094mA. According to the procedure, we compute

t10 D .10:40� 10:16/
0:094

D 2:55:

Let us select significance level of 0.5%. Turning to Table A.3, we find critical value

T for n D 10 and q D 0:5%. This value is T D 2:48. Since t10 > T , we con-

clude that assuming this observation to be an outlier would be incorrect only with

probability at most 0.5%.

3.5 Construction of Confidence Intervals

Having obtained the estimate QA, it is of interest to determine by how much it can

change in repeated measurements performed under the same conditions. This ques-

tion is clarified by constructing the confidence interval for the true value of the

measured quantity.

The confidence interval is the interval that includes, with a prescribed probabil-

ity called the confidence probability, the true value of the measurand. The concepts

of confidence interval and confidence probability can be interpreted as follows.

Imagine a quantity that is measured multiple times under the same conditions, where

each measurement can itself comprise multiple observations. Assume that we use

the data obtained from each of these measurements to build the confidence interval

corresponding to the same confidence probability 0.95. Then, 95% of the obtained

confidence intervals will cover the true value of the measured quantity.

Confidence intervals are often expressed as .x ˙ �x/ or .x ˙ ı%/, where x is

the center of the interval and �x and ı% represent the half-length of the interval

in the absolute or relative form. The latter values define the limits of the confidence

interval. We will, therefore, refer to the half-length of the confidence interval as the

confidence limit.
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In principle, the confidence interval could be constructed based on the

Chebyshev’s inequality [19]:

P fjX �Aj � t�g � 1

t2

where t is a parameter dependent on the confidence probability, which will be

explained shortly.

For the random quantity Nx, we obtain, using (3.15):

P

�

j Nx �Aj � t�p
n

�

� 1

t2
: (3.19)

Let us transform the inequality (3.19) so that it would determine the probability that

a deviation of the random quantity from its true value is less than a certain value.

After simple transformations, we obtain

P

�

j Nx � Aj � t
�p
n

�

� 1� 1

t2
:

Without knowing anything about the distribution of the random errors, the coeffi-

cient t can be calculated based on a prescribed confidence probability ˛ from the

right-hand side of the above inequality, which gives

t D 1p
1 � ˛

:

Then, the confidence interval for ˛ follows from the above inequality and is:

�

Nx � t
�p
n
; Nx C t

�p
n

�

:

If the distribution of the random errors can be assumed to be symmetric relative toA,

then the confidence interval can be narrowed somewhat [19], using the inequality

P

�

j Nx �Aj � t
�p
n

�

� 1 � 4

9

1

t2
:

where

t D 2

3
p
1 � ˛

:

In either case, the standard deviation of the results of measurements � can be esti-

mated with (3.16) and then the confidence interval can be found.

Using Chebyshev’s inequality is attractive because it does not require one to

know the form of the distribution function of the observations. It uses the arithmetic

mean as the estimation of the measured quantity, which can practically always be
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done (although in the case when the distribution differs from a normal distribution,

the estimate will not be the most efficient estimate). However, the confidence inter-

vals constructed in this manner are only approximate, because the effect of replacing

the standard deviation by its estimate is not taken into account. More importantly,

the intervals obtained with the help of the Chebyshev’s inequality are too wide for

practice, and so this method is rarely (if ever) used.

If the distribution of the observations can be regarded as normal with a known

standard deviation, then the confidence interval is constructed based on the

expression

P

�

j Nx � Aj � z 1C˛
2

�p
n

�

D ˛:

where ˛ is the selected confidence probability and z 1C˛
2

is the quantile of the stan-

dard normal distribution for probability 1C˛
2

. (By the quantile of a distribution with

cumulative distribution function F for probability p we mean the value x such that

F.x/ D p).

For example, let ˛ D 0:95. With this probability, the interval

�

Nx � z 1C˛
2

�p
n
; Nx C z 1C˛

2

�p
n

�

should include the true value of A. The probability that A falls outside this interval

is equal to 1 � ˛ D 0:05. As the normal distribution is symmetric, the probabilities

thatA falls beyond either limit of the interval are the same and equal to .1�˛/=2 D
0:025. It is obvious that the cumulative probability of the upper limit of this interval

is .1 � 0:025/ D 0:975. It can be calculated as

P D 1 � 1 � ˛
2

D 1C ˛

2
:

We shall now show how to find the value of z 1C˛
2

, using the standard Gaussian func-

tion, whose values are given in Table A.1 of the Appendix. The standard Gaussian

function ˆ.z/ is related to the standard normal distribution function F.z/ by the

relation F.z/ D 0:5 C ˆ.z/, or ˆ.z/ D F.z/ � 0:5. Therefore, the quantile of

F.z/ for probability 1C˛
2

D 0:975 is the same as the quantile of ˆ.z/ for proba-

bility 0:975 � 0:5 D 0:475. Using Table A.1, we find the quantile z0:975 D 1:96

corresponding to the argument 0.475.

Often the value of the quantile z 1C˛
2

is given and the corresponding probability ˛

needs to be found. For example, for z 1C˛
2

D 1,ˆ.z/ D 0:3413, and F.z/ D ˆ.z/C
0:5 D 0:841. Then .1C ˛/=2 D 1 � F 2.z/ D 0:159 and ˛ D 0:682. Analogously,

for z 1C˛
2

D 3, we find ˆ.z/ D 0:49865, F.z/ D 0:99865, .1 C ˛/=2 D 0:00135,

and ˛ D 0:9973.

So far we explained how we could build the confidence interval from the quan-

tile z 1C˛
2

assuming we know the standard deviation � . In practice, however, the

standard deviation is rarely known. Usually we know only its estimate S and,
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correspondingly, S Nx D S
ıp

n. Then, still assuming that the observations can be

viewed as belonging to a normal distribution, the confidence intervals are con-

structed based on Student’s t distribution. The applicability of Student’s distribution

is based on the property that if a random quantity x is normally distributed, then the

random quantity

t D Nx � A

S Nx
;

obtained from random samples of size n, belongs to Student’s distribution with

(n � 1) degrees of freedom. In the above formula, S Nx is the estimate of the standard

deviation of the arithmetic mean Nx, calculated from (3.16). Then, the confidence

interval
�

Nx � tqS Nx; Nx C tqS Nx
�

corresponds to the probability

Pfj Nx � Aj � tqS Nxg D ˛;

where tq is the q th percentile of Student’s distribution with the degrees of freedom

� D n � 1. Traditionally, tables for Student’s distribution list percentiles for proba-

bility function P ft > tqg. We present such a table as Table A.2 in Appendix. Thus,

given ˛, we obtain the significance level q D 1 � ˛, then look up tq in Table A.2

for this significance level and the degrees of freedom � D n � 1, and finally com-

pute the confidence interval above that corresponds to ˛. The confidence interval is

commonly represented by confidence limits:

u D tqS Nx : (3.20)

In measurement practice, the confidence probability is increasingly often set to 0.95.

Further, confidence intervals are in practice constructed almost always based on

Student’s distribution as just described. This method is widely applicable because

experimental data are typically symmetrical around the mean, and in this case, this

method is used even when the distribution of the underlying random quantity x de-

viates from normal. Indeed, as seen from (3.20), Student’s distribution is determined

by Nx and S Nx, and is not directly dependent on x and therefore is robust.

Sometimes confidence intervals are constructed for the standard deviation. In

these cases, the �2 distribution is employed. This method relies on the property that

if a random quantity x is normally distributed, then the random quantity

�2 D .n� 1/ Q�2
�2

;

obtained from random samples of size n, belong to �2 distribution with n degrees

of freedom. Unlike Student’s distribution, �2 distribution is asymmetrical, and we

must use different quantiles to compute lower and upper limits of the confidence

interval. Consequently, the confidence interval for the confidence probability is

P

( p
n� 1

�L

!

Q� � � �
 p

n � 1

�U

!

Q�
)

D ˛ (3.21)
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is found as follows. Table A.4 gives percentiles of the probability function

P
˚

�2 > �2q
�

. Given confidence probability ˛, we find the probabilities correspond-

ing to the lower and upper limits of the confidence interval: pL D .1 � ˛/=2 and

pU D .1C˛/=2. We then, conceptually, obtain significance levels qL D 1�PL and

qU D 1�PU . Next, from Table A.4, we look up the pLth and pU th percentiles (de-

note them, respectively, as �2L and �2U / for the probability function P
˚

�2 > �2q
�

.

Again, we use the degree of freedom ��n�1 because there is an unknown quantity

�2 in the expression for �2. Finally, we use �2L and �2U to compute the confidence

interval for � . Because � has inverse dependence on �; �2L determines the upper

limit of the confidence interval and �2U the lower limit.

For example, let Q� D 1:2 � 10�5 and n D 10. Take ˛ D 0:90. Then pU D
.1 C 0:9/=2 D 0:95 and pL D .1 � 0:9/=2 D 0:05. The degree of freedom � D
10� 1 D 9. From Table A.4, we find �2U D 3:325 and �2L D 16:92. The confidence

interval will then be

"p
10� 1p
16:92

� 1:2 � 20�5;

p
10 � 1p
3:325

� 1:2 � 10�5
#

I

i.e.,

Œ0:88 � 10�5 � � � 2:0 � 10�5�:

When constructing confidence intervals for standard deviation, the confidence prob-

ability can be taken to be less than the confidence probability in the case of

constructing the confidence interval for the true value of the measured quantity.

Often ˛ D 0:80 is sufficient.

Confidence intervals should not be confused with statistical tolerance inter-

vals (first mentioned at the end of Sect. 2.3). The statistical tolerance interval is

the interval that, with prescribed probability a, contains not less than a prescribed

fraction p0 of the entire collection of values of the random quantity (population).

Thus, the statistical tolerance interval is the interval for a random quantity, and this

distinguishes it principally from the confidence interval that is constructed to cover

the value of a nonrandom quantity.

If, for example, the sensitivity of a group of strain gauges is measured, then the

obtained data can be used to find the interval with limits l1 and l2 in which, with

prescribed probability a, the sensitivity of not less than the fraction p0 of the entire

batch (or the entire collection) of strain gauges of the given type will fail. This is

the statistical tolerance interval. Methods for constructing this tolerance interval can

be found in books on the theory of probability and mathematical statistics.

One must also guard against confusing the limits of statistical tolerance and

confidence intervals with the tolerance range for the size of some parameter. The tol-

erance or the limits of the tolerance range are, as a rule, determined before the

fabrication of a manufactured object, so that the objects for which the value of the

parameter of interest falls outside the tolerance range are unacceptable and are dis-

carded. In other words, the limits of the tolerance range are strict limits that are not

associated with any probabilistic relations.
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The statistical tolerance interval, however, is determined by objects that have

already been manufactured, and its limits are calculated so that with a prescribed

probability, the parameters of a prescribed fraction of all possible manufactured

objects fall within this interval. Thus, the limits of the statistical tolerance interval,

as also the limits of the confidence interval, are random quantities, whereas the

tolerance limits or tolerances are nonrandom quantities.

3.6 Testing Hypotheses about the Form

of the Distribution Function

The problem is usually posed as follows: For a group of measurement results, it is

hypothesized that these results can be regarded as realizations of a random quantity

with a distribution function having a chosen form. Then this hypothesis is checked

by the methods of mathematical statistics and is either accepted or rejected.

For a large number of observations (n > 50), Pearson’s test (�2 test) for grouped

observations and the Kolmogorov–Smirnov test for nongrouped observations are

regarded as the best tests. These methods are described in many books devoted to

the theory of probabilities and statistics. For example, see [19, 49, 53]. We shall

discuss the �2 test, and for definiteness, we shall check the data on belonging to a

normal distribution.

The idea of this method is to monitor the deviations of the histogram of the

experimental data from the histogram with the same number of intervals that is con-

structed based on the normal distribution. The sum of the squares of the differences

of the frequencies over the intervals must not exceed the values of �2 for which

tables were constructed as a function of the significance level of the test q and the

degree of freedom v D L � 3, where L is the number of intervals and minus 3 is

because the measurement data have two unknown parameters (the mathematical ex-

pectation and variance) and �2 distribution has one more unknown parameter (its

degree of freedom).

The calculations are performed as follows:

1. The arithmetic mean of the observations and an estimate of the standard devia-

tions are calculated.

2. Measurements are grouped according to intervals. For about 100 measurements,

five to nine intervals are normally taken. For each interval, the number of mea-

surements Q'i falling within the interval is calculated.

3. The number of measurements that corresponds to the normal distribution is cal-

culated for each interval. To accomplish this, the range of data is first centered

and standardized.

Let xmin D a0 and xmax D b0, and divide the range [a0; b0] into L intervals of

length h0 D .b0 � a0/=L. Centering and standardization are then achieved with the

formula

xic D xi0 � Nx
Q� :
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For example, the transformed limits of the range of the data for us will be as follows:

ac D a0 � Nx
Q� ; bc D b0 � Nx

Q� :

The length of the transformed interval hc D .bc � ac/=L. Then we mark the limits

fzig, i D 0; 1; : : : ; L, of all intervals of the transformed range [ac , bc]:

z0 D ac ; z1 D ac C hc ; z2 D ac C 2hc; � � � ; zL D ac C Lhc D bc:

Now we calculate the probability that a normally distributed random quantity falls

within each interval:

pi D 1p
2�

zi C1
Z

zi

e�x2=2dx:

After this we calculate the number of measurements that would fall within each

interval if the population of measurements is normally distributed:

'i D Pin:

4. If less than five measurements fall within some interval, then this interval in

both histograms is combined with the neighboring interval. Then the degree of

freedom v D L � 3, where L is the total number of intervals (if the intervals are

enlarged, then L is the number of intervals after the enlargement), is determined.

5. The indicator �2 of the difference of frequencies is calculated:

�2i D . Q'i � 'i /2
'i

; �2 D
L
X

iD1
�2i :

6. The significance level of the test q is chosen. The significance level must be

sufficiently small so that the probability of rejecting the correct hypothesis (com-

mitting false rejection) would be small. On the other hand, too small a value

of q increases the probability of accepting the incorrect hypothesis, that is, of

committing false retention.

From the significance level q and a degree of freedom � in Table A.4, we find the

critical threshold �2q , so that P
˚

�2 > �2q
�

D q. The probability that the value

obtained for �2 in step 5 above exceeds �2q is equal to q and is small. For this

reason, if it turns out that �2 > �2q , then the hypothesis that the distribution is nor-

mal is rejected. If �2 < �2q , then the hypothesis that the distribution is normal is

accepted.

The smaller the value of q, the larger is the value of �2q for the same value of v,

hence the more easily the condition �2 < �2q is satisfied and the hypothesis being

tested is accepted. But, in this case, the probability of committing false retention

increases. For this reason, q should not be taken to be less than 0.01. For too large a
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value of q, as pointed out above, the probability of false rejection increases and, in

addition, the sensitivity of the test decreases. For example, for q D 0:5 the value

of �2 may be greater or less than �2q with equal probability, and therefore it is

impossible to accept or reject the hypothesis.

To achieve a uniform solution of the problem at hand, it would be desirable to

standardize the significance levels q adopted in metrology.

It should be noted that the test examined above makes it possible to check the

conformance of the empirical data to any theoretical distribution, not only a normal

distribution. This test, however, as also, by the way, other goodness-of-fit tests, does

not make it possible to establish the form of the distribution of the observations; it

only makes it possible to check whether the observations conform to a normal or

some other previously selected distribution.

3.7 Testing for Homogeneity of Samples

Measurements with large random errors require careful attention. One must make

sure that the obtained results are statistically under control, stable, i.e., that the mea-

surement results cluster around the same central value and have the same variance.

If the measurement method and the object of investigation have been little studied,

then the measurements must be repeated until one is sure that the results are sta-

ble [25]. This process determines the duration of the investigation and the required

number of measurements.

The stability of measurements is often estimated intuitively based on prolonged

observations. Mathematical methods exist that are useful for assessing the stability

of measurements, so-called methods for testing homogeneity. A necessary condition

for measurement stability is that the data passes the homogeneity tests. However,

this is not sufficient for homogeneity in reality, because of a possibility of an unfor-

tunate choice of groups of measurements.

Figure 3.3 shows the results of measurements of some quantities, presented in

the sequence in which they were obtained. Consider three groups of measurements

performed in the time intervals t2 � t1, t3 � t2, and t4 � t3. They apparently will

be homogeneous. Meanwhile, subsequent measurements would differ significantly

from the first measurements. On the whole, the results obtained from the first group

of measurements will give a picture of a stable, statistically under control, measure-

ment, which is actually not the case.

The choice of groups for monitoring homogeneity remains a problem for the

experimenter. In general, it is best to have on the order of ten measurements in a

group, and it is better to have several such groups than two groups with a large

number of measurements. Once the groups have been reliably determined to be

homogeneous, they can be combined and later regarded as one group of data.

We shall consider first the most common methods for testing homogeneity that

assume the normal distribution of a population. These methods are called para-

metric; before using these methods, each group of data must first be checked for

normality.
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Fig. 3.3 Example of a sequence of single-measurement results obtained in an unstable

measurement

The admissibility of differences between estimates of the variances is checked

with the help of Fisher’s test in the case of two groups of observations and Bartlett’s

test if there are more than two groups. We shall present both methods.

Consider two groups of observations, and let the unbiased estimates of the vari-

ances of these groups be S21 and S22 , where S21 > S22 . The number of observations

in the groups is n1 and n2, so that the degrees of freedom for these groups are,

respectively, �1 D n1 � 1 and �2 D n2 � 1. We form the ratio

F D S21
S22
:

Next, from Tables A.5 and A.6, which present the probabilities P fF > Fqg D q

for different degrees of freedom v1 and v2 and for two values of q (1% and 5%),

we choose the value Fq for a chosen value of q. The hypothesis is accepted, i.e.,

estimates of the variances can be regarded as corresponding to the same variance, if

F < Fq . The significance level of the test, i.e., the probability of the wrong decision,

is equal to 2q.

Now assume that there areL groups. Assume unbiased estimates of the variances

of groups of observations are known, S21 ; : : : ; S
2
L.L > 2/, and each group j has

�j D nj � 1 degrees of freedom; in addition, all �j > 3. The test of the hypothesis,

that the variances of the groups are equal, is based on the statistic

M D N ln

0

@

1

N

L
X

jD1
�jS

2
j

1

A �
L
X

jD1
�j lnS2j ;

where

N D
XL

jD1
�j :
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If the hypothesis that the variances are equal is correct, then the ratio

�21 D M

1C 1

3 .L � 1/

 

L
P

jD1

1

�j
� 1

N

!

is distributed approximately as �2 with � D L � 1 degrees of freedom.

Given the chosen significance level q, from Table A.4, we find �2q , such that

P
˚

�2 > �2q
�

D q. If the inequality �21 < �2q is satisfied, then differences between

the estimates of the variances are admissible, i.e., they could be due to randomness

of the data.

The admissibility of differences between the arithmetic means is also checked

differently in the case of two or more groups of observations. We shall first exam-

ine the comparison of the arithmetic means for two groups of observations, when

there are many observations, so that each estimate of the variances can be assumed

to be equal to its variance.

We denote by Nx1, �21 , and n1 the parameters of one group and by Nx2, �22 , and

n2 the parameters the other group. We form the difference Nx1 � Nx2 and estimate its

variance:

�2. Nx1 � Nx2/ D �21
n1

C �22
n2
:

Next, having chosen a certain significance level q, we find ˛ D 1–q, and from

Table A.1, we find the quantile z 1C˛
2

of the Gaussian function corresponding to the

probability 1C˛
2

. A difference between the arithmetic means is considered admissi-

ble if

j Nx1 � Nx2j � z 1C˛
2
�. Nx1 � Nx2/:

If the variances of the groups are unknown (e.g., if the number of observations is not

sufficient to take variance estimations for the values of variances), then the problem

can be solved only if both groups have the same variances (the estimates of this

variance Q�21 and Q�22 can, naturally, be different). In this case, the statistic

t D j Nx1 � Nx2j
q

.n1 � 1/ Q�21 C .n2 � 1/ Q�22

s

n1n2.n1 C n2 � 2/
n1 C n2

is distributed approximately according to Student’s distribution.

Then, given the significance level q, from Table A.2 for Student’s distribution

with � D n1 C n2 � 2 degrees of freedom, we find tq such that P ft > tqg D q. The

difference between the arithmetic means is regarded as admissible if t < tq .

If the number of groups is large, the admissibility of differences between the

arithmetic means is checked with the help of another variant of Fisher’s test. The

first step in Fisher’s test includes a check that all groups have the same variance,
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using the methods above. Then, Fisher’s method involves comparing estimates of

the intergroup variance S2L and the average variance of the groups NS2:

S2L D 1

L � 1

L
X

jD1
nj
�

Nxj � Nx
�

;

where

Nx D

L
P

jD1
nj Nxj

N
; N D

L
X

jD1
nj

and

NS2 D 1

N � L

L
X

jD1

nj
X

iD1

�

xij � Nxj
�

:

Both estimates of the variances have a �2 distribution with �1 D L � 1 and �2 D
N � L degrees of freedom, respectively. Their ratio has Fisher’s distribution with

the same degrees of freedom.

The spread of the arithmetic means is admissible if F D S2L
ı NS2 for the selected

probability ˛ lies within the interval from FL to FU :

P fFL � F � FU g D ˛

The upper limits of Fisher’s distribution FU are presented in Tables A.5 and A.6;

the lower limits are found from the relation FL D 1=FU . If the significance levels

in finding FU and FL are taken to be the same q1 D q2 D q, then the overall

significance level of the test will be 2q and

˛ D 1 � 2q:

A method for checking the admissibility of the spread in the arithmetic means of the

groups when the variances of the groups are different has also been developed, but

it is more complicated.

It should be noted that a significant difference between the arithmetic means

could indicate that systematic errors exist in the observational results of some of the

groups, and these errors are different in different groups. Therefore, measurements

cannot be performed with the required accuracy.

We shall now discuss nonparametric methods for testing homogeneity. These

methods do not require any assumptions about the distribution function of the pop-

ulation and are widely used in mathematical statistics.

We begin with Wilcoxon rank sum test for checking if two groups of observation

belong to the same probability distribution. More formally, assume that we have

two samples: fxi g, i D 1; : : : ; n1, of random quantity X , and fyj g, j D 1; : : : ; n2,
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of random quantity Y , and let n1 � n2. We check the hypothesis H0: F1 D F2,

where F1 and F2 are the distribution functions of the random quantities X and Y ,

respectively.

The sequence of steps in checkingH0 is as follows. Both samples are combined,

and an ordered series is constructed from N D n1 C n2 elements; i.e., all observa-

tions xi and yj are arranged in increasing order, irrespective of the sample to which

these observations belong. Next, each element is assigned a rank as follows. Ele-

ments with unique values receive the rank equal to their order number in the series.

All elements sharing the same values (which will obviously always appear next to

each other in the series) receive the same rank equal to the arithmetic mean of their

position numbers.

For example, the series (2.3, 2.5, 2.5, 2.6, 2.6, 2.6) will have ranks (1, 2.5, 2.5,

5,5,5). Indeed, the first element has a unique value so it receives its order number as

its rank. The next two elements are equal and they get rank 2.5 equal to their average

of their order numbers (2 and 3) in the series. The last three elements are also equal

and receive the rank 5, which is the average of their positions (4, 5, and 6).

Next the sum of the ranks of all elements of sample fxig is calculated. The sum

T obtained is then compared with the critical value Tq for a selected significance

level q. For small values of n1 and n2, tables listing Tq.n1, n2) are given in most

modern books on statistics. (These tables usually list values of Tq only for n1 � n2,

which is why we compute T for the smaller sample.) For n1, n2 > 25, the critical

value Tq can be calculated using the normal distribution N.m1; �
2/:

Tq D mC z1�q�;

where

m D n1.N C 1/

2
; �2 D n1n2 .N C 1/

12

and z1�q is the quantile of the standard normal distribution N.0; 1/ for probability

.1 � q/. The hypothesis H0 is rejected with significance level q against the alter-

native and it means that X is stochastically greater (i.e., has greater mathematical

expectation) than Y if T > Tq . For a two-sided alternative, H0 is rejected against

the alternative that X is stochastically different from Y with significance level 2q if

T > Tq or if T < n1.N C 1/� Tq .

Another nonparametric method for checking homogeneity is the Siegel–Tukey

test, which also considers two samples, fxig and fyj g, where n1 � n2 and tests the

hypothesis H0: F1 D F2. The Siegel–Tukey test assumes that both distributions

have the same mathematical expectation. All N D n1 C n2 values of the two sam-

ples are again arranged into one sequence in the increasing order, and each element

is assigned a rank based on its position in the sequence. However, the procedure for

rank assignment is different. First, preliminary ranks are assigned as follows: rank 1

is given to the first element, rank 2 to the last (N th) element, rank 3 to the (N � 1)st

element, rank 4 to the second element, rank 5 to the third element, rank 6 to the

(N � 2)nd element, and so on. Then, all neighboring elements with equal values

receive the same final rank equal to the average of the preliminary ranks of all these

elements.
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Next, we compute the sumR of the ranks of the elements of sample fxi g. Assume

for simplicity that samples are sufficiently large (n1, n2 > 25). FromR, we calculate

the standardized variable z, defined as

z D

ˇ

ˇ

ˇ

ˇ

R � n1 .N C 1/

2

ˇ

ˇ

ˇ

ˇ

r

n1n2 .N C 1/

12

For significance level q, the hypothesis H0 is rejected if z > z1–q , where z1�q is a

quantile for probability (1 � q) of the standard normal distribution N.0; 1/.

The Wilcoxon’s test is based on comparing the average values of two sam-

ples, whereas the Siegel–Tukey test is based on estimates of the variances. Indeed,

in Wilcoxon’s test, if the two expectations were dissimilar, observations of one sam-

ple would tend to group toward one side of the combined sequence. Then its rank

sum T would tend to be either large or small. In contrast, ranks in Siegel–Tukey test

are assigned so that elements away from the middle of the sequence receive smaller

ranks than those close to the middle. If one sample had lower variance, its elements

would tend to be clustered around the middle of the sequence. Thus, the sum of their

ranks R would be high.

For this reason, these two tests supplement one another.

As an example of the complimentary nature of these tests, consider again the

experiment from Sect. 2.7 that checked the homogeneity of two batches of the same

types of measuring instruments. Table 3.1 gives calculation data for homogeneity

checking of two batches of 160 ammeters for a moving-iron instrument Э59 with

respect to the error at marker 30 of the graduated scale [47].

For the Wilcoxon’s test, we obtain T D 25; 403. Let q D 0:05. Then z0:95 D
1:96, and

Tq D 160 � 321
2

C 1:96

r

160 � 160 � 321
12

D 27;620

As 25;403 < 27;620, the hypothesis that the samples are homogeneous is accepted

based on Wilcoxon’s test.

Consider now the Siegel–Tukey test. According to the data in the table, R D
23;713. We thus obtain

z D

ˇ

ˇ

ˇ

ˇ

23;713� 160 � 321
2

ˇ

ˇ

ˇ

ˇ

r

160 � 160 � 321
12

D 2:3:

Let us take q D 0:05 and therefore z0:95 D 1:96, the same values we used in

the Wilcoxon’s test. As z > z0:95, the hypothesis that the samples are homoge-

neous is rejected based on the Siegel–Tukey test. Thus, the two tests bring different

outcomes.
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Table 3.1 The example of rank determination for nonparametric homogeneity testing

Number of

instruments with a

given error in the

sample

Wilcoxon’s test Siegel–Tukey test

Value of

the error x y x C y

Average

rank of a

given value

of the error

Sum of ranks

for a given

value of the

error in the

sample x

Average rank

of a given

value of the

error

Sum of ranks

for a given

value of the

error in the

sample x

�0.50 1 1 2 1.5 1.5 2.5 2.5

�0.40 3 0 3 4.0 12.0 7.3 22.0

�0.30 3 0 3 7.0 21.0 13.7 41.0

�0.25 1 0 1 9.0 9.0 17.0 17.0

�0.20 13 5 18 18.5 240.5 36.5 474.5

�0.15 2 2 4 29.5 59.0 58.5 117.0

�0.10 10 8 18 40.5 405.0 80.5 805.0

�0.05 3 2 5 52.0 156.0 103.6 310.8

0.00 15 28 43 76.0 1,140.0 151.5 2,272.5

0.05 5 5 10 102.5 512.5 204.5 1,022.5

0.10 26 35 61 138.0 3,588.0 573.5 7,108.4

0.15 7 4 11 174.0 1,218.0 293.5 2,054.5

0.20 34 41 75 217.0 7,378.0 207.5 7,055.0

0.25 1 3 4 256.5 256.5 128.5 128.5

0.30 17 11 28 272.5 4,632.5 96.5 1,640.5

0.40 13 11 24 298.5 3,880.5 44.5 578.5

0.45 1 1 2 311.5 311.5 18.5 18.5

0.50 4 2 6 315.5 1,262.0 10.5 42.0

0.60 0 1 1 319.0 0.0 3.0 0.0

0.80 1 0 1 320.0 320.0 2.0 2.0

3.8 Robust Estimates

The distribution function by its nature is a mathematical concept. It is used in mea-

surements as a theoretical model for a set of measurements. As always, a complete

conformance between the model and the real set of data is impossible. Therefore,

different models can be chosen for the same data. A small difference between the

models may lead to significantly different estimation of the measurand. A solution

to this problem was offered by so-called robust estimations [29, 32]. Among the

earliest known robust estimations, the most popular are the truncated means, the

Winsor’s means, and the weighted means [32]. These methods assume that mea-

surement results are arranged in an ordered series; i.e.,

x1 � x2 � � � � � xn:

� The Truncated Means. Given the ordered series above, the method of truncated

means discards k values from the left and the right ends of this series. The num-

ber k is obtained as k D bnpc, where 0 < p < 0:5 and the notation bnpc means
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that k is the greatest integer number that is equal to or smaller than np. The rest

of the series provides the robust estimate of the measurand by the formula

QAT D 1

n � 2k

n�k
X

iDkC1
xi :

Note that the truncating procedure is similar to the usual practice of eliminating the

outlying result from the sample, which is described in Sect. 3.4.

� The Winsor’s Means. Rather than discarding extreme items in the ordered se-

ries, the Winsor’s method replaces them with the neighboring items. The robust

estimate of the measurand is calculated by the formula:

QAW D 1

n

8

<

:

n�.kC1/
X

iDkC1
xi C .k C 1/.xkC1 C xn�k/

9

=

;

:

� The Weighted Means. The weighted means method obtains a robust estimate by

computing a linear combination of the measurement data. There are numerous

variations in this method [29,32]. Here we present one such variation, which uses

the weighted average of the median of the series and two items symmetrically

located around the median in the series [32].

MedianM is determined by the formula:

M D
(

xkC1 ifn D 2k C 1I
1
2
.xk C xkC1/ ifn D 2k:

The robust estimate of the mean according to this method is then given by the fol-

lowing formula:

QAC D .1 � 2�/M C 2�
.xl C xn�lC1/

2
;

where .1�2"/ and 2" are the weights, " << 1, and l and (n� lC1) are the positions

of the two symmetrical items chosen for the estimation.

Numerous other robust estimates were also proposed. Thus, it is not clear which

method to choose for a given measurement. Hogg [29] addressed this difficulty as

follows. His method takes advantage of the natural assumption that all density dis-

tributions are symmetrical, the assumption on which all other robust estimates are

based anyway. Symmetrical distributions can be characterized by one parameter –

the excess e (see Sect. 3.1):

e D �4

�4
:

Hogg proposed to divide all distributions into several classes depending on the value

of e, in such a way that for all distributions in the same class, the mean value can
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be calculated with the same formula. Thus, the estimate of the measurand for each

class will not depend on the distribution function. The estimate of the excess e is

found from the formula:

æ D
Pn
iD1.xi � QA/4
nS4

:

The price this method pays for the robust estimate is the loss in the efficiency of

the estimate. Therefore, a desired solution would find a compromise between the

number of classes and the loss of the efficiency. Hogg studies the system of four

classes named classes A, B, C, and D. The range of values of æ for each class and

the corresponding formulas for estimating the mean value of the data are given in

Table 3.2. Hogg found that the four classes he proposed lead to loss in efficiency of

no more then 20%, which is acceptable.

Another system of classes was proposed later by Mechanikov [39]. This system

contains only three classes, which are also determined by the values of æ. These

classes and the corresponding formulas for the estimation of the mean are shown in

Table 3.3. As one can see, the formulas in Table 3.3 are the same as those used in

the Hogg system: Class 1 uses the same formula as Class D, Class 2 as Class B ,

and Class 3 as Class A, but Class C is eliminated.

The estimations of variances of robust estimates are calculated in a common way,

but constructing confidence intervals presents a difficult problem that is generally

not discussed in the robust estimates literature. A simple nonparametric (i.e., not

relying on a particular probability distribution) method to construct these intervals

has been proposed in [28]. In this method, the confidence interval is defined by two

elements located symmetrically about the median in the ordered series.

Table 3.2 Classes of distribution functions and formulas for estimation of

their mean values after Hogg

Distribution class æ Formula for the measurand estimation

A æ < 2 QAa D 1
2
.x1 C xn/

B 2 < æ < 4 QAb D Nx D 1
n

n
P

iD1

xi

C 4 < æ < 5:5 QAc D 1
n�2bn=4c

n�bn=4c
P

iDbn=4cC1

xi

D 5:5 < æ QAd D M

Table 3.3 Classes of distribution functions and formulas for estimation of

their average values after Mechanikov

Distribution class æ Formula for the measurand estimation

1 4 < æ QA1m D M

2 2:5 < æ < 4 QA2m D Nx D 1
n

n
P

iD1

xi

3 1:8 < æ < 2:5 QA3m D x1 C xn

2
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For a given confidence probability ˛, the symmetrical positions l and r , which

define the confidence interval Œxl ; xr �, are found as follows:

l D b1
2
.nC1� z 1C˛

2

p
n/c and r D

�

1

2

�

nC 1C z 1C˛
2

p
n
�

�

;2

where z 1C˛
2

is the corresponding quantile of the standard normal distribution.

For example, for the ordered series of size n D 49 and ˛ D 0:95, A � M D x25
and l D 19 and r D 31. The confidence interval is thus Œx19; x31�.

The inverse calculation was proposed in [39]. Here, we first choose the symmet-

rical elements in the ordered series as the confidence interval boundaries and then

calculate the corresponding confidence probability for this interval. Let k be the dis-

tance of the boundary elements from their corresponding ends of the sequence, so

that the interval is [xk , xn�kC1]. The confidence probability that the true value A is

covered by that confidence interval is computed according the formula:

P fxk � A � xn�kC1g D 1

2n

n�kC1
X

iDk

�

i

n

�

:

In particular, for

k D 2; P fx2 < A < xn�1g D 1 � nC 1

2n�1 ;

k D 3; P fx3 < A < xn�2g D 1 � n2 C nC 2

2n
:

For k > 3, the formulas become much more complicated. But for k D 4 and 5, one

can use approximate relations presented in [39]:

k D 4; P fx4 < A < xn�3g � 1 � 0:17n3

2n�1 ;

k D 5; P fx5 < A < xn�4g � 1 � 0:037n4

2n�1 :

Nonparametric methods are widely used in statistical analysis. However, to con-

struct confidence intervals, they require many more observations than parametric

methods.

Another way to build confidence intervals is made possible by a bootstrap

method [23]. This method uses a computer to produce a large number of independent

replicas of the obtained experimental dataset (e.g., 1,000 replicas). For each replica,

we compute an estimate of the measurand as the arithmetic mean for the replica. We

produce so many of these estimates that they can be assumed to represent well the

distribution function of the estimates. Then, we can use this distribution function

2 As usual, bxc denotes the greatest integer equal to or smaller than x and dxe stands for the

smallest integer equal to or greater than x.
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(which we can obtain, e.g., by guessing it from the estimates and then checking our

guess using statistical methods for hypothesis testing) to compute the final estimate

of the measurand and its confidence interval with usual methods.

3.9 Application of the Bayes’ Theorem

The Bayes’ Theorem is well studied in the probability theory. Also widely held

among mathematicians has been an opinion that this theorem allows one to utilize

a priori information about the measurand and in this way to improve the accuracy of

the measurement. Further, it is appealing to consider a measurement as a process of

increasing the amount of acquired information and, correspondingly, of increasing

the accuracy of the obtained results.

The initial or a priori information in the Bayes’ Theorem is usually considered

to be the probability density function of the measured quantity [21]. Unfortunately,

this information is not, and cannot be, available. Perhaps for this reason the Bayes’

Theorem did not find practical usage in measurement data processing until recently.

A real possibility to use Bayes’ Theorem in metrological practice was opened

by research based on the concept of likelihood [31, 36]. Following the monograph

[36], the propositions of interest in metrological applications are usually (a) the

measurand Q belongs to an infinitesimal interval .q; q C dq/ and (b) d is the data

obtained in the result of the measurement.

Let f .q/ be the PDF of measurand Q before the measurement; it represents

a priori knowledge about Q, and f .qjd/ be the conditional PDF of Q given the

measurement data d . Then, according to Bayes’ Theorem,

f .qjd/ D f .q/f .d jq/
f .d/

:

Integrating both parts of the above equation by q, under the assumption that f .d/

is constant, and after applying the normalization condition that
C1
R

�1
f .qjd/ dq D 1,

we can obtain

f .d/ D
C1
Z

�1

f .qjd/ f .q/dq:

It is suggested to consider f .d jq/ as the PDF of variable d assumingQ takes given

values q, if d is referred to the possible values of some random quantityD. To return

to the original meaning of notations d and q, a function l is introduced. Function l

differs from f in that its arguments d and q switch places; furthermore, l is defined

so that

f .d jq/ D l.qjd/:
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Function l is called likelihood. With its introduction, Bayes’ Theorem takes the form

f .qjd/ D l.qjd/f .q/
C1
R

�1
f .qjd/ f .q/dq

:

Monograph [36] points out that the new function cannot be considered as a PDF but

it represents a new concept, which is called likelihood. This concept is then applied

to a direct multiple measurement and several indirect measurements.

Let us consider the direct measurement. Its a priori information is that the

measurement method employed produces observations that belong to a normal dis-

tribution. The monograph compares the results obtained using the modified Bayes’

Theorem with the results produced by a traditional method of maximum likelihood

with the same normal distribution of the observations.

It turned out that while both methods produce the same estimate of the measur-

and, their estimates of the variance are different. The estimate produces using the

modified Bayes’ Theorem is

S2 . Nq/ D
p

.n � 1/=.n � 3/ � S2;

where n is the number of repeated measurements in the multiple measurement, S2

is the variance estimate produced by the maximum likelihood method and S2 . Nq/
is the same estimate produced by the new method based on the modified Bayes’

Theorem.

The increase in the variance estimate is small but significant, and this discrepancy

requires an explanation. First, it is noteworthy that while the primary motivation for

using the Bayes’ Theorem was to extract more accuracy from the measurement data,

the variance estimate it produced turned out to be higher, meaning the opposite out-

come. Moreover, long practice of utilizing the maximum likelihood method has not

given reason to suspect that it produces results with artificially overestimated ac-

curacy. Second, both methods cannot be correct given that they produce different

variance estimates. These issues must be resolved before one can recommend ap-

plying the Bayes’ Theorem in practical measurements.



Chapter 4

Direct Measurements

4.1 Relation Between Single and Multiple Measurements

The classical theory of measurement errors is constructed based on the well-

developed statistical methods and pertains to multiple measurements (we refer the

reader back to Chap. 1 for the introduction of basic terms such as multiple and sin-

gle measurements, uncertainty, error, and limits of errors). In practice, however, the

overwhelming majority of measurements are single measurements, and however

strange it may seem, for this class of measurements, there is no accepted method for

estimating their inaccuracy.

In searching for a solid method for estimating errors in single measurements, it is

first necessary to establish the relation between single and multiple measurements.

At first glance, it seems natural to regard single measurements as a particular case

of multiple measurements, when the number of measurements is equal to 1. For-

mally this is correct, but it does not serve any purpose, because statistical methods

do not work for single observations. In addition, the question of when one mea-

surement is sufficient remains open. In the seemingly natural approach above, to

answer this question – and this is a fundamental question – it is first necessary to

perform a multiple measurement and then, analyzing the results, to decide whether

a single measurement was possible. But such an answer is in general meaning-

less: A multiple measurement has already been performed, and nothing is gained

by knowing, in the hindsight, one measurement would have sufficed. Admittedly,

it can be countered that such an analysis will make it possible not to make multi-

ple measurements when future such measurements are performed. Indeed, that is

how the above approach is used, but only when preliminary measurements are per-

formed, i.e., in scientific investigations when some new object is studied. This is not

done in practical measurements.

When one needs to measure, for example, the voltage of some source with a given

accuracy, they choose a voltmeter with suitable accuracy and perform the measure-

ment. If, however, the numbers on the voltmeter indicator dance about, then it is

impossible to perform a measurement with the prescribed accuracy, and one must

reexamine the measurement task and objective rather than performing a multiple

measurement.
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For practical applications, we can state the opinion that single measurements

are well grounded in experience, distilled in the construction of the corresponding

measuring instruments, and measuring instruments are manufactured so that single

measurements could be performed.

From the foregoing assertion, a completely different point of view follows re-

garding the relationship between single and multiple measurements. Namely, single

measurements are the primary, basic form of measurement, whereas multiple mea-

surements are derived from single measurements, and in essence, they are simply

repeated single measurements. Multiple measurements are performed when neces-

sary, based on the formulation of the measurement problem. It is interesting that

measurement problems that require multiple measurements are known beforehand;

they can even be enumerated. Namely, multiple measurements are performed in the

following cases:

1. When investigating a new phenomenon or a new object and relationships be-

tween the quantities characterizing the object, as well as their connection with

other quantities, are being determined; in other words, when preliminary mea-

surements, according to the classification given in Chap. 1, are performed.

2. When measuring the average value of some parameter, according to the goal of

the measurement problem.

3. When the effect of random errors of measuring instruments must be reduced.

There is another point of view, namely, that any measurement must be a multiple

measurement, because otherwise it is impossible to judge the measurement process

and its stability and to estimate its inaccuracy. We cannot agree with this opinion.

First, it contradicts practice, where single measurements dominate. Second, it also

does not withstand fundamental analysis.

Imagine that the same constant quantity is measured simultaneously using a mul-

tiple and a single measurement. In both cases, the measurements are performed with

the same analog instrument whose response time is tr. In Fig. 4.1a, the dots show the

Fig. 4.1 Results of measurements in the case of (a) a multiple measurement and in (b) a single

measurement with continuous photorecording of the indication
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results of individual measurements comprising the multiple measurement, and the

curve in Fig. 4.1b represents a continuous photorecording of the indications of the

instrument in the single measurement. The single measurement makes it possible to

obtain the value of the measurand immediately after the instrument response time

tr, while the multiple measurement takes at least this time multiplied by the number

of individual measurements.

If it is desirable to check the stability of the measurement, then one can continue

the observation using the single measurement. The measurement process is stable if

the readings of the instrument over a chosen time �T do not change appreciably.

Furthermore, it is possible to estimate the inaccuracy of the result of a single

measurement. Methods for calculating errors and uncertainty of the results of single

measurements are given later in this chapter. Thus, in this case, a single measure-

ment is sufficient to obtain the measurement result, to estimate its inaccuracy, and

to assess the stability of the measurement process. In fact, a single measurement

allows one to make a better judgment than a multiple measurement because the lat-

ter represents only separate moments of the process, whereas the former gives the

whole continuous picture.

The above example does not say that a single measurement is better than a multi-

ple measurement. It says only that a multiple measurement should not be performed

when a single measurement is possible. But when a multiple measurement is nec-

essary, a single measurement cannot possibly replace it, and in this case and in this

sense, a multiple measurement is better than a single measurement.

Yet the above example supports our argument that single measurements must

be regarded as independent and the basic form of measurement. Correspondingly,

the problem of developing methods for estimating the accuracy of single measure-

ments must be regarded as an independent and important problem of the theory of

measurements.

This is a good point at which to discuss another aspect of the question at hand.

In many fields of measurements, modern digital measuring instruments can operate

so fast that over the time allotted for a measurement, say, 1 s, hundreds of measure-

ments can be performed. By carrying out these measurements and averaging their

results, we utilize all of the time allotted for measurement, and, thanks to this, we

reduce correspondingly the effect of interference and noise.

Consider now an analog instrument having the same accuracy as a fast measuring

device, but with the response time equal to the time allotted to the measurement, i.e.,

in our case, 1 s. From the time constant of the instrument, the effect of interference

and noise will be suppressed to the same degree as for discrete averaging in the first

case; i.e., we shall obtain the same result.

In other words, the measurement time is of fundamental importance, and there is

no significance in how the interference and noise are filtered – in the discrete or ana-

log form – over this time. In practice, discrete averaging is often more convenient,

because in this case, the averaging time can be easily changed.
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4.2 Classification of Elementary Errors

The classification of measurement errors presented in Chap. 1 also applies, of

course, to elementary errors. Continuing the analysis, this classification must be fur-

ther developed as it applies to elementary errors. The main two types of elementary

errors are systematic and random errors.

Taking into account and eliminating systematic errors is an important problem

in every accurate measurement. In the theory of errors, however, little attention

has been devoted to systematic errors. In most books on methods of data process-

ing, the question of systematic errors is either neglected or it is assumed that these

errors have been eliminated. In reality, however, systematic errors cannot be com-

pletely eliminated; some unexcluded residuals always remain. These residuals must

be taken into account to estimate the limits of the unexcluded systematic error of

the result.

In addition, many measurements are performed without special actions taken to

eliminate systematic errors, because either it is known a priori that they are small or

the measurement conditions make them impossible to be eliminated. For example,

in measurements of the mass of a body, corrections are often not made for the values

of the balance weights employed, either because the corrections are small or because

the errors of the weight values are unknown (only their limits are known).

Sometimes the unexcluded residuals of the systematic errors are assumed to be

random errors based on the fact that their values are unknown. We cannot agree

with this point of view. When classifying errors as systematic or random, attention

should be focused on their properties rather than on whether their values are known.

For example, suppose that the resistance of a resistor is being measured and a

correction is made for the influence of the temperature. The systematic error would

be eliminated if we knew exactly the temperature coefficient of the resistor and

the temperature. But we only know both quantities with limited accuracy, and for

this reason, we cannot completely eliminate this error. An unexcluded residual of

the error will remain. It can be small or large; this we can and should estimate,

but its real value remains unknown. Nonetheless, this residual error has a definite

value, which remains the same when the measurement is repeated under the same

conditions, and for this reason, it is a systematic error.

Errors that have been eliminated are no longer errors. Therefore, the unex-

cluded residuals become the systematic error in the measurement if they cannot

be neglected.

The error in a measurement can be both systematic and random, but after the

measurement has already been performed, the measurement error becomes a sys-

tematic error. Indeed, the result of a measurement has a definite numerical value,

and its difference from the true value of the measured quantity is also constant.

Even if the entire error in a measurement was random, for a measurement result, it

becomes systematic; i.e., it seemingly freezes.

We shall now discuss the classification of systematic errors. Our discussion on

systematic errors classification is based on the work of M.F. Malikov, and follow-

ing this work, we shall distinguish systematic errors according to their sources and

properties [37].
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The sources of systematic errors can be three components of the measure-

ment: the method of measurement, the measuring instrument, and the experimenter.

Correspondingly, methodological, instrumental, and personal systematic errors are

customarily distinguished.

Methodological errors arise from imperfections of the method of measurement

and from the limited accuracy of the formulas used to describe the phenomena on

which the measurement is based. We shall also classify as methodological errors the

errors arising as a result of the influence of the measuring instrument on the object

whose property is being measured.

For example, the moving-coil voltmeter draws current from the measurement

circuit. Because of the voltage drop on the internal resistance of the source of the

voltage being measured, the voltage on the terminals of the voltmeter will be less

than the measured value. The indications of the voltmeter, however, reflect the volt-

age on its terminals. The error that arises – a methodological error – should be

insignificant or eliminated by a correction.

A methodological error can also arise in connection with the use of the measuring

instrument. For example, the gain of a voltage amplifier is determined by measuring

the voltages at the input and the output. If these voltages are measured successively

using the same voltmeter, as is often done in practice, then, aside from the voltmeter

error, the measurement error will include the error from some uncontrollable change

in voltage at the amplifier input over time. This error does not arise when two volt-

meters are employed to measure the input and output voltage at the same time. (Of

course, in the case of the two voltmeters, the overall measurement error is impacted

by the instrumental errors of both of the voltmeters, so the choice of the measure-

ment method must depend on the particular circumstances. For instance, if the input

voltage was known to be stable, the one-voltmeter method would be preferable.)

We note that the error from the threshold discrepancy between the model and the

object (see Sect. 1.4) is also a methodological error.

Instrumental systematic errors are errors caused by imperfections of the measur-

ing instrument. One example of such errors is errors caused by imprecise calibration

of the instrument scale. Other examples include the inaccuracy of balance weights

and the error of a resistive voltage divider from the inaccurate adjustment of the

resistances of its resistors.

Another group of such errors is additional and dynamic errors. These errors also

depend on the imperfections of the measuring instruments, but they are caused by

influence quantities and noninformative parameters of the input signal (see Sect. 2.3)

as well as by the change in the input signal in time. Most often the additional and

dynamic errors are systematic errors. When the influence quantities and the forms

of the input signal are unstable, however, they can become random errors.

Setup errors, i.e., errors arising from the arrangement of the measuring instru-

ments in conducting the measurement and their effect on one another, are also

instrumental errors.

Personal systematic errors are systematic errors caused by the individual char-

acteristics of the observer. Specifically, we shall discuss the errors in the read-

ing of the indications of indicating instruments. Such errors were investigated

by H. Bäkström [17]. He studied the question of how people estimate tenths of
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the graduations of an instrument scale when reading the instrument indication.

Although Bäkström’s work simulated real devices by drawings depicting the edges

of a scale graduation and the indicator of the instrument, the results obtained are

plausible.

In his study, Bäkström presented the drawings to human subjects and asked them

to estimate the tenths of the graduation given by the indication. He found that the

systematic errors made by every observer when estimating tenths of a graduation of

an instrument scale can reach 0.1 of the graduation and are much larger than random

errors. These systematic errors are manifested by the fact that for different positions

of the indicator within the graduation, different observers characteristically produce

estimates with different frequencies, and in addition, the distribution characteristic

of the estimates for every observer remains constant for a long period of time. This

phenomenon can be explained by the conjecture that one observer tends to refer

indications relative to the lines forming the edges of graduation and to the middle

(fraction 0.5) of a graduation. Another observer refers indications to the fractions 0.4

and 0.6 of a graduation. A third observer prefers fractions 0.2 and 0.8 of graduations

and so on.

The error in estimation of tenths of graduations depends on the thickness of the

markers – the lines forming the scale. The optimal thickness of these markers is 0.1

of the length of a graduation. The length of a graduation also significantly affects

the error in reading tenths of a graduation. Instrument scales for which tenths of a

graduation can be read are usually made so that the length of a graduation is equal

to about 1 mm (not less than 0.7 mm and not more than 1.2 mm). On the whole, for

a random observer, the distribution of systematic errors in the readings of tenths of

a graduation can be assumed to be uniform with limits of ˙0:1 graduations.

Let us now consider types of systematic errors according to their properties. In

this regard, constant systematic errors are distinguished from regularly varying sys-

tematic errors. The latter, in turn, are subdivided into progressing and periodic errors

and errors that vary according to a complicated law.

A constant systematic error is an error that remains constant, and for this reason,

it is repeated in each observation or measurement. For example, such an error will

be present in measurements performed using the same instruments and devices that

have a systematic error: balance weights, measuring resistors, and so on. The per-

sonal errors made by experienced experimenters can also be classified as constant

(for inexperienced experimenters, they are usually of a random character).

Progressing errors are errors that increase or decrease with passing of time, so

every later observation will have a higher or lower error. Such errors are caused, for

example, by the change in the working current of a potentiometer from the voltage

drop of the storage battery powering it.

Periodic errors are errors that vary with a definite period. In the general case, a

systematic error can vary according to a complicated aperiodic law.

The detection of systematic errors in a measurement is a complicated problem.

It is especially difficult to detect a constant systematic error. To solve this problem,

several measurements (at least two) should be performed by fundamentally different

methods. This method is ultimately decisive. It is often realized by comparing the

results of measurements of the same quantity that were obtained by different exper-

imenters in different laboratories.
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It is easier to discover variable systematic errors, which can be done with the

help of statistical methods, correlation, and regression analysis. But nonmathemat-

ical possibilities also should not be avoided. Thus, in the process of performing

a measurement, it is helpful to employ a graph on which the results of the mea-

surements are plotted in the sequence in which they were obtained. The overall

arrangement of the points obtained makes it possible to discover the presence of a

systematic change in the results of observations without mathematical analysis. If

a regular change in observational results has been found and it is known that the

measured quantity did not change in the process, then this indicates the presence of

a regularly varying systematic error. The human capability of perceiving such reg-

ularities is widely employed in metrology, although this capability has apparently

still not been thoroughly studied.

It is also helpful to measure the same quantity using two different instruments

(methods) or to measure periodically a known quantity instead of the unknown

quantity.

If the presence of a systematic error has been discovered, then it can usually

be estimated and eliminated. In precise measurements, however, this often presents

great difficulties and is not always possible.

In most fields of measurements, the most important sources of systematic er-

rors are known and measurement methods have been developed that eliminate the

appearance of such errors or prevent them from affecting the result of a measure-

ment. In other words, systematic errors are eliminated not by mathematical analysis

of experimental data but rather by the use of appropriate measurement methods.

The analysis of measurement methods and the systematization and generalization

of measurement methods are important problems, but they fall outside the scope of

this book, which is devoted to the problem of analysis of experimental data. For this

reason, we shall confine our attention to a brief review of the most widely dissemi-

nated general methods for studying such problems.

Most constant systematic errors are estimated analytically before the measure-

ment and not from the experimental data obtained during the measurement. These

a priori estimates usually produce definite (nonprobabilistic) limits for these errors.

We shall further divide constant systematic errors into absolutely constant and con-

ditionally constant errors.

By absolutely constant elementary errors, we mean errors that, although they are

specified by definite limits, remain the same in repeated measurements performed

under the same conditions as well as when using different measuring instruments of

the same type. Consider for example a thermocouple. The errors of thermocouples

of each type are rated by specifying their standard characteristic (the dependency of

the output EMF on the temperature difference at input). Every point of this charac-

teristic has its own error, which is constant for this point. There are known limits of

error for the thermocouple characteristic as a whole, so that the error at any point

of the characteristic falls within these limits. This information should be taken into

account when estimating the inaccuracy of the measurement of temperature.

By conditionally constant errors, we mean errors that have definite limits but

can vary within these limits due to the individual properties of particular measuring
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instruments used in the measurement. A typical example of such an error is the

measurement error caused by the intrinsic error of the measuring instrument.

The intrinsic error, by its nature, can be a purely systematic error, but it can

also have a random component. For example, for weights, the intrinsic error does

not have a random component, but the actual magnitude of the intrinsic error varies

from one weight to another. The intrinsic error of an electric measuring instrument

with an indicator needle has both systematic and random components, but on the

whole, the intrinsic error has definite limits that are the same for any instrument of

a given type.

A conditionally constant error can even be purely random. Examples are the

rounding error in reading the indications of analog instruments and the error caused

by the limited resolution of digital instruments.

In summary, a fundamental property of conditionally constant elementary errors

is that although they have definite limits, they can vary within these limits.

Let us now turn to random errors. Before we proceed, it is interesting to note that

the random errors are usually not classified into categories based on their causes,

because a random error occurs in the course of a multiple measurement and is not

predicted from an a priori analysis like systematic errors.

The random error is estimated using data obtained in the course of the measure-

ments. If the random error is significant, then the measurement is performed many

times. The primary characteristic of a random error is usually the standard deviation,

which is calculated from the experimental data. The entire standard deviation, and

not its separate components, is estimated directly. For this reason, there is no need

to qualify the term random measurement error with the additional word elementary.

When performing an analysis, it is important to distinguish purely random and

quasirandom errors. Purely random errors can arise from different reasons. For ex-

ample, they can arise from noise or small (regarded as permissible) variations in

the influence quantities or the random components of the errors of the measuring

equipment.

Quasirandom errors appear in measurements of quantities that are by definition

averages, when the quantities being averaged are constant. As the simplest (albeit

artificial) example, one could measure a side of a (assumed to be) square object

as the average of its all four sides. Each side will be somewhat different from the

others, but will remain constant.

With quasirandom errors, the differences between individual quantities being

averaged are not random but are regarded as random. Using this assumption, the

quasirandom error of the measurement result can be characterized, just as in the

case of a purely random error, by an estimate of the standard deviation.

4.3 Modeling of Elementary Errors

Ultimately, elementary errors are needed to assess the overall inaccuracy of the

measurement, which usually means estimating the uncertainty of the measure-

ment result. In other words, the measurement uncertainty is calculated from the
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elementary errors that are components of the overall measurement inaccuracy; i.e.,

this is a problem of synthesis, performed mathematically. Correspondingly, ele-

mentary errors must be represented by mathematical models. We shall examine the

most common types of elementary errors (according to their properties) from this

viewpoint: absolutely constant errors, conditionally constant errors, purely random

errors, and quasirandom errors. We will not consider models of the variable, pro-

gressing, and periodic systematic errors because it is impossible to specify general

models for these types. Thus, these errors should be taken into account differently

in each particular case.

4.3.1 Absolutely Constant Errors

Each such error has a constant value that is the same in any measurement, although

it is unknown. Only the limits of these errors are known. But since this error is

constant within the known limits, the probabilistic model is not suitable in this case.

A mathematical model of such errors should rather be considered a determinate

quantity whose magnitude has an interval estimate; i.e., it lies within an interval of

known limits. We shall use this model for absolutely constant elementary errors.

We can foresee an objection to this model. There is an opinion that if the value of

the error is unknown, then it can be regarded as a random quantity. However, this is

not correct. A model of an object can be constructed only based on what we know

about it and not based on what we do not know.

There is another objection. If the determinate model above is adopted, then when

several absolutely constant errors are summed, their limits must be added arith-

metically. This process is equivalent to the assumption that all terms have limiting

values and the same sign, which is unlikely. The objection then is that the deter-

minate model leads to overestimation of the overall measurement inaccuracy. This

objection also is invalid. First, the argument “unlikely” is not correct here, because

we are not using a probabilistic model. Second, the fact that we do not like the

result – the answer seems exaggerated – is also not an argument. In mathematics,

precisely the same situation arises in methods of approximate calculations and the

limits of errors are added arithmetically.

Fortunately, in a measurement, rarely more than one or two absolutely constant

errors exist, and they are, as a rule, insignificant. Thus, summing their limits arith-

metically does not usually lead to overly exaggerated uncertainty in practice.

4.3.2 Conditionally Constant Errors

The values of these errors characteristically vary from one measurement to another

and from one measuring instrument to another, and they are different under differ-

ent conditions. In all cases, however, in each such error, the limits of the interval

containing any possible realization of such an error remain unchanged.
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As a mathematical model of conditionally constant errors, one would like to use

a random quantity. To specify this model, however, it is necessary to know the prob-

ability distribution function of this random quantity. Ideally, one would like to find

this function based on the experimental data. Such an attempt was made for the

intrinsic error of measuring instruments. The results of such an investigation were

presented in Chap. 2. Unfortunately, they showed that the distribution function of

the intrinsic error and, of course, the distribution function of the additional errors

could not be found from sample data.

Thus, to adopt the probabilistic model for conditionally constant errors, the dis-

tribution function must be prescribed. It is well known that among distributions with

fixed limits, the uniform distribution has the highest uncertainty (in the sense of in-

formation theory). As an analogy, the rounding error also has known limits, and

in mathematics, this error has for a long time been regarded as a random quantity

with a uniform probability distribution. For this reason, we shall also assume that

the model of conditionally constant errors will be a random quantity with a uniform

probability distribution within prescribed limits.

This suggestion was made a long time ago [48]. At the present time, this model

is widely employed in the theory of measurement errors [2, 5, 11].

4.3.3 Purely Random Errors

Such errors, often referred to as just “random errors” for short, appear in multiple

measurements. They are characterized by the standard deviation that is computed

from the experimental data.

The form of the distribution function of random errors can, in principle, be found

based on the data from each multiple measurement. In practice, however, the number

of measurements performed in each experiment is insufficient for this. Thus, every

time measurements are performed, it is assumed that the purely random errors have

a normal distribution, relying on the implicit assumption is that the hypothesis of

the normal distribution was checked in a preceding experiment. Unfortunately, the

normal distribution hypothesis is rarely directly checked. Yet the results obtained

using these assumptions are not inconsistent with the practice so that this assumption

is evidently justified. Thus, we shall assume that the mathematical model of random

errors is, as a rule, a normally distributed random quantity.

4.3.4 Quasirandom Errors

As noted above, these errors occur when measuring quantities that are averages by

definition, and the value of each separate quantity being averaged remains constant.

These quantities are essentially not random, but can sometimes be regarded as a

random sample from a general population of quantities. Whether or not such an
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assumption is justified depends on the goal of the measurement, and it is a judgment

call based on agreement of experts. If one does assume the randomness of the under-

lying quantities, the parameters to be used to characterize their distribution should

also be determined by agreement. Most often the standard deviation is chosen as

this parameter.

We will conclude this section with a discussion on the question of interdepen-

dence and correlation of elementary errors. Mathematically, it is preferable to regard

these errors as correlated quantities, because this approach is extremely general.

However, such an approach complicates the inaccuracy estimation, and most of the

time it is not justified. Under reference conditions, all elementary errors are inde-

pendent and thus are uncorrelated. Exceptions can be encountered in measurements

performed under rated operating conditions, especially in the case of indirect mea-

surements and measurements performed with the help of measuring systems, when

the same influence quantity causes appreciable additional errors in several instru-

ments or components in the measuring channel of the system. An example is a

measurement in which a measuring transducer, amplifier, and automatic-plotting in-

strument are employed. A change in the temperature of the medium can cause these

devices to acquire an additional temperature-induced error. Obviously, these addi-

tional errors will be interrelated. Accounting for the dependency between additional

errors is considered in Chap. 5.

4.4 Composition of Uniform Distributions

In Sect. 4.3, we have adopted the uniform distribution as the mathematical model of

conditionally constant elementary errors. Given several conditionally constant ele-

mentary errors that contribute to the overall measurement error, how can we assess

the overall error? As already mentioned, this is a problem of synthesis of the overall

error from its components. To solve this problem, one must know how to construct

the composition of uniform distributions. The theoretical solution of this problem is

well known and is presented, for example, in [53]. However, our applied problem at

hand allows us to construct a simplified solution. We will consider this solution in

the current section, and then, in subsequent sections, use the described apparatus to

estimate the inaccuracy of direct measurements.

Consider n random quantities xi .i D 1; : : : ; n), each of which has a uniform

distribution centered at zero in the interval
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where the sum must include only the terms in which power bases, i.e., # C n
2

,

# C n
2

� 1, and so on, are nonnegative. Note that the number of terms therefore

depends on both the number of components being summed, n, and the argument # .

For example, if n D 2, then
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The probability density function of the sum of two terms has the form of a triangle.

For n D 3, the graph of f3.#/ consists of three segments of a quadratic parabola

and looks very much like the curve of a normal distribution. For n D 4, this dis-

tribution is almost indistinguishable from the normal distribution. Given the above

equation for the probability density, it is not difficult to find the probability distribu-

tion function
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(4.1)

In practice, however, it is desirable to have a simpler and more convenient solution.

Such a solution can be found by observing that we only need to find the confidence

interval for the combined error and not its full distribution function. In other words,

we are interested in limits ˙�˛ for the sum of the components such that the proba-

bility

P fj#j � �˛g � ’:

Bearing this in mind, we shall examine the distribution function Fn.#/ in

the extreme intervals of its argument range with nonzero probability density,

[�n=2;�n=2C 1] and [n=2� 1; n=2].

For these intervals, (4.1) assumes the form

Fn.#/ D

8

<

:

1
nŠ

�

# C n
2

�n
for � n

2
< # < �n

2
C 1;

1 � 1
nŠ

�

# � n
2

�n
for n

2
� 1 < # < n

2
:

The composition of the distributions is symmetric relative to the ordinate axis. We

shall discuss how to calculate, given the probability distribution, the limits of the

confidence interval corresponding to a fixed value ˛ of the confidence probability.

The limits of the confidence interval corresponding to ˛ are ˙�˛ .

By definition, the probability that the true value of a quantity # lies within the

confidence interval [��˛;C�˛] is ˛. Therefore, the probability that the quantity

does not lie in the confidence interval is (1 � ˛). If the distribution is symmetric

relative to 0 (and we are studying a symmetric distribution), then the probability
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that the quantity will take on a value less than ��˛ will be equal to the probability

that it will take on a value greater than C�˛ . These probabilities are obviously equal

to .1 � ˛/=2.

Consider first the left-hand branch of the distribution function. The probability

corresponding to the point ��˛ is equal to P f# � ��˛g D .1 � ˛/=2. Considering

now the right-hand branch, the probability that # � C�˛ will obviously be equal to

1 � Œ.1 � ˛/=2� D .1C ˛/=2.

We shall now return to our problem. Given Fn.#/ and ˛, we are required to find

the quantiles ��˛ and C�˛ (recall that the quantile of a distribution function for

a given probability level is the argument on which the distribution function takes

the value equal to the specified probability level). Since these quantiles have equal

absolute values, we shall only calculate ��˛ .

Since the confidence probability is usually high (e.g., 0.95), quantile ��˛ is likely

to fall into the left extreme interval [�n=2;�n=2C1] (we can check if that is indeed

the case once we calculate it, or even beforehand as we will see shortly). Then, we

have

P f# � �˛g D Fn.��˛/ D 1

nŠ

�

��˛ C n

2

�n

D 1 � ˛
2

; (4.2)

from which �˛ can be calculated.

For example, let ˛ D 0:99 and n D 4. Then (1 � ˛/=2 D 0:005. Let us check

whether the value (��˛) corresponding to this probability falls within the left ex-

treme interval [�2;�1]. To do so, we can simply find the value of the cumulative

distribution function for the upper limit of this interval, i.e., �1:

F4.�1/ D 1

4Š
.�1C 2/4 D 1

1 � 2 � 3 � 4 D 0:041:

As 0:005 < 0:041, and because the cumulative distribution function is a monoton-

ically growing function, we know that the value (��˛) is less than (�1) and hence

lies in the interval [�2, �1].

We shall represent �˛ found from formula (4.2) in the following form:

�˛ D k

v

u

u

t

n
X

iD1
�2i ; (4.3)

where �i represents the range of each component error xi , (��i � xi � C �i ), and

k is a correction factor. In the case at hand, �i D 1=2 for all i D 1; : : :; n; i.e.,

�˛ D k

p
n

2
; k D 2�˛=

p
n: (4.4)

Formula (4.3) is convenient for calculations, and for this reason, we shall investigate

the dependence of the coefficient k on ˛ and n. The calculations are performed as

follows. Given ˛ and n, we find �˛ from (4.2). Next, the correction factor k is found

for the given values of ˛ and n from formula (4.3).
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Table 4.1 Values of the coefficient k for various number

of component errors and confidence probability

Number of

component

errors, n

Values of the coefficient k for

confidence probability ˛

0.90 0.95 0.99 0.9973

2 0.97 1.10 1.27 1.34

3 0.96 1.12 1.37 1.50

4 � 1.12 1.41 1.58

5 � � � 1.64

: : : : : : : : : : : : : : :

1 0.95 1.13 1.49 1.73

�These values are not calculated because critical values

�#˛ and C#˛ fall outside the through extreme intervals

of the cumulative distribution function domain

Continuing with our example of ˛ D 0:99 and n D 4, we find �˛ by substituting

these values into (4.2):

1

4Š
.��˛ C 2/4 D 0:005; �˛ D 2 � 4

p
24 � 0:005 D 1:41:

Having found �˛; we obtain from formula (4.4):

k D 2 � 1:41p
4

D 1:41:

Table 4.1 presents the values of k for other values of ˛ and n; these values were

calculated similarly to the method above. The value of k for n ! 1 was found

using the fact that by the central limit theorem, the resulting distribution can be

assumed normal.

Recalling the notation # D
PN
iD1 xi , we can obtain the standard deviation of #

as follows:

V Œ#� D V

"

n
X

iD1
xi

#

D
n
X

iD1
V Œxi �:

But, as is well known, V Œxi � D �2i =3. Therefore

V Œ#� D

i
P

iD1
�2i

3
; �Œ#� D

v

u

u

t

1

3

n
X

iD1
�2i : (4.5)

Furthermore, the mathematical expectation of # is zero because the mathematical

expectation of each xi is zero. Thus, if n ! 1, we have random quantity # with

a normal distribution N.0; �/. We can then now calculate the absolute value of the

limits of the confidence interval as �˛ D zp� , where zp is the quantile of the standard
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normal distribution N.0; 1/ corresponding to the probability p D .1 C ˛/=2 (see

above for the explanation of computing probability p). Thus, we obtain

�˛ D zpp
3

v

u

u

t

n
X

iD1
�2i (4.6)

Comparing (4.6) with (4.3), we find

k
n!1

D zpp
3
:

For example, for ˛ D 0:9973, we obtain zp D 3 and thus, when the number of

component errors is large, k D 1:73.

Considering Table 4.1, one can observe that the correction factor k has the in-

teresting property that for ˛ � 0:99, it is virtually independent of the number of

components. We can make use of this property and take for k the average values in

each column. These values of k are given in Table 4.2.

The error caused by using the average values of k, as one can see by comparing

them with the exact values given in Table 4.1, does not exceed 10% for ˛ D 0:99

and 3% for ˛ D 0:95.

The small effect of the number of components indicates indirectly that it is not

always necessary to assume, as was done above, that all �i are equal. For instance,

assume that one of the limits, �l , is gradually reduced. The effect on factor k will

be negligible because even in the extreme, when �l is reduced all the way to zero

and the l th component disappears, the values of k for (n� 1) and n components are

virtually the same. If, on the other hand, �l is gradually increased, then the factor k

will decrease.

Figure 4.2 depicts the dependence of k on the ratio c D �l=�0 for ˛ D 0:99,

where �0 is the absolute value of the remaining terms, which are assumed to be

equal. This figure can be used to find k more precisely than using Table 4.2. The

figure also shows that for every n, coefficient k is at the maximum when all �i are

equal.

Factor k can also be calculated using formulas approximating the curves pre-

sented in Fig. 4.2. For ˛ D 0:99 and n D 4, a good approximation formula is

k D 1:45 � 0:05 �l
�0
:

Formula (4.6) can be used instead of (4.3) to calculate �˛ when the number of

terms is large. However, as follows from the above-presented estimate of the error of

calculations based on formula (4.3), the accuracy cannot be increased by more than

Table 4.2 Average values for

coefficient k
˛ 0.90 0.95 0.99

k 0.95 1.10 1.40
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Fig. 4.2 Coefficient kas a function of the change in limits of one of the component errors relative

to the other component errors (the number of components n D 2; 3; 4)

10% (for ˛ D 0:99). At the same time, formula (4.3) is also useful for summing a

small number of terms. For this reason, for practical calculations, relation (4.3) is

preferable.

With a confidence probability ˛ D 0:99 and n � 4, it could turn out that our

approximate calculation of �˛ would produce �˛ >
Pn
iD1 �i . But this obviously

cannot happen. In this case, one can take

�˛ D
Xn

iD1
�i :

Of course, a more correct alternative in using the above value would be to obtain a

more accurate value of the coefficient k from the curves in Fig. 4.2.

There arises, however, the question of how well founded the confidence probabil-

ity choice ˛ D 0:99 is. In most cases, this limit does not correspond to the reliability

of the initial data, and the limit ˛ D 0:95 is more appropriate. For ˛ D 0:95,

Table 4.2 gives k D 1:1, and formula (4.3) assumes the form

�0:95V D 1:1

v

u

u

t

n
X

iD1
�2i :

In this case, �˛ <
Pn
iD1 �i always holds. To see this, first let n D 2 and assume

without loss of generality that �1 � �2. It is not difficult to verify that the inequality

�˛ D 1:1

q

�21 C �221 < .�1 C �2/ holds as long as �1=�2 > 0:11. But the last

condition is always satisfied in practice because an elementary error that is about

ten times smaller than any other elementary error can be neglected.

Consider now three components, and assume �3 � �2 � �1. Denoting T D
�3 C �2, we obtain an equivalent inequality

1:1

q

T 2 C �21 � 2�3�2 < .T C �1/:
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The term 2 �3�2 > 0, and therefore it is enough to prove the above inequality with-

out this term under the square root (indeed, if the simplified inequality holds, the

original inequality will only be stronger). Then, similar to the case with two compo-

nents we have just studied, we can show that the simplified (and hence the original)

inequality holds as long as
�1

�2 C �3
> 0:11:

It is obvious that this condition holds easier than for two components and is al-

ways satisfied in practice. On the whole, as the number of component elementary

errors increases, the inequality �˛ <
Pn
iD1 �i is satisfied only more easily. Since we

showed that this inequality is satisfied in practice even for two components, we can

conclude that it always holds in practice for an arbitrary number of components.

4.5 Methods for Precise Measurements

Methods for precise measurements attempt to eliminate systematic errors. They also

reduce random errors by means of repeating the measurement many times and sta-

tistical processing of the obtained results. The most common methods for precise

measurements are the following.

Method of replacement. This method involves replacing the quantity to be mea-

sured with a known quantity in a manner so that no changes occur in the indication

of all measuring instruments employed. Then, we can assume that the measured

quantity is equal to the known quantity that replaced it. The method of replacement

is the most accurate method of measurement.

Consider, for example, Borda’s method for weighing. The method is designed to

eliminate the systematic error from the inequality of the arms of the balance. Let

x be the measured mass, P be the mass of the balancing weights, and l1 and l2 be

the lengths of the arms of the balances. The measurement is performed as follows.

First, the body being weighed is placed in one pan of the balance and is balanced

with the help of a weight with mass T . Then,

x D l2

l1
T:

Next, the mass x is removed and a known mass P that once again balances the pans

is placed in the empty pan:

P D l2

l1
T:

As the right-hand sides of both equations are the same, the left sides are also equal

to one another, i.e., x D P , and the fact that l1 ¤ l2 has no effect on the result.

The resistance of a resistor can be measured in an analogous manner with the

help of a sensitive but inaccurate bridge and an accurate magazine of resistances.

Several other quantities can be measured analogously.
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Method of contraposition. The measurement is performed with two observations,

and it is performed so that the reason for the constant error would affect the results

of observations differently but in a known, regular fashion.

An example of this method is Gauss’s method of weighing. First, the body being

weighed is balanced by balance weights P1. Using the notation of the preceding

example, we have

x D l2

l1
P1:

Next the unknown weight is placed into the pan that previously held the balancing

weights and is again balanced by the balance weights. Now we have

x D l2

l1
P2:

We now eliminate the ratio l2=l1 from these two equalities and find

x D
p

P1P2:

The sign method of error compensation. This method involves two measurements

performed so that the constant systematic error would appear with different signs in

each measurement.

For example, consider the measurement of electromotive force (EMF) x with the

help of a DC potentiometer that has external wires with a parasitic thermo-EMF.

One measurement gives E1. Next, the polarity of the measured EMF is reversed,

the direction of the current in the potentiometer is also reversed, and once again the

measured EMF is balanced. This process gives E2. If the thermo-EMF produces

error # and E1 D x C # , then E2 D x � # . From here,

x D E1 CE2

2
:

Elimination of progressing systematic errors. The simplest and most frequent case

of a progressing error is an error that changes linearly in proportion to time. An

example of such an error is the error in the measurement of voltage with a poten-

tiometer, if the voltage of the storage battery, generating the working current, drops

appreciably.

Formally, if it is known that the working current of the potentiometer changes

linearly in time, then to eliminate the arising error, it is sufficient to perform two

observations at known times after the working current along the standard cell is

regulated. Let

E1 D x CKt1; E2 D x CKt2;

where t1 and t2 are the time intervals between regulation of the working current and

the observations, K is the coefficient of proportionality between the measurement
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error and the time, x is the voltage being measured, and E1 and E2 are the results

of the observations. From the above equations, we obtain

x D E1t2 � E2t1

t2 � t1
:

For accurate measurements, however, it is best to use a somewhat more compli-

cated method of symmetric observations. In this method, several observations are

performed equally separated in time and then the arithmetic means of the pairs of

symmetric (i.e., the first and last, the second and the second-to-last, etc.) observa-

tions are calculated. Theoretically, with linearly changing systematic errors, these

averages must be equal, which makes it possible to control the course of the experi-

ment and to eliminate these errors.

4.6 Accuracy of Single Measurements Using Measuring

Instruments Under Reference Conditions

The great majority of measuring instruments were created for single measurements.

Some of these instruments are so simple that the inaccuracy of corresponding mea-

surements can be estimated without calculation. For example, the inaccuracy of the

length measurement performed with a ruler is determined simply by rounding the

readings on the ruler. Also, calculating the inaccuracy is not necessary when it is

known beforehand that the accuracy of that measurement will be “good enough” for

the goal of this measurement. This includes most of the household measurements,

such as measuring the voltage of a car battery with an industrial tester or weighing

the ingredients for a cooking recipe. In other measurements, the inaccuracy must be

calculated.

Under reference conditions, the inaccuracy of single measurement is determined

by the limits of the intrinsic error: there are no additional errors by definition. The

limits of the intrinsic errors of measuring instruments are known; they are listed

in the documentation provided by the manufacturers or in the certificates from the

calibration laboratories. The problem is only to recalculate these limits, if necessary,

for a given indication of the instrument, i.e., for the measurement result.

If the limits of the intrinsic error are given in the form of absolute or relative

errors and are the same for the whole range of the instrument, then recalculations

are not required and these limits are the limits of the given elementary error. But

often the limits of intrinsic error of a measuring instrument are given in the form

of a fiducial error, i.e., as a percentage of the fiducial value. The conversion into

relative error is then made using the formula

ıin D 

xN

x
: (4.7)

where ıin is the limit of the intrinsic error in relative form, 
 is the limit of the

fiducial error, xN is the fiducial value, and x is the reading of the instrument in the
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corresponding units. Conversion into the form of absolute errors is done according

to the formula
�in D ıinx D 
xN : (4.8)

It was mentioned in Sect. 2.3 that the fiducial errors are expressed in percents. There-

fore, to obtain�in in proper form of absolute errors, it must be divided by 100.

When the estimate of inaccuracy of a single measurement is obtained using the

limits of intrinsic errors listed in the manufacturer’s documentation, the estimate

remains correct even if the instrument used in the measurement is replaced with

another instrument of the same type. Indeed, the limits of the intrinsic error listed in

the manufacturer’s documentation apply to all instruments of this type. Recall that

measurement inaccuracy estimates obtained from such data were termed universal

in Chap. 1. In contrast, the estimates obtained using data from a certificate of a

calibration laboratory that applies to a specific instrument were called individual.

In some cases, a measurement error may arise from the interaction between the

object of study and the measuring instrument employed. For instance, when mea-

suring an electric voltage with an indicating voltmeter, the voltmeter reacts on the

strength of the electric current it consumes, and as it was mentioned above in

Sect. 4.2, its indication shows not the voltage being measured but the voltage on

the voltmeter’s terminals. This creates a systematic error, which depends on the rel-

ative values of the input impedance of the voltmeter and the internal impedance of

the source of the voltage being measured. Most often, this error is negligibly small.

But in some cases it needs to be taken into account and be compensated with a cor-

rection. Then only the error of the correction will remain as a contributing factor in

the inaccuracy of the measurement. We consider in detail an example of this kind of

error in Sect. 8.1.

We shall now consider several examples of calculating the universal estimates of

the inaccuracy of single measurements.

1. Industrial tester WV-531A (RCA). This is a multifunctional instrument, and its

accuracy is different for different measurement ranges. Let us assume, for ex-

ample, that we need to measure the AC voltage using the 150 V range. The

manufacturer specification says that the instrument’s inaccuracy in this range for

AC voltage measurements is ˙4% of the full-scale value.

So, we have here the limits of fiducial error 
 D ˙4% and the fiducial value

xN D 150V. Assume the instrument indication in our measurement was 117.5 V.

In accordance with (4.7), the limits of error of this measurement result are

ı D ˙4% � 150

117
D ˙5%:

In the form of absolute error, these limits are

� D 4% � 150
100%

D ˙6V:

Thus, the result of this measurement must be presented as

118V ˙ 5% or .118˙ 6/V:
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2. Fluke 5700 A [26]. Assume we need to perform a measurement at the scale range

of 11 V. The limits of intrinsic error at this range are ˙.5 ppm of output C4�V).

If the indication of the instrument in our measurement is 10.000463 V, then the

limits of error of this measurement will be

� D ˙.10:000463� 5 � 10�6V C 4�V/ D ˙54�V:

Since this can be considered a precise measurement, we can retain both sig-

nificant digits in the inaccuracy above and present the measurement result as

(10:000463˙ 0:000054) V.

3. Consider the digital multirange voltmeter example from Chap. 2 with specifica-

tions listed again below:

Time after

calibration 24 h 90 days 12 months

Temperature 23˙ 1ıC 23˙ 5ıC 23˙ 5ıC

10.00000 V – – ˙.35ppm

C5ppm/

1000.000 V ˙.20ppm

C6ppm/

˙.35ppm

C10ppm/

˙.45ppm

C10ppm/

We refer the reader to Chap. 2 for the clarifications on the meaning of the entries in

this table. We will only recall here that when the error of an instrument is listed using

two terms as in this table, the first term expresses the error relative to the instrument

indication, while the second term, even though it is expressed in the relative form,

is not a relative error. As explained in Chap. 2, this term is a fiducial error and is

expressed relative to the value that corresponds to the end of the measurement range

of the instrument; this error is therefore the same for any indication in the entire

range even when recalculated to the absolute form.

Assume the voltmeter is used to measure 500.0 V immediately after calibration

and then again 12 months later, both times under reference conditions. Using the

above specification (in particular, the columns corresponding to 24 h and 12 months

since calibration), we shall evaluate the limits of absolute measurement error in

both cases. Note that since the instrument is used under reference condition, the last

column of the specification is not considered.

For the first measurement, we have:

�1 D ˙.500 � 20 � 10�6 C 1000� 6 � 10�6/V D ˙16mV:

After 12 months, the limits of error become:

�2 D ˙.500 � 45 � 10�6 C 1000 � 10 � 10�6/V D ˙32:5mV:
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4.7 Accuracy of Single Measurements Using Measuring

Instruments Under Rated Conditions

When measurement is performed under rated operating conditions, the measurement

result, as before, is given by the instrument indication. However, the calculation

of the measurement inaccuracy turns into a more complex problem. Solving this

problem starts with estimating the elementary errors of the measurement.

It is difficult to formulate a single method for estimating elementary errors,

because these errors are by their nature extremely diverse. The general recommen-

dations for solving this problem can nonetheless be formulated.

To estimate elementary measurement errors, it is first necessary to determine

their possible sources. If it is known that some corrections will be (or have been)

introduced, then the errors in determining the corrections must be included among

the elementary errors.

All elementary measurement errors must be estimated in the same manner, i.e.,

in the form of either absolute or relative errors. Relative errors are usually more con-

venient for a posteriori error estimation, and absolute errors are more convenient for

a priori error estimation. However, the tradition of each field of measurement should

be kept in mind. Thus, for lineal–angular measurement, absolute errors are typically

used, whereas for measurements of electromagnetic quantities, relative errors are

preferred.

An unavoidable elementary error in any measurement is the intrinsic error of the

measuring instrument. We presented the methodology of recalculating the intrinsic

error of the instrument into the elementary error of the measurement in Sect. 4.6.

Additionally, the environmental conditions, characterized by the temperature,

pressure, humidity, vibrations, and so on, also affect the result of a measurement.

Each influence quantity, in principle, engenders its elementary error. To estimate

it, it is first necessary to estimate the possible value of the corresponding influence

quantity and then compare it with the limits of the range of values of this quantity

concerning the reference condition. If the influence quantity falls outside the limits

of reference values, then it causes a corresponding additional error; this error is also

an elementary error.

Consider an error due to the temperature. Let the temperature of the medium

exceed its reference values by �T . If, according to the rated operating conditions,

the limit of the additional error due to �T is the same for an interval T1 � �T �
T2, then this limit is the limit of the given additional error. If, however, for this

interval, the upper bound of the temperature coefficient is given, then the limits of

temperature error are calculated according to the formula

ıT D ˙!T�T;

where ıT is the limit of additional temperature error in the relative form and wT is

the upper bound of the absolute value of the temperature coefficient of the instru-

ment expressed as the percentage of the instrument indication.
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In general, for influence quantity i , the dependence of the limit of additional error

ıi or�i on the deviations of the influence quantity outside the limits of its reference

values can be given in the form of a graph or expressed analytically. In either case,

the manufacturer’s specifications of the instrument sometimes provide the influence

function in the form of two components – the nominal influence function and an

admissible deviation from it. This form allows one to take into account the deviation

from the reference range by the corresponding correction to the measurement result.

In the process, the elementary error decreases significantly, even if the influence

function is specified with a large margin of error.

Suppose, for example, instead of the upper bound of the temperature coefficient

wT , the temperature coefficient is listed in the form w0
T D .1˙ "/wT;N , where

wT;N is the nominal temperature coefficient and " is the admissible deviation from

it, expressed in the relative form as a fraction of wT;N . For temperature deviation

�T from the upper limit of reference range, T , the additional error will be

ıT D wT;N�T ˙ "wT;N�T: (4.9)

Because the first term in the above equation reflects a deterministic nominal depen-

dency, we can account for it with the help of the correction

c D �wT;N�T � b;

where b is the instrument indication. There then remains the temperature error

ı0
T D ˙"wT;N�T: (4.10)

Even if the influence function is listed comparatively inaccurately, for example

" D 0:2 .20%/, the temperature error still decreases greatly, by a factor of 4–6 in

this case:
ıT

ı0
T

D 1˙ 0:2

0:2
D 4 or 6:

Finally, one should keep in mind that if the influence quantity itself is estimated with

an appreciable error, then this error must also be taken into account when calculating

the corresponding additional error.

In many cases, the input signal in a measurement is a function of time and

therefore the measurement result may have a dynamic error. This error is also an

elementary error that needs to be taken into account. Unfortunately, although the

treatment of dynamic elementary errors has been discussed in research literature

(e.g., [27]), the proposed methods are not mature enough to include here.

Once the errors of a single measurement have been analyzed, we have an estimate

of the limits of all elementary errors of the measurement. We now proceed to the

problem of synthesis, that is, the calculation of the overall inaccuracy of the mea-

surement. In general, this calculation can be done using the following step-by-step

procedure.

1. Identify all possible sources of elementary errors. The list of elementary errors

always includes the intrinsic error of instrument involved and additional errors
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due to influence quantities whose values fall outside the limits of the reference

condition. Also, the interaction between that instrument and the object whose

parameter is being measured, the discrepancy between the object and its model,

and so on, must be taken into consideration.

2. Estimate the limits of all elementary errors. General recommendations to accom-

plish this step were described earlier. If point estimates have been obtained for

some elementary errors, then one must apply the corresponding corrections to

the instrument indication. In this case, the inaccuracy of the corrections must be

taken into account along with the other elementary errors. We gave an exam-

ple of a correction and of accounting for its inaccuracy earlier in this section,

when considering the nominal temperature coefficient of an instrument. Another

example can be found in Sect. 8.1.

3. Express the estimates of all elementary errors in the same form, either absolute

or relative. Note that, as discussed in Sect. 4.6, the intrinsic error is often ex-

pressed as fiducial error. In this case, the fiducial error must be recalculated to

the absolute or relative error of the measuring instrument reading in the actual

measurement in question.

4. Calculate the inaccuracy of the measurement result. The procedure for this cal-

culation is described next.

When one comes to step 4, all elementary errors have been estimated with their lim-

its. Further calculations will require us to distinguish conditionally constant errors,

absolute constant errors, and random errors. In single measurements, the vast major-

ity of elementary errors are conditionally constant errors. Random errors are usually

insignificant and can be accounted for as part of those conditionally constant errors

in which they manifest themselves. Absolute constant errors occur infrequently.

We will begin with the conditionally constant errors. Among them, let �0 be

the intrinsic error of the measuring instrument and �i , i D 1; : : : ; m, be the other

elementary errors.

We now need to combine, or “sum up” these errors:

� D �0 C
m
X

iD1
�i ; (4.11)

where � is the overall conditionally constant error. We know the limits �0 and �i of

the elementary errors:

j�0j � �0 and j�i j � �i :

Combining the elementary errors is often done by summing up their limits arith-

metically. This is obviously the safest estimate, reflecting the worst-case scenario

that all conditionally constant errors simultaneously reached their upper or lower

limits. However, unlike in the case of absolute constant errors (where the errors are

what they are and thus the question about the practicality of a particular combination

of error values is invalid), the above scenario is unacceptable in the case of condi-

tionally constant errors. A more realistic solution to this problem is provided by a

probabilistic approach. To this end, we can utilize the mathematical model that we
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accepted for conditionally constant errors, which is to consider them as random vari-

ables uniformly distributed within their limits. If we in addition assume that these

random variables are independent,1 we can apply the discussion from Sect. 4.4 to

calculate the measurement uncertainty as follows.

According to Sect. 4.4, the measurement uncertainty can be calculated using sim-

ple formula (4.3), which in our case is more convenient to rewrite to form:

u˛ D k˛

v

u

u

t�20 C
m
X

iD1
�2i : (4.12)

The analysis of Sect. 4.4 showed that for the most common confidence probability

˛ D 0:95, coefficient k0:95 D 1:1 and, remarkably, its value is independent of the

number of componentsn D mC1. The inaccuracy of using (4.12) with this constant

value for k is less then 3%. For ˛ D 0:99, if we assume k0:99 D 1:4, the inaccuracy

of the calculation using (4.12) ranges from +10% for n D 2 to �6% for n tending

to infinity.

One can increase the accuracy of this calculation in the last case by utilizing

Table 4.1 or the graph on Fig. 4.2 to select the specific value of coefficient k for

the measurement at hand. However, when the number of component errors is five

or higher, it is justified in practice (and more convenient) to follow the analysis

from Sect. 4.4 for the case of a large number of variables, which assumes that the

combined variable has a normal distribution.

According to (4.5), the variance �2 of the resulting error can be obtained as

�2 D �20=3C 1

3

m
X

iD1
�2I : (4.13)

Knowing the variance and the shape of the distribution function, one can construct

the confidence interval that covers the true value of the measurand with a given

confidence probability ˛, i.e., to calculate the uncertainty of the measurement result

as follows:

u˛ D zp�; (4.14)

where zp is the quantile of the standard normal distribution for probability p D
.1C˛/
2

. For ˛ D 0:95, (4.14) brings a well-known result u0:95 D 1:96, and for

˛ D 0:99 u0:99 D 2:58� .

We would like to conclude the discussion of combining conditionally constant

errors with an important practical recommendation. As we mentioned in Sect. 4.4,

when the number of component errors is particularly small, i.e., four or less, and

˛ � 0:99, it is possible that the probabilistically combined error could produce

an exaggerated estimate, which can even exceed the arithmetic sum of the compo-

nent errors. Thus, for small number of components, it is advisable to combine the

1 This assumption in fact follows naturally from the way instrument’s additional errors are rated

separately for individual influence quantities. However, further discussion on the validity of this

assumption is outside the scope of this book.
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elementary errors in both ways, arithmetically and probabilistically, and use as the

result the smaller of the two uncertainty values produced. Note that this does not

contradict the principle of upper-bound error estimates because the error can never

exceed the arithmetic sum of its components.

Now consider the case where the measurement also has an absolutely constant

error, in addition to conditionally constant errors we just examined. As we already

mentioned, absolutely constant errors are relatively rare. In any case, one instrument

can introduce only one absolutely constant error component to the overall mea-

surement inaccuracy. If the absolutely constant error has limits H , then the overall

measurement uncertainty will be

Ut D H C u˛:

Because absolutely constant errors are the same in all instruments of the same type,

these errors cannot be described using a probabilistic model. Thus, we have no

choice but to add the limits of these errors arithmetically to the probabilistic sum

of the conditionally constant errors.

It could happen that m of the n conditionally constant errors have asymmetric

limits:

�jl � #j � �jr; j D 1; : : : ; m;

where �jl is the left-hand limit and �jr is the right-hand limit of component error

j . The remaining .n �m/ conditionally constant errors are symmetric:

��j � #j � �j ; j D mC 1; : : : ; n:

For calculations, asymmetric limits must be represented as symmetric limits around

center aj , where

aj D
�jl C �jr

2
:

The limits of the interval that is symmetric relative to aj are calculated according to

the formula

�j D �jr � �jl

2
:

Note that the above calculation cannot be used to transform asymmetric errors into

symmetric by introducing corrections into the measurement results: The error esti-

mates are too unreliable to change the measurement result.

Next, the limits of the overall conditionally constant error must be calculated

from the following formulas:

�r;˛ D
m
X

jD1
aj C k

v

u

u

t

m
X

jD1
�2j C

n
X

jDmC1
�2j ;

�l;˛ D
m
X

jD1
aj � k

v

u

u

t

m
X

jD1
�2j C

n
X

jDmC1
�2j : (4.15)
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Table 4.3 A fragment of specification of a multirange voltmeter

Time after

calibration 24 h 90 days 12 months

Temperature

coefficient

Temperature 23˙ 1ıC 23˙ 5ıC 23˙ 5ıC 0–18& 28–55ıC

per 1ıC

10.00000 V — — ˙.35 ppm

C5 ppm/

˙.5 ppm

C1 ppm/

1000.000 V ˙.20 ppm

C6 ppm/

˙.35 ppm

C10 ppm/

˙.45 ppm

C10 ppm/

˙.5 ppm

C1 ppm/

(We do not combine the two sums under square roots above to stress that one sum

contains originally symmetric errors and the other – the errors that were originally

asymmetric but which have been recomputed to become symmetric.) The absolutely

constant elementary error must now be taken into account, and it too can have asym-

metric limits. Again, these limits must be summed arithmetically with the limits �r;˛
and �l;˛:

Ur;˛ D Hr C �r;˛

Ul;˛ D Hl C �l;˛ (4.16)

As an example of estimating the inaccuracy of a single measurement under rated

conditions, consider the measurement of voltage using, again, a digital multivolt-

meter whose errors are rated in Table 4.3. Assume it is known (from other parts of

the documentation) that this instrument’s indication has six and a half digits: if the

seventh, invisible, digit is less than 5, then the sixth digit will not increase whereas if

the seventh digit is 5 or greater, the sixth digit will increase by 1. Thus, the random

rounding error is limited to half the value of the sixth digit.

Assume the measurement occurs 12 months after the last calibration of the instru-

ment and the voltmeter is used in the range of 10 V. Assume further the voltmeter is

mounted in an automated test rack with internal temperature of 32ıC and is indicat-

ing 5.00135 V. We need to calculate the uncertainty of this measurement.

Using the 12-month specifications, the limits of the intrinsic error of this meter

are .5:00135V � 35� 10�6 C 10V � 5� 10�6/ D 0:225mV. Since the instrument

works in temperature outside the reference conditions, the temperature coefficient,

according to the last column, is .5:0135V � 5� 10�6 C 10V � 1� 10�6/ per 1ıC,

or 35 � 10�6V=ıC. Thus, with the operating condition being 4ıC over 28ıC, the

additional error is 4 � 35 � 10�6 D 0:14mV. The rounding error does not exceed

5 � 10�6V D 0:005mV.

We now combine the elementary errors in two ways. The arithmetic sum of the

obtained limits is ˙.0:225 C 0:14 C 0:005/mV D ˙0:37mV. Probabilistic sum-

mation according to (4.3) with ˛ D 0:95 gives ˙1:1 � 0:265mV D ˙0:29mV.

Because the probabilistic result is smaller, we should take as uncertainty of the mea-

surement ˙0:29mV or, after rounding, ˙0:3mV.

Another example of estimating the inaccuracy of a single measurement under

rated condition is given in Sect. 8.1.
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4.8 Accuracy of Multiple Measurements

Multiple measurements are a classic object of mathematical statistics and the theory

of measurement errors. Under certain restrictions on the starting data, mathemat-

ical statistics give elegant methods for analyzing observations and for estimating

measurement errors. Unfortunately, the restrictions required by mathematics are not

often satisfied in practice. Then these methods cannot be used, and practical meth-

ods for solving the problems must be developed. But even in this case, the methods

of mathematical statistics provide a point of reference and a theoretical foundation.

We previously argued for a position that a multiple direct measurement is in

essence a series of repeated single measurements. From this perspective, the in-

accuracy of a single measurement comes into fore, and the need to account for it

becomes obvious. Thus, our problem is to find an estimate of the measured quantity

and the inaccuracy of this estimate. Our starting data comprises inaccuracy of the

underlying single measurement, �0 or u0, and the series of the result of repeated

single measurements fxig, i D 1; : : : ; n.

Usually, the estimate of the measurand is taken as the arithmetic mean of the

results of the repeated measurement. As noted previously (Sect. 3.2), this gives an

unbiased, consistent, and efficient estimate of the true value of the measured quan-

tity only if the observations, or equivalently the measurement errors, have a normal

distribution. In fact, irrespective of the form of the distribution of the measurement

errors, the arithmetic mean has three important properties:

1. The sum of the deviations from the arithmetic mean is equal to 0. Let xi ; : : : ; xn
be a group of observations whose arithmetic mean is Nx. We construct the differ-

ences xi � Nx for all i D 1; : : : ; n and find their sum:

n
X

iD1
.xi � Nx/ D

n
X

iD1
xi �

n
X

iD1
Nx:

As both
Pn
iD1 xi D n Nx and

Pn
iD1 Nx D n Nx,

n
X

iD1
.xi � Nx/ D 0:

This property of the arithmetic mean can be used to check the calculations.

2. The sum of the squares of the deviations from the arithmetic mean is smaller

than the sum of the squares of the deviations from any other estimate QA of true

value A. Consider the function

Q D
n
X

iD1
.xi � QA/2:
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We shall find QA that minimizesQ. To this end, we find

dQ

d QA
D �2

n
X

iD1
.xi � QA/

and set it to zero; hence, we obtain

n
X

iD1
.xi � QA/ D 0;

n
X

iD1
xi D n QA; and QA D Nx D

n
P

iD1
xi

n
:

As dQ=d QA < 0 if QA < x and dQ=d QA < 0 if QA > x, the value QA D Nx minimizes

functionQ.

3. According to the central limit theorem, the sum of independent random quanti-

ties, regardless of their distribution functions, tends to a normal distribution as

the number of the random quantities grows to infinity. Equivalently, the arith-

metic mean of independent observations tends to a normal distribution when the

number of observations grows to infinity. In practice, a relatively few random

quantities lead to a sum that can be viewed as normally distributed. In particular,

in the context of measurement accuracy, one can consider the sum – or the arith-

metic mean – of five random quantities with uniform distribution function to be

normally distributed.

A drawback of the arithmetic mean is its high sensitivity to outlying observations.

Another popular estimate of the measurand is the median. The median is less sensi-

tive to the outliers, but it is also less efficient: its variance exceeds the variance of the

arithmetic mean. Indeed, letm� be the sample median andA be the true value of the

measured quantity. It is known [19] that m� has asymptotically normal distribution

with mathematical expectation A and standard deviation

� .m�/ D
p

�=2 � � . Nx/ D 1:25� . Nx/ ;

where � . Nx/ is standard deviation of the arithmetic mean. Since the median is a less-

efficient estimate, one needs more data to obtain the same confidence interval for

the measurement result using the median than arithmetic mean.

Although the arithmetic mean produces the minimum sum of the squares of the

deviations, this only means that it is the most efficient estimate of the measured

quantity in the class of estimates that are a linear function of the observations. This

estimate becomes most efficient among all possible estimates if the errors are dis-

tributed normally. For other distributions, as pointed out in Chap. 3, estimates exist

that are more efficient.

From now on, we will assume that we use the arithmetic mean for the estimate

of the measured quantity:

QA D

n
P

iD1
xi

n
: (4.17)
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Because of random errors, the measurement results are also random quantities; if

another series of measurements is performed, then the new arithmetic mean obtained

will differ somewhat from the previously found estimate. Thus, the arithmetic mean

of a set of measurement results is a random quantity. The spread of the arithmetic

means is characterized either by the variance of the arithmetic means or by the

standard deviation. In accordance with (3.12) and (3.16), they are estimated from

the experimental data as follows:

S2Nx D 1

n .n � 1/

n
X

iD1
.xi � Nx/2 or S Nx D

v

u

u

u

t

n
P

iD1
.xi � Nx/2

n.n � 1/ : (4.18)

In addition, it is possible to construct the confidence interval for A for confidence

probability ˛, which is determined by the inequalities

NA�‰˛ � A � QAC‰˛;

where ‰˛ D tqS Nx, and tq is the percentile of Student’s distribution for the signifi-

cance level q D 1 � ˛ and the degree of freedom � D n � 1 (see Table A.2). Thus,

the random error  has the limits ˙‰˛ with the confidence probability ˛.

We should note that the random error of the single measurement that forms the

basis of the multiple measurement is also included into the random error of the

multiple measurement. For this reason, the random error of the single measurement

is accounted for twice. It would have been better to deduct this error from the error of

the multiple measurement, but that would require knowing the random component

of the measuring instrument, besides its intrinsic error.

The situation is different in the case of systematic errors. This error of the multi-

ple measurement is the same as the systematic error of its base single measurement.

In the general form, the error of a measurement result has three components:

� D �C # C  ;

where � is the absolutely constant error, # is the conditionally constant error, and  

is the random error. Therefore, the variance of measurement result is

V Œ�� D V Œ#�C V Œ �:

Note that V Œ�� has only two terms because V Œ�� D 0. The absolutely and condi-

tionally constant errors are determined by the error of the base single measurement,

while the random error depends also on the instability of measurement conditions.

Estimates of V Œ#� and V Œ � can be found using formulas (4.5) and (4.18). De-

note them S2
#

and S2Nx . Denote also the estimate of the combined variance S2c . Then

the combined standard deviation Sc is

Sc D
q

S2
#

C S2Nx : (4.19)



4.8 Accuracy of Multiple Measurements 131

Given Sc , the uncertainty of the measurement result could be calculated from the

formula

uc D tcSc (4.20)

if the coefficient tc was known; unfortunately, this coefficient is unknown. We will

now consider how to estimate it.

As the initial data, i.e., the data on the components of the uncertainty are not

known accurately, an approximate estimate of the coefficient tc can be used. In [48],

the following formula was proposed for this purpose:

tc D ‰˛ C �˛

S Nx C S#
;

where �˛ is the confidence interval boundary of the single measurement error and

‰˛ is the confidence limit of the random error  of the multiple measurement (de-

termined using Student’s distribution as described earlier).

This formula was constructed based on the following considerations. The coef-

ficient tq , determining the ratio of the confidence limit and the standard deviation

of the random error, is determined by Student’s distribution and is known. Given

estimates for the confidence limit �˛ and standard deviation S# of the conditionally

constant error, we can introduce an analogous coefficient t# as their ratio:

t# D �˛=S# (4.21)

It is natural to assume that the coefficient sought tc is some function of tq and t# ,

and that the computed tc corresponds to the same confidence probability. If we take

a weighted average of tq and t# for the weights S#=.S Nx C S#/ and S Nx=.S Nx C S#/,

respectively, for this function, we obtain the proposed formula:

tc
tqS Nx C t#S#

S Nx C S#
D ‰˛ C �˛

S Nx C S#
: (4.22)

If the base single measurements are performed under rated conditions for the used

measuring instrument, then �˛ D u˛. Recall that u˛ D k˛

s

n
P

iD1
�2i , and k0:95 � 1:1,

and k0:99 � 1:4 for n < 5. More accurate values of this coefficient can be found

using Table 4.1 and Fig. 4.2. For n > 5, one can calculate u˛ using (4.6).

Under reference conditions, �˛ is determined by the limits of error �0 of the

single measurement and the given confidence probability ˛ according to a method

illustrated in Fig. 4.3. The figure shows the CDF of error uniformly distributed in

[��0, C�0]. The confidence limit for confidence probability ˛ is the quantile �˛
for probability p D 1 – .1 � ˛/=2 D .1 C ˛/=2. We can compute this quantile by

considering two similar triangles highlighted in the figure with dotted lines, one with

a side of size 2�0 and the other with the corresponding side of size .�0 C �˛/. From
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Fig. 4.3 Computing limits of confidence interval for uniformly distributed random error

the similarity of the triangles follows the equality 1=.2�0/ D .1C ˛/=2.�0 C �˛/,

which gives

�˛ D ˛�0: (4.23)

To use formula (4.22), its accuracy must be estimated. The extreme cases are those

when the conditionally constant systematic error # has a normal or uniform dis-

tribution. The distribution of the random error ‰˛ of the arithmetic mean can be

assumed to be asymptotically normal.

If both conditionally constant and random errors have a normal distribution, then

tq D t# , and as follows from formula (4.22), tc D tq . As the composition of normal

distributions gives a normal distribution, the obtained value of tc is exact.

If the conditionally constant error is uniformly distributed, the results of calcu-

lations based on the approximate formula (4.22) must be compared with the results

obtained from the exactly constructed composition of normal and uniform distri-

butions. The expression for the distribution density of the composition of centered

uniform and normal distributions is known from the theory of probability:

f .z/ D 1

2h

h
Z

�h

1

�
p
2�
e�.z�y/2=2�2

dy; (4.24)

where h is equal to one-half the interval in which the uniform random quantity is

distributed and � is the standard deviation of the normal random quantity.

The variance of this distribution is

�2c D �2 C h2

3
D �2

"

1C 1

3

�

h

�

�2
#

: (4.25)

The above distribution depends on both the ratio .h=�/ and � . We will analyze it

for � D 1. In addition to simplifying the calculations, this will make the composed
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distribution universal, in the same way the standard normal distribution is universal.

Transforming the density to the probability distribution and setting � D 1, we obtain

F .z/
z>0

D 0:5C 1

2h
p
2�

z
Z

0

h
Z

�h

e�.v�y/2=2dydv: (4.26)

The variance of this distribution becomes

�2c;1 D 1C 1

3

�

h

�

�2

: (4.27)

The starting distributions are symmetric relative to 0. Hence, the resulting dis-

tribution is also symmetric. For this reason, the limits of the confidence interval

corresponding to the probability ˛ are quantile zp of distribution (4.26) for proba-

bility p and quantile z1�p for probability .1 � p/, where p D .1 � ˛/=2. Indeed,

jzpj D jz1�pj because the distribution is symmetrical, and the amount of probability

covered by this interval is 1–2p D ˛. Because confidence probability ˛ is always

taken to be more than 0.5, p < 0:5 and therefore quantile zp gives the left limit and

z1�p the right limit of the confidence interval.

Table 4.4 gives values of z1�p calculated using formula (4.26) for confidence

probability ˛ D 0:90, 0.95, and 0.99. As mentioned above, z1�p represents the

exact confidence limit of the combined error that corresponds to �c;1. If we instead

compute the overall uncertainty uc;1 for the same �c;1 and confidence probability

using formulas (4.22) and (4.20), the relative error introduced by the use of the

approximate formula (4.22) will be

ı D uc;1 � z1�p
z1�p

:

Although the above confidence limits were calculated for � D 1, it is easy to re-

compute them for other values of � . Since the distribution functions for � ¤ 1 and

� D 1 differ only in their scaling factor �c on the abscise axis, recomputation can be

done in a way completely analogous to how one uses quantiles of the standard nor-

mal distribution with � D 1 to obtain quantiles of normal distributions with � ¤ 1.

Specifically,

z1�p;� D �cz1�p ; (4.28)

Table 4.4 Quantiles for the composition of centered normal and uniform distributions

h=� 0.50 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10

z0:95 .˛ D 0:90/ 1.71 1.90 2.49 3.22 4.00 4.81 5.65 7.34 9.10

z0:975 .˛ D 0:95/ 2.04 2.25 2.90 3.67 4.49 5.34 6.22 8.00 9.81

z0:995 .˛ D 0:99/ 2.68 2.94 3.66 4.49 5.36 6.26 7.17 9.02 10.90
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where z1�p;� is the quantile of the combined distribution for an arbitrary � . For

example, consider a measurement where S Nx D 2 and �0 D 2. This corresponds to

� D 2; h D 2 and �c D
q

4C 4
3

D 2:31. Thus, h=� D 1. If we take confidence

probability 0.9, we obtain from Table 4.4 the quantile z1�p D 1:90 and the quantile

z1�p;� D 4:4.

Again, the quantile z1�p;� represents the precise value of the confidence limit

of the combined error having variance �2c for confidence probability ˛. Then, the

inaccuracy of the approximate confidence limit uc in the case of an arbitrary �

becomes:

ı D uc � �cz1�p
�cz1�p

D uc � z1�p;�
z1�p;�

: (4.29)

To estimate the inaccuracy of formula (4.22) we should contrast the empirical

formula (4.20) with the corresponding theoretical formula z1�p;� D tr�c . The com-

parison should be done for Sc D �c , bringing (4.20) to the form uc D tc�c . Then,

by dividing the nominator and denominator of the right-hand side of (4.29) by �c ,

we obtain

ı D tc � tr

tr
:

Thus, we can analyze the accuracy of (4.22) by considering the accuracy of coeffi-

cient tc relative to its “true value” tr . We proceed with this analysis next.

We can compute a series of values of coefficient tr from the data in Table 4.4.

These values are presented in Table 4.5, which also gives the corresponding values

of �c;1.

We shall now compute coefficient tc using the approximate formula (4.22). The

limits of the confidence interval of the conditionally constant error, determined

based on the uniform distribution in accordance to (4.23), give �˛ . Because in this

case h D �0, we have
�˛ D ˛h:

The limit of the confidence interval for the normal distribution with the same confi-

dence probability will be

‰˛ D z 1C˛
2
�;

Table 4.5 Values of the combined standard deviation �c and of the coefficient tr as a

function of the parameters of the normal and uniform distributions

h=� 0.5 1 2 3 4 5 6 8 10

�c;1 1.04 1.15 1.53 2.00 2.52 3.06 3.51 4.72 5.85

tr .˛ D 0:90/ 1.65 1.64 1.63 1.61 1.59 1.58 1.57 1.56 1.55

tr .˛ D 0:95/ 1.96 1.95 1.90 1.84 1.78 1.75 1.72 1.69 1.67

tr .˛ D 0:99/ 2.57 2.54 2.40 2.24 2.13 2.05 1.99 1.91 1.86
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Table 4.6 Values of the coefficient tc as a function of the parameters of the normal

and uniform distributions

h=� 0.5 1 2 3 4 5 6 8 10

t1c .˛ D 0:90/ 1.63 1.61 1.60 1.59 1.58 1.58 1.58 1.57 1.57

t2c .˛ D 0:95/ 1.89 1.84 1.79 1.76 1.74 1.73 1.72 1.70 1.69

t3c .˛ D 0:99/ 2.38 2.26 2.11 2.03 1.97 1.94 1.91 1.87 1.84

Table 4.7 Deviations of coefficient tc from tr (in %)

h=� 0.5 1 2 3 4 5 6 8 10

ı1 .˛ D 0:90/ �1.2 �1.9 �1.8 �1.1 �0.6 0.0 0.8 0.6 1.2

ı2 .˛ D 0:95/ �3.6 �5.5 �5.7 �4.1 �2.2 �1.3 0.0 0.5 1.0

ı3 .˛ D 0:99/ �7.4 �11.0 �12.1 �9.4 �7.3 �5.5 �4.0 �2.2 �1.1

where z 1C˛
2

is the quantile of the standard normal distribution for probability 1C˛
2

.

Expression (4.22) assumes the form

tc D
z 1C˛

2
� C ˛h

� C h=
p
3

D
z 1C˛

2
C ˛ h

�

1C h
�

p
3
:

The values of tc , calculated for the same ratios h=� and confidence probabilities as

were used for calculating tr , are presented in Table 4.6.

We now can compute the errors ı calculated based on the data given in Tables 4.5

and 4.6; these errors are summarized in Table 4.7.

Overall, as Table 4.7 shows, the errors from using the approximate formula are in

all cases negative and their absolute magnitude does not exceed 12% for ˛ D 0:99,

6% for ˛ D 0:95 and 2% for ˛ D 0:90. Further, these errors are the highest when h

is between � and 2� ; they decrease for h less than � or greater than 2� .

Observe that Table 4.7 lists the inaccuracy of tc in the extreme case when this

inaccuracy is the highest. Moreover, for this case, when one of the component er-

rors is uniformly and the other normally distributed, we have obtained the exact

solution, so that the case with the highest inaccuracy can be avoided by using tr
from Table 4.5. But even the worst-case error is acceptable. We would like to repeat

that these errors decrease as the distribution of the systematic errors approaches the

normal distribution.

In summary, the above scheme presents a general method for estimating the un-

certainty of a measurement that contains both random and systematic components.

Our analysis (with results summarized in Table 4.7) shows that even in the worst

case, when the conditionally constant systematic error is uniformly distributed, this

scheme is sufficiently accurate to be used in practice.
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4.9 Comparison of Different Methods for Combining

Systematic and Random Errors

The above method for combining systematic and random errors is not the only

method that has been proposed. In this section, we describe four other methods,

compare all the methods on a specific example, and discuss the applicability of

these methods and other issues.

1. The US National Institute of Standards and Technology (NIST) in publication

[20] presents the following formula (reformulated according to our notation) for

combining the component errors (this formula is also mentioned in [6]):

u D � C‰˛; (4.30)

where � D
q

Pm
iD1 �

2
i if f�ig i D 1; : : :; m, are independent systematic compo-

nents, and � D
Pm
iD1 �i if they are dependent, and ‰˛ D tqS Nx.

This method is justified when the absolutely constant elementary errors predom-

inate the overall error. This is often the case in measurements performed in the

context of checking and calibrating measuring instruments, which is an area of a

particular interest to NIST as an organization. But this method cannot be applied to

arbitrary measurements, because in most cases, it results in overestimation of the

uncertainty.

It is necessary to note that NIST issued in l994 Guidelines where the combined

uncertainty is calculated in accordance with the method from GUM [2] (which we

consider shortly) and not based on formula (4.30).

2. The standard reference [6] and the manual [14] preceding it give two different

formulas for calculating the uncertainties with confidence probabilities of 0.95

and 0.99:

uc;0:99 D � C t0:95S Nx; uc;0:95 D
p

�2 C .t0:95S Nx/2:

The coefficient t0:95 is chosen according to Student’s distribution in both cases for

the confidence probability 0.95 .q D 0:05/ and degrees of freedom � D n � 1.

The formulas appear to be ad hoc. They are not grounded in probabilistic rea-

soning, and yet they assign a stated confidence probability of 0.99 or 0.95 to the

result.

3. Another method appeared in the Fourth Draft of the Guide to the Expression of

Uncertainty in Measurements issued by working group ISO/TAG4/WG3 before

the guide itself was published. In this method, the elementary systematic errors

are regarded as uniformly distributed random quantities. However, the limit of

their sum is calculated with the formula � D
q

Pm
iD1 �

2
i , i.e., without using the

indicated model.

The systematic and random errors are combined with a formula that is almost the

same as (4.20). The only difference lies in the coefficient tc . Here, the coefficient
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is found from Student’s distribution corresponding to the selected confidence prob-

ability and the effective degrees of freedom �eff. The following formula is given to

calculate �eff:

S4c
�eff

D
S4Nx
�

C
m
X

iD1

�

�2i
3

�2

:

It is assumed here that the random component of uncertainty has a degree of freedom

� D n�1, and each component of the systematic error has a degree of freedom equal

to one. However, the notion of a degree of freedom is not applicable to random

variables with a fully defined distribution function. Therefore, it is unjustified to

assume that a quantity with uniform distribution within given limits has a degree

of freedom equal to one (or to any other finite number). Thus, the formula under

discussion is not mathematically grounded.

4. GUM [2] presents a method that is similar to the method of the Fourth Draft

(and in other drafts), but without the ungrounded computation of coefficient tc .

Instead, GUM assumes tc to be constant: t 0c D 2 for ˛ D 0:95 and t 00c D 3 for

˛ D 0:99. As we will see later, this method is good if the systematic error is

small relative to the random error but can be deficient in other cases.

5. Finally, this book proposes a method with the resulting formulas (4.20) and

(4.22).

We shall compare all the methods above using two numerical examples.

Consider a multiple measurement comprising n D 16 single measurements. Sup-

pose that as a result of some measurement, the following indicators of its errors were

obtained:

S Nx D 1; �0 D 3:

Suppose also that the random errors have a normal distribution and that the (condi-

tionally constant) systematic errors have a uniform distribution. Then for the exact

solution we can take the confidence limits presented in Table 4.4. As usual, we shall

take ˛1 D 0:95 and ˛2 D 0:99. Then

uT;0:99 D 4:49; uT;0:95 D 3:67:

There is a slight inaccuracy in viewing the above as “exact solution” as we assumed

that S Nx D � Nx . But for n D 16, any discrepancy from this assumption is insignificant,

and we shall neglect it.

When applied to this measurement, the considered methods give the following

results.

1. The coefficients of Student’s distribution with � D n� 1 D 15 and the indicated

values of the confidence probabilities will be as follows:

t0:99.15/ D 2:95; t0:95.15/ D 2:13;

‰0:99 D 2:95 � 1 D 2:95; ‰0:95 D 2:13 � 1 D 2:13:

Therefore, u1;0:99 D 3C 2:95 D 5:95 and u1;0:95 D 3C 2:13 D 5:13.
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2. We shall make use of the calculations t0:95 and ‰0:95 that were just performed:

u2;0:99 D 3C 2:13 � 1 D 5:13; u2;0:95 D
p

32 C .2:13/2 D 3:68:

3. We will need the following values to apply this method,

S2# D 9=3 D 3; S# D 1:73;

S2c D 1C 3 D 4; Sc D 2:

We shall calculate the effective number of degrees of freedom:

42

�eff

D 1

15
C 32;

16

�eff

D 9:07; and �eff D 2:

Next, we find from Student’s distribution t3;0:99 D 9:9 and t3;0:95 D 4:3. Corre-

spondingly, we obtain

u3;0:99 D 9:9 � 2 D 19:8; u3;0:95 D 4:3 � 2 D 8:6:

4. We have, in this case, Sc D
q

S2Nx C S2
#

D
p
1C 3 D 2:0. Because t0:99 D 3

and t0:95 D 2, we obtain

u4;0:99 D 3:2 D 6; u4;0:95 D 2:2 D 4:

5. Formulas (4.20) and (4.22) give S# D 1:73 and Sc D 2:0. Then,

t5;0:99 D 2:95 � 1C 0:99 � 3
1C 1:73

D 5:92

2:73
D 2:17;

t5;0:95 D 2:13 � 1C 0:95 � 3
1C 1:73

D 4:98

2:73
D 1:82;

u5;0:99 D 2:17 � 2 D 4:34; u5;0:95 D 1:82 � 2 D 3:64:

Let us compare the estimated uncertainties with the exact values uT;0:99 and uT;0:95.

The errors of these computations as compared to the exact values are summarized

in Table 4.8. Furthermore, Table 4.9 presents these errors for the case �0 D 0:5 and

the same values S Nx D 1 and n D 16, calculated similarly.

In comparison with the previous example, method 4 and especially method 3 in

this case show a significant decrease in error. It is not surprising because now the

systematic component is insignificant relative to the random component.

We can make the following observations from these examples:

1. As expected, method 3 cannot be used when the systematic error is significant,

as in the first example. This method shows a significant decrease in error in the

second example, where the systematic component is relatively small.
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Table 4.8 Errors of different

methods of uncertainty

calculation for the case where

�0 D 3; SNx D 1; n D 16

Method of

computation

.ui � uT /=uT � 100%

˛ D 0:99 ˛ D 0:95

1 32 39.0

2 14 0.3

3 340 132.0

4 34 6.0

5 3 0.8

Table 4.9 Errors of different

methods of uncertainty

calculation, for the case

where �0 D 0:5; SNx D 1,

n D 16

Method of

computation

.ui � uT /=uT � 100%

˛ D 0:99 ˛ D 0:95

1 29 30

2 2 7

3 13 8

4 12 2

5 4 3

2. Method 2, irrespective of the remarks made earlier, gave satisfactory results in

both examples.

3. Method 1, as expected, produced estimates that were too high in both examples.

4. Method 4 is good if the systematic component is small relative to the random

component.

5. Our proposed method 5 gave the best results in both examples.

Examples are not, of course, proof, but they nonetheless illustrate well the consid-

erations stated earlier.



Chapter 5

Indirect Measurements

5.1 Terminology and Classification

As introduced in Chap. 1, indirect measurement is a measurement in which the value

of the unknown quantity sought is calculated using measurements of other quantities

related to the measurand by some known relation. These other quantities are called

measurement arguments or, briefly, arguments.

In an indirect measurement, the true value of a measurandA is related to the true

values of arguments Aj (j D 1; : : : ; N ) by a known function f . This relationship

can be represented in a general form as

A D f .A1; � � � ;AN /: (5.1)

This equation is called a measurement equation. The specific forms of measure-

ment equations can be considered as mathematical models of specific indirect

measurements.

Various classifications of indirect measurement are possible. We shall limit our-

selves to classifications that will be useful for our purposes.

From the perspective of conducting a measurement, we shall distinguish single

and multiple indirect measurements. In single measurements, all arguments are mea-

sured once. In a multiple measurement, all arguments are measured several times.

Multiple indirect measurements differ in a subtle but important way from mul-

tiple direct measurements. Whereas the latter involves obtaining a measurand esti-

mate in every constituent single measurement and then processing these estimates

to obtain the overall measurement result, the former typically involves estimating

arguments from the corresponding multiple argument measurements and then ob-

taining the overall indirect measurement result (except for the method of reduction

considered later in this chapter). Thus, the indirect measurement itself is not re-

peated: the estimate of the measurand is obtained once all argument measurements

are completed. This is why, unlike direct measurements, single indirect measure-

ments cannot be considered as a base form of multiple indirect measurements.

S.G. Rabinovich, Evaluating Measurement Accuracy: A Practical Approach,

DOI 10.1007/978-1-4419-1456-9 5, c
 Springer Science+Business Media, LLC 2010
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According to the form of the functional dependency (5.1), we shall distinguish

linear and nonlinear indirect measurements. In the case of a linear indirect mea-

surement, the measurement equation has the form

A D b0 C
N
X

jD1
bjAj ; (5.2)

where fbj g.j D 0; : : :; N / are constant coefficients. Nonlinear indirect measure-

ments are diverse, and therefore, it is impossible to represent all of them with one

general form of measurement equation.

The physics of the processes of indirect measurements gives us another important

classification criterion. To motivate this classification, let us compare the accurate

measurement of the density of a solid with the measurement of the temperature

coefficient of the electrical resistance of a resistor.

To measure the density of a solid, its mass and volume should be measured in-

dependently, with consistent accuracy. In the temperature coefficient measurement,

the resistance of the resistor and its temperature are measured simultaneously, which

means that the measurements of these arguments are not independent. Thus, we shall

distinguish dependent and independent indirect measurements.

Indirect measurements, like any measurements, are divided into static and dy-

namic. Recall that we call a measurement dynamic if it utilizes a measuring

instrument in the dynamic regime [51]. According to this definition, a multiple

indirect measurement should be considered dynamic if any of its arguments are

measured with instruments in the dynamic regime. Such measurements are theoret-

ically possible but hardly encountered in practice. For this reason, multiple indirect

measurements are usually static; only single indirect measurements can be either

static or dynamic.

5.2 Correlation Coefficient and Its Calculation

The traditional methods for estimating the uncertainty of indirect measurements

include the calculation of the correlation coefficient.

Later in this book, we shall develop a new theory, which obviates any need for the

correlation coefficient. However, given the traditional importance of the correlation

coefficient and a great deal of confusion in metrology with its calculation, it

makes sense to describe here a clear procedure for calculation of the correlation

coefficient.1

The mathematical foundation and methods of the correlation coefficient calcu-

lations can be found in many books on the probability theory and mathematical

1 I agree with R.H. Dieck that “probably one of the most misunderstood and misused statistics is

the correlation coefficient” [22].
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statistics, for example, [53]. Consider two random quantities X and Y with math-

ematical expectations equal to zero and finite variances. Denote their variances as

V ŒX� D �2X and V ŒY � D �2Y .

The variance of a random quantity Z D X C Y can be calculated using the

equation

V ŒZ� D EŒ..XCY / �EŒXCY �/2� D EŒ.XCY /2� D EŒX2�CEŒY 2�C2EŒXY �:
(5.3)

The last term EŒXY � is named second mixed moment or covariance.

The covariance divided by the square root of the product of variances �2X�
2
Y gives

the correlation coefficient �XY :

�XY D EŒXY �

�X�Y
:

The value of the correlation coefficient always lies within [–1;C1], and if j�XY jD1,

then there is a linear functional dependency between X and Y . When �XY D 0,

X and Y are uncorrelated, although it does not mean that they are independent.

Otherwise, when 0 < j�XY j < 1, the nature of the dependency between X and

Y cannot be determined unambiguously: It can be stochastic as well as functional

nonlinear dependency. Therefore, in the last case, if the knowledge about the nature

of the dependency between X and Y is required, it can only be obtained based on

physical properties of the problem rather than inferred mathematically.

From the above formulas, we obtain

�2Z D �2X C �2Y C 2�XY �X�Y : (5.4)

In practice, we have to work not with the exact values of parameters of random

quantities but with their estimates. So, instead of variances �2Z ; �
2
X ; �

2
Y , and the

correlation coefficient �XY , we have to use their estimates S2Z; S
2
X ; S

2
Y (we will also

use interchangeablyS2 .X/ to denote an estimate of the variance of random quantity

X ) and rXY . If n is the number of measured pairs (xi ; yi ) of random quantities X

and Y .i D 1; : : : ; n/, and Nx and Ny are averages over n observed values of X and Y ,

then

S2x D

n
P

iD1
.xi � Nx/2

n � 1 ; S2y D

n
P

iD1
.yi � Ny/2

n � 1 :

The estimate of EŒXY �, which we denote as mXY , will be

mXY D

n
P

iD1
.xi � Nx/.yi � Ny/

n � 1 :

Then, rXY D mXY =SX SY .
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Thus, the calculation formulas for the correlation coefficient of two random

quantities and the variance of their sum are as follows:

rXY D

n
P

iD1
.xi � Nx/.yi � Ny/

.n � 1/SXSY
; (5.5)

S2Z D S2X C S2Y C 2rXYSXSY : (5.6)

The estimates of the variances of the average values Nx and Ny are known to be

S2Nx D
S2X
n

and S2Ny D
S2Y
n
:

Then, by dividing (5.6) by n, we obtain the estimate of the variance of the mean

value of Z:

S2
Z

D S2Nx C S2Ny C 2rXYS NxS Ny : (5.7)

The correlation coefficient estimation here is the same as in (5.5). One can also use

S Nx and S Ny for the calculation of the correlation coefficient estimation using the fact

that SXSY D nS NxS Ny . Then, (5.5) will change to the following:

rXY D

n
P

iD1
.xi � Nx/.yi � Ny/

n.n � 1/S NxS Ny
: (5.8)

It is necessary to stress that, in order to compute the correlation coefficient between

random quantities X and Y , the number of realizations of X and Y (e.g., the num-

ber of measurements of X and Y ) must be the same. Moreover, each pair of these

realizations must be obtained under the same conditions, for example, at the same

time, at the same temperature, and so on.

The theory of correlations says that realizations xi and yi must belong to the

same event i . A clear illustration of this statement is given by the classic example

of the accuracy analysis of firing practice. Here, each event is one shot. Each shot

i is described by a pair of values xi and yi that express the deviation of the bullet

from the center of the target in orthogonal coordinates. In the case of an indirect

measurement, one event is the set of matched measurement results of all arguments.

This event corresponds to a point in the multidimensional space with arguments as

coordinates. We shall call this point a measurement vector.

In the above-mentioned example of the measurement of the temperature

coefficient of the electrical resistance of a resistor, each pair of measurements

of the resistance and temperature is a measurement vector.
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5.3 The Traditional Method of Experimental Data Processing

The processing of experimental data obtained in a measurement consists of two

steps. In the first step, we estimate the value of the measurand, and in the second

step, we calculate the inaccuracy of this estimate.

In an indirect measurement, the first step traditionally is based on the assumption

that the estimate QA of the measurand A can be obtained by substitution of QAj for

Aj in (5.1):

QA D f
� QA1;:::; QAN

�

: (5.9)

The second step is commonly solved by expansion of the function (5.1) in a Taylor

series. Usually the Taylor series is written in the form of an approximate value of

the given function, which is brought to its true value with the help of corrections.

We want, however, to work with errors rather than with corrections. Thus, we shall

therefore write the series in such a form that the approximate value of the function

is expressed by adding something to its true value. To simplify further calculation,

suppose that the number of arguments N D 2. Then, we have the Taylor series in

the form:

f . QA1; QA2/ D f .A1; A2/C
�

@

@A1
�1 C @

@A2
�2

�

f .A1; A2/

C 1

2Š

�

@

@A1
�1 C @

@A2
�2

�2

f .A1; A2/C � � �

C 1

mŠ

�

@

@A1
�1 C @

@A2
�2

�m

f .A1; A2/CRmC1; (5.10)

where QA1 D A1 C &1, QA2 D A2 C &2 (�1 and �2, the errors of QA1 and QA2), RmC1
is the remainder term, and partial derivatives are computed at the point

� QA1; QA2
�

.

The remainder term can be expressed in the Lagrange form:

RmC1 D 1

.mC 1/Š

�

@

@A1
�1 C @

@A2
�2

�mC1
f .A1 C �1�1; A2 C �2�2/ ; (5.11)

where 0 < v1;2 < 1.

If the indirect measurement is linear, all terms, except the linear one, are equal to

zero.

The general form of the error of an indirect measurement is

� D QA �A D f . QA1; QA2/� f .A1; A2/:
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Turning to the Taylor series, one obtains

� D
�

@

@A1
�1 C @

@A2
�2

�

f .A1; A2/

C 1

2

�

@

@A1
�1 C @

@A2
�2

�2

f .A1; A2/C � � � CRmC1: (5.12)

In practice, however, only the first linear term is used for error calculations:

� D @f

@A1
�1 C @f

@A2
�2:

We will call the partial derivatives above argument influence coefficients (not to

be confused with influence quantities and coefficients considered in measurements

under rated conditions). We shall denote them as follows:

wj D @f

@Aj
; j D 1; : : : ; N:

Now the above equation can be written in the general form:

� D
N
X

jD1
wj �j : (5.13)

We emphasize again that all partial derivatives are calculated at the estimates point
� QA1; QA2

�

because the true values A1, A2 are unknown.

Putting aside for now absolutely constant errors, we can write

�j D #j C  j ;

where #j and  j are conditionally constant and random components of the error,

respectively. So, (5.13) takes the form:

� D
N
X

jD1
wj#j C

N
X

jD1
wj j : (5.14)

The last formula says that, in indirect measurements, not only the systematic error

consists of components, but so also does the random error.

The traditional method considers the random errors only, which means there are

no systematic errors in the argument estimation, that is, thatEŒ�1�D0 andEŒ�2�D0.

(A method capable of accounting for systematic errors is considered later, in

Sect. 5.7.)
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The most important characteristic of a random error is its variance. In accordance

with the mathematical definition of the variance, we obtain from (5.13), for N D 2,

vŒ�� D E
�

.w1�1 C w2�2/
2
�

D w21E
�

�21
�

C w22E
�

�22
�

C 2w1w2E Œ�1 � �2� :

This formula is different from (5.3) only in the notations. Therefore, one can write

�2 D w21�
2
1 C w22�

2
2 C 2�1;2w1w2�1�2; (5.15)

where

�2 D V Œ�� D E
�

�2
�

; �21 D E
�

�21
�

;

�22 D E
�

�22
�

; and �1;2 D E Œ�1 � �2�
�1�2

:

We should like to point out that the variance of a random error of the measurement

result is identical to the variance of the measurement result:

V Œ�� D V Œ QA�:

Also note that (5.15) has three terms, which correspond to the case when N D 2.

WhenN D 3, we shall have six terms. So, with the number of arguments increasing,

the complexity of calculations increases rapidly.

In (5.15), the values of variance �2j and correlation coefficient �k;l are unknown

and, in practice, their estimations S2j and rk;l are used instead. Taking into account

this substitution and assuming the general case of N arguments, (5.15) becomes

S2 D
N
X

jD1
w2jS

2
� QAj

�

C 2
X

k<l

rk;lwkwlS
� QAk

�

S
� QAl

�

: (5.16)

For estimating the variance of the estimation of an argument and correlation coeffi-

cient between pairs of arguments, we have the formulas

S2j D S2. QAj / D 1

n.n � 1/

n
P

iD1
.xji � Nxj /2;

rk;l D

n
P

iD1
.xki � Nxk/.xli � Nxl /

n.n � 1/S. QAk/S. QAl/
:

9

>

>

>

>

=

>

>

>

>

;

Here, n is the number of measurement vectors, and xki is the realization of argument

Ak from measurement vector i . In particular, in the formula for the correlation co-

efficient, the fact that realizations xki and xli have the same subscript i means that

these realizations must be taken from the same vector i . Having the estimates S2j
and rk;l , one can use (5.16) to obtain the estimate of variance S2.
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If measurements of all arguments are independent, i.e., �k;l D 0, then (5.16) is

simplified:

S2 D
N
X

jD1
w2jS

2
� QAj

�

: (5.17)

This equation gives the following expression for the standard deviation:

S D
q

w21S
2
� QA1

�

C � � � C w2NS
2
� QAN

�

: (5.18)

The last two formulas are often called the error propagation formulas, although in

reality they express the propagation of variances.

Although (5.18) was derived for the random errors only, it has a wide use as uni-

versal formula for the summation of all kinds of errors. This way of error calculation

even has a specific name: the square-root sum method.

The next problem is to calculate the confidence interval for the true value of the

measurand, and hence the uncertainty of the measurement. Within the framework of

traditional methods, this problem can only be solved in a mathematically grounded

way for linear indirect measurements, although even in this case, the solution is only

approximate. For nonlinear measurements, this problem can be solved by lineariza-

tion of the measurement equation, which leads to additional inaccuracy. However,

for dependent indirect measurements the traditional method does not provide any

solution, because in this case it is impossible to obtain the probability distribution

of the measurement error and to find the appropriate number of degrees of freedom.

Let us consider this simplest case of a linear indirect measurement with nor-

mally distributed argument errors. In this case, in principle, one could use Student’s

distribution, but an exact expression for the degrees of freedom is not known. An

approximate solution, which gives an estimate of the degrees of freedom, called

the effective number of degrees of freedom, is given by the well-known Welch–

Satterthwaite formula [6]:

�eff D

 

N
P

jD1
b2jS

2
� QAj

�

!2

N
P

jD1

b4
j
S4. QAj /
�j

; (5.19)

where �j is the number of degrees of freedom for argument Aj , determined by the

number of measurements nj of Aj : �j D nj � 1. The uncertainty in this case can

be calculated as

uc D tqS;

where tq is found from Student’s distribution table for the degrees of freedom �eff

and the significance level q D 1 � ˛ (recall that ˛ is the chosen confidence prob-

ability). The obtained uncertainty is approximate because, not knowing the actual

degree of freedom, we used its estimate – the effective degrees of freedom.
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For nonlinear independent indirect measurements, as already mentioned, the

problem of constructing confidence intervals can be solved using linearization of

the measurement equation. Linearization is done using the expansion of the mea-

surement equation into Taylor series. In this method, one estimates the standard

deviation of the measurement result using (5.18), computes the effective degree of

freedom from (5.19) (replacing coefficients bj with wj ), and then finds the quan-

tile of Student’s distribution corresponding to the just-found degree of freedom and

chosen confidence probability. Having obtained the quantile, one can calculate the

confidence interval for the measurement result, that is, the measurement uncertainty

in the same way as for a linear indirect measurement.

This solution, as is the case with linear indirect measurements, is approximate.

But its more significant drawback is that it retains only the first, linear, term in

the Taylor series. Therefore, the probability distribution of the result of the indi-

rect measurement is unknown and thus the confidence probability assigned to the

measurement uncertainty is unlikely valid.

In practice, instead of linearization, the uncertainty is often calculated simply

by summation of measurement uncertainties of the arguments using the following

formula, which is based on (5.18):

ut D

v

u

u

t

N
X

jD1
w2j u2j ; (5.20)

where uj is the uncertainty of the measurement of j th argument and wj is its

influence coefficient. Along with (5.18), formula (5.20) is also often called the

square-root sum formula. But this square-root sum formula is correct for summing

variances, not confidence intervals or uncertainties, and it is unclear if one can call

the result a confidence interval or uncertainty.

The next problem is how to calculate the systematic error of an indirect mea-

surement result, and how to combine it with the random error to obtain the overall

uncertainty of the indirect measurement result. A reasonable solution of this prob-

lem will be discussed below in Sect. 5.7.

5.4 Merits and Shortcomings of the Traditional Method

The traditional method has been used in measurement practice for a long time. It is

based on the Taylor series expansion, which allows one to transform input data of

an indirect measurement (data obtained from arguments’ measurements) into output

data, that is, the data about the measurand. This method is universal but, as the

analysis presented in [44, 45] showed, it has a number of shortcomings.

First, for a nonlinear function f

EŒf .X1; : : : ; XN /� ¤ f .EŒX1�; : : : ; EŒXN �/;
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where X1,. . . , XN are random quantities. Therefore, the estimate of the measurand

given by (5.9) is incorrect when the measurement equation is nonlinear. Let us eval-

uate this incorrectness.

Go back to (5.10) and now retain not only the first term but the second one also.

Again, assuming N D 2 for simplicity, we get

� D
�

@f

@A1
�1 C @f

@A2
�2

�

C 1

2

�

@

@A1
�1 C @

@A2
�2

�2

f .A1; A2/:

Assume, as before, �1 and �2 to be free from systematic errors: EŒ�1� D 0 and

EŒ�2� D 0. Then, the mathematical expectation of the first term is equal to zero:

E

��

@f

@A1
�1 C @f

@A2
�2

��

D w1EŒ�1�C w2EŒ�2� D 0:

But the variances of the errors �1 and �2 are

V Œ�1� D �21 > 0 and V Œ�2� D �22 > 0;

and therefore the mathematical expectation of the second term in the above Taylor

series is not equal to zero. Indeed,

EŒ�� D E

"
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�
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@A2
�2

�2

f .A1; A2/
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D 1
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EŒ�1 � �2�
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�1;2�1�2: (5.21)

As �21 > 0, �22 > 0 and j�1;2j < 1, EŒ�� D B ¤ 0.

Thus, for nonlinear indirect measurements, the estimate of the measurand given

by the traditional method is biased! The bias of the measurement result can be re-

duced by correction C :

C D �B:

But even after correction, the estimate of a measurand will not be exact because it

takes into account only two terms, whereas the Taylor series may have an infinite

number of terms.

This is the first deficiency of the traditional theory of indirect measurements.

It must be considered as an essential disadvantage for it affects the results of

measurements.

The second deficiency is that the estimate of the variance of the measurement

result, given by (5.16), is imperfect because it is derived using only one linear term

in the Taylor series. In other words, the traditional method does not use all of the

information contained in the results of measurements of arguments.
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The next disadvantage of the traditional method is the problem of the confidence

intervals. As we already mentioned, this method does not provide a grounded foun-

dation for constructing the confidence intervals in the case of dependent indirect

measurements because in this case it is impossible to obtain the probability distri-

bution of the measurement error and to find the appropriate number of degrees of

freedom.

A further drawback is the above-mentioned problem of estimating correlation

coefficients that are an inherent part of the traditional method.

As we mentioned earlier, the traditional method allows one to construct a

confidence interval for independent indirect measurements. In fact, for nonlinear

independent indirect measurements, the most commonly used method is not the

method of linearization but the method using the square-root sum formula. How-

ever, the justification of applying the square-root formula in this situation has not

been proven. Let us investigate this question.

Consider two samples of independent observations of a measurand, each of

size n, from the same normal distribution. Let the estimates of their variances be

S21 and S22 . The confidence limits of the true value of the measurand, according to

Student’s distribution are

u1 D tn�1S1 and u2 D tn�1S2:

Coefficient tn�1 for both samples is the same since they have the same degree of

freedom and the same confidence probability. Let us now combine these samples

into one. The combined sample is also from the same normal distribution but with

2n observations. The estimate of variance of this sample is

S20 D S21 C S22 ;

and the confidence limit is

u0 D t2n�1S0:

Compare the above confidence limit with the one obtained from (5.20):

u0
0 D

q

u21 C u22 D tn�1S0:

Obviously, u0 ¤ u0
0. Let us further look at how big the difference between the two

can be. For n D 10 and confidence probability ˛ D 0:95, we have u0
0 D 2:26 � S0

and u0 D 2:10 � S0. Thus, in this case, (5.20) exaggerates the inaccuracy by 8%.

We can find in a similar way that with n D 10 and three arguments, the difference

will be 11%, and with four arguments, 13%. For n D 5 and two arguments, the

difference reaches 25% and for four arguments, 35%. When n D 20, the inaccuracy

of (5.20) is 5% and does not depend on the number of arguments.

We can conclude that using (5.20) can be generally acceptable when the num-

ber of measurements of each argument is around 10 or more. At the same time,

the above analysis reveals several rules one should follow in using (5.20). First, one
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must keep in mind that this formula exaggerates the uncertainty of the measurement,

and the fewer the number of argument measurements the greater the amount of

overestimation. Second, to use this formula, one must make sure that measurement

uncertainty of each argument has the same degree of freedom. In other words, each

argument must be measured the same number of times. Finally, the measurement un-

certainty of every argument must be computed for the same confidence probability.

The above analysis also suggests a possibility of introducing a corrective factor

Wt D t2n�1=tn�1. In the particular example we considered,

Wt D t2n�1=tn�1 D 2:10=2:26 D 0:93:

However, an important point to keep in mind is that the entire analysis is conducted

for the case when argument measurement errors are normally distributed. Generaliz-

ing the above analysis, a natural suggestion would be to use (5.18) in place of (5.20)

for the estimate of combined standard deviation, and then use Student’s distribution

to build the confidence interval. The degree of freedom in this case is, as we have

seen, � D 2 .n � 1/.

In summary, both methods – linearization and square-root sum – of calculating

the uncertainty (i.e., confidence intervals) of independent indirect measurements are

approximate. The premise behind these calculations, which is that errors of mea-

surements of the arguments are normally distributed, often does not hold. And only

because confidence intervals based on Student’s distribution are not highly sensitive

to the shape of the distribution functions, these intervals are satisfactory in practice.

Nonetheless, as the analysis of Sects. 5.3 and 5.4 showed, the traditional method

and the square-root sum formula (with the enhancements discussed above) still al-

low one to estimate the uncertainty of independent indirect measurements assuming

that the conditions for the applicability of this formula we established do hold.

5.5 The Method of Reduction

As we discussed above, the traditional method of experimental data processing al-

lows one to estimate the uncertainty of the measurement result for independent

indirect measurements. But for dependent indirect measurements, this problem re-

mained unsolved. For this reason, in measurements in physics, chemistry, and other

scientific disciplines, the uncertainty of a measurement result is taken to be not a

confidence interval but the standard deviation. The following method of reduction

fully solves this problem [34, 44, 46].

Assume that x1i , x2i ; : : :, xNi are measurement results of arguments from a mea-

surement vector i . Recall that a measurement vector compiles measurements of all

arguments performed under the same conditions and at the same time. Each de-

pendent indirect measurement always consists of a definite number of measurement

vectors.
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So, let n be the number of measurement vectors obtained. These vectors can be

represented as a set:

fx1i ; x2i ; : : : ; xNi g; i D 1; : : : ; n:

Substituting the results from the i th vector into the measurement equation, we obtain

the i th value of the measurand. Denote it by yi . This transformation is obviously

justified because it reflects the physical relationship between the measurand and the

measurement arguments.

In the same way, n measurement vectors give us a set of n values of the

measurand:

fyig; i D 1; : : : ; n:

This set does not differ from a set of data obtained by direct measurements of the

measurand A. Hence, we can now use all simple and well-understood methods of

direct measurements, which immediately provides an estimate of the measurand

QA D Ny D 1

n

n
X

iD1
yi ; (5.22)

and an estimate of the variance

S2
� QA
�

D 1

n .n � 1/

n
X

iD1
.yi � Ny/2: (5.23)

The method of reduction also solves the problem of the calculation of confidence

intervals, because we now have the set of n values of the measurand. The confidence

limits and therefore the uncertainty of the measurement result are

u D tqS
� QA
�

; (5.24)

where tq is found from Student’s distribution for the chosen confidence probability

and the exact number of degrees of freedom obtained, � D n � 1.

One might think that the method of reduction imposes special requirements for

performing the measurement, namely that the measurements of arguments be per-

formed so that the results can be represented as a number of measurement vectors.

However, the traditional method imposes this requirement as well. Indeed, if we

have a dependent indirect measurement, all arguments must be measured under the

same conditions for the traditional method also, because, otherwise, it is impossi-

ble to calculate the correlation coefficients and therefore impossible to estimate the

variance of the measurement result.

Thus, the method of reduction has some important advantages over the traditional

method:

1. It produces an unbiased estimate of the measurand.

2. It uses all of the information obtained in the course of the measurement.
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3. It gets rid of the correlation coefficient in the measurement uncertainty calcula-

tions.

4. It gives the exact degree of freedom and allows one to calculate the confidence

intervals for the true value of the measurand.

These advantages lead us to conclude that the method of reduction is the preferable

method for all kinds of dependent indirect measurements.

It is important to emphasize here that data processing in independent indirect

measurements does not require correlation coefficients. As the method of reduction

eliminates the need for correlation coefficients in the case of dependent indirect

measurements, the concept of the correlation coefficient is no longer necessary in

measurement data processing.

To conclude, I would like to note that I first proposed this method of reduction

approximately in 1970. It found immediate application in national and international

comparisons of standards of unit radium mass and in measurements of other radioac-

tive quantities carried at All-Union State Research Institute of Metrology named

under Mendeleev in the former Soviet Union. With the reports of these measure-

ments, the information about the method of reduction spread outside that Institute

and outside the country. The first formal publication describing this method ap-

peared in 1975 [34]. By now this method has became well known; it is mentioned in

the GUM [2] under the name “Approach 2.” However, while containing a note that

this approach is preferable to “Approach 1” (which is the traditional method), GUM

does not explain what the advantages of Approach 2 are.

5.6 The Method of Transformation

The method of reduction described in Sect. 5.5 replaces the traditional method for

processing data obtained from dependent indirect measurements. Unfortunately, this

method is inapplicable to independent indirect measurements, because it is unclear

how to group argument measurements into measurement vectors. The traditional

method is applicable but has several drawbacks. In the case of a nonlinear mea-

surement equation, the traditional method involves linearization of the equation,

which entails some loss of information obtained from the measurement. The tradi-

tional method combines measurement errors of the arguments under the assumption

that these errors are all normally distributed. The traditional method used to suffer

from the general problem of indirect measurements, namely, the lack of a grounded

method for combining the random and systematic errors. While the methods pre-

sented in this book allow one to combine these errors, the uncertainty of the result

is calculated using an approximate estimate of the degree of freedom leading to loss

of accuracy in these calculations.

Consequently, we are presenting a new method for independent indirect mea-

surements, which we call the method of transformation. As we will see, this method

reduces and in some cases eliminates most of the above drawbacks. The essence of

the method of transformation can be understood intuitively if one considers a black
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box with the arguments as its input and values of the measurand as its output. If we

applied fixed argument estimates of all but one argument to the black box’s inputs,

the black box would transform every observed value of the remaining argument into

the corresponding value of the measurand, producing a group of measurement data.

Using each argument in this manner, we can obtain a set of these groups, which to-

gether provide the basis for the estimate of the measurand along with its uncertainty

for a chosen confidence probability.

Turning to a more detailed description, let Aj , j D 1; : : : ; N be the arguments

of an independent indirect measurement of a measurand x:

x D f .A1; : : : ; AN /: (5.25)

We will consider the case when function f in above equation can be separated into

multiplicative terms, each depending on one argument2:

x D f .A1; : : : ; A2/ D f1 .A1/ � : : : � fN .AN / : (5.26)

Assume that all arguments but one in (5.26) are fixed to certain values. Let Ad be

the remaining argument and let Ad;i .i D 1; : : : ; nd / be its observed values. Each

value Ad;i of the variable Ad , together with the fixed values of all other arguments,

produces one value of the measurand. Thus, (5.25) can be presented in the new form

xd;i D f1 .A1/�: : :�fd�1 .Ad�1/�fd
�

Ad;i
�

�fdC1
�

AdC1
�

�: : :�fN .AN / ; i D 1; : : : ; nd :

This formula can be written also as a product of two functions,

xd;i D ‰d .A1; : : : ; Ad�1; AdC1; : : : ; AN / fd
�

Ad;i
�

;

where function fd depends only on the measurement data of argument Ad and

function ‰d depends only on the chosen values of the remaining arguments.

It will be convenient to rewrite the above as

xd;i D Cdfd
�

Ad;i
�

; (5.27)

where

Cd D ‰d .Aj /; j ¤ d: (5.28)

The term Cd is determined by values of Aj .j ¤ d/ and therefore is the same for all

values Ad;i . It is called the transformation coefficient for argument Ad . We use the

estimate of arguments Aj .j ¤ d/, that is, the means NAj of their measurements, in

2 One should be able to apply the ideas described here to the case with additive terms as well,

although the specific formulas will change.
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(5.28) to compute an estimate of Cd , QCd . Then, using (5.27), a set of nd measure-

ments ofAd is transformed into the set of the corresponding values of the measurand

fxd;ig, i D 1; : : : ; nd . The same calculations are performed for each argument, pro-

ducingN sets of values of the measurand. We call the argumentAd used to produce

the corresponding group of the measurand data fxd;ig the deriving argument, and

the rest of the arguments nonderiving arguments. The groups of argument measure-

ment data are called the input groups; the derived groups of the measurement data

are called the output groups.

In this way, the input group of measurements of each argument is transformed

into an output group of measurement data of the measurand of the overall measure-

ment. Combining all N resulting groups, one can find an estimate of the measurand

and its accuracy. However, formally, the output groups are dependent because the

transformation coefficient used to produce a given output group is determined by

the averages of the input groups of its nonderiving arguments.

Statistical analysis involving dependent random quantities is generally difficult.

However, ours is a specific case. It is easy to see that if we had precise values of the

arguments, the transformed groups would be independent. Therefore, the depen-

dence between the transformed groups has to do with the inaccuracy of estimates of

the arguments, and this inaccuracy can be taken into account.

Assume for a moment that the indirect measurement has only two arguments,A1
and A2. From (5.28), if the error of the estimate of the second argument is ı

� NA2
�

,

the error of coefficient C1 is

ı. QC1/ D
�

d‰1

dA2

�

A2D NA2

ı. NA2/: (5.29)

Because of this error, the obtained value of the measurand, x1;i will also have an

error, which can be estimated as follows:

ı .x1;i / D ı
� QC1

�

f1 .A1;i / :

Dividing the above expression by x1;i and substituting the latter with its expression

(5.27) in the right side, we obtain:

ı .x1;i /

x1;i
D
ı
� QC1

�

f1 .A1;i /

QC1f1 .A1;i /
D
ı
� QC1

�

QC1
:

Thus, we have obtained an important equation:

" .x1;i / D "
� QC1

�

; (5.30)

where ".x1;i / is the relative error of observation x1;i due to the inaccuracy of the

transformation coefficient and "
� QC1

�

is the relative errors of the transformation

coefficient.
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Note that the error ".x1;i / is the same for all members of the input group fx1g
of the deriving argument measurements, and that it is caused by the measurement

inaccuracy of the nonderiving argument A2. Because this error is the same in all

observations of the output group, the mean of the output group will have same error

also. With just the data from a given indirect measurement, a point estimate of this

error is impossible to find. However, having the estimate of the limits of error of the

measurement of argument NA2, one can estimate the inaccuracy of the corresponding

transformation coefficient QC1. Then, with the latter, one can estimate the bounds on

the possible changes of the mean of the output group in the case the indirect mea-

surement is repeated. In other words, these bounds represent the limits of a possible

change of the systematic error of the output group of data in the case of the repeated

indirect measurement. Such an error belongs to the class of conditionally constant

systematic errors. Observe that in the method of transformation, the conditionally

constant systematic error in question occurs even if the measurements of the argu-

ments have only random errors. This is because in each output group, the random

errors of the means of all the nonderiving arguments are “frozen” and thus become

constant.

It follows from the above discussion that accounting for the conditionally con-

stant systematic error that arises in the method of transformation is equivalent to

accounting for the dependency between the output groups of data. The estimation

of the limits of this error and combining it with the random error of the measurement

result is done in a usual way; it will be elaborated below.

Considering an arbitrary number of arguments now, (5.29) will take the form:

ı
� QCd

�

D
X

j¤d

�

@‰d

@Aj

�

A1;:::Ad�1;AdC1;:::AN D NA1;::: NAd�1; NAdC1;::: NAN

� ı
� NAj

�

;

where all the partial derivatives are evaluated in the point
˚ NAj

�

; j ¤ d .

Generalizing the results obtained for two arguments, we can write:

"
�

xd;i
�

D "
� QCd

�

D
X

j¤d

wj

QCd
ı
� NAj

�

; (5.31)

where wj is the influence coefficient of argument Aj and is equal to wj D @‰=@Aj
computed in the point

˚ NAj
�

; j ¤ d . It follows from (5.31) that the confidence

interval of the conditionally constant error will need to be estimated using the tra-

ditional method. Note, however, that while the traditional method here will have all

the drawbacks we mentioned in the beginning of this section, these drawbacks now

only apply to conditionally constant errors, while before they applied to the entire

errors. Thus, while the drawbacks are the same, their effect is now reduced. With

two arguments, the confidence interval for the conditionally constant error will be

more accurately since in this case (5.31) has only one item.

We are now ready to estimate the measurand and its inaccuracy. All output groups

of data represent “observed” values of the measurand. Therefore, as discussed later
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in Chap. 7, they can be combined into one large group, with its mean used as the

estimate of the measurand:

NNx D

N
P

dD1

nd
P

iD1
xd;i

N
P

dD1
nd

: (5.32)

Note that because in transforming input groups of argument data into output groups

of the measurand data we do not use Taylor’s series, in our case,

EŒ NNx� D E
�

f .A1; : : : ; AN /
�

:

We can now estimate the variance and standard deviation of the mean, using (4.18)

for direct measurements. But as we know, it is desirable to estimate these character-

istics in relative form. Thus, we have:

S2‰;rel.
NNx/ D 1

NNx2

Z
P

kD1
.xk � NNx/2

Z.Z � 1/
; S‰;rel . NNx/ D

q

S2‰;rel
. NNx/; (5.33)

where Z D
N
P

dD1
nd is the number of items in the combined output group, and

xk.k D 1; : : : ; Z/ are the items in this combined group. Knowing the estimate

of the standard deviation, we can calculate the uncertainty due to random error.

Accounting for systematic error is a bit more complex. First, we need to find the

confidence intervals for each output group of data. This does not present a difficulty

because usually the arguments are measured by direct measurements. Then, the vari-

ance and standard deviation for each group d are estimated using formula (4.18) –

again in relative form. The degree of freedom is known precisely: �d D nd � 1.

Confidence probability ˛ must be selected the same for every group. Then, we find

quantiles td;# of Student’s distribution corresponding to the chosen confidence prob-

ability. If the number of measurements of each argument is the same, the quantiles

will also be the same for each output group: td;# D t# . From this quantile, we can

find the confidence limits ˙�d;r for each output group. But to do that, we need to

find standard deviation S#;rel. Nxd /.
Using (5.31), we can calculate the variance of the measurand estimate in each

group d due to the conditionally constant error. In relative form, this variance is as

follows:

S2#;rel . Nxd / D
X

j¤d

�

wj

QCd

�2

S2rel
� NAj

�

: (5.34)

Having found the variance estimate above, and hence the standard deviation, the

corresponding confidence limit is as follows:

�d;rel D td;#S#;rel . Nxd / : (5.35)
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If each output group had the same “frozen” (constant error), the same error would

be present in the mean of the combined group. However, one cannot count on these

errors to match among all the groups. Thus, it is reasonable to compute the con-

ditionally constant error of the combined mean, �rel , as a weighted mean of the

conditionally constant errors of individual output groups, with weights gd equal to

the ratio of the number of items in each group over the total size of the combined

group. In other words,

�rel D
N
X

dD1
gd�d;rel gd D nd=Z: (5.36)

The same weights allow us to compute the standard deviation of the conditionally

constant error of the measurement result (which is the mean value of the combined

output group of data):

S#;rel
� NNx
�

D
N
X

dD1
gdS#;rel . Nxd /: (5.37)

Now, following the procedure described in Chap. 4, we can compute the confidence

interval of the measurement result. The calculations involve several steps.

First, we compute the combined standard deviation according to (4.19):

Sc D
q

S2
#;rel

C S2
‰;rel

:

Next, using (4.22), we find coefficient tc as weighted mean between tq and t# .

Coefficient tq is found using Student’s distribution with the degree of freedom

� D Z � 1. Coefficient t# is obtained either from (4.21), in which case it is

t# D �rel=S#;rel , or, if all arguments were measured the same number of times

n, from Student’s distribution with � D n � 1. We should stress again that in using

Student’s distribution, one must select the same confidence probability in all cases.

Finally, we obtain the uncertainty of the measurement result in relative form:

uc;rel D tcSc ;

which provided the solution to the problem.

We should note that measurements of the arguments could have their own sys-

tematic errors, in most cases conditionally constant ones. They must be taken into

account. To this end, for each argument, we must combine its conditionally constant

and random errors. This task is accomplished using the general scheme considered

in Chap. 4 and which we just used in combining errors of the overall result.

As already mentioned, our calculation procedure has a drawback: to compute

the error of the transformation coefficient, we use the traditional method, which re-

duces somewhat the accuracy of the method although not as much as if we used the

traditional method to estimate the error of the entire indirect measurement. But if

measurement has only two arguments, this drawback disappear: in this case the esti-

mation of the conditionally constant errors in each group do not require summation.



160 5 Indirect Measurements

Thus, this drawback can be removed if we combined the output groups in a pairwise

manner rather than all together at once. We describe this modified procedure next.

Referring to the measurement equation expression of (5.26), the calculations for

the indirect measurement processing can be accomplished by a series of successive

argument substitutions. Each step of this process substitutes a pair of arguments

with one new argument. After (N � 2) steps, the original equation with N argu-

ments will be transformed into an equivalent measurement equation having only

two arguments. The processing at each step, as well as handling of the final equa-

tion, uses the same simple calculations based on the method of transformation for a

measurement with two arguments.

To illustrate the main idea of this method, consider an indirect measurement with

four arguments:

x D f1.A1/ � f2.A2/ � f3.A3/ � f4.A4/:

We start by substituting the first two arguments, A1 and A2. To this end, we re-

place the corresponding terms with a new argument B 0 D f1.A1/ � f2.A2/. The

measurement equation now becomes

x D B 0 � f3.A3/ � f4.A4/:

We now apply the method of transformation to the expression for B 0 above. Since

we only have two arguments, this method is more precise due to precisely known

degree of freedom of both arguments. According to this method, we use the mea-

surement data for arguments A1 and A2 to obtain the data set for B 0, fB 0
i g, i D 1,

.n1 C n2/, and from it the estimate QB 0 and its standard deviation, to be used in the

next step. As we mentioned earlier, the two output groups comprising fB 0
i g can be

shifted against each other, but this will be taken into account when computing the

variance of the combined group according to (7.10) from Chap. 7.

Continuing the substitution process, we substitute the first pair of arguments in

the equation that resulted from the previous step, B 0 and A3, with a new argument

B 00 D B 0 �f3.A3/. Similar to the first step, we use the data set forB 0, along with its

estimate and standard deviation (from the previous step), as well as the measurement

data for A3, to produce the set fB 00
i g, i D 1, .n1 C n2 C n3/ for argument B 00, its

estimate QB 00, and its standard deviation. Again, any systematic shift in subgroups of

fB 00
i g will be taken into account by (7.10).

The measurement equation after the last step contains only two arguments:

x D B 00 � f4.A4/:

Using the data set and estimate for B 00 and the measurement data for A4, we can

now obtain the data set for the measurand x, fxkg, k D 1; : : : ;
PN
jD1 nj . This last

set, along with the standard deviation of B 00, allows us to obtain the estimate of the

measurand and its uncertainty.

A detailed example of using the method of transformation is presented later in

Sect. 8.6.2.
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5.7 Total Uncertainty of Indirect Measurements

The preceding sections of this chapter considered multiple indirect measurements

that did not have systematic errors. But the systematic errors cannot be ignored –

they have to be taken into account when computing the overall inaccuracy of indirect

measurements.

Systematic errors are not apparent in the process of measurements, and therefore,

they must be evaluated, taking into account the possible causes of them: first, the

systematic errors in the measurements of arguments. The calculations for estimating

these errors are the same for the dependent and independent indirect measurements.

The relationship between the measurement errors of arguments and the error of

the indirect measurement is represented by (5.13). This equation reflects the trans-

formation of the errors in measurements of arguments into the error of an indirect

measurement.

In addition to the error from the measurement errors of arguments, the indirect

measurements have an additional source of error. It is the inaccuracy of the mea-

surement equation. The next example will illustrate this error.

Suppose that we are required to measure the area of a plot of land that is de-

picted by a rectangle on a sketch. Here, the rectangle is the model of the object. Its

area is Sm D ab where a and b are the lengths of the sides of the rectangle. The

discrepancies between the model and the object can in this case stem the fact that

the angle between the sides will not be exactly 90ı, that the opposite sides of the

area will not be precisely identical, and that the lines bounding the area will not be

strictly straight. Each discrepancy can be estimated quantitatively and then the error

introduced by it can be calculated. It is usually obvious beforehand which source of

error will be most important.

Suppose that in our example the most important source of error is that the angle

between adjoining sides differs from 90ı by ˇ, as shown in Fig. 5.1. Then the area

of the plot would have to be calculated according to the formula St D ab cosˇ.

Therefore the error from the threshold discrepancy in this case will be

Sm � St D ab .1 � cosˇ/ :

Fig. 5.1 Rectangle and parallelogram as the models of a plot of land
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The admissible angle ˇa must be estimated from the required accuracy in deter-

mining the area of the plot. If ˇ � ˇa, then the model must be redefined and the

measured quantity must be defined differently. Correspondingly, we must use a dif-

ferent formula for calculating the measured area.

We should note that the inaccuracy of the measurement equation, or the thresh-

old discrepancy between the model of an object to be studied and the object, is a

methodological error and it is an absolutely constant systematic error.

The random errors of indirect measurements were analyzed previously in

this chapter. Let us now begin the analysis of the systematic errors of indirect

measurements.

The general approach to the problem of the estimation of systematic errors is

similar to the one developed for direct measurements. Still, indirect measurements

have some specifics. One difference has to do with the existence of argument influ-

ence coefficients wj . Usually their values are calculated by substituting the estimates

of arguments for their true values. In other cases, these coefficients are found from

special experiments. Either way, they are obtained with some errors. These errors

can be avoided if the measurement equation has the form

A D A
l1
1 A

l2
2 � � �AlNN : (5.38)

In this case, the influence coefficients are determined by the expressions

w1 D @A

@A1
D l1A

l1�1
1 A

l2
2 � � �AlNN

w1 D @A

@A2
D A

l1
1 l2A

l2�1
2 � � �AlNN

� � �

wN D @A

@AN
D A

l1
1 A

l2
2 � � � lNAlN �1

N

The absolute error is determined by (5.13). We shall now transfer from the absolute

error to the relative error:

" D
QA �A
A

D
l1A

l1�1
1 A

l2
2 � � �AlNN
A

�1 C � � � C
lNA

l1
1 A

l2
2 � � �AlN �1

N

A
�N

Substituting (5.38) for A, we obtain

" D l1
�1

A1
C l2

�2

A2
C � � � C lN

�N

AN
:

Thus, the influence coefficients for the relative errors in the measurements of the

arguments are equal to the powers of the corresponding arguments: w0
1 D l1,

w0
2 D l2; : : :, w0

N D lN . The coefficients l1; l2:::lN are known exactly a priori,

so that the error of influence coefficients noted above does not arise.
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This result can be obtained without use of (5.13), in other words, without the

use of Taylor series. Indeed, moving from (5.38) to the differentials on both sides,

we obtain:

dA D l1A
l1�1
1 A

l2
2 � � �AlN

N
dA1C l2A

l1
1 A

l2�1
2 � � �AlN

N
dA2C � � � C lNA

l1
1 A

l2
2 � � �AlN �1

N
dAN :

Dividing both sides by A, and replacing A with its expression (5.38) on the right

side of the above equation, we get:

dA

A
D l1

dA1

A1
C l2

dA2

A2
C � � � C lN

dAN

AN
:

Because measurement errors are small, the differentials above can be replaced by

increments – measurement errors. This brings the above equation to the same ex-

pression for the combined error " that was obtained above.

So, relative form of errors provides the uncertainty calculations with exact values

of influence coefficients. This is another advantage of expressing the measurement

errors in the form of relative errors.

The systematic error of the measurement of each argument consists of elementary

components. As always, they can be divided into two categories: absolutely and

conditionally constant errors.

Absolutely constant errors are deterministic quantities. However, we cannot find

their exact values and can only estimate their limits. These limits are estimated

differently in every specific case. In general, these estimations are based on the expe-

rience of the person performing the measurement. Usually, there are very few such

errors and they are small. But it is necessary to keep them in mind. One example of

absolutely constant errors is the error in a measurement equation considered above,

such as the linearization error of the standardized characteristic of a thermocouple.

Conditionally constant errors can be computed using the first term of (5.14):

# D
N
X

jD1
wj#j ;

where # is the conditionally constant error of an indirect measurement, and #j is

the conditionally constant error of estimate of j th argument. This formula can be

represented in the form

# D
N
X

jD1

kj
X

iD1
wj#ji; (5.39)

where kj is the number of conditionally constant errors in the measurement of the

j th argument.
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We previously considered one difference between estimating systematic errors in

the case of direct and indirect measurements, namely the existence of the influence

coefficients of the arguments. But there is also another difference: In the case of

dependent indirect measurements, some elementary errors in the measurements of

different arguments are caused by the same influence quantity. When such a quantity

grows, some of these errors can grow also while the rest of them go in the opposite

direction.

For example, assume that two measuring instruments used in an indirect

measurement have temperature errors. When the temperature changes, these er-

rors will also change, and both of them can change either in the same direction

or in opposite directions. Thus, the additional errors caused by the same influence

quantity can to some degree cancel each other. In order to take advantage of such

error cancellation, one must combine the additional errors caused by the same

influence quantity before summing up the squared limits of the elementary errors.

Let us consider these calculations.

For simplicity, we will consider an indirect measurement with four arguments

(N D 4). We will further assume that the measurements of arguments 1 and 2

have additional errors caused by a change of influence quantity t , for example, tem-

perature. Denote these additional errors #1t and #2t , respectively. They cause the

resulting measurement error #1;2t equal to

#1;2t D w1#1t C w2#2t (5.40)

Taking into consideration that #1t and #2t are just two of the errors of arguments

1 and 2, and that we have four arguments altogether, (5.39) becomes as follows:

# D#1;2t C w1

k1�1
X

iD1
#1i C w1

k2�1
X

iD1
#2i C w1

k3
X

iD1
#3i C w1

k4
X

iD1
#4i (5.41)

As was discussed in Chap. 4, it is possible to assume all conditionally constant errors

to be random quantities with a uniform distribution, and the confidence limits of the

conditionally constant error of an indirect measurement �˛ can be calculated from

the limits of the conditionally constant elementary errors using the same method that

was discussed in Chap. 4. The main difference is that now we have to account for

influence coefficients of the arguments. So, adding these coefficients to (4.3), we get

�˛ D k

v

u

u

t�21;2t C w21

k1�1
X

iD1
�21;i C w22

k2�1
X

iD1
�22;i C w23

k3
X

iD1
�23;i C w24

k4
X

iD1
�24;i ; (5.42)

and

�1;2t D w1�1t C w2�2t ; (5.43)

where (5.43) is computed while preserving the signs of �1t and �2t .

The values of k are given in Sect. 4.4. In particular, for the confidence probability

˛ D 0:95, k D 1:1.
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If the indirect measurement is performed under reference conditions for all in-

struments involved, or if no influence quantity causes additional errors in more than

one instrument, then (5.42) has the form

�˛ D k

v

u

u

t

N
X

jD1
w2j �

2
j (5.44)

Because all conditionally constant errors were taken to be uniformly distributed

random quantities, the standard deviation of their sum can be computed as follows:

S# D 1

k
p
3

v

u

u

t�21;2t C w2
k1�1
X

iD1
�21;i C � � � C w2n

N
X

iD1
�2N;i D �˛

k
p
3
:

Now let us return to the absolutely constant errors. Adding up their limits, we obtain

the overall limits H of the absolutely constant error of the result of an indirect

measurement:

H D He C
N
X

jD1
wjHj

where He is the limit of an error of the measurement equation; Hj is the limit of

the absolutely constant error of the measurement of j th argument.

Thus, we have the estimate of the variance of conditionally constant errors S2
#

and the limits of the absolutely constant error H . We also have the estimate of the

variance of the random error S2Nx . So, we can now obtain the total uncertainty of

indirect measurement result. These calculations are exactly the same as those used

for the uncertainty calculation in Chap. 4 for direct measurements. Therefore, in

the same way, we can now calculate the uncertainty of indirect measurements. The

resulting formulas are repeated below.

The combined standard deviation Sc can be calculated using (4.19):

Sc D
q

S2
#

C S2Nx : (5.45)

The combined uncertainty can be found from (4.20):

uc D tcSc; (5.46)

and the coefficient tc is calculated by (4.22):

tc D �˛ C tqS Nx
S# C S Nx

D t#
S#

S# C S Nx
C tq

S Nx
S# C S Nx

: (5.47)

Because S# D �˛

k
p
3
; t# depends only of confidence probability ˛. If ˛ D 0:95,

k0:95 D 1:1 and t# D 1:90.
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Taking into account the limit of the absolutely constant error, we obtain the total

uncertainty ut of the measurement result:

ut D H C uc: (5.48)

5.8 Accuracy of Single Indirect Measurements

Single indirect measurements are very important in practice but unlike direct

measurements, they cannot be viewed as the base form of multiple indirect

measurements. As we discussed, this is due to the fact that in multiple indirect mea-

surements, it is the arguments that are measured multiple times rather than the

indirect measurement being repeated.

Among examples of single indirect measurements, we can list measurement of

the area of a plot of land, measurement of wattage dissipated by a resistor under

high-frequency current, and measurement of temperature using separately calibrated

thermocouple and millivoltmeter.

In single indirect measurements, the estimate of the measurand is obtained by

putting the estimates of all the arguments into the measurement equation. The es-

timates of the arguments and their inaccuracy are typically obtained using direct

measurements. We have described the methods to accomplish these tasks in Chap. 4.

The estimation of inaccuracy of single indirect measurements is in principle anal-

ogous to that of direct measurements; the only difference is that in measurements

under reference conditions, the inaccuracy of direct measurements is determined

by the intrinsic error of a single measuring instrument while in indirect mea-

surements, of several instruments. Therefore, inaccuracy of indirect measurements

involves summation of errors even under reference conditions whereas in direct

measurements, this is only needed under rated conditions. The summation meth-

ods themselves remain the same. The fact that errors of argument measurements

must be viewed as elementary errors (even though each argument has its own el-

ementary errors) and that the number of elementary errors in the case of indirect

measurements is typically greater is not principally significant. However, the calcu-

lation formulas take a different form because the meaning of influence coefficients

changes. Consequently, we rewrite these formulas below.

1. Measurements under reference conditions for all instruments involved. The in-

accuracy of measurements of the arguments is expressed in the form of limits

of error �j for each argument Aj .j D 1; : : : ; N /. These limits are transformed

into the limits of elementary error of indirect measurement �j as follows:

�j D wj�j;

where wj D @f
@Aj

is the influence coefficient of argument Aj computed at the

point with coordinates
� QAj

�

; j D 1; : : : ; N .
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As explained in Chap. 4, we can take a uniform distribution for the model

of elementary errors with given limits. Further, in Sect. 4.4, we proposed and

analyzed a method for summation of the limits of uniform distributions, and

we applied this method for summation of the elementary errors of single direct

measurements under rated conditions in Sect. 4.7. Thus, we will utilize the rec-

ommendations formulated in Sect. 4.7, taking into account that the measurement

errors of the arguments, multiplied by the corresponding argument influence co-

efficients, become elementary errors of the indirect measurement. Accordingly,

(4.3), which expresses the uncertainty of a single measurement, becomes

u˛ D k

v

u

u

t

N
X

jD1
w2j�

2
j D k

v

u

u

t

N
X

jD1
�2j : (5.49)

One must remember that the argument influence coefficients obtained from

calculations have certain inaccuracy. This inaccuracy can often be avoided by

representing the errors in relative form (see Sect. 5.7). Thus, expressing errors in

relative form is preferable.

From the discussion in Sect. 4.7, it follows that with confidence probability

˛ D 0:95, (5.49) can be used with any number of component errors, and with

the same value of k0:95 D 1:1. With ˛ D 0:99, the calculations depend on the

number of components and are the same as with direct measurements under rated

conditions (see Sect. 4.7).

2. Measurements under rated conditions. When some of the instruments are used

under rated conditions, one must account for additional errors besides the intrin-

sic errors. There are two ways to combine them. One method involves estimating

the measurement uncertainty of each argument and then combining them. The

other combines elementary measurement errors of all the arguments. The latter

method appears preferable because all errors being combined become homoge-

neous in a sense that they all are specified by their limits. Therefore, they can

be combined according to the same recommendations that were described in

Sect. 4.7 for direct measurements. The one peculiarity arising in indirect mea-

surements is due to the fact that additional errors in different instruments can be

caused by the same influence quantity and therefore can be mutually dependent.

Accounting for this dependency is considered in Sect. 5.7.

5.9 Accuracy of a Single Measurement with a Chain

of Instruments

Single measurements are often performed using several measuring instruments con-

nected in a chain. A chain of serially connected instruments is also commonly called

a measurement system. When using an instrument chain, the measurement result is

given by the indication of the last instrument.
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A simple example of such measurements is the measurement of temperature with

thermocouple and millivoltmeter. The thermocouple produces for each temperature

Tx the corresponding electromotive force (EMF)U , and the voltmeter measures this

EMF. The measurement equation is

Tx D KU;

where K is the thermopower of the thermocouple. Because of the nonlinear depen-

dency of the EMF of the thermocouple on the temperature, the thermopower itself

depends on the temperature.

Thermocouple characteristics, which specify the relationship between the tem-

perature and the EMF, are standardized, and knowing the type of thermocouple,

one can find the temperature Tx , as well as the thermopower K , corresponding to

a given indication of the voltmeter U . If the voltmeter had been graduated in the

units of temperature, its indications will produce temperature as the result of the

measurement, and so the measurement must be considered a direct measurement. If

the voltmeter is graduated in volts, then it becomes an indirect measurement. Let us

calculate the inaccuracy of this measurement.

The inaccuracy of this measurement is calculated based on the known limits of

admissible errors of the voltmeter,‚1, and thermocouple,�2, in the given point of

its characteristic. Expanding the measurement equation into Taylor series produces:

tx D Tx C .wU�1 C wK�2/C .wU�1 C wK�2/
2 C � � �;

where wU and wK are argument influence coefficients computed as partial deriva-

tives of the measurement equation in point (u; k): wU D k and wK D u.

Discarding as usual the terms in the second and higher degrees and consider that

�t is absolutely constant error, we obtain:

ut D tx – Tx D k‚1 C u�2;

where ut can be considered as the limit of error of the measurement result if u�2 >

wK‚1.

In a general case the chain can have not two butN instruments. The measurement

equation, however, will retain its structure. Therefore, the measurement error will

still be represented by the sum of the limits of error of the instruments in the chain

multiplied by the corresponding argument influence coefficients.

If the instruments were utilized under reference conditions, one can combine the

component errors in the exact same way as described in Sect. 5.8.

An example of a serial connection of several instruments is described in detail

in Chap. 8 (Sect. 8.2), where we consider a measurement of voltage with a poten-

tiometer, a voltage divider, and a standard cell.
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5.10 Application of the Monte Carlo Method

The Monte Carlo method is a numerical method of obtaining a composition of in-

dependent random quantities with known distribution functions. In the old days of

manual computations this method used to be too laborious to be used in measure-

ments, but thanks to modern computers, it can now be employed widely. The wide

adoption of the Monte Carlo method should be facilitated by recommendation [13],

which is to be finalized in the near future.

The essence of the Monte Carlo method can be explained as follows. For sim-

plicity, let us consider random quantityZ related with a known dependency f with

only two independent random quantitiesX and Y :

Z D f .X; Y /:

Using a random numbers generator and known distribution functions, we obtain a

series of realizations of X and Y . According to [13], one should have 106 realiza-

tions of each random quantity. Randomly chosen pairs of realizations x and y are

input into dependencyf to obtain a realization ofZ. Once a pair of input realization

is utilized, it is excluded from further calculations (i.e., we utilize sampling without

replacement), so that each pair produces one realization of Z. A large number of

realizations of Z allow one to construct the distribution function of this random

quantity and compute its mathematical expectation, variance, and the confidence

interval for the true value of Z.

Thus, the Monte Carlo method gives a full solution to the problems of experimen-

tal data processing for independent indirect measurements. However, as we showed

earlier in this chapter, much simpler and complete solutions to these problems exist

for independent indirect measurements. Nonetheless, the Monte Carlo method has

its place in that it can be used to verify the accuracy of simple methods or as an

alternative method in doubtful cases. Thus, we will now consider in more detail the

application of the Monte Carlo method to practical measurements.

The key problem in applying the Monte Carlo method in measurements is that

the distribution functions of the measurement results of arguments are unknown.

The standard draft [13] lists a number of predefined distribution functions but does

not say how one can choose one of these functions based on the experimental data

available. The fundamental question of how the discrepancy between the experi-

mental data and the chosen distribution function would affect the result produced

by the Monte Carlo method remains open.

A possible way to address this issue is to use analytical approximation of the

distribution functions derived from the available experimental data in place of the

actual distribution functions. The overall method then involves the following four

stages.

1. Use the measurement results of each argument to approximate its probability dis-

tribution function. Any approximation method could be used; for example, one

could build a histogram of the measurement results to approximate the density
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function and then obtain the cumulative distribution function from it by a nu-

merical integration. At the end of this stage, we have an approximation of the

distribution function of every argument.

2. Using the simulation method, use a generator of uniformly distributed random

numbers to obtain a given number of “virtual measurements” of each argu-

ment (or errors of these measurements, depending on how the sample data are

represented), distributed according to the corresponding analytical distribution

function. This is done as follows [35]. Take, for example, argument X and

assume we want to have n D 1;000 virtual observations. To obtain these ob-

servations, first obtain 1,000 random numbers from the generator and normalize

them (by dividing by the maximum possible number) so that they all lie within

interval [0, 1]. Next, treat them as probabilities and find the corresponding quan-

tiles of the probability distribution function ofX , using the approximation of this

probability distribution found in stage 1. These quantiles can be used as realiza-

tions of X . Repeat this procedure for Y and all the other arguments. The number

of realizations of each argument must be the same.

3. Substitute into the measurement equation one realization of each argument. Each

set of these argument realizations will produce one realization of the measurand

Z. We should stress again that every argument realization is only used once; this

ensures that all generated realizations of Z will be independent.

4. At the end of stage 3, n realizations of Z will have been produced. Using these

data, build a histogram of the realizations of the measurand. With a large n, the

obtained histogram will closely match the experimental distribution function of

Z and will allow one to find all the necessary parameters of the measurement:

the estimate of the measurand and its inaccuracy.

To ensure the stability of the obtained results, it is advisable to repeat the above

calculations 2–3 times.3 If these repeated simulations indicate unstable results,

one should increase the number of virtual realizations of the arguments. Note that

one cannot simply combine output realizations obtained from repeated simulations

because these realizations will be dependent (see “Monte Carlo Statistical Methods”

by Christian P. Robert, George Casella).

The Monte Carlo method in its essence involves an artificial increase in the

amount of experimental data. But it is not the only possible method to achieve this

effect. Another possibility is the bootstrapping method [23], which we outlined in

Chap. 3 (Sect. 3.8). An advantage of the latter is that it produces independent sam-

ples and hence the results obtained from these samples can be combined.

An even simpler method is possible if the measurement is automated. In this case,

one can obtain sufficiently large samples from the experiment directly so that ran-

dom combinations of the results of measurement of the arguments would produce

a stable distribution of the estimates of the measurand (again, the combinations of

3 In doing so, one must be careful to avoid a mistake of simply rerunning the random number gen-

erator from scratch using the same seed: this would produce the exact same sequence of numbers

every time and will provide no indication of the stability of the results.
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argument realizations should be utilized without replacement to avoid the dependen-

cies between the obtained estimates of the measurand). Unfortunately, this approach

is feasible not in all measurement fields.

Our final note regarding the Monte Carlo method is that approximations of dis-

tribution functions with analytical formulas from histograms, which are typically

constructed from a small number of realizations, cannot be accurate. Moreover,

these approximations are often obtained subjectively to a large degree, such as the

case with the recommendations from [13]. The inaccuracy of this step limits the ef-

fectiveness of the Monte Carlo method. At the same time, the traditional method and

the method of transformation solve the problem of constructing confidence inter-

vals for the independent indirect measurements and the method of reduction solves

it for dependent indirect measurements. Therefore, the more complex Monte Carlo

method is not necessary in practice for these purposes. This concern does not apply,

however, to the one particular metrological application of the Monte Carlo method

mentioned earlier, namely, for verifying the accuracy of methods for estimating the

uncertainty of indirect measurements that are used in practice. The Monte Carlo

method is valuable in this application because it allows one to investigate theoreti-

cal scenarios with precisely specified distribution functions. It may also be possible

that such investigations would lead to discovery of new approaches, which would

be simpler than the Monte Carlo method and more accurate than existing practical

methods.



Chapter 6

Combined and Simultaneous Measurements

6.1 General Remarks About the Method of Least Squares

Combined and simultaneous measurements, as pointed out in Chap. 1, are measure-

ments performed to find values of several quantities related by a known equation. In

either case, a measurement experiment involves multiple measurements, with each

individual measurement producing one equation instance. Typically, the number of

measurements is such that there are more equations than the unknowns (the parame-

ters and measurands). Because of measurement errors, it is impossible to find values

of the unknowns such that all equations would be satisfied simultaneously. Under

these conditions, the estimated values of the unknowns usually are found with the

help of the method of least squares.

The method of least squares is a widely employed computational technique that

makes it possible to handle the inconsistency of experimental data. This method is

easily implemented with the help of computers, and good least-squares software is

available.

There is extensive literature on the method of least squares, and it has been well

studied. It is known that the estimates obtained with this method satisfy the re-

quirements for estimates from Sect. 3.2 only if all the errors in the measurements

are random and normally distributed. Nevertheless, the method of least squares is

widely employed, because it is simple and in general, the biasness of the estimates

obtained is usually not significant even when the above condition does not hold.

Moreover, in measurement practice, the least-squares method is also used to reduce

the systematic errors if the measurement experiment can be organized in such a way

that different measurements of the same quantities have different systematic errors.

An alternative to the least-squares method is the method of minimizing the sum

of absolute deviations. This method is even more intuitive than the method of the

least squares although it involves more complex calculations. While the advent of

computers has made the complexity of calculations irrelevant, it is still seldom used.

An example of simultaneous measurements is finding the parameters of the equa-

tion that expresses the temperature dependence of an accurate measuring resistor:

R D R20 C a.t � 20/C b.t � 20/2;
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whereR is the resistance of the resister, t is its temperature,R20 is the resistance of

the resistor at t D 20ıC, and a and b are the temperature coefficients. By measuring

simultaneouslyR and t and by varying the temperature, we obtain several equations,

from which it is necessary to find R20 and the temperature coefficients. When the

number of measurements exceeds 3, we cannot find an unambiguous solution, and

the least-squares method can be used to find the estimates of the parameters.

Because both combined and simultaneous measurements utilize the method of

least squares, and the technique is exactly the same in both cases, for brevity, we

will use the term “combined measurements” in this chapter to refer to both these

types of measurements. We shall now discuss the method of least squares because

of its importance to combined measurements and because understanding its basic

ideas is necessary to use this method properly.

We can write the basic measurement equation of the combined measurement in

the general form

F.A; B; C; : : : ; x; y; z; : : :/ D l; (6.1)

where x; y; z, and l are directly measured quantities, and A; B , and C are the un-

knowns to be determined.

Substituting the experimentally obtained numerical values of xi ; yi ; zi , and li
into (6.1), we obtain a series of equations of the form

F.A; B; C; : : : ; xi ; yi ; zi / D li ; (6.2)

which contain only the unknown quantities A; B , and C to be estimated and the

numerical values of the measured quantities. The quantities sought are found by

solving the obtained equations simultaneously.

An example of a combined measurement is finding the capacitances of two ca-

pacitors from the measurements of the capacitance of each one of them separately,

as well as when the capacitors are connected in parallel and in series. This method

for measuring the capacitances of the capacitors could be chosen to reduce some-

what the systematic error of the measurement, which is different at different points

of the measurement range – reducing the random component of the error could be

accomplished by simply measuring each capacitance multiple times.

Each measurement is performed with one observation, but ultimately, we shall

have four equations for the two unknown capacitances C1 and C2:

C1 D x1; C2 D x2; C1 C C2 D x3;
C1C2

C1 C C2
D x4:

Substituting into these equations the experimentally found values of xi , we obtain a

system of equations analogous to (6.2).

As we have already pointed out, the number of equations in the system (6.2)

is greater than the number of unknowns, and because of measurement errors, it is

impossible to find values of the unknowns such that all equations would be satisfied

simultaneously. For this reason, (6.2), in contrast to normal mathematical equations,

is said to be conditional equation. Because of the inaccuracy of measurements, when



6.2 Measurements with Linear Equally Accurate Conditional Equations 175

some estimates of the unknowns, QA; QB , and QC , are substituted into the conditional

equations (6.2), we do not obtain exact equalities:

F
� QA; QB; QC ; : : :

�

� li D ri ¤ 0:

The quantities ri are called residuals. The values of the unknowns that minimize

the sum of the squares of the residuals are generally recognized as the solution

of the conditional equation. This proposition was first published by Legendre and

is called Legendre’s principle. He further proposed a method of finding the solution

according to this principle; this method is now called the method of least squares.

6.2 Measurements with Linear Equally Accurate

Conditional Equations

We will first consider the case when each conditional equation is obtained under the

same conditions and either with the same instruments or the instruments of the same

accuracy. Thus, each equation can be viewed as equally accurate and be given equal

consideration in the calculation procedure.

To simplify the presentation, we shall consider the case of three unknowns. Let

the system of conditional equations have the form

Axi C Byi C C zi D li .i D 1; : : : ; n; n > 3/; (6.3)

where A; B , and C are the unknowns to be estimated, and xi ; yi ; zi , and li are the

results of the i th series of measurements and known coefficients.

In the general case, the number of unknownsm < n; if m D n, then the system

of conditional equations can be solved uniquely, although the obtained results are

burdened with errors.

If some estimates of the unknowns QA; QB; and QC are substituted into (6.3), then

we obtain the residuals

ri D QAxi C QByi C QC zi � li :

Because all equations are given equal consideration, we shall find estimates ofA; B;

and C from the condition

Q D
n
X

iD1
r2i D min :

To do so, we consider the estimates to be chosen as variables and find the values of

these estimates that minimize Q in a standard way using derivatives:

@Q

@ QA
D @Q

@ QB
D @Q

@ QC
D 0:
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We shall find these particular derivatives and equate them to 0:

@Q

@ QA
D 2

n
X

iD1

� QAxi C QByi C QC zi � li
�

xi D 0;

@Q

@ QB
D 2

n
X

iD1

� QAxi C QByi C QC zi � li
�

yi D 0;

@Q

@ QC
D 2

n
X

iD1

� QAxi C QByi C QC zi � li
�

zi D 0:

From here, we obtain a system of so-called normal equations:

QA
n
X

iD1
x2i C QB

n
X

iD1
xiyi C QC

n
X

iD1
xi zi D

n
X

iD1
xi li ;

QA
n
X

iD1
yixi C QB

n
X

iD1
y2i C QC

n
X

iD1
yi zi D

n
X

iD1
yi li ;

QA
n
X

iD1
zixi C QB

n
X

iD1
ziyi C QC

n
X

iD1
z2i D

n
X

iD1
zi li :

The normal equations are often written using Gauss’s notation:

n
X

iD1
x2i D Œxx�;

n
X

iD1
xiyi D Œxy�; and so on:

It is obvious that

n
X

iD1
xiyi D

n
X

iD1
yixi and therefore Œxy� D Œyx�:

In Gauss’s notation, the normal equations assume the simpler form

Œxx� QAC Œxy� QB C Œxz� QC D Œxl� ;

Œxy� QAC Œyy� QB C Œyz� QC D Œyl� ; (6.4)

Œxz� QAC Œyz� QB C Œzz� QC D Œzl� :

We call attention to two obvious but important properties of the matrix of coeffi-

cients of the unknowns in the system of equations (6.4):

1. The matrix of these coefficients is symmetric relative to the main diagonal.

2. All elements on the main diagonal are positive.
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These properties are general. They do not depend on the number of unknowns,

but in this example, they are shown in application to the case with three unknowns.

The number of normal equations is equal to the number of unknowns, and solving

these equations by known methods we obtain estimates of the measured quantities.

The solution can be written most compactly with the help of the determinants:

QA D Dx

D
; QB D Dy

D
; QC D Dz

D
; (6.5)

where

D D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Œxx� Œxy� Œxz�

Œyx� Œyy� Œyz�

Œzx� Œzy� Œzz�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

and the determinants Dx , Dy , and Dz are obtained from the principal determinant

D by replacing, respectively, the first, second, and third columns with the column

of free terms. For example, the determinantDx is obtained as:

Dx D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Œxl� Œxy� Œxz�

Œyl� Œyy� Œyz�

Œzl� Œzy� Œzz�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Now we must estimate the errors of the obtained results. We can do it as follows.

Each conditional equation has its own residual. The entire set of these residuals,

similar to the errors of repeated direct measurements, can be characterized by its

own variance. This variance can then serve as an indication of the accuracy of the

obtained results.

The estimate of the above variance is calculated from the formula

S2 D

n
P

iD1
r2i

n �m
; (6.6)

where ri is the residual of conditional equation i , n is the number of conditional

equations, andm is the number of unknowns. Then the estimates of the variances of

the values found for the unknowns can be calculated using the formulas

S2. QA/ D D11

D
S2; S2. QB/ D D22

D
S2; S2. QC/ D D33

D
S2; (6.7)

where D11, D22, andD33 are the algebraic complements of the elements Œxx�, Œyy�,

and Œzz� of the determinantD, respectively (they are obtained by removing from the

matrix of the determinant D the column and row whose intersection is the given

element).

The confidence intervals for the true values of the measured quantities are con-

structed in a standard way, based on Student’s distribution. In this case, the degree

of freedom for all measured quantities is equal to � D n �m.
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Sometimes unknowns are related with a strict known dependency. For example,

in measuring the angles of a triangle, we know that their sum is equal to 180ı.

Such a dependency is called a constraint. If we have n conditional equations, m

unknowns, and k constraints, and n > m � k and m > k, then k unknowns can

be eliminated from the conditional equations by expressing these unknowns by the

remaining unknowns. Next, using the method of least square, we find the estimates

of the values ofm�k unknowns and the estimates of their standard deviations. The

degree of freedom in this case will be � D n� .m� k/. We obtain the remaining k

unknowns using the constraint equations.

To find the standard deviations of these remaining unknowns, strictly speaking,

one must perform another cycle of calculations with the conditional equations, in

which the k previously excluded unknowns are retained and the other unknowns are

excluded. However, this is rarely (if ever) done, because usually a specific problem

at hand allows for a simpler method. We will see this in an example in Sect. 6.5.

6.3 Measurements with Linear Unequally Accurate

Conditional Equations

In Sect. 6.2, we studied the case in which all conditional equations could be assumed

to be equally accurate and thus were given equal weight in the calculations. In prac-

tice, there can be cases in which the conditional equations have different accuracy,

which usually happens if equations reflecting the measurements are performed un-

der different conditions. For instance, some measurements might be performed at

one temperature while others at a different temperature, leading to different addi-

tional errors.

For unequally accurate conditional equations, the estimates of the unknowns A,

B , C; : : : are obtained by minimizing the expression

Q D
n
X

iD1
gi r

2
i ;

where gi is the weight of the i th conditional equation.

The immediate question then arises: how to assign weights to the conditional

equations. Currently, the specialists conducting the measurement assign these

weights from their personal experience. Obviously, such an approach is objection-

able because of its subjectivity. It would be desirable to have a systematic solution

using objective indications of the accuracy of measurements.

One could in principle imagine such an objective method along the following

lines. If we view the residual of each conditional equation as its error, we could

use the variance of the residual as the indication of its accuracy. Let us refer to the

variance of the residual of a conditional equation as the variance of the conditional

equation for short.
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Pretend for a moment that the variances �2i of the conditional equations are

known. Then the weights of these equations could be obtained from the conditions:

Xn

iD1
gi D 1;

g1 W g2 W � � � W gn D 1

�21
W 1

�22
W � � � W 1

�2n
:

(The notation in the second line means that the pair-wise ratios of the weights should

be equal to the ratios of the reverses of the corresponding variances.) Thus, the

weights are

gi D
1=�2i
n
P

iD1
1=�2i

:

Unfortunately, the variances of the conditional equations are unknown. One can

resolve this situation when there are a large number of conditional equations. In

this case, one can often divide them into groups of equations with equal accuracy.

Assume that each such group has more equations than there are unknowns. Then, for

each group in isolation, one can obtain the estimate of the variance of their residuals

as we did in Sect. 6.2 [see formula (6.6)]. Note that, in applying (6.6), the number of

unknowns remains the same as in the overall system of equations and the number of

conditional equations n is the number of equations in the group. Once the variance

of the residuals in a group is found, this variance is assigned to all equations in the

group.

We now assume that the weights are known. The introduction of weights is equiv-

alent to multiplying the conditional equations by
p
gi . Further, the cofactors gi will

appear in the coefficients of the unknowns in the normal equations. For example,

the first equation of the system of normal equations (6.4) will assume the form:

Œgxx� QAC Œgxy� QB C Œgxz� QC C Œgxl� D 0;

where each coefficient in the above equation is a sum of terms of the form

Œgxy� D g1x1 y1 C g2x2 y2 C � � � C gnxnyn:

The remaining equations in the system (6.4) will change analogously. After these

transformations, the further solution of the problem proceeds in the manner de-

scribed in Sect. 8.2, and finally we obtain estimates of the measured quantities and

their standard deviations.
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6.4 Linearization of Nonlinear Conditional Equations

For several fundamental reasons, the method of least squares has been developed

only for linear conditional equations. Therefore, the cases with nonlinear conditional

equations require transformation of the conditional equations into a linear form.

The general method for doing this task is based on the assumption that the in-

compatibility of the conditional equations is small; i.e., their residuals are small.

Then, taking from the system of conditional equations as many equations as there

are unknowns and solving them, we find the initial estimates of the unknowns A0,

B0, C0. Next, assuming that

A D A0 C a; B D B0 C b; C D C0 C c;

we substitute these expressions into the conditional equations. Let

F.A0 C a; B0 C b; C0 C c/ D li

be the resulting conditional equations. We expand these equations in Taylor series

and, retaining only terms with the first powers of the corrections a, b, and c, obtain

F .A0; B0; C0/� li C
�

@F

@A

�

.A0;B0 ;C0/
� aC

�

@F

@B

�

.A0;B0 ;C0/
� b C

�

@F

@C

�

.A0;B0 ;C0/
� c D 0:

In the above equation, the partial derivatives are found at point .A0; B0; C0/: we

differentiate the functions F.A;B;C / with respect to A, B , and C , respectively,

and substitute A0, B0, and C0 into the obtained formulas to find their numerical

values. In addition,

F .A0;B0;C0/� li D ri ¤ 0:

Thus, we have a system of linear conditional equations for a, b, and c. We can now

use the method of least squares to find their estimates, Qa; Qb; and Qc, and standard

deviations. Then

QA D A0 C Qa; QB D B0 C Qb; QC D C0 C Qc:

As A0, B0, and C0 are nonrandom quantities, S2
� QA
�

D S2 . Qa/, S2
� QB
�

D S2
�

Qb
�

,

and S2
� QC
�

D S2 . Qc/. In principle, once QA; QB , and QC have been obtained, we can

repeat the above calculations with these values, instead of A0, B0, and C0, as the

current estimates to construct the second approximation, and so on.

In addition to the above method of linearization of the conditional equations, one

can also use the method of substitutions. If, for example, a conditional equation has

the form

yi D xi sinAC zi e
�2B ;
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where x, y, and z are directly measured quantities, andA andB must be determined,

then the substitution

U D sinA; E D e�2B

can be made. Then we obtain the linear conditional equation

yi D xiU C zi E:

The solution of these equations gives QU and QE and the estimates of their variances,

which can then be used to find the required quantities A and B .

The method of substitutions is convenient, but it is not always applicable. In prin-

ciple, one can imagine one other general method for solving a system of equations

when the number of equations is greater than the number of unknowns. This method

is as follows.

Take from the available conditional equations a group of equations such that their

number is equal to the number of unknowns. Such a group gives a definitive value

for each unknown. Next, replacing in turn the equations in the group by each of

the other equations that were not in the group, we obtain other values of the same

unknowns. For each possible combination, the values of the unknowns can be found.

As a result of such calculations, we produce a set of values for each unknown, which

could be regarded as the group of observations obtained with direct measurements.

This method seems intuitive and attractive, but, unfortunately, it is incorrect. The

problem is that the sets of values obtained for the unknowns are not independent.

This presents difficulties in estimating the variances of the obtained estimates for

the unknowns.

6.5 Examples of the Application of the Method of Least Squares

The examples below are presented to demonstrate the computational technique as

well as the physical meaning of the method. For this reason, these examples were

chosen so that the calculations would be as simple as possible. The initial data for the

examples are taken from [37]. Note that, strictly speaking, the examples presented

here are not combined or simultaneous measurements because all the parameters

in the equations involved are known. These are rather examples where one uses

the least square method to reconcile multiple measurements of several measurands

whose values are constrained by known dependencies.

Example 6.1. Determine the angles of a trihedral prism. Each angle is measured

three times. The measurements of all angles are equally accurate. The results of all

single measurements are as follows:

x1 D 89ı550; y1 D 45ı50; z1 D 44ı570;

x2 D 89ı590; y2 D 45ı60; z1 D 44ı550;

x3 D 89ı570; y3 D 45ı50; z3 D 44ı580;
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We have three unknowns – the angles – and each measurement produces one

conditional equation, relating one of the unknowns to its measurand. Thus, denoting

the unknown angles as A, B , and C , we have the system of nine conditional

equations:

A D 89ı550; B D 45ı50; C D 44ı570;

A D 89ı590; B D 45ı60; C D 44ı550;

A D 89ı570; B D 45ı50; C D 44ı580:

If each angle is found as the arithmetic mean of the corresponding observations,

then we obtain

A0 D 89ı570; B0 D 45ı5:330; C0 D 44ı56:670;

The sum of the angles of the triangle must satisfy the constraint A C B C C D
180ı. However, we obtain A0 CB0 CC0 D 179ı590. This discrepancy is the result

of measurement errors. The values of the estimates must be changed so that the

constraint is satisfied.

We now proceed to the solution of the problem. To simplify the calculations, we

shall assume that

A D A0 C a; B D B0 C b; C D C0 C c;

and we shall find the values of the corrections a, b, and c.

The system of conditional equations transforms into the following system:

a D �20; b D �0:330; c D C0:330;

a D C20 b D C0:670; c D �1:670;

a D 00; b D �0:330; c D C1:330:

The constraint equation will assume the form

A0 C aC B0 C b C C0 C c D 180ı:

Therefore

aC b C c D 180ı � 179ı 590 D 10:

We exclude c from the conditional equations using the relation

c D 10 � a � b;

We thus obtain the following system of conditional equations:

1 � a C 0 � b D �20; 0 � a C 1 � b D �0:330; 1 � a C 1 � b D C0:670;
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1 � a C 0 � b D C20; 0 � a C 1 � b D C0:670; 1 � a C 1 � b D C2:670;

1 � a C 0 � b D 00; 0 � a C 1 � b D �0:330; 1 � aC 1 � b D �0:330:

We now construct the system of normal equations. Its general form will be

Œxx� a C Œxy�b D Œxl�;

Œxy� aC Œyy�b D Œyl�:

Here, we obtain:

Œxx� D 1C 1C 1C 1C 1C 1 D 6;

Œxy� D 1C 1C 1 D 3;

Œyy� D 1C 1C 1C 1C 1C 1 D 6;

Œxl� D �20 C 20 C 0:670 C 2:670 � 0:330 D C30;

Œyl� D �0:330 C 0:670 � 0:330 C 0:670 C 2:670 � 0:330 D C30:

Therefore, the normal equations will assume the form

6aC 3b D 30; 3aC 6b D 30:

In accordance with the relations (6.5), we calculate

D D
ˇ

ˇ

ˇ

ˇ

6 3

3 6

ˇ

ˇ

ˇ

ˇ

D 36 � 9 D 27;

Da D
ˇ

ˇ

ˇ

ˇ

30 3

30 6

ˇ

ˇ

ˇ

ˇ

D 180 � 90 D 90:

Db D
ˇ

ˇ

ˇ

ˇ

6 30

3 30

ˇ

ˇ

ˇ

ˇ

D 180 � 90 D 90;

and we find

Qa D Qb D 90=27 D 0:330:

Therefore, Qc D 0:330 also.

Substituting the obtained estimates into the conditional equations, we calculate

the residuals:

r1 D 2:330 r4 D 0:670 r7 D 0

r2 D 1:670 r5 D �0:330 r8 D 20

r3 D 0:330 r6 D 0:670 r9 D �10
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From (6.6), we calculate an estimate of the variance of the equations:

S2 D

n
P

iD1
r2i

n �mC k
D

9
P

iD1
r2i

9 � 2 D 14:34

7
D 2:05:

Now D11 D 6, D22 D 6, and (6.7) give

S2. Qa/ D S2. Qb/ D 6

27
� 2:05 D 0:456; S. Qa/ D S. Qb/ D 0:675:

The conditional equations are equally accurate and the estimates Qa, Qb, and Qc are

equal to one another. Therefore, we can write immediately S. Qc/ D 0:675. Finally,

we obtain QA D 89ı57:330, QB D 45ı5:670, QC D 44ı57:000, and S
� QA
�

D S
� QB
�

D
S
� QC
�

D 0:680.
We now construct the confidence interval for each angle based on Student’s dis-

tribution. The number of degrees of freedom in this case is equal to 9 � 2 D 7, and

for ˛ D 0:95, Student’s coefficient t0:95 D 2:36. Therefore, u0:95 D 2:36� 0:680 D
1:60. Thus, we obtain finally

A.0:95/ D 89ı57:30 ˙ 1:60; B.0:95/ D 45ı5:70 ˙ 1:60;

C.0:95/ D 44ı57:00 ˙ 1:60:

In the above, the notationA(0.95) means the value of A with confidence probability

0.95, the same for B and C .

Example 6.2. We shall study the example, which was presented at the beginning

of this chapter, of combined measurements of the capacitance of two capacitors.

The results of the direct measurement for the individual capacitors and for the two

capacitors connected in parallel and in series are as follows:

x1 D 0:2071�F; x2 D 0:2056�F;

x1 C x2 D 0:4111�F;
x1x2

x1 C x3
D 0:1035�F:

The last equation is nonlinear. We expand it in a Taylor series, for which we first

find the partial derivatives

@f

@C1
D C2.C1 C C2/ � C1C2

.C1 C C2/2
D C 22
.C1 C C2/2

and analogously

@f

@C2
D C 21
.C1 C C2/2

:
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As C1 � x1 and C2 � x2, we can write

C1 D 0:2070C e1; C2 D 0:2060C e2:

Note that the above expressions use 0.2070 and 0.2060 instead of original values of

0.2071 and 0.2056. This simplifies the number manipulations without sacrificing the

accuracy: because the values are close, we simply allocate the small discrepancies

to e1 and e2, respectively.

The expansion into Taylor series is done for the point with the coordinates

C1;0 D 0:2070 and C2;0 D 0:2060. We obtain

C1;0C2;0

C1;0 C C2;0
D 0:10325

�

@f

@C1

�

C1;0;C2;0

D 0:2062

.0:207C 0:206/2
D 0:249

�

@f

@C2

�

C1;0;C2;0

D 0:2072

.0:207C 0:206/2
D 0:251:

Thus, the nonlinear equation is thus linearized into 0:10325C0:249e1C0:251e2 D
0:1035, and, setting x1 D C1 and x2 D C2, the system of conditional equations

becomes

1 � e1 C 0 � e2 D 0:0001;

0 � e1 C 1 � e2 D �0:0004;
1 � e1 C 1 � e2 D �0:0019;

0:249e1 C 0:251e2 D 0:00025:

We now calculate the coefficients of the normal equations

Œxx� D 1C 1C 0:2492 D 2:062; Œxy� D 1C 0:249 � 0:251 D 1:0625;

Œyy� D 1C 1C 0:2512 D 2:063; Œxl� D �0:0004� 0:0019C 0:249

� 0:00025 D �0:001 738;
Œyl� D �0:0004� 0:0019C 0:251 � 0:00025 D �0:002 237:

The normal equations will be

2:062e1 C 1:0625e2 D �0:001 738;
1:0625e1 C 2:063e2 D �0:002 237:

We now find the unknowns e1 and e2. According to (6.5), we calculate

D D
ˇ

ˇ

ˇ

ˇ

2:062 1:0625

1:0625 2:063

ˇ

ˇ

ˇ

ˇ

D 3:125;
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Dx D
ˇ

ˇ

ˇ

ˇ

�0:001738 1:0625

�0:002 237 2:063

ˇ

ˇ

ˇ

ˇ

D �0:001 22;

Dy D
ˇ

ˇ

ˇ

ˇ

2:062 �0:001 738
1:0625 �0:002 237

ˇ

ˇ

ˇ

ˇ

D �0:002 75:

From here we find

e1 D Dx

D
D �0:000 39; e2 D Dy

D
D �0:000 88:

Therefore,

QC1 D 0:2070� 0:000 39 D 0:206 61�F;

QC2 D 0:2060 D 0:000 88 D 0:205 12�F:

We find the residuals of the conditional equations by substituting the estimates

obtained for the unknowns into the conditional equations:

r1 D 0:00049; r3 D �0:00063;
r2 D 0:00058; r4 D 0:00048:

Now we can use formula (6.6) to calculate an estimate of the variance of the

conditional equations:

S2 D

4
P

iD1
r2i

4 � 2
D 120 � 10�8

2
D 6 � 10�7:

The algebraic complements of the determinant D will be D11 D 2:063 and

D22 D 2:062. As D11 � D22,

S2. QC1/ D S2. QC2/ D D11

D
S2 D 2:063

3:125
� 6 � 10�7 D 4 � 10�7;

S. QC1/ D S. QC2/ D 6:3 � 10�4�F:

6.6 General Remarks on Determination of the Parameters

in Formulas from Empirical Data

The purpose of almost any investigation in natural science is to find regularities in

the phenomena in the material world, and measurements provide objective data for

achieving this goal.

It is desirable to represent the dependencies between physical quantities deter-

mined from measurements in an analytic form, i.e., in the form of formulas. The
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initial form of the formulas is usually established based on an informal analysis of

the collection of data obtained. One important prerequisite of the analysis is the as-

sumption that the dependence sought can be expressed by a smooth curve; physical

laws usually correspond to smooth curves. Once the form of the formula is chosen,

its parameters are then found fitting the corresponding curve into the empirical data,

and this is most often done by the method of least squares.

This problem is of great importance, and many mathematical and applied studies

are devoted to it. We shall discuss some aspects of the solution of this problem that

are related to the application of the method of least squares. The application of this

method is based on the assumption that the acceptable optimality criterion for the

parameters sought is that the sum of squares of the deviations of the empirical data

from the curve obtained be minimized. This assumption is often justified, but not

always.

For example, sometimes the curve must be drawn so that it exactly passes through

all prescribed points; this is a natural requirement if the coordinates of the points are

known to be exact. The problem is then solved by the methods of the interpolation

approximation, and it is known that the degree of the interpolation polynomial will

be one less than the number of fixed points. Sometimes the maximum deviation

of the experimental data from the curve, rather than the sum of the squares of the

deviations, is minimized.

As we have pointed out, however, most often the sum of the squares of the in-

dicated deviations is minimized using the least squares method. For this purpose,

all measured values for the quantities (in physically justified combinations) are sub-

stituted successively into the chosen formula, resulting in a system of conditional

equations. The conditional equations are then used to construct the normal equa-

tions; the solution of the latter gives the values sought for the parameters. Next,

substituting the values obtained for the parameters into the conditional equations,

the residuals of these equations can be found and the standard deviation of the con-

ditional equations can be estimated from them (assuming the equations are of equal

accuracy).

It is significant that in this case, the standard deviation of the conditional equa-

tions is determined not only by the measurement errors but also by the imperfect

structure of the formula chosen to describe the dependence sought. For example, it

is well known that the temperature dependence of the electric resistance of many

metals is reminiscent of a parabola. In engineering, however, it is often found that

some sections of this dependence can be approximated by a linear function. The

inaccuracy of the chosen formula, naturally, is reflected in the standard deviation

of the conditional equations. Even if all experimental data were free of any errors,

the standard deviation would still be nonzero. Thus, in this case, the standard de-

viation characterizes not only the error of the conditional equations, but also that

the empirical formula adopted does not correspond to the true relation between the

quantities.

It follows from this discussion that the estimates of the variances of the parame-

ters obtained by the above method become virtual in the sense that they characterize

not only the random spread in the experimental data, as usual, but also the inaccu-

racy of the approximation, which is nonrandom.
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6.7 Construction of Transfer Functions of Measuring

Transducers

We now turn to one particularly important application of the least squares method,

the construction of the transfer functions (sometimes also referred to as calibration

curves) for measuring transducers and instruments. These curves are a common

way in which the results of the calibration of these devices are presented. We shall

discuss the problem of constructing linear transfer functions, which are most often

encountered in practice.

In a linear transfer function, the relation between a quantity y at the output of a

transducer and the quantity x at its input is expressed by the dependence

y D a C bx: (6.8)

When calibrating the transducer, the values of fxi g, i D 1; : : : ; n, in the range

Œxmin; xmax� are applied to its input, and the corresponding output values fyig are

found. Using these data, we have to estimate the coefficients a and b.

Let us start with the least-squares method. Equation (6.8) gives a system of n

conditional equations

bxi C a � yi D ri :

Following the least-squares scheme presented above, we obtain the system of

normal equations

b

n
X

iD1
x2i C a

n
X

iD1
xi D

n
X

iD1
xiyi ; b

n
X

iD1
xi C na D

n
X

iD1
yi : (6.9)

The principal determinant of the system (6.9) will be

D D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
P

iD1
x2i

n
P

iD1
xi

n
P

iD1
xi n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D n

n
X

iD1
x2i �

 

n
X

iD1
xi

!2

:

The determinantDx is given by

Dx D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
P

iD1
xiyi

n
P

iD1
xi

n
P

iD1
yi n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D n

n
X

iD1
.xiyi / �

n
X

iD1
xi

n
X

iD1
yi :
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From here we find an estimate of the coefficient b:

Qb D Dx

D
D
n

n
P

iD1
xiyi �

n
P

iD1
xi

n
P

iD1
yi

n
n
P

iD1
x2i �

�

n
P

iD1
xi

�2
D

n
P

iD1
xiyi � n Nx Ny

n
P

iD1
x2i � n. Nx/2

:

It is not difficult to show that

n
X

iD1
xiyi � n Nx Ny D

n
X

iD1
.xi � Nx/.yi � Ny/ (6.10)

and that
n
X

iD1
x2i � n Nx2 D

n
X

iD1
.xi � Nx/2: (6.11)

Then the expression for Qb assumes the simpler form

Qb D

n
P

iD1
.xi � Nx/.yi � Ny/

n
P

iD1
.xi � Nx/2

: (6.12)

The determinantDy is given by

Dy D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
P

iD1
x2i

n
P

iD1
xiyi

n
P

iD1
xi

n
P

iD1
yi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D n Ny
n
X

iD1
x2i � n Nx

n
X

iD1
xiyi :

Therefore,

Qa D Dy

D
D
n Ny

n
P

iD1
x2i � n Nx

n
P

iD1
xiyi

n
n
P

iD1
x2i � n2. Nx/2

Using the identity (6.11), we put the estimate Qa into the form

Qa D
Ny
n
P

iD1
x2i � Nx

n
P

iD1
xiyi

n
P

iD1
.xi � Nx/2

(6.13)
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Relations (6.12) and (6.13) solve the problem of determining the transformation

function

y D Qa C Qbx: (6.14)

We now evaluate the uncertainty of the above solution. From the experimental data

and the obtained estimates Qa and Qb, we find the residuals of the conditional equations

ri D Qa C Qbxi � yi :

Next, according to the general scheme of the least-squares method, we calculate the

estimate of variance of the conditional equations using (6.6),

S2 D

n
P

iD1
r2i

n � 2 ;

and estimates of the variances of Qa and Qb using (6.7). Finally, we find the confidence

limits ua and ub , which represent the uncertainty of the two parameters. As pointed

out above, the confidence limits are constructed based on Student’s distribution with

n�2 degrees of freedom in our case, because the confidence limits of two parameters

are being determined.

The above confidence limits allow one to construct the so-called uncertainty band

for the transfer function of the transducer. This band is depicted in Fig. 6.1. The band

of uncertainty determines the range of possible transfer functions for the transducer.

Line of the upper

uncertainty limit

Line of the lower

uncertainty limit

y 

yo+uy 

yo–uy 

xmin xmaxx
o,l

l lx
o,l

x
o

x
o,r

x
o,r x

yo

y =bx+a 

y =(b+ub)x+(a+ua)

y =(b–ub)x+(a–ua)

Line of the

transfer function

Fig. 6.1 Linear transfer function for the range Œxmin; xmax� and its band of uncertainty
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It can be used to determine the accuracy of measurements obtained with the mea-

suring transducer as follows.

When working with measuring transducers the dependence x D f .y/ and not

y D '.x/ is typically required: we need to obtain the value of the input signal

by the observed value of the output signal. Consider a transducer with the band of

uncertainty in Fig. 6.1 and let the observed signal be yo. Assuming that the observed

output value could be read precisely, the confidence interval for the input signal,
�

xo;l ; xo;r
�

, is determined by the intersections of the horizontal line y D yo with

the boundaries of the band of uncertainty.

If the output value itself is read with an uncertainty, yo ˙ uy , then the confidence

interval can be conservatively obtained as
h

x0
o;l
; x0
o;r

i

in Fig. 6.1. This confidence

interval is conservative because is it not likely that both the output signal and the

transfer function reach their respective boundary values simultaneously.

Note that the confidence intervals for the input value obtained above are not

symmetrical around the “middle” value xo given by the line of the transfer function.

In practice, however, the band of uncertainty is narrow, and for narrow bands this

asymmetry is negligible.

The least-squares method is not the only technique to construct a linear depen-

dency between two measured quantities. In many cases, one can also build a linear

dependency and its uncertainty band using the theory of indirect measurements. We

discuss this last approach below.

During the calibration of transducers, it is common to obtain the output signal

for the zero value of the input signal; this often corresponds to marking the initial

value of the output indication of the transducer when no input signal is applied.

Furthermore, this measurement can usually be viewed as precise compared to the

other measurements: while other values of the input signal must be obtained from

some device with certain accuracy, the absence of the signal corresponds to the true

zero value. Then, for x D 0, (6.8) gives Qa D y0, where y0 is the corresponding

output value.

Consider that we now have an estimate Qa of the coefficient a. Then (6.8) can be

transformed into the form

b D y � Qa
x

:

This equation can be viewed as the measurement equation for the indirect mea-

surement of the measurand b using the measuring arguments x and y. Because the

values of y depend on the values of x, it is a dependent indirect measurement.

Calibration provides us with n pairs of xi , yi . Using the method of reduction, we

transform this set of fxi ; yi g into a set fbig, i D 1; : : : ; n, which allows us to obtain

the estimate of the coefficient b; Qb D Nb, and its variance S
� Nb
�

. The uncertainty of

coefficient b is determined using Student’s distribution:

ub D tqS
� Nb
�

;
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where tq is the Student coefficient for a given confidence probability and the degree

of freedom n � 1. With this uncertainty, one can draw the transfer function and its

band of uncertainty similar to Fig. 6.1. The only difference in this case is that the

curves are constructed for interval Œ0; xmax� and all three curves converge to the same

point y D Qa on the y-axis.

We should note that the above application of the method of reduction assumes

that all conditional equations are of equal accuracy, that is, all values of the input

signal, fxig, are set with the same relative accuracy, and all values of the output sig-

nal, fyig, are measured also with the same relative accuracy. Otherwise calculations

of the estimate Qb and its variance would be more complex and less accurate (one

would have to calculate Qb as a weighted average of fbig; we omit further details).

Finally, it is useful to mention that during calibration, one should utilize diverse

values of the input signal rather than perform repeated measurements of the output

signal at the same value of the input. Indeed, in the latter case, the observed spread

of values fbig would characterize only one point in the transfer function and would

not reflect the properties of the device in its entire range.



Chapter 7

Combining the Results of Measurements

7.1 Introductory Remarks

Measurements of the same quantity are often performed in different laboratories

and, therefore, under different conditions and by different methods. Sometimes there

arises the problem of combining these measurement data to find the most accurate

estimate of the measured quantity.

In many cases, in the investigation of new phenomena, measurements of the

quantities involved take a great deal of time. By grouping measurements performed

over a limited time, intermediate estimates of the measurand can be obtained in the

course of the measurements. It is natural to find the final result of a measurement by

combining the intermediate results.

These examples show that the problem of combining the results of measurements

is of great significance for metrology. At the same time, it is important to distinguish

situations in which one is justified in combining results from those in which one

is not justified in doing so. It is pointless to combine results of measurements of

quantities that in their essence have different magnitude.

We should note that when comparing results of measurements, the data analysis

is often performed based on the intuition of the experimenters without using formal-

ized procedures. It is interesting that in the process, as a rule, the correct conclusions

are drawn. On the one hand, this indicates that modern measuring instruments are

of high quality and on the other hand that the experimenters, who by estimating the

errors determine all sources of error, are usually highly qualified.

7.2 Theoretical Principles

The following problem has a mathematically rigorous solution. Consider L groups

of measurements of the same quantity A. Estimates of the measurand Nx1; : : : ; NxL
were made from the measurements of each group, and

E Œ Nx1� D � � � D EŒ NxL� D A:

S.G. Rabinovich, Evaluating Measurement Accuracy: A Practical Approach,

DOI 10.1007/978-1-4419-1456-9 7, c
 Springer Science+Business Media, LLC 2010
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The variances of the measurements in each group �21 ; : : : ; �
2
L and the number of

measurements in each group n1; : : : ; nL are known. The problem is to find an

estimate of the measured quantity based on data from all groups of measurements.

This estimate is denoted as NNx and is called the combined average. Because the com-

bined average is commonly obtained as a linear combination of group averages, it

is often referred to as the weighted mean.

We shall seek NNx as a linear combination of f Nxj g, that is, as their weighted mean:

NNx D
L
X

jD1
gj xj : (7.1)

Therefore, the problem reduces to finding the weights gj . As E
�

Nxj
�

D A for all j ,

and we obviously want E
� NNx
�

D A , we obtain from (7.1)

EŒ NNx� D E

2

4

L
X

jD1
gj Nxj

3

5 D
L
X

jD1
gjEŒ Nxj �; A D A

L
X

jD1
gj :

Therefore,
L
X

jD1
gj D 1 (7.2)

Next, we require that NNx be an efficient estimate ofA; that is, V Œ NNx�must be minimum.

V Œ NNx� can be found using the formula

V Œ NNx� D V

2

4

L
X

jD1
gj Nxj

3

5 D
L
X

jD1
g2jV Œ Nxj � D g21�

2. Nx1/Cg22�2. Nx2/C� � �Cg2L�2. NxL/:

(7.3)

We shall now find the weights gj under which V Œ NNx� reaches a minimum. Using

the condition (7.2), we substitute gL D 1 � g1 � g2 � � � � � gL�1 into (7.3), and

then differentiate the resulting expression with respect to each gj and equate each

derivative to 0:

2g1�
2. Nx1/ � 2.1� g1 � g2 � � � � � gL�1/�

2. NxL/ D 0;

2g2�
2. Nx2/ � 2.1� g1 � g2 � � � � � gL�1/�

2. NxL/ D 0;

� � �
2gL�1�

2. NxL�1/ � 2.1� g1 � g2 � � � � � gL�1/�
2. NxL/ D 0;

As the second term is identical in each equation, we obtain

g1�
2 . Nx1/ D g2�

2 . Nx2/ D � � � D gL�1�
2 . NxL�1/ :

Furthermore, if instead of gL we eliminated another weighting coefficient from

(7.3), we would have included the similar term with gL into the above relation.
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Thus, we arrive at the following condition:

g1�
2 . Nx1/ D g2�

2 . Nx2/ D � � � D gL�
2 . NxL/ ;

or equivalently,

g1 W g2 W � � � W gL D 1

�2. Nx1/
W 1

�2. Nx2/
W � � � W 1

�2. NxL/
: (7.4)

The relations (7.2) and (7.4) represent two conditions for the weights to compute the

combined average. To find weight gj , it is necessary to know either the variances of

the arithmetic means or the ratio of the variances. If we have the variances �2 . Nx1/,
then we can set g0

j D 1=�2. Nx1/. We then obtain

gj D
g0
j

L
P

jD1
g0
j

: (7.5)

As the weights are nonrandom quantities, it is not difficult to determine the variance

for NNx. According to relation (7.3), we have

V Œ NNx� D
L
X

jD1
g2jV Œ Nxj �D

L
P

jD1

�

g0
j

�2

V Œ Nxj �
 

L
P

jD1
g0
j

!2
D

L
P

jD1

�

1
�2. Nxj /

�2

�2. Nxj /
 

L
P

jD1
1

�2. Nxj /

!2
D 1

L
P

jD1
1

�2. Nxj /

:

(7.6)

Let us now consider an important particular case when the variances (7.6) of the

measurements are the same for all groups, although their estimates might still be

different because the number of observations in the groups may be different. In this

case, one can combine the measurements of all groups into one large group of mea-

surements. The number of measurements in the combined group is N D
PL
jD1 nj ,

and the combined average will be

NNx D

L
P

jD1

nj
P

iD1
xji

N
: (7.7)

Expanding the numerator gives

NNx D .x11 C x12 C � � � C x1n1
/C .x21 C x22 C � � � C x2n2

/C � � �
N

D n1 Nx1 C n2 Nx2 C � � � C nL NxL
N

D
L
X

jD1
gj Nxj ;
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where gj is the weight of the j th arithmetic mean:

gj D nj =N: (7.8)

The standard deviation of the weighted mean in this case (i.e., when measurement

results in each group have equal variances) can be estimated by considering the

weighted mean as the average of the combined group of all the measurements:

S2. NNx/ D

N
P

kD1
.xk � NNx/2

N.N � 1/
:

We gather the terms in the numerator by groups

S2. NNx/ D

L
P

jD1

nj
P

iD1
.xji � NNx/2

N.N � 1/

and perform simple transformations of the numerator to simplify the calculations:

L
X

jD1

nj
X

iD1
.xji � NNx/2 D

L
X

jD1

nj
X

iD1
.xji � Nxj C Nxj � NNx/2

D
L
X

jD1

nj
X

iD1
.xji � Nxj /2 C 2

L
X

jD1

nj
X

iD1
.xji � Nxj /. Nx � NNx/

C
L
X

jD1

nj
X

iD1
. Nxj � NNx/2:

The second term in the last expression is equal to zero, because by virtue of the

properties of the arithmetic mean,
Pnj

iD1
�

xji � Nxj
�

D 0. For this reason,

S2. NNx/ D 1

N.N � 1/

0

@

L
X

jD1

nj
X

iD1
.xij � Nxj /2 C

L
X

jD1

nj
X

iD1
. Nxj � NNx/2

1

A :

Note that
nj
X

iD1

�

xji � Nxj
�2 D nj

�

nj � 1
�

S2
�

Nxj
�

;

where S2
�

Nxj
�

is the estimate of the variance of arithmetic mean of the j th group,

or, equivalently,

S2
�

Nxj
�

D 1

nj
�

nj � 1
�

nj
X

iD1

�

xji � Nxj
�2
:
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Further,
nj
X

iD1

�

Nxj � NNx
�2 D nj

�

Nxj � NNx
�2
:

Thus, we obtain

S2
� NNx
�

D 1

N .N � 1/

2

4

L
X

jD1

�

nj � 1
�

njS
2
�

Nxj
�

C
L
X

jD1
nj
�

xj � NNx
�2

3

5 : (7.9)

Equation (7.9) can be expressed differently. MovingN in the denominator inside

the square brackets, we have

S2
� NNx
�

D 1

N � 1

2

4

L
X

jD1

�

nj � 1
� nj

N
S2
�

Nxj
�

C
L
X

jD1

nj

N

�

Nxj � NNx
�2

3

5 :

Finally, using (7.8), we obtain:

S2
� NNx
�

D 1

N � 1

2

4

L
X

jD1
gj
�

nj � 1
�

S2
�

Nxj
�

C
L
X

jD1
gj
�

Nxj � NNx
�2

3

5 : (7.10)

The first term in the above formula characterizes the spread in the measurements

within groups, and the second term characterizes the spread of the arithmetic means

of the groups.

7.3 Effect of the Error of the Weights on the Error

of the Weighted Mean

Looking at (7.1) determining the weighted mean, one would think that, because the

weights gj and the weighted values of Nxj appear in it symmetrically, they must

be found with the same accuracy. In practice, however, the weights are usually ex-

pressed by numbers with one or two significant figures. How is the uncertainty of

the weights reflected in the error of the weighted mean?

We shall consider weights gj in (7.1) to be fixed, constant values. In addition, as

usual, we shall assume that the weights add up to one [that is, condition (7.2) holds].

This condition is also satisfied for the inaccurately determined weight estimates, that

is, for Qgj . Therefore,
L
X

jD1
�gj D 0;

where �gj is the error in determining the weight gj .



198 7 Combining the Results of Measurements

Assuming that the exact value of the weighted mean is y, we estimate the error

of its estimate:

�y D
L
X

jD1
Qgj Nxj �

L
X

jD1
gj Nxj D

L
X

jD1
�gj Nxj :

We shall express�g1 with the other errors:

�g1 D �.�g2 C � � � C�gL/

and substitute it into the expression for y:

�y D . Nx2 � Nx1/�g2 C . Nx3 � Nx1/�g3 C � � � C . NxL � Nx1/�gL

or in the form of relative error

�y

y
D
g2. Nx2 � Nx1/�g2

g2
C � � � C gL. NxL � Nx1/�gL

gL

L
P

jD1
gj Nxj

:

The errors of the weights �gj =gj are unknown. But let us assume that we can

estimate their limits, and let �g=g be the largest absolute value of these limits.

Replacing all relative errors �gj =gj with �g=g, we obtain the upper limit of the

relative error of the weighted mean:

�y

y
� �g

g

0

B

B

B

@

Œjg2. Nx2 � Nx1/C g3. Nx3 � Nx1/C � � � C gL. NxL � Nx1/j�
L
P

jD1
gj Nxj

1

C

C

C

A

:

The numerator on the right-hand side of the inequality can be put into the fol-

lowing form:

g2. Nx2 � Nx1/C g3. Nx3 � Nx1/C � � � C gL. NxL � Nx1/
D g2 Nx2 C g3 Nx3 C � � � C gL NxL � .g2 C g3 C � � � C gL/ Nx1:

But g2 C g3 C � � � C g2 D 1 � g1, so that

g2. Nx2 � Nx1/C g3. Nx3 � Nx1/C � � � C gL. NxL � Nx1/ D
L
X

jD1
gj Nxj � Nx1 D y � Nx1:

Thus,
�y

y
� �g

g

jy � Nx1j
y

:
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It is obvious that if the entire derivation is repeated, but in so doing the error not

in the coefficient g1 but in some other weight is eliminated, then a weighted value

other than Nx1 will appear on the right-hand side of the inequality. Therefore, the

above inequality holds for every Nxj ; the obtained result can be represented in the

form
� NNx
NNx

� �g

g

j NNx � Nxj j
NNx

:

This inequality shows that the error introduced into the weighted mean as a result

of the error of the weights is many times smaller than the error of the weights itself.

The cofactor
ˇ

ˇ NNx � Nxj
ˇ

ˇ

ı NNx can be assumed to be of the same order of magnitude as

the relative error of the measurement results Nxj produced by each group. Thus, if

this error is of the order of 0.01, then the error introduced into the weighted mean as

a result of the error of the weights will be at least 100 times smaller than the latter.

7.4 Combining the Results of Measurements

with Predominately Random Errors

We shall now study a scenario of combining measurement results where measure-

ments in each group have negligibly small systematic errors. Each result being

combined in this case is usually the arithmetic mean of the measurements in the

corresponding group, and the differences between them are explained by the ran-

dom spread of the averages of the groups.

Before attempting to combine these results, one must verify that the same

quantity is measured in each case and there are no systematic shifts between the

measurement results produced by each group. This verification is equivalent to

checking that the true value of the measured quantity is the same for all groups

and is accomplished by the methods presented in Chap. 3.

It is important to note that this verification can fail for two reasons: different

quantities could have been measured in different groups or there are systematic

shifts between the means of the groups. In the former case, it is pointless to com-

bine the measurements. In the latter case the measurements can still be combined

but with the help of another method, which we will discuss in the next section. The

distinction between these two causes of verification failure must be clear from the

physical essence of the measurement and its purpose; one cannot draw this distinc-

tion from statistical methods.

Only if the data pass the above verification can we combine the measurements

by applying the approach from Sect. 7.2. Indeed, the absence or negligible size of

the systematic errors is a necessary condition for the validity of this approach. One

may notice that our verification only checks for the absence of the systematic shift

between the groups, not the absence of the systematic errors themselves. This is

inevitable; if measurements in all the groups have the same systematic error, this er-

ror is impossible to detect with statistical methods and it will also be present in the
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combined measurement result. Fortunately, this situation rarely occurs in practice.

Recall that different groups of measurements are typically collected in different lab-

oratories. Any systematic error that is so pervasive that it is the same across all the

laboratories is likely to have been eliminated during calibration of the instruments

involved.

The theory of calculating the weighted mean of several groups of measurements

that we considered in Sect. 7.2 assumes that the variance of the measurement results

in each group is known. However, the experimental data only allow one to obtain

the estimates of these variances. Thus, one has to use the estimates in places of

true variances throughout the calculations. In particular, the variance estimate of the

weighted mean is computed by the following formula, modified from (7.6):

S2
� NNx
�

D 1

L
P

jD1
1

S2. Nxj /

: (7.11)

In the case of equal variances in all the groups, (7.9) and (7.10) already contain

estimates of the group variance, and so these formulas can be used directly. Note

that one can check if the estimates of the variances of measurement groups are the

estimates of the same variance using the methods from Chap. 3.

Given this variance estimate, the uncertainty of the weighted mean can be cal-

culated by considering the combination of the group averages as a linear indirect

measurement and thus by applying (5.19) to calculate the effective degrees of

freedom.

Example 7.1. The mass of some body is being measured. In one experiment, the

value Qm1 D 409:52 g is obtained as the arithmetic mean of n1 D 15 measure-

ments. The variance of the group of measurements is estimated to be S21 D 0:1 g2.

In a different experiment, the value Qm2 D 409:44 g was obtained with n2 D 10

and S22 D 0:03 g2. It is known that the systematic errors of the measurements are

negligibly small, and the measurement results in each experiment can be assumed

normally distributed. It is necessary to estimate the mass of the body and the vari-

ance of the result using data from both experiments.

We shall first determine whether the unification is justified, that is, whether an in-

admissible difference exists between the estimates of the measured quantity in each

group. Following the method described in Sect. 3.7,

S2. Nx1/ D S21
n1

D 0:1

15
D 0:0067; S2. Nx2/ D 0:03

10
D 0:003;

S2. Nx1 � Nx2/ D S2. Nx1/C S2. Nx2/ D 0:0097;

S. Nx1 � Nx2/ D 0:098;

Nx1 � Nx2 D Qm1 � Qm2 D 0:08:



7.5 Combining the Results of Measurements Containing Both Systematic and Random Errors 201

Assuming that the confidence probability ’ D 0:95, Table A.1 gives z 1C˛
2

D
1:96. Then, z 1C˛

2
S . Nx1 � Nx2/ D 1:96 � 0:098 D 0:19. As 0:08 < 0:19, the unifica-

tion is possible.

To decide if we can use the simpler method based on (7.8)–(7.10), we shall

check whether both groups of observations have the same variance. We do so using

Fisher’s test from Sect. 3.7. We compute:

F D S21=S
2
2 D 0:1 W 0:03 D 3:3:

The degrees of freedom are �1 D 14 and �2 D 9. We shall assume the signifi-

cance level of 2%. Then, q D 0:01 and Fq D 5 (see Table A.5). As F < Fq , it can

be assumed that the variances of the groups are equal.

We shall now find the weights of the arithmetic means. According to (7.8), we

have g1 D 15=25 D 0:6 and g2 D 10=25 D 0:4. The weighted mean is NNm D
0:6 � 409:52C 0:4 � 409:44 D 409:49 g. Next we find S

� NNm
�

. In accordance with

(7.9), we have

S2. NNm/ D 1

25 � 24.14 � 0:1C 9 � 0:03C 15 � 0:032 C 10 � 0:052/

D 28 � 10�4g2;

S. NNm/ D 5:3 � 10�2g:

Having found the variance of the combined result, we can now calculate its un-

certainty using Student’s distribution with the effective degrees of freedom obtained

from (5.19).

7.5 Combining the Results of Measurements

Containing Both Systematic and Random Errors

In a general case, measurements within groups have not just random but also sys-

tematic error. The latter is typically a conditionally constant error or a sum of several

conditionally constant errors. However, occasionally one may encounter absolutely

constant systematic errors, such as methodological errors, as well. Let us start with

considering measurements that do not have absolutely constant systematic errors.

Let us assume again that a quantity A is measured in L laboratories. Each labo-

ratory produces the result Nxj with error �j (j D 1; : : : ; L):

Nxj D AC &j :

The error �j is the sum of the conditionally constant error #j and random error

 j errors: �j D #j C  j . As discussed in Chap. 4 (Sect. 4.3), the conditionally

constant error is modeled as a uniformly distributed random quantity with limits �j ,
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which are estimated analytically from the specifications of the instruments and mea-

surement conditions: j#j j � �j . We will assume that the mathematical expectation

of this error is zero: EŒ#j � D 0. We will also assume that �j is symmetrical about

Nxj . Occasionally, one can encounter cases of asymmetrical limits; the methodology

of handling this asymmetry is given in Chap. 4.

The random error  j is assumed to be a centered quantity; that is, EŒ j � D 0.

Thus, when there are no absolutely constant errors, we have E
�

Nxj
�

D A.

To allow the unification of measurement results, each laboratory must report the

result itself, Nxj , along with the estimates of the variance of this result that is due

to the random error, S2
�

 j
�

, and the limit of the conditionally constant systematic

error �j . The former is calculated in the normal way:

S2
�

 j
�

D

nj
P

iD1

�

xji � Nxj
�2

nj
�

nj � 1
� :

The latter is equivalent to providing an estimate of the variance of this error,

S2
�

#j
�

since S2
�

#j
�

D �2j =3.

Similar to the case without systematic errors considered in Sect. 7.4, we will fol-

low the theory of combining the results of measurements using the weighted mean

while replacing variances with their estimates. As shown in Sect. 4.8, the estimate

of the combined variance of the measurement result Nxj is

S2
�

Nxj
�

D S2
�

#j
�

C S2
�

 j
�

: (7.12)

Now, the weights of the results being combined can be derived from (7.2) and

(7.4) by substituting the variances appearing in these relations with the estimates of

these variances:

gj D

1

S2.#j /C S2. j /

L
P

jD1

1

S2.#j /C S2. j /

(7.13)

Knowing the weights, we can calculate the estimate of the combined result as the

weighted mean of the results from each lab.

We shall now estimate the uncertainty of the weighted mean. In solving this

problem, because the errors of the weights are insignificant (see Sect.7.3), we shall

assume that the weights of the combined measurement results are exact. A necessary

prerequisite to find the uncertainty is to estimate the standard deviation. In princi-

ple, we accomplish this by replacing variances in (7.5) with their estimates from

(7.12). However, for subsequent calculations we will need the components of the

combined standard deviation contributed by the random and conditionally constant

systematic errors, denoted respectively as S 
� NNx
�

and S#
� NNx
�

. Thus, we will com-

pute these components and then obtain the overall standard deviation by combining

these components rather than from (7.5) and (7.12).
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Following the calculation procedure of Sect. 4.8, and taking into account the

weights, S 
� NNx
�

and S#
� NNx
�

are computed as follows:

S 
� NNx
�

D
s

L
P

jD1
g2jS

2
�

 j
�

S#
� NNx
�

D
s

L
P

jD1
g2jS

2
�

#j
�

: (7.14)

Now we can find the combined standard deviation of the weighted mean:

S
� NNx
�

D
q

S2 
� NNx
�

C S2
#

� NNx
�

: (7.15)

To move from the combined standard deviation to the uncertainty of the weighted

mean, according to (4.20), we must obtain coefficient tc : This coefficient can be

found from (4.22), which requires the coefficient t# for the systematic component

of error and the quantile tq of Student’s distribution for the random component. To

find t# we must first calculate the uncertainty of the systematic component. The

easiest way to do it is by using (4.3) with weights:

u#
� NNx
�

D k

v

u

u

t

L
X

jD1
g2j �

2
j :

Coefficient k is determined by the desired confidence probability and is found

from Table 4.1. Now we can find t# according to (4.21):

t# D
u#
� NNx
�

S#
� NNx
� :

Quantile tq of Student’s distribution can be found given the effective degrees of

freedom using (5.19), which in this case obtains the form:

�eff D

"

L
P

jD1
g2jS

2
�

 j
�

#2

L
P

jD1

�

g4jS
4
�

 j
�

=�j

�

;

where �j D nj � 1. Note that both t# and tq must be obtained for the same confi-

dence probability.

Now we can apply (4.22) to compute coefficient tc

tc D
tqS 

� NNx
�

C t#S#
� NNx
�

S 
� NNx
�

C S#
� NNx
�
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and, finally, obtain the uncertainty of the weighted mean:

uc D tcS
� NNx
�

:

We should say a few words on the possibility of absolutely constant systematic

error. If among the groups being combined there is a group with such error, then

the limit of this error must be re-calculated by taking into account the weight of

this group. For instance if the only group with such error is group number 2 and its

absolutely constant error is H2 then the absolutely constant error of the weighted

mean will be H
� NNx
�

D g2H2: If more than one group has such errors, their re-

spective limits (again recalculated according to their groups’ weights) are summed

up arithmetically as in direct and indirect measurements. Then, the resulting limit

is again summed up arithmetically with the confidence limit of the weighted mean

computed using the methodology described here.

An example of a measurement where a weighted mean is used as the estimate of

the measurand is a precise measurement of the activity of a source of alpha particles.

A detailed treatment of this example is given in Chap. 8 (Sect. 8.8).

As a final note, when the results of measurements must be combined, it is always

necessary to check the agreement between the starting data and the obtained result.

If some contradiction is discovered, for example, the combined average falls out-

side the permissible limits of error of some group, then the reason for this must be

determined and the contradiction must be eliminated. Sometimes this is difficult to

do and may require special experiments. Great care must be exercised in combining

the results of measurements because in this case information about the errors is em-

ployed to refine the result of the measurement and not to characterize its uncertainty,

as is usually done.

7.6 Combining the Results of Single Measurements

Let us now consider an important special case when each group contains only a

single measurement. In this case, the starting data include the estimates of the mea-

surand and their inaccuracy. The inaccuracy can be given in the form of the limits

of error or the uncertainty (confidence intervals) of the estimates. Our goal is to

produce the weighted mean estimate of the measurand and its inaccuracy.

We begin with the case when the inaccuracies of individual measurements are

given as limits of error. The error of each individual measurement is typically a con-

ditionally constant systematic error, which, as discussed in Sect. 4.3, can be modeled

as a random quantity with uniform distributions within its limits �j . Thus, its vari-

ance is related with the square of the limit of the distribution by a constant factor

(the former is one-third of the latter). Therefore, the weights of these measurements

can be computed to be reverse-proportionate to the squares of the corresponding
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limits of error �j rather than variances as in (7.4). Following the derivation of (7.4),

we obtain:

g0
j D 1

�2j
and gj D

g0
j

PL
jD1 g

0
j

:

Having found the weights, we compute the weighted mean in the normal way.

The inaccuracy of the weighted mean can be found using (4.3) while accounting for

the weights of the terms, that is,

�˛ D k

v

u

u

t

L
X

jD1
g2j �

2
j :

We now turn to the case when the inaccuracy of individual measurements is

represented in the form of uncertainties, or confidence intervals. Let �j˛ be the un-

certainty of j-th single measurement. We will assume that all the uncertainties were

calculated for the same confidence probability ˛. Assume that uncertainty �j˛ had

been obtained from combining the mj elementary errors involved in the j-th mea-

surement using (4.3):

�j˛ D k˛

v

u

u

t

mj
X

iD1
�2ji or

mj
X

iD1
�2ji D

�2j˛

k2˛
: (7.16)

Formula (4.5) gives the expression for the variance of j-th measurement:

�2j D 1

3

mj
X

iD1
�2ji :

Replacing the sum with its expression given in (7.16), we obtain the estimate of

the variance of j-th measurement:

S2j D
�2j˛

3k2˛
D

mj
P

iD1
�2ji

3
: (7.17)

This formula indicates that all confidence limits are equally proportional to their

corresponding variances. Then, the weights of the measurements can be computed

to be reverse-proportionate to the squares of the corresponding confidence limits,

analogously to the previous case when we used limits of error. And as in the previous

case, we can now compute the weighted mean as the estimate of the measurand.

To calculate the inaccuracy of the weighted mean, note that its standard deviation

can be computed from the standard deviations of its component as follows:

S
� NNx
�

D

v

u

u

t

L
X

jD1
g2jS

2
j ;
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or, utilizing (7.17),

S
� NNx
�

D 1p
3

v

u

u

t

L
X

jD1
g2j

mj
X

iD1
�2ji : (7.18)

To transition from the standard deviation to the confidence interval, note that the

error of the weighted mean is a linear combination of all the elementary errors across

all the single measurements. If the total number of the elementary errors,
L
P

jD1
mj,

exceeds 4, which is practically always the case, we can consider the distribution of

the weighted mean to be normal. Then, as we have seen multiple times already, the

confidence limit of the overall result will be

u˛ D z 1C˛
2
S
� NNx
�

:

In particular, z 1C˛
2

D 1:96 for ’ D 0:95 and z 1C˛
2

D 2:58 for ’ D 0:99.

We shall now discuss a particular case of single measurements when one quan-

tity is measured independently with several instruments. We need to produce the

combined measurement result and its inaccuracy.

Let the random errors of the instruments be small compared with the limit of

permissible errors. First we consider the case when the permissible errors are the

same and equal to� for all instruments. In this case, the problem can also be solved

as follows. We choose the maximum and minimum indications of the instruments:

xmax and xmin. We verify that

.xmax � xmin/ � 2�:

If inequality (7.19) is not satisfied, then one of the instruments has an inadmissi-

bly large error or the variation of some influence quantities is too large. The reason

for this phenomenon must be determined and eliminated; that is, inequality (7.19)

must be satisfied.

It is natural to take for the estimate of the measured quantity the center of the

interval xmax � xmin:

QA D xmax C xmin

2
:

Figure 7.1 illustrates the indications xmax and xmin and shows the intervals corre-

sponding to the limits of permissible errors ˙� of the corresponding instruments.

The true value of the measured quantity must lie in the intersection of these two

intervals; in the figure, this section is hatched. We will refer to this intersection as

the tolerance field.

It follows from this figure that when the left boundary of the error interval of

the upper device only abuts the right boundary of the error interval of the lower

device, xmax D xmin C 2�. This is one extreme case. The other extreme case is

when xmax D xmin. It is easy to see that in both cases the error limits of the mean

will be equal to ˙�. Only when xmax D xmin C � will the limit error be ˙�=2.



7.6 Combining the Results of Single Measurements 207

Fig. 7.1 The highest .xmax/

and lowest .xmin/ indications

of the group of the

instruments used to measure

the same quantity; the interval

of possible error of the

combined measurement result

is hatched

2

2

∆

∆

xmax

xmin

b

a

x1

x2

The likelihood of getting into this point is small. Furthermore, no matter how many

instruments are used, the tolerance field is fully determined by the two instruments

with the indications xmax and xmin. Thus, the parallel use of multiple equal accuracy

instruments is not advisable.

Now we will show on a concrete example that there is no reason to measure

the same quantity in parallel by several instruments of different accuracy. This will

illustrate a well-known assumption of metrology that the accuracy of the measure-

ment result is determined by the most accurate measuring instrument. Assume that

the voltage of some source was measured simultaneously with three voltmeters hav-

ing different accuracy but the same upper limit of the measurement range 15 V. The

measurements were performed under reference conditions. Also, the voltage source

has sufficient power for the consumption of the voltmeters to be considered negligi-

ble. The following results were obtained.

(1) Class 0.5 voltmeter: U1 D 10:05V; the limit of permissible intrinsic error

�1 D 0:075V.

(2) Class 1.0 voltmeter: U2 D 9:9V; the limit of permissible intrinsic error

�2 D 0:15V.

(3) Class 2.5 voltmeter: U3 D 9:7V, the limit of permissible intrinsic error

�3 D 0:375V.

As the measurements were performed under reference conditions, we shall

assume that the limits of permissible intrinsic error of the instruments are equal

to the limits of the errors of measurement.

Assume that the errors of the instruments of each type have a uniform

distribution. Then

�i D �i=
p
3:

We will now combine these individual measurements into the overall result. We

shall find the weights of the individual results based on the limits of intrinsic error

of the instruments:

g0
1 D 1

�21
D 1

0:25
D 4; g0

2 D 1

�22
D 1; g0

3 D 1

�23
D 1

6:25
D 0:16:



208 7 Combining the Results of Measurements

Fig. 7.2 The possible indications of voltmeters accuracy classes 2.5, 1.0 and 0.5 obtained in mea-

surements of the same voltage and the intervals of their permissible errors; the weighted mean

value is shown by the vertical line

From here,

g1 D g0
1

3
P

iD1
g0
i

D 4

5:16
D 0:77;

g2 D g0
2

3
P

iD1
g0
i

D 0:20

5:16
D 0:20; g3 D g0

3

3
P

iD1
g0
i

D 0:16

5:16
D 0:03:

Now we find the weighted mean

QU D
3
X

iD1
giUi D 0:77 � 10:05C 0:2 � 9:9C 0:03 � 9:7 D 10:01V:

The confidence limits of the error in the weighted mean can be found from (4.3)

with added weights:

� QU D k

v

u

u

t

3
X

iD1
g2i �

2
i

D k
p

0:772.7:5 � 10�2/2 C 0:22.15 � 10�2/2 C 0:032 � 0:3752

D k
p

.33C 9C 1:3/ � 10�4 D 0:066k:

Assuming, as usual, ˛ D 0:95, we take k D 1:1 and find � QU D 0:07V.

Figure 7.2 plots the indications of all three instruments, with the limits of permis-

sible error of the instruments marked. The vertical line indicates the value obtained

for the weighted mean. This value remained in the error interval of the most accurate

result, but it was shifted somewhat in the direction of indications of the less accu-

rate instruments; this is natural. As we see the limits of error of the result decreased

insignificantly compared with the error of the most accurate term.



Chapter 8

Examples of Measurements and Measurement
Data Processing

8.1 Voltage Measurement with a Pointer-Type Voltmeter

Our first example concerns a measurement of voltage with a pointer-type voltmeter.

Such a measurement clearly represents an example of a direct measurement. We

shall study several examples of such measurements with a Class 1.0 pointer-type DC

voltmeter that operates using the energy of the source of the voltage being measured.

Note that the energy consumption by the voltmeter causes interaction between the

voltmeter and the object under study.

Let the voltmeter have the following characteristics:

1. The upper limits of measurement ranges are 3 V, 7.5 V, 15 V, 30 V, and so on,

up to 300 V.

2. The scale of the instrument has 75 graduations and starts at the 0 marker.

3. The limits of permissible intrinsic error are ˙1:0% of a span (it is a fiducial

error).

4. Full deflection of the pointer corresponds to the current of 15 � 10�6A ˙ 1%.

5. Reference conditions include temperature of C20˙5ıC and the requirement that

the measurement be performed with the instrument positioned horizontally.

6. Additional errors are as follows. A deviation of the temperature from the refer-

ence range causes the indications of the instrument to change by not more than

˙1:0% for each 10ıC change in temperature. Inclination of the instrument by 5ı

from the horizontal position changes the indications by not more than ˙1% of

the measurement range employed.

8.1.1 A Priori Estimation of Measurement Inaccuracy

Suppose that quality assurance of a piece of equipment involves measuring the volt-

age on certain pairs of points in its electrical schema. We can represent this unit as an

equivalent source of voltage with EMFE and output resistanceR connected serially

to the voltmeter. The source resistance R in one case is equal to about 10 k� and in

S.G. Rabinovich, Evaluating Measurement Accuracy: A Practical Approach,

DOI 10.1007/978-1-4419-1456-9 8, c
 Springer Science+Business Media, LLC 2010
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all other cases does not exceed 1 k�. The temperature of the medium can change

from C10ıC to C25ıC. The slope relative to the horizontal position does not exceed

5ı. We are required to estimate the measurement uncertainty. The uncertainty must

be expressed in the relative form.

Before the measurement, the value of the measured quantity is unknown. It will

supposedly be less than 3 V. Considering the measurement ranges of the voltmeter,

we note that there is an overlap of 0.4–0.5 between any two consecutive ranges.

For example, the smallest range (3 V) represents 0.4 of the next higher range (since

3V=7:5V D 0:4); the next range (7.5 V) represents 0.5 of the next range, and so

on. Thus, whenever the voltmeter indication drops below 0.4–0.5 of a given range

limit, one should switch to the preceding, lower, range. Following this logic, we

shall assume that if the measured voltage is less than 0:4 � 3V D 1:2V, then a

different voltmeter must be used.

Assume that the 3 V range is to be used (other ranges are treated similarly). In

this range, the largest relative error will occur when a voltage at the low end of this

range, or around 1.2 V, is being measured. The error will have to be estimated for

this worst case.

The sources of error are as follows:

1. The intrinsic error of the voltmeter

2. The reading error

3. The temperature error

4. The error introduced by the inclination of the instrument

5. The error from the limited internal resistance of the voltmeter

The error from the limited resistance of the voltmeter is absolutely constant for each

unit being tested. The other errors listed above are conditionally constant. We shall

now estimate these errors.

1. Intrinsic error �in. Its limits will be

�in D ˙1% � 1

0:4
D ˙2:5%; j�inj D 2:5%:

2. Reading error �r . This error does not exceed 0.25 of a graduation. When measur-

ing 1.2 V at the limit 3 V, and with 75 graduations of the scale, this gives

�r D ˙0:25 � 3 � 100%

75 � 1:2 D ˙0:83%; j�r j D 0:83%:

3. Additional temperature error �T . The maximum deviation of the temperature

from the normal value is .20� 5/� 10 D 5ıC. Therefore,

�T D ˙1% � 5

10
D ˙0:5%; j�T j D 0:5%:
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4. The additional error �l . Because of the 5ı inclination of the instrument, the addi-

tional error when measuring 1.2 V will be

�l D ˙1% � 3

1:2
D ˙2:5%; j�l j D 2:5%:

5. The error HR from the limited internal resistance of the voltmeter. The internal

resistance of the voltmeter at the limit 3 V is

RV D 3

15 � 10�6 D 2 � 105�:

The indications of the voltmeter correspond to the voltage on its terminals. This

voltage U is less than the EMF E in the circuit:

U D RV

RV CR
E:

The error then is

HR D U � E

E
D �RV
RV CR

:

The worst case occurs with the source resistance R D 10 k�, in which case this

error becomes

HR D �10 � 103
10 � 103 C 2 � 105 � 100 D �4:8%:

If the source resistance is 1 k�, thenHR D �0:5%.

Let us now add all conditionally constant errors. We shall use (4.3), and we shall

assume that ˛ D 0:95:

u0:95 D 1:1
p

2:52 C 0:832 C 0:52 C 0:252 D 4%:

We now take into account the absolutely constant error. Its limits are

HRl D �4:8%; HRr D �0:5%;

but they are not known accurately enough to eliminate them by introducing the

correction. Therefore, in accordance with (4.16), we obtain the overall limits of

error:

�r:0:95 D �0:5C 4 D C3:5%; �l;0:95 D �4:8 � 4:0 D �8:8%

Thus, the absolute value of error of the planned measurement will not exceed

�10%.
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8.1.2 Universal Estimation of Measurement Inaccuracy

We shall now estimate the measurement error in the example examined above, as-

suming that the measurement has already been made. The significant difference

from the previous case is that now we have an estimate of the measured quantity.

Assume the case with source resistance R D 10 k� and let the indication of the

voltmeter be 62.3 graduations. Hence, the voltage indicated by the voltmeter is

U D 62:3
3

75
D 2:492V:

Suppose we found out that R D 10 k� ˙ 0:5%. The error HR was calculated

above:HR D �4:8%. Now we can introduce the correction CR:

CR D C4:8 � 10�2 � 2:492 D C0:120V:

Taking the correction into account, we obtain

U 0 D U C CR D 2:612V:

The error of the correction is determined by the errors of the values of the volt-

meter resistance RV and the source resistance R. We shall establish the relation

between them.

CR D �HRU D R

RCRV
U D R

RCRV
� RV

RCRV
E D R=RV

.1CR=RV /
2
E:

To simplify the notation, let x D R=RV . Then

CR D x

.1C x/2
E:

We now construct the differential relations:

dx D 1

RV
dR � R

R2V
dRV D x

�

dR

R
� dRV

RV

�

;

dCR D E

�

dx

.1C x/2
� 2x .1C x/ dx

.1C x/4

�

D E
1 � x
.1C x/3

dx;

dCR D E
x .1 � x/

.1C x/3

�

dR

R
� dRV

RV

�

:

In the relative form, transforming from differentials to increments, we obtain

�C D �CR

CR
D 1 � x

1C x

�

�R

R
� �RV

RV

�

:
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The above formula suggests that there are two components in the correction

error due to R and RV , respectively. We can express these components in a rela-

tive form as:

�C1 D 1 � x

1C x
�R; �C2 D 1 � x

1C x
�RV

;

where �R and �RV
are the relative errors of the outside resistance and voltmeter

input resistance. As�R and�RV are independent, we shall regard each component

of error of the correction as an elementary error of measurement. Obviously, both

components are conditionally constant.

Recall that the limits of the error of the source resistance R are known to be

˙0:5%. Therefore,

j�C1j D
�

1 � x
1C x

�

0:5% D 0:9 � 0:5% D 0:45%:

The limits of error of the internal resistance of the voltmeter are determined by

the voltmeter class. Since ours is a voltmeter of Class 1, these limits are equal to

˙1%. Therefore, because x D 5 � 10�2 for the values of R and RV ,

j�C2j D
�

1 � x

1C x

�

1% D 0:9 � 1% D 0:9%:

The limits of the remaining errors are as follows:

j�inj D 1% � 75=62 D 1:2%

j�r j D 0:25 � 100%

62
D 0:4%

j�T j D 0:5%

j�l j D 1% � 75=62 D 1:2%:

These elementary errors can be assumed to be conditionally constant. According

to (4.3), for ˛ D 0:95, we obtain

u0:95 D 1:1
p

0:92 C 0:452 C 1:22 C 0:42 C 0:52 C 1:22 D 2:3%:

When the result of the measurement is written in accordance with its uncertainty,

only three significant figures can be retained:

QU D 2:61V; u D ˙2:3%.0:95/:

Alternatively, the result can be represented as follows:

U0:95 D 2:61V ˙ 2:3%; or U0:95 D .2:61V ˙ 0:06/V:
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8.1.3 Individual Estimation of Measurement Inaccuracy

The largest elementary errors in the previous section were �C2, �in, and �l . How

can they be reduced? The first two can be reduced by taking into account the indi-

vidual properties of the voltmeter, if the voltmeter has a table of corrections from a

recent calibration test. Assume that, for the 3 V measurement range, the correction

is C0:3 graduations at marker 60, and C0:2 graduations at marker 70. It can then

be assumed that the correction to the indication at 62.3 graduations is also equal to

C0:3 graduations. Therefore,

Cin C 0:3 � 3

75
D C0:012V:

Taking this correction into account, the voltmeter indication gives

U 0 D 2:492C 0:012 D 2:504V:

We shall assume that the limits of error in determining the correction, i.e., the

calibration errors, are known and are equal to ˙0:2%. Converting to the indication

of the instrument, we obtain

j�inj D 0:2 � 75=62 D 0:24%:

With this correction, we have eliminated the systematic component of the error of

the voltmeter. The random component, however, remains, and it must be taken into

account. The dead band in indicating electric measurement instruments can reach a

value coinciding with the class designation of the instrument. In our case, this value

is 1% of 3 V. The random error does not exceed half the dead band. Thus, the limits

of random error are equal to

j‰j D 0:5 � 1% � 75

62
D 0:6%

The distribution of the random error in our case, once its limits have been esti-

mated, can be assumed to be uniform, as also the distributions of other conditionally

constant elementary errors.

The input resistance of the voltmeter can be measured. Assume that this mea-

surement has been done, and RV D 201:7 k�˙ 0:2%. Then

HR D �10 � 103 � 100
.10C 201:7/ � 103 D �4:72%:

The correction will then be

CR D C4:72 � 10�2 � 2:504 D C0:118V:
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Taking the correction CR into account, we obtain

U 00 D 2:504C 0:118 D 2:622V:

The limits of the elementary error �C1 do not change, but �C2 will now become

smaller due to not knowing the exact input resistance of the voltmeter:

j�C1j D 0:45%; j�C2j D 0:9 � 0:2% D 0:18%:

The error �l can be reduced by taking greater care in positioning the instrument

horizontally. Assume that the deviation from the horizontal position does not exceed

˙2ı. Then

j�l j D 1 � 2=5 � 75=62 D 0:48%:

The temperature error and the reading error will remain the same.

Let us calculate the uncertainty again for ˛ D 0:95:

u0:95 D 1:1
p

0:242 C 0:62 C 0:182 C 0:452 C 0:482 C 0:52 C 0:42 D 1:2%:

We now write the result of the measurement as follows:

QU D 2:62V; u D ˙1:2%.0:95/;

or alternatively,

U0:95 D 2:62V ˙ 1:2%; or U0:95 D .2:62V ˙ 0:03/ V:

This example illustrates clearly how the measurement uncertainty decreases as

one moves from a priori to a posteriori estimation and then from universal to

individual error estimation.

8.2 Voltage Measurement with a Potentiometer

and a Voltage Divider

Potentiometers with manual control are highly accurate and universal. For these rea-

sons, they are frequently used in scientific laboratories, although they have started

to be displaced by digital multirange voltmeters in recent years. The latter are in

essence automated potentiometers.

A voltage measurement with a potentiometer requires a two-phase measurement

procedure. First, a standard cell is connected to the potentiometer, and the current

through the potentiometer is adjusted using the potentiometer’s set of accurate mea-

suring resistors so that the voltage drop on the section of the circuit with these

resistors would balance the EMF of the standard cell. Next, a special potentiometer
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switch is used to disconnect the standard cell, and we connect the voltage to be

measured to the potentiometer circuit.

When the voltage to be measured exceeds the range of the potentiometer, a volt-

age divider can be used, which allows only a known fraction of the voltage to be

applied to the potentiometer. We should point out that a voltage divider contains

electrical resistors and thus consumes a certain amount of power from the voltage

source to which it connects. For this reason, a voltage divider can only be used if

the power it consumes is so low that the resulting affect on the measured voltage is

negligible. We assume that this is the case in our example.

The measurement of voltage with a potentiometer is a direct measurement. How-

ever, when the errors of the potentiometer and the errors of the standard cell are

rated separately, and when a voltage divider is involved, the error produced by such

a chain of measuring instruments is estimated with methods that are specifically

designed for indirect measurements. We discussed these methods in Chap. 5. Here,

we shall consider an example of a single measurement with individual inaccuracy

estimation.

To be specific, we will consider the measurement of voltage using a class 0.005

potentiometer, a class 0.005 voltage divider, and a standard cell with voltage ac-

curacy of ˙10�V. In particular, we will consider a P309 potentiometer and P35

voltage divider, which were manufactured in the former USSR. The measuring

resisters in P309 potentiometer are organized in six blocks called decades. Each

decade produces certain decimal digits in the measurement result. For example,

if the measured voltage is 1.256316 V, the digits “1.2 V” are produced by indica-

tion “12” of decade “�100mV,” the digit “0.05 V” by indication “5” of decade

“�10mV,” and so on.

Let the current through the potentiometer be Ip and the resistance of the section

of the circuit with the accurate resistors after the adjustment in the first phase beRsc.

Since the voltage drop on the section of the circuit with the resistance Rsc balances

the EMF of the standard cell, Usc, we have in this case:

Ip D Usc=Rsc:

When the standard cell is disconnected and a certain voltage, Up, is connected

to the potentiometer circuit, a fraction of the resistors of the potentiometer is intro-

duced into the comparison circuit such that the voltage drop on their resistance Rp
would compensate Up; i.e., Up D IpRp. Then

Up D Rp

Rsc

Usc;

and knowing the EMF of the standard cell and the ratioRp=Rsc, we can find Up. Fi-

nally, assuming that the division coefficient of the voltage divider is equal toKd , the

voltage to be measured, U , is determined from the formulaU D KdUp. Therefore,

we can write the measurement equation in this measurement in the form:
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U D Kd
Rp

Rsc

Usc: (8.1)

The indications of the potentiometer are proportional to Rp, but its error is deter-

mined not by the errors of the resistances Rp and Rsc, but by the error of the ratio

Rp=Rsc. The uncertainty associated with the operations of comparing the voltages

can be neglected, because the smoothness of the resistance regulation in the poten-

tiometer and the sensitivity of its zero indicator were designed specifically to keep

this uncertainty extremely small compared to other errors.

The potentiometer has six decades and a built-in self-balancing amplifier. The

limit of permissible error as a function of the measured voltage Up is calculated

using the formula (given in the manufacturer’s documentation):

�Up D ˙
�

50Up C 0:04
�

� 10�6 V:

The error of the potentiometer does not exceed the above limits if the ambient air

temperature ranges from C15 to C30ıC and differs by not more than 2:5ıC from

the temperature at which the measuring resistors of the potentiometer were adjusted

(the P309 potentiometer has built-in calibration and adjusting systems).

The EMF of the standard cells can be determined with an error of ˙10�V that in

relative form is ˙1�10�3%. The effect of the temperature is taken into account us-

ing a well-known formula, which describes accurately the temperature dependence

of the EMF in a standard cell. Thus, temperature does not introduce additional errors

to the EMF of the standard cell.

Assume that in three repeated measurements of certain voltage, performed us-

ing a voltage divider whose voltage division ratio was set to 1:10, the following

potentiometer indications were obtained:

x1 D 1:256316 V; x2 D 1:256321 V; x3 D 1:256318 V:

The limit of permissible error of the potentiometer in this case is

�Up D ˙ .50 � 1:26C 0:04/ � 10�6 D ˙63�V:

For this reason, the difference of 5�V between the results of the three observa-

tions above can be regarded as resulting from the random error of the measurement,

and the magnitude of this error is negligible. In the calculation, therefore, any one

of these results or their average value can be used.

Assume that in the process of adjusting the measuring resistors before the mea-

surement, the corrections of the higher order decades were estimated. Let the

correction for the indication “12” of the decade “�100mV” be C15 � 10�6 V, and

the correction for the indication “5” of the decade “�10mV” be �3� 10�6 V. Each

correction is determined with an error of ˙5 � 10�8 V.
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The corrections for the other decades are so small that they are of no interest.

Indeed, the indication of all the remaining decades is 0.0063 V; the limit of permis-

sible error corresponding to this indication in accordance with the formula given

above is

�Up D ˙.50 � 0:0063C 0:04/� 10�6 D ˙0:32 � 10�6 V:

This error is already two orders of magnitude smaller than the permissible error

of the higher decades, and it can be neglected without further corrections.

Further, it is necessary to take into account the possible change in the air tem-

perature in the room. If this change falls within permissible limits, then according

to the specifications of the potentiometer, the error can change approximately by

one-forth of the permissible limit, i.e., by 16�V.

We shall take for the result the average value of the observations performed,

correcting it by the amount C D .15 � 3/ � 10�6 D 12 � 10�6�V:

Up D Nx D 1:256 318C 0:000 012 D 1:256 330V:

The errors of the potentiometer, which enter into this result, include the error

due to temperature (˙16 � 10�6 V), the error of correction of the higher decades

(˙5 � 10�8 V), and the error due to the lower decades (˙0:32 � 10�6 V). Clearly,

these errors are dominated by the error due to temperature, and the remaining errors

can be neglected. Thus, the limits of error of the potentiometer are

�p D ˙16 � 10�6 V:

Next, we must estimate the errors from the standard cell and the voltage divider.

The error of the class 0.005 voltage divider can reach 5 � 10�3%. But the actual

division coefficient of the divider can be found and taken into account, which is

precisely what we must do in the case at hand. In the given measurement, assume

that this coefficient has been found to beKd D 10:0003 and the error in determining

Kd falls within the range ˙2 � 10�3%.

Finally, the discrepancy between the real and the nominal value of the EMF of

the standard cell falls within the limits of error of the standard cell (˙10�V).

We estimate the voltage being measured U as

QU D KdUp D 10:0003� 1:256330 D 12:56368V:

To estimate the measurement error, we shall use the standard trick. First, we shall

take the logarithm of the measurement (8.1). Then we find the differentials of both

sides of the equation, and neglecting errors that are second-order infinitesimals, we

replace the differentials by the increments. This process gives

�U

U
D �Kd

Kd
C
�
�

Rp
ı

Rsc

�

Rp
ı

Rsc

C �Usc

Usc

:
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For the terms on the right side of the above formula, we only have estimates of

the limits, and not the values of the errors. Thus, we shall estimate the limits of the

measurement error on the left side. We can use formula (4.3) for this purpose. First,

all components must be represented in the form of relative errors. The limits of the

relative error of the potentiometer, in percent, will be

�p D ˙16 � 10�6 � 100
1:26

D ˙1:3 � 10�3%:

The limits of the relative error of the voltage divider were estimated directly as

�K D ˙2� 10�3%. The limits of error in determining the EMF of the standard cell

in the form of a relative error are known:

�sc D ˙1 � 10�3%:

We now find the limit of the measurement error according to (4.3):

�˛ D k
p

1:32 C 22 C 12 � 10�3 D k � 2:6 � 10�3%:

Let ˛ D 0:95. Then k D 1:1 and

�0:95 D 1:1 � 2:6 � 10�3 D 2:9 � 10�3 � 3 � 10�3%:

Finally, we must check the number of significant figures in the result of measure-

ment. To this end, we shall express the above limit �0:95 in the absolute form:

�0:95 D ˙2:9 � 10�3 � 10�2 � 12:6 D ˙37 � 10�5 V:

As this is an accurate measurement, the error of the result is expressed by two

significant figures (see Sect. 1.8), and there are no extra figures in the obtained result

to be rounded off. The final result is (omitting alternative representations from now

on) as follows:

U D .12:56368˙ 0:00037/ V .0:95/ :

If the measurement was performed with universal estimation of the errors, then

the errors of all components would have to be set equal to 5 � 10�3% and the limit

of the measurement error would be

� 0
0:95 D 1:1 � 10�3p3 � 52 D 0:01%:

Then, in absolute form, � 0
0:95 D ˙0:0013V and the result of measurement would

have to be written with fewer significant figures:

U D .12:5637˙ 0:0013/ V .0:95/ :
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Here, two significant figures are retained in the numerical value of the measure-

ment error because the value of its most significant digit is less than 3 (see Sect. 1.8).

8.3 Comparison of Mass Measures

Let us consider the calibration of a 1-kg mass measure by comparing it with the

reference standard measure of mass with the same nominal value using a balance.

Assume that the comparison was repeated ten times. Column 1 of Table 8.1 lists the

measurement results obtained from the comparison of the measures. Our goal is to

produce the final measurement result and estimate its inaccuracy.

Assume that the measurement was performed by the methods of precise weigh-

ing, which eliminated the error caused by the arms of the balance not having

precisely equal length. Thus, it can be assumed that there are no systematic errors.

Table 8.1 presents the input and intermediate data involved in producing the final

measurement result and estimating its inaccuracy. Since the systematic errors were

eliminated, the measurement results in column 1 can be viewed to be random inde-

pendent quantities fxi g, i D 1; : : : ; n and n D 10, and therefore, the probability of

all xi is the same and equal to 1=n. To simplify the computations, column 2 presents

only the varying last three digits of xi , denoted as xi0.

Their mean value is

Nxi0 D 1

n

n
X

iD1
xi0 D 1

10
� 7210 � 10�6 D 721 � 10�6g:

Thus, the estimate of the value of the mass is

Nx D 999:998000C Nxi0 D 999:998721 g:

Table 8.1 Input measurement data and intermediate processing steps in the

measurement of the mass of a weight

xi g xi0 � 10�6 g xi0 � Nxi0 � 10�6 g .xi0 � Nxi0/2 � 10�12 g2

999.998738 738 C17 289

999.998699 699 �22 484

999.998700 700 �21 441

999.998743 743 C22 484

999.998724 724 C3 9

999.998737 737 C16 256

999.998715 715 �6 36

999.998738 738 C17 289

999.998703 703 �18 324

999.998713 713 �8 64

Sum 7,210 0 2,676
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We can now obtain the estimate of the variance:

S2.xi / D 1

n � 1

n
X

iD1
.xi0 � Nx0/2:

Hence, the standard deviation is

S .xi / D
r

2676

9
� 10�12 D 17 � 10�6 g:

An estimate of the standard deviation of the obtained value of the mass measure is

S Nx D 17 � 10�6
p
10

D 5 � 10�6 g:

We shall find the uncertainty of the result using Student’s distribution for con-

fidence probability ˛ D 0:95; then, from Table A.2, we find the coefficient tq for

the degree of freedom � D 10 � 1 D 9 and q D 1 � ˛ D 0:05: t0:05 D 2:26. In

accordance with formula (3.20), we obtain the uncertainty of measurement result:

u0:95 D 2:26 � 5 � 10�6 D 11 � 10�6 g:

Thus, with the confidence probability ˛ D 0:95, the mass m of the measure

studied lies in the interval

999:998 710 g � m � 99:998 732 g:

The result obtained can be written more compactly as

m0:95 D .999:998 721˙ 11 � 10�6/ g:

Note that if the data above were processed by the nonparametric methods, the

estimate of the measurand would be practically the same but its uncertainty would

be much wider (see Sect. 3.8).

8.4 Measurement of Electric Power at High Frequency

As an example of a single independent indirect measurement, consider the mea-

surement of the power generated by a high-frequency current in a resistor. The

measurement utilizes the formula P D I 2R, where P is the power measured, I is

the effective current, and R is the active resistance of the resistor. Measurements

of the current and resistance give estimates of their values QI and QR along with the

limits of the relative errors ıI D 0:5% and ıR D 1%.
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The errors of measurements of arguments are given in the relative form. There-

fore, the influence coefficients are w0
I D 2 and w0

R D 1. Since the limits of errors

of the arguments are known, they can be combined to obtain the uncertainty of the

overall measurement result according to (5.49):

u0:95 D 1:1

q

w2I .ıI /
2 C w2R .ıR/

2 D 1:1
p
4 � 0:25C 1: D 1:5%:

8.5 An Indirect Measurement of the Electrical Resistance

of a Resistor

Consider the measurement of electrical resistance using an ammeter and a voltmeter.

This is an indirect measurement with measurement equation R D U=I , where R

is the electrical resistance of the resistor, U is the voltage drop on the resistor, and

I is the strength of the current. Furthermore, it is a dependent indirect measurement

because the value of I depends on the value of U .

The connections of the instruments and the resistor are shown in Fig. 8.1. Assume

that the measurement was performed under reference conditions for the instruments,

and that the input resistance of the voltmeter is so high that its influence on the

accuracy of the measurement can be neglected.

The results of measurements of the strength of current and voltage are given in

Table 8.2. In accordance with the discussion from Sect. 5.2, all results presented in

the table were obtained in pairs: the results with the same subscript belong to the

same measurement vector.

We can use in this example both the traditional method and the method of

reduction. Let us use each in turn and compare the calculations and results.

8.5.1 Application of the Traditional Method

The traditional method of experimental data processing for dependent indirect

measurements was described in Sect. 5.3.

Fig. 8.1 The schema for

indirect measurement of an

electrical resistance
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Table 8.2 Input

measurement data in indirect

measurement of a resistor

Num. Ii (A) Ui (V)

1 0.05996 6.003

2 0.06001 6.001

3 0.05998 5998

4 0.06003 6.001

5 0.06001 5.997

6 0.05998 5.999

7 0.06003 6.004

8 0.005995 5.997

9 0.06002 6.001

10 0.06001 6.003

11 0.05999 5.998

Table 8.3 Data processing for indirect measurement of electrical resistance using the traditional

method

Ii Ui .Ii � NI / .Ii � NI /2 .Ui � NU/ .Ui � NU /2 .Ii � NI /.Ui � NU /
Num. A V �10�5 A �10�10 A2 �10�3 V3 �10�6 V2 �10�8 AV

1 2 3 4 5 6 7 8

1 0.05996 6.003 �3.7 13.69 C2.82 7.95 �10.4

2 0.06001 6.001 C1.3 1.69 C0.82 0.67 C1.1

3 0.05998 5.998 �1.7 2.89 �2.18 4.75 C3.7

4 0.06003 6.001 C3.3 10.89 C0.82 0.67 C2.7

5 0.06001 5.997 C1.3 1.69 �3.18 10.11 �4.1

6 0.05998 5.999 �1.7 2.89 �1.18 1.39 C2.0

7 0.06003 6.004 C3.3 10.89 C3.82 14.59 C12.6

8 0.05995 5.997 �4.7 22.09 �3.18 10.11 C14.9

9 0.06002 6.001 C2.3 5.29 C0.82 0.67 C1.9

10 0.06001 6.003 C1.3 1.69 C2.82 7.95 C3.7

11 0.05999 5.998 �0.7 0.49 �2.18 4.75 C1.5

Sum 0.65997 66.002 74.19 63.61 C29.6

The calculations are illustrated by Table 8.3, which also repeats the input mea-

surement data for convenience. Using the values of Ui and Ii , we obtain the

estimates of the arguments:

NU D 66:002=11 D 6:00018V; NI D 0:65997=11D 0:059997A:

We can now compute the estimate of the measurand R. But because the number

of measurements of the arguments is the same, one can avoid the inaccuracy of

calculation of the argument estimates by obtainingR from the sums of the individual

measurement results of the arguments (given in columns 2 and 3, the last row of

Table 8.3) rather than from their estimates:

QR D NU
ı NI D

n
P

iD1
Ui

n
P

iD1
Ii

D 66:002=0:65997D 100:0075�:
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Now we must calculate the variance and the standard deviation of this result.

First, we will estimate the variances of NI , NU , their standard deviations, and the

correlation coefficient. According to the discussion in Sect. 5.2, we obtain

S2. NI / D
Pn
iD1.Ii � NI /2
n.n � 1/

D 74:19 � 10�10

11 � 10 D 0:674 � 10�10 A2;

S2. NU / D
Pn
iD1.Ui � NU /2
n.n � 1/ D 63:61 � 10�6

11 � 10 D 0:578 � 10�6 V2:

The estimates of standard deviations are

S . NI / D 0:82 � 10�5A; S . NU / D 0:76 � 10�3 V:

The estimate of the correlation coefficient is

rI;U D
Pn
iD1.Ii � NI /

n.n � 1/S.I /S.U /
D 29:6 � 10�8

110 � 0:82 � 10�5 � 0:76 � 10�3 D 0:43:

It is interesting to note that this correlation coefficient value is statistically

insignificant. Indeed, applying a method described in [22], we can check the hy-

pothesis H0: �I;U D 0 against H1: �I;U ¤ 0. The degree of freedom here is

� D 11 � 2 D 9, and we will take the significance level to be q D 0:05 as usual,

which gives the critical values tq D 2:26 and rq D tq

.q

t2q C � D 0:60. Because

0:4 < 0:60, we must accept H0 and conclude that the obtained value rI;U D 0:43

is not significant, which means that, when the number of measurements n increases,

the estimation rI;U of the correlation coefficient will in general decrease. However,

it does not mean that the value of rI;U obtained for a specific sample can be ne-

glected. On the contrary, it must be always taken into consideration when calculating

the estimation of variance for that sample.

In our example, inserting the obtained values into (5.16) we can calculate the

desired estimation of standard deviation S
� QR
�

. But first we have to calculate the

influence coefficients. Thus, the calculations are

w1 D @R

@U
D 1

I
; w2 D @R

@I
D � U

I 2
;

S2. QR/ D
 

NU
NI 2

!2

� S2. NI /C 1

NI 2
� S2. NU /� rI;U

NU
I 2

� 1

I
� S. NI/S. NU /

D
�

6

36 � 10�4

�2

� 0:674 � 10�10 C 1

36 � 10�4 � 0:578 � 10�6

�2 � 0:43 � 6

36 � 10�4 � 1

6 � 10�2 � 0:82 � 10�5 � 0:76 � 10�3

D 1:87 � 10�4 C 1:61 � 10�4 � 1:49 � 10�4

D 1:99 � 10�4�2;
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and

S. NR/ D
p

S2.R/ D 1:41 � 10�2�:

The next step is to find the uncertainty of the obtained result. Unfortunately, we

have the standard deviation, but no information about the distribution function of

the measurement error, and it is unclear how to find the degree of freedom of the

measurement result to account for the dependency between the arguments. Thus,

with dependent indirect measurements, we have to use standard deviation of the

measurement result as the indication of measurement accuracy rather than its uncer-

tainty (see Sects. 5.3–5.4 for more discussion on the traditional method).

8.5.2 Application of the Method of Reduction

We now turn to the method of reduction described in Sect. 5.5. Table 8.4 lists the

intermediate data involved in the calculations. The initial data are again provided in

columns 2 and 3.

According to the method of reduction, we first compute values of the measurand

using the measurement equation for each measurement vector. The calculated values

of Ri (i D 1; : : : ; 11) are given in column 4. Treating these values as if they were

obtained by direct measurements, we obtain immediately the estimate of R as

NR D 1

n

n
X

iD1
Ri D 100:0075�

Table 8.4 Data processing for indirect measurement of electrical

resistance using the method of reduction

Ii Ui Ri .Ri � NR/ .Ri � NR/2
Num. A V � � �10�2�2

1 2 3 4 5 6

1 0.05996 6.003 100.117 C0.109 1.188

2 0.06001 6.001 100.000 � 0.002 0.000

3 0.05998 5.998 100.000 � 0.002 0.000

4 0.06003 6.001 99.967 � 0.041 0.168

5 0.06001 5.997 99.933 � 0.075 0.562

6 0.05998 5.999 100.017 C0.009 0.008

7 0.06003 6.004 100.017 C0.009 0.008

8 0.05995 5.997 100.033 C0.025 0.0625

9 0.06002 6.001 99.983 �0.025 0.0625

10 0.06001 6.003 100.033 C0.025 0.0625

11 0.05999 5.998 99.983 �0.025 0.0625

Sum 1,100.083 2.184
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and the estimates of its variance and standard deviation as

S2. NR/ D 1

n.n � 1/

n
X

iD1
.Ri � NR/2 D 2:184 � 10�2

11 � 10 D 1:99 � 10�4�2;

S. NR/ D 1:41 � 10�2�:

As one can see from this example, the calculations using the method of reduction

are much simpler than using the traditional method, even in this case with a simple

measurement equation having only two arguments. More importantly, we now have

a set of output data fRig that does not differ in any way from data obtained in direct

measurements. Thus, we know the degree of freedom � D 11 � 1 D 10 and can

compute the uncertainty of the measurement result. Using confidence probability

˛ D 0:95 we find the corresponding value of Student’s coefficient tq D 2:23 and

uncertainty

u0:95 D 2:23 � 1:41 � 10�2 D 3:1 � 10�2�:

8.6 Measurement of the Density of a Solid Body

The accurate measurement of the density of a solid body can serve as an example of

a multiple nonlinear independent indirect measurement. The density of a solid body

is given by the formula

� D m=V;

wherem is the mass of the body and V is the volume of the body. In the experiment

considered, the mass of the body was measured by methods of precise weighing

using a balance and a collection of standard weights whose errors did not exceed

0.01 mg. The volume of the body was determined by the method of hydrostatic

weighing using the same set of weights. The results of measurements are presented

in Table 8.5 in columns 2 and 5.

The difference between the observational results of the body mass is explained by

the random error of the balance and the inevitable fluctuations of the environmental

conditions. As follows from the data presented, this error is so much larger than the

systematic errors in the masses of the weights that the latter errors can be neglected.

8.6.1 Application of the Traditional Method

As the mass of the solid body and its volume are constants, to estimate the density

of the body, the mass and volume of the body must be estimated with the required

accuracy and their ratio must be formed. For this reason, we find the average values

of the measurement results of the arguments and estimates of the standard deviations

of these averages (Table 8.5 lists intermediate results for these calculations – the
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Table 8.5 Data processing for measurement of the density of a solid body

Num.

Body mass,

mi � 10�3 kg

.mi � Nm/
� 10�7 kg

.mi � Nm/2
� 10�14 kg2

Body volume,

Vi � 10�6 m3

�

Vi � NV
�

�10�10 m3

�

Vi � NV
�2

�10�20 m6

1 2 3 4 5 6 7

1 252.9119 �1 1 195.3799 C1 1

2 252.9133 C13 169 195.3830 C32 1,024

3 252.9151 C31 961 195.3790 �8 64

4 252.9130 C10 100 195.3819 C21 441

5 252.9109 �11 121 195.3795 �3 9

6 252.9094 �26 676 195.3788 �10 100

7 252.9113 �7 49 195.3792 �6 36

8 252.9115 �5 25 195.3794 �4 16

9 252.9119 �1 1 195.3791 �7 49

10 252.9115 �5 25 195.3791 �7 49

11 252.9118 �2 4 195.3794 �4 16

Sum 2,132 1,805

deviations of individual measurements from their mean as well as the squares of

these deviations):

Nm D 252:9120� 10�3 kg; NV D 195:3798� 10�6 m3;

S2 . Nm/ D 1

n1 .n1 � 1/

n1
X

iD1
.mi � Nm/ D 2132 � 10�14

11 � 10 D 19:38 � 10�14kg2;

S2
� NV
�

D 1

n2 .n2 � 1/

n2
X

iD1

�

Vi � NV
�

D 1805� 10�20

11 � 10 D 16:41 � 10�20m6:

The standard deviations of the measurement results of the arguments in the

relative form are as follows:

Sr . Nm/ D
p
19:38 � 10�14

252:9 � 10�3 D 1:74 � 10�6;

Sr
� NV
�

D
p
16:41 � 10�20

195:4 � 10�6 D 2:08 � 10�6:

We can now find the uncertainty of the obtained estimates of the arguments. Both

were measured 11 times. Therefore, their degree of freedom is � D 10. Exploiting

the robustness of Student’s distribution, we will make use of this distribution. We

thus obtain, for confidence probability ˛ D 0:95 and the corresponding value of

Student’s coefficient tq D 2:23, the following confidence limits in relative form:

ur;0:95 . Nm/ D 2:23 � 1:74 � 10�6 D 3:88 � 10�6;

ur;0:95
� NV
�

D 2:23 � 2:08 � 10�6 D 4:64 � 10�6:
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The estimate of the measurand is

N� D Nm
NV

D 252:9120� 10�3

195:3798� 10�6 D 1:294 463� 103 kg=m3:

To calculate the uncertainty of the overall measurement result we use the usual

method of linearization. It is not difficult to see that, in our example, using just the

first term from Taylor’s series is sufficient. (To this end, one must estimate the re-

mainder R2 of Tailor’s series according to (5.11); we omit these details here.) Thus,

we can calculate the standard deviation of the measurement result using formula

(5.18). The influence coefficients are C1 for mass and (�1) for volume. Hence, the

standard deviation of the result in the relative form is as follows:

Sr .�/ D
q

S2r .m/C S2r
�

V
�

D 2:7 � 10�6:

We shall now find the uncertainty of the result. This can be done in two ways:

using the square-root sum formula (5.20) or by taking advantage of the fact that due

to the expansion into Taylor’s series, the measurement error of the result took the

form of a linear combination of the measurement errors of the arguments, making it

possible to compute the effective degree of freedom.

In the first method, according to (5.20), the combined uncertainty in relative form

is as follows:

ur .�/ D
q

u2r .m/C u2r
�

V
�

D
p

3:882 C 4:642 � 10�6 D 6:0 � 10�6:

We can now apply the correction coefficientWt introduced in Sect. 5.4, which in

our example isWt D 0:93, to arrive at the final result for the combined uncertainty:

ur;0:95 .�/ D 0:93 � 6:0 � 10�6 D 5:8 � 10�6 D 5:8 � 10�4%:

Using the second method, the effective degree of freedom is given by formula

(5.19). The influence coefficients present in that formula are equal to 1 in our case

because the measurement errors are represented in relative form. We have already

obtained the values of all terms in this formula. Note that in our case n1 D n2 D 11

and �1 D �2 D 10. Thus,

�eff D
�

S2 .m/C S2
�

V
��2

S4 .m/
ı

�1 C S2
�

V
�ı

�2
D .3:03C 4:33/2 � 10�24
�

3:032

10
C 4:332

10

�

� 10�24
D 19:7:

For �eff D 19:7 and ˛ D 0:95 we find from the table of Student’s distribution

(see Appendix A2) that tq D 2:09. From here, the combined uncertainty u0
r . N�/ (so
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denoted to distinguish from the uncertainty computed according to the first method)

becomes as follows:

u0
r;0:95 . N�/ D 2:09 � 2:7 � 10�6 D 5:6 � 10�4%:

As we can see, both methods produce practically the same results. This is natu-

ral because both methods are based on the same assumption that the measurement

errors of the arguments are normally distributed. In applying the square-root sum

formula this assumption allows one to compute the correction factor, in using the

effective degree of freedom, to construct the composition of the distributions of the

measurement errors of the arguments. If in fact these distributions significantly devi-

ate from normal, these deviations would lead to the same inaccuracy of the obtained

uncertainty in both methods. Thus, the matching results under the two methods in

themselves do not prove their accuracy.

8.6.2 Application of the Method of Transformation

We start with the same measurement data that were used in the traditional method

and that are presented in Table 8.5 in Sect. 8.6.1. The measurement equation remains

as before:

� D m

V
:

This is a multiplicative measurement equation � D fV .V / � fm .m/, where

fV .V / D 1=V and fm .m/ D m. Let us first substitute argument V by its esti-

mate NV , retaining mas a deriving argument. The transformation coefficient for m is

Cm D ‰m .V / D 1=V and its estimate is 1= NV . Then, for each valuemi of argument

m, (5.27) gives �m;i D mi
NV

. The mean value NV was calculated earlier when we ap-

plied the traditional method – its value is NV D 195:3798 � 10�6 m3. The elements

of the output group �m;i produced by the deriving argument valuesmi are shown in

column 2 of Table 8.6.

Now we substitutem with its estimate Nm and take V as a deriving argument, thus

obtaining �V;i D Nm
Vi

for each value Vi . Here, CV D ‰V .m/ D m, and its estimate

is Nm. This mean value Nm D 252:9120�10�3 kg was calculated above in Sect. 8.6.1.

The output group �V;i is shown in column 2 of Table 8.7.

We thus have two output groups of data of the measurand, each derived from the

group of measurement data of the corresponding argument. Using the procedure of

Sect. 5.6, we can now obtain the estimate of the density and its uncertainty.

The estimate of the measurand can be found from (5.32), although in our case

both output groups have the same means and so the overall mean will be the same:

� D 1:2944629� 103 kg=m3:
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Table 8.6 The output group derived from argument m (the mass of a body)

I �m;i � 103 kg=m3

�

�m;i � N�m
�

�10�3 kg=m
3

�

�m;i � N�m
�2

�10�6
�

kg=m
3
�2

1 1.2944626 �0.3 0.1

2 1.2944698 6.9 47.6

3 1.2944790 16.1 259.2

4 1.2944682 5.3 28.1

5 1.2944575 �5.4 29.2

6 1.2944498 �13.1 171.6

7 1.2944595 �3.4 11.6

8 1.2944605 �2.4 5.8

9 1.2944626 �0.3 0.1

10 1.2944605 �2.4 5.8

11 1.2944621 �0.8 0.6

Average 1.2944629 † 559.6

Table 8.7 The output group derived from argument V (the volume of a

body)

I �v;i � 103 kg=m3

�

�m;i � N�m
�

�10�3 kg=m
3

�

�m;i � N�m
�2

�10�6
�

kg=m
3
�2

1 1.2944626 �0.3 0.1

2 1.2944420 �20.9 436.8

3 1.2944685 5.6 31.4

4 1.2944493 �13.6 185.0

5 1.2944652 2.3 5.3

6 1.2944698 6.9 47.6

7 1.2944672 4.3 18.5

8 1.2944659 3.0 9.0

9 1.2944679 4.9 24.0

10 1.2944679 4.9 24.0

11 1.2944659 3.0 9.0

Average 1.2944629 † 790.7

Let us now turn to the estimation of uncertainty of the obtained result. We begin

with finding parameters of the error distribution. The variance and standard devi-

ation of the random error of the above mean in relative form can be computed

according to (5.33), having in mind that nm D nV D n and Z D nm C nV D
2n D 22. Thus,

S2‰;rel

�

�
�

D 1

�
2

n
P

iD1

�

�m;i � �
�2 C

n
P

iD1

�

�V;i � �
�2

2n .2n � 1/ D 559:6C 790:7

1:294 � 103 � 22 � 21

D 1:74 � 10�12:
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The standard deviation therefore is

S‰;rel

� NN�
�

D 1:32 � 10�6:

The conditionally constant errors must be estimated separately for each group.

Let us start with the group derived from argument m, the mass of the body. Given

that QCm D 1= NV and V ’s influence coefficient is wV D
�

d‰m

dV

�

VD NV
, (5.31) becomes

as follows:

" .xm;i / D "
� QCm

�

D wV

QCm
ı
� NV
�

D
ı
� NV
�

NV
:

From here, we obtain

S2#;rel
. N�m/ D

S2
� NV
�

NV 2
D S2rel

� NV
�

:

We already computed NV D 195:3798 � 10�6 m3 and Srel
� NV
�

D 2:08 � 10�6

in Sect. 8.6.1, and we can now compute the confidence interval for the conditionally

constant error in the output group we are considering. The group has 11 observa-

tions, so the degree of freedom is � D 10. For confidence probability ˛ D 0:95, the

quantile of Student’s distribution is tm;# D 2:23. Thus, the members of the output

group f�m;i g and its mean all have the following confidence limit of the condition-

ally constant error, in relative form:

�m;rel D tm;#S#;rel . N�m/ D 2:23 � 2:08 � 10�6 D 4:64 � 10�6:

We repeat the same calculations for the other output group, which has been de-

rived from V . For this group, QCV D Nm, ‰V .m/ D m, and wm D d‰V

dm
D 1.

Therefore, we have

S2#;rel . N�V / D S2rel . Nm/ :

In Sect. 8.6.1, we computed Nm D 252:9120 � 10�3 kg and S2
rel
. Nm/ D 3:02 �

10�12. Thus, Srel . N�V / D Srel . Nm/ D 1:74 � 10�6. We again have the degree

of freedom � D 10 and we must use the same confidence probability ˛ D 0:95,

hence the quantile of Student’s distribution will be the same also: tV;# D tm;# D
t# D 2:23. The confidence limit of the conditionally constant error for this group is

therefore

�V;rel D tV;#S#;rel. N�V / D 2:23 � 1:74 � 10�6 D 3:88 � 10�6:

The obtained limits of the systematic errors differ for each output group. Thus,

the overall limit of the systematic error must be calculated as a weighted mean,

which reduces to the simple mean in our case because both groups have the same

number of elements. Hence, the overall confidence limit of the systematic error is

�rel . NN�/ D �m;rel C �V;rel

2
D 4:26 � 10�6:
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The relative standard deviation of the overall conditionally constant error is also

equal to the mean of the relative standard deviations obtained from individual output

groups:

S#;rel. NN�/ D S#;rel. N�m/C S#;rel. N�V /
2

D 2:08C 1:74

2
� 10�6 D 1:91 � 10�6:

Correspondingly, we also obtain the relative variance of this error:

S2#;rel D 3:65 � 10�12:

The combined relative standard deviation of the obtained measurement result is

Sc D
q

S2
#;rel

C S2
‰;rel

D
p

.3; 65C 1:74/ � 10�12 D 2:32 � 10�6:

Following now the procedure for combining errors, we compute coefficients tq
and t# , both for confidence probability ˛ D 0:95. For this confidence probability

and � D 10, we already have t# D 2:23. For the random component, the degree of

freedom is � D Z � 1 D 21 (see Sect. 5.6), and coefficient tq D 2:08. Thus, the

combined coefficient tc is as follows:

tc D t#S#;rel C tqS‰;rel

S#;rel C S‰;rel
D 2:23 � 1:91C 2:08 � 1:32

1:91C 1:32
D 2:17:

Thus, the combined uncertainty becomes as follows:

uc;rel D tcSc D 2:17 � 2:32 � 10�6 D 5:0 � 10�6 D 5:0 � 10�4%:

We now have the measurement result in its final form:

�0:95 D .1:294463� 103 ˙ 0:65/ kg=m3:

As we can see, the estimate of the measurand obtained here is exactly the same

as with the traditional method; this is natural because both methods use the same

mean values of argument observations. However, the uncertainty of the result in

the traditional method was 6.0% when computed with the square-root sum formula,

5.8% in the same method after applying the correction, and 5.6% with the effective

degree of freedom, while the method of transformation produced 5.0%. The latter

result appears more justified for the following reasons:

1. The formula for computing effective degree of freedom is approximate and is

obtained based on the assumption that errors are normally distributed.

2. The square-root sum formula is correct for summation of variances and not un-

certainties. The analysis we gave in Chap. 5 showed that using this formula for

summation of uncertainties leads to exaggerated result even if the initial errors

are normally distributed.
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In contrast, the method of transformation in the case of two arguments does not

rely on assumptions for which it is unclear whether or not they hold in the measure-

ment at hand.

8.7 Measurement of Ionization Current

Accurate measurements of weak currents, for example, currents generated by 
 rays

from measurement standards of unit radium mass are performed by the compensa-

tion method using an electrometer. Such currents are measured and compared, for

example, in the process of calibration of these standards.

In the compensation method, a high-impedance resistor is inserted into the circuit

with the current to be measured. This resistor is also connected in parallel to a capac-

itor, which is charged prior to being connected. The two connections are arranged

so that the measured current and the discharge current from the capacitor flow in

the opposite directions. The difference between the two currents creates voltage on

the resistor, which is detected by the electrometer. When the electrometer indicator

shows zero, the two currents are equal. The time from the start of the capacitor’s

discharge to when the two currents equalize is measured; this time depends on the

dynamics of the capacitor discharge, which is determined by the time constant of

the circuit containing the capacitor and resistor. This constant can be determined

accurately because both the capacitance of the capacitor and the impedance of the

resistor are found a priori with high accuracy. Thus, given the known charge on

the capacitor before it is connected to the resistor, one can determine the ionization

current by the discharge time until the moment of compensation.

The measured strength of current I is defined by the expression

I D CU=�;

where C is the capacitance of the capacitor used to compensate the ionization

current; U is the initial voltage on the capacitor; and � is the compensation time.

As U and � are dependent, it is a dependent measurement.

We shall examine the measurement of ionization current on the specific apparatus

described in [33]. It employs a capacitor with capacitance C D 4006:3 pF, which

is known to be within 0.005% of the above value. The voltage on the capacitor

is established with the help of a class 0.1 voltmeter with a measurement range of

0 � 15V. The time is measured with a timer whose scale is divided into tenths of a

second. The results of a calibration of one standard of radium mass against another

using this apparatus are presented in [34]; we will use these results to estimate the

accuracy of the measurement of the ionization current involved in the calibration

procedure.

The measurement described in [34] included 27 repeated observations. Each time

the same indication of the voltmeterU D 7V was established and the compensation

time was measured. The results of the 27 observations of time are given in the first

column of Table 8.8. Using the measurement equation, we can compute the strength

of the ionization current from the compensation time. The 27 values of the current
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Table 8.8 Measurement results and intermediate processing steps in the

measurement of ionization current

�s Ii � 10�10 A .Ii � NI/ �10�14 A .Ii � NI/2 �10�28 A2

74.4 3.7694 7 49

74.6 3.7593 �94 8,836

74.3 3.7745 58 3,364

74.6 3.7593 �94 8,836

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.3 3.7745 58 3,364

74.5 3.7643 �44 1,936

74.4 3.7694 7 49

74.5 3.7643 �44 1,936

74.4 3.7694 7 49

74.6 3.7593 �94 8,836

74.2 3.7705 18 324

74.5 3.7643 �44 1,936

74.3 3.7745 58 3,364

74.4 3.7694 7 49

74.4 3.7694 7 49

74.5 3.7643 �44 1,936

74.5 3.7643 �44 1,936

74.3 3.7745 58 3,364

74.3 3.7745 58 3,364

74.3 3.7745 58 3,364

74.4 3.7694 7 49

74.5 3.7643 �44 1,936

corresponding to the measured compensation times are listed in column 2 of the

table. We now need to obtain the estimate of the result of this measurement and its

inaccuracy.

Let us first obtain the estimate of the current. Because ionization currents

are weak, one has to account for the so-called background current caused by

the background radiation. The average background current is usually equal to

.0:5 � 1/� 10�12A and can be measured to within 5%. In the measurement in ques-

tion, the background current was found to be NIb D 0:75 � 10�12 A. The average

value of current observations from Table 8.8 is NI D 3:7687 � 10�10 A. Thus, the

estimate the ionization current Ix is

QIx D NI � NIb D 3:7612 � 10�10 A:

Now let us turn to the inaccuracy. First consider the conditionally constant

systematic errors. For a class 0.1 voltmeter, its limit of error in indicating the

voltage of 7 V is �U D 0:1 � .15=7/ D 0:21%. The limit of error of measuring
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compensation time with the timer that has the graduations of 0.1 s is equal to half

the graduation or 0.05 s. In relative form, for the time intervals of 74–75 s, this gives

�� D .0:05=74/ � 100 D 0:067%. Although the capacitance of the capacitor is

supposed to be known within 0.005%, the measurement was performed under rated

rather than reference temperature conditions, leading to an additional error. Thus,

the capacitance is known only with the limit of error of 0.05%. The limit of mea-

surement error of the background current, which is within 0.5% of the value of the

background current, is only 0.013% with respect to the ionization current estimate,

and it can obviously be neglected compared to the error in voltage indication �U .

Turning to formula (5.44) and taking confidence probability ˛ D 0:95, we obtain

�I;0:95 D k

q

�2C C �2U C �2� D 1:1
p

0:052 C 0:212 C 0:0672 D 0:24%:

Now let us consider random errors. We will use the method of reduction. First we

shall find an estimate of the standard deviation of the measurement result, which is

S
� NIx

�

D S
� NI
�

D

v

u

u

u

t

27
P

iD1

�

Ii � NI
�2

27 � 26 D 9 � 10�14 A:

It is obvious that the random error can be neglected compared to the limit of

the conditionally constant systematic error computed above, which in the absolute

form is equal to �I D 0:009 � 10�10 A. The latter therefore determines the overall

inaccuracy of the result. Therefore, our obtained estimate of the ionization current

has one extra digit. Rounding it off, we arrive at the result of the measurement:

Ix D .3:761˙ 0:009/ � 10�10 A .0:95/ :

Finally, as a side note, Table 8.8 shows that the random error of an individual

observation in this measurement, which could be explained by the inaccuracy of the

detection of the moment of the equality of the measured and compensating currents

and of the setting of the initial voltage on the capacitor, can reach 0.25% (this can

be seen as the deviation of individual observations in Table 8.8, column 2, from the

average). However, repeating the measurement 27 times allowed us to reduce the

error to the level where it could be neglected compared to the systematic errors.

8.8 Measurement of the Activity of a Radioactive Source

We shall examine the measurement of the activity of a radioactive source by ab-

solute counting of ˛ particles emitted by the source. We will use the experiment

described in [15], as well as the measurement data reported there, as the basis for our

discussion. The measurement is performed using a detector that counts the particles
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arriving from the source through a diaphragm opening. The number of particles

captured by the detector depends on the geometric configuration of the experimen-

tal setup – the diameter of the diaphragm, the distance between the detector and the

source, and the diameter of the source (assuming the source is spherical). Follow-

ing [15], these parameters can be encapsulated into a geometric factor G, which is

calculated from the above quantities. Then the measured radioactivity is determined

from the formula

A D GN0�;

where G is the geometric factor of the apparatus, N0 is the ˛-particle counting

rate, and � is the ˛-particle detection efficiency. In the course of the measurement,

G does not change, so that errors of G create a systematic error of measurement of

the activity A. Measurements of the numbers of ˛ particles, however, have random

errors.

To reduce the error arising from the error of the geometric factor, the measure-

ments were performed for different values of this factor (by changing the distance

between the source and detector and the diameter of the diaphragm). All measure-

ments were performed using the same source 239Pu.

All the arguments appear in the measurement equation with the same degree

of 1. Thus, as discussed in Sect. 5.7, it is convenient to express their errors in rel-

ative form since all the influence coefficients will then be equal to 1. Table 8.9

gives measurement results for the five geometric configurations studied. In each

case, 50 measurements were performed, and estimates of the measured quantity and

their standard deviation, which are also presented in Table 8.9, were calculated. The

standard deviations of the (conditionally constant) systematic errors of the results

were calculated from the estimated limiting values of all error components under

the assumption that they can be regarded as centered uniformly distributed random

quantities.

The data in Table 8.9 show, first of all, that the systematic errors are much larger

than the random errors, so that the number of measurements in the groups was

sufficient. The observed difference between the obtained values of the activity of the

nuclides in the groups can be mostly explained by their different systematic errors.

In the example studied, the same quantity was measured in all cases. Therefore,

one can use the weighted mean as the overall estimate of the measurand. Based on

Table 8.9 The results of measurements of the activity of nuclides using a setup with different

geometric factors

Group

number j

Source-

detector

distance

(mm)
Diaphragm

radius (mm)

Measurand

estimate

xj � 105

Estimates of standard deviation

Random

errors (%)

Systematic

errors (%)

1 97.500 20.017 1.65197 0.08 0.52

2 97.500 12.502 1.65316 0.10 0.52

3 397.464 30.008 1.66785 0.16 0.22

4 198.000 20.017 1.66562 0.30 0.42

5 198.000 30.008 1.66014 0.08 0.42
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Table 8.10 The estimates of

combined variances and

weights of measurement

results by different geometric

factors

Group

number j

Estimate of

combined

variance

S2. Nxj / .%/2 Weight gj

1 0.28 0.12

2 0.28 0.12

3 0.07 0.46

4 0.27 0.12

5 0.18 0.18

the considerations from Sect. 7.5, we shall use (7.13) to calculate the weights. First,

we shall calculate an estimate of the combined variance according to (7.12):

S2
�

Nxj
�

D S2 
�

Nxj
�

C S2#
�

Nxj
�

:

The results of the calculations are given in Table 8.10. As an example, we provide

the calculation details of weight g1:

g1 D

1

0:28
1

0:28
C 1

0:28
C 1

0:07
C 1

0:27
C 1

0:18

D 3:57

30:7
D 0:12

Now we find the weighted mean:

QA D NNx D
5
X

jD1
gj Nxj D 1:6625 � 105:

We can now estimate the uncertainty of the measurement result. To do this, we

need to find, using (7.13), the standard deviations of the random and conditionally

constant systematic components of the weighted mean and then, since S
� QA
�

has

already been found, calculate tc from (4.22). All data for these calculations are

available in Tables 8.6 and 8.7.

The standard deviations of the random and systematic components of the

weighted mean are as follows:

S2 
� NNx
�

D
L
X

jD1
g2jS

2
 

�

Nxj
�

D 71:58 � 10�8 and S 
� NNx
�

D 8:46 � 10�4;

S2#
� NNx
�

D
L
X

jD1
g2jS

2
#

�

Nxj
�

D 261:7 � 10�8 and S#
� NNx
�

D 16:2 � 10�4:
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Next, we compute the uncertainty of the systematic component, �˛. The easiest

way to do it is by using (4.3). For this, however, we need to transfer from the

standard deviations of the elementary systematic errors back to their limits, which

as we know can be done using factor
p
3 (since S2 D �2=3). Thus,

�˛ D k

v

u

u

t3

L
X

jD1
g2jS

2
#

�

Nxj
�

D k

q

3S2
#

� NNx
�

:

Taking ˛ D 0:95, we have k D 1:1 and �0:95 D 1:1 � 1:73 � S#
� NNx
�

D
1:90S#

� NNx
�

. From here, we obtain t# D �0:95=S#
� NNx
�

D 1:90. To find quantile

tq of Student’s distribution for the selected confidence probability, we also need the

degree of freedom. In general, when the measurement result represents a weighted

mean of several measurements, the degree of freedom is obtained from (5.19) as an

effective degree of freedom. In our case, however, we have five groups, each com-

prising a large number of observations (n D 50 in each group), so it is obvious even

without calculations that the resulting distribution can be considered normal. Then,

tq D z 1�˛
2

D 1:96:We can now use formula (4.22) to find tc :

tc D
t#S#

� NNx
�

C tqS 
� NNx
�

S#
� NNx
�

C S 
� NNx
� D 1:92:

Finally, we are ready to compute the uncertainty of the measurement result:

uc D tcS
� NNx
�

D 1:92 � 0:182 D 0:35%:

In the form of absolute uncertainty, we obtain u0:95 D 0:006 � 105. Thus, the

result of the measurement can be given as follows:

A D .1:662˙ 0:006/� 105 .0:95/:



Chapter 9

Conclusion

9.1 Measurement Data Processing: Past, Present,

and Next Steps

Historically, metrology emerged as a science of measures. Even in the middle of

the last century, metrology was considered to be the science of measurements con-

cerning the creation and maintenance of measurement standards [37]. With this

approach, the theory of accuracy of measurements was limited to the problems of

estimation of the accuracy of multiple measurements and only to random errors.

Math statistics was a natural fit for these problems. As a result, the science of mea-

surement data processing was in essence the reformulation of math statistics in the

context of random errors.

This state of affairs can be clearly seen by examining relatively recent books on

the subject, for example, Data Analysis for Scientists and Engineers by S. Meyer

(1975), Data Reduction and Error Analysis for Physical Sciences by Ph. Bevington

and D. Robinson (1992), and Measurement Theory for Engineers by I. Gertsbakh

(2003). Even the book The Statistical Analysis of Experimental Data (National

Bureau of Standards, 1964) by J. Mandel, which stands out by considering concrete

measurement problems, remained within the above confines. Nevertheless, because

this purely mathematical theory found practical applications, even in a restricted

case of random errors in multiple measurements, this theory obtained the status of

the classical theory of measurement data processing.

In the meantime, this theory did not satisfy practical needs. In particular, every

practitioner knew that in addition to random errors, there are systematic errors, and

the overall inaccuracy of the measurement result combined both of these compo-

nents. But the classical theory ignored this fact and, furthermore, not so long ago

considered it incorrect to combine these two components. There were other prac-

tical problems ignored by the classical theory. As a result, those who encountered

these problems in their practice resorted to ad hoc and often incorrect methods. For

example, in the case of single measurements, the measurement errors were often

equated to the fiducial error of the measuring device used (see Chap. 2), which is

wrong. To account for systematic errors in a multiple measurement, people often

simply added them to the random errors, which overestimated the inaccuracy of the

result.

S.G. Rabinovich, Evaluating Measurement Accuracy: A Practical Approach,

DOI 10.1007/978-1-4419-1456-9 9, c
 Springer Science+Business Media, LLC 2010
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The classical theory further ignored single measurements whereas these

measurements are the most commonly used in industry, scientific research, and

trade. Yet another limitation concerned the calculation of the inaccuracy of de-

pendent indirect measurements, which are typical in scientific experiments. The

classical theory did not offer ways to estimate the inaccuracy of these measure-

ments as a confidence interval, forcing scientists to make do with the standard

deviation as the characteristic of inaccuracy of the measurement result. Standard

deviation is an indirect and sometime ambiguous characteristic of inaccuracy, while

confidence interval is intuitive, unambiguous, and reflects the inaccuracy directly.

Practical needs demanded solutions to these and other problems not handled by

the classical theory. In the first edition of the “International Vocabulary of Basic and

General Terms in Metrology” published by ISO in 1984, metrology was declared to

be the science of measurements, regardless of their accuracy or application field.

To address these problems, a new theory started to take shape toward the end

of the last century. This theory does not obviate but subsumes the classical theory

and augments it with accounting for physical meaning of the metrological problems

being addressed. We therefore can call it the physical theory of measurement data

processing.

By considering the physical meaning of metrological problems, the new theory

has offered the method of reduction, which allows one to calculate the confidence in-

terval for the result of a dependent indirect measurement. Furthermore, this method

removes the need for the correlation coefficient in experimental data processing,

leading to a simpler and more accurate calculation procedure.

The new theory has also resulted in a clear and simple method for combin-

ing systematic and random errors in a measurement result. The analysis of this

method showed its high accuracy. This new theory has also revealed an organic

connection between single and multiple measurements and thus introduces into the

analysis of inaccuracy of measurements the properties of measuring instruments.

Besides providing solutions to these and other specific practical problems, the phys-

ical theory also considers the foundational issues of measurements.

This book offers systematic treatment of the physical theory and in this way

defines this new discipline. At the same time, this book obviously does not exhaust

this subject, and a number of problems still await their solutions. We list some of

these gaps below.

� The theory of single measurements requires further development, especially in

regard to accounting for the errors of measuring instruments. A complicating

factor in this problem is a large variety of measuring instrument types for which

suitable techniques must be developed.

� Although the diversity of measuring instruments prohibits the development of the

general theory of their design, it is possible and necessary to develop a general

theory of accuracy of measuring instruments. The accuracy is the common aspect

that unites these devices. This book takes an initial step toward such a theory, but

much more work is required.

� A large and common class of measurements involving recording instruments

(such as analog or digital automatic plotters, XY-recorders, etc.) came to be
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known as dynamic measurements [27, 51]. There are many open problems in

dynamic measurements; among them is an attractive problem to find the form

and parameters of an input signal having the recorded output signal and know-

ing the dynamic properties of the recorder. Modern computers make solving this

problem feasible.

� The errors and uncertainty of measurements are always estimated in an indirect

way, and the calculations include some assumptions. However, the correctness

of these assumptions and the validity of the resulting estimates have never been

experimentally checked. A general approach to filling this important gap would

involve measuring the same measurand in parallel by different methods, with

one method being an order of magnitude more accurate than the other, and then

comparing the measurement results and the calculated uncertainties. A promis-

ing alternative here is to use the Mote Carlo method, employing precisely known

analytical expressions to generate input data. By comparing the results of experi-

mental data processing based on certain assumptions (e.g., the assumption that a

conditionally constant error is a uniformly distributed random variable) with the

results of the Monte Carlo method using simulated data generated to comply with

those assumptions, one can estimate the implications of the assumptions made.

� The application of the square-root sum method to uncertainty calculations

requires further investigation. In particular, we analyzed this method in the

present book for random errors having a normal distribution. An important

question is whether this method can be used for other distributions, and how

accurate it would be.

� The applicability of the least-squares method to experimental data processing

when residuals are not purely random quantities. It is known that the least-

squares method is optimal when residuals are normally distributed random

quantities. However, residuals can include both systematic and random errors.

Although the least-squares method has been considered for random residuals

only, it is promising in these more general cases because it naturally accounts for

both types of errors. In fact, it is sometimes used in these cases without theoreti-

cal justification. However, its behavior in these cases is unknown.

Although this list of problems is subjective and incomplete, it suffices to show that

the physical theory of measurement data processing is a live discipline still under

development.

9.2 Remarks on the International Vocabulary of Metrology

The first edition of “International Vocabulary of Metrology – Basic and General

Concepts and Associated Terms” (VIM) was prepared by Working Group 2 of

JCGM and published by ISO/IEC in 2007. The Foreword of VIM states that this

document replaces all previously published editions of the International Vocabulary

of Basic and General Terms in Metrology. The new VIM differs significantly from

the previous one and reconsiders the definitions of many terms. Four terms defined
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in this VIM, measurement result, true value, error, and uncertainty, have a particular

bearing on the present book and are appropriate to be discussed here.

The clause 2.9 of the VIM defines measurement result as a “set of quantity values

being attributed to a measurand together with other available relevant information.”

Note 1 clarifies that “. . . this may be expressed in the form of a probability density

function (PDF).”

According to this definition, a set of observations obtained from the multiple

measurements represents the result of the measurement. However, as known, the

goal of the measurement is always a single estimate for the measured quantity

obtained from the analysis of this set, often augmented with an indication of its

accuracy, but not the set itself. Having a single estimate allows one to use measure-

ment results in mathematical formulas expressing natural laws. One cannot replace

values with distribution functions in these calculations. Therefore, this definition of

measurement result is not productive, and the traditional definition should be re-

tained, which is that the measurement result is a value attributed to a measurand,

obtained by measurement.

The definition of true value (VIM, clause 2.11) says that it is the “quantity value

consistent with the definition of a quantity.” However, even the value assigned to the

measurand as the result of the measurement is consistent with the definition of the

quantity; otherwise, it would be useless. In other words, this definition of the true

value suggests that the value of the quantity and its true value are the same. However,

the established meaning of the term true value is that it is an abstract, unreachable,

property of the measurand. Without this established meaning, it is impossible to

define the accuracy of a measurement. Therefore, the following definition, derived

from the one in [12], is advisable: true value – the value of a quantity that being

known would ideally reflect the property of an object with respect to the purpose of

the measurement. Note: as any ideal, the true value is impossible to find.

The definition of true value in VIM has three notes, two of which require a dis-

cussion. Note 1 states: “In the Error Approach . . . a true quantity value is considered

unique and, in practice, unknowable. The Uncertainty Approach is to recognize that,

owing to the inherently incomplete amount of detail in the definition of a quantity,

there is not a single true quantity value but rather a set of true quantity values con-

sistent with the definition. However, this set of values, in principle and in practice,

unknowable. Other approaches dispense altogether with the concept of true quantity

value and rely on the concept of metrological compatibility of measurement results

for assessing their validity.” Two aspects of this note are objectionable.

First, we would like to disagree with the notion that the incomplete amount of

detail in the definition of a quantity entails a set of true values rather than a single

true value for the quantity. It is well known that the goal of any measurement is

to obtain a numeric value that reflects the measured quantity. Measurement results

realize this goal. It is this aspect of measurements that allows us to apply mathe-

matics to natural sciences, and it is only possible if every measured quantity has a

single true value. Indeed, if we assumed that the measured quantity had multiple

true values, it would be impossible to associate it with a single number and use it in



9.2 Remarks on the International Vocabulary of Metrology 243

subsequent mathematical formulas. Although a measurement result often includes

an indication of its accuracy, and this indication is often expressed as an interval,

any measurement result still assigns a value (usually taken as the most likely value

within the interval) to the measurand.

The concept of the true value of a measured quantity is considered in detail in

Sect. 1.4 of the present book. That section also considers the example of the mea-

surement of the thickness of a sheet of a material, which is presented in GUM

(Sect. D.3.2 and D.3.4) to motivate the idea of a measured quantity having a set

of true values. We explained that when the thickness of the sheet is different in

different places and one must reflect these different thickness values by measuring

the thickness in different places, we have in fact several distinct measurements, one

in each place of the sheet. Each given point of the sheet has its own true value of

thickness and will have its own measurement result. There is no single measurement

result here, and the set of true values does not have to do with individual measure-

ments of the sheet thickness in different points. Thus, this example does not show

the need or the usefulness of having a set of true values for one measured quantity.

Regarding the inherently incomplete amount of detail reflected in the definition

of the quantity, the definition of the quantity must only reflect the property that is of

interest to the experimenter. The lack of detail in the definition of the quantity is not

a reason for introducing a set of true values for the quantity.

Second, we question the usefulness of distinguishing two approaches to estima-

tion of the accuracy of measurements. Defining new approaches is beneficial only

if they enable solutions to new problems. However, the VIM does not present any

new problem solved by the Uncertainty Approach with its set of true values for a

quantity. Thus, its introduction appears unwarranted. Further, the sentence follow-

ing the note in question mentions additional approaches but leaves it unclear what

these approaches are. From the above considerations, we conclude that the notion

of a “set of true values” must be removed from VIM.

Note 3 also raises objections. It represents an attempt to justify an erroneous

concept of the “Guide to the Expression of Uncertainty in Measurement” [2] of the

equivalency between the true value and the value of the measured quantity. How-

ever, the true value is an unreachable ideal concept, while the value of a measured

quantity is a measurement result. Thus, the two cannot be equivalent no matter the

accuracy of the measurement in question. We return to this issue in more detail in

Sect. 9.3.

These considerations lead to a conclusion that Notes 1 and 3 should be removed

from VIM.

The definition of measurement error given in clause 2.16 says: measured quantity

value minus a reference quantity value. Unfortunately, the above sentence cannot

be considered a definition because it does not explain the meaning of the term, and

instead it attempts to provide an algorithm for its calculation. As a matter of fact, that

algorithm is unrealistic: it follows from clause 5.18 that the reference quantity value

in measurements refers to the true value, which is always unknown. Furthermore,

this definition narrows the meaning of the term since it only covers the absolute

error, leaving a commonly used relative error aside.
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I consider measurement error to be properly defined as a deviation of the re-

sult of measurement from the true value of the measurand. This definition is not

algorithmic and makes it clear that just like the true value, measurement error is

impossible to obtain. In fact, the above consideration warrants the following note to

this definition: Because the true value is always unknown, the error of measurement

is estimated indirectly, by analyzing the accuracy of measuring instruments, mea-

surement conditions, and the obtained measurement data. In single measurements

under reference condition of the instruments involved, the measurement error is de-

termined by the limits of the permissible error of the instruments and is expressed

in the form of limits of measurement error. In multiple measurements, the measure-

ment inaccuracy is usually estimated using statistical methods, in which case the

measurement inaccuracy is characterized using the concept of measurement uncer-

tainty rather than the limits of error. The proposed definition of the term “error” is

close to that given in [10] and also in [12].

The definition of uncertainty in VIM (clause 2.26) is provided with a note saying

that uncertainty “may be, for example, a standard deviation called standard mea-

surement uncertainty (or a specified multiple of it), or the half-width of an interval,

having a stated coverage probability.” This note creates ambiguity that is unaccept-

able in scientific terminology. Indeed, what is the uncertainty, a standard deviation

or an interval? Giving two different meanings to one term must be avoided in a

terminological dictionary.

9.3 Drawbacks of the “Guide to the Expression

of Uncertainty in Measurement”

Another important document published by ISO is the “Guide to the Expression

of Uncertainty in Measurement” (GUM) [2]. The goal of GUM was to unify the

methods of measurement uncertainty estimation and its presentation. The unifor-

mity of estimation and expression of inaccuracy of measurements is a necessary

condition for the economic development of every country and for international

economic cooperation. Thus, GUM was enthusiastically received by the metrologi-

cal community.

However, a number of shortcomings among GUM recommendations have tran-

spired subsequently. In [16], it was noted that “the evaluation methods in the GUM

are applicable only to linear or linearized models and can yield unsatisfactory results

in some cases.” The same article reported that to address these issues, Addition 1

to GUM had been prepared and that furthermore, Working Group 1 JCGM decided

in 2006 to prepare a new edition of GUM. Other critical comments regarding GUM

can be found in [31]. Our own criticism appeared in [44] and, in more detail, in [42].

Still, the recently published VIM (which we discussed in the previous section)

clearly reflects GUM’s influence. For example, VIM repeatedly uses the notion of

a set of true values of a measured quantity, which as we showed in Sect. 9.2 is
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misguided. In Note 3 to clause 2.11 it makes an attempt to justify a mistaken con-

cept from GUM about the equivalency of the true value and a value of a quantity.

Apparently, past criticisms of GUM were not sufficiently convincing, and we revisit

its drawbacks here.

1. Scope of GUM

GUM begins with a statement that “The Guide establishes general rules for eval-

uating and expressing uncertainty in measurement that can be followed at various

levels of accuracy and in many fields – from shop floor to fundamental research.”

Unfortunately, the rest of GUM’s content does not support this intended scope since

it is devoted exclusively to multiple measurements. Single measurements, although

being the basic type of measurements in industry, trade, quality assurance, clinical

medicine, and other fields, are not even mentioned. This limited scope is a signifi-

cant limitation of GUM.

2. Philosophy of GUM

The foundational premise of GUM is that the concept of true value of a measurand

is not needed because it is equal to the value of this measurand. This premise is for-

mulated explicitly in “Guide Comment to Sect. B.2.3” (page 32 of GUM) and also

in Annex D (Sect. D.3.5). However, this premise is in contradiction with VIM, as

well as with fundamental conventions of physics and statistics. According to VIM,

clause 1.19, the value of a quantity is a number and reference together expressing

the magnitude of a quantity. In other words, it is the product of a number and the

unit of measurement. This value is obtained as the result of a measurement. In con-

trast, the true value is a purely theoretical concept and cannot be found (see clause

2.11 of the VIM). Thus, the terms “true value” and “value of a quantity” cannot be

considered the same and the latter cannot replace the former.

In statistics, the terms “parameter” (true value) and “estimate of the parameter”

(the obtained value of the parameter) are strictly distinguished. In physics, the equa-

tions between physical quantities would be impossible without the concept of a true

value; indeed, physical equations would always be only approximately correct for

obtained values of the quantities. Finally, as we will see bellow, the GUM itself

needed a distinction between the true value and the value of the measurand and was

forced to introduce rather awkward new terminology in its place. These consider-

ations bring a conclusion that during the new edition of GUM it should revert to

traditional philosophy.

3. Terminology of the GUM

The elimination of the term “true value” was motivated by the desire to eliminate the

term “error.” Consequently, the GUM uses the term “uncertainty” in place of “er-

ror” throughout the document. The goal was to eliminate synonymia in using both

terms throughout the document. This goal can be accomplished, however, without

excluding the term “true value” and the corresponding concept; in fact, by defining

the terms “error” and “uncertainty” precisely, we could distinguish the two clearly

and at the same time not impoverish the metrological language by eliminating the

term “error” but, to the contrary, enrich it by giving the two terms different meaning.
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Metrology offers every prerequisite to achieve this. Indeed, the uncertainty of a

measurement result is calculated usually from its components and with the help of

statistical methods. In contrast, in the case of a single measurement using measure-

ment instruments under reference conditions, the measurement inaccuracy is fully

determined by the limits of error of the instrument, and statistical methods are not

applicable.

Consequently, the term “uncertainty” may be used for probabilistic estimates

of inaccuracy and the term “limits of error” when the inaccuracy estimates have

no probabilistic interpretation. Moreover, according to VIM clause 2.26, the term

“uncertainty” is associated with the result of measurement. Thus, it cannot replace

the term “error” in other cases; for example, it cannot be used for components of

uncertainty or to express the inaccuracy of a measuring instrument. We conclude

that the total replacement of “error” with “uncertainty” is unjustified.

The GUM introduces two new terms “type A and type B evaluation of uncer-

tainty,” defining them as methods of evaluation of uncertainty (clause 2.3.2 and

2.3.3) but using them as components of uncertainty. Indeed, clause 5.1.2 describes

how to combine uncertainties type A and type B; clearly, methods cannot be com-

bined and they are treated there as components of uncertainty in this context. Such

inconsistency should be avoided in a document aiming to introduce rigorous lan-

guage for others to follow. In addition, these terms are not expressive. It would be

much better to use the common term “random error” instead of “type A uncertainty”

and the term “rated error” (if the term “systematic error” is undesirable).

Another inconsistency in the GUM is with the terms “standard uncertainty,”

“combined uncertainty,” and “expanded uncertainty.” The first two are defined as

simply standard deviation and the combined standard deviation, respectively. But

“expanded uncertainty” is presented as an interval. It is confusing to use the same

term “uncertainty” as the basis for derived terms having drastically different mean-

ing – a standard deviation in one case and an interval in the other.

In general, to calculate measurement uncertainty, the terms “standard deviation,”

“combined standard deviation,” and “uncertainty” itself would be sufficient. The

GUM introduced duplicate terms “standard uncertainty” and “combined standard

uncertainty” as the terms that “are used sometimes for convenience” (clause 4.2.3).

But it uses them exclusively throughout the rest of the document, creating an im-

pression that this is the proper terminology to be used. These duplicate terms cause

inconvenience in practice. For example, to follow this terminology, one has to al-

ways point out that standard uncertainty is equal to standard deviation, which is then

computed using known statistical methods. As a typical example, Kacker and Jones

[31] repeatedly use in their article passages the following: “According to the ISO

Guide (Sect. 4.2), the type A standard uncertainty associated with zA from classical

statistics is u .zA/ D s .zA/ D s .z/=
p
m.”

In other words, when saying “standard uncertainty,” a methrologist must remem-

ber that in fact the term refers to “standard deviation.” The same holds for the term

“combined standard deviation.”

Another terminological difficulty has to do with the concept of confidence

interval. As it is known, it is the interval that, with given probability, contains the
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true value. Thus, it needs the concept of true value, which the GUM was trying

to eliminate. In an attempt to resolve this logical gap, the GUM replaces the term

“true value” with the expression “letter Y that represents the value attributed to

the measurand” (clause 6.2.1 and Annex G) or “measurand Y.” This proliferation

of nondescriptive terms makes the terminology nonintuitive, and it is unnecessary

since descriptive terms exist.

4. Evaluation of the uncertainty in the GUM

The GUM contains the terms standard uncertainty, combined uncertainty, and ex-

panded uncertainty. The first two are just different names for the standard deviation

and combined standard deviation. They are computed using known formulas. But

expanded uncertainty is an interval. In Chap. 6 of the GUM this interval is called

coverage interval, which is defined as “an interval about the measurement result

that encompasses a large fraction p of the probability distribution of values that

could reasonably be attributed to the measurand” (clause 6.1.2). GUM further de-

scribes the calculation procedure for the coverage interval using two additional new

terms, coverage probability and coverage factor. The former has the same meaning

as “confidence probability” and the latter as “quantile of the distribution.” How-

ever, how to find the coverage factor and therefore the coverage interval remains

unspecified and is unknown. Changing the terminology obviously does not solve

the problem of obtaining the expanded uncertainty (or confidence interval in the

traditional terminology).

The root of the problem with computing the expanded uncertainty is that the

GUM does not provide a method for combining systematic and random errors of

a measurement result. Consequently, clause 6.3.3 recommends calculating the ex-

panded uncertainty simply as the product of combined uncertainty and factor 2 or 3;

the result is assigned, without any justification, probability 0.95 in the first case and

0.99 in the second.

Clauses G.3.1 and G.3.2 of Annex G offer a different method for calculating the

expanded uncertainty. This method is based on the Student’s distribution, which in

this case is not applicable. Indeed, recall that estimate of combined variance is a

sum of estimates of variance of random errors (uncertainty A according to GUM)

and conditional constant errors (uncertainty B). Thus, the combined standard de-

viation represents the standard deviation of the sum of random and conditionally

constant systematic errors. Student’s distribution establishes the connection between

the mean of a group of observations and the standard deviation of this mean. In the

case in question, the mean is calculated using data having only random errors, while

the standard deviation – the square root of the sum of the estimates of the variances

of random and conditionally constant errors – reflects both random and systematic

errors. Therefore, using Student’s distribution in this case is incorrect.

Another mistake has to do with calculating the effective degree of freedom. Its

essence is that the concept of “degree of freedom” is not applicable to a random

quantity with fully known distribution function. For the model of systematic errors

the GUM takes the uniform distribution with known limits, and this distribution

cannot be assigned degree of freedom � D 1, or any other number.
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We should note that there is a known method for computing the uncertainty of

a measurement result with given confidence probability, which accounts for both

systematic and random errors of the result. This method is described in [44,46] and

discussed in detail in the present book.

The forgoing discussion shows that the upcoming new edition of the GUM must

extend beyond revising its philosophy and terminology and revise its recommenda-

tions for data processing as well. Such revision is possible on the basis of existing

methods and traditional philosophical foundation.

The revision of the GUM should utilize the method of reduction for dependent

indirect measurements. In fact, the GUM already mentions the method of reduction

as a second approach (see the note on page 10 in Sect. 4.1.4), but does not discuss

its advantages over the used traditional method. These advantages were pointed out

in this book, and the main ones being that this method allows one to construct the

confidence interval for dependent indirect measurements and that it eliminates the

need for the correlation coefficient. These benefits of the method of reduction are

hard to overstate.

Further, we would like to point out again that the revision of the GUM must

also include methods of estimating the inaccuracy of single measurements. These

methods also exist already and are discussed in this book.

The above problems with GUM’s recommendations regarding the estimation of

the uncertainty of a measurement result have been recognized by JCGM, and Sup-

plement 1 to the GUM is devoted to rectifying these issues [13]. Supplement 1

addresses them through the use of the Monte Carlo method. However, as we dis-

cussed earlier, there exist much simpler approaches. Note that being able to solve

these problems without the Monte Carlo method would not obviate the need for Sup-

plement 1 in the form of a separate recommendation devoted expressly to the Monte

Carlo method, which can have its own significance in metrology (see Sect. 5.10).
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Table A.1 Values of the normalized Gaussian function ˆ.z/ D 1p
2�

z
R

0

e�y2=2dy

z 0 1 2 3 4 5 6 7 8 9

0:0 0:00000 0:00399 0:00798 0:01197 0:01595 0:01994 0:02392 0:02790 0:03188 0:03586

0:1 0:03983 0:04380 0:04776 0:05172 0:05567 0:05962 0:06356 0:06749 0:07142 0:07535

0:2 0:07926 0:08317 0:08706 0:09095 0:09483 0:09871 0:10257 0:10642 0:11026 0:11409

0:3 0:11791 0:12172 0:12552 0:12930 0:13307 0:13683 0:14058 0:14431 0:14803 0:15173

0:4 0:15542 0:15910 0:16276 0:16640 0:17003 0:17364 0:17724 0:18082 0:18439 0:18793

0:5 0:19146 0:19497 0:19847 0:20194 0:20540 0:20884 0:21226 0:21566 0:21904 0:22240

0:6 0:22575 0:22907 0:23237 0:23565 0:23891 0:24215 0:24537 0:24857 0:25175 0:25490

0:7 0:25804 0:26115 0:26424 0:26730 0:27035 0:27337 0:27637 0:27935 0:28230 0:28524

0:8 0:28814 0:29103 0:29389 0:29673 0:29955 0:30234 0:30511 0:30785 0:31057 0:31327

0:9 0:31594 0:31859 0:32121 0:32381 0:32639 0:32894 0:33147 0:33398 0:33646 0:33891

1:0 0:34134 0:34375 0:34614 0:34850 0:35083 0:35314 0:35543 0:35769 0:35993 0:36214

1:1 0:36433 0:36650 0:36864 0:37076 0:37286 0:37493 0:37698 0:37900 0:38100 0:38298

1:2 0:38493 0:38686 0:38877 0:39065 0:39251 0:39435 0:39617 0:39796 0:39973 0:40147

1:3 0:40320 0:40490 0:40658 0:40824 0:40988 0:41149 0:41309 0:41466 0:41621 0:41774

1:4 0:41924 0:42073 0:42220 0:42364 0:42507 0:42647 0:42786 0:42922 0:43056 0:43189

1:5 0:43319 0:43448 0:43574 0:43699 0:43822 0:43943 0:44062 0:44179 0:44295 0:44408

1:6 0:44520 0:44630 0:44738 0:44845 0:44950 0:45053 0:45154 0:45254 0:45352 0:45449

1:7 0:45543 0:45637 0:45728 0:45818 0:45907 0:45994 0:46080 0:46164 0:46246 0:46327

1:8 0:46407 0:46485 0:46562 0:46638 0:46712 0:46784 0:46856 0:46926 0:46995 0:47062

1:9 0:47128 0:47193 0:47257 0:47320 0:47381 0:47441 0:47500 0:47558 0:47615 0:47670

2:0 0:47725 0:47778 0:47831 0:47882 0:47932 0:47982 0:48030 0:48077 0:48124 0:48169

2:1 0:48214 0:48257 0:48300 0:48341 0:48382 0:48422 0:48461 0:48500 0:48537 0:48574

2:2 0:48610 0:48645 0:48679 0:48713 0:48745 0:48778 0:48809 0:48840 0:48870 0:48899

2:3 0:48928 0:48956 0:48983 0:49010 0:49036 0:49061 0:49086 0:49111 0:49134 0:49158

2:4 0:49180 0:49202 0:49224 0:49245 0:49266 0:49286 0:49305 0:49324 0:49343 0:49361

2:5 0:49379 0:49396 0:49413 0:49430 0:49446 0:49461 0:49477 0:49492 0:49506 0:49520

2:6 0:49534 0:49547 0:49560 0:49573 0:49585 0:49598 0:49609 0:49621 0:49632 0:49643

2:7 0:49653 0:49664 0:49674 0:49683 0:49693 0:49702 0:49711 0:49720 0:49728 0:49736

2:8 0:49744 0:49752 0:49760 0:49767 0:49774 0:49781 0:49788 0:49795 0:49801 0:49807

2:9 0:49813 0:49819 0:49825 0:49831 0:49836 0:49841 0:49846 0:49851 0:49856 0:49861

Note: The values of ˆ.z/ for z D 3:0–4:5 are as follows:

3.0 0.49865 3.4 0.49966 3.8 0.49993

3.1 0.49903 3.5 0.49977 3.9 0.49995

3.2 0.49931 3.6 0.49984 4.0 0.499968

3.3 0.49952 3.7 0.49989 4.5 0.499997

249



250 Appendix

Table A.2 Quantiles of

Student’s distribution
Degree of

freedom �

Significance level

q D .1� ˛/� 100.%/

10 5 1

1 6.31 12.71 63.66

2 2.92 4.30 9.92

3 2.35 3.18 5.84

4 2.13 2.78 4.60

5 2.02 2.57 4.03

6 1.94 2.45 3.71

7 1.90 2.36 3.50

8 1.86 2.31 3.36

9 1.83 2.26 3.25

10 1.81 2.23 3.17

12 1.78 2.18 3.06

14 1.76 2.14 2.98

16 1.75 2.12 2.92

18 1.73 2.10 2.88

20 1.72 2.09 2.84

22 1.72 2.07 2.82

24 1.71 2.06 2.80

26 1.71 2.06 2.78

28 1.70 2.05 2.76

30 1.70 2.04 2.75

1 1.64 1.96 2.58
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Table A.3 Critical values of the distribution of Tn D .xn � Nx/
ı

S or

T1 D . Nx � x1/
ı

S (with unilateral check)

Number of

observations,

n

Upper 0.5%

significance

level

Upper 1%

significance

level

Upper 5%

significance

level

3 1.155 1.155 1.153

4 1.496 1.492 1.463

5 1.764 1.749 1.672

6 1.973 1.944 1.822

7 2.139 2.097 1.938

8 2.274 2.221 2.032

9 2.387 2.323 2.110

10 2.482 2.410 2.176

11 2.564 2.485 2.234

12 2.636 2.550 2.285

13 2.699 2.607 2.331

14 2.755 2.659 2.371

15 2.806 2.705 2.409

16 2.852 2.747 2.443

17 2.894 2.785 2.475

18 2.932 2.821 2.504

19 2.968 2.854 2.532

20 3.001 2.884 2.557

21 3.031 2.912 2.580

22 3.060 2.939 2.603

23 3.087 2.963 2.624

24 3.112 2.987 2.644

25 3.135 3.009 2.663

26 3.157 3.029 2.681

27 3.178 3.049 2.698

28 3.199 3.068 2.714

29 3.218 3.085 2.730

30 3.236 3.103 2.745
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Table A.4 Percentile points of the �2 distribution P
n

�2 > �2q

o

Degree of

freedom �

Significance level q (%)

99 95 90 80 70 30 20 10 5 1

1 0:00016 0:00393 0:0158 0:0642 0:148 1:074 1:642 2:706 3:841 6:635

2 0:0201 0:103 0:211 0:446 0:713 2:408 3:219 4:605 5:991 9:210

3 0:115 0:352 0:584 1:005 1:424 3:665 4:642 6:251 7:815 11:345

4 0:297 0:711 1:064 1:649 2:195 4:878 5:989 7:779 9:488 13:277

5 0:554 1:145 1:610 2:343 3:000 6:064 7:289 9:236 11:070 15:086

6 0:872 1:635 2:204 3:070 3:828 7:231 8:558 10:645 12:592 16:812

7 1:239 2:167 2:833 3:822 4:671 8:383 9:803 12:017 14:067 18:475

8 1:646 2:733 3:490 4:594 5:527 9:524 11:030 13:362 15:507 20:090

9 2:088 3:325 4:168 5:380 6:393 10:656 12:242 14:684 16:919 21:666

10 2:558 3:940 4:865 6:179 7:267 11:781 13:442 15:987 18:307 23:209

11 3:053 4:575 5:578 6:989 8:148 12:899 14:631 17:275 19:675 24:725

12 3:571 5:226 6:304 7:807 9:034 14:011 15:812 18:549 21:026 26:217

13 4:107 5:892 7:042 8:634 9:926 15:119 16:985 19:812 22:362 27:688

14 4:660 6:571 7:790 9:467 10:821 16:222 18:151 21:064 23:685 29:141

15 5:229 7:261 8:547 10:307 11:721 17:322 19:311 22:307 24:996 30:578

16 5:812 7:962 9:312 11:152 12:624 18:418 20:465 23:542 26:296 32:000

17 6:408 8:672 10:085 12:002 13:531 19:511 21:615 24:769 27:587 33:409

18 7:015 9:390 10:865 12:857 14:440 20:601 22:760 25:989 28:869 34:805

19 7:633 10:117 11:651 13:716 15:352 21:689 23:900 27:204 30:144 36:191

20 8:260 10:851 12:443 14:578 16:266 22:775 25:038 28:412 31:410 37:566

21 8:897 11:591 13:240 15:445 17:182 23:858 26:171 29:615 32:671 38:932

22 9:542 12:338 14:041 16:314 18:101 24:939 27:301 30:813 33:924 40:289

23 10:196 13:091 14:848 17:187 19:021 26:018 28:429 32:007 35:172 41:638

24 10:856 13:848 15:659 18:062 19:943 27:096 29:553 33:196 36:415 42:980

25 11:524 14:611 16:473 18:940 20:867 28:172 30:675 34:382 37:652 44:314

26 12:198 15:379 17:292 19:820 21:792 29:246 31:795 35:563 38:885 45:642

27 12:879 16:151 18:114 20:703 22:719 30:319 32:912 36:741 40:113 46:963

28 13:565 16:928 18:939 21:588 23:647 31:391 34:027 37:916 41:337 48:278

29 14:256 17:708 19:768 22:475 24:577 32:461 35:139 39:087 42:557 49:588

30 14:953 18:493 20:599 23:364 25:508 33:530 36:250 40:256 43:773 50:892
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Table A.5 Values of the upper 1% of points of the distribution F0:01 D S21 =S
2
2

Degree of freedom

�1

�2 2 3 4 5 6 8 12 16 24 50 1
2 99:00 99:17 99:25 99:30 99:33 99:36 99:42 99:44 99:46 99:48 99:50

3 30:81 29:46 28:71 28:24 27:91 27:49 27:05 26:83 26:60 26:35 26:12

4 18:00 16:69 15:98 15:52 15:21 14:80 14:37 14:15 13:93 13:69 13:46

5 13:27 12:06 11:39 10:97 10:67 10:29 9:89 9:68 9:47 9:24 9:02

6 10:92 9:78 9:15 8:75 8:47 8:10 7:72 7:52 7:31 7:09 6:88

7 9:55 8:45 7:85 7:46 7:19 6:84 6:47 6:27 6:07 5:85 5:65

8 8:65 7:59 7:01 6:63 6:37 6:03 5:67 5:48 5:28 5:06 4:86

9 8:02 6:99 6:42 6:06 5:80 5:47 5:11 4:92 4:73 4:51 4:31

10 7:56 6:55 5:99 5:64 5:39 5:06 4:71 4:52 4:33 4:12 3:91

11 7:20 6:22 5:67 5:32 5:07 4:74 4:40 4:21 4:02 3:80 3:60

12 6:93 5:95 5:41 5:06 4:82 4:50 4:16 3:98 3:78 3:56 3:36

13 6:70 5:74 5:20 4:86 4:62 4:30 3:96 3:78 3:59 3:37 3:16

14 6:51 5:56 5:03 4:69 4:46 4:14 3:80 3:62 3:43 3:21 3:00

15 6:36 5:42 4:89 4:56 4:32 4:00 3:67 3:48 3:29 3:07 2:87

16 6:23 5:29 4:77 4:44 4:20 3:89 3:55 3:37 3:18 2:96 2:75

17 6:11 5:18 4:67 4:34 4:10 3:79 3:45 3:27 3:08 2:86 2:65

18 6:01 5:09 4:58 4:25 4:01 3:71 3:37 3:20 3:00 2:79 2:57

19 5:93 5:01 4:50 4:17 3:94 3:63 3:30 3:12 2:92 2:70 2:49

20 5:85 4:94 4:43 4:10 3:87 3:56 3:23 3:05 2:86 2:63 2:42

21 5:78 4:87 4:37 4:04 3:81 3:51 3:17 2:99 2:80 2:58 2:36

22 5:72 4:82 4:31 3:99 3:76 3:45 3:12 2:94 2:75 2:53 2:31

23 5:66 4:76 4:26 3:94 3:71 3:41 3:07 2:89 2:70 2:48 2:26

24 5:61 4:72 4:22 3:90 3:67 3:36 3:03 2:85 2:66 2:44 2:21

25 5:57 4:68 4:18 3:86 3:63 3:32 2:99 2:81 2:62 2:40 2:17

26 5:53 4:64 4:14 3:82 3:59 3:29 2:96 2:78 2:58 2:36 2:13

27 5:49 4:60 4:11 3:78 3:56 3:26 2:93 2:74 2:55 2:33 2:10

28 5:45 4:57 4:07 3:75 3:53 3:23 2:90 2:71 2:52 2:30 2:06

29 5:42 4:54 4:04 3:73 3:50 3:20 2:87 2:68 2:49 2:27 2:03

30 5:39 4:51 4:02 3:70 3:47 3:17 2:84 2:66 2:47 2:24 2:01

35 5:27 4:40 3:91 3:59 3:37 3:07 2:74 2:56 2:37 2:13 1:90

40 5:18 4:31 3:83 3:51 3:29 2:99 2:66 2:48 2:29 2:05 1:80

45 5:11 4:25 3:77 3:45 3:23 2:94 2:61 2:43 2:23 1:99 1:75

50 5:06 4:20 3:72 3:41 3:19 2:89 2:56 2:38 2:18 1:94 1:68

60 4:98 4:13 3:65 3:34 3:12 2:82 2:50 2:32 2:12 1:87 1:60

70 4:92 4:07 3:60 3:29 3:07 2:78 2:45 2:28 2:07 1:82 1:53

80 4:88 4:04 3:56 3:26 3:04 2:74 2:42 2:24 2:03 1:78 1:49

90 4:85 4:01 3:53 3:23 3:01 2:72 2:39 2:21 2:00 1:75 1:45

100 4:82 3:98 3:51 3:21 2:99 2:69 2:37 2:19 1:98 1:73 1:43

125 4:78 3:94 3:47 3:17 2:95 2:66 2:33 2:15 1:94 1:69 1:37

1 4:60 3:78 3:32 3:02 2:80 2:51 2:18 1:99 1:79 1:52 1:00
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Table A.6 Values of the upper 5% of points of the distribution F0:05 D S21 =S
2
2

Degree of freedom

�1

�2 2 3 4 5 6 8 12 16 24 50 1
2 19:00 19:16 19:25 19:30 19:33 19:37 19:41 19:43 19:45 19:47 19:50

3 9:55 9:28 9:12 9:01 8:94 8:84 8:74 8:69 8:64 8:58 8:53

4 6:94 6:59 6:39 6:26 6:16 6:04 5:91 5:84 5:77 5:70 5:63

5 5:79 5:41 5:19 5:05 4:95 4:82 4:68 4:60 4:53 4:44 4:36

6 5:14 4:76 4:53 4:39 4:28 4:15 4:00 3:92 3:84 3:75 3:67

7 4:74 4:35 4:12 3:97 3:87 3:73 3:57 3:49 3:41 3:32 3:23

8 4:46 4:07 3:84 3:69 3:58 3:44 3:28 3:20 3:12 3:03 2:93

9 4:26 3:86 3:63 3:48 3:37 3:23 3:07 2:98 2:90 2:80 2:71

10 4:10 3:71 3:48 3:33 3:22 3:07 2:91 2:82 2:74 2:64 2:54

11 3:98 3:59 3:36 3:20 3:09 2:95 2:79 2:70 2:61 2:50 2:40

12 3:88 3:49 3:26 3:11 3:00 2:85 2:69 2:60 2:50 2:40 2:30

13 3:80 3:41 3:18 3:02 2:92 2:77 2:60 2:51 2:42 2:32 2:21

14 3:74 3:34 3:11 2:96 2:85 2:70 2:53 2:44 2:35 2:24 2:13

15 3:68 3:29 3:06 2:90 2:79 2:64 2:48 2:39 2:29 2:18 2:07

16 3:63 3:24 3:01 2:85 2:74 2:59 2:42 2:33 2:24 2:13 2:01

17 3:59 3:20 2:96 2:81 2:70 2:55 2:38 2:29 2:19 2:08 1:96

18 3:55 3:16 2:93 2:77 2:66 2:51 2:34 2:25 2:15 2:04 1:92

19 3:52 3:13 2:90 2:74 2:63 2:48 2:31 2:21 2:11 2:00 1:88

20 3:49 3:10 2:87 2:71 2:60 2:45 2:28 2:18 2:08 1:96 1:64

21 3:47 3:07 2:84 2:68 2:57 2:42 2:25 2:15 2:05 1:93 1:81

22 3:44 3:05 2:82 2:66 2:55 2:40 2:23 2:13 2:03 1:91 1:78

23 3:42 3:03 2:80 2:64 2:53 2:38 2:20 2:11 2:00 1:88 1:76

24 3:40 3:01 2:78 2:62 2:51 2:36 2:18 2:09 1:98 1:86 1:73

25 3:38 2:99 2:76 2:60 2:49 2:34 2:16 2:07 1:96 1:84 1:71

26 3:37 2:98 2:74 2:59 2:47 2:32 2:15 2:05 1:95 1:82 1:69

27 3:35 2:96 2:73 2:57 2:46 2:30 2:13 2:03 1:93 1:80 1:67

28 3:34 2:95 2:71 2:56 2:44 2:29 2:12 2:02 1:91 1:78 1:65

29 3:33 2:93 2:70 2:54 2:43 2:28 2:10 2:00 1:90 1:77 1:64

30 3:32 2:92 2:69 2:53 2:42 2:27 2:09 1:99 1:89 1:76 1:62

35 3:26 2:87 2:64 2:48 2:37 2:22 2:04 1:94 1:83 1:70 1:57

40 3:23 2:84 2:61 2:45 2:34 2:18 2:00 1:90 1:79 1:66 1:51

45 3:21 2:81 2:58 2:42 2:31 2:15 1:97 1:87 1:76 1:63 1:48

50 3:18 2:79 2:56 2:40 2:29 2:13 1:95 1:85 1:74 1:60 1:44

60 3:15 2:76 2:52 2:37 2:25 2:10 1:92 1:81 1:70 1:56 1:39

70 3:13 2:74 2:50 2:35 2:23 2:07 1:89 1:79 1:67 1:53 1:35

80 3:11 2:72 2:49 2:33 2:21 2:06 1:88 1:77 1:65 1:51 1:32

90 3:10 2:71 2:47 2:32 2:20 2:04 1:86 1:76 1:64 1:49 1:30

100 3:09 2:70 2:46 2:30 2:19 2:03 1:85 1:75 1:63 1:48 1:28

125 3:07 2:68 2:44 2:29 2:17 2:01 1:83 1:72 1:60 1:45 1:25

1 2:99 2:60 2:37 2:21 2:09 1:94 1:75 1:64 1:52 1:35 1:00



Glossary

Absolutely constant error An elementary error of a measurement that remains the

same in repeated measurements performed under the same conditions. The value of

this error is unknown, but its limits can be estimated.

Examples: (1) An error of indirect measurement caused by using imprecise

equation between the measurand and measurement arguments. (2) An error in volt-

age measurement that uses a moving-coil voltmeter when the resistance of the

voltage source is unknown.

Accuracy class A class of measuring devices that meets stated metrological

requirements. Accuracy classes are intended to optimize the number of different

accuracy levels of measuring devices and to keep their errors within specified limits.

Accuracy of measurement Closeness of the result of measurement to the true

value of the measurand.

Accuracy of measuring instrument The ability of a measuring instrument to per-

form measurements with results that is close to the true values of the measurands.

Additional error of measuring instrument The difference between the error of a

measuring instrument when the value of one influence quantity exceeds its reference

value and the error of that instrument under reference condition.

Argument influence coefficient Partial derivative of the function at the right-hand

side of the measurement equation of an indirect measurement with respect to one

argument.

Notes: (1) Argument influence coefficient is calculated by substituting the

arguments in the resulting derivative function with their estimates. (2) Argument

influence coefficients are expressed in absolute or relative form.

Calibration Operation that, under specified conditions, establishes the relation-

ship between values indicated by a measuring instrument and corresponding values

obtained from a measurement standard.

Notes: (1) Results of calibration may be presented by a table, calibration curve

or by a table of additive or multiplicative corrections of the instrument or mea-

sure indications. (2) The ratio of permissible error limits for measuring instrument

or measure being calibrated and uncertainty of measurement standard are stated
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in national or international recommendations or standards or it is adopted by

calibration laboratories and may be different in different fields of measurement.

Conditionally constant error An unknown elementary error of a measurement

that lies inside an interval defined by the known limits of permissible error of the

measuring instrument involved.

Note: The limits of permissible error are the same for all measuring instruments

of particular type and therefore those instruments are interchangeable in that sense.

Dead band An interval through which a stimulus signal at the input of measuring

instrument may be changed without response in instrument indication.

Direct measurement A measurement in which the value of the measurand is read

from the indication of the measuring instrument; the latter can be multiplied by

some factor or adjusted by applying certain corrections.

Dynamic measurement A measurement in which the measuring instrument is

employed in dynamic regime.

Drift A slow change in output indication of a measuring instrument that is

independent of a stimulus.

Note: The drift is usually checked at the zero point of a measuring instrument

indication and is eliminated by adjusting the instrument indication to the zero point

before measurement.

Elementary error of a measurement A component of error or uncertainty of a

measurement associated with a single source of inaccuracy of the measurement.

Error of a measurement A deviation of the result of a measurement from the true

value of the measurand.

Note: Error of measurement may be expressed in absolute or relative form.

Fiducial error A ratio of the permissible limits of the absolute error of the

measuring instrument to some standardized value – fiducial value. Fiducial error

is expressed as percentage and makes it possible to compare the accuracy of mea-

suring instruments that have different measurement ranges and different limits of

permissible error when the latter are expressed in absolute form.

Fiducial value Quantity value specified for a particular type of measuring instru-

ments. Fiducial value may be, for example, the span or the upper limit of the nominal

range of the measuring instrument.

Inaccuracy of a measurement A quantitative characteristic of the degree of

deviation of a measurement result from the true value of the measurand.

Note: Inaccuracy of a measurement may be expressed as limits of measurement

error or as measurement uncertainty.

Indirect measurement A measurement in which the estimate of the measurand

is calculated using measurements of other quantities related to the measurand by

known function.
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Influence coefficient A factor that after multiplying by a value of deviation of a

specific influence quantity from its reference condition limits gives the additional

error.

Influence function A metrological characteristic of the measuring instrument

expressing the relationship between errors of that instrument and values of an

influence quantity.

Intrinsic error The error of a measuring instrument determined under reference

conditions.

Limits of measurement error Limits of the deviation of the measurement result

from the true value of the measurand.

Limits of permissible error of a measuring instrument Maximum value of an

error that is permitted by specification for a given measuring instrument.

Material measure A measuring instrument that reproduces a particular kind of

quantity with known value and accuracy.

Note: The indication of a material measure is its assigned quantity value.

Measurand A particular quantity whose value must be obtained by measurement.

Measurement A set of experimental operations, involving at least one measuring

instrument, performed for the purpose of obtaining the value of a quantity.

Measurement chain A set of several measuring instruments connected temporary

in a chain to perform a measurement.

Measurement standard A measuring instrument intended to materialize and/or

conserve a unit of a quantity in order to transfer its value to all other measuring

instruments.

Note: There are primary measurement standard, secondary standards, standards

with specified functions and at the end of this chain – working standards.

Measurement vector A set of matched measurements of all arguments defining an

indirect measurement.

Measuring instrument A technical product that is created for the purpose to be

used in a measurement and which has known metrological characteristics.

Metrological characteristic A characteristic of a measuring instrument that allows

one to judge the suitability of the instrument for measurement in a given range, or

that is necessary for the estimation of the inaccuracy of measurement results.

Metrology Science of measurements regardless of the field to which the quantity

to be measured belongs and of the accuracy of measurements.

Primary measurement standard A measurement standard that has the highest

accuracy in a country.
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Note: The primary measurement standard usually is recognized by national

authority as national standard and used for assigning the measurement unit to other

measurement standards for the kind of quantity concerned.

Random error A component of the inaccuracy of a measurement that, in the

repeated measurements of the same measurand under the same conditions, varies

in an unpredictable way.

Rated conditions Operating conditions, determined for specified type of

measuring instruments, that are wider than their reference operating conditions and

nevertheless allow the estimation of the inaccuracy of a measurement performed by

this type instrument under these conditions.

Note: Rated conditions are described as permissible excess value of influence

quantities over those given as limits for reference conditions.

Reference conditions Operating conditions, determined for specified type of

measuring instruments, under which the measurement performed by this type in-

strument is more accurate than under other conditions.

Repeatability of a measurement Agreement among several consecutive measure-

ments for the same measurand performed, under the same operating conditions with

the same measuring instruments, over a short period of time.

Reproducibility of a measurement Agreement among measurements for the same

measurand performed in different locations, under different operating conditions, or

over a long period of time.

Response time The time interval between the instant when a measuring instrument

gets a stimulus and the instant when the response reaches and remains within

specified limits of its final steady value.

Result of measurement The value of a measurand obtained by measurement.

Note: The measurement result is expressed as a product of a number and a proper

unit.

Secondary measurement standard A measurement standard that obtains the

magnitude of a unit from the primary measurement standard.

Span The absolute value of the difference between the two limits of the nominal

range of a measuring instrument.

Example: Voltmeter with the nominal range from �15 to C15 V has the span of

30 V.

Systematic error A component of the inaccuracy of a measurement that, in the

repeated measurements of the same measurand under the same conditions, remains

constant or varies in a predictable way.

True value of the measurand The value of a quantity that being known would

ideally reflect the property of an object with respect to the purpose of the

measurement.

Note: True value can never be found.
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Uncertainty of measurement An interval within which a true value of a

measurand lies with given confidence probability.

Notes: (1) Uncertainty is expressed by its limits, which are listed as offsets from

the result of the measurement. (2) Uncertainty may be presented either in absolute

or relative form.

Verification A kind of calibration that reveals whether the error of a measuring

instrument lies within their permissible limits.

Working standard A measurement standard that is used to calibrate measuring

instruments.
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