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Chaotic dynamics in a model of a long Josephson junction (LJJ) is studied via standard techniques of non-linear maps. A 

characterization of chaos in such objects in terms of Lyapunov exponents and Poincare sections is given. Finally the occurrence 

of chaos in map dynamics is compared with oreliminarv results of full numerical integration of the perturbed sine-Gordon equa- 

tion (PSGE). _ 

The partial differential equation (PDE ) modeling 

a long Josephson junction (LJJ) [l-3] is a typical 

example of an equation sustaining solitonic solu- 

tions. Such solitons, called fluxons because they carry 

a flux quantum h/2e, are characterized by a high 

spatial coherency over a length of LJ, i.e. the Jo- 

sephson length. On the other hand the occurrence of 

chaotic states in the differential equations modelling 

ac driven small [ 4,5] and long [ 6,7] Josephson 

junctions is a well known phenomenon. Recently, 

also in the context of a simplified model of a LJJ 

which reduces the problem to the study of a two-di- 

mensional functional map evidence of chaotic states 

has been shown [ 8,9 1. The features of this last result 

are remarkable because they involve both aspects: 

solitons and chaotic behavior [ 91. The pseudo-ran- 

dom evolution in deterministic systems is of great 

interest from a theoretical point of view, but also 

from an applicative one in order to avoid a possible 

source of noise in practical devices. 

Small junctions can be modelled by a non-linear 

ordinary differential equation for g(t), the phase 

difference between the two superconductors which 

form the junction. When junctions are in the pres- 

ence of an external rf signal they can, under suitable 

conditions, show chaotic behavior, i.e. the phase re- 

lation of@(t) with the external rf signal is chaotic. 

Long Josephson junctions [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ] are described by a 

non-linear partial differential equation with proper 

boundary conditions. The solution of this equation 

is again the phase @(x, t). This equation can be writ- 

ten, in normalized units, for an inline junction ir- 

radiated by a microwave field as 

& - $,, + sin @ = ati, - PeL , (1) 

where cy and /3 are, respectively, the quasi-particle 

loss and the surface loss. Boundary conditions are (I 

is the normalized length of the junction) 

@A& t) +&MO, t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x+70 sin(W , (2a) 

@AL t)+/&L(h t)=x+Ilosin(ot) (2b) 

to take into account the effect of both the dc drive 

x and of an oscillating external magnetic field 

q(t)=vosin(wt) [8-121 (innormalizedunits).This 

equation can sustain the motion of localized kinks, 

called also fluxons because they carry a flux quan- 

tum trapped in a 21~ rotation of the phase. 

Under suitable conditions, assuming that only a 

single fluxon is present in the junction, it is possible 

by means of a perturbative approach to reduce eq. 

( 1) to an ordinary differential equation for the ve- 

locity u(t) of the center of mass of the fluxon [ 131. 

This differential equation has been used to write a 

two-dimensional functional map. The map has been 

discussed elsewhere (see refs. [&lo] for a complete 

discussion), and here it is written in terms of the 

variables tk (the time variable of the soliton, modulo 
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the period of the external signal, after the kth re- 

flection at a boundary) and uk (the velocity at the 

kth boundary ), 

1 
tk+, =tk+ ah 

uk 

( > 
~ 

cuk - s, 

mod( 2x/w) , (3a) 

uk+l =dm > (3b) 

where yk, the fluxon energy at the kth reflection, is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Yk+I = 

(l-n)(C&-S,)2+l-(l-A)U; 

l-(1- ,t)u;-n(Cuk-&)2 

+~n[X+(-l)k%sin(c&k+8)], (3c) 

where a=cr+ ip, C=cosh(alm), s,= 

sinh(alm)/m, n=fb/((~+{/3). We note 

that from eq. (3a) we can obtain the time of flight 

(TOF) Of a SOlitOn defined as Tk+, = tk+ , - tk, i.e. the 

time employed by the fluxon to propagate between 

the ends of the LJJ. Thus the general condition for 

the existence of single fixed point phase-locked states 

is 

(4a) 

uk+p = uk > (4b) 

where m, n and p are integers. These phase-locked 

states give rise to vertical steps on the current-volt- 

age (I-V) characteristic, i.e. the voltage, propor- 

tional to the inverse of the TOF, remains constant in 

spite of the change of current. This effect has been 

experimentally observed [ 14,15 1. A study of the sta- 

bility of these states can be performed analytically by 

linearizing the map around the fixed points [ lo]. 

Here we are interested in the onset of chaos, which 

is not predictable a priori from the map. Numerical 

iteration of the map shows evidence of a chaotic re- 

gime (see fig. la). The control parameter is the ex- 

ternal magnetic field Q, which is proportional to the 

square root of the power of the microwave field. The 

current x is taken always as the current value at the 

center of the induced step. The parameter q. was 

slowly raised from 0 to a value q:, when the fluxon 

is “annihilated”. We say that the fluxon is annihi- 

lated if after the reflection the energy is less than the 

rest energy or not sufficient, because of dissipation, 

to cross the entire length of the junction [ 81. Note 
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Fig. I. (a) Bifurcation tree for map approach to LJJ of length 

I= 10, a=0.1,/3=0.025, w=O.4,~=0.574 (corresponding to the 

central value of phase-locking zone); (b) maximum Lyapunov 

exponent (MLE) for the same bifurcation tree. 

that we have plotted, to improve readibility, the TOFs 

Tk instead of the time tk. 

We denote by $, the values of the control param- 

eter at the first instability which leads to two TOFs, 

and by q: the value at onset of chaos. During the pe- 

riod-doubling cascade and in the chaotic regime the 

voltage, in these units given by 2x/ ( Tk> aye, does not 

change and the system remains, in spite of the 

strongly chaotic motion, frequency locked to the ex- 

ternal source, i.e. the phase-locking step is again per- 

fectly vertical on the I-V characteristic [4]. In the 

chaotic state it is necessary to be very careful in eval- 

uating the above average; the bigger the control pa- 

rameter, the longer must be the averaging time to ob- 

tain a stable value of the voltage. 

We conclude that no visible effects can be ob- 

served on the Z-V characteristic, as long as we utilize 
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the perturbative approach, which means essentially 

small signal regime (qo<0.4-0.5), so that experi- 

mental evidence of the chaotic motion in this case 

can be realized only by means of the study of the 

Fourier spectra. 

An extensive study of the range of parameters for 

the occurrence of chaotic phenomena has shown that 

if m= 1 in eq. (4a) (we have studied only n= 1) the 

bifurcation parameter v. becomes very large 

(q. > 0.5-0.6). Numerical integration of the PSGE 

shows that for such high values the single fluxon hy- 

pothesis is no longer satisfied (large signal regime). 

Chaos and the presence of a single fluxon in the LJJ 

can appear in the case of subharmonic excitation. 

However, if m is bigger than 5, the annihilation of 

the fluxon occurs for very small values of no, and a 

numerical (and experimental) study becomes very 

difficult. Probably m = 3 is the best compromise to 

perform a study of the chaotic motion. 

In summary, a chaotic regime in the map and the 

PSGE simulations is favored if 

( 1) (Y and /3 are decreased; 

(2) x is closer to the center of the step; 

(3) m is increased. 

An intuitive explanation in terms of incommen- 

surate frequency models [4] is inadequate to ex- 

plain the observed phenomena. In fact the natural 

frequencies of the two “clocks”, the frequency of 

fluxon motion without any applied signal and the 

frequency of the external drive, are exactly the same 

in the center of the step, where we have observed that 

chaotic motion first occurs. 

To achieve a deeper comprehension of the nature 

of this phenomenon we will describe “phenomeno- 

logical” aspects of chaos in LJJs in the map context 

taking advantage of its speed and simplicity. 

One of the most fruitful dynamical quantities to 

manifest the global aspects of a dynamical system are 

Lyapunov exponents. They are defined as the limit 

141 

A, = log ;\I 
( 

J(T,, u,) 
eigenvalues of ( ro, uo) 

> 
, (5) 

where J is the Jacobian matrix. Lyapunov exponents 

are negative if the orbits are periodic and, in the case 

of two-dimensional maps, one (the so-called maxi- 

mum Lyapunov exponent, MLE) becomes positive 

in the chaotic regime. In this case the positive ex- 

ponent is responsible for the spreading of the points 

in the phase plane, and the negative one for the con- 

densation on the so-called “strange attractor” [ 41. 

To evaluate numerically the MLE we have used a 

standard method [ 16 1, results of which are shown in 

fig. lb. The MLE can be compared with fig. la to 

observe that, as expected, it approaches zero at the 

bifurcations and becomes positive in the chaotic re- 

gime. Another interesting property of the Lyapunov 

exponents is that the sum A, +A* of the two expo- 

nents is a measure of the rate of contraction of phase 

volume; for a dissipative system this rate should de- 

pend upon the loss parameters of the system. In the 

case p= 0 we have found a nice analytic relation be- 

tween the rate of contraction and the loss parameter 

(Y. In this case the Jacobian of the map at the fixed 

point is simply ]J] =exp( -aTk); from the delini- 

tion of the Lyapunov exponent it follows that 

A, +A2 = -aT, = -cumn/o . (6) 

Since in the chaotic regime the average of TOFs is 

mx/o we conjecture that this relation is still valid 

when the dynamics is chaotic. We conjecture too that 

small p has no remarkable effects. These conjectures 

are supported by direct numerical simulations on the 

entire interval [ 0, q: ). Assuming that eq. (6 ) is valid 

it says also that the higher m, the greater the squeez- 

ing of the attractors in the phase plane. Conse- 

quently the appearance of very long TOFs can de- 

stroy the fluxon. This mechanism can explain why 

for m bigger than 5 the chaotic region is so “com- 

pressed” by the annihilation region. We note par- 

enthetically that eq. (6) is analogous to eq. (8) in 

ref. [4] for small junctions. 

In fig. 2 a typical Poincart section is shown. When 

the system is still phase-locked the single fixed point 

lies within the attractor. Increasing the control pa- 

rameter the Feigenbaum cascade appears, and again 

the points are on the attractor, which is present at 

the appearance of chaotic motion. A further increase 

of ‘lo leads to the appearance of points with pro- 

gressively longer TOFs; this seems to be responsible 

for the annihilation of the fluxon, but the exact na- 

ture of the relation is not clear. 

Another fundamental aspect of strange attractors 

is their fractal dimension. We have evaluated the 

Hausdorff and the information dimension of those 

213 
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Fig. 2. Chaotic strange attractors for map approach to LJJ of length 

1=10, a=O.l, /?=0.025, 0=0.4, qe=O.135, x=0.574 (corre- 

sponding to the central value of phase-locking zone). 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

‘lo Informatic 

dimension d, 

Hausdorff 

dimension dH 

Lyapunov 

dimension d,, 

0.130 1.015_+0.018 1.067_+0.011 1.082_+0.005 

0.131 1.052+0.01 I 1.055rt0.010 1.055 + 0.005 

0.132 1.069 f 0.017 1.069f0.013 1.073 * 0.005 

0.133 1.11 I kO.017 1.123+0.016 1.108~0.005 

0.134 1.1361bO.014 1.134&0.017 1.112+0.005 

0.135 1.133~0.014 1.163&0.015 1.162+0.005 

attractors with a direct measure in the phase plane 

dividing the phase plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 0 X I] x [ 0 x 25~1 in a grid 

of 2’~ 2’ cells (the choice of an integer power of 2 

was just the simplest one from a computational point 

of view), then the map was iterated N times to es- 

timate the quantities (& is the Hausdorff dimen- 

sion and d, the information dimension) 

(7) 

(8) 

where N( e ) is the number of cells visited by the sys- 

tem and P( n, t) is the frequency at which the nth cell 

has been visited. Note that di cannot be bigger than 

dH [ 171. N was increased until a stable value of the 

dimension was reached; typical values are about 

N= 100000. The procedure was repeated for several 

values of j and the resulting dimension was esti- 

mated extrapolating to j+cc [ 18 1. In table 1 are re- 

ported values of the Hausdorff and the information 

dimension and of the respective standard deviations 

as a function of the control parameter r.rO compared 

with the Lyapunov dimension defined as d,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + A, / 

1 A2 1 [ 41. Under very general assumptions d,, should 

be bigger than the information dimension of attrac- 

tors [ 171. This is verified within an accuracy of two 

standard deviations. It seems that the Lyapunov di- 

mension gives a reasonable estimation of the “brute- 

force” computed dimensions at a very low compu- 

tational cost. 

In fig. 3 we show the result of a full PSGE simu- 

lation of eq. ( 1). We have used a Burlish-Stoer 

method [ 191 with adaptive stepsize in time and a 

live-point approximation to the second derivative in 

space. For some parameter values it was compared 

with a simpler low-order predictor-corrector method 

[20] obtaining consistent results. Even if the sce- 

nario is very similar to those described above for the 

map it seems that the control parameter q. is less ef- 

fective in producing instability in the PSGE system 

than it is in the map context. Nevertheless the sim- 

ilarity is evident and we have checked that also in 

the PSGE simulations the damping parameters can 

increase the stability [ lo]. For instance if p is set to 

zero in the case of fig. 1 the value of the first bifur- 

cation q; and of the onset of chaos e are shifted by 

20%. In spite of the different positions of the bifur- 

cation tree the form of the PDE attractor is so rem- 

iniscent of the map attractor [ 2 1 ] that, in principle, 

a quantitative comparison between some of their 

-. 

Fig. 3. Bifurcation tree for PSGE full model for a junction of length 

I= 10, a=O.1,/3=0.025,0=0.4, x=0.543 (corresponding to the 

central value of phase-locking zone). 
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features, such as the fractal dimension, is possible. 

The direct comparison between the PDE and the map 

approach to verify the conjecture (6) for the PDE is 

very difficult because initial conditions (an essential 

ingredient to study the phase space) in terms of the 

collective coordinates are not suitable initial con- 

ditions for the PDE. The Feigenbaum universal ratio 

where ~8 are the parameter bifurcation values, was 

estimated for the first and the second bifurcation to 

be 4.60 in the map case and 5.9 in the PSGE case. 

The main message of this paper is that chaotic mo- 

tion in LJJs exists in the PSGE and in the map ap- 

proach; qualitatively, the two approaches depict the 

same scenario. Other results of full PSGE integration 

will be published in a subsequent paper. 
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