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Optical frequency combs have been a major research

trend of the last decade [1]. The possibility to gener-

ate higher harmonics starting from a fundamental one

has made it possible to extend the accuracy of the atomic

clocks from the radio to the optical frequency region, lead-

ing to breakthroughs in optical metrology [2], high preci-

sion spectroscopy [3, 4] and telecommunication technolo-

gies [1, 5]. Here we show that a similar-in-spirit har-

monic generator can be implemented with a dc supercon-

ducting quantum interference device (SQUID) subject to

a time-dependent magnetic field. Driven by the field, the

superconducting phase difference across the SQUID un-

dergoes jumps of π , which are associated to a sequence of

sharp, evenly spaced voltage pulses. This pulse sequence

translates into a radiation comb in frequency domain,

thereby realizing a Josephson radiation comb generator

(JRCG). Under suitable conditions, the JRCG can provide

up to several hundreds of harmonics of the driving fre-

quency. For example, a chain of 104 identical high-critical-

temperature SQUIDs driven at 1 GHz can deliver up to a

few tens nW at 500 GHz. The availability of a fully solid-

state radiation comb generator such as the JRCG, easily

integrable on chip, will pave the way to a number of tech-

nological applications, from metrology to sub-millimeter

wave generation.

Our proposal for a JRCG is based on a dc SQUID (see Fig.

1a), consisting of two Josephson junctions arranged in parallel

in a superconducting loop. The SQUID is biased by a constant

current IB and it is driven by an external, time-dependent mag-

netic flux Φ. Here we assume the inductance of the loop to

be negligible with respect to the Josephson inductance of the

junctions. Due to the first Josephson relation [6], the current

(IJ) vs phase relation of the SQUID reads

IJ(ϕ;φ) = I+[cosφ sinϕ + r sinφ cosϕ], (1)

where ϕ = (ϕ1 + ϕ2)/2, φ = πΦ/Φ0 (Φ0 ≃ 2× 10−15 Wb

is the flux quantum), I+ = Ic1 + Ic2, ϕi and Ici (i = 1,2) are

the phase across and the critical current of the i-th junction,

respectively, and r = (Ic1 − Ic2)/(Ic1 + Ic2) expresses the de-

gree of asymmetry of the interferometer. Equation (1) de-

scribes the well-known oscillations of the SQUID critical cur-

rent Ic(φ) = maxϕ IJ(ϕ;φ) as a function of the magnetic flux,

with minima occurring at integer multiples of Φ0/2 (see Fig.

1b) [6], and it already contains the main feature of the effect

we want to discuss. Let us consider the behavior of the phase

ϕ as Φ crosses a critical-current minimum and take a sym-
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FIG. 1: The Josephson radiation comb generator. a) Sketch of

the dc SQUID subject to a time-dependent magnetic flux Φ(t). The

latter induces voltage pulses V (t) across the interferometer. The red

regions denote the two Josephson tunnel junctions, IB is the SQUID

constant bias current, ϕi is the phase across the i-th junction, and

S are the superconducting electrodes. b) Interference pattern of the

critical current Ic(φ) (where φ = πΦ/Φ0) for a symmetric SQUID

(r = 0). Ic(φ) is plotted with solid line while the φ -dependent part,

i.e., cosφ , is plotted with dashed line. The phase ϕ undergoes a

π jump whenever φ crosses an interference node as the cosφ be-

comes negative. Red line shows φ(t) oscillating with frequency ν
and amplitude ε around an interference node at π/2. φ(t) induces

dynamically the phase jumps in the SQUID. c) RCSJ model circuit

where R, LJ , C are the resistance, the Josephson inductance and the

capacitance of the SQUID, respectively. d) Time-dependent tilted-

washboard Josephson potential for the RCSJ model plotted for t0 = 0,

at an intermediate time t1 = 0.17/ν , and at t2 = 0.26/ν just after

vanishing of the potential barrier, i.e., the EJ = −EJ0δϕ point. The

system is initially (i.e., at t0 = 0) in an energetic minimum with phase

ϕ = 2kπ . Because of the drive, the potential vanishes at time 1/(4ν).
Then, the system reaches a potential maximum and jumps into the

nearest minimum at ϕ = (2k+1)π . The direction of the jump is de-

termined by the direction of IB. The latter is supposed to be small

with respect to I+.

metric SQUID (r = 0) for simplicity. If the biasing current is

fixed, then we see from Eq. (1) that a change of sign in cosφ
must be accompanied by a change of sign in sinϕ in order for

the current to maintain its direction. This change of sign is ac-

complished by a phase jump of π [7–9], which, owing to the

second Josephson relation [6], results in a voltage pulse V (t)
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FIG. 2: Phase jumps and voltage combs. Time dependence of the

phase ϕ (dashed line, left axis) and of the voltage V (solid line,

right axis) across a flux-driven SQUID. The driving frequency is

ν = 100MHz. a) Symmetric SQUID (r = 0) and IB = 10−3I+. The

direction of the phase jumps is determined by the bias current. b)

Asymmetric SQUID (r = 0.01) and IB = 0. The SQUID asymmetry

induces alternate phase jumps even in the absence of an external bi-

asing current. One-directional jumps can be realized by applying a

suitable IB. The voltage pulses are generated at times (2k+ 1)/4ν
(with k integer) when the interference node is crossed. The param-

eters chosen for the calculations are those typical of a Nb/AlOx/Nb

junction [10] with R = 20 Ohm, I+ = 0.2 mA, and we set ε = 0.9.

The typical junction capacitance, C = 10 fF, has been neglected (as

additional numerical simulations show).

across the SQUID.

For a quantitative characterization of the phase jumps, we

need to study the dynamics of the phase. To do so, we rely

on the resistively and capacitively shunted Josephson junction

(RCSJ) model [6, 11]. We model the SQUID as a capacitor

C, a resistor R, and a non-linear, flux-dependent inductor LJ

arranged in a parallel configuration (see Fig. 1c). We consider

a sinusoidally-driven magnetic flux with frequency ν and am-

plitude ε , centered in the first node of the interference pat-

tern, so that Φ(t) = Φ0/2[1− ε cos(2πνt)]. As a result, the

magnetic flux crosses the nodes of the interference pattern at

t = (2k + 1)/4ν , with k integer. The equation for ϕ can be

written in terms of the dimensionless variable τ = 2πνt as

[11]

c
d2ϕ

dτ2
+

dϕ

dτ
+α[ f (ϕ,τ)−δ ] = 0, (2)

where δ = IB/I+, c = 2πRCν , f (ϕ,τ) = IJ [ϕ;φ(τ)]/I+ and

α = I+R/(Φ0ν).

Equation 2 is usually interpreted in terms of a fictitious

phase particle moving in a tilted-washboard Josephson poten-

tial EJ , as shown in Fig. 1d [6]. Here we restrict ourselves

to small biasing current (δ ≪ 1), corresponding to a small

tilt. Furthermore, we focus on the limits c ≪ 1 (overdamped

regime) and |α| ≫ 1, as these two conditions maximize the

JRCG performance (see SI).

We first consider a symmetric SQUID (r = 0). Then the

time-dependent Josephson potential is EJ(t) =
∫

ItotV (t)dt =
−EJ0[ f (t)cosϕ + δϕ] where f (t) = cos(πΦ/Φ0), EJ0 =
Φ

2
0να/(2πR), and Itot = IJ − IB [6, 11]. At t = 0 it has min-

ima at ϕ = 2kπ . For t = 1/(4ν) the potential barrier vanishes

and EJ = −EJ0δϕ . For t > 1/(4ν), f (t) changes sign and

the potential minima occur at ϕ = (2k+1)π . At ϕ = 2kπ the

system is unstable and tends to move to a new minimum, re-

sulting in a π-jump in the phase. This cartoon picture helps us

to pinpoint the difference between the phase jumps discussed

in this work, the 2π-phase slips appearing in low-dimensional

superconductors [12–15] and the 2π-phase jumps used in the

rapid single flux quantum (RSFQ) logic [16, 17]. 2π-phase

slips typically stem from thermal activation or quantum fluc-

tuations. As for the RSFQ 2π-phase jumps, they are generated

by a current pulse in an otherwise static potential landscape.

By contrast, in the JRCG the magnitude of the jumps is π and

the jumps have a purely energetic origin.

The numerical solution of Eq. (2) for r = 0 is shown in

Fig. 2a. As the critical current crosses the minimum at

Φ = Φ0/2, the phase experiences a π jump and a voltage

pulse is generated across the SQUID. The shape of the pulse

is determined by the parameter α (see SI): the larger α , the

sharper the voltage pulse. We notice that the presence of a

finite bias current IB is crucial to impose a preferred direction

to the phase jumps. The same analysis essentially holds as

well for a weakly-asymmetric SQUID (r ≪ 1), as long as IB

is strong enough to force the phase particle to roll always in

the same direction. However, the junctions asymmetry brings

in a key ingredient to the JRCG, which becomes apparent in

the limit IB → 0. Indeed, a finite SQUID asymmetry imposes

an alternate pattern to the phase jumps (see Fig. 2b and SI).

This realizes an ideal ac pulse source. Furthermore, the limit

IB → 0 corresponds to a floating device, meaning that the ac

JRCG can be straightforwardly integrated in microwave-based

architectures such as circuit-QED [18–20].

The voltage pulses shown in Fig 2 suggest an application

similar to the frequency combs used in optics [1]. In this

context, the most relevant feature becomes the sharpness of

the voltage pulse, which is related to the number of harmon-

ics generated. The sharpness is essentially determined by

α , which, in turn, depends on the material properties of the

Josephson junctions as well as on the driving frequency. In

Figure 3 we show the calculated JRCG power spectrum P vs

frequency Ω (see SI) for two driving frequencies and for dif-

ferent junctions and symmetry parameters. While the total

output power provided by a single JRCG is fairly small, it can

be boosted by using an array of nominally-identical SQUIDs.

A similar approach is used for the realization of the metrolog-

https://www.researchgate.net/publication/1941676_Cavity_quantum_electrodynamics_for_superconducting_electrical_circuits_an_architecture_for_quantum_computation_Phys_Rev_A_69062320?el=1_x_8&enrichId=rgreq-679c20ec-ce6a-4f6d-be15-8e47e849f220&enrichSource=Y292ZXJQYWdlOzI2NzU3MDIzODtBUzoyNTM3Njc5MTY0NTM4OTFAMTQzNzUxNDM5NDk3OQ==
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FIG. 3: Power spectrum of the Josephson radiation comb gen-

erator coupled to a 50 Ohm transmission line. To emphasize the

behavior at high frequency we use a logarithmic scale in the main

panels but keep the linear scale in the insets. The cyan regions cor-

respond to the insets. (a) Behavior of the power spectrum P vs fre-

quency Ω for a symmetric (r = 0) Nb/AlOx/Nb SQUIDs chain sub-

ject to a driving frequency ν = 100 MHz. The SQUID parameters

were set as those in Fig. 2. In the calculation the junction capacitance

has been neglected since it does not affect the dynamics. The inset

shows that an output power of ∼ 0.3 µW around 100 GHz (103-th

harmonic) can be achieved. (b) Behavior of P vs Ω for a symmetric

(r = 0) high-critical temperature YBCO SQUIDs chain subject to a

driving frequency ν = 1 GHz. The inset shows P around 500 GHz

(500-th harmonic) where ∼ 20 nW can be achieved. Here we set

I+R = 10 mV and IB = 10−3I+ [21, 22]. The junction capacitance is

typically very small in this kind of junctions, C ∼ fF, and has been

neglected in the calculations. (c) Behavior of P vs Ω for an asym-

metric (r = 0.01) YBCO SQUIDs chain and ν = 1 GHz. Here we set

I+R = 10 mV and IB = 0. In all calculations Φ oscillates around the

first interference node (Φ0/2) with elongation ε = 0.9. Blue and red

point indicate the even and odd harmonics, respectively. In Figs. a

and b only the even harmonics are present because of the comb-like

shape of the voltage pulses. In Fig. c, due to the alternating direction

of the voltage pulses, only the odd harmonics are present. In this

latter case, the output power at high frequency is smaller.

ical standard for voltage based on the Josephson effect [23–

25]. For an array of N SQUIDs, the output power scales as

N2 allowing one to reach a sizable output power at high fre-

quency. Here we present results for N = 104 [11, 26, 27].

Figure 3a displays the behavior of a symmetric Nb/AlOx/Nb

SQUIDs chain [10] with a 100 MHz drive. The parameters are

the same as those in Fig. 2a. The sharp pulses determine the

broad range of the emitted radiation, up to several hundreds

of harmonics. At 100 GHz (see the inset of Fig. 3a) the JRCG

provides an output power of ∼ 0.3 µW. This power level can

be detected, for instance, by coupling the device to a trans-

mission line and feeding the signal to a commercial spectrum

analyzer.

In order to achieve sharp pulses at higher frequencies, one

needs to use a superconductor with a larger characteristic

voltage (I+R). In such a way, one can drive the SQUID at

higher frequencies without lowering α . In Fig. 3b we show

the results expected for a symmetric high-critical tempera-

ture YBCO SQUIDs series [21, 22] at 1 GHz drive. YBCO

Josephson junctions provide a large superconducting gap with

I+R ≈ 10 mV and possess a negligible intrinsic capacitance

[22]. Due to the larger driving frequency, the emitted sig-

nal at 500 GHz is still sizable, reaching an output power of

a few tens of nW (see the inset of Fig. 3b). Such a signal

is already in the far infrared range, which has seen a sub-

stantial research development in the last two decades due to

countless technological applications. The radiated signal in

this frequency range could be detected, for instance, by using

an antenna coupled to the SQUID electrodes [28, 29]. The

power spectrum of an asymmetric YBCO SQUIDs chain is

similar (see Fig. 3c). The main differences lie in the presence

of odd harmonics only and in a smaller output power at high

frequency (∼ 0.1 nW around 500 GHz, see the inset of Fig.

3c).

Let us briefly address some experimental issues related to

the JRCG. We have analyzed the effect of thermal noise at

4.2 K on the device performance. Noise is expected to be the

most harmful in the vicinity of the phase jumps, as the poten-

tial barrier is the most shallow there (see Fig. 1d). However,

our numerical calculations (see SI) show that its effect is neg-

ligible for the parameters used in Fig. 3. Thermal noise could

play a role at slow driving frequencies because it is easier to

induce undesired transitions when the the potential barrier is

shallow. However, this effect can be counteracted by increas-

ing the current IB to impose a privileged direction to the dy-

namics (see SI).

The proposed JRCG is within the reach of state-of-the-art

nanofabrication technology. SQUID arrays with an asymme-

try dispersion of the order of ∼ 0.05− 1% can be fabricated

with standard lithographic techniques. Furthermore, a single

on-chip superconducting line can be used to drive the mag-

netic fluxes of a SQUID array in a synchronized manner and

with ns time resolution. Finally, the fact that the JRCG is

operated in the overdamped regime means that it can be de-

signed to have a low output impedance. The latter can be

easily matched to that of a transmission line (50 Ohm) or of a

superconducting antenna. The implementation of the JRCG

will pave the way to a number of applications, from low-

temperature microwave electronics to on-chip sub-millimiter

wave generation.
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[7] Giazotto, F. & Martı́nez-Pérez, M. J. The Josephson heat inter-

ferometer. Nature 492, 401–405 (2012).
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SUPPLEMENTARY INFORMATION

SOLUTION OF THE RCSJ EQUATION IN A DC SQUID

We consider a dc SQUID composed by two Josephson junc-

tions and subject to a magnetic flux Φ. The total current

though the SQUID is IJ = Ic1 sinϕ1 + Ic2 sinϕ2, where Ici and

ϕi are the critical current and the phase across the i-th junc-

tion, respectively. Because of the flux quantization constraint,

it follows that (ϕ1 −ϕ2)/2 = πΦ/Φ0. Introducing the phase

across the SQUID ϕ = (ϕ1 +ϕ2)/2, we get

IJ [ϕ;φ(τ)] = I+[cosφ sinϕ + r sinφ cosϕ] , (1)

where φ = πΦ/Φ0, I+ = Ic1 + Ic2, r = (Ic1 − Ic2)/(Ic1 + Ic2)
and Φ0 ≃ 2×10−15 Wb is the flux quantum.

Starting from the RCSJ model [6, 11], we can write an

equation of motion for the phase ϕ as

h̄C

2e
ϕ̈ +

h̄

2eR
ϕ̇ + I+ f (ϕ, t) = IB (2)

where C is the capacitance, R is the total shunting resistance

of the SQUID, IB is the external biasing current and f (ϕ, t) =
IJ [ϕ;φ(t)]/I+. We rescale the above equation in terms of the

driving frequency ν : τ = 2πνt. Using h̄/(2e) = Φ0/(2π), we

obtain

c
d2ϕ

dτ2
+

dϕ

dτ
+α[ f (ϕ,τ)−δ ] = 0, (3)

where δ = IB/I+, c = 2πRCν and

α =
I+R

Φ0ν
. (4)

Analytical solution for IB = 0

Let us consider the case of a symmetric dc SQUID (r = 0),

overdamped junctions (c ≈ 0) and zero current bias (δ = 0).

Then (3) reduces to

dϕ

dτ
+α f (τ)sinϕ = 0. (5)

We notice that if the initial condition is ϕ(0) = ϕ0 = kπ , the

above equation has trivial dynamics ϕ(t) = 0. This means

that, even if small, we cannot neglect the influence of the

ϕ̈ term. However, if ϕ6 = kπ , we can effectively neglect the

capacitive contribution and solve analytically the differential

equation (2) to obtain

ϕ(t) = 2arctan
[

exp
(

−α

∫ t

0
dτ f (τ)

)

tan
ϕ0

2

]

. (6)

We suppose that |α|≫ 1 (and α > 0). If
∫ t

0 dτ f (τ) assumes

positive and negative values, the argument of arctan increases

or decreases exponentially depending on its sign. For sim-

plicity, we consider
∫ t

0 dτ f (τ) < 0 and the case of small ϕ0.

For ϕ0 > 0, ϕ(t) exponentially reaches π , and for ϕ0 < 0,

the evolution is similar but ϕ(t) varies between ϕ0 and −π .

Therefore, in both cases we have an exponential π jump of

the phase but its direction is determined by the initial phase

ϕ0. The rate of the exponential jump is determined by α: the

larger α , the sharper the voltage pulse.

Recalling the phase particle analogy discussed in the main

text, with c = 0 if the phase is initially in the minimum

ϕ0 = 2kπ it will remains in the same point even when it be-

comes an unstable maximum. A small shift of the initial con-

dition induces an exponential dynamics since at t = 1/(4ν)
the phase is close to (but not on) a potential maximum. The

direction of this shift (and, in the case discussed, the sign of

ϕ0) determines the direction of the fall and the jump of the

phase.

The change in time of ϕ in Eq. (6) is associated to a voltage

2e

h̄
V (t) =

−α f (t)sinϕ0

sin2
(ϕ0

2

)

e−α
∫ t

0 f (τ)dτ + cos2
(ϕ0

2

)

eα
∫ t

0 f (τ)dτ
(7)

For ϕ0 ≪ 1, this can be approximated with

2e

h̄
V (t)≈−α f (t)ϕ0e−α

∫ t
0 f (τ)dτ (8)

which points out the exponential increase of the voltage. The

full analytical behavior of V (t) is not easy to obtain from Eq.

(7), and we have to use a numerical approach.

Solution for IB 6= 0

We consider now the case of a small biasing current IB in a

symmetric SQUID (r = 0). By ”small biasing current”, we

mean that its effect must be negligible with respect to the

driven dynamics, i.e., δ ≪ α , but must dominate the capac-

itor dynamics, i.e., δ ≫ c.

When ϕ ≈ kπ , the Josephson current contribution

α f (τ)sinϕ is small and the dynamics is determined only by

IB. Equation (2) reduces to

dϕ

dτ
−αδ = 0. (9)

Away from ϕ ≈ kπ , the Josephson current contribution domi-

nates and, therefore, the equation for motion approximatively

reads

dϕ

dτ
+α f (τ)sinϕ(τ) = 0. (10)

Since the behavior of ϕ(t) under these two different dynamics

is drastically different (linear versus exponential change), we

can tune the system parameters in order to effectively separate

the two regimes governed by Eqs. (9) and (10) and generate

the sequence of exponential phase jumps.

In other terms, the presence of a current bias has two ef-

fects. The first is to transport the system away from the region
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FIG. 1: Tilted-washboard potential for a symmetric and an asym-

metric SQUID. The energy potential EJ is plotted as a function of

ϕ for different times t. EJ is vertically offset for clarity. The blue

curves represent the position of the local minima changing in time.

a) Symmetric SQUID, i.e., r = 0, with tilt δ = 0.3. The minima are

calculated considering the dynamics of the phase particle. b) Asym-

metric SQUID with r = 0.5 and δ = 0. The energy minimum oscil-

lates back and forth. For presentation purposes both the tilting and

the asymmetry parameters are larger than those used in the numerical

calculations. The strong tilting produces a small shift in the position

of the minima with respect to kπ .

ϕ ≈ kπ in which the drive contribution is small and the dy-

namics is dominated by the capacitive term. The second is to

breaks the symmetry of the system inducing the jumps always

in the same direction.

The effect of a current bias can be interpreted in terms of

the tilted-washboard potential discussed in the main text. In

Fig. 1a we show the potential EJ vs ϕ for different times under

a periodic drive. The solid line represents the position of the

minima followed by the phase particle in order to minimize

the energy.

Asymmetric SQUID case

From Eq. (1), the energy potential reads (we neglect the

current bias and set δ = 0) [6]

EJ(t) =−EJ0(cosφ cosϕ − r sinφ sinϕ). (11)

To find the position of the maxima and the minima we derive

EJ(t) with respect to φ and equal it to zero. The corresponding

equation reads tanϕ = tan(rφ). For r = 0, we see that the
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FIG. 2: Effect of thermal noise on the JRCG dynamics. Voltage

V developed across the SQUID (solid line) as a function of time t

in the presence of thermal noise. Here we set the driving frequency

to 1 GHz. (Inset) Comparison between noisy (solid line) and noise-

free dynamics (red dots). The parameters chosen are those typical

of a YBCO junction, as reported in Refs. [21, 22]: I+R = 10 mV,

IB = 10−3I+ and ε = 0.9. The junctions capacitance is negligible

and was set to zero. The temperature of the thermal bath is 4.2 K.

values of ϕ satisfying the above equation do not depend on

time. On the contrary, for any r 6= 0 they depend on time

through φ .

Following the analogy with the phase particle in a time-

dependent potential discussed in the main text, this means that

if the system starts in a minimum at t = 0, it is close but not in

a maximum when the time-dependent potential changes sign.

This small perturbation from the stable maximum point in-

duces the phase particle rolling and the corresponding phase

jump even in absence of IB.

For a periodic drive, the particle is found alternatively on

the left and on the right of the maximum and it rolls in alter-

nate directions producing the alternate pattern of the voltage

pulses. In Fig. 1b, we show the potential EJ vs ϕ at different

times. The solid line represent the position of the minima of

the potential. In the absence of a biasing current, the phase

must undergo a sequence of positive and negative jumps re-

sulting in the alternate voltage pulses.

EFFECT OF THERMAL NOISE

Langevin approach

To estimate the effect of the thermal noise we use the

Langevin equation

h̄C

2e
ϕ̈ +

h̄

2eR
ϕ̇ − I+ f (t)sinϕ = IB +ξ (t), (12)

where ξ (t) is the white noise with correlation function

〈ξ (t)ξ (t ′)〉=
2kBT

R
δ (t − t ′). (13)
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FIG. 3: Effect of thermal noise on the power spectral density.

Power Spectral Density (PSD) for a YBCO SQUID with 1 GHz

drive. Even at high frequency (500 GHz), the signal to noise ra-

tio is about 107. Notice that here the PSD is calculated for a sin-

gle SQUID. For the calculations we set the following parameters

[21, 22]: I+R = 10 mV and IB = 10−3I+. The Josephson junctions

capacitance is typically very small, C ∼ fF, and has been neglected

in the calculations.

We have numerically solved the associated stochastic dif-

ferential equation in case of a YBCO SQUID with 1 GHz

drive. We have considered a symmetric YBCO SQUID with

negligible capacitance. The noise source has been taken at

temperature of 4.2 K. With these parameters, the dynamics

of the SQUID shown in Fig. 2 is essentially identical to that

without noise source.

The weakness of thermal noise is confirmed by the calcula-

tion of the Power Spectral Density (PSD) shown in Fig. 3. The

spectrum is almost identical to the unperturbed one a part from

a small background noise. Even at high frequency (around

500 GHz) the estimated signal to noise ratio is ∼ 107.

The effect of noise is maximum when the energy barrier

is shallow and undesired transitions are most likely to occur.

Therefore, we expect an increased noise influence for slow

frequency drive since the system remains in a shallow barrier

potential for a longer time. However, even in this situation

these noise effects can be reduced by increasing IB in order to

restore the privileged direction of the dynamics.

VOLTAGE SPECTRUM AND POWER

To obtain the voltage power spectrum we first calculate the

Fourier transform of the voltage V (t)

V (Ω) =
∫ T

0
dteiΩtV (t). (14)

The power spectral density (PSD) is then

PSD(Ω) =
1

T
|V (Ω)|2. (15)

The power P discussed in the main text is calculated by in-

tegrating the PSD around the resonances kν (where ν is the

monochromatic drive frequency) and dividing for a standard

load resistance of 50 Ohm. This is the power we would mea-

sure at a given resonance frequency with a bandwidth exceed-

ing the linewidth of the resonance.

With the device described above the output voltage can be

easily increased by fabricating a chain of SQUIDs [11, 26,

27]. With N SQUIDs in series, the voltage drop across the

chain increases linearly with N, whilst the PSD and the power

P scale as N2.


