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Abstract The ALADIN experiment aims at observing how

the critical magnetic field of a superconducting aluminum

film is modified, when it constitutes one of the reflecting sur-

faces of a Casimir cavity. If successful, such an observation

would reveal the influence of vacuum energy on the super-

conducting phase transition. In this paper, a rigorous analy-

sis of experimental data is reported, the results are discussed

and compared with theoretical predictions based on Lifshitz

theory of dispersion forces, and the BCS formula for the

optical conductivity of superconductors. Thanks to this rig-

orous analysis, it can now be asserted that in the region of

energy where it is expected that Casimir energy is compara-
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ble with condensation energy and the deviations of critical

field from BCS formula to be not negligible, an anomalous

behavior is found.
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1 Introduction

The Casimir effect [1, 2] provides a striking manifestation of

vacuum quantum fluctuations of the electromagnetic field in

bounded geometries, and it represents a rare example of a

purely quantum phenomenon that can be tested at the meso-

scopic scale. The Casimir effect has received much attention

over the past decades thanks to a wave of new experiments

which made it possible to measure the Casimir force with

unprecedented precision. For a recent review of these ex-

periments and a critical survey of the numerous theoretical

investigations on the Casimir effect in materials, we address

the reader to the recent monograph [3], and also to the work

in [4, 5].

Despite the impressive theoretical and experimental ad-

vances made over the past 20 years, the Casimir effect still

faces important unsolved questions at the fundamental level,

in particular the problem of reconciling the vacuum energy

density and its interaction with the gravitational field, known

as the cosmological constant problem [6, 7]. No experimen-

tal verification that vacuum fluctuations gravitate according

to the equivalence principle has been obtained so far, even

though there are theoretical expectations that this should be

the case [8–16]. Relying upon these considerations, some

of us studied the effect of a gravitational field on a rigid

Casimir cavity, by computing the net force acting on it: inter-

estingly, it was found that a Casimir apparatus, when subject
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to the weak gravitational field of the Earth, should experi-

ence a tiny push in the upward direction [17–22]. In [17–19],

it was argued that an experimental verification of this effect

is extremely hard, if not impossible, under static conditions,

by virtue of the extreme smallness of the expected force.

A better possibility would be to carry out the measurement

dynamically, i.e., by modulating the Casimir energy stored

in a rigid cavity in a known way. Such a modulation of the

Casimir energy might be achieved by altering periodically

the reflectivity of the plates. Recently, a significant modula-

tion of the Casimir force between a highly doped semicon-

ducting membrane and a gold plate has been demonstrated

experimentally [23, 24], by shining periodic laser pulses on

the membrane which determine a large change in the charge

carrier density of the membrane. Despite being interesting

for Casimir studies, this result is not suitable for “weight-

ing” aims: The energy supplied to the system to induce the

change in carrier density is many orders of magnitude larger

than the variation of Casimir energy. This would make it ex-

tremely difficult to observe the tiny fraction of mass change

due to the Casimir contribution. On the contrary, in our

scheme based on the superconducting phase transition, the

total change of energy is of the same order of magnitude as

the change in the Casimir energy and, therefore, its contri-

bution might in principle be observed.

This is the framework of the ALADIN experiment,

whose aim is to observe the variation of the Casimir en-

ergy stored in a superconducting Casimir cavity, constituted

by a thin superconducting film separated by a thin oxide

layer from a thick gold substrate, across the superconduct-

ing phase transition. The scheme of detection is based on

a measurement of the critical magnetic field that destroys

the superconductivity of the film, whose magnitude is ex-

pected to be affected by the Casimir energy. If successful,

the experiment would thus reveal the influence of vacuum

energy on a phase transition. Another distinctive feature of

our setup is that we use rigid cavities that are obtained by

deposition techniques, a feature which might be useful to

investigate experimentally the dependence of the Casimir

energy on the geometrical shape of the intervening bodies,

an issue that remains under scientific debate also at a theo-

retical level [3].

The plan of the paper is a follows: In Sect. 2, we

briefly describe the experimental setup and the measure-

ment method, and Sect. 3 is devoted to the analysis method

based on cross-correlation. Finally, the experimental results

are discussed in Sect. 4. Indeed, a preliminary analysis of

the data reported in this paper had already been performed

some time ago as described in a Conference Proceedings pa-

per, where “the sensitivity had been roughly estimated” [25].

The analysis reported in this paper, based on a proce-

dure of cross-correlation, is instead rigorous and the results

are now better estimated and make it possible to develop a

deeper discussion.

2 ALADIN: Experimental Setup and Expected Effect

Before we describe our experimental setup, it is useful to

briefly recall the principle at the basis of our experiment

that was described in detail in the works [40, 41]. The start-

ing observation is that, according to Lifshitz theory [3], the

Casimir energy is determined by the optical properties of

the plates. Since the optical properties of a superconductor

are sharply different from those of a normal metal [42], one

is led to expect that the Casimir free energy F (C) stored in

a superconducting cavity should change across the super-

conducting transition. The change ∆F (C) = F
(C)
n − F

(C)
s

of Casimir energy was estimated in [40, 41] (see also [43,

44]), on the basis of Lifshitz theory by using the BCS for-

mula for the optical conductivity of superconductors, and

it was found to be extremely small. This is not surprising

of course, because the superconducting transition alters the

optical properties of a metal only in the microwave region,

which constitutes a small window in the wide frequency

range that contributes to the Casimir energy. The latter typi-

cally extends up to a few times the characteristic cavity fre-

quency ωc = c/2d , with d the plate separation, which for

typical submicron separations belongs to the infrared region

of the spectrum. The smallness of the fractional change of

Casimir energy across the superconducting transition makes

it impossible to observe the corresponding change in the

Casimir force on the plates, with present day sensitivities

in force measurements.

The Aladin experiment uses a detection scheme which

does not involve at all a force measurement, as it aims at ob-

serving how the variation ∆F (C) of Casimir energy affects

the critical magnetic field Hc of a thin superconducting film

which is part of a Casimir cavity. To see how this comes

about, we recall [45] that the magnitude of the parallel crit-

ical field Hc for a thick superconducting slab of volume V

can be determined by equating the magnetic work V H 2
c /8π

required to expel the magnetic field from the sample, with

the so-called condensation energy εcond(T ) of the material,

which represents the difference of Helmholtz free energies

between the normal and the superconducting phases:

V
H 2

c (T )

8π
= εcond(T ). (1)

When the film is one of the two plates of a Casimir cavity, we

have to augment the right-hand side of the above equation

by the difference ∆F (C) between the Casimir energies in

the normal and in the superconducting phases:

V
H 2

c (T )

8π
= εcond(T ) + ∆F (C)(T ). (2)

In writing this relation, we are tacitly assuming that the

fluctuating electromagnetic field in the Casimir cavity does

not alter significantly the properties of the superconductor,
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and in particular its condensation energy. This may be con-

sidered as a plausible assumption, as far as ∆F (C)(T ) ≪
εcond(T ). According to Eq. (2), the variation ∆F (C)(T ) of

Casimir energy determines a change in the magnitude of the

critical field Hc, which for ∆F (C)(T ) ≪ εcond(T ) is esti-

mated to be

δHc

Hc
≈

∆F (C)(T )

2 εcond(T )
. (3)

The key thing to notice is that the condensation energy of

a thin superconducting film can easily be orders of magni-

tudes smaller than typical Casimir energies F
(C)
n and, there-

fore, one may hope that even tiny fractional changes of

Casimir energy ∆F (C)(T ) can determine observable shifts

of the critical field. For example, for a Beryllium film, we

estimated [40, 41] that a relative variation of F (C) of one

part over 108 might lead to a 5 percent variation of critical

magnetic field.

Detailed numerical computations [41] show that the mag-

nitude of the effect increases for thin films, because they

have a smaller condensation energy, and for small cavity

widths d , because the change of Casimir energy becomes

larger. It is important to remark that the relative shift of crit-

ical field was found to be roughly proportional to the in-

verse of the transition temperature Tc of the superconduct-

ing material. The main reason why superconductors with

low Tc lead to a larger effect is that the condensation energy

is empirically known to scale as T 2.6
c [46], and this makes

the denominator in the r.h.s. of Eq. (3) decrease faster than

the numerator as Tc decreases. As a compromise between

the possibility to perform preliminary tests, easy change of

structures, statistics and signal-to-noise ratio, we chose to

work around 1.5 K, using Al as superconducting material.

Besides having a low critical temperature, Al is a material

that oxides easily, and this makes it easier to grow oxide

layers of controllable thicknesses, well attached to the su-

perconducting film, that constitute the dielectric medium of

our metallic Casimir cavities. The configuration used in the

experiment is a three-layer cavity, made of a thin supercon-

ducting Al film (5 ÷ 10 nm), a thin dielectric layer of native

oxide (Al2O3)(5 ÷ 10 nm), and a thick metallic layer of Au

(100 nm). However, at present, we are considering differ-

ent configurations in order to obtain a larger signal-to-noise

ratio in the expected effect.

In our experiment, we used a cryogenic system based on

the Heliox VL 3He cryostat, inserted into a dewar equipped

with magnetic screening, which isolates the samples from

external EM fields. Since it is extremely difficult to keep

the cryostat temperature perfectly constant, we did not try

to measure the critical field Hc of the samples as a func-

tion of the temperature. Rather, we measure how the criti-

cal temperature Tc(H) of the samples changes as a function

of the applied magnetic field H . More precisely, for each

value of the applied field H , we measure the relative shift

Fig. 1 Simulation of the expected signal for a bare thin Al film of

thickness D = 14 nm (lower curve) and for a cavity consisting of a

similar Al film, covered by a 6 nm dielectric layer and a 100 nm Au

mirror (upper curve)

δt = (Tc(H)−Tc 0)/Tc 0 in the critical temperature Tc of the

sample, with respect to the critical temperature Tc 0 of the

same sample in zero field. As we shall explain below, by

using the method of cross-correlations, the shift δt can be

measured much more accurately than the individual critical

temperatures in the applied and in the null fields. Our the-

ory predicts (see Fig. 1 and comments below) that the curve

H(δt) for the bare film should lie below that for the film in

the Casimir cavity. Since this is a differential measurement,

we need a very good sensitivity in temperature, of order a

few µK in the case of Al. As described in [25], the critical

temperature is determined by measuring the resistance of a

sample R(T ) in a four-wire configuration around the phase

transition, for different external applied fields. For further

details on the experimental set-up and the ultimate resolu-

tion achieved for different kinds of measurements performed

in the same cryostat can be found in [26–39]. Several mea-

surements have been performed and different samples have

been tested, so as to find the best experimental conditions

for a good signal-to-noise ratio. For a good data analysis to

be possible, it was important to make sure that the transition

curves did not change their profiles in time, or after apply-

ing a magnetic field. By employing these criteria, the best

samples have been selected. Data reported in the following

were obtained from the samples showing the sharper transi-

tion and the highest homogeneity among transition curves.

For a detailed description of sample preparation, cryogenic

apparatus, and measurement scheme, see [25].

The expected effect is shown in Fig. 1. Here, the critical

magnetic field H is plotted against the shift δt = 1 − t of

the reduced critical temperature t = Tc(H)/Tc 0 (with Tc 0

zero-field transition temperature). We recall [45] that for a

(bare) thin superconducting film, with a thickness D much

less than the penetration length λ, incomplete field expul-

sion leads to higher values of the parallel critical field H , as

compared to bulk samples. For 1 − t ≪ 1 (as in our case),
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the thin-film critical magnetic field H follows the simple law

[45]

H = H0

√
24

λ(0)

D

√
1 − t, (4)

where λ(0) is the penetration depth and H0 is the bulk criti-

cal field, both determined for zero temperature.

For the in-cavity film, we can divide the expected signal

curve (upper curve in Fig. 1) into three temperature regions.

For temperatures far from the transition temperature of the

film (region not shown in Fig. 1), the in-cavity curve co-

incides with the bare film curve, since the vacuum energy

contribution becomes negligible compared to the condensa-

tion energy. When δt ≈ 3 × 10−5, the change of Casimir

energy is small but no longer negligible, and a perturbative

approach is possible in δH/H : for H ≈ 5 ÷ 6 mT; the two

curves are expected to differ by an amount δt ≈ 6 × 10−6.

Note that, since the critical temperature of Al is 1.5 K, this

corresponds to a shift in temperature of order 10 µK. Finally,

for lower temperatures the dependence of δt on H for the in-

cavity curve is expected to differ from the bare film case, be-

cause the Casimir energy contribution is of the same order of

magnitude as the condensation energy. In this region, we are

not able to perform any perturbative calculation, and there

is no theoretical prediction for the curve’s trend (dashed line

in Fig. 1).

3 Analysis Method Based on Cross-Correlation

As was explained in the previous section, for each value of

the applied magnetic field H , we need to determine accu-

rately the fractional shift δt of the critical temperature of the

sample, relative to its critical temperature Tc 0 in zero field.

As described in [25], the major source of noise in our mea-

surements is the electronic noise at the read-out amplifier.

This noise has a “fast” component (with time scale of one

second) that determines a statistical error of a few µK, and a

slow thermal drift (linear in time, about 50 µK per hour) that

produces a shift proportional to the time elapsed between

two measurements. To correct for the thermal drift, we ar-

ranged our measurements in series of triplets, as is shown

in Fig. 2. Each triplet consists of three measurements of the

curve R(T ) that are equally spaced in time, the first and the

last one of which (left-most and right-most dashed curves

in Fig. 2) are performed in zero-field, while the intermedi-

ate one (continuous line in Fig. 2) is done with the field ap-

plied. Since the slow thermal drift is linear in time, and since

the two zero-field measurements are performed at equal time

intervals before and after the applied field measurement, it

is possible to “reconstruct” out of them the position that

the zero-field curve R(T ) would have occupied in the R–

T plane (dotted-dashed line in Fig. 2), had it been measured

at the same time as the applied field curve. The relative shift

Fig. 2 Example of the measurement sequence. All measurements are

performed at equal time intervals. Before and after each measurement

with the applied field, a measurement in the absence of field is per-

formed. From the two measurements in the absence of the field, it is

possible to reconstruct the zero-field curve that would be measured

simultaneously to the transition curve in the presence of the magnetic

field. ∆Tc is the distance in temperature between the R(T ) curve in the

presence of the magnetic field (continuous line), and the reconstructed

R(T ) curve in zero field (dashed-dotted line)

δt in the critical temperatures is then determined by compar-

ing the measured curve R(T ) in the applied field, with the

reconstructed curve in zero field. Having explained the gen-

eral scheme of the measurements, let us see how the method

of cross-correlations permits to accurately determine δt .

The key feature of the R(T ) curves that allows to use the

cross-correlation method to accurately determine the shifts

δt is that, for each sample, their shape is practically indepen-

dent of both the intensity of the applied magnetic field, and

the time at which the measurements are performed. In other

words, the curves R(T ) that are taken at different times, or

in different fields, appear to differ from each other just by

some horizontal translation ∆ along the temperature axis.

The cross-correlation method is ideally well suited to deter-

mine the amount of this translation, independently of any

model for the shape of the curves. The idea is very simple,

and consists in looking for the translation that maximizes the

overlap between any two R(T ) curves. Let us see how this

works out in detail. In reality, each R(T ) curve consists of

a large number of data points more or less scattered in the

T –R plane, around some ideal transition curve. We consider

only data points that belong to the transition region, having

a width of a few mK, around the critical temperature. Typ-

ically, this region contains a few thousand points for each

curve. At this point, we cover the T –R plane by a rectan-

gular grid whose axes are parallel to the T and R coordi-

nate axis, and whose steps are sT and sR , respectively. The
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Fig. 3 Self-correlation of the

R(T ) curve obtained with a

lattice step on the abscissa equal

to 15 µK

Fig. 4 Self-correlation of the

R(T ) curve with lattice step

equal to 5 µK

points pi,j of the grid in the T –R plane thus have coordi-

nates {i sT + at , j sR + aR}, where {aT , aR} are the coordi-

nates of the grid’s origin. We let Hi,j be the number of data

points that occupy the grid cell whose left-down corner coin-

cides with the point p(i, j) of the grid. Clearly, the number

of points occupying the non-empty cells depends on the size

of the cells, i.e., on the steps sT and sR . We shall discuss be-

low the criterion we used to choose these steps. In practice,

for the chosen size of the steps, the occupied cells turn out

to include about five or six data points. Consider now any

two transition curves R(a)(T ) and R(b)(T ) (not necessarily

distinct), and let H
(a)
i,j and H

(b)
i,j be the respective histograms.

For any translation of R(b)(T ) by n steps along the T -axis,

we define the cross-correlation C(a,b)[n], to be the quantity

C
(a,b)[n] =

∑

i,j

H
(a)
i,j H

(b)
i−n,j . (5)

The quantity C(a)[n] ≡ C(a,a)[n] shall be denoted in what

follows as the self-correlation of the curve R(a)(T ). Intu-

itively, C(a,b)[n] measures how well R(a)(T ) and R(b)(T )

overlap, after we translate R(b)(T ) by an amount n × sT

along the T -axis.

In Figs. 3 and 4, we plot the normalized self-correlation

C[n] of one of our R(T ) curves, for two different steps sT .

In Fig. 5, we plot the self-correlations and the crossed corre-

lations of two of our curves, one measured in zero field and

the other in a nonzero field. We verified that all correlations

have a Gaussian shape around the central peak. More impor-

tantly, we see from Fig. 5 that the maximum of the cross-

correlation between the zero-field curve and the nonzero-

field curve is of the same order of magnitude as the maxi-

mum of the self-correlations of the two curves. From this cir-

cumstance, we infer that the two curves actually have equal
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Fig. 5 Self-correlation of two R(T ) curves, green and blue, and cross–

correlation among the two

Fig. 6 Width σ of the autocorrelation versus the grid step sT

shapes and that they can be made to overlap by a translation

∆T along the temperature axis. From the cross-correlation

plot, one can estimate ∆T = nmax × sT , where nmax is the

shift for which the cross-correlation reaches its maximum.

3.1 Grid sizing and error estimates

To choose the best size of the grid cells, we investigated the

behavior of the self-correlation on a trial curve for several

different choices of the steps sT along the temperature axis.

We pointed out earlier that the distribution of bins around the

autocorrelation peak is Gaussian shaped. We found that the

width σ of the Gaussian decreases with the grid step until it

stabilizes, as shown in Fig. 6. On the basis of this behavior,

a step of 15 µK in the plateau region was chosen, which is

still large enough to ensure that the typical number of points

in the occupied cells of the grid is five or six.

Fig. 7 The error σ
(n)
∆T versus the number n of subdivisions. The error

reaches a plateau for n ≈ 10–15

The error on the temperature shifts ∆T between any

two curves R(T ) was estimated by using the familiar jack-

knife method. We divided the transition region of the T –R

plane into n stripes parallel to the T -axis, and of equal

widths along the R-axis, and we covered each of these

stripes with grids of equal steps sT and sR . The data points

falling in each of the n stripes were then analyzed by

the cross-correlation method, providing n independent es-

timates ∆T
(n)
k , k = 1, . . . , n of the temperature shifts. For

each number of subdivisions n, we then determined the

corresponding average shift ∆T (n) =
∑n

k=1

∆T
(n)
k

n
, and the

variance σ
(n)
∆T =

√

∑n
k=1 (∆T

(n)
k −∆T (n))2

n−1
. To find the optimal

number of stripes, the above process was repeated for n ∈
{1,40}. In Fig. 7 we plot the behavior of σ

(n)
∆T versus n. As

we see, σ
(n)
∆T reaches a plateau for n ≈ 10–15, and on this

basis we adopted n = 15 for our final assessment of the er-

rors.

Having determined the optimal grid size and number of

stripes, we could then determine the best estimates for the

differences ∆Tc = Tc(H)−Tc 0 between the critical temper-

atures in the presence of the magnetic field and in null field,

with the relative errors. For each triplet of measurements as

described in Sect. 3 (see Fig. 2), we estimated

∆Tc = ∆T(1,2) −
∆T(1,3)

2
, (6)

where the superscripts 1 and 3 refer to the curves in zero

field, and the superscript 2 to the curve in the presence of

the applied field. The error on ∆Tc was taken to be

σ∆Tc =

√

σ 2
∆T(1,2)

+
(

1

2
σ∆T(1,3)

)2

− cov(∆T(1,2),∆T(1,3)), (7)

where σ∆T1,2
and σ∆T1,3

are the standard deviations obtained

as explained previously with n = 15.
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Fig. 8 Bare film data: the points follow the expected parabolic behav-

ior

4 Experimental Results

The first thing that we checked is that the data for the bare

film actually follow the theoretical law Eq. (4). According

to that relation, the shifts δT should have a parabolic depen-

dence on the applied magnetic field H . This expectation is

fully verified by our data, as can be seen from Fig. 8, where

the data are plotted together with a parabolic fit (continuous

line).

The data for the in-cavity film are shown in Fig. 9 (note

the different scales for H and δT in comparison with Fig.

8) together with a parabolic fit on higher magnetic field

data. It is apparent that low-field in-cavity data show de-

viations from the parabolic behavior, unlike the bare-film

data.

The different behavior of in-cavity data compared to

bare-film data can be better appreciated from Fig. 10, where

they are both plotted. It should be noted that in Fig. 10 the

shifts δT /Tc are reported as a function of the absolute value

of the magnetic field; the shifts being independent of the sign

of H . The two curves in Fig. 10 are the same as in Fig. 1.

We observe again that the bare-film data lie nicely on the ex-

pected theoretical parabolic curve. More detailed comments

are in order for the in-cavity data in Fig. 10. Let us con-

sider first the region corresponding to H ≈ 5÷6 mT: as dis-

cussed in Sect. 2, for these larger fields the Casimir energy

variation is sufficiently small compared to the condensation

energy to justify our perturbative calculations. In this re-

gion, one expects just a small deviation of the in-cavity data

from the bare-film parabolic behavior. Unfortunately, the er-

ror bars are of the same order of magnitude of the expected

small deviations and, therefore, a better sensitivity would

be needed to ascertain the effect in this region. For lower

Fig. 9 In-cavity data together with a parabolic fit on higher magnetic

field data: for low magnetic field, corresponding to the dashed part of

the curve, the data do not follow the parabolic behavior

Fig. 10 Theoretical prediction and experimental results. In-cavity film

data (squares), bare film data (diamonds). The lower curve shows the

theoretical prediction for bare film data, the upper one that for in-cav-

ity film data. The point-dashed line indicates the region where a def-

inite theoretical prediction is not possible. Note that the point H = 0,

δT /Tc = 0 belongs to both curves

magnetic fields, the condensation energy and the variation

of Casimir energy become of the same order, the perturba-

tion expansion is no longer possible, and deviations are pos-

sibly larger. Interestingly, in this energy region, the data of

the in-cavity film are no longer compatible with a parabolic

behavior, confirming and anomalous behavior with respect

to the case for the bare film. We stress the fact that in this

region the bare-film data lie on a parabola. This rules out the

possibility that the nonparabolic behavior of the in-cavity

film is due to noise. Note that, although our data had al-

ready been presented in [25], the location of points and the

error bars had not been obtained with sufficient accuracy

therein.

To sum up, in-cavity data show a behavior which is qual-

itatively different from the bare film case, and compatible

with the predictions of [40, 41]. Even if we cannot draw

definite conclusions from the present analysis, its results
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encourage us in continuing this research. One possibility

is to follow, in particular, the strategy of using very low

condensation-energy materials and very low transition tem-

peratures (see the comments following Eqs. (2, 3)).
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