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On wireless connection between Josephson qubits

Sergei Sergeenkov1 and Giacomo Rotoli2

1Departamento de F́ısica,

Universidade Federal da Paráıba,
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Abstract

By attributing a circulating Josephson current induced diamagnetic moment to a SQUID-type

three-level qubit, a wireless connection between such qubits is proposed based only on dipole-

dipole interaction between their moments. The estimates of the model parameters suggest quite

an optimistic possibility to experimentally realize the suggested coupling scheme.
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Josephson qubit is essentially a superconducting ring interrupted by typically two or three

Josephson junctions forming the basis of an effective two level quantum system [1, 2, 3, 4,

5, 6, 7, 8]. Most of the recently suggested sign and magnitude tunable couplers between

two superconducting flux qubits are based on either direct or indirect inductive coupling

mediated by the SQUID [6, 7, 8] (for detailed and up-to-date discussion of different qubit

implementations and modern physical coupling schemes, see a comprehensive review article

by Wendin and Shumeiko [2]). More precisely [2], in inductive coupling scheme a magnetic

flux induced by one qubit threads the loop of another qubit thus changing the effective

external flux. This leads to an effective coupling between two-level qubits Hint = λ(R)σz
1σ

z
2

with interaction λ(R) dependent on the length of the coupler (and thus qubit separation)

R via the mutual inductance L12(R) ∝ R log R as λ(R) ∝ L−1

12 (R).

In this report, we propose a wireless coupling between two superconducting Josephson

qubits based on dipole-dipole interaction (DDI) D between their diamagnetic moments. Such

a dipolar coupler has much in common with the above-mentioned inductive coupling scheme,

except that instead of the mutual inductance controlled flux-flux interaction, we have a

Zeeman-type proximity-like magnetic interaction of a circulating current Ia
s induced dipole

moment ma of one qubit with an effective magnetic field Bb produced by a dipole moment

mb of the second qubit, and vise versa. Thus, the principal difference of the suggested

dipolar coupler from the other coupling schemes is the absence of electric circuit elements

(like inductance and/or capacitance) which are known [2] to be the main source of noise and

decoherence (dephasing). In this regard, the dipolar coupler is expected to be more ”quiet”

than its conventional counterparts. Besides, due to the vector nature of the DDI, the sign of

such a coupler is defined by the mutual orientation of the qubits while its magnitude varies

with the inter-qubit distance as D(R) ∝ 1/R3 (see Fig. 1). At the same time, as we shall

show, unlike the inductive coupling scheme, the suggested here dipolar coupler requires a

three-level qubit configuration for its implementation.

Let us consider a system of two superconducting qubits assuming, for simplicity, that each

qubit is a two-contact SQUID with a circulating Josephson current Is = Ic1 sin φ1+Ic2 sin φ2,

where Ic1,2 is the corresponding critical current, and φ1 (φ2) stands for the phase difference

through the first (second) contact. In turn, the circulating in each qubit supercurrent

Is creates the corresponding non-zero diamagnetic moment m = IsS with S being the

(oriented) SQUID area. Recall [1] that the quantization condition for the total flux Φ =

2
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FIG. 1: (Color online) Sketch of a dipolar coupler (with strength D) between currents Ia,b
s induced

magnetic moments ma,b of two flux qubits separated by a distance R.

BS+LIs (created by the applied magnetic field B and loop self-inductance L contributions)

in each SQUID is given by φ1 − φ2 + 2π Φ

Φ0

= 2πn with n = 0, 1, 2, ... By introducing a new

phase difference θ:

φ1 = θ + 2πn, φ2 = θ +
2πΦ

Φ0

(1)

we obtain

Is = Ic1 sin θ + Ic2 sin(θ + 2πf) (2)

and

Hs = −J1 cos θ − J2 cos(θ + 2πf) (3)

for the circulating current and tunneling Josephson energy for each SQUID-based qubit,

respectively. Here, f = Φ/Φ0 and J = Φ0Ic/2π. In what follows, we neglect the self-

inductance of each SQUID, assuming that LIs ≪ BS, and consider f = BS/Φ0 as a

field-induced frustration parameter. In fact, this condition is rather well met in realistic

flux qubits [6, 7, 8] with the so-called degeneracy point f = 0.5 and SQUID parameter

βL = 2πLIc/Φ0 ≃ 0.1.

For generality, let us consider two non-identical qubits (a and b) which are assumed to

be coupled only via the DDI between their magnetic moments mq = Iq
sSqêq

Hd =
µ0

4πR3

[

mama −
3 (maR) (mbR)

R2

]

(4)

Here Iq
s = Iq

c1 sin θq + Iq
c2 sin(θq + 2πfq) is the circulating current in q-th qubit (in what

follows, q = {a, b}), R is the distance between qubits, and êq is the unit vector.

Thus, the total Hamiltonian of the two coupled qubits Htot =
∑

q Hq
s + Hd reads

Htot = −
∑

q=a,b

[Jq
1 cos θq + Jq

2 cos(θq + 2πfq)] + D(fa, fb) sin θa sin θb (5)

where

D(fa, fb) = D1 (1 + ja cos 2πfa + jb cos 2πfb + jajb cos 2πfa cos 2πfb) (6)
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with

D1 = D0 (2 cosαa cos αb − sin αa sin αb) (7)

Here D0 = (Ja
1 /2π)(R0/R)3 with R0 = 3

√

4π2µ0J
b
1SaSb/Φ2

0 being a characteristic distance

between qubits, jq ≡ Jq
2/J

q
1 , and αa,b are the angles of ma,b relative to the distance R between

qubits. A sketch of the proposed dipolar coupler is shown in Fig. 1. Notice that, due to

its vector character, the DDI naturally provides a sign-dependent coupling between the

qubits which is quite similar to conventional SQUID inductance mediated coupling [6, 7, 8].

It is also interesting to mention that, in view of Eq.(5), DDI automatically results in a

non-conventional current-phase relation [9] Id(θa) = ∂Hd/∂θa ∝ D cos θa sin θb (with a sign-

changeable amplitude D) usually observed in SFS structures and attributed to the formation

of π-type contacts [10, 11].

A careful analysis of the structure of the total Hamiltonian Htot reveals that the inter-

qubit dipole coupling D introduces the transitions (mixing) between more distant states,

namely |0 > and |2 > suggesting thus that implementation of DDI requires a three-level

qubit configuration [12, 13, 14] (instead of its more traditional two-level counterpart [1, 2,

3, 4, 5, 6, 7, 8]). The resulting three-level system can be readily cast into the following form

of the qubit Hamiltonian

HQ = −
∑

q=a,b

(

ǫqM
z
q + ∆qM

x
q

)

+ D (Mz
aMz

b + 2My
a My

b ) (8)

where ǫq = (Jq
1 + Jq

2 ) sin(δq) ≃ (Jq
1 + Jq

2 )δq and ∆q = (Jq
1 + Jq

2 ) cos(δq) ≃ (Jq
1 + Jq

2 ) are the

energy bias and tunneling splitting for the q-th qubit. Here δq ≡ 2π(fq − 1

2
) ≪ 1.

Mx
q =

1√
2











0 1 0

1 0 1

0 1 0











, My
q =

1√
2











0 −i 0

i 0 −i

0 i 0











, Mz
q =











1 0 0

0 0 0

0 0 −1











are the spin-1 analog of the Pauli matrices σα
q .

It is easy to verify that in the absence of coupling (when D = 0) each individual qubit

has three energy levels: E0
1 = 0 and E0

2,3 = ±
√

ǫ2
q + ∆2

q ≃ ±∆q(1 + 1

2
δ2
i ), in accordance with

the Mz
q structure.

At the same time, the energy levels of the coupled qubits can be found by solving the

eigenvalue problem HQΨ = EΨ. As a result, we obtain the following cubic equation on the
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FIG. 2: (Color online) The dependence of the normalized energy levels E1, E2 and E3 (from bottom

to top) on dipole-dipole coupling u(0, 0) = D/2J for fa = fb = 1.

energy spectrum E of the problem (as a function of two controlling parameters, D and fq)

2Γ3 −
(

4∆2 +
1

2
D2

)

Γ − D∆2 = 0 (9)

where Γ = D−E and ∆ =
∑

q ∆q. It can be directly verified that the above cubic equation

has the following three independent solutions E1,2,3 (corresponding to the three-level qubit

configuration), namely

E1 = ∆ [u − (a+ + a−)] (10)

E2,3 = ∆

[

u +
(a+ + a−)

2
± i

√
3
(a+ − a−)

2

]

where

a± =
3

√

√

√

√

u

4
± 1

4

√

u2 − 1

4

(

8

3
+

u2

3

)3

(11)

and u(fa, fb) = D(fa, fb)/∆.

Without losing generality, in what follows we assume that Jq
1 = Jq

2 ≡ J (which means

that jq = Jq
2/J

q
1 = 1 and ∆ = 2J) and that fa = fb ≡ f . Fig. 2 shows the dependence

of the normalized energy levels E/2J on the dipole-dipole coupling u(0, 0) = D/2J for

fa = fb = 1. Notice that u(0, 0) can assume negative values due to vector nature of the

dipole interaction D. In turn, Fig. 3 depicts the evolution of the coupled three-level qubits
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FIG. 3: (Color online) The dependence of the normalized energy levels E1,2,3/2J on frustration

parameter fa = fb ≡ f for two values of the dipole-dipole coupling: u(0, 0) = 1 (bottom) and

u(0, 0) = −1 (top).
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FIG. 4: (Color online) The dependence of the dipolar coupler strength on angles between qubits

shown in Fig. 1

.

with applied magnetic field (frustration parameter f) for two different qubits orientations

(given by u(0, 0) = 1 and u(0, 0) = −1, respectively). As would be expected for flux

qubits [1, 2], the degeneracy point is situated near f = 0.5. The angular dependence of the

DDI amplitude D on αa,b is shown in Fig. 4. Notice that, like in inductive based coupling

scheme [2, 6, 7, 8], the dipolar coupler may change its sign from positive (when two moments

are parallel to each other) to negative (for the anti-parallel configuration) or even disappear

(when two moments are perpendicular to each other). In turn, Fig. 5 depicts variation of

D1(αq, R) as a function of the normalized distance R/R0 between qubits for three values of α

(assuming the parallel orientation with αa = αb = α, see Fig. 1). Finally, let us estimate the

main model parameters based on the available experimental data on long-range couplers.

Using [7] S = 50µm × 50µm and Ic = 0.5µA for the area of a single qubit and SQUID

critical current, we obtain R0 = 3

√

2πµ0IcS2/Φ0 ≃ 100µm for DDI characteristic separation
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FIG. 5: (Color online) The dependence of D1(αq, R) on the distance R between qubits for three

values of α (from top to bottom: α = π
2
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3
, and π

4
).

which results in the following estimate for DDI mediated coupler frequency (see Fig. 5)

Ω = D/h = (J/2πh)(R0/R)3 ≃ 1GHz for the inter-qubit distance of R = 400µm ≃ 4R0.

This value remarkably correlates with the frequencies achieved in the mutual inductance

mediated couplers [2, 6, 7, 8], suggesting quite an optimistic possibility to experimentally

realize the proposed here dipolar coupling scheme.

In summary, a theoretical possibility of wireless connection between Josephson qubits

(based on dipole-dipole interaction between their induced magnetic moments) was proposed

and its experimental realization was briefly discussed.
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tions of Non-conventional Josephson Structures.
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