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Abstract—Superconducting materials are known to exhibit
nonlinear effects and to produce harmonic generation and in-
termodulation distortion in superconductive circuits. In planar
structures, these nonlinearities depend on the current distribu-
tion on the strip which is mainly determined by the structure
of the device. This paper investigates the current distribution
at the step-in-width discontinuity in superconducting microstrip
transmission lines, which is computed by a numerical approach
based on a 3-D finite-element method. This current distribution
is used to obtain the parameters of the nonlinear circuit model
for the superconducting microstrip step-in-width discontinuity.
The proposed equivalent nonlinear circuit can be solved using
the harmonic balance method. Examples of two superconduct-
ing structures which contain the steps in width are given and
validated by comparison with electromagnetic full-wave results.
The proposed model can be used for effective optimization of the
superconducting microwave filter resonators in order to minimize
their nonlinear distortions.

Index Terms—Circuit modeling, current distribution, nonlin-
earity, step-in-width discontinuity, superconducting microstrip.

I. INTRODUCTION

S
UPERCONDUCTING microwave devices have found a

niche in communication systems. Microwave filters [1],

[2], duplexers [3], delay lines, antennas [4], and couplers [5] are

the most important applications of the superconductor materials

in high-performance microwave devices. These modules are

implemented in microstrip form usually involving a number of

discontinuities like the step in width.

The nonlinear behavior of superconducting microwave de-

vices, due to the dependence of the surface impedance on the

applied field [6], [7], limits the power handling capability of

these devices. This leads to restriction of possible applications

of the superconductors in microwave modules. For example,

intermodulation distortion (IMD) is a serious limitation in

the use of superconducting microwave filters in communi-

Manuscript received December 17, 2011; revised March 30, 2012, June 22,
2012, and December 13, 2012; accepted December 26, 2012. Date of current
version January 28, 2013. This work was supported by the Iran Telecommu-
nications Research Center. This paper was recommended by Associate Editor
J. E. Mazierska.

The authors are with the Department of Electrical Engineering, Sharif
University of Technology, Tehran 11365-9363, Iran (e-mail: smh_javadzadeh@
ee.sharif.edu; farzaneh@sharif.edu; fardmanesh@sharif.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASC.2012.2237510

cation systems [8], [9]. These limitations might be eased if

engineers could reliably predict the nonlinear effects in their

designs. A number of nonlinear models of superconducting

microwave transmission lines (TLs) [10]–[12], superconduct-

ing bends [13], and also superconducting coupled lines [14]

have been introduced. For the analysis of nonlinearities in

superconducting microstrip discontinuities, mainly, numerical

methods are used. Therefore, a simple and accurate-enough

nonlinear circuit model of discontinuities in superconducting

microwave structures can decrease time and memory usage of

numerical techniques for the nonlinear analysis. One of the

most often used discontinuities in the microstrip structures

is the step in width. An accurate nonlinear model of this

discontinuity, particularly the current distribution in the cross

section, is thus needed to predict the nonlinear behavior of

superconducting microwave devices. There are two theories for

the modeling of nonlinearities in superconductors: the local

[6] and the nonlocal theories [15], [16]. Both theories model

nonlinearities in superconductors in the different ways of the

dependence on the current. In this paper, we apply the local

approach to the modeling of the superconductor materials.

In this paper, the current distribution for the discontinuity of

step in width in the superconducting microstrip TLs (MTLs),

based on a 3-D finite-element method (FEM) (3D-FEM), is

computed. This approach is used to obtain the nonlinear circuit

model of the superconducting microstrip step-in-width discon-

tinuity. The developed model can be used for the prediction

of nonlinear behaviors of the superconducting microstrip struc-

tures through nonlinear analysis of the superconducting MTLs

using the harmonic balance (HB) method. As an example, a

superconducting MTL containing one step in width is analyzed,

and then, its IMD and third-order harmonic (H3) generation

are calculated at two different temperatures versus the width

ratio of the step. Additionally, a microstrip superconducting

fifth-order low-pass filter (LPF) made of yttrium barium copper

oxide (YBCO) on a LaAlO3 substrate with six steps in width

is analyzed. Then, linear and nonlinear contributions of the dis-

continuities in its overall linear and nonlinear performance are

determined. To validate the accuracy of the proposed approach,

we compare some calculated results with results of the analysis

by a full-wave electromagnetic method based on 3D-FEM. The

proposed model is found to be very useful for optimizing the

resonators of the superconducting microwave filters in order to

minimize their nonlinear distortions.
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The organization of this paper is as follows. In Section II,

the nonlinearity in the superconducting MTLs is introduced.

Section III presents the proposed nonlinear circuit model of the

step-in-width discontinuity. Section IV is dedicated to numeri-

cal computations of the current distribution and calculations of

the values of the circuit model elements. In Section V, the pro-

posed circuit model is discussed and used for the prediction of

nonlinearity in a sample LPF. Finally, conclusions are presented

in Section VI.

II. NONLINEARITY IN THE SUPERCONDUCTING MTLs

A superconductor is intrinsically nonlinear due to the depen-

dence of its superfluid density (ns) on the current density (j)
at finite temperatures below the critical temperature Tc. The

relative variations of ns caused by j can be introduced by a

nonlinearity function f(T, j) which is defined as [6]

f(T, j) =
ns(T, 0)− ns(T, j)

ns(T, 0)
. (1)

According to [6], f(T, j) can be described for medium current

levels by

f(T, j) = bθ(T )

(

j

jC

)2

(2)

where jC is the critical current of the superconducting thin film

and bθ(T ) is a coefficient which depends on the direction of

the superfluid flow and the temperature. Hence, the dependence

of σ1 (the real part of the conductivity in the superconducting

state) and the penetration depth (λ) on the current density can

be given by [17]

σ1(T, j) =σ1(T, 0) [1 + a(T )f(T, j)] (3)

λ2(T, j) =λ2(T, 0) [1− f(T, j)]−1
(4)

where the function a(T ) can be calculated by

a(T ) =
[

(λ(T, 0)/λ(0, 0))2 − 1
]−1

. (5)

The presented equations are used to define the nonlinear

circuit model of the superconducting MTLs. The general con-

figuration of the superconducting MTL is shown in Fig. 1, for

which we use the nonlinear distributed circuit model given

in Fig. 2 [11]. In fact, the nonlinearity is embedded in the

inductance and resistance per unit length. In this model, we

have

L(T, i)=L0(T )+∆L(T, i) R(T, i)=R0(T )+∆R(T, i)
(6)

where i is the total current in the cross section of the MTL

and R0 and L0 are current-independent terms. For the quadratic

case of nonlinearity, which occurs for relatively small currents,

based on that in [18], we have

∆L(T, i) = ∆Lq(T ) · i2 ∆R(T, i) = ∆Rq(T ) · i2 (7)

Fig. 1. General configuration of the superconducting MTL.

Fig. 2. Nonlinear circuit model for an elemental cell of a superconducting
MTL.

in which

∆Lq(T ) =
µ0λ

2(T, 0)

j2IMD(T )
Λ(T ) (8)

∆Rq(T ) =σ1(T, 0)ω
2µ2

0λ
4(T, 0)

2 + a(T )

j2IMD(T )
Λ(T ) (9)

where

jIMD(T ) =
jC

√

bθ(T )
. (10)

The parameter Λ(T ) in (8) is the geometrical nonlinear factor

(GNF) and can be written as follows [18]:

Λ(T ) =

∫

j4dS
(∫

jdS
)4 (11)

where the integration is made over the MTL’s cross section.

It is well known that the current distribution in the thin-film

superconducting MTLs can be written as in the following [6]:

j(x, z) =

⎧

⎨

⎩

j(0)√
1−(2x/W )2

, |x| < W
2 − λ2

t

j(0)
√
Wt

2λ , W
2 − λ2

t < |x| ≤ W
2 .

(12)

We propose a closed-form expression of the GNF for any

superconducting MTL with uniform configuration shown in

Fig. 1. The formulation can be written in an analytical form as

Λ(T,W ) =

[

W 2t
8λ2 +

W
3

2
−λ

2
W

2

t

W 2−4
(

W

2
−λ2

t

)

2 +
W
2 arctanh

(

1− 2λ2

Wt

)

]

t3
[

W arcsin
(

1− 2λ2

Wt

)

+ λ
√

W
t

]4

(13)

which depends on the temperature and the linewidth. Therefore,

all parameters of this nonlinear lumped-element model for

any simple superconducting MTL are obtained analytically.
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Fig. 3. (a) Step in width. (b) Proposed nonlinear circuit model.

However, if the MTL consists of some discontinuities like the

step in width, those discontinuities must be further modeled

as well.

III. NONLINEAR CIRCUIT MODEL FOR STEP IN WIDTH

We propose a nonlinear circuit model for the step-in-width

discontinuity in superconducting MTLs. The model is inferred

by an analogy to the linear model of step in width in the

microstrip structures, in which a step in width is modeled by

two series inductances and a shunt capacitance [19], [20]. Using

the nonlinear model of a superconducting MTL, as descended

in Section II, we propose a nonlinear circuit model as shown in

Fig. 3, where

LSk(i) = LSk0 +∆LSk(i) RSk(i) = ∆RSk(i) (14)

in which

∆LSk(T, i)=∆LSkq(T )·i2 ∆RSk(T, i)=∆RSkq(T )·i2
(15)

where

∆LSkq(T ) =
Wkµ0λ

2(T, 0)

2j2IMD(T )
ΛSk(T,W2N ,WR) (16)

∆RSkq(T ) =σ1(T, 0)ω
2µ2

0λ
4(T, 0)Wk

2 + a(T )

2j2IMD(T )

× ΛSk(T,W2N ,WR) (17)

where k = 1 and k = 2 are for the wide and narrow sides of

the step, respectively, WR is the width ratio (WR = W1/W2),
and W2N is the normalized width of the narrow side of the step

(W2N = W2/W0), where W0 is the width of a 50-Ω TL.

The parameters ΛS1 and ΛS2 are GNFs for both sides of the

step in width and can be written as

ΛSk(T,W2N ,WR) =

〈

∫

j4kdS
(∫

jkdS
)4

〉

Wk/2

− Λ(T,Wk) (18)

in which

〈f(x)〉T =
1

T

∫

T

f(x)dx (19)

and j1 and j2 are the current distributions in the wide and

narrow sides of the step in width, respectively. j1 and j2 should

be computed through averaging on Wk/2 (k = 1, 2) from the

step boundary in order to calculate the GNFs in the two sides

of the discontinuity, which will be given in the next section.

Additionally, the linear terms of LS10, LS20, and CS are

extracted from the linear circuit model of the microstrip step-

in-width discontinuity from [19], which are modified for the

superconducting case accordingly as shown in the following:

LS10 =
Lw1

Lw1 + Lw2
L LS20 =

Lw2

Lw1 + Lw2
L. (20)

Magnetic and kinetic inductances can be written as

Lwi =
µ0h

WiK(Wi)
+

Xs

ωWiK(Wi)

=
µ0

WiK(Wi)
{h+ λ coth(t/λ)} , i = 1, 2 (21)

L =0.000987h

(

1− Lw1

Lw2

)2

(nH). (22)

The shunt capacitance can be calculated as in the following:

CS =0.00137h
K(W1)

√
εre1

ZC1

(

1− 1

WR

)

×
(

εre1 + 0.3

εre1 − 0.26

)(

W1/h+ 0.26

W1/h+ 0.8

)

(pF) (23)

where ZC1 and εre1 are the characteristic impedance and effec-

tive dielectric constant in the wider side of the step, respectively,

and K(W ) is the fringing factor [21] given in

K(W )=

{
(

1
2π ln

(

8h
W + W

4h

))−1 h
W , W ≤h

(

W
h + 2.42− 0.44 h

W +
(

1− h
W

)6
)

h
W , W ≥h.

(24)

Therefore, all the elements of the proposed model can be

analytically calculated except the GNFs, for which we propose

a closed-form expression in Section IV.

IV. NUMERICAL COMPUTATIONS

A. Current Distribution

To compute the current distribution in the superconducting

microstrip structures, we solve the London equations using 3D-

FEM based on a commercial FEM simulator [22]. In fact, we
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Fig. 4. Normalized current distribution in a simple superconducting MTL for
W = 0.34 mm.

solve the Maxwell equations in all regions of the structure and

consider the superconductor region as an environment with a

complex permittivity as follows [23]:

εSc = ε0 −
1

ω2µ0λ2
− j

σ1

ω
. (25)

The computed normalized current distribution (i.e., j(0, z) =
1) in a simple superconducting MTL is displayed in Fig. 4,

and it shows good agreement with the well-known formulation

in (12). We assume that the current distribution is uniform in

the z-direction, which is nearly accurate for thin-film super-

conducting MTLs with a thickness of λ. The superconducting

microstrip structures in this paper are assumed to be made of a

400-nm YBCO thin film deposited on a 1-mm-thick crystalline

LaAlO3 substrate.

The computed current distribution of the step-in-width dis-

continuity with different width ratios and W2 = 0.3 mm is

shown in Fig. 5. The distribution of the current density close to

the step position is definitely different from that of an ordinary

TL. Normalization means that j(0, z) is set to one at the end

of the narrow line (x = 3 mm). Numerical computations of

the current density were performed at a frequency of 1 GHz.

However, this is not an important factor because the current

distribution is approximately frequency independent. As can

be observed in Fig. 5, the current density has peaks at two

internal corners of the step in width, significantly increasing the

nonlinear behavior of the superconducting structure. In Fig. 6,

the computed peaks of the current density in the cross section

for different width ratios are presented. The peaks of the current

density increase with increasing of the width ratios. Moreover,

the level of these peaks also depends on the normalized width of

the narrow side of the step (W2N ). Similarly, for WR, the level

of the current peaks, in the two mentioned corners, is decreased

by the reduction of W2N .

B. Calculation of GNF of Step in Width

To calculate the GNFs of the step, we used the numeri-

cally computed current distributions and calculated GNFs for

different cases of the step in width in (18). We consider the

Fig. 5. Normalized current distribution in a step in width with W2 = 0.3 mm
and (a) WR = 1.5, (b) WR = 4, and (c) WR = 10.

current distribution in the area with lengths of W1/2 toward

the W1 side and W2/2 toward the W2 side, as taken in (18).

Two closed-form expressions for the GNFs in both sides of

the discontinuity are obtained by curve fitting. These analytical

relations can be used for fast and efficient computation of

nonlinearity of superconducting structures.
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Fig. 6. Normalized current distribution in the cross section of the step in width
for variation of W1 and W2 = 0.3 mm. The center of the linewidth is assumed
at x = 0.

For the GNF of the wide side of the discontinuity, i.e., W1

in Fig. 3, the closed-form formula can be written as in the

following:

Λ̃S1(W2N ,WR) = P1 exp(−0.36WR)W
0.25
R + P2W

1.2
R − P3

(26)

where

Λ̃S1(W2N ,WR) =
ΛS1(T,W2N ,WR)

Λ(T,W1)
. (27)

Other parameters in the proposed closed-form expression are

given as follows:

P1 =185.8W 4.125
2N + 35.36

P2 =17.25W 4.09
2N + 5.132

P3 =147W 4.153
2N + 29.84. (28)

Fig. 7 shows the variation of the GNF for the wide side of

the step-in-width discontinuity (ΛS1) relative to the GNF of

a uniform TL with a width of W1 (Λ) as a function of WR

and W2 in both numerically computed and closed-form cases.

As shown in the figure, ΛS1 is relatively higher than the GNF

of an ordinary TL, and therefore, it will have considerable

impact on the nonlinear behavior of the structure. Additionally,

for the other side of the step, the closed-form equation can be

written as

Λ̃S2(W2N ,WR) = Q1 log(Q2WR)W
Q3

R −Q4W
−3.4
R − 1

(29)

where

Λ̃S2(W2N ,WR) =
ΛS2(T,W2N ,WR)

Λ(T,W2)
(30)

Q1 = − 5.395W 0.489
2N + 7.574

Q2 =25.57W 3.521
2N + 2.803

Q3 =0.1577W 2
2N + 0.2201W2N − 0.299

Q4 =2.306W 0.5093
2N + 0.0587. (31)

Fig. 7. Variation of ΛS1 for the step-in-width discontinuity relative to the
GNF of a TL with a width of W1 as a function of WR and W2 and W0 =

0.344 mm.

Fig. 8. Variation of ΛS2 for the step-in-width discontinuity relative to the
GNF of a TL with a width of W2 as a function of WR and W2 and W0 =

0.344 mm.

Fig. 8 shows the relative computed GNF for the narrow side

of the step in width for different cases resulting from numerical

computation and proposed closed-form expressions. Both ΛS1

and ΛS2 are functions of WR and the normalized narrow width

(W2N ).

V. RESULTS AND DISCUSSION

We have analyzed the step-in-width discontinuity in the

superconducting microstrip structures. A nonlinear lumped-

element model for the prediction of nonlinearity has been

proposed, to which all model elements can be calculated an-

alytically. Therefore, using the HB method with this model,

the nonlinear effects of the superconducting structure can be

predicted. At first, we analyzed a simple step in width as shown

in Fig. 9(a). Fig. 9(b) displays the value of the relative power

of the third-order IMD at the upper sideband and for ∆f =
500 kHz and the H3 at two different temperatures of T = 20 K

and T = 77 K versus the width ratio for W2 = 0.3 mm, f0 =
4 GHz, and Pin = 20 dBm. According to [6], in (2), we set

bθ(T ) = 6 at T = 77 K and bθ(T ) = 1.6 at T = 20 K, because,

based on that in [24], we regard YBCO predominately having

dx2−y2 gap. As it can be seen in Fig. 9(b), the signal levels

of both the IMD and H3 are considerably decreased by the

reduction of the temperature from 77 K to 20 K.
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Fig. 9. (a) Step-in-width structure (dimensions in millimeters). (b) Power of
the IMD (at the upper sideband and for ∆f = 500 kHz) and H3 relative to the
input power for T = 20 K and T = 77 K versus the width ratio for W2 =

0.3 mm, f0 = 4 GHz, and Pin = 20 dBm. For validation, the amounts of
H3 for both temperatures are also displayed with full-wave numerical analysis
based on 3D-FEM.

Additionally, we used the numerical full-wave electromag-

netic analysis based on 3D-FEM using a commercial FEM

simulator [22] for the validation of the proposed approach.

We numerically compute the H3 generation in the structure in

Fig. 9(a). To achieve this goal, the superconducting material

is defined, described in (25), with both parameters λ and σ1,

which are the functions of the current density according to

(3) and (4). Then, in a time-domain simulator environment, a

sinusoidal wave is stimulated in the input port of the considered

structure of the superconducting MTL in Fig. 9(a). The output

signal can be obtained in the time-domain regime with an itera-

tive solution of the Maxwell equations. Finally, the power level

of the H3 can be calculated with fast Fourier transform of the

output signal. Both of the proposed model and the numerically

calculated power levels of the H3 in the superconducting MTL

with one step in width at two temperatures of 20 K and 77 K

are displayed in Fig. 9(b). Good agreement between numerical

and model results confirms the accuracy of the here-proposed

model.

As another example, a superconducting LPF, as shown in

Fig. 10(a), is considered for nonlinear analysis. All dimensions

given in the figure are in millimeters. This LPF contains seven

TLs and six discontinuities of step in width. Therefore, same as

the previous structure, the equivalent circuit of this LPF can be

nonlinearly analyzed by the HB approach. Fig. 10(b) displays

both the frequency response of the mentioned filter and the

calculated amount of the upper sideband third-order IMD for

∆f = 500 kHz and Pin = 10 dBm for each signal at T = 77 K.

In fact, in each input frequency of f0, we activate two signals

with frequencies of f0 −∆f/2 and f0 +∆f/2, and we cal-

culate the level of the signal at a frequency of “f0 + 3/2∆f .”

Additionally, the relative amount of this calculated IMD, i.e.,

Fig. 10. (a) Designed LPF. (b) (Left axis) Filter response and (right axis)
calculated values for IMD at the upper sideband in the LPF for T = 77 K,
∆f = 500 kHz, and Pin = 10 dBm.

Fig. 11. Relative IMD (in decibels) of the LPF (IMD power to power of the
main signal) for IMD at the upper sideband in the LPF for ∆f = 500 kHz and
Pin = 10 dBm.

the IMD relation to the fundamental signal, is shown in Fig. 11,

in which it can be seen that IMD increases with frequency and,

in the cutoff frequency of the LPF, has a considerable peak.

The input-power dependence of the amplitude of the fundamen-

tal signal and the third-order upper sideband intermodulation

signal in the mentioned LPF at its cutoff frequency, i.e., f0 =
5.2 GHz, is shown in Fig. 12. As expected, the fundamental

signal has a slope of one and the IMD has a slope of three, and

the intercept point is at about Pin = 23 dBm.

VI. CONCLUSION

In this paper, an analytical nonlinear lumped-element model

of step-in-width discontinuity in superconducting microstrip
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Fig. 12. Input-power dependence of the amplitude of the (triangles) funda-
mental signal and the (circles) third-order IMD signal in the mentioned LPF at
f = 5.2 GHz and for T = 77 K and ∆f = 500 kHz.

structures has been proposed. To calculate the nonlinear part of

the inductance and resistance of the model, we used 3D-FEM to

compute the current distribution in step in width. Then, by curve

fitting, two closed-form equations of GNFs for both sides of the

discontinuity have been proposed. The circuit model was used

for HB analysis of the step-in-width discontinuity of an LPF to

predict nonlinear distortions. Results show that the discontinu-

ity of step in width has considerable impact on the nonlinear

behavior. We inferred that the nonlinearity impacts of a step

in width depend on both its width ratio and the width of the

lines, and for similar width ratios, the nonlinearity is increased

in the step with the wider lines. The accuracy of the proposed

model was validated by comparison with full-wave numerical

nonlinear analysis. The proposed nonlinear analysis method can

be very useful for minimizing the nonlinear distortions of high

temperature superconductors resonators and superconducting

microstrip filters.
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