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~Received 19 June 2000; published 14 June 2001!

We show that the~undamped! parametrically driven nonlinear Schro¨dinger equation has wide classes of
traveling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and
moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast.
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I. INTRODUCTION

The parametrically driven damped nonlinear Schro¨dinger
~NLS! equation,

ic t1cXX12ucu2c2c5hc* 2igc, ~1!

was used to model the nonlinear Faraday resonance in a ver-
tically oscillating fluid layer@1,2# and the effect of phase-
sensitive parametric amplifiers on solitons in optical fibres
@3#. The same equation describes an easy-plane ferromagnet
with a combination of a static and high frequency field in the
easy plane@4,5#. It also serves as a continuum limit for
small-amplitude excitations in the parametrically driven
Frenkel-Kontorova chain~an array of diffusively coupled
pendula! @6#. The Frenkel-Kontorova system is regarded as a
fairly realistic model of a number of physical and biophysi-
cal systems and phenomena, including ladder networks of
discrete Josephson junctions, charge-density wave conduc-
tors, crystal dislocations in metals, DNA dynamics and pro-
ton conductivity in hydrogen-bonded chains@7#.

The second term in the right-hand side of Eq.~1! accounts
for dissipative losses that occur in all physical systems but
are frequently ignored on short time intervals. To compen-
sate for these losses, one has to pump the energy into the
system from outside. The first term in the right-hand side of
Eq. ~1! represents one possible way of pumping the energy
in, the parametric pumping. In the absence of the damping
and pumping, the nonlinear Schro¨dinger equation exhibits
soliton solutions that can travel with arbitrary velocities and
transport physical characteristics such as mass, momentum
and energy.@For the sake of brevity, we are making use of
the hydrodynamical interpretation of Eq.~1! here.# The dis-
sipation has two visible effects on the soliton: it attenuates its
speed and damps its amplitude. The parametric driving is
well known to be capable of counterbalancing the damping
of the soliton’s amplitude; a natural question now is whether
it can sustain its motion with a nonzero velocity.

In fact the existence of traveling solitons is a nontrivial
matter even in the absence of damping. The driving term
hc* in

ic t1cXX12ucu2c2c5hc* ~2!

breaks the Galilean invariance of the unperturbed nonlinear
Schrödinger equation and hence one cannot obtain a moving
soliton simply by boosting a static one. However the Gal-
ilean or Lorentz symmetry is not always a prerequisite for
the existence of moving nonlinear waves. For example,
reaction-diffusion equations do not possess any symmetries
of this kind but are well known to support stably propagating
fronts and pulses~whose velocities are fixed by parameters
of the model.! In particular, traveling domain walls arise in
the parametrically driven Ginsburg-Landau equations~where
the motion is due to nongradient terms! @8#. As far as soli-
tons in Hamiltonian systems are concerned, the example of
dark solitons in the nonlinear Schro¨dinger equations suggests
that they have even a greater mobility than dissipative fronts
and pulses. Although in this case the Galilean invariance is
broken by the presence of the nonzero background, the dark
solitons can propagate with arbitrary speeds bounded only by
the velocity of sound waves@9–12#.

A number of nonstationary regimes were reported in the
water tank experiments, including the formation of oscillat-
ing soliton pairs@2#, but no steadily moving solitons were
detected so far. On the other hand, numerical simulations of
the undamped equation~2! did exhibit traveling localized
objects@13#. It has remained an open question whether these
moving objects preserve their speed and amplitude, or at-
tenuate and decay slowly due to the emission of the second-
harmonic radiation. The aim of the present paper is to study
the existence of steadily propagating solitons, and examine
their stability. Here we are confining ourselves to the un-
damped situation relegating the analysis of the effect of
damping to future publications.

In addition to their role in transport phenomena, stably
moving solitons are also of interest as alternative attractors
that may compete with~static or oscillating! nonpropagating
solutions. We will demonstrate that stable traveling solitons
do exist in the~undamped! parametrically driven nonlinear
Schrödinger equation. Moreover, there are parameter ranges
where moving solitons are stable whereas their quiescent
counterparts are not. Unstable solitons are not meaningless
either; they may arise as long-lived transients and intermedi-
ate states in spatiotemporal chaotic regimes. In this paper we

*On leave from Department of Mathematics, University of Cape
Town, Private Bag, Rondebosch 7701, South Africa. Email address:
igor@cenerentola.mth.uct.ac.za

†On leave from the Laboratory for Computing Techniques, Joint
Institute for Nuclear Research, Dubna, 141980, Russia. Email ad-
dress: elena@ultra.jinr.ru

‡Email address: baer@mpipks-dresden.mpg.de

PHYSICAL REVIEW E, VOLUME 64, 016603

1063-651X/2001/64~1!/016603~12!/$20.00 ©2001 The American Physical Society64 016603-1



will identify oscillatory and translational instabilities of trav-
eling solitons and simulate their nonlinear evolution near the
transition curves.

The structure of the paper is as follows. In Sec. II we
derive ana priori bound for the existence domain of travel-
ing solitons and introduce the linearized eigenvalue problem
for their stability analysis. We also discuss some general
properties of eigenvalues and eigenfunctions and formulate a
simple criterion for the onset of the nonoscillatory instabil-
ity: ]P/]V50, whereV is the velocity of the steadily mov-
ing soliton, andP the associated momentum.

In Sec. III we present several explicit quiescent (V50)
solutions and then derive the necessary condition for a static
solution to be continuable to nonzero velocities. This condi-
tion requires that the motionless solution should either not
have any ‘‘free’’ parameters apart from the translational
shift, or, if there is an additional parameterz, the equation
]P/]z50 should be satisfied. HereP is the momentum of
the motionless localized solution~which, contrary to one’s
mechanical intuition, is not necessarily equal to zero!. There
are three static solutions satisfying the above condition, two
of which being the well-known constant-phasec1 and c2

solitons, respectively, while the third solution looks like a
pulse with a bell-shaped modulus and twisted phase.

The most important results of this work are contained in
Sec. IV where we report on the numerical continuation of
various branches of solutions and their stability analysis. In
agreement with the analytical predictions of the preceding
section, we find that each of the above static solutions admits
the continuation to nonzeroV. The stability properties of
traveling solitons result from an intricate interplay of two
types of instabilities, the oscillatory and translational insta-
bility. In accordance with the conclusions of Sec. II, the nu-
merical analysis of the linearized eigenvalues shows that the
transition curves of the translational instability satisfy
]P/]V50. One interesting conclusion of the stability analy-
sis is that although quiescent solitons are unstable for driving
strengths larger thanh50.064, there are stable moving soli-
tons for any 0<h<1. We discuss in detail the soliton’s
transformation as it is continued inV, paying special atten-
tion to the dynamics of the associated linearized eigenvalues
on the complex plane. Two different scenarios of the trans-
formation are identified, one occurring for smallh and the
other one for larger driving strengths, and we also describe
an interesting crossover from one to another.

Section V is devoted to the direct numerical simulations
of the full time-dependent nonlinear Schro¨dinger equation.
We show that the evolution of both types of the soliton in-
stabilities leads, ast→`, to the same asymptotic attractors.
Finally, Sec. VI summarizes conclusions of this study.

II. STEADILY TRAVELING WAVES: EXISTENCE
AND STABILITY

A. Existence domain

We will confine ourselves to localized traveling waves of
the simplest form,c(X,t)5c(X2Vt). Transforming to the
comoving frame, these correspond to time-independent soli-
ton solutions of the equation

ic t2iVcx1cxx12ucu2c2c5hc* , ~3!

wherex5X2Vt. We will search for these static solutions by
solving an ordinary differential equation

2iVcx1cxx12ucu2c2c5hc* ~4!

under the vanishing boundary conditionsuc(x)u→0 as uxu
→`. Here h is always taken positive; negativeh ’s can be
recovered by the phase transformationc→ic.

It is straightforward to notice that if the functionc(x)
describes a soliton traveling with the velocityV, the func-
tions c* (x) andc(2x) yield solitons moving with the ve-
locity 2V. Therefore, either the functionc(x) satisfies
c* (x)56c(2x) ~that is, one of the real and imaginary part
of the solution is even and the other one odd!, or there are
two solutions associated with the sameV. ~Here we are not
making any difference between solutions that are different
just in the overall sign.! In the latter case the solutions will
not exhibit thec* (x)56c(2x) symmetry. We will try to
restrict ourselves to positiveV ’s wherever possible; negative
velocities will only be presented where this may help visu-
alizing how different branches of solutions are connected.

Next, it is easy to show that solitons cannot travel faster
than a certain speed limit. Indeed, asuxu→`, the soliton’s
asymptotic tail decays asc(x);e2kx, where

2k2
522V2

6A~22V2!2
14~h2

21!. ~5!

Large driving strengthsh.1 are of little interest to us as in
this case the zero background,c(x)50, is unstable with
respect to continuous spectrum waves@5#. Therefore we are
not going to discuss this case here. In the complementary
regionh,1, the location ofk on the complex plane depends
on the value of the velocity. WhenV2

,222A12h2, there
are four real exponents; for 222A12h2

,V2
,c2, where

c5A212A12h2, ~6!

we have a quadruplet of complexk ’s. Finally, for V2
.c2 all

four exponents are imaginary. Consequently, there can be no
exponentially localized solitons traveling faster thanc.
Physically,c represents the minimum phase velocity of lin-
ear waves governed by Eq.~1!, and our conditionV,c is
essentially an exclusion principle ruling out a resonance be-
tween solitons and linear waves.

B. Linearized eigenvalue problem

In this paper we solve the Eq.~4! numerically and exam-
ine the stability of the resulting solutions by studying the
associated eigenvalue problem. This eigenvalue problem
arises by assuming a small perturbation of the form

dc~x,t !5y~x !elt, y~x !5du~x !1idv~x !.

Substituting into Eq.~3! gives

HY5lJY , ~7!

where the Hermitian operatorH has the form
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H5I~2]x
2
11!1VJ]x

1S h26u2
22v

2
24uv

24uv 2h26v
2
22u2D , ~8!

the matrixJ is given by

J5S 0 21

1 0 D , ~9!

and the column vectorY (x)5(Rey ,Im y)T
5(du,dv)T. In

Eq. ~8! I is the identity matrix, and we have decomposed the
stationary solution asc(x)5u(x)1iv(x).

For symmetric solutions satisfyingc* (x)56c(2x), ei-
genvalues will always come in (l,2l) pairs. This follows
from the fact that for these solutions changingx→2x in the
operator~8! amounts to changing the sign of its off-diagonal
elements, and hence if@du(x),dv(x)#T is an eigenfunction
associated with an eigenvaluel, the column @du(2x),
2dv(2x)#T will serve as an eigenfunction associated with
an eigenvalue2l. As far as a zero eigenvalue is concerned,
it will have a twin with the eigenfunction@du(2x),
2dv(2x)#T unless its eigenfunctiony5du1idv satisfies
the symmetryy* (x)5e iwy(2x), wherew5const.

To complete the discussion of the spectrum structure, we
need to mention that there are two branches of the continu-
ous spectrum lying on the imaginary axis ofl: l
5iv1,2(k), where

v1,2~k !5Vk6A~k2
11!2

2h2,

and2`,k,`. ~We are still assumingh,1). In the region
V2

,c2, which is of interest to us, the continuous spectrum
has a gap:v1(k).v0 , v2(k),2v0, where v0.0. This
gap can harbor discrete eigenvalues representing stable os-
cillation modes.

C. Nonoscillatory instabilities

The aim of this subsection is to demonstrate that a pair of
pure imaginary eigenvalues can collide atl50 and move
onto the real axis only at the velocity satisfying]P/]V50,
where

P5

i

2E ~cx* c2cxc* !dx ~10!

is the conserved momentum. This criterion is known in the
context of dark solitons of the undriven nonlinear Schro¨-
dinger equations; see@10–12#. Here we simply adapt the
proof given in@11# to the case of the equation with the para-
metric forcing. An important assumption that we make here,
is that the solution whose stability is being examined, does
not have any free parameters apart from the trivial translation
parameterx0.

First of all we need to make a remark on the integrable
case,h50. In this case solutions of the ordinary differential
equation~4! can be obtained from a quiescent soliton of Eq.
~2! by a Galilei transformation,

c~x !5e i(V/2)xA sechAx, ~11!

whereA5A12V2/4. For h50 and anyuVu,2, the linear-
ized operatorH has four zero eigenvalues associated with
two eigenvectors. One of these eigenvectors originates from
the translation symmetry and the other one results from the
phase invariance of Eq.~4!. The termhc* breaks the phase
invariance and hence ash is increased from zero, one pair of
eigenvalues (l,2l) moves away from the origin on the
complex plane. Ash and V are further varied, a pair of ei-
genvalues may return to the origin. If the solution of Eq.~4!
at the point of their return is a member of a family param-
etrized bytwo free parameters, we will have, again, four zero
eigenvalues with two eigenfunctions.~The eigenfunctions
are simply derivatives of the solution with respect to the free
parameters.! Our analysis will not be applicable in this case,
and the equality]P/]V50 does not have to be valid at the
return point.~We will come across this type of a situation in
Sec. IV C below.! However, a more common situation is
when the solution at the return point is a member of aone-
parameter family. We will show that in this case the relation
]P/]V50 does have to be in place.

Let us denoteVc the velocity for which the eigenvalue of
the operator~7!–~8! vanishes. We can develop the solution
c(V;x) in powers ofe5V2Vc ,

c~V;x !5c0~x !1ec1~x !1e2c2~x !1•••,

wherec05c(Vc ;x). Accordingly, the operatorH expands
as H5H01eH11e2

H21 . . . . If the eigenvaluel moves
from imaginary to the real axis, it is natural to assume that it
admits an expansion of the form

l5e1/2l11e3/2l31e5/2l51•••. ~12!

The associated eigenfunction is then developed as

Y ~x !5Y 0~x !1e1/2Y 1~x !1eY 2~x !1••• . ~13!

Whene50, we haveH0Y 050, i.e.,Y 0 is a null eigenvector
at the bifurcation pointV5Vc . Since we have assumed that
c(Vc ,x) is a member of a one-parameter family of solutions,
the operatorH0 has only one null eigenvector, and we have
to identify Y 05C08(x). HereC0 is a column vector formed
by the real and imaginary part of the solitonc0 : C0
5(u0 ,v0)T. The prime indicates differentiation with respect
to x.

Next, setting the coefficient ofe1/2 to zero yields

H0Y 15l1JY 0 .

Comparing this to the equation

H0

]C

]V U
V5Vc

52JC08 ,

which arises from the differentiation of Eq.~4! with respect
to V, we get
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Y 1~x !52l1

]C

]V U
V5Vc

.

@In the above equationsC5(u,v)T.# The coefficient ofe1

produces

H0Y 25l1JY 12H1Y 0 ,

which has bounded solutions if the right-hand side is or-
thogonal to the null eigenvector ofH0,

l1E Y 0JY 1dx2E Y 0H1Y 0dx50. ~14!

The second term in Eq.~14! is readily shown to vanish—
one only needs to expand the identityHC850 in e. ~The
coefficient ofe1 gives H1C0852H0C18 . Taking the scalar
product withC08 yields the required*C08H1C08dx50.! On
the other hand, the first term in Eq.~14! is equal to
(l1

2/2)]P/]V. Consequently, Eq.~14! gives either]P/]V
50 or l150. If we assume thatl150, we will not be able
to conclude that]P/]V50 at this order of the expansion.
However, the ordere2 will then give usl2

2]P/]V50, which
implies either]P/]V50 or l250. Proceeding by a similar
token we will eventually arrive at the equation]P/]V50 at
some orderen wheren is such thatlnÞ0. ~Alternatively, we
will have to conclude that allln50 and hence we are deal-
ing with a symmetry eigenvalue that is equal to zero forall
V.!

Thus a pair of real or pure imaginary eigenvalues of the
same magnitude and opposite sign, can only collide for the
value of V that satisfies]P/]V50. Here we wish to re-
emphasize that we have obtained this conclusion under the
assumption that the geometric multiplicity of the zero eigen-
value is not increased at the point of collision. A simple
example when this assumption is not valid, is furnished by
the caseh50. In this case the momentum corresponding to
the soliton~11! is given byP5VA12V2/4. AlthoughP has
a maximum forV5A2, the stability properties of the un-
driven soliton do not change at this point. The reason is that
for eachV the operatorH has two null eigenvectors in this
case, and hence we cannot make the identificationY 0

5C08 . ~Instead,Y 0 will be a linear combination oftwo zero
modes.! Consequently, the above proof becomes invalid.

Finally, one can easily check that the above result does
not really depend on how the eigenvaluel expands in pow-
ers of e. We assumed that the expansion~12! starts with
terms of ordere1/2. This assumption is natural and supported
by the numerical evidence; however, even if we had postu-
lated the expansion starting with terms of ordere1/4, e1/3 or
say, e, we would have still arrived at thesame necessary
condition for the zero crossing:]P/]V50.

The condition]P/]V50 admits a simple interpretation in
terms of two integrals of motion. In addition to the momen-
tum, Eq.~3! conserves the energy,

E5ReE ~ ucxu
2
1ucu22ucu4

1hc2!dx. ~15!

The stationary equation~4! can be regarded as a condition
that the energy~15! be stationary under the fixedP: (dE)P
50 or, equivalently, d(E2VP)50, where V is the
Lagrange multiplier. The relationdE5VdP implies that the
functions E(V) and P(V) have extrema at the same point
V5Vc and so there are two values ofE corresponding to the
sameP. In other words, to each value of the momentum
there correspond solitons with two different energies. There-
fore, the instability of one of the two branches of solitons
separated by the pointVc with ]P/]V50, can be interpreted
as the instability against the decay into a soliton of the other
branch and a symmetric radiation~which takes away the en-
ergy difference but does not affect the momentum.!

III. QUIESCENT SOLUTIONS AND CONTINUATION
TO VÅ0

In order to continue inV we need to have some ‘‘starting
points’’ at V50. Two such quiescent solutions of Eq.~4! are
well known:

c1~x !5A1 sech~A1x !, ~16a!

c2~x !5iA2 sech~A2x !, ~16b!

whereA
6

2
516h. The solitonc2 is unstable with respect to

a nonoscillatory mode for allh while thec1 is stable forh
,h050.063 596 and develops an oscillatory instability ash
is increased beyondh0 @5#. In this section we will show that
both c1 and c2 are continuable toVÞ0, and identify an-
other continuable solution.

A. The ‘‘twist’’ soliton

Writing c5u1iv, the stationary equation~4! transforms
into the system

uxx2u2hu12u~u2
1v

2!50, ~17!

vxx2v1hv12v~u2
1v

2!50. ~18!

The system~17! and~18! appeared previously in connection
with light pulses in a birefringent optical fibre. Using Hiro-
ta’s approach, Tratnik and Sipe@14# obtained the following
exact solution to Eqs.~4!,~17! and ~18!:

c5c~z;x !5u1iv, ~19a!

u52A1eu2D21~11e2(u12b)!, ~19b!

v52A2eu1D21~12e2(u22b)!, ~19c!

where

D511e2u11e2u21e2(u11u222b),

u15A2~x2z !, u25A1~x1z !;

the constant
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b5

1

2
lnS A11A2

A12A2

D.0; ~20!

the amplitudesA6 are as in Eq.~16!: A65A16h, andz is a
real parameter that can take arbitrary values. The solution
~19! with z510 and210 is plotted in Figs. 1~a!–1~c!. As is
clear from the figure, for sufficiently largeuzu the solution
represents a complex of two solitons,c1 andc2 , with the
separation equal to approximately 2uzu.

It is useful to notice a simple relation between two solu-
tions of the form~19!—one with the parameter valuez5z
1j and the other one withz5z2j:

c~z1j;h2y !5c* ~z2j;h1y !. ~21!

Herez andh are defined by the driving strengthh,

z52

b

2 S 1

A2

2

1

A1

D,0 ~22!

and

h5

b

2 S 1

A2

1

1

A1

D , ~23!

while j and y can take arbitrary values. The relation~21!
implies that the solution~19! with z5z is symmetric about
the pointx5h,

c~z;h2y !5c* ~z;h1y !. ~24!

That is, the real part of this solution is even and imaginary
part odd with respect tox5h,

u~h2y !5u~h1y !, v~h2y !52v~h1y !.

@See Fig. 1~b!.# This particular representative of the family
~19! will play a special role in what follows. Similarly to the
solitonsc1 andc2 , the modulus of the symmetric solution
is bell shaped, but, unlike the constant phase of thec1 and
c2 , its phase changes byp as x varies fromx52` to x
5`. The solution looks like a pulse twisted by 180° in the
(u,v) plane. For this reason we will be referring to solution
~19! with z5z as the ‘‘twist’’ soliton.

For h5
3
5 the ‘‘twist’’ acquires a particularly simple form.

In this case Eq.~22! gives z52(1/8)A5/2 ln 3. Substitut-
ing in Eqs. ~19! and shifting the resulting solution byx0
53z, we get

uT5A6

5
sech2 x̃; vT56A6

5
sechx̃ tanh x̃, ~25!

wherex̃5A 2
5 x. @The soliton~25! can also be obtained by a

more direct method@15#.#

B. The moving soliton bifurcation

Suppose the equation~4! has a one-parameter family of
quiescent solutionsc(z;x). Herez can be any nontrivial pa-
rameter; the only requirement is thatz should not be just an
overall shift inx. One such family is given by Eq.~19! and
there can also be other families for whichc is not available
explicitly. We will show in this section that in order for a
solution with somez5z0 to be continuable to nonzeroV, the
corresponding momentum integral should satisfy

]P

]z U
z5z0

50. ~26!

FIG. 1. Solution~19! for variousz. ~a! z510; ~b! z5z with z as
in Eq. ~22! ~the twist soliton!; ~c! z5210. Solid curve: real part;
dashed line: imaginary part.
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Let us assume that Eq.~4! with VÞ0 has a solutionc(x),
and that this solution is an analytic function ofV in some
neighborhood ofV50. Then we can expand it in the Taylor
series

c~x !5c0~x !1Vc1~x !1V2c2~x !1¯, ~27!

wherec0(x)5c(z0 ;x)5u01iv0 is some representative of
the family of ‘‘motionless’’ solutionsc(z;x) with the pa-
rameter valuez0. Substituting Eq.~27! into Eq. ~4! and
equating coefficients of like powers ofV, we get, at the order
V1:

HS u1

v1
D 5J]xS u0

v0
D . ~28!

Here u11iv15c1 and the operatorH is given by Eq.~8!.
Equation ~28! is solvable in the class of square integrable
functions if the vector in the right-hand side is orthogonal to
all homogeneous solutions, i.e., to all null eigenvectors of the
operatorH. Since there is a family of ‘‘motionless’’ solu-
tions parametrized byz and by an arbitrary spatial shiftx0
~which we have disregarded so far!, the operatorH has two
zero modes. One is the translation mode]xc05]x(u0
1iv0); the corresponding solvability condition is trivially
satisfied,

E ]x~u0 ,v0!J]xS u0

v0
D dx50.

The other zero mode is given by the derivative]zc05]zu0
1i]zv0. The associated solvability condition reads

05E ~]zu0 ,]zv0!J]xS u0

v0
D dx52

1

2

]P

]z
,

where P is the momentum integral~10!. Consequently, a
solution with nonzeroV can only detach from theV50
branch at the point where]P/]z50.

Coming back to our explicit solutions, thec1 and c2

solitons do not have any free parameters apart from the
trivial position shift. Consequently, both solutions are con-
tinuable to nonzeroV. Next, we have a family of solitonic
complexes~19! with a nontrivial parameterz. As one can
easily check, the momentum of the complex~19! as a func-
tion of z has a single minimum for some finitez5z0 and
tends to zero asz→6`. To find z0, we notice that the rela-
tion ~21! implies

P~z1j !5P~z2j !.

This means that the functionP(z) is even with respect to the
point z5z and therefore,z is the point of the minimum:z0
5z. Thus, the only representative of the family of the two-
soliton complexes~19! that can be continued to nonzeroV, is
our twist soliton,c(z;x). @To be more precise, there aretwo
twist solutions, one with positive and the other one with
negative momentum. This is related to the fact that whenV
50, we can generate new solutions to the system~17! and
~18! by changing the sign of just one component,u or v.#

IV. BIFURCATION DIAGRAM

We used a predictor-corrector continuation algorithm with
a fourth-order Newtonian solver to continue solutions of Eq.
~4! in V. Since derivatives of the momentum integral~10!
determine stability and branching properties of solutions, the
momentum was our natural choice for the bifurcation mea-
sure. Equation~4! was solved under the vanishing boundary
conditionsc(6L/2)50. We usedL5200 ~except in cases
where we had to extend the interval to account for slow
decay of solutions! and the discretization step sizeDx
50.005. The eigenvalue problem~7! was solved on the in-
terval (250,50). Here we utilized the Fourier method, typi-
cally with 600 harmonics.

A. The traveling cÀ soliton

We start our description with the branch departing from
the quiescent solitonc2 . For everyh this branch continues
all the way toV5c, wherec is the minimum phase velocity
of linear waves given by Eq.~6!. As V→c, the decay rate of
c(x) decreases and the soliton merges with the zero solution,
with the momentumP tending to zero.~See Fig. 2!. For
technical reasons we could not connect the curveP(V) to
zero although we were able to approach the valueV5c as
close as the fourth digit after the decimal point.~The prob-
lem is that since the decay rate of the solution decreases, one
has to increase the length of the integration interval—and
this cannot be done indefinitely.! The only curve that is con-
nected to zero in Fig. 2, is the one for the undriven caseh
50. In this case we enjoy an explicit solution~11! with the
momentumP5VA12V2/4.

For eachh the momentum of the soliton has a single
maximum on this branch, atV5Vc ~Fig. 2!. To the left ofVc
the linearized operator~7! and ~8! has a pair of real eigen-
values6l and consequently, the solitonc2 , which is well

FIG. 2. The momentum of thec1 andc2 solitons as a function
of their velocities. Solid, dashed lines depict stable, unstable solu-
tions, respectively. Decimal fractions attached to branches mark the
corresponding values ofh, with the superscripts1 and2 indicat-
ing the c1 and c2 solutions.~For example, 0.28021 marks the
branch of thec1 with h50.2802.! Note that ash→0, the stability
domain of thec2 tends toA2<V<2 and that of thec1 to 0<V
<A2. The whole of theh50 branch is stable.
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known to be unstable forV50 @5#, remains unstable for
small nonzero velocities. AsV approachesVc , the two ei-
genvalues converge at the origin on the complex plane, with
the associated eigenfunctions tending to the translation mode
C08(x). IncreasingV pastVc , the eigenvalues move onto the
imaginary axis and hence thec2 soliton becomes stable for
sufficiently large velocities~where]P/]V,0). This change
of stability properties is in exact agreement with the scenario
described in Sec. II C. It is also fitting to note that for a given
value of the momentum, solutions on the stable branch have
lower energies than solitons on the unstable branch~where
]P/]V.0).

B. The c¿ soliton; hÏ0.25

Unlike the c2-branch, the final product of the continua-
tion of the solitonc1 depends on the value ofh. For h
,0.28 the fate of the solitonc1 is similar to that of thec2 .
As V→c, the soliton develops oscillations on its tails; the
width of the resulting oscillatory ‘‘wave packet’’ grows and
the amplitude decreases, until the solution becomes equal to
zero everywhere. The momentumP(V) tends to zero as
V→c and has a single maximum at someV5Vc . Stability
properties of thec1 soliton depend on whetherh is smaller
than 0.064, lies between 0.064 and 0.25, or is greater than
0.25.

Let, first, 0.064,h<0.25. In this case thec1 soliton with
V zero and small has a quadruplet of complex eigenvalues in
the spectrum of the linearized operator. This implies the os-
cillatory instability. As V is increased, both imaginary and
real parts of the ‘‘unstable’’ eigenvalues decay, with the real
parts decaying faster. Eventually, forV equal to someVs ,
the eigenvalues6l,6l* converge, pairwise, on the imagi-
nary axis and the soliton stabilizes. IncreasingV still further,
two of the resulting imaginary eigenvaluesl and2l, start
approaching each other. AtV5Vc where ]P/]V50, they
collide and move onto the real axis. The soliton loses its
stability once again—this time to a nonoscillatory mode. The
unstable real eigenvalue persists in the spectrum for allV
.Vc , i.e., in the whole region where the slope]P/]V re-
mains negative.~Note that thec2 was unstable forpositive
]P/]V.! This scenario is exemplified by the curves
h50.11 andh50.151 in Fig. 2.

The smaller thehP(0.064,0.25), the smaller is the value
of the stabilization velocityVs . For h<0.064 the oscillatory
instability does not arise at all~i.e., Vs50), and the entire
range 0,V,Vc is stable.~See theh50.051 curve in Fig.
2!.

C. The c¿ soliton; hÌ0.25

Let now 0.25,h,0.28, and assume we are moving along
the c1 branch in the direction of largerV. For smallV we
have a quadruplet of complex eigenvalues6l, 6l* imply-
ing the oscillatory instability. AsV is increased, both imagi-
nary and real parts decay—as in theh<0.25 case. However,
this time the imaginary parts decay faster than the real parts,
and the two pairs of eigenvalues converge on thereal axis.
For velocities above this point the oscillatory instability is

replaced by the nonoscillatory one. AsV is increased further,
one pair of the newly born real eigenvalues grows in abso-
lute value whereas the other pair decreases in magnitude. At
the pointV5Vc whereP(V) reaches its maximum, the latter
pair converges at the origin and moves onto the imaginary
axis. ~This does not render the soliton stable though, as the
other pair remains on the real axis.! This scenario is exem-
plified by the curveh50.271 in Fig. 2.

Next, let h be greater than 0.28. For theseh the branch
P(V) emanating from the origin, turns back at someV
5Vmax ~Fig. 2!, with the derivative]P/]V remaining strictly
positive for allV<Vmax. Below we will describe the trans-
formation this solution undergoes when continued beyond
the ‘‘turning point,’’ while here we only wish to emphasize
that no new zero eigenvalues can appear at this point. The
reason is thatV5Vmax is a bifurcation point of solutions of
the ordinary differential equation~4! but not of thepartial
differential equations~1!–~3!. ~In other words,V is an ‘‘in-
ternal’’ parameter characterizing the solution and not an
‘‘external’’ control parameter.! Indeed, the soliton is a mem-
ber of a two-parameter (x0 and V) family of solutions of
Eqs. ~1!–~3! and hence forany V there are two zero eigen-
values in the spectrum of the linearized operatorH. Conse-
quently, despite being a turning point for the ODE~4!, the
valueV5Vmax is no special as far as the PDE~1!–~3! and its
linearization are concerned. No changes of the soliton’s sta-
bility properties occur at this velocity.

How does one type of behavior of the curveP(V), occur-
ring for h.0.28, replace the other one, arising forh,0.28?
We scanned the interval 0.280 00,h,0.280 20 and discov-
ered a tiny region of transitional behavior, around
h50.280 05. For thish, P(V) grows until it reaches a maxi-
mum atVc51.051 and then starts decreasing, as in the case
of h,0.28. However, the curve does not decay all the way to
P50 as would be the case forh,0.28, but reaches a mini-
mum atVcc51.0563. After that, the momentum starts grow-
ing, and, atVmax51.0565, the curveP(V) turns back—just
like for h.0.28! To get an idea of how small this window of
transitional behavior is, it suffices to say that forh
50.280 00 the momentumP(V) decays to 0 asV→c,
whereas forh as close as 0.280 10, the curveP(V) already
has a ‘‘turning point,’’ withP continuing to increase all the
time.

What happens to thec1 soliton with h.0.28 ~more pre-
cisely, with h>0.28010) as we continue it beyond the turn-
ing point? Figure 3 shows the momentum as a function ofV.
The point of intersection with the vertical axisV50 corre-
sponds to the twist solution@Eq. ~19! with z5z given by Eq.
~22!.# In Fig. 3, it is marked ascT . Since theV50 twist is
a representative of a two-parameter family of stationary so-
lutions of Eq.~3!, there should be four zero eigenvalues in
the spectrum of the operatorH in this case, with two linearly
independent eigenfunctions given by]xC(z;x)uz5z and
]zC(z;x)uz5z . @Here C(z;x) is a two-component vector
formed by the real and imaginary parts of Eq.~19!.# Numeri-
cally, we observed that as we approach theV50 twist from
the direction of positiveV, a pair of opposite eigenvalues
converges at the origin on the complex plane. The curve
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P(V) does not have an extremum at this point and this may
seem to be in contradiction with predictions of Sec. II C. The
paradox is resolved as soon as one recalls that the extremal-
ity condition ]P/]V50 was derived under the assumption
that there is onlyone eigenvector associated with the zero
eigenvalue whereas we havetwo linearly independent null
eigenvectors in the case at hand.

As we continue further into the regionV,0, the twist
gives rise to a variety of multisoliton complexes; we shall
describe them in the next subsection. Here we will restrict
ourselves to the regionV.0 where this branch can still be
regarded as a branch of one-soliton solutions. Although these
solutions undergo similar transformations for allh in the
interval (0.28,1), there are a few differences with regard to
the trajectories of eigenvalues on the complex plane. One
difference worth mentioning is that for the driving strength
h50.3 and largerh, the quadruplet of complexl persists on
the entire upper branch ofP(V) ~i.e., for allV.0). This is in
contrast to the case of 0.25,h,0.28, where the complex
quadruplet converges on the real axis. Near the left end of
the interval 0.28,h,1 ~e.g., for h50.2802), we have an
intermediate pattern. Similarly to the caseh,0.28, here the
complex quadruplet converges on the real axis somewhere
on the lower branch ofP(V) ~i.e., before the turning point!,
but as we move onto the upper branch, the two emerging real
pairs reunite quickly and the complex quadruplet reappears.

Next, as we know, there are only two points where a pair
of eigenvalues can pass from the real onto the imaginary
axis, or vice versa. One point isV5Vc where ]P/]V50,
and the other one isV50. Therefore the dynamics of eigen-
values depends on which of the two points comes first, or,
equivalently, whether the upper branch ofP(V) has the
maximum for positive or negativeV. For smaller values ofh
in the interval (0.28,1)~e.g., h50.3), whereVc.0, two
imaginary eigenvalues move to the real axis atV5Vc .
These imaginary eigenvalues have detached from the con-
tinuous spectrum somewhere before the turning point@i.e.,
on the lower branch ofP(V).# The two newly born real

eigenvalues first diverge from the origin but then reverse
and, atV50, move back onto the imaginary axis. For larger
h ~e.g. h50.7), whereVc,0, the pattern is different. For
theseh the two imaginary eigenvalues become real not at the
point Vc but at V50. Subsequently, as we continue the
branch to negative velocities, another pair of imaginary ei-
genvalues detaches from the continuum and at the pointVc
,0 two ~imaginary or real! eigenvalues pass through the
origin.

Figure 4 shows the stability diagram of thec1 and c2

solitons on the (h,V) plane. For thec1 soliton, the range of
stable velocities approaches 0<V,A2 ash→0, while the
stability range ofc2 tends toA2,V<2. Finally, the do-
main of stability in theh50 case is the union of the above
two ranges: 0<V<2.

D. Other branches; hÌ0.28

As we continue it to negative velocities, the twist~we are
using this name here forVÞ0 deformations of the quiescent
twist solution! gradually transforms into a complex of two
twists @plotted in Fig. 5~a!#. A further continuation of this
branch takes us, via several ‘‘turning points,’’ to a solution
that can be interpreted as an association of the twist and two
c2 solitons of opposite polarities~denotedc (2T2)). This
solution is depicted in Fig. 5~b!.

Another branch emanating from the origin in Fig. 3, is a
bound state of two solitonsc1 . This solution wasnot ob-
tained by the continuation fromV50 as Fig. 3 may seem to
be suggesting. Instead, we fixed a nonzeroV and continued
in h from the valueh50.05 where the complexc (11) arises
from theV-continuation of the twist soliton~see Sec. IV E!.
Omitting details of this procedure, we start the description of
the resulting branch at some point (V,P) away from the
origin. As we approach the origin from this point, the sepa-
ration between the solitonsc1 in the complexc (11) rapidly
increases so that the field values between the two solitons

FIG. 3. The full bifurcation diagram forh50.7. All branches
shown in this figure are unstable.~For h50.7 the solitonc2 is
stable at large velocities but the region of stability lies beyond the
frame of this figure—see Fig. 2.! More solution branches can be
obtained by the reflectionV→2V, P→2P.

FIG. 4. Stability diagram for thec1 and c2 solitons on the
(h,V) plane. In the region marked ‘‘stable’’ one of the two one-
soliton solutions is stable whereas the other one is not. Across the
solid line, the corresponding soliton loses its stability to an oscilla-
tory or monotonically growing mode. No solitons exist in the
dashed region.
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become exponentially small. For example, forh50.7, the
~numerically calculated! separation at the pointV50 was
equal toz'21. The value ofucu at the point on thex axis,
equally distanced from the left and right soliton, was of order
1026. Consequently, the nonlinear term in the Eq.~4! be-
comes negligible away from the solitons’ core and, in spite
of an extremely small value of the residual that we used in

our numerical algorithm (10210), we were unable to distin-
guish between a genuine bound state and a linear superposi-
tion of two distant solitons. Weconjecture that the complex
c (11) exists all the way toV50 but asV→0, the intersoli-
ton separationz→`. Another indication to this effect is that
as V→0, the imaginary part of the solution tends to zero,
rapidly and uniformly. Since the only pure real solution that
exists forV50 is the~single! solitonc1 , theV→0 limit of
the c (11) complex should be an infinitely separated pair of
the c1’s.

If we, conversely, continue our solution away from the
origin, the curveP(V) turns left at someV and the complex
c (11) transforms into what can be interpreted as a bound
state of two twists~denotedc (TT) in Fig. 3.! This solution is
depicted in Fig. 5~c!. As V→0, the momentum of this bound
state tends to zero~Fig. 3!. Unfortunately, we were only able
to obtain this solution away from some small neighborhood
of V50. ~For h50.7, the smallest value of the velocity for
which we were still able to find the solution in question, was
V50.000 283.! Whether this branch can be continued toV
50, remains an open question.

E. Other branches; hË0.28

As we have mentioned, forh,0.28 the branchc1 ex-
tends all the way toV5c where it merges with the zero
solution. No other solutions can be obtained from thec1

soliton. However, in this case we can obtain new branches
by continuing the~quiescent! twist soliton, Eq.~19! with z
5z.

The resulting bifurcation diagram is shown in Fig. 6. It is
convenient to start its description with the motionless twist
solution with thenegative momentum. As we move in the
direction of positiveV, the twist gradually transforms into a
bound state of twoc1 solitons. At someV5Vmax the branch
turns back, shortly after which, at the pointV5Vc , the mo-
mentum reaches its maximum and starts decreasing. Adja-
cent to the turning point is a small range of velocitiesVc

FIG. 5. ~a! The c (TT) complex.~b! The c (2T2) solution.~c! A
complex of two twist solitons arising from the continuation of the
c (11) bound state.@Note the difference from the other two-twist
complex shown in~a!.# Solid line: real part; dashed line: imaginary
part.

FIG. 6. The full bifurcation diagram forh50.05. Thick and thin
lines depict stable and unstable branches, respectively. Note a re-
gion of stability of the complexc (11) . Additional branches can be
generated by employing the reflection symmetryV→2V, P→

2P.
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<V<Vmax where we have twostable solutions corresponding
to each V. If we continue the branch with positive-
momentum twist solution, also in the direction of positiveV,
the solution gradually transforms into a complex of twoc2

solitons. The momentum reaches its maximum, starts de-
creasing, then the branch turns back inV and we find our-
selves approaching the origin on the (V,P) plane~Fig. 6!. As
we move towards the origin along thec (11) or along the
c (22) branch, the separation between two solitons constitut-
ing the corresponding complex grows while the imaginary
part of the solution tends to zero. Similarly to what we had
for larger h ~Sec. IV D!, we conjecture that the separation
becomes infinite atV50 in both cases.

Similarly to the case of largeh ~Fig. 3!, the energy of the
stable branch ofc2 is lower than the energy of the unstable
branch. The bound states on the stablecT →c (11) branch
also have lower energies than their counterparts with the
sameP and smalleruVu. However, in the case of thec1

solitons we have an interesting reverse of fortunes: out of the
two branches with the sameP, the stable branch is the one
with the higher energy.

V. NONLINEAR STAGE OF INSTABILITY

In this section we present results of our numerical simu-
lations of the full time-dependent nonlinear Schro¨dinger
equation~2!. The objective was to study the nonlinear stage
of the development of instabilities reported in the previous
section and to identify the attractors emerging ast→`. We
utilized a split-step pseudospectral method, with 211

52048
modes on the intervals240<X<40 and280<X<80, and
with 212

54096 modes on the interval (260,60). The
method imposes periodic boundary conditionsc(L/2,t)
5c(2L/2,t), cX(L/2,t)5cX(2L/2,t).

We have simulated the evolution of moving solitons un-
stable against an oscillatory mode and those with a positive,
nonoscillatory, eigenvalue in their linearized spectrum. One
of our conclusions here is that both types of instabilities give
rise to the same asymptotic attractors.~This is in agreement
with earlier simulations of motionless solitons@13#.!

A. The decaying breather

Depending on the value of the driving strength, the initial
conditions and the choice of the parameters of the numerical
scheme, we observed one of the two scenarios. In the first
scenario the soliton transforms into a bell-shaped structure,
with a small amplitude and large spatial width, oscillating
approximately asc;e ivt, with negative v. This localized
solution was previously encountered in numerical simula-
tions of Ref.@13# where it was termedbreather. The ampli-
tude of the breather slowly decays with time and the width
slowly grows.

We have detected this scenario for the driving strength
h50.1, with the initial condition in the form of thec1 soli-
ton traveling with the velocityV50.05 and withV50.8.
~For both values of the velocity thec1 soliton is unstable
against an oscillatory mode.! Unlike earlier simulations@13#
that started with the initial condition in the form of a quies-

cent unstable soliton and gave rise to a quiescent breather,
the breather emerging from a traveling soliton has a nonzero
speed.

One may naturally wonder whether the speed of the
breather will decay to zero or approach a nonzero constant
value ast increases. Our simulations seem to support the
latter hypothesis. In one run, the speed of the breather evolv-
ing out of the soliton traveling with the initial velocity of
V50.05, was seen to slowly grow and gradually approach
the constant value of 0.1. This simulation was repeated, with
the same parameters of the numerical scheme and an initial
condition that was only different from the previous one due
to interpolation errors of order 1026. In this run the breather
was first seen to slow down, stop but then start moving in the
opposite direction with the velocity close to20.2; see Fig.
7~a!. ~This remarkable sensitivity to the initial data deserves
a separate comment; see below.! The velocity of the breather
evolving out of theV50.8 soliton, was tending to approxi-
mately 2.1. However, for larget the unambiguous interpre-
tation of the numerical data is hindered by the growth of the
amplitude of the radiation background. The radiation waves
emitted by the oscillating breather reenter the interval via the
periodic boundary conditions and at a certain stage their am-

FIG. 7. The two types of asymptotic attractors resulting from the
decay of the unstable steadily traveling solitons:~a! the decaying
and ~b! the growing breather.~a! corresponds toh50.1 and the
initial condition in the form of thec1 soliton withV50.05. In~b!,
h50.05 and the initial condition was chosen as thec2 soliton with
V50.05. In both plots the emerging breather changes, spontane-
ously, its direction of motion.~Note that this happensnot as a result
of the reflection from the boundary, as the periodic boundary con-
ditions are imposed.!
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plitudes become comparable with the amplitude of the
breather. Consequently, the constant-velocity motion of the
breather may have been induced by the interaction with the
background radiations.

B. The growing breather

The decaying breather was detected in simulations on the
interval (240,40) with N5211 modes. However, for the
same value of the control parameter (h50.1) and thesame
initial conditions (V50.05 andV50.8), changing just the
parameters of the numerical scheme produced an entirely
different scenario.

Namely, we increased the number of the Fourier modes to
N5212 and the length of the interval first toL5120 and then
to 160. As in the case ofL580 andN5211, in simulations
with the new values ofN andL the unstable traveling soliton
c1 was seen to transform into a bell-shaped structure, oscil-
lating roughly asc ;e ivt. However, this time the emerging
breather has apositive frequencyv; its amplitude is large
and continues to slowly grow, while the width is narrow and
keeps on decreasing@Fig. 7~b!#.

This attractor was also observed previously in@13#. It was
found there that the decaying and growing breather coexist.
Whether the evolution of the same unstable soliton settles to
one or the other asymptotic attractor, was found to depend on
the choice of the phase of a small perturbation applied to the
initial condition. In our present simulations, the perturbation
is modified simply by changing the parameters of the nu-
merical scheme.

We also examined initial conditions in the form of trans-
lationally unstable solitons, including thec1 soliton with
V51.4 for the driving strengthh50.1 and thec2 soliton
with initial velocities V50.05 andV51.4, for the driving
strengthh50.05. For each of the above three situations the
simulations were repeated with 211 modes on the interval
240<X<40, and with 212 modes on the intervals
(260,60) and (280,80). In all nine runs the unstable soliton
was seen to evolve into the growing breather.~Nevertheless,
it is possible that some other choices of the numerical pa-
rameters may give rise to the decaying breather instead.!

The velocity of the growing breather may vary during its
evolution. It can even wander erratically, changing the direc-
tion of its motion several times, but eventually, fort;104 or
even earlier, the speed of the breather locks on to some con-
stant value. Since the amplitudes of radiation waves are com-
parable with the amplitude of the breather at that stage, this
effect can be induced by the breather-radiation interactions.

VI. CONCLUSIONS

The main result of this paper is the demonstration of the
existence of wide classes of traveling soliton solutions of the
~undamped! parametrically driven nonlinear Schro¨dinger
equation. We established the necessary conditions under
which motionless solitons can be continued to nonzero ve-
locities, and, in cases where these conditions were met, were
indeed able to carry out the numerical continuation. As op-
posed to the case of the solitonc2 , which undergoes similar
transformations for anyh, the result of the continuation of
the c1 has turned out to be sensitive to the value of the
driving strength. We have identified two different transfor-
mation scenarios, one occurring for small and the other one
for largerh.

A special attention was paid to the stability of arising
solutions. We have identified three stable branches. First, the
quiescent solitonc2 , which is known to be unstable for all
h @5#, was shown to stabilize when traveling faster than a
certain critical velocity. In a similar way the solitonc1

~which is known to be unstable forh.0.064 while at rest
@5#!, may stabilize when traveling above a certain speed. The
stability region on the (h,V) plane is shown in Fig. 4. For
small driving strengths, stable nonpropagating and moving
solitons are seen to coexist while strongly forced solitons can
only be stable when moving sufficiently fast. No matter how
strong is the driver~as long ash,1), it can always support
one or two windows of stable velocities. The bound state
c (11) also displays a region of stability for smallh—see
Fig. 6. Finally, we were distinguishing between oscillatory
and translational instabilities. The onset values of the trans-
lational instabilities, obtained numerically, were shown to
verify the relation]P/]V50 predicted by our theoretical
analysis.
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