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Abstract 

We study the dynamics of one-dimensional arrays of Josephson junctions connected in parallel by superconducting wires. 
These arrays are model systems for the discrete, damped sine-Gordon equation and excellent agreement between theory and 
experiment is obtained. The influence of boundary conditions and the coupling between two discrete sine-Gordon systems 
have also been investigated. In Josephson ladders, superconducting islands are connected to other islands by three Josephson 
junctions. The dynamics of Josephson ladders is more complicated than that of the purely 1D sine-Gordon systems. © 1998 
Elsevier Science B.V. 

I.  Introduct ion 

Long Josephson junctions have long been a model 

system for the continuous sine-Gordon equation. 

Their discrete counterparts, one-dimensional (1D) 

arrays of Josephson junctions were less studied be- 

cause they were much harder to fabricate in a uniform 

way. Nowadays, a niobium technology to fabricate 

discrete arrays is available even commercially. Sin- 

gle flux quantum logic is based on discrete arrays of 

overdamped Josephson junctions and requires a very 

small window for junction parameters. The spread in 

junctions parameters has been reduced to 5-10% and 
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arrays can be made in any desired planar geometry. 

An essential feature introduced by discreteness is 

the generation of radiation by a moving kink. Early 

simulations by Currie et al. [1] showed that when a 

kink propagates in a highly discrete one-dimensional 

lattice, it excites small-amplitude linear waves in 

its wake. This effect was explained analytically by 

Peyrard and Kruskal [2], who also found that in the 

absence of external driving, kinks propagate prefer- 

entially at a particular set of velocities. In discrete 

systems the dispersion relation for these small ampli- 

tude waves is sinusoidal. It is this sinusoidal relation 

that allows for the coupling to moving kinks, thus 

leading to new resonances and dynamics. 

Various Josephson-junction arrays are depicted in 

Fig. 1. Different geometries induce different boundary 

conditions (Figs. l(a) and (b)), or two discrete sine- 

Gordon equations (DSGEs) may be coupled (Fig. 1 (d)) 
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Fig. 1. Various one-dimensional Josephson-junction arrays. Crosses represent the Josephson junctions. 

or a nonlinear term may arise due to the presence 

of junctions in the horizontal branches (Fig. l(c)). In 

this paper we will discuss the measured properties 

of these 1D Josephson arrays which are moderately 

underdamped. Before discussing the measurements, 

we first introduce the DSGE and explain some of the 

experimental aspects. 

2. Josephson arrays as model systems for the 

DSGE 

The governing equations which model Josephson 

arrays are derived by applying Kirchhoff's current law 

(see Fig. l(b)), In-1 + Iappl = In +/junction, the RCSJ 

model for the current through a single junction 

/junction : CVn "[- Vn/ R + Ic sin ~bn, (1) 

the Josephson equation, Vn = @O~n/2Jr, and fiuxoid 

quantization: 

E~bn  = 2rr ~loop 2zr ~se l f ]  
v~---'~ - -  4 0  [(]~appl + --n J' (2) 

loop 

Here, lappl is the applied current per node, ~bn the gauge 

invariant phase difference, Vn the voltage across junc- 

tion n, C the junction capacitance, R its resistance and 

Ic is the junction critical current. The perpendicular 

applied magnetic field ~appl is generally expressed as 

the quantity f ,  the applied flux per cell normalized to 

the flux quantum q~0 = h/2e. The magnetic fields in- 

duced by the currents in the array (self-fields) can be 

written as 

•bself . .loop E I /loop 
n = L s l n  "[- ~ m , n . m  , 

hem 

(3) 

where Ls is the self-inductance of a cell and Lm.n 

is the mutual inductance between cell m and n. Our 

numerical code can include longer range inductances 

as necessary, up to the full inductance matrix. For 

1D systems, however, we found that just including 

self-inductances already reproduces the measurements 

accurately. 

We first apply these equations to a one-dimensional 

array of N Josephson junctions connected in parallel 

by superconducting wires as illustrated in Figs. l(a) 

and (b). The superconducting wires can be viewed 

as inductors. When taking only the self-inductance 
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into account, the damped, driven, discrete sine-Gordon 

model is obtained: 

+ r*n + sin 4},7 

= lappl/Ic + A2(~bn+l -- 2~bn + q~n-l) (4) 

for j = 1 . . . . .  N. F characterizes the damping in 

the system and Aj is a measure of the discreteness. 

The smaller the A j, the more discrete the system is. 

We have normalized the current to Ic, the voltage to 

IcRn, and time (t) to 1/O)p = ~ (inverse plasma 

frequency). Here, R~ is the normal-state junction re- 

sistance and Lj is the Josephson inductance, Lj ~--- 

4~0/(2zrlc). The boundary conditions for Eq. (4) will 

be discussed in later sections. 

Our samples were fabricated using a niobium tri- 

layer process [3]. The junctions are 3 x 3 Ixm 2 and 

cell sizes (p) are of the order of 10 Ixm. Junction pa- 

rameters have been determined using the diagnostic 

procedures described elsewhere [4]. Typical numbers 

for our arrays are R ~ 100 f2, C ~ 300 IF, Ic 

10txA, and Ls ~ 10pH. With these numbers F = 

(~o/ (2zr lcR2C))  1/2 ,~ 0.1 and Aj 2 = L j / L s  ,~ 3 

so that our arrays are underdanlped and moderately 

discrete. 

In the experiment, one usually measures the dc volt- 

age across the array (Vac) as a function of the applied 

current through the array. The ac components are much 

harder to measure since COp is typically 300 GHz. The 

number of kinks in the system can be controlled by the 

perpendicular magnetic field. The damping F and dis- 

creteness parameter Aj can be changed by varying the 

critical current density (a fabrication process parame- 

ter that is varied in the range 100-5000 A/cruZ). The 

critical current is temperature dependent which allows 

us to change F and Aj simultaneously by varying the 

temperature, 

3. Dynamics of Josephson rings: DSGE with 

periodic boundary conditions 

The ring geometry introduces a topological 

constraint: 

fbn+N = dpn + 2:rM, (5) 

where M is the number of kinks or vortices trapped in 

the ring. Without loss of generality, M can be restricted 

to M = 0 . . . . .  [N/2] due to the symmetry of Eqs. (4) 

and (5). M is determined by the initial conditions, but 

it remains constant as the system evolves. 

Fig. 2(a) plots I - V  curves of a Josephson ring 

cooled down in different magnetic fields applied per- 

pendicular to the ring and junctions. Cooling down 

in a field of about M flux quanta 4}0 corresponds to 

trapping exactly M vortices in the ring. When the ring 

is cooled through the critical temperature of niobium 

(Tc) in zero field, the I - V  curve shows a critical cur- 

rent and jumps to the gap voltage at 0.84Nic. When 

cooling through Tc with M = 1 applied to the ring, 

the critical current vanishes and a current step appears 

near V = 0.2 mV. The jump to the gap voltage now oc- 

curs at/max = 0.55Nic. With M = 2, 3 and 4 applied 

to the ring, the voltage position of the steps increases 

to 0.35, 0.43 and 0.48 mV, respectively. The I - V  for 

54}0 is identical to the one when cooling down with 

34~0. 

In contrast to experiments on continuous Joseph- 

son rings [5,6], the voltages of the steps shown in 

Fig. 2(a) are not linear in M. We have performed [7] 

a linear analysis (A ] >> 1) of 1D parallel arrays with 

free boundaries. In such a system, resonances occur at 

voltages determined by the dispersion relation co (k) of 

a 1D discrete, linear transmission line of inductances 

Ls and capacitances C. A similar analysis for a ring 

yields that the resonant voltage peaks VM are given by 

VM 
= 2 I s in(M:r/N)l ,  (6) 

v0 

where V0 = ~0o)0/2Jr with w0 = v/~sC. In the inset 

of Fig. 2(a), we plot the voltage position of the reso- 

nances as a function of M. The solid line in this in- 

set is Eq. (6) with a fitting parameter V0 = 0.25 inV. 

Near the Brillouin zone edges (M = 3, 4), small devi- 

ations from the sinusoidal dependence are found. In- 

cluding mutual-inductance interactions between cells 

in the ring explains this effect quantitatively. 

In Fig. 2(a), one clearly sees that the M = 1 step 

contains smaller steps. These steps are enlarged in 

Fig. 2(b). For high Aj 2 (high temperatures; not shown 

in the figure) the I - V  curve is smooth indicating a 
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Fig. 2. (a) Experimental I -V  curves corresponding to the five possible situations with M kinks trapped in a ring of N = 8 junctions. 
Inset: voltage position of main steps versus M. Curve is Eq. (6) with V0 = 0,25 mV. (b) Enlarged view of the curve with M = 1 
taken at a slightly lower temperature. Inset: voltage position of the substructure versus m. Curve is Eq. (7) with V0 = 0.25 mV. 

continuous acceleration of the vortex. However, as Aj 2 

approaches 1, substructure becomes visible in the I -  

V characteristic and in Fig. 2(b) six resonant steps are 

present. The substructure is caused by a phase locking 

between the propagating kink and the linear waves it 

excites in its wake [8]: damping is low in our systems 

and consequently, the oscillations the kink generated 

have not died out before the kink passes by again. The 

possible ringing frequencies are the lattice eigenfre- 

quencies of  small oscillations about the kink, and the 

circulation frequency of the kink is proportional to the 

voltage position of the step. By matching the circula- 

tion period to an integer multiple m of ringing peri- 

ods, the following formula is obtained for the resonant 

voltages [9]: 

1 
Vm = _ _ [ A ;  2 + 4 s in2(zrm/N)]  1/2. (7) 
Vo m 

In the inset of  Fig. 2(b), the drawn line is Eq. (7) with 

V0 = 0.25 mV. There is a good agreement between 

the model and our experiment. 

Our simulations [8,10] indicate that in the region 

for "low" voltages (V < VM) kinks in discrete sys- 

tems maintain their characteristic kink-like shape but 

with small-amplitude oscillations superimposed on 

their wave form. The linear waves are phase-locked 

to the kink and together they form a traveling wave. 

We found that for "high" voltages (V > VM) the 

behavior is qualitatively different: now the vortex 

stretches over the whole system, that is 4,n(t) 

2nVdct/4~O + kpn,  where k is the wave number. We 

will call this the whirling state. Here, the periodic 

motion of a vortex can be destabilized by paramet- 

ric resonance, leading to quasiperiodic and highly 

irregular behavior [10,11]. 

Fig. 3(a) shows the I - V  curve of a Josephson ring 

with M = 0. Starting from I ---- 0, the array remains 

in the superconducting state up to I = 37 ~,A. In the 

superconducting state the system has a stable static so- 

lution with all the junctions in phase: 4'n = sin - I  I / l c  

for all n. At I = 37 I~A the jump to the steep gap 

region occurs and the junction phase changes contin- 

uously in time (whirling state). The upgoing part of  

the I - V  is smooth, but when I is decreased, there 

are current steps at 0.93, 0.71 and 0.35 inV. As shown 

in Fig. 3(a), there is hysteresis when biasing on these 

smaller steps. 

To understand the origin of  these steps, we have 

performed a stability analysis of  the in-phase whirling 

solution 4'* (t). Let 4'n (t) = 4'* (t) + un (t), where Un (t) 

is a small perturbation. Then 

i~ n "Jr I 'U n "~- [COS 4' * (t ) ]Un 

= A2[Un+l -- 2Un + Un-1]. ( 8 )  

The boundary conditions are periodic: Un+N = Un. 

As long as I is not too small, the whirling solu- 

tion may be approximated by 4'*(t) ~ a,t, where 

w = 2zr /T  with T the oscillation period. Expand 

un(t)  as a discrete Fourier series in space: un(t)  = 
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Fig. 3. (a) Experimental M = 0 I - V  curve of the same Josephson ring as in Fig. 2 showing three resonant steps in the high-voltage 
region. Inset: dots are measured voltage positions of the steps versus mode number m; curve is leading order estimate w = 2tOm. 

(b) I - V  curve of the same sample for M = 1 again showing three resonant steps in the high-voltage region. Inset: dots are measured 
voltage positions of the steps versus mode number m; curve is leading order estimate 09 = Wm + Wm+g, 

N - ]  Y~m=0 A m ( t )  e x p ( 2 z r l m n / N ) .  Then the modes 

decouple: 

f4m %" F.4m %" [092 %" cos ogt]am = 0 (9) 

for m = 0 . . . . .  N -  1, where ogm = 2o9o1 s in (mzr /N) l  

is the lattice eigenfrequency of  mode m. 

Eq. (9) is a damped Mathieu equation. For certain 

values of  the parameters, Am (t) grows exponentially 

in which case the in-phase whirling solution is unsta- 

ble to the growth of  mode m. These parametric in- 

stabilities occur only at certain rotation frequencies o9 

that resonate with the lattice eigenfrequencies, namely 

(for Aj  2 > 1): 

09 ,~ 2o9m = 409O [ sin ( m rr / N ) l . (10) 

This resonance occurs for each m = 0 . . . . .  N - 1, 

but at most  [N/2]  %" 1 of  these can be observed since 

ogN-m = ogre. The inset of  Fig. 3(a) shows the voltage 

posit ion of  the steps as a function of  the mode number 

m. The voltage is normalized to the measured V0 of  

0.25 mV. The solid line in the inset is the predicted 

resonance frequency o9 = 2o9m; no fitting parameters 

were used. We find a close agreement between the 

data and our model. 

Similar steps are also observed for M > 0. An ex- 

ample is shown in Fig. 3(b) for the same ring with 

M = 1. For low voltages, a current step occurs at V = 

0.75 V0 which is due to the propagation of  a single vor- 

tex. The whirling state is found for V > 0.75V0 and 

in the return path of  this state, three resonant steps are 

visible. We have generalized our linear stability anal- 

ysis to the case M > 0. Instabilities are expected [11] 

to occur at w ~ [o9m +ogm+M]- The inset of Fig. 3(b) 

shows that the locations of  the steps in the experiment 

(solid circles) are well explained by our theory (solid 

line). 

4. Open-ended Josephson arrays: DSGE with 

open boundaries 

With only self-inductance, the boundary conditions 

of  open-ended Josephson arrays are 

Co(t) = ~bl (t) - 2zrf, (11) 

t~N+l (t) = (bN(t) + 2rc f  

for all t, where artificial junctions ~b0 and 4~X+l are 

introduced at the endpoints so that (4) is valid at n = 

1 and N as well [10]. In contrast to Josephson rings, 

f can vary continuously and, by symmetry, it can be 

restricted to 0 _< f < 1/2. 

In zero field, the I - V  characteristic displays the 

same characteristic features as the M = 0 curve for 

the rings. After reaching a large critical current, the 

system switches to the whirling branch and steps 

are visible in the retum path. In open-ended sys- 

tems, the wave vectors are however different and 

steps are expected at voltages Vm = ~0o9m/2rr with 
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Fig. 4. (a) Experimental 1-V curve of a 1D parallel array with 54 Josephson junctions showing the main Eck step at V = 0.38 mV 
and sub steps below this voltage. Inset: Measured voltages of the Eck peak (m = 1 step) and the m = 2 step versus frustation. 
(b) Experimental 1-V curve of an inductively coupled Josephson array (2 x 54) measured across one of the rows. 

corn = 20901 sin(mJr/2N)l.  In total N - 1 steps are 

expected. We have observed 8 steps in an open-ended 

array with N = 9 and found very good agreement 

between the data and the theory [10]. Note that, these 

steps also exist in long continuous Josephson junc- 

tions (zero-field steps) showing that the parametric 

destabilization discussed in Section 3 is not an effect 

caused by discreteness. 

In a perpendicular magnetic field vortices (kinks) 

are introduced in the system above a critical value cor- 

responding to fci ~ 2/(rr2Aj)- e We can now distin- 

guish two different regimes. In short systems, Fiske 

modes are generally observed [7]. Fiske resonances 

can be described as cavity-mode resonances resulting 

from boundary reflections when kinks pass through the 

array. The wavelength of  the excited modes is there- 

fore given by )~ = 2 N / m  so that the resonance voltage 

locations do not depend on f :  

VFiske 
-- 2 I sin(mzr/2N)l .  (12) 

v0 

As N becomes large, these Fiske resonances disap- 

pear due to damping of  the edge reflections. Now, only 

a single resonant peak is observed in the I - V  charac- 

teristic whose position shifts with magnetic field. The 

2 fci is calculated using the analogy with single long Joseph- 
son junctions. For a long Josephson-junction the entry field is 
equal to Bcl ---- 2~O/Zr2Ljheff, where hef  t is the effective bar- 
rier thickness (see for example [12, Eq. (8.157)]). Going from 
the continuous case to the discrete case one should replace ~.J 

by Ajp and hef  t by p. 

position of  this Eck-peak can be calculated by not- 

ing that in a magnetic field an array of  kinks almost 

forms a sinusoidal wave with wave number kp = 2Jrf.  

A linear analysis then yields the position of  the Eck 

voltage [13]: 

VEck 
-- 2 I sin(zrf)l. (13) 

v0 

In Fig. 4(a), we plot a typical I - V  for a long discrete 

Josephson array with N = 54. One clearly observes 

the main resonant peak near V --- 0.38 mV. In the inset, 

the voltage position of  this step is plotted as a function 

of  f .  As expected, the Eck peak voltage is periodic in 

f with period f = 1 and is approximately symmetric 

with respect to f = 0.5. On the main step, substructure 

is visible at lower voltages. These steps are not Fiske 

steps since their position changes with magnetic field 

as shown in the inset of  Fig. 4(a). The second step 

achieves the maximum voltage near f --- 0.25, and it 

disappears near f = 0.5 and for approximately f < 

fcl .  

Our numerical simulations [14] show that on these 

sub steps the solutions look like trains of  kinks (trav- 

eling wave with x / p  = ogt + 2zr f n ) ,  phase-locked 

by a finite amplitude radiation. The situation is very 

similar to that of  a Josephson ring: in the ring a kink 

interacts with the oscillatory wave it leaves behind. 

In the open-ended system, an array of  kinks periodi- 

cally kicks a junction and the oscillatory wave it cre- 

ates behind is felt by the next kink that comes by. The 
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Eck (m = 1) steps are ubiquitous in one-dimensional 

parallel arrays as well as in continuous long junctions. 

In contrast, the m > 1 steps do not appear in long 

continuous junctions. 

5. Inductively coupled arrays: Coupled DSGEs 

When two one-dimensional arrays are brought 

closer together, their magnetic fields may couple. The 

interactions will be the strongest when the two arrays 

share the middle superconducting wire as illustrated in 

Fig. 1 (d). Currents through this wire will induce self- 

magnetic fields in both arrays (inter-row coupling). 

With a mutual inductance of My between adjacent 

cells in the vertical direction, inductively coupled ar- 

rays are described by two coupled driven and damped 

DSGEs. Defining r/(40 = ~n + Fq~n + Ic sin(4~n) and 

V2tp = ¢,+1 - 24~n + q~n-1, one obtains: 

~7(0) + M v o ( ~ )  = A2V2¢ + Iappl/Ic, (14) 

rl(~) + Mvrl(c])) =- A2V2~ + Iappl/Ic. (15) 

The essential feature introduced by the coupling is that 

it controls the phase between solutions of each row. A 

linear analysis yields two possible phase relations. In 

the antisymmetric mode the phase oscillations of two 

junctions in the vertical direction, are shifted by Jr. 

In the symmetric mode, the phase oscillations are in- 

phase. One can also visualize the in-phase solution as 

two arrays of kinks, one in each Josephson line, which 

are situated exactly on top of each other. In the anti- 

symmetric mode, they are shifted with respect to each 

other. In an experiment, the two different modes can 

clearly be observed. In the antisymmetric mode, the 

kinks reach a lower limiting velocity than in the sym- 

metric mode. The larger the My, the larger the differ- 

ence in limiting velocities. As a consequence, the Eck 

peak is split into two separate peaks as illustrated in 

Fig. 4(b). The positions of the resonances can be cal- 

culated straightforwardly [15,16] and agree well with 

our data. 

Like in the single long arrays, higher harmonics 

m > 1 steps are observed as Aj is reduced below 1. 

The m = 2 step may be important for high-frequency 

oscillator applications of these arrays. To obtain small 

linewidths and high output power levels, one would 

like to have many arrays phase-locked to each other. 

The symmetric mode is the most promising in this re- 

spect but in actual arrays this in-phase mode is dif- 

ficult to stabilize. Numerical simulations show that 

the m = 2 mode contains two harmonics with large- 

amplitude oscillations. For the higher harmonic the 

rows are phase-locked and are in-phase. The m = 2 

step is very stable in the experiment. There is no split- 

ting of the m = 2 step. Such a splitting is expected 

from theory and at this moment, it is unclear why this 

splitting does not occur. 

6. Beyond one-dimensional arrays: Josephson 

ladders 

Josephson ladders are one-dimensional arrays with 

junctions added in the horizontal branches. If the junc- 

tion area of the horizontal junction is smaller than for 

the vertical junctions, the coupling in the horizontal 

direction is effectively reduced. With a weaker cou- 

pling in the horizontal direction, the static properties 

of anisotropic ladder networks can be described by a 

discrete sine Gordon equation with the discreteness 

parameter replaced by the ratio of the coupling in the 

horizontal and the vertical directions [17]. When con- 

sidering dynamical properties of Josephson ladders, 

an approach based on the DSGE is clearly an over- 

simplification. The phase differences across horizon- 

tal junctions can be substantial. It turns out that the 

dynamics of Josephson ladders is more complex than 

that of 1D parallel arrays [18,19]. 

In a magnetic field of f = 1/2, one of the solutions 

for the isotropic Josephson ladder can be reduced to 

a system of three coupled nonlinear pendulum equa- 

tions [18]: 

tp + F ~  - sin0 s ine  = Iappl ,  (16) 

0 + FO + cos~b cos0 = - 4 A  2 (0 + ¢p), (17) 

+ F~b + sin~o = - 2 A  2 (0 + 9), (18) 

where $ is the average of the vertical phases in a 

cell (~bl + ~b2)/2, 0 = (~bl - ~b2 - yr)/2 and ~0 is 

the phase of the top row (for f = 1/2, the bot- 

tom row has a phase difference of -~0). Our simula- 

tions show that we can regard both ~0 and 0 as small 
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Fig. 5. Experimental I -V curve of a Josephson ladder of seven 
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between the purely 1D discrete sine-Gordon systems 

and 2D arrays. The dynamics is complicated but the 

example above shows that analytical results are pos- 

sible in some cases. On the other hand, the ladders 

themselves may prove to be interesting systems for 

nonlinear dynamic studies. For example, when ac 

currents are applied to anisotropic ladders, Floria et 

al. [19] have discussed the existence of  intrinsic lo- 

calized modes (discrete breathers). The experimental 

verification of  such localized modes should in princi- 

ple be possible but we require a better understanding 

of  the dynamics of  ac driven Josephson ladders. 

oscillations driven by the whirling mode ~. Then, the 

last two equations can be linearized and in the limit 

for small damping, these two equations have two res- 

onant frequencies: V_ ,~ ~ ~o/(2Jr ~E- j (T)C)  

and V+ ~ Vc6 ~0/(2rr  L~/T-sCsC). In Fig. 5, we plot an 

I - V  characteristic of  a Josephson ladder in a mag- 

netic field of  f = 1/2. One clearly observes the two 

resonant peaks V_ and V+. As expected, V_ shifts 

with temperature because the Josephson inductance 

Lj is temperature-dependent. In contrast, V+ is al- 

most temperature-independent. The peak positions in 

the experiment agree well with our predictions. 

Eqs. (16)-(18) are more general, and when geomet- 

rical factors are included, they can be used to describe 

various Josephson arrays at f = 1/2. For example, 

1D parallel arrays are given by Eqs. (16) and (17) 

disregarding the ~o on the right-hand side. The main 

resonance is the Eck peak (V+) and there is no equiv- 

alent step that corresponds to V_. In the limit where 

inductances can be neglected, Eqs. (17) and (18) can 

be combined and there is only one single resonant fre- 

quency giving rise to the V_ step. The moving kinks 

now excite ringing oscillations of  the junctions at an 

eigenfrequency close to COp. In Josephson ladders with 

self-inductance, both horizontal junctions and the in- 

ductances play a role and therefore both V_ and V+ 

are observed. Two-dimensional Josephson arrays act 

in this respect similarly to Josephson ladders: both V_ 

and V+ can be observed. 

These observations clearly show that Josephson 

ladders are interesting model systems intermediate 
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