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It is found that coherent electromagnetic (EM) radiation in terahertz (THz) band takes place when a single crystal of

cuprate high-Tc superconductor Bi2Sr2CaCu2O8+δ (BSCCO) is biased by a dc voltage. In this work we study the

inductively coupled sine-Gordon equations which compose a good model for intrinsic Josephson junctions (IJJs)

realized in BSCCO due to the strong layer structure. We derive a general solution for the coupled sine-Gordon equations

valid for weak and moderate inductive couplings, which can enhance injection of dc energy into IJJs and convert it to

THz EM radiation. This solution evolves into the π phase kink state known before for strong inductive coupling.

1. Introduction

The electromagnetic (EM) waves in terahertz (THz) range

have various applications such as imaging, radar, safety

checks, and so on.1,2) However, they are difficult to be

generated by conventional electronic and photonic devices,

and a compact solid-state generator of THz band is still

lacking. Josephson effects can be used to excite EM wave

known since its discovery,3–7) and efforts were devoted based

on array of Josephson junctions.8–14) Intrinsic Josephson

effects were observed in cuprate high-Tc superconductor

Bi2Sr2CaCu2O8þ� (BSCCO).
15) Compared with conventional

low-temperature Josephson junctions the intrinsic Josephson

junctions (IJJs) have the following advantages. First the

junctions are homogenous at atomic scale guaranteed by

the high quality of single crystals, and secondly the

superconductivity gap is large, usually of tens of meV,

which in principle covers the whole range of THz band of

EM wave. These merits make the IJJs fantastic candidates as

source for powerful EM radiation in THz band. As a matter

of fact, many experimental attempts for excitation of THz

radiation from IJJs were made, for example by quasiparticle

injection along the in-plane direction of BSCCO sample16,17)

and by biasing a voltage on a BSCCO sample with step-like

geometry.18) There were theoretical studies focusing on

possible THz radiation from IJJs by driving Josephson

vortices.19–22) It is also proposed that the THz EM radiation

can be excited by sandwiching a narrow BSCCO mesa with

gold electrodes under bias voltage.23)

An experimental breakthrough was achieved in 2007,

where a THz radiation with power ∼1 µW was observed

from a BSCCO mesa under a dc bias voltage.24) The key

experimental results are as follows: the radiation frequency

and the bias voltage obey the ac Josephson relation, intense

radiations are observed at frequencies of cavity resonance,

and they are coherent.24) The breakthrough raised interesting

questions, such as how dc energy can be transformed into

intense EM radiation compatible with cavity modes, and how

a large number of junctions ∼600 are synchronized.

The experimental breakthrough inspired intensive discus-

sions from both experimental and theoretical sides.25–36) Lin

and Hu investigated the phase dynamics of IJJs under bias

current in terms of sine-Gordon equations with strong

inductive coupling.6,25) They proposed a novel π phase kink

state, which can explain the significant experimental results

mentioned above and by now has been confirmed by

innumerous simulations. In the π kink state, �� kinks in

gauge-invariant phase difference in IJJs are developed in in-

plane directions, and arrange themselves alternatingly along

the c-direction. The uniform bias current and cavity modes

are coupled by the π phase kink, which allows a large

supercurrent flow into the system at the cavity resonances,

and a part of dc energy is converted to EM radiation from the

mesa edge.6,25) Experimentally, THz radiations were ob-

served from IJJs with cylindrical geometry32) as discussed

theoretically27,31) and in the high bias region.33) It is also

found that the radiation power from IJJs can be enhanced

by controlling the temperature distribution in the mesa

sample.34)

In this work, we derive a general solution valid for small

and moderate inductive couplings and high cavity modes. It

is characterized by a structure in phase difference varying in

lateral directions around ��=2 in form of cavity mode and an

alternating configuration along the c-direction similar to the π

phase kink state. Compared with the π kink, the static term in

phase difference of the present solution does not saturate to π

and 0 at the sample edges. The present solution can enhance

injection of dc energy into IJJs and covert it to THz EM

radiation. This solution evolves smoothly into the π phase

kink state at large inductive coupling and low cavity modes.

The remaining part of the present paper is organized as

follows. In Sect. 2, we solve sine-Gordon equations with

weak and moderate inductive couplings under bias current

and dissipations for cavity modes ðn; 0Þ in rectangular

geometry and propose its general solution. Then we calculate

the current–voltage (I–V) characteristics of this solution. In

Sect. 3, we discuss the relation between the present solution

and the π phase kink state. In Sect. 4, we extend this solution

to ð1; 1Þ cavity mode. In the discussion of Sect. 5, we

compare this solution with the breather solution known for

single junction. Finally, the summary is presented in Sect. 6.

2. Inductively Coupled Sine-Gordon Equations

The phase dynamics of IJJs can be described appropriately

by the inductively coupled sine-Gordon equations, whose

dimensionless form with driving and dissipations is given as6)
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�� ¼ Mðsin � þ �@t� þ @2t � � JextIÞ; ð1Þ

where ð�Þl ¼ �l with �l the phase difference at the l-th

junction and I ¼ ðþ1;þ1;þ1;þ1; . . .ÞT the unit vector; the

coupling matrix ðMÞl;l�1 ¼ ðMÞl;lþ1 ¼ ��, ðMÞl;l ¼ 1 þ 2�

and zero otherwise with � � ð�ab=sÞ2 the inductive coupling

(�ab the penetration depth in the c-direction and s the period

of IJJs lattice in c-direction); the lateral length and time are

scaled by the penetration depth in the ab-plane �c and the

inverse of intrinsic plasma frequency !c ¼ c=�c
ffiffiffiffi

"c
p

("c the

dielectric constant of BSCCO) respectively; � � 4��c�c=

c
ffiffiffiffi

"c
p

is the normalized c-axis conductivity of BSCCO

sample and Jext is the external current normalized by the

critical current Jc.

As the boundary condition in lateral directions we adopt

the one for perfect magnetic conductor where the magnetic

fields in lateral directions are zero at mesa edges, namely

@x�ðx ¼ 0; LxÞ ¼ 0. Because the device for exciting THz

radiation is made up of a thin BSCCO mesa with thickness

Lz � 1 µm sandwiched by gold electrodes, the impedance

is huge at the edges of junctions Z � Ez=By � �=Lz with

� � 300 µm the wavelength of electromagnetic fields.23) As a

reasonable approximation, we start from a closed system, and

the EM radiation with small magnetic field By can be treated

as a perturbation.6,25) Since we are searching for states

uniform in the c axis, we adopt the periodic boundary

condition in this direction, noticing that the current injection

has been taken into account in the present gauge of phase

difference.6,25)

2.1 General solution

We perform computer simulation of phase dynamics in

IJJs by integrating Eq. (1) with the leapfrog method.25) Phase

differences are assigned randomly between �� and π in

lateral directions and over all junctions. Under the driving of

bias current, the system can be synchronized to a stable state

as will be discussed in what follows. Parameters are taken as:

� ¼ 230, � ¼ 0:02, �c ¼ 200 µm, Lx ¼ 80 µm, "c ¼ 16, and a

current bias is taken for simulations.

Similar to the case of strong inductive coupling, the

solution of Eq. (1) at small and moderate values of ζ takes the

following form:6,25)

�ðx; tÞ ¼ !t þ A cos
n�x

Lx

� �

sinð!t þ ’Þ
� �

I þ �sðxÞI2; ð2Þ

where the first term is the rotating phase accounting for the

finite dc bias voltage according to the ac Josephson relation;

the second term stands for the cavity term of the plasma

oscillation with A the cavity amplitude and φ the phase shift;

the last one is static, which arranges itself alternatingly along

the c-direction as denoted by I2 ¼ ðþ1;�1;þ1;�1; . . .ÞT,
which is an eigen vector of coupling matrix M: MI2 ¼
�ð4� þ 1ÞI2.6)

Substituting Eq. (2) into Eq. (1) and omitting higher

harmonics, we obtain the following equation

@2x�
sðxÞ ¼ 2�0 cos

n�x

Lx

� �

sin �sðxÞ; ð3Þ

where �0 ¼ �A cos’. We notice that this equation is the same

as that for π phase kink. The �s term is plotted in Fig. 1 for a

moderate ζ and several typical cavity modes. We find that to

a strikingly good approximation the static �s term can be

written as

�sðxÞ ¼ �

2
� B cos

n�x

Lx

� �

; ð4Þ

where B is to be determined.

Substituting the solution given in Eqs. (2) and (4) into

Eq. (1) one arrives at

A ¼ 2J1ðBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�!Þ2 þ ð!2 � k2Þ2
p ; ð5Þ

Bk2 ¼ 2�A cos’½J0ðBÞ � J2ðBÞ�; ð6Þ
where k ¼ n�=Lx is the cavity wave number, tan’ ¼
�!=ð!2 � k2Þ and Jn is n-th Bessel function of first kind.

Figure 2 displays inductive coupling ζ and frequency ω

dependencies of A and B defined in Eqs. (2) and (4) for the

ð1; 0Þ cavity mode. As seen from Fig. 2, A and B grow

continuously from zero at a bifurcation point of the system.

Below this point, the system takes the McCumber state.6)

2.2 I–V characteristics

Simultaneously with Eqs. (5) and (6) one obtains the

external current6,25)

Jext ¼ �! þ A sin’

2Lx

Z Lx

0

cosðkxÞ cos �s dx: ð7Þ

It is clear that the cavity mode and the uniform external

current are coupled by the �s term, a scheme similar to the π

kink state. The I–V characteristics of the present solution is

plotted in Fig. 3 for � ¼ 230, where large supercurrent flows

Fig. 1. (Color online) Static term �s in solution (2) at moderate inductive

coupling and several cavity modes with left=right row for the junction with

even=odd index. Red dot is the numerical result of Eq. (3) with �0 ¼ 198,

blue solid curve is the analytic solution given in Eq. (4) with B ¼ 0:41�,

0:21�, and 0:11� for n ¼ 1, 2, and 3 respectively, and black square is the

simulation result of Eq. (1) with � ¼ 230 and Jext ¼ 0:16 for the ð1; 0Þ cavity
mode. Other parameters are taken as � ¼ 0:02, �c ¼ 200 µm, Lx ¼ 80 µm,

and "c ¼ 16. These three solutions are in good agreement with each other

and the differences among them are less than 3% in the whole space.
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into the system at the resonance voltage of ð1; 0Þ cavity mode

!cav ¼ 7:85 which corresponds to 1.2mV. Thus, this solu-

tion is expected to be useful for the realization of powerful

radiation. The detailed shape of I–V characteristics does not

depend on ζ sensitively.

3. Relation with the π Phase Kink State

As the present solution and the π phase kink state share

many similarities, one may naturally ask the relationship

between them. To understand this, we estimate the typical

length of the π phase kink. From Eq. (3) the typical length of

the π phase kink can be obtained as

�� ¼ 2�0
n�

Lx

� ��1=3
: ð8Þ

The lateral size of IJJs cannot contain enough π kinks for the

corresponding cavity mode when n��� > Lx. Rewriting this

condition in terms of �0 and n based on Eq. (8):

2�0 <
n�

Lx

� �2

; ð9Þ

it becomes clear that when the inductive coupling is small

and=or the cavity mode is high, the π phase kink state

becomes unstable. In this case the π phase kink state deforms

into the present solution, where the static phase term does not

reach π and 0 at sample edges.

We plot in Fig. 4 the magnetic energy per junction

EBs
¼ h@x�sTM�1

�
six=N with �

s ¼ �sI2 and N the number of

junctions for ζ ranging from 10 to 10
5. One sees that the

static magnetic energy is EBs
� 1=

ffiffiffi

�
p

in the whole range of

ζ, which suggests that the present solution continuously

evolves into the π phase kink state as ζ increases. As a matter

of fact, when the inductive coupling ζ increases from 10 to

10
5, the �s term evolves into the π phase kink gradually as

seen in the inset of Fig. 4.

4. Other Cavity Modes

So far we concentrate on ð1; 0Þ cavity mode. One can

extend the discussion to other cavity modes. Here we show

ð1; 1Þ mode in a rectangular mesa as an example. Based on

simulation on Eq. (1), the �s term for ð1; 1Þ cavity mode can

be written as

�sðx; yÞ ¼ �

2
� B cos

�x

Lx

� �

cos
�y

Ly

� �

; ð10Þ

where Ly is the mesa size in y-direction. The term �sðx; yÞ and
I–V characteristics of the ð1; 1Þ mode are displayed in Fig. 5.

For clarity we only show the simulation result of Eq. (1) for

� ¼ 230 and Jext ¼ 0:19, noticing that the differences among

simulation result of Eq. (1), numerical solution of Eq. (3) for

�0 ¼ 198 and the analytic solution Eq. (10) with B ¼ 0:46�

are less than 5% in the whole space.

5. Discussion

Krasnov studied the phase dynamics of IJJs especially for

high cavity modes and discussed that a breather-like solution

(a)

(b)

Fig. 2. (Color online) (a) and (b): inductive coupling ζ and frequency ω

dependencies of A and B defined in Eqs. (2) and (4) for the ð1; 0Þ cavity

mode. Parameters are taken same as those for Fig. 1.

Fig. 3. (Color online) I–V characteristics of the ð1; 0Þ cavity mode for

� ¼ 230. Solid curve represents the analytic result of Eqs. (5) to (7) and

square is the simulation result of Eq. (1). Other parameters are taken same as

those for Fig. 1.

Fig. 4. (Color online) Inductive coupling ζ dependence of static magnetic

energy EBs
obtained by the simulation on Eq. (1) at Jext ¼ 0:4. The red curve

is for EBs
� 1=

ffiffiffi

�
p

. The inset shows the evolution process of the present

solution to the π phase kink state when the inductive coupling ζ increases

obtained by the simulation of Eq. (1). Other parameters are taken same as

those for Fig. 1.

J. Phys. Soc. Jpn. 84, 064719 (2015) F. Liu and X. Hu

064719-3 ©2015 The Physical Society of Japan



may be stabilized.37) Here we discuss the relation between the

present solution and the breather solution38)

�Bðx; tÞ ¼ 4atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � !02
p

cos!0t

!0 coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � !02
p

xÞ

" #

ð11Þ

with !0 � 1. Compared with the present solution discussed

above, first we notice that the frequency !0 in breather

solution has a different meaning, which is determined by the

eigen values of related inverse scattering problems to the

sine-Gordon equation,38) and not directly related to the

applied voltage like ω in the present solution. Secondly the

peak value of the breather solution becomes smaller when !0

is approaching unity, while in the present solution both the

amplitudes of cavity mode and static term become larger

when ω is closer to the resonance one. The snapshots of time

evolution of present solution �ðx; tÞ for ð2; 0Þ cavity mode,

�Bðx; tÞ, sin � and sin �B are shown in Fig. 6 in half period.

To make the comparison apparent, we set the maximal value

of breather solution similar to the one of present solution for

ð2; 0Þ cavity mode near resonance by choosing !0 ¼ 0:8 in

Fig. 6. As seen in Figs. 6(a) and 6(b), although the even

branch of present solution and breather solution have a

similar shape at t ¼ 0, they become different during the time

evolution, for example the even branch of present solution

becomes flat at t ¼ T=6 and t ¼ T=3 while the shape of

breather solution remains domed at t ¼ T0=6 and t ¼ T0=3.
For the supercurrent distributions of the present solution and

breather solution displayed in Figs. 6(c) and 6(d), we can

see that although the supercurrent of breather solution has a

similar shape to the supercurrent of even branch of the

present solution at t ¼ 0 and t ¼ T=2 (t ¼ T0=2), their time

evolutions are different. According to our study, what was

seen in simulations by Krasnov37) is actually the solution

revealed in the present work.

6. Summary

We solve coupled sine-Gordon equations with weak and

moderate inductive couplings under current driving and

dissipations for the phase dynamics of intrinsic Josephson

junctions. We find a general solution characterized by a static

term �s in gauge-invariant phase differences in intrinsic

Josephson junctions, which is distributed around ��=2 in

form of cavity mode in in-plane directions and arranged

alternatingly along c-direction. This solution is stable at small

and moderate inductive couplings and high cavity modes,

and evolves into the π phase kink state at large inductive

coupling. Calculating the I–V characteristics of this solution,

we show that large energy can be pumped into the cavity

modes at the resonance voltages, which is useful for strong

terahertz electromagnetic radiation.
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