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Introduction

The Josephson effect is a classic topic in superconductivity. It was predicted
by B. D. Josephson in 1962, when he was 22 years old. It appears in the
so-called Josephson junction. This is a structure formed by two supercon-
ductors close to each other, but separated with an oxide layer. It is in fact
not a single effect; it is composed by several phenomena that are explained
through the same theoretical framework, i.e. the Josephson theory.

There are many reasons for which I chose this topic for my dissertation.
Among them, the most relevant are the following:

e it entangles many branches of physics, like quantum mechanics, con-
densed matter, electronics, atomic gases;

e the Josephson theory is, in the version I have used, quite simple, but
very general;

e it is the source of several important applications in various fields of
human activity, from medicine to computer technology;

e it recently regained the interest of basic research scientists, because of
its analogs in superfluids and trapped atomic gases;

I had the chance to go into the laboratory and observe it personally.

The structure of the thesis is the following. There are three main chap-
ters. In the first one, the physical foundations of the Josephson effect are
investigated. A short overview of quantum mechanics and classical mechan-
ics is presented, and some important differences are stressed. The issue
of quantum decoherence is addressed. Appearance of quantum effects in
macroscopic bodies is discussed, followed by a brief overview of supercon-
ductivity.

In the second chapter, the theory of the Josephson effect is developed.
For the sake of simplicity and generality, the approach of Feynman is followed|1].
A model of Josephson junctions is introduced, and its characteristics and
limits are discussed. In the last section, some experimental data, collected
during last spring term by some colleagues and me, are shown.

The third chapter is devoted to applications and recent research pro-
gresses. Historically relevant applications are reviewed: SQUID, voltage
standard, and computer technology. Analogs of the Josephson effect in other
system than superconductors occupy the last part of the thesis. Atomic Bose
gases have been given special attention.
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Chapter 1

Foundational remarks

The Josephson effect is based on the behaviour of a quantum parameter
called phase. In this chapter we briefly investigate the physical and mathe-
matical foundations of the effect. In the first section, the main characteristics
of quantum mechanics are recalled. In the second section, we explain the
reason, for which classical mechanics is inapplicable. The third section deals
with statistics. It touches on the topic of quantum information, and states
some intuitive general conditions for the appearance of quantum macroscopic
effects. Finally, the last section is a short overview of (low-temperature, type
I) superconductivity.

1.1 Microscopic theory of matter: QM

The simplest self-consistent theory of matter is nonrelativistic quantum me-
chanics (NRQM). It is well known that it does not take into account all
observed natural phenomena, inter aliis spontaneous emission and finite
speed of light. Substantial improvements have been achieved through more
modern approaches, such as Relativistic Quantum Mechanics and Quantum
Field Theory. Nevertheless, NRQM is still by far the preferred theoretical
framework of low-energy condensed-matter physics, mainly because of its
relative mathematical simplicity and its not-so-involved physical interpreta-
tion.

1.1.1 States and observables

In the context of NRQM, a particle P is described through a vector |¥p> of
an appropriate complex-valued Hilbert space H. If a particular basis of H
is specified, the whole description of P is in the time-dependent components
ck of its vector respect to this basis. The number of these components can
be, depending on the experimental setup, finite or infinite. Moreover, the
components can be discrete or continuous.



Quantum Mechanics is assumed to be a complete theory of matter, rather
than a partial self-consistent approach. This means: the knowledge of all
(possibly infinite) components of |Up> contains the whole experimentally
obtainable information on P. It is impossible to build or even imagine an
experiment, in which more information can be extracted from a system, than
that contained in |Up>. In this sense QM admits no “hidden variables”.

The completeness hypothesis is surely false for the nonrelativistic ver-
sion of the theory which is used here, since it entirely ignores a feature of
elementary particles, i.e. spin. Fortunately, the spin o can be approximately
incorporated into NRQM through simple tensor product of its Hilbert space
H, with the space Hj, of all other properties k:

H=H. H, |\pr>: ’kp> ®’0P> (1.1)

On the one hand this non-native addition of the spin limits the predictive
power of the theory. For instance, it excludes proper fine and hyperfine
corrections to the hydrogen spectrum. On the other hand, it allows one
to study a problem at first without the spin complexity and to include
it at a later stage, when a certain physical intuition of the solution has
already been developed. Furthermore, the results of the simplified theory
(i.e. without spin) are often precise enough to agree with experimental data.
In the following we will restrict our description to this simplified NRQM.
Its macroscopic counterpart 1.4.5 explains sufficiently well the phenomena
involved in the Josephson effect!.

Physical properties of P can be extracted from |¥p> through observ-
ables, linear functions from H to itself which have mathematical features
necessary to assure the self-concistency of the theory. The connection with
experiments is the following?. When we measure a certain physical quan-
tity O, we choose a basis of H formed by eigenvectors of the observable O
describing O. Every single experimental result is just one of the eigenvalues
of O. If we perform many experiments in exactly the same conditions, we
do not in general find always the same result, but rather all possible eigen-
values, with a fixed probability distribution. The mean value corresponds
to the expectation value of O, defined by:

<O>yp,:=<¥p|O|¥p> (1.2)
where the bra-ket notation has the meaning of a scalar product.
1.1.2 Spectral decomposition, stationary states and wave-
function

The list of all possible eigenvalues of an observable is called spectrum. As
a consequence of the famous spectral theorem, it is possible to form a basis

!The original version of the Josephson theory does make use of the spin[2].
For a introduction to the mathematics of QM, see e.g. [3] (in italian).



of H made by eigenvectors of an observable O. This procedure is called
spectral decomposition. The general form of the state of P is:

[Up>= cx|ko> or \\Ilp>=/dkck ko> (1.3)
k k

depending of the discreteness or continuousness of k, where |kg> are eigen-
vectors of O.

An interesting decomposition is that of the hamiltonian. An eigenvector
of H is called stationary state. Its eigenvalue Fy is the energy of that state.
If the hamiltonian is time-indipendent, as it is in most cases in condensed-
matter experiments, the energies are also time-indipendent. Being the evo-
lution equation the following:

0
iha |Vp>= H|Up> Schrodinger equation (1.4)

in which H is the hamiltonian observable describing the interaction of P
with the world, it results for a stationary state:

k> (t) = e Bx/ P kg> (0)

Stationary states are of primary importance, since they allow to decouple
time in the evolution equation; the ¢y are time-indipendent. In particular,
a particle in a stationary state will remain there forever.

Now, let us choose as observable the position operator x. We get a
continuous decomposition:

\\Ilp>:/dx ex |x>
X

The coeflicients constitute in fact a continuous function of x, which is usually
written 1 (z,t) := cx and called wavefunction. Its squared norm |i(x,t)[?
gives the probability density that the particle is measured at the position x
at time t. A probability current, which is an estimator of the movement of
P, can be defined:

ih
J= o (Ve — ' V) — LA, ) (1.5)

The wavefunction takes complex values; it has a definite phase for every
(x,t). It can be easily shown that the total phase of ¥ can be shifted by an
arbitrary amount without changing the physics of P. The only important
point is the pairwise phase difference between two components c¢,. This
difference enters directly the Josephson theory, as we will see later.



1.1.3 Many-particle QM

We have so far dealt with a single particle. The extension to the many-
particle description is well beyond the scope of this thesis, however some
remarks are mandatory:

e many-particle systems are also described by states and operators;

e stationary states exist also in many-particle QM and have the same
role;

e the dimension of H is significantly increased.

The last observation can alternatively be cast in the following form: the
number of complex parameters® necessary to describe completely a many-
particle system is extremely high. Among other things, the phase of every
parameter has to be determined to specify the state of the system.
Because of this reason, a pure quantum mechanical approach to macro-
scopic bodies would be a formidable, probably impossible task. One has to
rely either on statistical methods (see section 1.3), or on macroscopically
phenomenological theories like Classical Mechanics (see next section).

1.2 Macroscopic theory of matter: CM

In opposition to QM, the simplest theory able to handle macroscopical sys-
tems is Nonrelativistic Classical Mechanics (NRCM). As for NRQM, it does
not explain vacuum-connected or extreme relativistic phenomena, still it is
well-suited for most ordinary situations.

1.2.1 Real tensors description

There are many different versions of NRCM, the most useful for our purposes
is the Hamiltonian formulation. The properties of a particle P are given by
real tensor fields on the phase space, which correspond in NRMQ both to
states and operators. Position and momentum are taken as fundamental
variables, on which all other tensors depend.

Classical Mechanics is in no way a complete theory. From the discov-
ery of the atomic nature of matter on, physicists are well conscious that
NRCM is no more than a large-scale approximation of microscopic theories
like NRQM. Thus a particle P can have, besides all tensorially described fea-
tures, other “hidden” properties which are smoothed out in the large-scale
limit.

3For instance, (complex) coefficients or (complex-valued) wave-like functions.



1.2.2 Many-subparticle CM

From a foundational point of view, the very concept of “particle” is quite
arbitrary in CM, because of its interisically macroscopic nature. In a Galileo-
like perspective, we could assume that a small, non-rotating ball is a good
physical realization of a particle. At the same time, we are aware that even
the smallest macroscopical ball is internally composed by a great number
of subparticles. The problem is resolved by imposing constraints on the
subparticles, in order to reduce drastically the number of variables of the
system. For instance, the famous rigid body condition limits the number of
positional coordinates to 6 (or less), whatever the initial number of coordi-
nates.

The possibility of describing a macroscopic body through classical me-
chanics is a huge simplification, if compared to a quantum mechanical de-
scription. Our problem is the following: classical mechanics does not predict
any Josephson effect at all. Since in NRCM all quantities are real, the very
concept of phase becomes meaningless. We have to find an alternate path to
build a theory for the Josephson effect. As explained in the previous section
1.1.3, this has to pass through statistics.

1.3 Statistical properties and decoherence

Now we have to front the following puzzling issue: why can we successfully
describe macroscopic bodies with a simple theory based on few variables
like NRCM? A macroscopic body contains a great number of quantum par-
ticles, nonetheless we can safely ignore all single-particle variables and study
only properties of the whole body. Where are all other “hidden variables”
eventually hidden?

The central point is that in almost all macroscopic experiments we are
dealing with statistical behaviours and average quantities. The microscopi-
cal features of a body can emerge in three different ways from the averaging
process. Firstly there are some properties with nonvanishing mean and
whose effects can be included in a constraint-featured macroscopic theory.
For example it is the case of positions and velocities of rigid bodies. Secondly
it can come up that some microscopical features show evident macroscop-
ical effects, but they can not be easily included into macroscopic theories
because of practical difficulties in calculations. In this case, for example
by glass theories or quantum chemistry, efforts are put in phenomenological
and numerical calculations. Increasingly better approximated theories are
developed. Finally, some microscopical variables are just smoothed out by
many-particle statistics and do never - or almost never - show any signifi-
cant effect on macroscopic scale experiments. The last situation refers also
to the phase differences among all quantum particles of a body. This loss of
information is generally called decoherence.



1.3.1 The origin of decoherence

The origin of decoherence lays in the very hearth of NRQM, in the concept
of stationary state. We have already said that knowing the state of a quan-
tum system S is equivalent to knowing all of S. For a stationary state, a
knowledge of the state |kg> of S includes the energy Ex of the state.

If the allowed energies of the system were pairwise well separated, this
requirement could be fulfilled. In fact, this is exactly what happens in
one-particle experiments. The problem with macroscopic bodies is that
they show an “extremely high density of levels in the energy eigenvalue
spectrum”, as Landau points out in [4, 14]. Two dramatic consequences
follow from this fact.

On the one hand, a macroscopic system S feels small, unpredictable
interactions with the environment. Because of the high density of states of
the body, these forces continuously change the state of S, in a random way.
The state description is therefore unusable.

On the other hand, every process that brings a system S into a stationary
state |kg> takes some time to act. But in the quantum world the energy-
time uncertainty principle holds. If the energy difference between |kg> and
the many neighbour stationary states is very small, the minimal time of the
process is very large. For short times we can only determine a certain “state
range”. The whole state description collapses again.

The main result of the preceding analysis is that the exact complex-
valued state description of matter is inapplicable to systems, which interact
with their environment. All practical macroscopic bodies enter this category,
with few exceptions which we present in section 1.3.3. Therefore another
approach is used, a statistical and more phenomenological one.

1.3.2 Decoherence as a fundamental working hypothesis

The central property of quantum statistical mechanics to eliminate the phase
is clearly explained by Huang[5, 173]. A Postulate of random phases is
introduced at the beginning of the theory. It states that the coefficients
of the spectral decomposition of a macroscopic state onto a basis made of
stationary states have random phases. In this way, we accept as a principle
of Nature to lose any information about the phase.

This fundamental assumption is justified by the fact that it leads to
results in agreement with experiments. In other words, it is a phenomeno-
logical hypothesis which does not derive from NRQM.

The solution of the decoherence problem through this ad hoc assumption
has been judged unsatisfactory by some scientists. Modern studies on en-
tanglement, i.e. general quantum phase interference, try to shed some light
onto this topic. However, state-of-the-art theories and experiments are still
quite at a draft level, and the phenomenon is not completely understood.

10



In the following, we accept the postulate of random phases “as is”, without
further investigations.

1.3.3 Coherent macroscopic states

It can be shown that the preceding discussion “is inapplicable to the initial
part of the energy spectrum; the separations between the first few energy
levels of a macroscopic body may even be independent of the size of the
body[, 15,footnote]”. Generally speaking, it could be possible to find a
macroscopic body showing quantum effects if the following two conditions
are fulfilled:

1. the body occupies the first few energy levels;

2. the energy gaps AFE;; among these levels are indipendent of the size
of the body and bigger than the mean thermal energy AFE;; > kT

Both conditions have good chances to be satisfied if the temperature is very
low. This is exactly what happens in superconductivity. In this case the
decoherence does not arise and it is quite intuitive that the system could
remain in a precise quantum state for a relatively long time. Therefore it
makes sense to speak of a quantum state of the macroscopic system or more
briefly macroscopic state.

Strictly speaking, the above conditions are not necessary for the appear-
ance of quantum macroscopic effects. For instance, semiconductors are also
based on a quantum effect (energy bands) in large-scale systems.

1.4 Superconductivity

Superconductivity is a phenomenon of low-temperature solid-state physics.
It consists mainly of two experimental evindences:

e in a supercondicting material, an electric current can flow without any
resistance;

e a superconducting piece of matter is perfectly diamagnetic apart from
a thin surface layer.

Although the microscopic theory is quite involved and far from being com-

plete (see e.g. [0, 23-94]), the key mechanism is rather well understood.

1.4.1 Enmnergy gap

The single-electron density of states in a superconductor, i.e. a solid block
of matter which shows the superconducting properties, is not everywhere
very high, as in a “normal” macroscopic body.

11
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Figure 1.1: Density of stationary states as a function of energy in a normal metal
and in a superconductor. For the latter no states exist with energy
Er— A< E<Er+A.

In a small interval around the Fermi energy Er, the DOS is zero. Let
the half-width of this interval be A. The electrons of every material at
zero temperature occupy the lowest energy levels. In a superconductor, this
happens up to Er — A. Beyond this value, only states with energy greater
than Er + A are available. If all single-electron stationary states up to
Er — A are occupied, the finite energy gap originates two effects:

1. electrons in these states cannot be subject to small interactions with
the environment, because the smallest energy required to change their
state is finite and equals 2A;

2. electrons make bound states. They form pairs with binding energy
2/, instead of occupying high-energy single-particle states.

We note that the presence of the finite energy gap qualitatively explains
both experimental evidences of superconductivity. Neither single electrons
in the Fermi sphere nor electon pairs can scatter, because the energy in-
volved in typical system-environment interactions is smaller than 2A; the

12



resistivity of a superconducting material vanishes. Moreover, magnetic fields
are excluded from a bulk superconductor, because of a Lenz-type shielding
supercurrent on the surface of the superconductor. Since the resistivity for
this current is actually zero, the magnetic shielding is perfect.

1.4.2 Electron-electron interaction mechanisms

The reader may wonder how charged particles of equal sign like electrons are
able, in spite of their mutual electrostatic repulsion, to form bound states.
The answer to this question is the very core of the theory of superconduc-
tivity.

The first successfull microscopical theory of superconductivity is the BCS
theory[7]. In that context, the direct electron-electron repulsion is screened
by phonons of the crystal lattice. In simple words, a moving electron emits a
phonon, which is then captured by another electron. The travelling phonon
alters the lattice geometry in such a way that it can be interpreted as a
moving positively charged particle. The resulting indirect interaction is
effectively attractive.

This elucidation holds for all pure superconducting materials and even
for some alloys, but fails to predict properties of high-temperature supercon-
ducting alloys like Yttrium barium copper oxide (YBCO). For these materi-
als no definitive theory has been developed yet, though the so-called d-wave
pairing theories are thought to be on the right track.

1.4.3 Cooper pairs and their BEC

Whatever the binding mechanism could be, electrons are experimentally
seen to move in pairs. They are also known as Cooper pairs[7]. These pairs,
like every structure composed by an even number of fermions, behave like
bosons. They can condens into the lowest energy or ground state, in a process
called Bose-Einstein Condensation (BEC). All pairs in this stationary state
have energy 2Er and can be thought as lying on the Fermi surface of the
single-particle space of momenta.

It is important to remark, that Cooper pairs are not real bosons, in the
sense that their spectrum has no excited states. Pairs are always in the
ground state; the bond energy is smaller than the energy difference between
first hypothetical excited state and ground state. If a pair gets sufficient
energy, it splits into single particles. Since the energy of a pair is 2Er, a
minimal energy of 2A is needed to break a pair*. Thus Cooper pairs can not
slightly interact with the environment and are able to remain in a quantum
state, the ground state, for long lifetimes.

4Both electrons have to get into the Er + A high-energy state.

13



Charge of the Cooper pairs

Cooper pairs, as long as they remain in the ground state, are studied as
single bosons. Their charge is twice that of one electron, thus the voltage-
energy conversion for pairs is:

AE = —2eAV (1.6)

In the next chapter we will almost always use AFE as a variable, to stress the
generality of our formulation of the Josephson theory. This generality is a
key component of the recent research projects explained in the last chapter.

1.4.4 Ciritical temperature and critical magnetic field

The appearance of superconductivity depends on the thermodynamic con-
ditions. Both high temperature and intense magnetic field can destroy su-
perconductivity. Using the Ginzburg-Landau theory|[3][6, 41], it is possible
to show that the superconducting phase is stable for magnetic fields and
temperatures smaller than a certain transition curve H. = H.(T.). The
analytical form of this line, near the zero-field critical temperature T, is
just:
H.x(T,-1T)

From a purely thermodynamic point of view, it is interesting to remark
that the superconducting transition is first-order for nonvanishing magnetic
fields, while it becomes second-order in the limit 7" — 7.

The BCS theory calculates also the temperature dependence of A[6, 74].
This turns out to be zero above T, and to increase continuously below this
temperature. Near the transition it holds:

T\ /2
A(T) = 3.06kT, (1 - T)

c

This means that superconductivity can only take place at low tempera-
tures, where the energy gap is strictly greater than zero.
1.4.5 Macroscopic wavefunction of pairs

The ground state of electron pairs is a really quantum one, thus it can be
described by a wavefunction . Its square module represents the density of
Cooper pairs, while its phase is connected with their movement:

b=l e (17)

The spatial coherence of the macroscopic wavefunction deserves a dedi-
cated discussion. In our theoretical picture, we only dealt with momentum

14
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Figure 1.2: Analytical plot energy gap against temperature in a simple supercon-
ductor, according to the BCS theory.

and energy, but it’s clear that electrons can not form bound states if they
are too far away from each other. As a matter of fact, the pair wavefunction
shows an intrinsec typical length which limits its coherent behaviour. This
is called coherence length and is, in classic superconductors like Niobium, of
the order of ~ 10 nm.

The electric current can be calculated from (1.7) using the standard
formula of quantum mechanics (1.5)°:

2e |ih
J=o |5 (VY = 0" Vy) —2eA o
:p% (Vg — 2¢A) (1.8)

The key point of this equation is that a measurable quantity, the current
density, is directly connected to the phase of the wavefunction describing
the quantum state of Cooper pairs. Thus quantum macroscopic effects due
to ¢ can be observed through current measurements. This is the essence of
the Josephson effect, which we analyze more deeply in the next chapter.

5Strictly speaking, the following equation is valid only for superconductors with cubic
crystal symmetry. In general, the electric current can have another direction than the
velocity of pairs. See [0, 32].
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Chapter 2

Josephson effect and
junctions

The Josephson effect is in fact a collection of different phenomena, which
originate from interference between two superconductors’ macroscopic wave-
functions. The practical device, in which these effects take place, is the
Josephson junction (see fig. 2.1). It consists of a thin layer (~ 10A) of insu-
lating material, placed between two superconductors. It is also called tunnel
junction or SIS (Supercontuctor-Insulator-Superconductor) junction. Simi-
lar effects are found with non-insulating materials, but the theory is more
difficult. Whatever the nature of the junction, its thickness has to be com-
parable or smaller than the coherence length of the two superconductors.
Otherwise the dynamics of the respective Cooper pairs are uncorrelated.

In the following section, we show the core two-state theory of the Joseph-
son effect. In the second part, a simple model for a SIS junction is given.
Equation governing the dynamics of a junction is then presented. In the
last section, experimental data, collected by some colleagues and me, are
presented.

2.1 Two-state theory

We restrict our analysis to the easier case of a SIS junction. Josephson
himself assumed the same condition in his original paper[2]. However, for the
sake of mathematical simplicity we do not follow the approach of Josephson.
We use the two-state picture instead, as proposed by Feynman[l]. This
choice has also a very useful physical advantage: generality. In chapter 3,
we discuss some applications of the two-state theory in superfluids and in
cold atomic gases.

16



Figure 2.1: Schematic representation of a Josephson junction. L and R can be
made of the same material, as well as of different superconductors.

In this section, we discuss only the contribution of tunneling Cooper
pairs. We neglect single-electron tunneling, and exclude the possibility of
a dielectric breakdown of the insulating layer. A complete model of the
junction, which is given in section 2.2, is necessary to understand the exper-
imental I-V curves. These data are shown and explained in section 2.3.

Let L and R be respectively two insulated superconductors. Let then v,
(vr) be the macroscopic wavefunctions of the left (right) superconducting
electrons. In the absence of interaction between the superconductors, the
evolution is described through ordinary Schrédinger equations:

3
ih% — Hy (2.1)
L0
m% = HpYp (2.2)

In a stationary situation we have Hyy, = Epy.

Now, let the superconductors be brought towards each other. At a cer-
tain distance, of the order of nanometers, they start to 'feel’ each other
because of the coherence lenght of their wavefunctions. We can introduce
the coupling between them, in a simple but powerful manner, by writing the

17



new evolution equations:

VL = By + K (2.3)
OV — B+ Ky (2.4)

where K is a phenomenological parameter which describes the properties of
the insulating barrier. Now introducing the general form of the macroscopic
wavefunction:

k=P €

we obtain:
8(5; = %K\/m sin A (2.5)
aaptR = _%K\/m sin Ag (2.6)
%:—% Z—Iz cos Ay —% (2.7)
E)gf :—% Z—Z cos Ay —% (2.8)

where Ay := ¢ — pr and AF := E; — Egr. The current density is just
given by J := 2edpy,/0t, thus we find:

de K .
J = T\/prR sin Ap (2.9)

This expression is quite involved. However, because of periodicity of the
phase difference, the current density can be expanded in a Fourier serie. The
current density has to be an odd function of Ay because of antisymmetry
under exchange of L and R; all cosinus terms vanish:

J = Z Ji sin (kAp) (2.10)
k=1

2.1.1 Josephson equations
In first approximation we can suppose that
pPL & PR = constant =: p (2.11)

This is a physically reasonable assumption. It means that our bulk electrodes
have an overwhelming quantity of Cooper pairs which do not tunnel through
the junction. It immediately follows from (2.10) that:

J = Jesin Ap First Josephson equation (2.12)
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where J. := 2Kp/h is the so-called critical current density. In the same
approximation it results:

8?;0 = —A—hE Second Josephson equation (2.13)

We stress that approximation (2.11) is a necessary requirement for these
relation. Without this hypothesis, the core equation (2.10) of our theory
would be much more difficult to handle.

The total current flowing through the junction can be calculated through
spatial integration of (2.12). Whether this is an easy task or not depends
on the junction geometry. The easiest case is when the junction is small. In
that case, impurities and surface effects can be completely neglected and we
find:

I=1.sinAp

In the more general situation of finite dimensions, things get much more
intricate. For instance, one has to take into account that supercurrents,
except for the junction area, actually flow within a thin layer on the surface.
Current density at the junction border is probably not homogeneous, and
the above integration becomes difficult.

2.1.2 DC Josephson effect

A first insight into the variety of the Josephson effects comes from the zero
voltage behaviour. When the energy difference between L und R is zero,
using (2.12) and (2.13) we find:

J=J.sinApy = |J| <.

This current is purely of quantum nature and follows only from the phase
difference Aggy. There is an evident analogy with bulk superconductors, in
which the supercurrent is determined by phase gradients[9, 12]. Now the
name “critical current density” has become clear: it is the maximum value
of J through the junction in absence of an energy difference.

It is possible to feed a Josephson junction with a high current density
J > J.. The Cooper-pairs current density, or supercurrent density, is the
only zero-voltage contribution, and that can not exceed .J.. Therefore, a
feed current J > J. makes a voltage difference appear across the junction
(see section 2.3).

2.1.3 AC Josephson effect

The two Josephson equation described above show other interesting features
when a constant energy difference is established through the junction. From
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(2.13) we get Ap = Ay + wgt with wg := —AFE/h. Injecting this into
(2.12) gives:
J = Jesin (Apo + wit) (2.14)

The relation (2.14) shows that a Josephson junction is an ideal voltage-
frequency converter. In other words, a tunnel junction fed with a constant
voltage shows a current that oscillates with a constant frequency.

2.1.4 Shapiro current steps

If the junction is driven by an alternating energy difference, characteristical
current (density) steps appear in the I-V curve. Let AE be of the form:

AE = AEy + ecosw,t
then the phase difference is given by:
Ap = wgt + asinw,t + Ao

where a and wg, are defined through:

 WE, € ' _AEO
 w, AE

The current density is:
J =J;sin (wg,t + asinw,t + App)
:Jc[sin (Wt + Apg) cos (asinwyt) + cos (wg,t + App) sin (a sin wyt)

It is possible to expand the double trigonometric functions in Fourier-Bessel
series[9, 292]. After some algebraic simplification we get a final expression:

J = Jc{Jo(a) sin (wg,t + Ago) +

—i—Z Ji(a) [sin ((lwy + wpy )t + Apo) — (—1)! sin ((lw, — wg, )t + Awo)] }
. (2.15)

in which J; is the 1-th Bessel function of first kind. This sum is composed
of many sinus functions of time with different frequencies. Since the sinus
is a zero-mean function, the supercurrent density has a DC component only
when at least one frequency is zero. This corresponds to:

AEy = nhw, with n € Z (2.16)

It is also self-evident that no more than one frequency can be zero. Thus
the time average of the current is given by:

J = J. - Ju(an) sin Apg
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The I-V curves, which describe all current components, show a staircase
pattern with steps at nhw,. These steps are called Shapiro steps[10], and
are due to Cooper pairs tunneling. Out of the energy steps nhw,, the su-
percurrent has zero mean, and the I-V curve is determined by other current
components. Experimental curves are shown in section 2.3.

2.1.5 Magnetic field effects

Until now we have only examined the behaviour of a SIS junction in ab-
sence of magnetic fields. If a magnetic field is present, equations (2.12) and
(2.13) are not correct, because they are not gauge invariant. The physics
of the Josephson effect can not depend on a particular gauge choice for the
electromagnetic potentials. The phase difference in its gauge invariant form

is:
2e [*R
@::Acp+/ A - ds
h ).,
where z is the direction of the junction axis. This definition is coherent with
expression (1.8) for the gauge invariant phase gradient in a bulk supercon-
ductor.

The gauge invariant Josephson equations are:

J =J.sin© (2.17)
00 AFE
N — 2.1
ot h (2.18)

Now, let us assume that the supercurrent density is directed, inside the
junction, along z. This is equivalent to the hypothesis, that the junction
is small and homogeneous. Let the magnetic field be perpendicular to the
junction axis, say along y direction: H = —|H|ey,. We investigate the
spatial dipendence of the Josephson current in the x direction. Applying
equation (1.8) to both the left and right side of the junction and integrating
the left and right side fields along the contours shown in figure 2.2, we find:

2e/ <m
pilT2) — pi(T1) = — J+A>-d3
(72) (z1) = — . \2e7

where i = L, R is the side of the barrier. Subtracting the right side equation
from the left side one:

2e m m
Ap(x2) = Ap(ar) = — [/CL (262[)J+A> -ds+/CR <2esz+A> ~ds]

with obvious notation. We know that the supercurrent J of a superconductor
must flow on its surface and parallel to it. Thus we can choose the contours
Ci, so that they are orthogonal to J in the penetration region. The vertical
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Figure 2.2: Schematic representation of a small Josephson junction in a magnetic
field. The direction of the field is y. Cf and Cpg are the contours of
integration.

region is deeply inside the superconductors, where the supercurrent vanishes.
As a consequence, J does not influence the integration:
2e

Aap(xg)—Acp(xl)zﬁ : A -ds+ . A -ds
L —“R

Introducing at this point the gauge invariant phase difference © we find:
2e
O(rz) ~ O(m) = ij ds

Furthermore, using the elementary version of Stokes’ theorem and assum-
ing a London-like exponential decay of the magnetic field inside the bulk
superconductors we get the final result:

2e
O(x) = ﬁde + O (2.19)
with d := dy + AR + AL. dp is the material thickness of the junction, and
)i is the so-called magnetic penetration depth. This quantity is an estimate
for the thickness of the surface layer, where magnetic fields are able to flow.
The term ©¢ represents the border conditions of the junction. The current
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density follows from the first gauge invariant Josephson equation:

J = J.sin (2;de + @0) (2.20)

The supercurrent density is sinus-modulated by the intensity of H. It is
interesting to remark that, even if the junction is assumed homogeneous, the
current density is not. In a less simplified approach, this is not surprising,
since neither the junction nor the current are homogeneous.

The total Josephson current is given by integraton of J. It is an os-
cillating function of H. Its form is shown in figure 2.8, and has an evident
Fraunhofer-like diffraction pattern; the quantum nature of the Josephson
effect is clear. The role of photons in optical diffraction is taken by super-
conducting electron pairs. The fundamental intuition of de Broglie[!1] is
unavoidably verified by these experimental data.

2.2 Simple model of a tunnel junction

In this section we discuss a simple but realistic model for the Josephson junc-
tion. Its main assumption is that the dynamics can be studied by splitting
the total current into discrete components, which account for diffent physi-
cal phenomena. In a metal, even at zero temperature, not all electrons are in
the Cooper pairs ground state. Some electrons flow resistively through the
junction and contribute with a normal current Iy. A displacement current
Ip has also to be taken into account, for the barrier is insulating and acts
as a capacitor. Finally, there are noise currents Ir. The simplest complete
equation describing the electodynamics of the junction is therefore[12, 18]:

I =1Is(Ap)+ IN(V)+Ip(V)+ Ip(t) (2.21)

The supercurrent Ig can be found applying the first Josephson equation.
The other component will be studied in the following. We note that an easy
equivalent circuit for the SIS junction does exist in our model[l2, 18] (see
fig. 2.3).

It is not obvious that this circuit approximates well a real Josephson
junction. All electrical features of a Josephson junction should be described
by means of a distribute, microscopically justified model. Actually, micro-
scopically derived (like the TJM model[12, 49]) and distributed models[12,
271] of the Josephson junction have been studied. They will not be discussed
here because of their high complexity.
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Figure 2.3: Electric scheme for the discrete model of the Josephson junction. The
components are, from the left the following: purely superconducting
junction (8S), resistor (N), capacitor (D) and noise (F).

2.2.1 Normal current

The normal current is formed by single non-superconducting electrons, which
are driven to tunnel through the junction by a voltage difference across it.
There are two sources for these.

Thermal fluctuations can excite some electrons out of the superconduct-
ing state if their mean energy is comparable with the superconducting state
bond energy of the electrodes, that is kT ~ A(T). The excited electrons
dissipate energy by passing the junction. Since A(T) is a continuous, de-
creasing function of temperature till A(7.) = 0, this mechanism becomes
more important with increasing temperature. There are two simple cases:

e at high temperatures T' ~ T, almost all electrons of the electrodes are
in this excited or normal state, thus the junction basically behaves like
a resistor with resistance Ry := Iy /V;

e if the energy imbalance across the junction exceeds the sum of the
bond energies of both electrodes, AE > A (T) + Agr(T), the super-
conducting electron pairs break up and one electron passes directly
through the junction. If AE is kept constant by an external power
source, all pairs are disrupted in a short time and the junction shows
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again resistive characteristics;

In the other cases, when the two conditions above are not fulfilled, the mod-
elling of Iy becomes more complicated. Historically, different approaches
have been chosen to stress either simplicity or precision. The simplest is the
so-called RSJ model developed by McCumber[!13] and Stewart[14], which as-
sumes that the linear dipendence In (V) = V/Ry holds in all circumstances.
In a successive improvement, proposed by Scott[15], a piecewise-linear ap-
proximation for I is assumed:

1/RL at |V| <Vg,

INn(V)=V x
(V) {1/RN at |V| > V.

where V, := [AL(T) + Ar(T)]/e is the threshold voltage for the second con-
dition above and Ry, is a phenomenological low-voltage resistance (usually
taken between 5Ry and 20Ry[!12, 48]). The precision of the model can be
further increased by choosing for Iy a better function such as:

v _(/vy)"

S T N 7IAT

with n > 1

Alternatively, a numerical model for Iy can be adopted (see sec. 2.3.1).
If the In(V) dependance is not linear, the model is called RSJN model.
Its main disadvantage is its mathematical complexity, for which it is often
necessary to rely on numerical computations.

2.2.2 Displacement current

This component comes from the electrical field established through the junc-
tion because of its insulation. As explained by Likharev([12, 13], it is nor-
mally sufficient to attribute a capacity C' to the junction and accept the
ordinary capacitor equation:

Ip=CV

Since a simple capacitor is basically a high-pass filter, it is clear that Ip
becomes increasingly important for high-frequency signals through the junc-
tion. In the zero-frequency limit, that is when AFE is constant in time, the
displacement current is not present at all.

2.2.3 Noise current

The noise current Ig is intended to describe the varous fluctuations af a
Josephson junction in a Langevin-like fashion. Iy is a random force, whose
origins will be studied qualitatively. For a quantitative formulation of this
issue see e.g. [12].

The noise sources in a junction are thermal noise, shot noise, 1/ f noise,
external noise and quantum noise.
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Thermal noise is generated from the resistive component of the junction
and is of major importance if:

kT > AFE, hw

where AFE is the energy imbalance across the junction and w is the studied
noise frequency.

Shot noise is important if following condition is satisfied:
AE > kT, hw

Its origin is in the finite number of charge carriers (electrons) through the
junction.

Pink or 1/f noise is visible only at very low frequencies. Since the
voltage-frequency conversion of a junction links meV energies with GHz
frequencies, this source can almost always be neglected.

External noise is given by interferences between the junction and the
external world, that is radio and TV stations, electrical transmission lines
and so on.

Quantum noise is of great importance at very high frequencies, that is
when:

hw > kT, AE

and is caused by Heisenberg uncertainty principle for phase and particle
number. It results A(Ap)-A(AN) > 1 where AN is deviation of the electron
number in superconducting state from electrical equilibrium. Although the
very basics of these fluctuations are of quantum nature and can only be
explained by quantum calculations, it has been shown (see [12, 21] and
references therein) that they can be described together with other classical
noises in a Langevin-like way through Ip.

2.2.4 Relative importance of the currents and damping

As written in section 2.2.1, the relative intensity of I and Ig depends on
the voltage across the junction and on the temperature. The higher one
of these parameters (or both), the bigger the contribution of the normal
current. In the resistive limit one finds the normal state resistance Ry and
can therefore define a critical frequency of the junction:

_AE,

- with AFE, :=2el Ry

We -
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The importance of Ip, because of its capacitive character, changes with
the frequency. Defining the RC-frequency as:

1
WRC = RnC

and the plasma frequency of the junction as:

1/2
Wp 1= (wRC . wc>

it is possible to show[12, 14] following relations:

ID,?,IS if wap and
Ip 2 In if wZwre

At very high frequencies the capacitive part of the current is the most im-
portant. However, one must consider that a Josephson junction can not
operate at frequencies higher than w. because of its inner relaxation times.
A typical value for w./27 is around 10'? Hz.

The dynamics of a Junction can show a more or less capacitive character,
depending on the values of C, Ry and I.. A dimensionless parameter which
describes this feature is the so-called McCumber parameter:

B = (we/wp)® = (2¢/) IR} C
Junctions with 8 < 1 are called highly damped, while junction with g > 1
are referred as lowly damped.

2.2.5 Dynamics equation

The role of the McCumber parameter is clear if we rewrite equation (2.21)
in a different form. Defining the auxiliary variables:
2el.R , I Ir

. t z::I—c and f::IC

and using formulae (2.17) and (2.18), we obtain the dynamics equation for
our junction model:

e  d’e
1= sinO 4+ — — 2.22
+ =+ 0z /() (222)
In the high damping limit, the junction shows a very rapid reaction to
external variations. On the contrary, in low damping situations the junction
shows a long transient behaviour. Equation (2.22) is the key mathematical
relation explaining the experimental data of the next section.
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2.3 Experimental data

In this section we see some experimental data collected in 2008 by Teresa
Selistrovski, Georg Kurij, Alexander Opitz, and me at Universitat Tiibingen,
Germany. This work was part of a laboratory-oriented class.

The experimental setup was entirely planned and realized by the research
group of Prof. Dr. Kélle and Prof. Dr. Kleiner. It consisted of a few Nb—
AlO,—Nb Josephson junctions placed on a silicon chip. This probe was
immersed in a liquid helium container at ~ 4 K, surrounded by a liquid
nitrogen bath at ~ 77 K. The junctions were fabricated through standard
trilayer technology, which involves following processes:

e sputtering for Nb layers deposition;
e plasma chemical vapor deposition for SiOs formation;
e photolithography for junction tailoring.

This techique made it possible to store several junction on a single chip. The
junctions had different McCumber parameters. This effect was obtained by
putting different shunt resistances in parallel with the junctions. Here we
analyze three junctions, with 1 > (2 > (3. According to equation (2.22),
their dynamics are expected to be quite different.

2.3.1 -V curves

The following three images refer to current-fed, magnetic field-free Joseph-
son junctions. For the last plot, one of the junction was brought into an
electromagnetic field. The current scan time was around one minute.

In the low-damping case of junction 1, the supercurrent component of
the dynamics equation (2.22) can be safely neglected at any nonvanishing
voltage. In a quasi-stationary situation, the displacement component is also
small. The I-V curve is just that of single electron tunneling. It can also
be acquired with a computer to build a precise numerical model for Iy.
Obviously, at zero voltage the supercurrent is not negligible, because it is
the only contribution left. Our experimental data are shown in figure 2.4.

In the high-damping case of junction 3, it is the capacitive term which
can be cut away from (2.22). The resulting equation can be analytically
solved in the absence of noise (see [12, 92] and references therein):

V(I)= Ry -sgn({) - (12 — 102)1/2
This curve is a signed hyperbole. Our measurements are reported in figure
2.5.
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Figure 2.4: Current-voltage curve for junction 1 (low damping). The zero voltage
peak is a clear manifestation of the DC Josephson effect. The rest of
the graphic shows the In-V dependence, which is strongly nonlinear
for currents I < I..
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Figure 2.5: Current-voltage curve for junction 3 (high damping). The hyperbolic
shape of the curve is clearly visible. The DC Josephson peak is also
present.
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In the intermediate case of junction 2, the dynamics equation has to
be solved numerically. At a qualitative level, an intermediate behaviour
between figures 2.4 and 2.5 is expected. This is exactly what we observed
in our experiment, as illustrated in figure 2.6.
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Figure 2.6: Current-voltage curve for junction 2. The quasiparticle curve is ob-
servable down to currents smaller than I.. At some point, depending
on [, the curve is numerically predicted to approximate the hyper-
bolic shape. This is not visible in our figure because of the lack of
experimental points in that region.

Figure 2.7 is a plot of the I-V curve of a Josephson junction irradiated
through a microwave elentromagnetic field. The theoretical prediction of
equation (2.16) is confirmed.

2.3.2 [-H curves

We have also measured the current vs magnetic field behaviour predicted by
spatial integration of equation (2.20). As explained in the previous section
2.1.5, a diffraction pattern is observed. The curves of the three junctions are
very close to each other. This is in accordance with the theoretical result of
(2.20), in which the McCumber parameter does not play any role.
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Figure 2.7: Current-voltage curve for a Josephson junction in a microwave electro-
magnetic field. The Shapiro steps are evident.

0000207 * First junction
0,00018 - Second junction

] - Third junction
0,00016 ~ /\
0,00014 ~

0,00012 4
0,00010
0,00008

0,00006

Current [A]

0,00004 -

0,00002 4

0,00000

-0,00002 ' . . . : . , .
-0,10 -0,05 0,00 0,05 0,10

Coil current [A]

Figure 2.8: Josephson junction immersed in a magnetic field, generated through a
large-current coil. This is the coil current-junction current curve. The
diffraction pattern is evident.
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Chapter 3

Applications and recent
progresses

The junctions studied by Josephson[?] were tunnel junctions. In these
junctions the barrier consists of an insulating layer!, whence their name
Superconductor-Insulator-Superconductor (SIS) junctions . It is possible to
build other types of junctions, called in general weak links. Nowadays, the
name “Josephson junction” is used as well to indicate a weak link. There
are many kinds of weak links, for instance Superconductor-Normal metal-
Superconductor (SNS) and even more complex structures (SNIS, SINIS,
etc.). Their phenomenology is generally more complicated and worse known
than that of the SIS. After the discovery of high-T. superconductivity[16],
many studies on high-T, weak links have been made. The same is true
for Superconductor-Ferromagnet-Superconductor or SFS junctions (see e.g.
[17)).

It is impossible, in this thesis, even to touch those topics, because of
both an extremely rich phenomenology and absence of a general theory.
In the following, a brief summary of the most important applications of the
“classical” SIS junctions is presented. The last paragraph is a short overview
of Josephson-like phenomena recently found in other quantum fluids, i.e.
superfluids and atomic gases.

3.1 Applications of the Josephson effect

The Josephson effect is certainly a stimulating topic of research in both ex-
perimental and theoretical physics, but also a source of widely used practical
applications. A short but impressively dense review on the subject can be
found in [18].

!The insulator is typically an oxide like A1O or NbO.
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Figure 3.1: Schematic representation of a superconducting loop and a DC-SQUID.

3.1.1 SQUIDs

An important application is the Superconductive QUantum Interference De-
vice (SQUID). It is essentially a superconductive ring with one (AC-SQUID)
or two (DC-SQUID) Josephson junctions.

Basic principles of the SQUID

The basic idea of the SQUID is that the phase of the wavefunction of the
Cooper pairs is a function of the experimental parameters, i.e. it is single-
valued. Since the domain of the phase function is topologically not trivial?
and the same holds for the superconducting ring, it is possible that the phase
always increases along the ring.

Let the ring initially be made by a bulk superconductor. Defining the fluz
quantum ®g := h/2e and recalling equation (1.8) we can integrate the phase
gradient over a closed loop in the ring, obtaining:

27 m
nmw %Vgp d By {7{ d +%2€2p'] d}

2because of the identification ' = 72" with n € Z.
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whence it follows:

where ® := ®yeom + Li, Pyeom is the geometric magnetic flux inside the loop,
L is the ring inductance and i is the circulating supercurrent®.

Now let the ring be interrupted by, say, two Josephson junctions*. Equa-
tion (3.1) becomes:

@1 — @2 =2nm — 2371'
P

where we used the gauge invariant phase differences of the two junctions.
This result is very important, since it links the magnetic flux inside the
loop to the phases of the junctions and ultimately, via (2.17) and (2.21), to
the total currents across them. Applying the RSJ model to the junctions
and biasing the junctions with a current slightly greater than the critical
supercurrent I., it is possible to show[9, 408] that the voltage response to
small variations of the magnetic field is given by:

R
Vi~ —§Pieom
0 2L5 g

The sensitivity of this instrument is very low. Typical values are R ~ 1
and L ~ 1079 H, which give a final sensitivity of ~ 1uV/®.

At present they still are, together with SERF magnetometers, the most
sensitive technique to measure small magnetic fields[19].

Applications of the SQUID

The SQUID is an extremely versatile instrument. Firstly it has been used
for long time to measure extremely small variations of magnetic fields, for
instance in magnetotellurics[20].

Moreover, through magnetic coupling with an external circuit it can be
used as an efficient low-signal galvanometer, voltmeter, ohmmeter (e.g. [21],
[22]).

Thanks to their sensitivity and non-invasiveness, SQUIDs found many
applications in medical diagnostics. SQUIDs have been used to monitorate
brain activity as a complementary method to EEG (see e.g. [23]). They have
found also application in cardiology, where MagnetoCardioGraphy (MCG)
has the chance to accompany or perhaps substituting ECG. In basic re-
search, they have achieved quite impressive results (see for instance [21]).
On the contrary, in clinical environment, SQUID-MCGs are not so widely
diffused[25].

Finally, SQUIDs have been successfully applied in the field of nonde-
strictive evaluation (NDE), for instance to study the almost dc corrosion

3We used Stokes’ theorem to derive this result.
“In the following we analyse the DC-SQUID. At this level, the discussion of the AC-
SQUID is very similar.
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currents of materials. Their extremely high sensitivity over a wide range of
frequencies makes them unparalleledly suitable instruments for this task[20].

3.1.2 Flux quantum and voltage standard

We have seen that a Josephson junction shows DC-energy steps, i.e. voltage
steps, when an oscillating energy difference with the right frequency is super-
posed. In this sense a junction can be seen as a voltage-frequency converter.
The conversion coefficient is ®; ' (see (1.6) and (2.16)). Tts most remarkable
feature is that it depends only on universal constants. Since the environ-
mental variables (magnetic field, junction dimensions, etc.) are not relevant,
it can be measured in different places by different people. Moreover, it can
be determined with a high degree of accuracy by means of frequency and
voltage measurements.

Alternatively, by having a frequency standard and the value of ®q, one
can establish a voltage standard. This is a significant progress, because
frequencies can be measured and transmitted among different laboratories
with relatively east-to-implement technologies. The main technique adopted
before 1972 was that of Weston cells, which were difficult to transport.
Their voltage output showed also a time drift. Hystorically, the discovery
of Josephson junctions contributed to determine a readjustment of the fun-
damental constants in 1969[27]. More recently, single Josephson junctions
have been replaced by arrays because of their higher accuracy, achieving
in the last years a mutual agreement between national standard institutes
better than 1079[25].

In the last years, arrays of Josephson junctions are also studied for “accu-
rate and traceable measurement and generation of alternating (AC) voltage
with arbitrary waveforms”[29].

3.1.3 Josephson computer technology

Well before 1962, scientists had already dreamed about logic circuitery based
on superconductors. A first breakthrough in this field was the development
of the cryotron[30], a device based on the superconductivity phase transi-
tion, controlled with magnetic field. The main problem of this approach was
the relatively large time (~ 10us) needed to switch the device between the
superconducting and the normal state. A solution was found soon after the
publication of Josephson’s article by Matisoo, in 1967. The key idea was the
exploitation of the transition between zero-voltage and resistive states in a
tunnel junction. The total current is always given by tunneling particles,
respectively Cooper pairs and single electrons, and the junction dimensions
are very small; the switching time is reduced by orders of magnitude. Mati-
800 also built up a pioneering Josephson digital circuit element, a flip-flop,
that showed switching times smaller than 1 ns[31].
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Matisoo worked for the leader corporation in computer technology at
that time, i.e. International Business Machines Corporation (IBM). IBM
was very interested in developing a possible Josephson digital system; Mati-
so00’s article was in fact one of the first results of a research program on the
topic, started in 1964. Josephson digital circuits show at least three main
advantages:

1. very fast switching;
2. extremely low power dissipation;

3. very low temperatures, which allow use of superconducting strip lines,
and reduce all temperature-dependent deterioration phenomena (cor-
rosion, diffusion, electromigration);

IBM program culminated in 1980, when a dedicated issue of IBM Jour-
nal of Research and Development was devoted to this subject[32]. A review
of the 1980 state-of-the-art physics and technology of Josephson logics is
available in [33]. Tt is very interesting to quote some passages of the intro-
ductory report of Anacker[34], which are exemplifying of many other papers
of that period:

Josephson LSI® digital circuits have the potential for outperform-
ing Si and GaAs semiconductor LSI circuits in both circuit speed
and overall system performance. Such devices have in fact excel-
lent potential for the realization of reliable computer mainframes
with ultrahigh performance. [...]

This range of processor cycle times, combined with current com-
puter architecture, could provide mainframes with 10- to 100-fold
higher computing rates than that of an IBM 3033 mainframe sys-
tem. [...]

If the hypothetical mainframe were implemented with semicon-
ductor technology as used in the IBM 3033 system, it would
dissipate (even with only 8M bytes of main memory) about 20
kW of power, an amount impossible to extract from such a small
volume with today’s cooling technology. [...] The hypothetical
ultrahigh-performance mainframe® is, in contrast, estimated to
dissipate less than 10 W when constructed with future Josephson
circuit chips [...] This amount of heat could readily be extracted
[...] by immersion of the packaged mainframe in a liquid helium
bath. It appears, therefore, that Josephson technology may, at
present, be the only one with potential for construction of main-
frames of the ultrahigh performance defined previously.

®Large-Scale Integration.
5Based on Josephson junction technology.
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Clearly, an enthusiastic mood permeated the considerations of Anacker and
colleagues. However, nowadays superconducting computers are considered
practically deprecated technology. The turning point of the scientific and
economic trend is easy to identify with the help of the following graph,
adapted from Hennessy and Jouppi[35].
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Figure 3.2: Performance against time for various types of computers. The expo-
nential growth of the microprocessor performance is clear.

The killer technology of Josephson computer was the microprocessor. As
many other exponential growths, Moore’s law had been initially understi-
mated; around 1985, the evolution of the microprocessor was so fast and
well predictable that all concurrent technologies were practically abandoned.
Until the first 90s, attempts were made to compare semiconductor- and
superconductor-based computer technologies, and to hybridate them (see
e.g. [30]). These attempts have failed so far, primarly because of market-
economic reasons but also for intrinsic physical limits of Josephson technol-
ogy. Excellent manufacturability and shorter design cycles of silicon chips
makes them much more attractive, for a hypothehic investor, than super-
conducting chips, whose mass production feasibility has never been tested.
Moreover, silicon technology has achieved extremely high levels of integra-
tion, that are probably impossible to obtain with Josephson technology,
because of fundamental physical reasons:
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Information storage in Josephson memories is achieved by stor-
ing a flux quantum ®( [...] in a superconducting loop. This
requires [...] a minimum size to the storage loop. A number
of practical and theoretical considerations conspire to impose a
limit of the order 1 mA as the maximum critical current I, of
a Josephson device in such circuits. The inductance per unit
lenght of the superconducting lines cannot be made much larger
than about 5 x 1078 F/m for low impedance lines placed above
a superconducting ground plane. Since ®¢ ~ LI. where L is the
total loop inductance, this simple argument demands a loop area
of the order of 1,000 square microns. Actually cell areas must be
larger, to prevent interactions between cells and to accomodate
address and sense lines[36, 2308].

For these reasons, large-scale production of superconducting computer has
never started. Nowadays, silicon industry is dominating the market. Im-
provements in computer technologies are positively or negatively evaluated
according to their compatibility with silicon technology. Integration with
silicon is one of the key advantages of other technologies, like photonics.

Nevertheless, in the very last years Josephson circuits have regained
interest, at least at the basic research stage, in the context of ¢bit computers
(e.g. [37] and references therein).

3.2 Josephson-like effects

In the last years, enhancements in experimental techniques have allowed
observation of Josephson-like effects in other quantum fluids than electrons.
This is also theoretically very interesting, for it opens converging scenarios
for superconductivity and other fields of basic research.

Equations (2.3) and (2.4) are very general. In our discussion, we at-
tributed ¥ to Cooper pairs. As a matter of fact, the whole theory could
be used, say, for a Bose Einstein Condensate, provided that one is able to
couple two BECs with a somehow insulating barrier. The advantages of
this analogy are several. It provides a further confirmation of the general
principles of quantum macroscopic effects (see section 1.3.3). Even more
important, it could be exploited to prove theoretical predictions in difficult
fields like Hi-T. superconductivity, starting from the better-known theory
of quasi-non-interacting atomic gases.

In the following, we discuss two kinds of systems that show quantum
macroscopic effects, in particular Josephson-like effects: superfluid liquids,
and trapped atomic gases.
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3.2.1 Superfluid liquids

Superfluidity and superconductivity show many common features. For an
extensive introduction to this topic, see [33]. Liquid superluidity is a phe-
nomenon of low-temperature physics of liquids. Below a certain transition
temperature, some liquid media show uncommon features. They can flow
through very thin passages without any friction. Moreover, when one tries
to make them rotate, they stay perfectly still. All properties of superflu-
ids can be explained by assuming that some atoms condens into the same
quantum ground state. This is basically the same behaviour of electrons
in a superconductor, except for the neutrality of atoms. One thus expects
superfluids to show coherent phenomena, as superconductors do, and among
them the Josephson effect.

Superfluids can be divided in two classes, depending on the number of
elementary particles composing every atom:

1. if it is even, atoms are complex’ bosons. According to the theory of
Bose-Einstein, they can directly gather into the ground state;

2. if this number is odd, atoms are complex fermions, and they form a
bound ground state through pairing, exactly like electrons in super-
conductors.

The most studied liquid superfluid is helium, because it is the easiest
to obtain in experiments. Helium can be found in two isopotes, *He and
4He, the former being a complex fermion, the latter a complex boson. A
characteristic shared by both isotopes of helium is electric neutrality. A
voltage difference is not very effective on helium atoms, aside from multi-
pole electromagnetical moments of neutral atoms. The driving force of the
Josephson-like junction is, for neutral liquids, mechanical pressure. A su-
perfluid junction is realized as follows. Some amount of liquid is pushed
towards a wall with one or more small orifices. The orifices roughly behave
for atoms like an insulating barrier does for electrons.

A first problem in the realization of a complete Josephson-like junction is
that the wavefunction of a superfluid is coherent only for very short lenghts
(~ nanometers), and it is very difficult to build so small holes. Moreover,
atoms in a liquid present very complicated interactions, like many-body
forces. A satisfactory theoretical picture is still lacking, and doing exper-
iments without it is difficult. Experimental observations of Josephson-like
effects in superfluids has been made, both for *He[39] and *He[10]. A
superfluid analog of a DC-SQUID has been built recently by Packard et
al.[11]. The theory of superfluid Josephson-like junctions has been reviewed
by Thuneberg[12].

"We use the word “complex” to stress that atoms, similarly to Cooper pairs, are not el-
ementary bosons. As a consequence, their behaviour at very high temperatures is different
from that of, say, a photon, because they disintegrate.
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3.2.2 Trapped atomic gases

The phenomenon of Bose Einstein Condensation (BEC) is the occupation
of the ground state of a many-particle system by a macroscopically large
number of particles. Its most studied realization, in the last years, has been
in the field of atomic gases. The reason of this success is twofold. First of all,
interactions among atoms in a neutral gas are weak, and their dynamics can
be theoretically predicted through perturbative methods. Moreover, atomic
gases can be spatially and energetically controlled by means of magnetic
and optical traps. These allow experimental physicists to achieve extremely
low temperatures, providing suitable conditions for observation of collective
quantum phenomena (see section 1.3.3). The first successful realization of
BEC in trapped atomic gases dates 1995[13].

A simple analogy can be established bewteen superconductors and atomic
gases. In first approximation, an electric supercurrent is nothing but a free
cloud of bosonic quasiparticles, i.e. the Cooper pairs. It behaves similarly to
a gas of bosonic atoms in the ground state. There are two families of trapped
atomic gases. The first is that of Bose gases, among which the most widely
used is 8"Rb. Every single atom is formed by an even number of elementary
particles of half-integer spin, therefore it is a complex boson. The second
family is that of Fermi gases like SLi. The total number of elementary par-
ticles composing such an atom is odd, and the atom is a complex fermion.
At very low temperature, fermionic atoms condens into pairs, exactly like
elementary fermions. In fact, these pairs are also citied in the literature as
“Cooper pairs”. Bose gases are simpler to study than fermi gases, because
the transition temperature for the BEC is significantly higher.

In fact, the theory of chapter 2 is not specific for superconductors and
can be easily adapted to atomic gases (see e.g. eq. (2a) and (2b) in [11]).
The main difference is that Cooper pairs in superconductors are electrically
charged, while atomic gases are not. The mechanisms providing spatial
and energetic confinements are different. The driving force of a gaseous
Josephson-like junction is obviously not a voltage difference, but rather a
chemical potential difference, originated through magnetic fields or laser
detunings.

Bose gases

Two main experimental setup have been extensively studied: optical lattices
and double-well potentials. In the first situation, atoms are trapped in a
periodic potential. They are forced to stay on several equally spaced sites
of a lattice, which is usually one-dimensional. Between two sites, an optical
potential barrier plays the role of “insulator”, analogously to the oxide layer
in a normal SIS. Experimental observation of the a.c. Josephson effect in
this geometry has been claimed by Inguscio et al. in 2001[15].
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The double-well geometry has a basic advantage. It allows one to build a
single Josephson junction, rather than an array. Modularity is usually a key
component in technologic progress. For instance, realization of two single
junctions is a necessary condition for an atomic equivalent of the SQUID. In
2005 Oberthaler et al. reported the first successful realization of the Joseph-
son effect in a double-well potential[1(]. Figure 3.2.2 is taken from the same
article; oscillations of the gas between the two wells are clearly visible. More
recently, Steinhauer et al. pointed out that alternating currents seen in [10]
are not a direct observation of the a.c. Josephson effect, but rather a corre-
lated phenomenum called plasma oscillations. Briefly explained, the phase
difference between the condensates in the two wells is not a monotone func-
tion of time, as in the a.c. Josephson effect at constant voltage difference,
but rather oscillates around its equilibrium value. The authors also claimed
to have succeded in the first realization of a single bosonic Josephson junc-
tion, and in the first observation of a.c. and d.c. Josephson effect in bose
gases[17]. This result is reported in figure 3.2.2, which has to be interpreted
as follows. The vertical axes represents the population imbalance between

the wells:
1

n:= 5 (L~ PR)

Its derivative 7 is the non-electric analog the the Josephson current density
of equation (2.12). As a matter of fact, we could choose the same variable
in our discussion, for it holds:

IpL Ipr IpL .
T e = J::2€W:2€’I’]
Assuming approsimation (2.11), this current is a sinus. Neglecting all other
current density components because of the experimental setup of [17], its
primitive function has to be a cosinus, which is basically the curve observed
in figure 3.2.2.

At the present state of research, physicists are trying to realize a gaseous
version of the SQUID. Experimentally, this is a very demanding task, be-
cause of the complex trap geometry. It is necessary to merge one or two

double well potentials into a ring-shaped trap, respectively for the AC and
DC SQUID.

Fermi gases

A similar topic of intense research is Josephson-like effects in cold atomic
Fermi gases. The state-of-the-art experiments have not succeded yet in
observing directly a Josephson-like effect. Theoretical studies have been
published by several authors (e.g.[18][19]). Practical methods to achieve
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Figure 3.3: Josephson oscillations in an atomic bose gas. The experimental setup
is the double well potential. Data adapted from Oberthaler et al.[10].
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Figure 3.4: Population imbalance n vs time in a double-well potential trap, for a
gas of 8"Rb. As discussed above in the text, the AC Josephson effect
is the small modulation of 7(t) o cos(wa,/nt). Their frequencies are
determined by the chemical potential difference Au. According to the
authors, the slope of the curves is due to imaging losses. Data adapted
from Steinhauer et al.[17].
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Josephson oscillations have also been developed[50]. In the last year, nu-
merical methods to simulate Josephson oscillations have been studied[51].
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Summary

This work aims to be a simple, yet extensive introduction to the Josephson
effect. The origins of the effect were investigated at the beginning, and the
problem of phase decoherence was explicitely addressed. It was shown that
superconductivity is a coherent macroscopic phenomenon. Then the two-
state theory of the Josephson effect was presented. The simplest model of a
Josephson junction was introduced, and its predictions were verified by our
experimental data. The most relevant applications of the Josephson effect
were discussed, among them computer technology based on Josephson junc-
tions. Finally, the generality of the Josephson theory could be appreciated.
Analog effects in superfluids and cold atomic gases were reviewed, and recent
experimental data, which confirm the theoretical predictions, were shown.
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