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Engineering MEMS Resonators With Low
Thermoelastic Damping

Amy Duwel, Rob N. Candler, Thomas W. Kenny, and Mathew Varghese

Abstract—This paper presents two approaches to analyzing and
calculating thermoelastic damping in micromechanical resonators.
The first approach solves the fully coupled thermomechanical
equations that capture the physics of thermoelastic damping
in both two and three dimensions for arbitrary structures. The
second approach uses the eigenvalues and eigenvectors of the un-
coupled thermal and mechanical dynamics equations to calculate
damping. We demonstrate the use of the latter approach to identify
the thermal modes that contribute most to damping, and present
an example that illustrates how this information may be used to
design devices with higher quality factors. Both approaches are
numerically implemented using a finite-element solver (Comsol
Multiphysics). We calculate damping in typical micromechanical
resonator structures using Comsol Multiphysics and compare the
results with experimental data reported in literature for these
devices. [1595]

NOMENCLATURE

Variable Physical Definition

Young’s modulus.

Coefficient of thermal expansion.

Nominal average temperature (300 K).

Density of solid.

Specific heat capacity of a solid.

Heat capacity of a solid .

Thermal conductivity of a solid.

Mechanical resonance frequency.

Characteristic time constant for thermal

mode .

Stress.

Strain.

, Elastic Lamé parameters.

Temperature.

Entropy.

Components of displacement in , , and

directions respectively.

2-D vector of mechanical displacements.

Mechanical mode amplitude.

Mechanical eigenmode shape function.
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Mechanical resonant frequency for

eigenmode .

Thermal mode amplitude .

Thermal eigenmode shape function .

Characteristic frequency of dominant

thermal mode.

Energy lost from mechanical resonator

system.

Energy stored in mechanical resonator.

I. INTRODUCTION

M
ICROMECHANICAL resonators are used in a wide va-

riety of applications, including inertial sensing, chemical

and biological sensing, acoustic sensing, and microwave trans-

ceivers. Despite the distinct design requirements for each of

these applications, a ubiquitous resonator performance param-

eter emerges. This is the resonator’s Quality factor ( ), which

describes the mechanical energy damping. In all applications, it

is important to have design control over this parameter, and in

most cases, it is invaluable to minimize the damping. Over the

past decade, both experimental and theoretical studies [1]–[6],

[9], [22] have highlighted the important role of thermoelastic

damping (TED) in micromechanical resonators. However, the

tools available to analyze and design around TED in typical mi-

cromechanical resonators are limited to analytical calculations

that can be applied to relatively simple mechanical structures.

These are based on the defining work done by Zener in [7], [8].

Zener developed general expressions for thermoelastic

damping in vibrating structures, with the specific case study

of a beam in its fundamental flexural mode. In [8], Zener’s

calculation was based on fundamental thermodynamic expres-

sions for stored mechanical energy, work, and thermal energy

that used coupled thermal-mechanical constitutive relations

for stress, strain, entropy, and temperature. However, in order

to evaluate these energy expressions for a specific resonator,

Zener proposed that the strain and temperature solutions from

uncoupled dynamical equations could be sufficient. He found

the eigensolutions of the mechanical equation, and, separately,

the eigensolutions of the uncoupled thermal equation. By

applying these to the coupled thermodynamic energies, Zener

calculated the thermoelastic of an isotropic homogenous

resonator to be

(1)
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where the physical constants are listed in the Nomenclature,

is the mechanical resonance frequency and is the char-

acteristic time constant of a given thermal mode. This takes into

account the fact that multiple thermal modes may add to the

damping of a single mechanical resonance. The contribution of

a given mode, , is determined by its weighting function, .

Zener explicitly calculated the weighting functions for a

simple beam resonating in its fundamental flexural mode. In

order to make the analysis tractable, he assumed that only

thermal gradients across the beam width (dimension in the

direction of the flexing) were significant. This left only a 1D

thermal equation to solve. Zener found that a single thermal

mode dominated, giving

(2)

Few structures are amenable to the simplifications that led to

(2) for . However, Zener’s expression (1) is quite general. In

Section III, we show how numerical solutions to the uncoupled

mechanical and thermal dynamics of a resonator can be used

to evaluate (1). This adds a great deal of power to Zener’s ap-

proach, since arbitrary geometries can be considered.

We show how Zener’s weighting function approach offers an

intuition into the details of the energy transfer. At the same time,

our results highlight the limits of intuition in identifying the

thermal modes of interest. For example, we find that the simpli-

fication Zener made in assuming only thermal gradients in one

direction along the beam were significant does not capture the

most important thermal mode, even for a simple beam. In ad-

dition, past efforts to estimate without explicitly calculating

the weighting functions have been shown [9] to greatly overes-

timate the damping behavior of real systems. This “modified”

interpretation of Zener’s method can be misleading.

In this paper, we describe a method for using full numerical

solutions to evaluate using Zener’s approach. We call this

a “weakly coupled” approach. We also present our numerical

method for solving the fully coupled thermoelastic dynamics

equations to calculate for an arbitrary structure. Using numer-

ical solutions in the weakly coupled approach offers powerful

guidance in engineering around thermoelastic damping, while

fully coupled solutions offer the ability to precisely evaluate and

optimize the thermoelastic of a resonator.

II. NUMERICAL SOLUTION OF THE FULLY COUPLED TED

EQUATIONS

The coupled equations governing thermoelastic vibrations in

a solid are derived in [19]. Section II-A outlines the basic prin-

ciples of this derivation. Section II-B highlights modifications

required for a two–dimensional (2-D) plane stress formulation.

The full 2D and 3D equations are written explicitly so that they

are accessible to the user community. We numerically solve the

2- and 3-D dynamical equations using the finite-elements based

package Comsol Multiphysics [11]. The Comsol implementa-

tion is described in [12] and [13]. This analysis can be applied

to the wide variety of MEMS resonator structures reported in

the literature. It is a useful tool for determining whether TED

limits performance or whether other damping mechanisms, such

as anchor damping [23], should be investigated instead. Sec-

tion II-C demonstrates the application of TED simulations to

a few example MEMS resonator structures. Quality factors are

calculated and compared with the analytical (1) as well as with

experimental measurements reported in the literature.

A. Governing Equations in 3-D

The constitutive relations for an isotropic thermoelastic solid,

derived from thermodynamic energy functions, are in matrix

form

(3)

and

(4)

where reduced tensor notation has been used, and the variables

are defined in the Nomenclature.

To obtain the coupled dynamics, the constitutive relations are

applied to the force balance constraints and Fourier’s law of heat

transfer. Force balance in the -direction gives

(5)

with similar relations for the - and -directions.

Substituting displacement for strain and simplifying, the 3-D

equations of motion become

(6)

(7)
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(8)

To obtain the thermal dynamics, we apply Fourier’s law

(9)

The constitutive relations are applied, and the resulting equation

is linearized around , the ambient temperature, to give, in 3-D

(10)

In summary, (6)–(8) and (10) form a set of coupled linear equa-

tions in 3-D. Since the equations are linear, we can use a finite

elements based approach to solving them on an arbitrary geom-

etry. We solve for the unforced eigenmodes. The generalized

eigenvectors contain , , , and at every node. The eigen-

values, , are complex. The imaginary component represents

the mechanical vibration frequency, while the real part provides

the rate of decay for an unforced vibration due to the thermal

coupling. The quality factor of the resonator is defined as

(11)

B. Governing Equations in 2-D With Plane Stress

Approximations

For long beams in flexural vibrations, we can identify one

axis (we chose to be ) in which all strains are uniform and

no loads are applied. For clarity, we define the x axis along the

beam length and the y axis in the direction of flexing. Along the

-direction , ,and must be zero throughout the structure.

This is essentially a plane stress approximation. When

is applied to (3) above, we find that

(12)

In the plane stress approximation, the force balance relation (5)

is

(13)

Expanding the stress terms using the constitutive relations,

(14)

Applying (12) to (14), the equations of motion become

(15)

(16)

The linearized temperature equation is:

(17)

We apply (12) and also neglect -directed temperature gradients

to obtain

(18)

In summary, (15)–(16) and (18) form a set of coupled linear

equations in 2-D. In order to find , we solve for the unforced

eigenmodes. The generalized eigenvectors contain , and

at every node.

C. Quality Factor Calculations for Typical MEMS Resonators

The thermoelastic values for several example MEMS res-

onators have been calculated. Table I introduces the resonator

structures and the material parameters used. In Table II, we sum-

marize the simulated values for the various structures. We

compare simulated results to calculations based on (2) where

applicable. We also compare to data reported in the literature. In

some cases, the experimental data appears to have achieved the

thermoelastic limit. For these devices, it is clear that structural

modifications that can engineer a higher thermoelastic limit are

warranted. In devices where the measured value is less than

half the thermoelastic limit, investigation into and minimization

of other damping mechanisms is warranted.

A polysilicon beam resonating in its fundamental flexural

mode was simulated and compared to measurements [9]. In the

experiments, the beam was actually part of a doubly clamped

tuning fork, to minimize anchor damping. For a resonator op-

erating at 0.57 MHz, the measured equaled 10 281. Zener’s

formula (2) predicts 10 300, for the beam at 0.57 MHz and

with ( beam width in the direction of

flexural motion, and ). The simulations used only

a single clamped beam, with dimensions matching the beam of

the tuning fork. The simulated frequency was 0.63 MHz and

the simulated TED . This remarkable correlation

between simulation results and experiments suggests that the

flexural beam is limited by thermoelastic damping. Higher
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TABLE I
SUMMARY OF PARAMETERS USED IN Q SIMULATION AND CALCULATIONS FOR A LONGITUDINAL RESONATOR

TABLE II
SUMMARY OF SIMULATED Q VALUES FOR A SELECTION OF MEMS RESONATORS. SIMULATION RESULTS ARE COMPARED WITH CALCULATIONS BASED ON

ZENER’S SINGLE-MODE APPROXIMATION AND MEASURED RESULTS REPORTED IN THE LITERATURE

thermoelastic might be achieved by geometry modifications

as explored in [9] or by fabricating a given structure from dif-

ferent materials as explored in [6].

A capacitively actuated, longitudinal mode

resonator was modeled and simulated based on geometry

information provided in [15] and material properties reported

in [14], [24]. 4 4 anchors were included in the

simulation, with fixed boundary conditions at the ends of the

anchors. Quévy et al. report the measurement of 2863 for

the fundamental longitudinal mode of a bar resonator. Equation

(2) was not applied to calculate the analytical , since the

derivation was for flexural modes only. We find that the TED

is two orders higher than the measured . This suggests

that thermoelastic damping, for the fundamental longitudinal

mode, is not a significant contributor to the overall energy loss

in this resonator. Other mechanisms, such as anchor damping,

are being optimized by this group with tangible impact on

being reported [25].

A second longitudinal resonator was also simulated. The de-

vice described in [20] is single crystal silicon, and its resonance

length of 290 far exceeds its other dimensions. This res-

onator is also capacitively actuated and operates at 14.7 MHz.

The measured is 170 000, while the simulated thermoelastic

is an order of magnitude larger. This device also does not ap-

pear to be thermoelastically limited.

A paddle resonator operating in its torsional resonance was

simulated. The simulation model was based on the nonmetalized

SOI device described in [16]. Fixed-fixed boundary conditions

were applied to the ends of the tethers. The simulated resonant

frequency was about 20% lower than the measured torsional

frequency. The value of Young’s modulus used in the simula-

tions was on the high end of values reported in [17], so is un-

likely to explain the discrepancy. Analytical calculation of the

torsional frequency using [18] given a total torsional stiffness

of 9.4 for the beams, and a second moment

of inertia of 1.3 for the plate yields 4.3 MHz,

within 3% of the simulated result. The discrepancy between the

measured frequency and the theoretical frequencies may be the

result of fabrication induced variations in the sample dimen-

sions. Evoy et al. reported experimental values in the range

of 3300 for room temperature measurements, while the simu-

lations predict thermoelastic values of 200 million. The sim-

ulated result is consistent with the physical understanding that

torsional deformations produce little or no volumetric expansion

and should therefore have negligible thermoelastic damping.

Finally, the flexural mode polysilicon beam with a center

opening described in [21] was simulated. The case with a beam

length of 150 and width of 3.5 was considered. Since the

material parameters of the device were not available, we used

the polysilicon values of [9]. Though the center opening dimen-

sions were not provided, the SEM indicated that the slit was

extremely narrow. Using Comsol Multiphysics, the narrowest

slit we were able to model was 0.1 wide, centered in the 3.5

beam width. The slit was also centered in the 35 beam

height, spaced 2 from top and bottom. The measured was

5600, while the simulated TED limited was 26 000. This sim-

ulated dropped to 25 000 for a solid polysilicon beam at the

same frequency. We also simulated a wider slit, and found that

the went up to 26 200 for a slit 0.35 wide. This suggests

that at this frequency, the polysilicon beam has a TED limited
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that starts at 25 000 and can be increased with an increas-

ingly wider slit. The experimental reference may have had a

narrower slit than we were able to model, but the simulations

were useful in bounding the TED limited between approxi-

mately 25 000–26 000, and in identifying the trend. The TED

is about 4.5 times higher than the experimentally measured .

Though the device does not appear to be TED limited, thermo-

elastic damping is clearly important in this device and can still

be optimized.

III. WEAKLY COUPLED APPROACH TO TED SOLUTIONS

Thermoelastic damping in MEMS resonators can also be cal-

culated via a weakly coupled approach proposed by Zener. This

approach uses eigenvalue solutions to the uncoupled mechanical

and thermal equations [8]. We show how to numerically imple-

ment Zener’s approach so that structures more complicated than

a solid beam can be studied. While the fully coupled numerical

analysis of Section II is much more accurate, we emphasize that

Zener’s approach can offer design insights that might not oth-

erwise be possible. Sections III–A–III–D describe the analysis.

For simplicity, the formulas in this section are written for the 2

–D case and use vector notations, with , where and

are the displacements in the and directions, respectively.

In Section III–A we introduce time-harmonic modal expan-

sions for the mechanical and thermal domain solutions. Both the

thermal modes and the mechanical modes of a given structure

can be found numerically by eigenvalue analysis, assuming no

thermoelastic coupling. Section III–A shows how to calculate

the relative thermal mode amplitudes that are driven by the one

mechanical mode. Sections III–B–III–C introduce two expres-

sions for the energy loss per cycle. In Section III–B, the me-

chanical energy loss as a function of mechanical and thermal

modes is derived. By energy conservation, this is equal to the

energy transferred to the thermal domain. In Section III–C, the

energy coupled into the thermal domain is taken directly from

[8], where the net heat rise is derived in terms of the entropy

generated per cycle. The expressions for energy lost per cycle

in Sections III–B and III–C can be evaluated directly from the

modal solutions obtained numerically. Though it is not obvious

upon inspection that the two expressions are algebraically iden-

tical, energy conservation requires that they are equal. We have

validated this numerically for isotropic solids, and [8] provides

an algebraic proof for solids with cubic symmetry.

In Section III–E, we apply the weakly coupled formulation

to the cases of a solid beam and two versions of a slotted beam.

We describe insights gained by studying the modes obtained in

the weakly coupled approach. In each example, we compare the

value found with the calculated through a fully coupled

analysis. A thorough experimental study of the slotted beam

is referenced [9], where TED calculations are compared with

experimental measurements over a wide range of frequencies.

A. Modal Solutions to Thermal and Mechanical Systems

Zener first identified the mechanical resonant mode of in-

terest, and assumed a sinusoidal steady state of the form

(19)

This is the eigensolution to the vector version of (15)–(16),

without the thermal coupling term. is a real valued

modal shape function, is the mode amplitude, and is

the mechanical resonant frequency. Note that the shape func-

tions and frequencies can be found numerically using either

Comsol Multiphysics or another commercially available soft-

ware package.

Spatial variations of strain caused by the mechanical vibra-

tion generate thermal gradients that are captured by the driven

thermal equation.

(20)

where captures the combination of constants written explic-

itly in (17), and where the term of order is neglected. For

simplicity, we also limit our study to one mechanical mode at a

time, and

(21)

This equation is solved as a function of the mechanical reso-

nance amplitude . Applying separation of variables, the

response to a drive at frequency is

(22)

The functions are the real-valued spatial eigenmodes

of the undriven thermal equation and are the complex modal

amplitudes. To find the modal amplitudes, we apply the orthog-

onality of the eigenmodes . The expansion (22) is sub-

stituted into (21). Multiplying (21) by and integrating over

the volume, we obtain

(23)

with

(24)

(25)

The absolute magnitude of from (23) can be used

to assess the effective coupling of mechanical modes into the

thermal domain.

To calculate the mechanical quality factor, we first have to

calculate the energy lost by the mechanical system per radian,

or equivalently, the energy gained by the thermal system per

radian.

B. Energy Lost From Mechanical Domain

The energy lost from the mechanical domain, per radian, is

(26)

in 2–D, where . Stress in the above equa-

tion is expanded as a function of strain and temperature using

(3). The strain is expressed in terms of the modal amplitude
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and shape function. This expansion is further simplified by rec-

ognizing that only the temperature dependent terms produce

nonzero integrals over one cycle. Integration over time yields

(27)

where each term in this sum corresponds to the energy

dissipated by the thermal mode.

The thermal component of stress that is out of phase with the

strain damps the vibration and this term may be identified in the

first bracket in (27). The second bracket is the strain.

C. Energy Transferred to Thermal Domain

The expression for energy gained by the thermal domain per

cycle is derived in [8] to be

(28)

The term is replaced by its Taylor expansion

where it is assumed that the driven modal amplitudes are small

relative to the ambient temperature. Only the latter term in this

expansion produces a nonzero integral over one cycle, so that

(29)

Where is the thermal conductivity in Joules/(Kelvin-second-

meter). Expanding using (22) and (23), it may be shown that

(29) reduces to

(30)

D. Weakly Coupled Quality Factor Calculation

The maximum stored energy in the 2–D mechanical system

is given by

(31)

where the integral is evaluated at the maximum mechanical am-

plitude.

This integral may be evaluated directly for a given mode

shape by substituting (3) for stress with the appropriate 2–D ap-

proximations ( ). The of the device is then

calculated by

(32)

where is an effective corresponding to the th thermal

mode. In applying (32) to calculate , can be found from

either (27), the expression for mechanical energy lost, or (30),

the thermal energy gained. These expressions can be shown to

be equivalent.

This analysis shows that we can use numerically calculated

modal solutions of uncoupled thermal and mechanical equations

to calculate the . For simplicity, we restricted our analysis to

a single mechanical mode of interest. We considered that pos-

sibly many thermal modes would contribute to damping in the

system. The individual terms in the sum (32) for can be used

to identify the thermal modes that contribute most to damping

and evaluate their relative weights.

E. Using Weighting Functions to Optimize a UHF Beam

Resonator

Fig. 1 shows the calculated values for a range of thermal

modes in a beam. The beam is assumed to be in its fundamental

flexural resonance, at frequency 0.63 MHz. The frequency and

mode shape were found numerically. The first forty thermal

modes were also found numerically. Using the approach de-

scribed in Sections III–A–III–D, we evaluated the thermoelastic

damping associated with each mode. The Comsol Multiphysics

module was used to evaluate the overlap integrals in (23)

that are needed to evaluate in (27) or (30). The total ,

based on forty modes in (32), was found to be 10 400. The

calculated in a full TED simulation as described in Section II–B

was 10 200. The weakly coupled calculations show that this

damping is dominated by the contribution of a single mode,

whose thermal eigenfunction is shown in the inset. This mode

at 0.605 MHz gave 11 000. Interestingly, the temperature

distribution of this mode is not uniform along the beam axis.

Though Zener’s original approximation assumed that dominant

thermal mode had no variation along the beam axis, we find

that the uniform mode, also shown in Fig. 1, has a high

6 250 000.

After observing the thermal distribution of the dominant

thermal mode, we consider the effect of placing slots in the

beam. The slots, proposed originally in [9], are designed to alter

the dominant thermal mode without significant effect on the

fundamental flexural mode frequency. Fig. 2 shows plots the

values for the solid beam from Fig. 1 next to the results for a

slotted beam. The slots had the effect of modifying the thermal

eigensolutions and characteristic frequencies. In the slotted

beam, many more thermal modes contribute to the damping of

the structure. On the other hand, the thermal modes with the

greatest spatial overlap are moved to much higher frequencies,

minimizing their overall effect on damping. In this beam, the

slots had the effect of raising the total value by a significant

factor of 4.

If the mechanical mode frequency were already much higher

than the dominant thermal mode, then moving the dominant

modes up in frequency could have a detrimental effect on .

This case is shown in Fig. 3. Originally, in the solid beam,

the mechanical frequency is at 4.327 MHz, while the dominant

thermal mode is still at 0.605 MHz. When slots are added to
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Fig. 1. Q values for thermal modes in a fixed-fixed, thermally insulated beam that is 400 �m long and 12 �m wide. The mechanical resonance is the fundamental
flexural mode at 0.63 MHz. The first 40 thermal modes are calculated. The three most heavily damped modes are: at 0.6 MHz with aQ of 6 250 000; at 0.605 MHz
with aQ of 11 000; and at 0.611 MHz with aQ of 280 000 (spatial profile not shown in inset). The total deviceQ, including all 40 thermal modes is 10 400.

Fig. 2. Q values for thermal modes in a fixed-fixed, thermally insulated beam that is 400 �m long and 12 �m wide. The top plot shows the solid beam thermal
modes and mechanical resonance, while the bottom plot shows the same beam with 1 �m wide slits along the beam length. The effect of the slits on the thermal
modes and their Q values indicated. The mechanical resonance shifts slightly, as expected. The total Q value is higher in the beam with slits.

this beam, thermal modes with significant spatial overlap move

up in frequency, much nearer to the mechanical resonance. This

lowers the to 20 200 from 38 000 without slots.

Since it is not always possible to predict the most relevant

thermal mode and its time constant intuitively, the numerical

approach can be extremely helpful. We see that simple modi-

fications to the resonator can have the effect of completely al-

tering the thermal mode structure and introducing complicated

weightings in the calculation. Both the frequency and the spa-

tial overlap of the thermal modes are clearly important. When

modes that have high spatial overlap are also close to the me-

chanical resonance frequency, large thermoelastic damping re-

sults. Since structural modifications that have a beneficial im-

pact in some frequency regimes can be detrimental in others,

engineering to optimize can be greatly enabled through the

use of the numerical approach described here.

IV. CONCLUSION

This paper presented two new tools to evaluate and optimize

MEMS structures for low thermoelastic damping. The weakly

coupled approach is based on original work by Zener. We re-

viewed Zener’s approach and showed how numerical finite el-

ements based approaches can be used to fully leverage Zener’s

theory. In the weakly coupled approach, the fundamental ther-

modynamic energy expressions are coupled. However the strain

and temperature solutions used to evaluate these energies are

taken from solutions to uncoupled, standard mechanical and

thermal equations. This allows us to use readily available finite
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Fig. 3. Q values for thermal modes in a fixed-fixed, thermally insulated beam that is 150 �m long and 12 �m wide. The top plot shows the solid beam thermal
modes and mechanical resonance, while the bottom plot shows the same beam with 1 �m wide slits along the beam length. The effect of the slits on the thermal
modes and their Q values indicated. The mechanical resonance shifts slightly, as expected. The total Q value is lower in the beam with slits.

elements packages and evaluate thermoelastic damping. The ap-

proach enables a great deal of insight into the energy loss mech-

anism. We find that a spatial overlap of thermal modes with the

strain profile in the mechanical mode of interest is a dominant

term in the damping. In addition, the frequency separation be-

tween relevant thermal modes and the mechanical resonance

frequency must be considered. By studying the damping con-

tributions of individual thermal modes, their mode shapes, and

their frequencies, it is possible to engineer MEMS resonators

for higher . In addition, by reviewing the fundamental cou-

pled thermodynamic energy expressions, we achieve a greater

insight into the energy loss mechanism itself.

Finally, this paper outlines a method for solving the fully cou-

pled thermoelastic dynamics to obtain exact expressions for

in an arbitrary resonator. The fully coupled simulations enable

a precise evaluation of . We derive both 3-D equations, as

well as 2-D plane stress thermoelastic equations. The simula-

tions were conducted in Comsol Multiphysics. This software

can parameterize the material parameters and geometry, so that

detailed optimization studies are enabled. We showed that the

fully coupled simulations predict thermoelastically limited in

structures reported in the literature.
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