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Existence and bifurcation results are derived for quasi periodic travelling
waves of discrete nonlinear Schrédinger equations with nonlocal interac-
tions and with polynomial-type potentials. Variational tools are used.
Several concrete nonlocal interactions are studied as well.
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1. Introduction

One of the most exciting areas in applied mathematics is the study of the dynamics
associated with the propagation of information. Coherent structures like solitons,
kinks, vortices, etc. play a central role, as carriers of energy, in many nonlinear
physical systems [1]. Solitons represent a rare example of a (relatively) recently arisen
mathematical object which has found successful high-technology applications [2].
The nature of the system dictates that the relevant and important effects occur along
one axial direction. Interplay between nonlinearity and periodicity is the focus of
recent studies in different branches of modern applied mathematics and nonlinear
physics. Applications range from nonlinear optics, in the dynamics of guided waves
in inhomogeneous optical structures and photonic crystal lattices, to atomic physics,
in the dynamics of Bose—Einstein condensate (BEC) droplets in periodic potentials,
and from condensed matter, in Josephson-junction ladders, to biophysics, in various
models of the DNA double strand. Analysis and modelling of these physical
situations are based on nonlinear evolution equations derived from underlying
physics equations, such as nonlinear Maxwell equations with periodic coefficients [3].
In particular, the systems of 2nd-order nonlinear Schrédinger (NLS) equations, both
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continuous and discrete, were applied in nonlinear physics to study a number of
experimental and theoretical problems. Spatial nonlocality of the nonlinear response
is also naturally present in the description of BECs where it represents the finite
range of the bosonic interaction. Demands on the mathematics for techniques to
analyse these models may best be served by developing methods tailored to
determining the local behaviour of solutions near these structures. The discreteness
of space, i.e. the existence of an underlying spatial lattice is crucial to the structural
stability of these spatially localized nonlinear excitations.

During the early years, the studies of intrinsic localized modes were mostly of a
mathematical nature, but the ideas of localized modes soon spread to theoretical
models of many different physical systems, and the discrete breather concept has
been recently applied to experiments in several different physics subdisciplines. Most
nonlinear lattice systems are not integrable even if the partial differential equation
(PDE) model is in the continuum limit. While for many years spatially continuous
nonlinear PDEs and their localized solutions have received a great deal of attention,
there has been increasing interest in spatially discrete nonlinear systems. Namely,
the dynamical properties of nonlinear systems based on the interplay between
discreteness, nonlinearity and dispersion (or diffraction) can find wide applications
in various physical, biological and technological problems. Examples are coupled
optical fibres (self-trapping of light) [4-7], arrays of coupled Josephson junctions [§],
nonlinear charge and excitation transport in biological macromolecules, charge
transport in organic semiconductors [9].

Prototype models for such nonlinear lattices take the form of various nonlinear
lattices [10], a particularly important class of solutions, of which, are the so-called
discrete breathers which are homoclinic in space and oscillatory in time. Other
questions involve the existence and propagation of topological defects or kinks
which mathematically are heteroclinic connections between a ground and an excited
steady state. Prototype models here are discrete version of sine-Gordon equations,
also known as Frenkel-Kontorova (FK) models, e.g. [11]. There are many
outstanding issues for such systems relating to the global existence and dynamics
of localized modes for general nonlinearities, away from either continuum or
anti-continuum limits.

In the main part of the previous studies of the discrete NLS models, the dispersive
interaction was assumed to be short-ranged and a nearest-neighbour approximation
was used. However, there exist physical situations that definitely cannot be described
in the framework of this approximation. The DNA molecule contains charged
groups, with long-range Coulomb interaction 1/r between them. The excitation
transfer in molecular crystals [12] and the vibron energy transport in biopolymers
[13] are due to transition dipole—dipole interaction with 1/r* dependence on the
distance, r. The nonlocal (long-range) dispersive interaction in these systems provides
the existence of additional length-scale: the radius of the dispersive interaction. We
will show that it leads to the bifurcating properties of the system due to both the
competition between nonlinearity and dispersion, and the interplay of long-range
interactions and lattice discreteness.

In some approximation, the equation of motion is the nonlocal discrete NLS

nut, = Zjn—m(un — Um) + |un|2um nelt, (1)
m#n
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where the long-range dispersive coupling is taken to be either exponentially
J,=Je Pl with B>0, or algebraically J,=Jln|~* with s>0, decreasing with the
distance n between lattice sites. In both cases the constant J is normalized such that
Yooy Ju =1, forall Bors. The parameters g and s are introduced to cover different
physical situations from the nearest-neighbour approximation (88— 0o, s— 00)
to the quadrupole—quadrupole (s=35) and dipole—dipole (s=3) interactions. The
Hamiltonian A and the number of excitations N

H—E Z - mlun_um| __ZWnl and N = Zlun|2 2)

nmeZ neZ neZ

are conserved quantities corresponding to the set of (1).

It should also be noted that the derivation of a discrete equation from the Gross—
Pitaevskii equation produces at the intermediate step a fully nonlocal discrete NLS
equation for the coefficients of the wave function expansion over the complete set
of the Wannier functions. Further reduction to the case of the only band with the
strong localization of the Wannier functions (the tight-binding approximation) leads
to the standard local discrete nonlinear Schrédinger (DNLS) equation. Recently
Abdullaev et al. [14] extended this approach to the case of periodic nonlinearities
and derived a number of nonintegrable lattices with different nearest-neighbour
nonlinearities.

In this article, we study the DNLS equations on the lattice Z (DNLS) with
nonlocal interactions of forms

1y = Z ajAjun +f(|un|2)um nez, (3)

jeN

where u, € C, Au,:=u,;+u,_;—2u, are 1-dimensional discrete Laplacians and
it holds

(H1) feC(R;,R) for R, :=[0, oo), f(0)=0 and a4, € R with Z/GN laj| < oo.
Moreover, there are constants s>0, u>1, ¢;>0, ¢o>0 and 7 > 0 such that

SOl < erw’ +1), et = 1) < Fw),  pFw) =7 < f(w)w

for any w>0, where F(w) = [ f(z)dz. Furthermore, lim sup“._)o+f(w)/»¢;< oo for a
constant 5> 0.

Of course, we suppose that not all @ are zero. Note any polynomial

fwy=pw+---+pw’, s € N with p;>0 satisfies (H1). Furthermore, (3) can be

rewritten into a standard form

uy, = Z a|m—n|(um — Uy) +f(|un|2)una nel. (4)
m#n

It is well known that (4) conserves two dynamical invariants

Z |u,|*> — the norm,
neZ

Z|:__Za|m n\lum - un| +F(|un| ):| — the cnergy.

nez m#n


https://www.researchgate.net/publication/5500370_Generalized_Neighbor-Interaction_Models_Induced_by_Nonlinear_Lattices?el=1_x_8&enrichId=rgreq-222bff4f3da31a7be0da46f4bf1c6606-XXX&enrichSource=Y292ZXJQYWdlOzI0NTQ5NTQ5MjtBUzoxNDIzNjU5MTg1MDI5MTJAMTQxMDk1NDA4ODAzNg==

06: 01 27 July 2010

Downl oaded By: [Fekan, Mchal] At:

1390 M. Feckan and V.M. Rothos

Differential equations with nonlocal interactions on lattices have been studied in
15-23], while DNLS in [20,24-27]. Nowadays it is clear that a large number of
important models of various fields of physics are based on DNLS type equations
with several forms of polynomial nonlinearities starting with the simplest self-
focusing cubic (Kerr) nonlinearity, then following with the cubic onsite nonlinearity
relevant for BECs, and then with more general discrete cubic nonlinearity in Salerno
model up to cubic-quintic ones (see [25] for more references).

We are interested in the existence of travelling wave solutions u,,(1) = U(n — vt) of
(3) with a quasi periodic function U(z), z=n — vt and some v#0.

First, we introduce a function

d(x) := ; Z a; sin’ [g]]
jeN

Remark 1 Clearly ® € C(R\ {0},R), @ is odd, ®(27k) =0 for any k € Z\ {0} and
P(x)—> 0 as |x]—o00. If 3, Jjla;| < oo then ® € C(R,R) and 1fZ]eN] laj| < oo
then ® € C'(R, R). Consequently the range R®:=®(R \ {0}) is either an interval
[—R, R] or (—R,R) here with possibility R = oo (see Section 2.4 for concrete
examples).

Now we can state the following existence result.

THeorReM 1.1 Let (H1) hold and T>0. Then for almost each v € R\ {0} and any
rational r € QN(0,1), there is a nonzero periodic travelling wave solution
u,(f) = Un — vi) of (3) with U € C\(R, C) and such that

Uiz+T)= ™U(z), VzeR. (5)

Moreover, for any v € R\ {0} there is at most a finite number of 7,72, ...,y €(0,1)

such that equation
2 _

has a solution k€ Z. Then for any re (0,1)\ {r1,72,...,Fy} there is a nonzero quasi
periodic travelling wave solution u,(t)=U(m—vt) with the above properties. In
particular, for any |v| > R and r € (0,1), there is such a nonzero quasi periodic
travelling wave solution.

When a nonresonance condition of Theorem 1.1 fails, then we have the following
bifurcation results.

THEOREM 1.2 Suppose fe C(R,,R) with f(0)=0. If there are i1 €(0,1), v € R\
{0} and T'>0 such that all solutions ki, k-, ..., k,, € Z of equation

= cp(z—;(fl + k))

are either nonnegative or negative and m,;>0. Then for any >0 small there are
my branches of nonzero quasi periodic travelling wave solutions uy, ;(t) = U; «(n — vet)
of (3) with U, € C'(R, ©), j=1,2,...,my, and nonzero velocity v, satisfying
Uie(z + T) = e¥™'U; (2), ¥z € R along with v.— v and U, .= 0 uniformly on R as
e—0.
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Remark 2 1f a;> 0 for all j € N, then the assumptions of Theorem 1.2 are satisfied
for any v € R® \ {0} such that %CD_I(—U) \ Z # @, and so there are bifurcations of
quasi periodic travelling waves in the generic resonant cases. On the other hand,
if ve RO\ {0} with % ®~!(—v) C Z then Theorem 1.1 is applicable for any
re (0,1).

Theorem 1.2 is a Lyapunov centre theorem for travelling wave solutions.
Similar results are derived in [28] for Fermi—Pasta—Ulam lattices.

We also discuss in Section 4 the extension of these results of (3) on the lattices Z°
and Z° [24-27]. Section 5 is devoted to travelling wave solutions of more general
forms than above [29]. Finally, related results are also presented in [30-37].

2. Existence of travelling wave solutions

In this section, we study the existence of travelling wave solutions of the form
u,(t)= U(n — vt), 1.e. we are interested in the equation

—wl'(2) = ) i) +/( U UE), ©)
jeN

where z=n—vt, v#0 and 3;U(z) := U(z +)) + U(z — j) — 2U(z). We are interested in
the existence of quasi periodic solutions U(z) of (6) stated in Theorem 1.1.

2.1. Preliminaries

In this subsection we recall some results from critical point theory of [38]. Let H
be a Hilbert space and let J € C'(H, R). Suppose H=H, ® H, for closed linear
subspaces, and let ej,es, ... be the orthonormal basis of H;. Let us put
H! :=span{ey,es,...,e,} and H, := H) @ H,. Let P, be the orthogonal projection
of H onto H,. Set J,,:=J/H,, — the restriction of functional J on subspace H, — and
so VJ,(x)=P,VJ(x) if x € H,.

Definition 2.1 1If there are two positive constants « and g such that
J(x)=0 Vxe{xeH | x| =8}
J(xX)=a Vxe{xeH | |x|l =B}
J(x) <0 Vxe{xeH| x| =B}
J(x) < —a Vxe{xeH| |x|l = B}
then J is said to satisfy the local linking condition at 0.

Definition 2.2 We shall say that J satisfies the Palais—Smale (PS)*-condition if
any sequence {x,},en In H such that x,e H,, J(x,)<c<oo and P,VJ(x,) =
VJ,(x,) — 0 as n— oo possesses a convergent subsequence.

Now we can state the following theorem of [38] which we apply.
THEOREM 2.3 Suppose

(I,) J € C'(H, R) satisfies (PS)*-condition.
(I,) J satisfies the local linking condition at 0.
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(I3) Vn, J,(x) — —o0 as ||x|| — co and x € H,,.
(Iy) VI=A+ C for a bounded linear self-adjoint operator A such that AH, C H,,
VneN and C is a compact mapping.

Then J possesses a critical point X with |J(X)] > a.

Remark 1 If 0 is an indefinite nondegenerate critical point of J, then J satisfies
the local linking condition at 0.

2.2. Proof of Theorem 1.1

In this section, we use Theorem 2.3 to prove Theorem 1.1. Without loss of generality,
we set T=2m. We suppose v>0, the case v<0 can be handled similarly. First,
we identify € with R? in this section. Let r € (0, 1) be fixed. Next, we consider real
Banach spaces

L= { UeLL (R,C) | Uiz +2n) = ™U(z), Vz IR}

for 5> 1. Clearly Ue Lgif and only if U(z) =e"™'V(z) for some V e L= L;(Szﬂ, 0).
Consequently U, (z + ¢;)Us(z + ¢2) is 27-periodic for any Cl, 02 € R a~nd U, U,e L,
hence |U(z)| is 2r-periodic. So we consider the norm on L! like on L*. In particular,
we have
Vel V(i)=Y V™ VieC, > Wil <oo.
keZ keZ
Let

X, = WP(S7,C) = {Ve LI V) =) Ve 3 1Villr+ k| < oo},
keZ kezZ

Y, := W2(§¥,C) = {Ve LI V(2) =Y Ve 3 [V (r+ k) < oo].
keZ keZ

Note r+k#0 for any k€ Z. Clearly Y, C X, C L?. We consider L?, X, and Y, as
real Hilbert spaces with inner products

27
(VW) =2m0 Y Vil =% / V(z)W(z)dz,
0

keZ

(V. W)y, =220 > ViWilr + k|
keZ

(V, W)y =210 Z ViWi(r + k)
keZ

for V(z) = Zkez Ve 07t and W(z) = ZkeZ W, ek
Clearly [|Ullz2 = [|Ullz2 < r1l|Ully,, YU€X, and [[Ullx <ri|Ully,=nllU |z
YU € Y, for ry := min{\/r, v/1 — r}. The following result is well known [38,39].

LemMmA 2.4 For each’s > 1, X, is compactly embedded into LE.

On X,, we consider a continuous symmetric bilinear form

BAU. V) =470 Yy ViWi(r + k).
keZ
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Note, if Ue X, and Ve Y,, then
27 _
25)%/ 1U(2)V(z)'dz = BJ(U, V).
0

Now we consider a real functional
L(U) =2 B(U U)+f2n Z@|U(z+')—U( 2 FlU@)P) td
(V) 1= B, LUG +7) = UQP = FIUE)P) pdz
0 JjeZ
27
=3B, U)+/0 {ZaJIU(ZJrj)— ue)P? —F(|U(z)|2)}dz

jeN
on X,. Then I, € C'(X,, R) and for Ue X,, V e Y,, we derive
DI(U)V = 29%{ /0 B (sz(Z)W’ - (j;; 4;0;U(z) + /(| U(Z)IZ)U(Z)> W) dZ}.
If Ue X, is a critical point of I, then
%{ /0 : (wU(z)V(z)/ - (/_GZN%BJU@ +f(|U(z)|2>U(z)>V<z)>dz} =0 ()
for any V€ Y,. Replacing V/ witﬁ 1V in (7), we obtain
/0 i (le(Z)W’ - (,EZN ;% U(z) +f(IU(Z)|2)U(Z))W>dz =0

for any Ve Y,. This means that U is a weak solution of (6). Then a standard
regularity method shows [39] that U is a C'-smooth solution of (6).
Now we split X, =X, & X_ for

—1 00
X_ = { V(Z) = Z Vk C(H_k)ﬂ}, X+ = { V(Z) = Z Vk e(r+k)ﬂ}.
k=0

k=—00

Clearly if U=U, +U__then B.(U, U) = 2(|| UL — | U,||§(F).
Next, let us define K, : L? — X, as

27
(KH,Vyy =2% [ HOV(E)dz, YVeX,. (8)
0
Then
[?rH _ Z 2H/C e(rJrk)lz
=+ Kl

and so 1?, is compact. To study VI/.(u), we introduce the mapping ¥,: X, — X,
defined by

27
(W (0), V) =20 i FUIUE)PUE)V(2)dz
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for any V € X,. By Lemma 2.4, the Nemytskij operator U — f{|U(z)|?)U(z) from X, to
L? is continuous. Using (8), we get

(V) = Kf(UPU.

Hence W, : X, — X, is compact and continuous.
LemMA 2.5 Under (H1) it holds DW,(0)=0.

proof  There is a constant ¢3 such that

LS < ca(w+w")

for any w>0. Then by Lemma 2.4, we derive
27
SAUDULL = | fIUEPYIUE) dz
0

<243 fo (U + VP < (108, + IV
for a constant ¢;>0. Hence
(WAU), Vx| < 21U Ul VI < cs(nUu}, + ||U||§z,+1)|| Vi,
for a constant ¢5>0. This implies
19(Dlly, = es(I1UI, + IVIE), YUex.

Since W,(0) =0 and s>0, we get DW,.(0)=0. The proof is finished. |
Finally, define £, : L? — L? as

U= adU).

JjeN
Then
VI(U) = (21)1+ 2l —KL, — \If,)(U) )
for the identities I : X4 — X. Clearly
A, =2l — 20l — K.L,
is a self-adjoint bounded operator 4, : X, — X, satisfying
AU=2 Z (v sgn(r + k) +—+ Z a; sin [ij}> U er+he.

iz Ir +k| 2

Consequently, the spectrum o(4,) of A4, is given by

o(4,) = {2 sgn(r+ k) v+ O(r+k)) | ke Z}.
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By Lemma 2.5, we get that under the assumption
—Vv£d(r+k) VkelZ, (10)

0 is an indefinite nondegenerate critical point of I,: VI,(0)=0 and Hess 7.(0)= 4,
with 0 ¢ o(4,) and X, =X, ,® X, , with 0(4,/X;,) C (0, o) and o(4,/X>,,) C (—o0, 0)
where X ,, X,, are suitable closed linear subspaces of X,. Note X;, and X,, are
infinite dimensional, since ®(r+k)— 0 as |k| — co. Consequently by Remark 1,
under (10), 7, satisfies the local linking condition at 0 in the sense of Definition 2.1,
i.e. condition (/) of Theorem 2.3 is verified.

We consider an equivalent scalar product (-, -), on X, such that

(AU U), = U7 = |Uall;,  Ur€ Xy, Ur€Xay
Note there is a linear isomorphism K, : X, — X, such that
(U, V)y, = (KU, V), YUVVeX,.

Clearly K. is self-adjoint and positive definite. Then

v v 2
L =510 =510 - [ FiveRs,

VIr(l]) =vl) —vhL - KV,

(VL(U), V), = DI(O)V = v|[ 1|} = v 7a||?
27T
=20 | fQUE@PUE)V(2)dz.
0

Let X,,=span{e;,e,, ...} and e; are eigenvectors of A4,. Then we take
X, =span{ey,ez,...,¢,} ®X,, for n>3. So clearly 4,X,CX,, ie. condition (/)
of Theorem 2.3 is verified. Let P, : X,— X, be the orthogonal projection with
respect to (-, ).

We suppose there is a sequence {U,,},,enC X, U,, € X, and a constant ¢ such
that

Ir(Um) =c and PmVIr(Um) — 0.
Then for m large we get,
c+ Ul = Iz(Um) - % (PmVIr(Um)a Un),

27
- /0 [ (Un@PNUnN — F(Un(@))]dz

27
> | (u— DF(Un(2)P)dz — 277
0

27
> (1 — ey f (1Un @) = 1)dz — 27
0

> (1= Dex(I1Un I3 = co) (n

for a constant ¢4>0.
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By following the same arguments, we derive

27T
V” Ul,m||,2~ = ”PmVIm(Um)” : ” Ul,m”r + 2 f(|Um(Z)|2)|Um(Z)||U1,m(Z)|dZ
0
2
< Uil +2¢7 / (U@ + 1)Uy n(2)|dz
0
< WUl + 261 [1Un P+ 1] sl Uil s
< 1Tl + 27 (101355 + DI UL,
L
and hence
1T mll, < es(1Unl750E + 1).
Similarly we obtain
1Uzmll, < es(NUmlI 75 4+ 1)

and consequently by (11), we obtain

2541
1Ol < 2¢s (1 Unl 3560 +1) < c9<||um||fw ¥ 1)

for positive constants ¢;, ¢g and ¢g. Thus {U,,},,cn C X, is bounded. Since
PmVIr(Um) == UUl,m - VU2,m - K'\pr(Um) — 0

and K, W, is compact, there is a convergent subsequence of {U,},en In X,
Summarizing, (PS)*-condition is verified for /,, i.e. condition (/) of Theorem 2.3
is verified.

Next, let Ue€ X,,. Then using U; € span{ey, e,,...,e,}, we derive

2
v
1) =5 (10117 = 1Ua17) = /0 FIUG)I)dz
v 2 2 Zﬂ 2s+1
<5 (1017 = 10al7) = Cz/ (10D — 1)dz
0
% S
<5 (10117 = 10a17) = 2l U5 + exo
v S S
=2 (WU = 10207) = en (108" + 102138H) + e
v ) v
= SN = enllUiIF) =5 10217 + cro

for positive constants ¢g, ¢ and ¢;>. Now it is clear that 7(U) — —oo as ||U||, — oo,
i.e. condition (/3) of Theorem 2.3 is verified.

Summarizing, under assumptions (H1) and (10), all conditions (/;)—(I4) of
Theorem 2.3 are verified for /,. Hence there is a nonzero critical point U, € X, of I,,
which we already know to be a C'-smooth solution of (6) satisfying (5). Note (10)
certainly holds for any |v| > R and r € (0, 1). Hence the proof of the second part of
Theorem 1.1 is finished. To prove the first part, it is enough to observe that the set

{®(r+Kk)re@n(0,1), keZz]
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is countable, and thus for almost each veR \ {0} and any re @N(0, 1), condition

(10) holds.

2.3. Remarks

Remark 2 When r is rational in Theorem 1.1 then we get periodic U(z) with
arbitrarily large minimal periods. If r is irrational then clearly U(z) = e V(z) for
a T-periodic V(z) = U(z) e~ 7. So U(z) is quasi periodic and its orbit in C = R? is
dense either in a compact annulus or in a compact disc. But |U(z)] is T-periodic in

both the cases.

Remark 3 Changing ¢ <> —t, we can also handle DNLS

—l, = ZajAjun +f(|un|2)um ne”Z
jeN

under (H1) and (10) becomes
v#£®(r+k) YkeZ and ve(0,R).
Remark 4 Assume that Ue Y, is a weak solution of (6), then

|MM52]w5J2)wm+m22m+mz

keZ kezZ keZ

b4
= \/;cosec ar | Ully,.

Let R := maxycr, XP(x). Then

WU 2 = PlULy, < 1£:Ul + IL/(UPO)

< RIUlz +a||UP* + U]
+1

12

~ o
< (Rr% + ¢1r7 4 ¢y =—cosec™ | U|IF )1 Ully,.

25
So if Uz#0 then we obtain

- jTSJrl
lv| < Rr% + Cll’% + R cosec™*! r ”U”?-’
i.e.
of |v] — R2 — ¢y
Uly =2 ! !
” ”Y, - clj'r""'lCOSeCZSH r
for

[v| > Rr% + clr%.

Hence || U]y, — oo as |[v| — oo for a possible nonzero solution U e Y, of (6).

(12)

(13)
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2.4. Examples
We first note

©(x) Zéza_/(l — €08 Xj) zé{za,«—mza_,e*

jeN jeN jeN

Now we turn to the following concrete examples.

}_

(14)

Example 2.6 First we suppose that a; is decaying rapidly to 0. Let ¢; = ]l, Then

I . ;
§ :_' eVl — e 1 = ecosx-Hsmx -1
— ]
jeN
cosx[

= e"**[cossinx + rsinsinx] — 1.

So by (14) we derive

2 1 . . 2 s x .
D(x) = — |:Z e ¥ cos sin x + l:| = =[e — € cossin x].
x x

By Remark 1, ® € C'(R, R) with the graph on [—4, 47]:
3 -

2t

/N

a numerical solution shows that ® has a maximum R = ®(xy)=3.15177 at

xo=1.03665.

Example 2.7 Now we suppose that g, is decaying exponentially to 0. Let a; = e/,

hence we have the discrete Kac—Baker interaction kernel [20,21]. Then

xi—1

P N e
2 e/ eVt — 2 :e(u D —
1 — evi—1

JjeN jeN
COS X +1sin x ecosx — 1+ ersinx
T e—cosx—isinx e+ 1—2ecosx

So by (14) we derive

2 s ecosx — 1 _ 2e(e+ 1)(1 —cosx)
d)(x)_;|:2ef :|_(e—1)x(ez+1—2ecosx)’

) _
e e+ 1—2ecosx
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By Remark 1, ® € C'(R, R) with the graph on [—4, 47]:

1.0+

-Y.0

A numerical solution shows that ® has a maximum R = ®(x()=0.992045 at
x0=0.991541.

Example 2.8 1In this example, we suppose that ¢; is decaying polynomially to 0
(cf [23]), by considering several cases

(1) Let g :]_L4_ Then
2
2 11 \ (Il —2#)) |x |
D(x) _;]EZN<F_1'_4COSX]) = 21 — | x| +271 .

Here [-] is the integer part function. By Remark 1, ® € C'(R, R) with the graph on
[—4m, 4n):

1.5

® has a mdximum R = ®(xp) = 81 = 1.53117 at Xo=2m/3=2.0944. Similar results
hold for a;=;~ P with >3 by Remark 1.
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(2) Leta; = /l’ So we consider the dipole—dipole interaction (cf [16,20,22,23]). By
Remark 1, ® € C(R, R) with the graph on [—4x, 47]:

1.5}
1k

0.5

YR

5 10
® has a maximum R = <I>(x0)——_1 68311 at xy=1.76076. Next we know
that [40]
1 . . X

Z—,cosxj = —ln)2 sm—‘, 0 < x<2m.

—t j 2

JjeN
Then

jeN

- [l
Zj—zsmxj: —/ln‘2sm%‘ds
0
Using x/2 <sin x <x for x >0 small, we derive

[ s X
x—xlnx = —/lnsds < Z—smx] < —/lnids:x—xlnz.

/eN

By L’Hopital’s rule, we obtain

. 2 . . )
i PO _ i A eI 28 e sin 2

x—>0, X x—>04 x?2 x—04 X

= +00.

Hence ® has no derivative at x,=0.
Next, let g; =;j " for 2< B<3. By Remark 1, & is still continuous. Since ®(0)=0

and
d(x) _ 4% GN/; sin” xj

2 = to0,
x—>0p X ‘c—>0Jr X

®(x) is continuous but not C'-smooth on R.
(3) Leta; = % Then

=2 o) 12 o)


https://www.researchgate.net/publication/11557799_Interplay_of_nonlinearity_and_geometry_in_a_DNA-related_Klein-Gordon_model_with_long-range_dipole-dipole_interaction?el=1_x_8&enrichId=rgreq-222bff4f3da31a7be0da46f4bf1c6606-XXX&enrichSource=Y292ZXJQYWdlOzI0NTQ5NTQ5MjtBUzoxNDIzNjU5MTg1MDI5MTJAMTQxMDk1NDA4ODAzNg==
https://www.researchgate.net/publication/7697835_Energy_funneling_in_a_bent_chain_of_Morse_oscillators_with_long-range_coupling?el=1_x_8&enrichId=rgreq-222bff4f3da31a7be0da46f4bf1c6606-XXX&enrichSource=Y292ZXJQYWdlOzI0NTQ5NTQ5MjtBUzoxNDIzNjU5MTg1MDI5MTJAMTQxMDk1NDA4ODAzNg==
https://www.researchgate.net/publication/235450934_Solitons_in_anharmonic_chains_with_power-law_long-range_interactions?el=1_x_8&enrichId=rgreq-222bff4f3da31a7be0da46f4bf1c6606-XXX&enrichSource=Y292ZXJQYWdlOzI0NTQ5NTQ5MjtBUzoxNDIzNjU5MTg1MDI5MTJAMTQxMDk1NDA4ODAzNg==
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By Remark 1, ® € C(R \ {0}, R) with the graph on [—4m, 47]:

3

@ is discontinuous at xo=0 where it has a supremum R = .
(4) Let q,:j*ﬂ for 1<B<2. For $=7/4, ® has the graph on [—4mx, 47]:

2

Hence @ is discontinuous at xo =0 with lim,_, o ®(x) =+0c0. We show that this holds
for any 1 < pB<2. First suppose 3/2<p<2. Then the series

1
T(x) := —7sinjx

converges uniformly on any [e, 27 — €] for 0 <e<m. But since Z/eNﬂﬂ%” < 00, SO
YeL?c L'. On the other hand, we know [40] that

B-1
2

T(x) := T2 — B)cos 24 o()

on (0, 7]. Hence

1 —cosjx v re—p =(-—1 4
%T=/O Y(s)ds = 51 ST N4 0(x)

on [0, 7]. Consequently, we obtain

re-p  wB-1)

) =5 2

P2+ 00)
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on (0, ], which implies lim,_, o, ®(x) = +o0 for any 3/2< B<2. Finally, if 1 <f<3/2,
then

2 I —cosjx 8 (1 3r 1
Dd(x) > — %:—F(—)cos—~—+0(l)—>+oo
xjeZN JA 37 \4 8 x

as x — 0. Hence, lim,_, o, ®(x)=+o0 for any 1 <p<2.
Summarizing, we have the following result.
Lemma 2.9 Let aj=j* for 1<pB. Then

(i) ®eC(R, R) for >3, and R® = [—R, R] for some R < oco.
(i) PeC(R, R) and ® ¢ C(R, R) for 2<B<3, and R® = [—R, R] for some
R < o0.
(i) e C(R\ {0}, R) and ® ¢ C(R, R) for =2, and R® =(—m, 7).
(iv) @eC[R \ {0}, R) and ® ¢ C(R, R) for 1 <pB<2, and R® =(—00, +00).

Remark 5 We see that if the interaction is strong, so the case (iv) of Lemma 2.9
holds, then there are continuum many quasi periodic travelling wave solutions
U(z) of Theorem 1.1 for any v#0, 7>0 and re(0,1) such that
réfz—1[z]1ze Ld~'(—v)}, with |U|ly — 0o as |[v] > oo by Remark 4. On the
other hand, if the interaction is weak, then we can show in addition quasi periodic
travelling waves with speeds in intervals (—oo, — R) and (R, 0o) for any 7>0 and
re(0,1).

Remark 6 For the reader convenience, we present the above graphs of function @
to visualize their quantitative and qualitative changes according to different choices
of values of sequences {a;};cz in (3), and hence with different consequences from
Theorems 1.1 and 1.2 for the existence and bifurcations of quasi periodic travelling
wave solutions of (3). Moreover, these graphs can be compared with similar ones for
travelling waves for higher dimensional DNLS in Section 4 and for travelling waves
with frequencies in Section 5. Finally these examples are motivated by applications
mentioned in the corresponding references.

3. Bifurcation of travelling wave solutions

In this section we proceed with the study of (6) when nonresonance of Theorem 1.1
fails, i.e. re{ry,r,...,ry}. We scale in (6) the velocity by v<>v/(14+ 1) to get
equation

—ulU'(2) = (1+ )\)(Zajan(Z) +f(|U(Z)|2)U(Z)>, (15)
JjeN

where A is a small parameter, i.e. u,(7) = U(n - ) is a solution of (3). We are

interested in the existence of quasi periodic solutions U(z) of (15) stated in

Theorem 1.2.
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3.1. Preliminaries

In this subsection we recall some results from critical point theory of [41]. Let H be
a Hilbert space with a scalar product (-, -) and the corresponding norm ||-||. Let ® :
S'— L(H) be an isometric representation of the unit circle S' over H, i.e. the
following properties are satisfied

(R) ©(0) =1 — the identity, ®(6; + 6,) = O(6,)O(6>) for any 6y, 6, € S*, (8, h) - OO)h
is continuous and ||©(O)A| = k|| for any 6 € S'and he H.

We set
Fix(S"):={he H| ©@h=h Voec®}.

We consider J;, J> € Cz(H, [R) such that

(H2) Hess J,(0) is a Fredholm operator, i.e. dim Hess J;(0)<oo, RHess J;(0) is
closed and codim RHess J;(0) < oco.

(H3) dim ker Hess J;(0) >2 and Hess J5(0) is positive definite on ker Hess J;(0).
(H4) J, and J, are S'-invariant, i.e. J12(0(0)h) = ©(0)J, 2(h) for any 6 € ® and he H.
(H5) ker Hess J,(0) N Fix(S") = {0}.

Now we can state the following [41, Theorem 6.7].

THEOREM 3.1  Under the above assumptions (H1)-(HS), for each sufficiently small
£>0, equation

VJi(h) + AV (h) =0 (16)
has at least %dim ker Hess J1(0) of S'-orbit solutions
{((e), ©Ohi(e)) |0 S'), k=1,2,..., Ldimker Hess J;(0)

such that Jo(hi(e)) =¢ and hi(¢) — 0, A () = 0 as e — 0. Clearly A () £0.

Remark I  When Hess J5(0) is negative definite on ker Hess J;(0), then Theorem 3.1
holds for e <0 small.

Remark 2 By (H4), ker Hess J1(0) is invariant with respect to ®. Using (HS),
dim ker Hess J;(0) is even.

Now assume H=H,® H_ be an orthogonal and ©®-invariant decomposition
with the corresponding orthogonal projections P : H— H.y. Then ®(0)PL = P.O(6)
for any 6 € ®. Let us consider the equation

¢(Le — I)h + (1 + A)(Kh + VF(h)) = 0, (17)

where ¢#0 is a constant, A is a small parameter, I : H. — H are the identities.
We suppose

(A) K:H— H is compact self-adjoint and F € C*(H, R) with F(0)=0, VF(0)=0,
Hess F(0)=0 and K, F are S'-invariant. Moreover, KXH, C H,.
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Then

) =S AP AP~ |P_RIP) + %(ich,h) + F(h),
Jo(h)y =L (ICh, h) + F(h).
Hence
J1(0) = J2(0) =0, VJ1(0) = VJ»(0) = 0,
Hess J1(0) =¢(Iy —1-)+ K, Hess J»(0) =K.
So assumptions (H1), (H2) and (H4) are satisfied. Since P.K =P, equation
Hess J(Oh=¢(ly —I)h+Kh=0
splits into
Khy =—¢hy, Kh_o=¢h_, hy=Pih
Consequently, supposing either

(By) ker¢I+K)NH,={0}, dimker(¢I—K)NH_>2 and ker(cI—-K)NH_N
Fix(S") = {0}

or

(BL) ker¢I-K)NnH_={0}, dimker(¢cI+KX)NH, >2 and ker(¢I+K)NH, N
Fix(S") = {0}

we get either
ker Hess J;(0) = ker(¢I — K)N H_
or
ker Hess J1(0) = ker(¢I+ K) N H,.
and so (HS5) holds as well. Finally, we derive

Hess J>(0)| ker Hess J1(0) = £¢I

and thus (H3) is also verified (cf Remark 1). Summarizing, Theorem 3.1 and
Remark 1 is applicable to (17):

CoROLLARY 3.2 Under assumptions (A) and (B.), for each sufficiently small & #0,
+e¢>0, Equation (17) has at least %dim ker(¢l = K)N Hy of S'-orbit solutions

[O(e), ©O)(e) |68, k=1,2,..., Ldimker(¢I F K) N Hy

such that %(IChk(a), hi(e)) + F(hi(e)) = ¢ and hi(e) — 0, Li(e) > 0 as e — 0. Clearly
hi(e) #0.
Remark 3 If Fix(S')={0} then (B,) holds if

(1) —¢ ¢ o(K/H,), ¢ea(K/H_) and ¢ has a multiplicity at least 2, while (B_)
holds if
(i) —¢eo(K/Hy), ¢ ¢ o(]C/H_) and —¢ has a multiplicity at least 2,

respectively.
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3.2. Proof of Theorem 1.2
We again assume for simplicity 7'=2x. So let » =7, €(0, 1) and the equation

—v = ®(r; + k)
has solutions ky, k», ..., k,, € Z which are either all nonnegative or all negative. Next
(15) has the form (cf (9))
2L, —vI) — (1 + A)(E,.c,,U n \Il,.(U)) —0 (18)
and

H:Xra ;sza Hi :Xia
2
K=-RL Flu=- / FIU@P)dz.
0

Isometric representation ® is naturally given as

OO)U(z) .= Uiz +0),

@(9)(2 Us el +k)zz) _ Z U, ok o(Fi )zt

keZ kez

Note Fix(S")={0}. It is easy to verify (R) for ©. By the results of Section 2, we get
both KH, C H. and assumption (A) holds and moreover

o(K/Hy) = {£2®(r| + k) | ke Z.}.
Note Z, ={0} UN and Z_=—N. Hence (i) of Remark 3 is satisfied if
—vg{®(F +k) | keZy), —ve{d(r +k) |keZ},
while (ii) if
—vel{®d(F +k) | keZy}, —vg{®F +k)|keZ).

But these are precisely assumptions of Theorem 1.2. So its proof is complete by
Corollary 3.2 and Remark 3.

4. Travelling waves for higher dimensional DNLS

In this section, we first show how to extend previous results for 2-dimensional
DNLS (2D DNLS) [24-26] of forms

. 2 2
WUpm = Z ai,iAi,j“n,m +f(|un,m| )“n,ma (”a m) ez
() eZ;
=2 Z ai,/'(”n+i,m+i - un,m) +f(|un,m|2)“n,ma (19)
(i) eZ;

2 ._ 2 . .
where Upm € Ca ZO =Z \ {(0, 0)}> AiJ”n,m = Uptim+j + Up—im—j — 2un,m are
2-dimensional discrete Laplacians, f satisfies (H1) and ¢;;=a_; _; along with
>_(ij)ez aijl < oo and all g;; are not zero.
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Again, (19) conserves two dynamical invariants

Z |u,,,m|2 — the norm,
(n.m) e Z?

2
Z - Z aiJ|”n+i,m+j - un,m| +F(|un,m|2) — the energy.
(n.m) e 22 (ij)e ZS

We look for travelling wave solutions of (19) of the form

Uy m(t) = U(ncos @+ msin6 — vr) (20)
with a direction (cos 6, sin ) [39]. Hence we are interested in the equation
—wil'(2) = (‘ ;ZZ ai;0;,;U() + /(U@ U(). o1
INDES 0

where z=ncosf+msin6 —vt, v£0 and
0;;U(z) := U(z +icosf +jsin6) + U(z — icos & — jsin0) — 2U(z).

We see that (21) has a very similar form like (6). So we can directly repeat the above
arguments, where now instead of ®(x) we get

> x(icos 6 + jsin 6)

4 .
Dy(x) ::; Z a;jsin 5

(i) eZ;
Set Ry := supp®y. Summarizing, Theorems 1.1 and 1.2 have the following analogies.

Tueorem 4.1 Let (H1) hold and T>0, 6 € [0, 27). Then for almost each ve R \ {0}
and any rational r e QN (0, 1), there is a nonzero periodic travelling wave solution (20)
of (19) with U e CY(R, C) satisfying (5). Moreover, for any veR \ {0}, there is at most
a finite number of 719,720, . ..,Tm,0 €(0,1) such that equation

2
—v==ay (7(7_;‘,9 + k))

has a solution k € Z. Then for any r € (0, 1)\ {F19, 720, - - - » 'm0} there is a nonzero quasi
periodic travelling wave solution (20) of (19) with the above properties. In particular, for
any |v| > Ry and re(0,1), and re(0,1), there is such a nonzero quasi periodic
travelling wave solution.

THEOREM 4.2  Suppose f € C'(R,, R) with f(0)=0. If there are rp€(0,1), T>0,
0 €0, 2m) and ve R®y \ {0} such that all integer number solutions ki, kj, ..., Ky, ¢ of
equation

2
—v =Py (%T (10 + k))

are either nonnegative or negative and m y>0. Then for any ¢>0 small there are
my g branches of nonzero quasi periodic travelling wave solutions (20) of (19) with
U. e CI(IR, C), j=12,....,m, and nonzero velocity Ve  satisfying
Ue(z+T1T) = ez”f”U(z)j’E, VzeR along with v,— v and Um:;O uniformly on R
as e — 0.
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Example 4.3 We consider the discrete 2D Kac-Baker interaction kernel
a;;=e "V for (i, j) € Z°. Then Z(z‘,;‘)ezg e li=1j1 = (ei—?)z and

(e+ 1) (e —1)? }4

Dp(x) = |:(e — 1y (14 2 —2ecos(xcosO))(1 + e2 — 2ecos(xsin b))

X .

A numerical evaluation shows that function (x,60)— ®y(x) has a maximum
R=9.75047 at xy=1.08205 and 6,=0.785398. To justify this theoretically, we
take a=xcos 6 and b= xsin6 to transform dy(x) into

o — [ D (€ -1)? 4
@ _[(e—l)z_(l+ez—Zecosa)(l—i—ez—2ecosb)}¢m—[ﬂ'

Note ®(a, b)=®(+a, +b)=P(b, a). A numerical evaluation shows that function
®(a, b) has a maximum R =9.75047 at ay=by=0.765123 which correspond to x,

and 6. On the other hand, if ®+ 5> > 4 then ®(a,b) < 2L £9.36539 < 9.75047,
so ®(a, b) achieves its maximum in the disc D,:={a*+ h* <4}. Next, solving the
system -2 ®(a,b) =5 P(a,b) =0 we derive % = % at the maximum point
(@g, bo) € D3, ay>0, by>0. But the function *3* is decreasing on [0, 2], so ay=by
and thus 6, = /4. An elementary but awkward calculus shows for function

D a(x) =

(e 17 (e — 1) 4
(e =1y (1 + e — 26cos<x*/75>)2 *

with the graph on [—20, 20]:

20

that xq € (0, 2) is the only root of CD;T/4(x0) =0on (0,2) and then R = @ /4(X0). So Ris
computed also analytically in this case.

Summarizing, Theorems 4.1 and 4.2 can be applied in this case for any suitable
nonzero v and resonant travelling waves with maximum velocities which are achieved
in the diagonal directions +6y, = £m/4.
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Finally, it is now clear how to proceed to 3D DNLS or even to higher
dimensional DNLS, so we omit further details.

5. Travelling waves with frequencies
We could consider more general travelling wave solutions than the above forms
u,(1) = U(n — vi) e,
Unm(t) = U(ncos + msin 6 — vr) e’ (22)
with velocity v#0 and frequency w#0 [29]. Then, there is a dispersion relation

between the velocity v and frequency w as follows. Inserting (22) into (3) and (19),
respectively, we are interested in equations

—ul'(2) = Y a3;U(2) + 0UE) + (U UE),
jeN

—ulU'(2)= Y a;0,;U() + 0UE) + /(U UE), (23)
(i) eZ;

respectively. We see that (6), (21) and (23) are very similar, so we can repeat the
above arguments to (23) when instead of ®(x) and ®4(x) now we have

D(x, w) 1= D) —%, Dy(x, ) 1= Dy(x) —%, (24)

respectively. Consequently, we have analogies of Theorems 1.1, 1.2, 4.1 and 4.2 to
(23) but we do not state them since they are obvious.

Example 5.1 We consider the discrete Kac—Baker interaction kernel from
Example 2.7. Then
2e(e+ 1)(1 —cosx) w

® = X
(x, ) (e—Dx(e2+1—2ecosx) x

To be more concrete, we first take w =1 and then ®(x, 1) has the graph on [—47, 47]:

—04}

with lim,_, o, ®(x, 1) = Foo. A numerical evaluation shows that function ®(x, 1) has
a maximum R =0.282071 on (0, co) at xo=1.9905. Consequently, the analogy of
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Theorem 1.1 can be applied now to any v=#0 while the analogy of Theorem 1.1
can be applied for almost any veR \ [—0.282071, 0.282071], while for nonzero
ve[—0.282071, 0.282071] could be problematic in general.

On the other hand for w=—1, ®(x,—1) has the graph on [—4x, 4x]:

2_

with lim,_, o, ®(x, —1) =4o00. Consequently, the analogy of Theorem 1.1 can again
be applied now to any v # 0 while the analogy of Theorem 1.2 can now be applied for
almost any v#£0. Of course, now we have totally different situations than in
Example 2.7 for travelling waves without frequencies by comparing the above graphs
with that one in Example 2.7.
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