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Abstract

We show that soliton interaction with �nite-width inhomogeneities can activate a great number

of soliton internal modes. We obtain the exact stationary soliton solution in the presence of

inhomogeneities and solve exactly the stability problem. We present a Karhunen–Lo�eve analysis

of the soliton structure dynamics as a time-dependent force pumps energy into the translational

mode of the kink. We show the importance of the internal modes of the soliton as they can

generate shape chaos for the soliton as well as cases in which the �rst shape mode leads the

dynamics. c© 1998 Elsevier Science B.V. All rights reserved.

PACS: 02.30.Jr; 05.45.+b; 52.35.Mw; 52.35.Sb
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1. Introduction

The propagation of solitons in the presence of inhomogeneities concerns a wide

variety of condensed matter systems. The traditional approach considers structureless

solitons and delta-function-like impurities.

Real scenarios involve �nite-width impurities and under certain circumstances, the

extended character of the soliton must be considered [1–4]. For instance, the length

scale competition between the width of inhomogeneities, the distance between them and

the width of the kink-soliton leads to interesting phenomena like soliton explosions [2].

In this paper we take into account the extended character of both the soliton and the

impurity and show that these considerations lead to the existence of a �nite number
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of soliton internal modes that underlies a rich spatiotemporal dynamics. We present a

model for which the exact stationary soliton solution in the presence of inhomogeneities

can be obtained and the stability problem can be solved exactly. We use the Karhunen–

Lo�eve (KL) decomposition to relate the excitation of soliton internal modes with the

sequence of bifurcations obtained as the amplitude of a space-time-dependent driving

force (�tted to the shape of the translational mode) is increased.

2. The model

The topological solitons studied in the present paper possess important applications

in condensed matter physics. For instance, in solid state physics, they describe domain

walls in ferromagnets or ferroelectric materials, dislocations in crystals, charge-density

waves, interphase boundaries in metal alloys, 
uxons in long Josephson junctions and

Josephson transmission lines, etc. [5,6].

Although some of the above mentioned systems are described by the �4-model and

others by the sine-Gordon equation (and these equations, in their unperturbed versions,

present di�erences like the fact that the sine-Gordon equation is completely integrable

whereas the �4-model is not) the properties of the solitons supported by sine-Gordon

and �4 equations are very similar. In fact, these equations are topologically equivalent

and very often the result obtained for one of them can be applied to the other [5].

Here we consider the �4 equation in the presence of inhomogeneities and damping:

�xx − �tt − 
�t + 1
2
(�− �3) =−N (x)�− F(x) ; (1)

where F(x) is a function with (at least) one zero and N (x) is a bell-shaped function

that rapidly decays to zero for x→ ±∞. An impurity of the kind N (x)�, but using

delta functions, has been presented in Ref. [7].

In ferroelectric materials � is the displacement of the ions from their equilibrium

position in the lattice, 1
2
(� − �3) is the force due to the anharmonic crystalline po-

tential, F(x) is an applied electric �eld, and N (x) describes an impurity in one of the

anharmonic oscillators of the lattice [8]. In Josephson junctions, � is the phase di�er-

ence of the superconducting electrons across the junction, F(x) is the external current,

and N (x) can describe a microshort or a microresistor [9]. In a Josephson transmis-

sion line it is possible to apply nonuniformly distributed current sources (F(x)) and to

create inhomogeneities of type N (x) using di�erent electronic circuits in some speci�c

elements of the chain [6,10].

In the present paper the functions F(x) and N (x) will be de�ned as,

F(x) = 1
2
A(A2 − 1) tanh(Bx) ; (2)

N (x) =
1

2

(4B2 − A2)

cosh2(Bx)
: (3)

The case F = const: has been studied in many papers (see e.g. [5]). Here Eq. (2)

represents an external �eld (or a source current in a Josephson junction) that is almost
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constant in most part of the chain but changes its sign in x = 0 (this is very important in

order to have soliton pinning [1]). Microshorts, microresistors or impurities in atomic

chains [9] are usually described by Dirac’s delta functions (�(x)) where the width of

the impurity is neglected. The function N (x) is topologically equivalent to a �(x) but

it allows us to consider the in
uence of the width of the impurity.

3. Stability analysis

Suppose the existence of a static kink solution �k(x) corresponding to a soliton

placed in a stable equilibrium state created by the inhomogeneities of Eq. (1). We

analyze the small amplitude oscillations around the kink solution �(x; t) =�k(x) +

 (x; t). We get for the function  (x; t) the following equation:

 xx −  tt − 
 t + 1
2
(1 − 3�2

k + 2N (x)) = 0 : (4)

The study of the stability of the equilibrium solution �k(x) leads to the following

eigenvalue problem (we introduce  (x; t) =f(x) exp(�t) into Eq. (4)):

− fxx + 1
2
(3�2

k − 1 − 2N (x))f =�f ; (5)

where �≡−�2 − 
�.

For the functions F(x) and N (x) (de�ned as Eqs. (2) and (3)) the exact solution

describing the static soliton can be written: �k(x) =A tanh(Bx). The spectral problem

(Eq. (5)) brings the following eigenvalues for the discrete spectrum: �n = 1
2
A2 − 1

2
+

B2(� + 2�n− n2 − 2); here � is de�ned as, �(� + 1) = (A2=B2) + 2. The integer part

of �([�]) de�nes the number of modes of the discrete spectrum.

The stability condition for the translational mode is, 16B4 + 2B2(5 − 7A2) + (1 −

A2)2¡0. When this condition is not ful�lled (thus the equilibrium point x = 0 is unsta-

ble) and A2¿1, then there will exist three equilibrium points for the soliton: two stable

(at points x = x1¿0 and x = x2¡0) and one unstable at point x = 0. This is because

for huge values of |x| the leading inhomogeneity is F(x), which is non-local and not

zero at in�nity. This inhomogeneity acts as a restoring force that pushes the soliton

towards the point x = 0. As a result of the competition between the local instability

induced by N (x)� at point x = 0 and the non-local inhomogeneity F(x), an e�ective

double-well potential is created. This is equivalent to a pitchfork bifurcation.

We should make some remarks about the stability investigation. Writing down Eq. (4)

we are making an approximation because the terms  2 and  3 are considered zero.

Under this assumption the solutions of Eq. (4) can be used as an approximation for

the kink dynamics only for small perturbation of the static soliton solution. However,

the stability conditions obtained for the di�erent modes are exact. In fact, when we

say that the translational mode is stable for some set of values of the parameters, this

means that in a neighborhood of this equilibrium point the e�ective potential for the

soliton center of mass is a well (a minimum). On the contrary, when the parameters are

changed such that the stability condition does not hold anymore, then a small deviation
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in the initial condition of the soliton center of mass will cause the soliton to move

away from the equilibrium position. The same is valid for the stability of the shape

modes. For example, if the stability condition for the �rst shape mode is not satis�ed,

then small perturbation of the soliton pro�le will cause the soliton to explode. This

has been checked numerically [11].

In general, the stability problems for perturbed soliton equations are very hard [9].

This is because in order to solve it, we �rst should have an exact solution of the equi-

librium problem (which is rarely the case), and then one should solve the eigenvalue

problem which usually has no solution in terms of elementary functions.

The investigation we have performed includes several steps. First, we have to solve

an inverse problem in order to have external perturbations with the “shapes” that are

relevant to the physical situations we want to discuss; second, we assure that the exact

solutions will be known to us, and third, we should be able to solve exactly the stability

problem. This last condition is ful�lled because Eq. (5) is a Schr�odinger equation with

a P�oschl–Teller potential [1–3]. The solution of this spectral problem can be found in

Ref. [12].

In our case we were lucky enough to obtain exact solutions to perturbations that

are generic and topologically equivalent to well-known perturbation models (e.g. the

pitchfork bifurcation).

4. Karhunen–Lo�eve analysis

Let us consider a space-time-dependent force G(x; t) beside the space-dependent

forces F(x) and N (x)�. In a previous work [1], Gonz�alez and Ho lyst found that if

G(x; t) has a spatial shape such that it coincides with one of the eigenfunctions of the

stability operator of the soliton, then it is possible to get resonance if the frequency of

the force also coincides with the resonant frequency of the considered mode. Therefore

we can pump energy only into the translational mode of the kink selecting a space-

time-dependent force of the form

G(x; t) = � cos(!t)

(

1

cosh�(B(x − x1))
+

1

cosh�(B(x + x1))

)

: (6)

In Fig. 1a we present a sequence of bifurcations of the soliton center-of-mass coordinate

Xc:m: = (
∫ l=2

−l=2
x�2

x dx)=(
∫ l=2

−l=2
�2

x dx) (sampled at times equal to multiples of the period

of the driving force) as the driving amplitude � is increased and other parameters

remain �xed (A= 1:22, B= 0:32, != 1:22, x1 = 2:5 and 
= 0:3). For these values of

A and B the stability condition for the translational mode is ful�lled, the soliton moves

in a single-well potential and the system is in a regime with three discrete modes

([�] = 3). Previous articles have studied the bistable case as well as the single-well

case created by inhomogeneities of the type F(x) [1,2]. In this article we want to stress

the complexity of the internal dynamics of the soliton when, besides F(x), there is an

impurity of the type N (x)�.
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Fig. 1. (a) Bifurcation diagram for the position of the center of mass of the soliton. (b) Relative weight of

the highest KL eigenvalue. (c) Number of KL modes that contains 99.9% of the dynamics.

We have integrated the equation using a standard implicit �nite di�erence method

with open boundary conditions �x(0; t) =�x(l; t) = 0 and a system length l= 80. We

use a kink-soliton with zero velocity as initial condition.

Poincar�e maps for the soliton center-of-mass coordinate have revealed quasiperiodic

and chaotic attractors for the non-periodic solutions of Fig. 1a: period one solutions

precede a window of quasiperiodic bifurcations (the torus entangles as the amplitude

of the time-dependent driving force increases). At a certain value a period two win-

dow appears and is followed by quasiperiodic (two-tori) bifurcations. For �= 0:55 the

Poincar�e maps reveal high-dimensional chaotic motion followed by period one solu-

tions.

The KL decomposition [13,14] allows to describe the dynamics in terms of an ade-

quate basis of orthonormal functions or modes. The eigenvalues �n can be regarded as

the weight of the mode n. Fig. 1b presents the greater eigenvalue normalized by the

weight, W =
∑

�n, whereas Fig. 1c presents the number of modes that contains 99.9%

of the weight.

Fig. 2 reveals the increasing excitation of the KL modes as the amplitude of the

space-time-dependent force increases. Note the sudden changes of the spectra when

periodic motion is regained (period-two for �= 0:40 and period-one for �= 0:60). For

these solutions the amplitude of the oscillations around the point x = 0 diminishes

even though the amplitude of the driving force has increased. This agrees with the

higher contribution to the dynamics of the few modes of shape whereas all the rest of

the modes decreased their contribution. Furthermore, for �= 0:60 the �rst shape mode
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Fig. 2. KL spectra for the sequence of bifurcations presented in Fig. 1. The inset shows the �rst mode of

the KL spectrum for �= 0:20 and �= 0:60.

replaces the translational mode as the leading mode of the dynamics. The inset of the

Fig. 2 presents the leading KL eigenmodes for the period-one solutions that initiates

and ends the sequence of bifurcations considered in this section. The eigenmode for

�= 0:20 appears to be the superposition of a pair of translational modes centered at

the equilibrium points for the soliton. Similar situation occurs for �= 0:60 but the

eigenvalue appears to be the superposition of a pair of shape modes.
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