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Preface

This book is devoted to the topic of superconductivity in very narrow metallic wires.

Interest in such wires is driven by the continuing drive for miniaturization in the

electronics industry, where the reduction of heat dissipation by the use of intercon-

nects which are superconducting may be necessary. This has led to the invention

of new methods of producing very narrow wires with good quality and uniformity

in dimensions, and opened up the possibility of novel device paradigms.

The superconducting state is a state of coherent pairs of electrons, held together

by the mechanism of the Cooper instability. When the lateral dimensions are small,

a new pathway opens up for the superconductor to produce dissipation, associated

with the enhanced rate at which fluctuations can occur in the complex order param-

eter – a quantity which describes the magnitude and phase of the Cooper pairs.

In many regimes, the fluctuations of the phase of the Cooper pairs is often the

dominant process, in analogy with what occurs in dissipative Josephson junctions.

This new pathway is related with the motion of vortices in type-II superconductors,

which gives rise to dissipation in 2D (two-dimensional) and bulk superconductors,

in which a rapid change of phase occurs as a vortex passes by. Here, because of the

physical dimension of the system (comparable to 10 nm), the vortex quickly passes

across the entire narrow wire, producing dissipation in the process.

Although nanowires are small in their transverse dimensions, they are still much

larger than the Fermi wavelength (λF) of the electronic system, which is of the order

of a few angstrom in all metals. In conventional superconductors such as Al, Pb,

Sn, Nb, MoGe, and so on, in thin film or nanowire form, the coherence length is

� � 5�100 nm, typically 10–1000 times the Fermi wavelength. The system we will

consider is therefore in a sort of mixed-dimensional regime. From the condensate

perspective, the system is 1D (one-dimensional), in the sense that the transverse di-

mensions are smaller than the Cooper pair size: for this reason, the wave function,

or alternatively, the order parameter, describing the Cooper pairs, is uniform, and

thus position-independent, in the transverse directions. From the fermionic quasi-

particle excitation perspective, the system is effectively 3D (three-dimensional; λF

is much smaller than the lateral dimension) and there is a large number of trans-

verse channels (from � 100 in a multiwalled carbon nanotube, to � 3000 in an

� 8 nm diameter aluminum nanowire), analogous to transverse modes in a wave

guide.
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In this limit, the dominant collective excitations are no longer pair-breaking exci-

tations across the superconducting energy gap, but rather “phase-slips,” which are

topological defects in the ground state configuration. Phase slips are related to the

motion of vortices in type-II superconductors which give rise to dissipation in 2D

and bulk superconductors: in a 1D system, they produce a sudden change of phase

by 2π across a core region of reduced superconducting correlation which gives rise

to a voltage pulse.

Another intriguing aspect arises from the fact that even in wires which are not

ballistic along the wire length, the typical level spacing in the transverse direction

can significantly exceed the superconducting gap energy scale. Thus, the possibility

of singularity in the density of the electronic state in the normal system associated

with each transverse channel can cause oscillatory behaviors in the superconduct-

ing properties.

From the above discussion, it is clear that the regime of interest is delineated by

the condition that the size of the Cooper pairs, or the superconducting coherence

length, be larger than the transverse directions perpendicular to the length of the

wire. In this limit the order behavior of the Cooper pair is largely uniform across

the wire length, and only variations along the wire length need to be considered.

At temperatures well below the superconducting transition temperature, the scale

for the observation of dimensionality effects is in the 10–100 nm range (5–50 nm

in radius): in this regime, new physics have been predicted, including universal

scaling laws in the conductance of the wire.

To access the regime where quantum processes become dominant, however, a

more stringent requirement is necessary, that of a sufficiently large probability of

fluctuations to occur: this more stringent criterion places the scale requirement in

the 10 nm (5 nm in radius) range. Nanowires in this regime may either be a single

monolithic wire, such as nanowires made of MoGe, Al, Nb, In, PbIn, Sn, and so

on, or coupled wires such as in carbon nanotube bundles.

It should be noted that, in the strict sense, only systems in 2D or 3D have a true,

sharp, thermodynamic phase transition into the superconducting state at a finite

temperature Tc. In the 2D case, it is a Berenzinskii–Thouless–Kosterlitz type of

second-order phase transition, while in 3D, it is a second-order continuous phase

transition in the Ginzburg–Landau sense, at least for type-II superconductors sup-

porting the existence of vortices within the bulk. In contrast, in a 1D nanowire,

the fluctuations cause the transition to become smeared, so that the resistance re-

mains finite, albeit small, below the transition. Early theoretical analyses were mo-

tivated by experimental observations of such behavior, and attempted to quantify

the amount of residual resistance. Thus, naturally, questions arise as to whether

the resistance vanishes at zero T, and whether novel excitations are able to limit

the supercurrent below the depairing limit.

From a broader point of view, 1D superconducting nanowires are interesting

from a variety of perspectives, including many body physics, quantum phase tran-

sition (QPT), macroscopic quantum tunneling (MQT) processes, and device ap-

plications. The field, by nature, involves rather technically sophisticated methods.

This is true from either the experimental or theoretical side.
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On the experimental side, there are many technical challenges, and thus it is not

for the faint of heart. Such challenges include nanowire fabrication, the delicate

nature of nanowires with respect to damage–they act as excellent fuses, and their

sensitivity to environmental interference from external noise sources, and so on.

At the level of 10 nm in transverse dimensions, corresponding roughly to 40 atoms

across, even width fluctuations of a few atoms can have significant influence on

the energetics and properties. Thus, to obtain intrinsic behaviors of relevance to

a uniform wire, rather than behavior limited to weak-links or a very thin region

in a nonuniform wire, fabrication is exceedingly demanding. Arguably, only in re-

cent years has the emergence of fabrication techniques come into existence with

sufficient precision for producing unusually uniform nanowires. Thus, substantial

progress is occurring on the experimental front.

On the theoretical side, analyses invariably involve sophisticated quantum field

theory (QFT), quantum phase transition (QPT), Bogoliubov–de Gennes BdG,

Ginzburg–Landau (GL), Gorkov–Eilenberger–Usadel self-consistent (including

nonlinearities) techniques, all of which require a rather advanced level of under-

standing of the theoretical machinery. This is often compounded by the fact that

the concept of the quantum-mechanical tunneling in the phase of the supercon-

ducting order-parameter is difficult to motivate from a classical perspective, since,

unlike coordinates or momenta, the phase is a concept born out of wave mechan-

ics. Instead, the tunneling in the phase degree of freedom is usually introduced

via the Feynman path integral type of formulation, as one finds a more natural

description, for this phenomenon, in terms of instantons in field theory language.

The goal of this book is to produce a relatively self-contained introduction to

the experimental and theoretical aspects of the 1D superconducting nanowire sys-

tem. The aim is to convey what the important issues are, from experimental, phe-

nomenological, and theoretical aspects. Emphasis is placed on the basic concepts

relevant and unique to 1D, on identifying novel behaviors and concepts in this

unique system, as well as on the prospects for potentially new device applications

based on such new concepts and behaviors. The latest experimental techniques

and results in the field are summarized. On the theoretical side, much of the field

theoretic methods for analyzing the various quantum phase transitions, such as

superconductor–metal transitions, superconductor–insulation transitions, and so

on, brought about by disorder, are highly technical and the details are beyond the

scope of this book. Nevertheless, an attempt is made to summarize the relevant is-

sues and predictions, to pave the way for understanding the formalisms and issues

addressed in available journal literature. It is the hope of the authors that this book

will serve as a starting point for those interested in joining this exciting field, as

well as serving as a useful reference for active researchers.

To this end, our philosophy is to present the field as an active, exciting, and ongo-

ing discourse, rather than one that is fully established. Thus, many of the concepts

and experiments are still fraught with a certain degree of healthy controversy. Thus,

an attempt is made to convey a sense of openness to the discourse in the field.

The book is organized as follows: Chapter 1 contains a brief history of the field,

and a succinct summary of the various theoretical methodologies for understand-
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ing conventional superconductivity. These methods are widely used in analyzing

1D superconducting nanowire systems. Chapter 2 is devoted to the basic concepts

of 1D superconductivity, including size quantization and its influence on supercon-

ducting properties, leading to the phenomenon of shape resonances, the phase-slip

phenomenon, which originated from an attempt to explain the broadened temper-

ature transition and the finite voltage along the wire below but near the transition,

as well as the conditions and relevant energy scales in molecular systems such

as carbon nanotubes. In Chapter 3, the quantum theory based on path integral

formulation is summarized. The various types of quantum phase transitions and

competing physical scenarios are described. Chapter 4 explores new concepts and

potentially new devices based on the idea of a duality between Cooper pairs and

the phase slip. Novel QPS junctions are described. These are believed to offer new

venues for a current version of the Shapiro steps, as well as a platform for qubits.

Nonlinear and nonequilibrium effects based on the Usadel equations are described

in Chapter 5.

On the experimental side, the all-important description of the state-of-the-art fab-

rication methodologies is presented in Chapter 6. Experimental techniques, such

as filtering to remove external environmental noise are summarized in Chapter 7.

Finally, in Chapter 8, we discuss the current state of experimental progress, and the

many open questions, as well as future prospects. To conclude, in Chapter 9, we

describe recent experimental results in superconducting nanowire single-photon

detector that are now approaching the 1D superconducting limit and devices that

are related to 1D superconductivity via the proximity effect: in this class, we find

nanotubes and semiconducting nanowires, which have recently indicated of the

presence of Majorana fermions.

The authors are indebted to Sergei Khlebnikov (Purdue University), in particular

for sharing his insight and for providing helpful comments on the entire theory

section. The authors acknowledge the help of (in alphabetical order) G. Berdiyorov

(University of Antwerp), E. Demler (Harvard University), A. Del Maestro (Uni-

versity of Vermont), D. Golubev (Karlsruhe Institute of Technology), F. Peeters

(University of Antwerp), G. Refael (Caltech), S. Sachdev (Harvard University),

A. Zaikin (Lebedev Inst. of Physics and Karlsruhe Institute of Technology) for

critically reading the manuscript. The authors would also like to thank M.R. Mel-

loch (Purdue University), C.W. Tu (University of California at San Diego), P. Li,

P.M. Wu, G. Finkelstein, Y. Bomze, I. Borzenets (Duke University), and Li Lu

(Institute of Physics, CAS, Beijing) for their help and fruitful discussions.

September, 2012 F. Altomare and A.M. Chang
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Acronyms

APE Anti-proximity Effect

BdG Bogoliubov–de–Gennes

BCS Bardeen–Cooper–Schreiffer

CPR Current–Phase Relation

cQPS Coherent Quantum Phase-Slip

DCR Dark Current Rate

DQM Dissipative Quantum Mechanics

e-beam Electron beam

GIO Giordano expression for the resistance due to quantum phase slips,

or to QPS and TAPS

GL Ginzburg–Landau

HQS Silsesquioxane, a type of negative electron beam resist

IRFP Infinite-Randomness Fixed Point

JJ Josephson Junction

KQPS Khlebnikov Quantum Phase-Slip

KTB Kosterlitz–Thouless–Berezinskii

LA Langer–Ambegaokar

LAMH Langer–Ambegaokar–McCumber–Halperin

MBE Molecular-Beam-Epitaxy

MH McCumber–Halperin

PMMA Polymethylmethacrylate: probably the most common electron beam

resist, mainly used as positive tone resist

PSC Phase-Slip Center

QPS Quantum Phase-Slip

RTFIM Random-Transverse-Field Ising Model

SC Superconducting

SG sine-Gordon

SEM Scanning Electron Microscope

SIT Superconductor-Insulator Transition
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SmNW Semiconducting Nanowire

SMT Superconductor-Metal Transition

SNAP Superlattice Nanowire Pattern Transfer

SNAP Superconducting Nanowire Avalanche Photo Detector

SNSPD Superconducting Nanowire Single-Photon Detector

SQUID Superconducting Interference Device

SSPD Superconducting Single-Photon Detector

SWNT Single-Walled Nanotube

SWCNT Single-Walled Carbon Nanotube

TAP or TAPS Thermally-Activated Phase Slip

Symbols

w Width of nanowire or wire

h Height of nanowire or thin film

d Diameter of nanowire

L Length of nanowire

Lx Length in x-direction of a thin film

Ly Length in y-direction of a thin film

A Cross sectional area of a nanowire

V Volume

T Temperature

kB T Thermal energy scale; kB is the Boltzmann’s constant

� 1
kB T

e fundamental unit of charge: C1.602 � 10�19 C D

C 4.80 � 10�10 esu

μ (i) Chemical potential

(ii) parameter that controls the KTB (Kosterlitz–Thouless–

Berezinskii) phase transition

EF Fermi energy

vF Fermi velocity (speed)

N(0) � D(EF) Density of states at the Fermi level of both spins, in the normal

state

�e Charge of the electron

(�2e) Charge of the Cooper-pair of electrons

m electron mass

M Cooper-pair mass M D 2m

D D 1
3

vF lmfp Diffusion coefficient

lmfp Mean-free-path

Tc Critical temperature, or normal to superconducting transition

temperature

∆ Superconducting gap

∆0 Zero temperature superconducting gap
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ωD Debye frequency

ns Superconducting carrier density

g Gorkov coupling constant, take to be positive g D VV

u Amplitude of electron-like component of a Bogoliubov

quasiparticle

v Amplitude of hole-like component of a Bogoliubov quasiparticle

� Superconducting coherence length, usually in the dirty limit of

�cln � �bulk � �BCS � lmfp

�0 Zero temperature superconducting coherence length

�bulk Superconducting coherence length is bulk 3D material

�cln Superconducting coherence length in the clean limit

�BCS The BCS superconducting coherence length

λL London penetration depth

λn or λ i Eigenvalues of index n or index i

EC Coulomb charging energy EC D (2e)2/C , where C is the

capacitance

EJ Josephson energy

C (i) Capacitance per unit length of a nanowire

(ii) capacitance of a Josephson junction

Lkin Kinetic inductance per unit length of a nanowire

cpl Mooij–Schön plasmon mode propagation speed

ψ or ψ† Electron annihilation or creation operator

ψ (i) Ginzburg–Landau superconducting order parameter

(dimensionless)

(ii) Gross–Pitaevskii superconducting order parameter

Ψ Ginzburg–Landau superconducting order parameter

τGL Ginzburg–Landau relaxation time: τGL D π
8

„
Tc�T

φ0 Superconducting flux quantum: φ0 D hc/(2e) (cgs);

φ0 D h/(2e) (SI)

RQ Superconducting quantum resistance RQ � h/(2e)2 � 6.453 kΩ

A Vector potential

V (i) electrostatic potential

(ii) strength of electron-phonon coupling in the Gorkov coupling

constant g D VV

E Electric field

B Magnetic field

J Electrical current density

Js Electrical current density of the superfluid

Jc Critical electrical current density

j Reduced electrical current density

jc Reduced critical electrical current density

I Electrical current

Ic Critical electrical current



XVIII Abbreviations and Symbols

Is Switching current, at which a nanowire switches from a super-

conducting state to a normal state, typically somewhat smaller

than the Ic in the depairing limit

Ibias Externally applied bias current

a (i) Lattice constant

(ii) Proportionality constant in the Giordano expression for the

quantum phase-slip rate or quantum phase-slip resistance

' Phase of the complex superconducting order-parameter

Hc Thermodynamic critical (magnetic) field

RQPS The quantum phase-slip contribution to the resistance

RTAP The thermally-activated phase-slip contribution to the resistance

ΓQPS The quantum phase-slip (tunneling) rate

ΓTAP The phase-slip rate due to thermal-activation

Γ ˙ The phase-slip rate: C corresponds to increasing the phase-

winding by one unit, � to decreasing by one unit

Γinst Quantum tunneling rate of an instanton

Ω Attempt frequency for the phase-slip process

Ω ˙ Attempt frequency for the phase-slip process:

C corresponds to increasing the phase-winding by one unit,

� to decreasing by one unit

Z (i) Partition function

(ii) Mooij–Schön plasmon propagation impedance

S Action, in almost all cases, the Euclidean action in the imaginary-

time formulation

SD Drude contribution to the action

SJ Josephson contribution to the action

SL London contribution to the action

Sem Electromagnetic field contribution to the action

Sdiss Dissipation contribution to the action

Sbias Contribution to the action from a biasing current

Sbdry Boundary contribution to the action

S1D Action for a 1D superconducting nanowire

SQPS Action due to a single or multiple quantum phase-slip

F Free energy

∆F Free energy barrier for the creation of a phase-slip

∆F˙ Free energy barrier for the creation of a phase-slip:

C corresponds to increasing the phase-winding by one unit,

� to decreasing by one unit
OG The Gorkov Green’s functions in matrix form in Nambu space
LG The Gorkov Green’s functions in the Keldysh formulation, with

both the advanced and retarded, as well as the Keldysh com-

ponent. The matrix is in the direct product space of forward

and backward branches of the Keldysh contour, with the Nambu

space.



Abbreviations and Symbols XIX

G The normal components of the Gorkov Green’s functions. They

represent the diagonal components of the OG matrix

F The superconducting components of the Gorkov Green’s func-

tions, representing the off-diagonal components of the OG matrix

(sometimes with an extra sign change, and or hermitian conjuga-

tion)

GR,A,K In the Keldysh formulation: Retarded (R) G, Advanced (A) G, and

Keldysh (K) G

F R,A,K In the Keldysh formulation: Retarded (R) F, Advanced (A) F, and

Keldysh (K) F

Og The Eilenberger–Larkin–Ovchinnikov Green’s functions, which

are the Gorkov ones averaged over an energy variable

Lg The Eilenberger–Larkin–Ovchinnikov Green’s functions, which

are the Gorkov ones averaged over an energy variable, in the

Keldysh formulation, with both the advanced and retarded, as

well as the Keldysh component. The matrix is in the direct prod-

uct space of forward and backward branches of the Keldysh con-

tour, with the Nambu space.

g The normal components of the Eilenberger–Larkin–Ovchinnikov

Green’s functions, which are the Gorkov ones averaged over an

energy variable. They represent the diagonal components of the

Og matrix

f The superconducting components of the Eilenberger–Larkin–

Ovchinnikov Green’s functions, which are the Gorkov ones av-

eraged over an energy variable, representing the off-diagonal

components of the Og matrix

σ Electron spin index

σx ,y ,z x: x-component of Pauli matrix; y: y-component, z: z-component

gR,A,K In the Keldysh formulation: Retarded (R) g, Advanced (A) g, and

Keldysh (K) g

f R,A,K In the Keldysh formulation: Retarded (R) f, Advanced (A) f, and

Keldysh (K) f

fQPS QPS fugacity

xo Core size of a quantum phase-slip, typically taken to be of order

�0

τ0 Time-scale of a quantum phase-slip, typically & „/Δ

DN Inverse of the compressibility of normal electron fluid

DS Inverse of the compressibility of superconducting electron fluid

VN Voltage of the normal fluid

VS Voltage of the super fluid

r Normal electron to Cooper-pair conversion resistance

γ Parameter proportional to the rate of normal electron to Cooper-

pair conversion

λQ Length scale for the normal electron to Cooper–pair conversion

process



XX Abbreviations and Symbols

fdpl,p Fugacity of QPS–anti-QPS dipoles, separated by p lattice sites

K or Ks The superconducting stiffness

Ks,w or Kw The superconducting stiffness for a 2D strip of width w

αdis Dimensionless disorder parameter in the Khlebnikov–Pryadko

theory of quantum phase-slips

A dis A parameter, which characterizes the correlation integral of the

disorder potential

Cw Capacitance per unit area of a narrow 2D superconducting strip

Lkin,w Kinetic inductance for a unit area of a narrow 2D superconduct-

ing strip

q Vortex charge-vector

q0I1,1 The 0-th, 1st and 2nd components of the (2+1)D q-vector

Jvor Vortex current density-vector

f μν The field tensor components of an effective photon field

ncp Cooper-pair number

nflux The flux number penetration a superconducting loop

ωpl Plasma frequency, e.g. in a Josephson junction, or that character-

izing the vibrations within the local minimum of the free-energy

Vc The critical voltage in a QPS-junction. It is the dual to the critical

current Ic in a conventional Josephson Junction
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Color Plates

Figure 5.4 The calculated current (J)–voltage (V) relation of a superconducting wire of length

L D 8.5�0 between normal metallic reservoirs (see inset) at several temperatures, and for a wire

of length 17�0 . Jc is the critical current density, and Δ0 the bulk gap energy. From [8].
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Figure 6.7 Histograms showing the distri-

bution of the wire cross section before and

after sputtering. To collect statistics, about

500 SPM (scanning probe microscope) scans

were taken across the wire with the step along

its axis � 12 nm, which is comparable to the

radius of curvature of the SPM tip. Narrowing

of the histograms is due to the “polishing”

effect of ion sputtering. The inset shows the

evolution of the sample shape while sputter-

ing measured by SPM. The bright color above

the gray plane corresponds to Al and the blue

below the plane to Si. Planes (gray, green, or-

ange) indicate Si substrate base levels after

successive sessions of sputtering. As Si is

sputtered faster than Al, the wire is finally sit-

uated at the top of the Si pedestal. Gray plane

(height D 0) separates Si from Al. From [39].

Figure 7.6 (a) Normalized differential resis-

tance at T D 0.35 K for indicated MoGe wires

(M, L insulating, N superconducting). Data

for wires L and N are downshifted by 0.05 and

0.1, respectively. (b) Differential resistance as

a function of bias voltage at T D 0.35 K in the

transitional regime of the SIT for supercon-

ducting nanowires F. Adapted from [41].
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Figure 7.7 Resistance vs. temperature for the

same aluminum wire of length L D 10 µm

after several sputtering sessions. The sample

and the measurement parameters are listed

in the table. For low-Ohmic samples, lock-in

AC measurements with the front-end pream-

plifier with input impedance 100 kΩ were

used; for resistance above � 500 Ω, a DC

nanovolt preamplifier with input impedance

� 1 GΩ was used. The absence of data for

the 11 nm sample at T � 1.6 K is due to

switching from a DC to AC setup. Note the

qualitative difference of R(T ) dependencies

for the two thinnest wires from the thicker

ones. From [34].

Figure 7.8 R(T ) dependence for thep
σ � 11 nm aluminum sample. The green

line shows the result of fitting to a renormal-

ization theory (Reference 18 in [34]) with A, l,

and Tc being the fitting parameters. The same

set of parameters together with the critical

magnetic field Bc measured experimentally is

used to show the corresponding effect of ther-

mally activated phase slips on the wire’s R(T )

transition (red line) (References 1,2 in [34]).

The parameter σ is obtained from the normal

state resistance value and the known sample

geometry (Reference 12 in [34]). The estima-

tion for σ is in reasonable agreement with

SPM analysis as well as with evolution of σ

over all sputtering sessions (see Figure 7.7).

From [34].
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9 Nonlinear I–V curves and linear

resistance for Al nanowire sample at different

magnetic fields (H): Black curves – data; red

curves – fits to the GIO (� GIO C LAMH;

GIO denotes Giordano) expressions for QPS

(� TAPS C QTPS; TAPS denotes thermal-

activated phase-slips and QTPS quantum-

tunneling of phase-slips), and blue curves –

fits to the LAMH expressions for TAPS alone.

(a) and (b) show I–V curves offset for clarity.

The fits to QPS are of higher quality com-

pared to TAPS; each fit includes a series

resistance term VS. These I–V curves can

be fitted equally well by a power law form

V D VS C (I/Ik)ν where 12 < ν < 3.2

for 0 � H � 1.05 T [21, 37]. (c) and (d) show

linear resistance after background subtraction

(see Figure 1a in [24] and [37]). The LAMH fits

are poor at low T. (e) and (f) show the resis-

tance contribution due to phase slips (RQPS)

extracted in (a) and (b) from fits to the I–V

curves using the GIO expressions (discrete

points, ∆). RQPS and the linear resistance

from (c) and (d) are refitted using the GIO

expressions (red) with the same aGIO(D 1.2)

while disregarding the irrelevant shoulder

feature (dashed line). Adapted from [24].



Color Plates XXV

Figure 7.11 A superconducting Al nanowire

connected to two massive normal reservoirs,

consisting of the same Al, covered by a nor-

mal metal Cu layer: (a) SEM-picture, (c) AFM-

picture, and (d) and (e) show a schematic

representation. The thin Al of the pads is

driven normal by the inverse proximity ef-

fect of the thick normal Cu. Normal tunneling

probes are attached for local measurements

(b). From [53].
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Probe

Probe

(a)

(b)

Figure 7.12 The local density of states (DOS

/ d I/dV ) (a) the global superconducting

state and (b) the bimodal state for differ-

ent bias currents I12 of a 100 nm wider Al

nanowire, measured at 200 mK. For the global

superconducting state, the gap is only weakly

dependent on the bias current, while for the

bimodal state, for which only regions adjacent

to the normal contacts are superconducting

while the middle of the nanowire is in the

normal state, one observes a DOS gradually

changing from a normal into a superconduct-

ing state. From [53].
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Figure 7.13 Temperature dependence for the

four-point resistance of Nb NW arrays and

films. (a) Superconducting Nb contacted NW

arrays and films. Red lines: arrays of 12 NWs

of cross section 11 nm � 10 nm and length

L (from top to bottom) D 3 and 0.9 µm.

Blue lines: arrays of 100 NWs of cross sec-

tion 11 nm � 16 nm and L D 100, 50, 20,

10, 2.4, and 1.6 µm. Green lines: arrays of

250 NWs of cross section 30 nm � 16 nm

and L D 1.5 and 1.3 µm. Black dashed lines:

11 nm thick films with width of 3 µm, L D 60

and 20 µm. Purple dashed line: a 30 nm thick

film with a width of 20 µm, L D 2.5 µm.

Inset: Length dependence of the normal-

state resistance for arrays of 100 NWs of

cross section 11 nm � 16 nm. (b) Normal-

state Pt contacted NW arrays of cross section

30 nm � 16 nm. (c) 30 nm � 16 nm � 1.3 µm

data in (a) fitted to TAPS theory (TAPS C QPS

gives an indistinguishable result). (d)

11 nm � 16 nm � 20 µm data fitted to the

theories. (e) 11 nm � 16 nm � 2.4 µm data

fitted to the theories. From [40].
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Figure 7.17 The best-fit effective temperature

for fluctuations at different bath temperatures

for five different Mo1�x Gex nanowire samples

(S1–S5). For all TAPS rate calculations, the

effective temperature is chosen as the bath

temperature (shown by the black dashed line).

For the QPS rates, the effective temperature

TQPS, used in the corresponding QPS fits,

similar to the blue-line fits of b [4], is shown

by the solid lines. For each sample, below the

crossover temperature T � (indicated by ar-

rows), QPS dominates the TAPS. They find

that the T � decreases with decreasing criti-

cal depairing current of the nanowires, which

is the strongest proof of QPS. The trend in-

dicates that the observed behavior of TQPS

below T � is not due to extraneous noise in

the setup or granularity of wires, but, indeed,

is due to QPS. Adapted from [4].
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Figure 7.18 (a) Is distribution for Al nanowire

S2 at different temperatures: right to left: 0.3–

1.2 K in 0.1 K increments. The inset shows the

0.3 K distribution, fitted by the Gumbel distri-

bution (Reference 20 in [28]). (b) hIsi vs. tem-

perature – top to bottom S1–S5. (c) Symbols:

δ Is vs. temperature. Dashed lines: fittings in

the single TAPS regime using (Eq. 2 in [28]).

An additional scale factor of 1.25, 1.11, 1.14,

0.98, and 1.0, for S1–S5, respectively (average

1.1 ˙ 0.1), is multiplied to match the data.

Alternatively, a � 6% adjustment in the ex-

ponent fits the data without the scale factor.

Adapted from [28].

Figure 7.19 (a) (Mo1�x Gex sample S2) Trans-

mission amplitude S21 (dB) in forward and

backward frequency sweep for various driving

powers. The graph shows Duffing bifurcation

occurring at higher driving powers. The curves

correspond to different driving powers: 1:

PNA
out D �29 dBm (black); 2: �21 dBm (blue);

3: �14 dBm (red); 4: �11 dBm (orange);

5: �10 dBm (green); 6: �8 dBm (black); 7:

�6 dBm (violet); and 8: �3 dBm (black).

(b) (sample S2) Replotting of the data from

(a) as the transmitted power PNA
in measured

at the network analyzer input vs. frequency.

From [60].
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Figure 7.25 (a) Magnetic-field dependence

of Zn wire resistance, at a high current

I � 4.4 µA, with temperatures ranging from

0.46 to 0.76 K, every 0.02 K. (b) Magnetic-field

dependence of wire resistance, at a low cur-

rent I D 0.4 µA, with temperatures ranging

from 0.83 to 0.85 K, every 0.01 K. From [31].

(a) (b)

Figure 8.3 (a) The charge-modulated I–V

curves of sample A recorded in a current-

bias regime for two gate voltages shifted by

a half-period. In the region of small currents

(enlarged in the inset), one can see the mod-

ulation with period ∆ I D 13.5 pA, which is

due to the asymmetry of off-chip biasing cir-

cuitry, resulting in the current dependence of

the electric potential of the transistor island,

δV D (Rbias1 � Rbias2)I and, therefore, of the

effective gate charge, δQg D (Cg C C0)δV .

The green dashed line shows the shape of the

bare I–V curve given by the RSJ model (Equa-

tion 10 in [5]) with fixed Qg. (b) The I–V

curves of sample B measured in the voltage

bias regime at different values of gate voltage

Vg. The bottom right inset shows details of the

Coulomb blockade corner. Upper left inset:

the gate voltage dependence of the transistor

current measured at different bias voltages Vb,

providing a steady increase of hV i from 0.321

up to 0.481 mV in 20 µV steps (from bottom

to top). Adapted from [5].
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Figure 8.8 Experimental data. (a) Power

transmission through the resonator mea-

sured within the bandwidth of our experi-

mental setup. Peaks in transmission power

coefficient, jtj2 , correspond to resonator

modes, with mode number m indicated for

each peak (a.u., namely, arbitrary units).

(b) Transmission through the resonator as

function a of external magnetic field Bext

at m D 4 ( f4 D 9.08 GHz). The peri-

odic structure in amplitude (jtj) and phase

(arg(t)) corresponds to the points where the

lowest-level energy gap ∆E/ h matches f4.

The period ∆B D 0.061 mT (D Φ0/S)

indicates that the response comes from the

loop (shown in Figure 1b) with the effective

loop area S D 32 µm2 . (c) The two-level

spectroscopy line obtained in two-tone mea-

surements. The phase of transmission, arg(t),

through the resonator at f4 is monitored,

while another tone with frequency fprobe from

an additional microwave generator, and Bext ,

are independently swept. The plot is filtered

to eliminate the contribution of other reso-

nances (2 < m < 6), visible as horizontal

red features. The dashed line is the fit to the

energy splitting, with ∆E/ h D 4.9 GHz,

Ip D 24 nA. (d) The resonant dip is mea-

sured at Φ/Φ0 D 0.52. The red curve is the

Gaussian fit. From [14].
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Figure 9.3 Differential resistance dV/d I vs. bias voltage V for a SWNT sample #2 of diameter

D < 1.8 nm with Nb electrodes over a range of temperatures around Tc of Nb (9.2 K). The

magnitude of the Andreev dip decreases with increasing T and disappears above Tc. From [5].

Figure 9.5 Differential resistance as a func-

tion of bias and temperature for CNFET (car-

bon nanotube field-effect-transistor) no. 1.

Vg D 47 V for the dip on the left. Vg D 48 V

for the peak on the right. The temperatures for

the curves shown in (c) are 5.5, 8.5, 9.5, 15,

20, and 30 K. The temperatures for the curves

shown in (d) 3, 4, 7, 9, 15, and 20 K. From [10].
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Figure 9.7 Normalized magnetic susceptibil-

ity of the SWNTs plotted as a function of tem-

perature for five values of the magnetic field.

The curves are displaced vertically for clarity.

Values shown are for theory (open symbols)

and experiment (filled symbols). �0 denotes

the value of the susceptibility at T D 1.6 K

and magnetic field D 0.2 T. The experimental

value of �0, when normalized to the volume of

the SWNTs, is �0.015 (in units where B D 0

denotes �0 D �1). The scatter in the theory

points reflects statistical fluctuations inher-

ent in the Monte Carlo calculations. (Inset)

Temperature dependence of magnetization

density for zeolite AFI crystallites (curve 1)

and for AFI crystallites with SWNTs in their

channels (curve 2). Both curves are measured

at 2000 Oe. From [13].
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Figure 9.8 (a) Cartoon of the sample con-

tain an array of SWNT in an AFI zeolite crys-

tal. Yellow denotes gold and green denotes

the AFI crystal surface exposed by FIB etch-

ing. Nanotubes are delineated schematically

by open circles. (b) SEM image of one sam-

ple. The c-axis is along the N-S direction. The

thin, light, horizontal line in the middle is the

100 nm separation between the two surface

voltage electrodes that are on its two sides.

The dark regions are the grooves cut by the

FIB and sputtered with Au/Ti to serve as the

end-contact current electrodes. (c) and (d)

show schematic drawings of the two-probe

and four-probe geometries, respectively. Blue-

dashed lines represent the current paths. In

(d), the two end-contact current pads are

4 mm in depth and 30 mm in width. The dif-

ference between the two-probe and the four-

probe measurements is the transverse re-

sistance, delineated by the red circles in (c).

From [17].
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Figure 9.10 (a) V(I ) characteristics for device

no. 3 at 40 mK, with (red) and without (black)

an externally applied 4-GHz radiation (this

device has RN D 860 Ω and IC D 26 nA

at T D 40 mK). The red trace is horizontally

offset by 40 nA. The applied microwave ra-

diation results in voltage plateaus (Shapiro

steps) at integer multiples of ∆V D 8.3 µV.

(Inset) Measured voltage spacing ∆V (sym-

bol) as a function of microwave angular fre-

quency ωRF. The solid line (theory) shows the

agreement with the AC Josephson relation

∆V D „ωRF/(2e). From [30].
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Figure 9.11 (a) Implemented version of the-

oretical proposals, using InSb SmNW and

Nb superconductor. Scanning electron mi-

croscope image of the device with normal

(N) and superconducting (S) contacts. The

S contact only covers the right part of the

InSb nanowire. The underlying gates, num-

bered 1 to 4, are covered with a dielectric.

(Note that gate 1 connects two gates, and

gate 4 connects four narrow gates; see (b).)

(b) schematic of our device. (c) an illustration

of energy states. The black rectangle indicates

the tunnel barrier separating the normal part

of the nanowire on the left from the wire sec-

tion with induced superconducting gap, Δ. (In

(a), the barrier gate is also shown in white.)

An external voltage, V, applied between N

and S drops across the tunnel barrier. (Red)

stars, again, indicate the idealized locations

of the Majorana pair. Only the left Majorana is

probed in this experiment. Adapted from [24].
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Figure 9.12 Magnetic field-dependent spec-

troscopy. (a) d I/dV vs. V at 70 mK taken at

different B fields (from 0 to 490 mT in 10 mT

steps; traces are offset for clarity, except for

the lowest trace at B D 0). Data are from

device 1. Arrows indicate the induced gap

peaks. (b) Colorscale plot of d I/dV vs. V and

B. The ZBP is highlighted by a dashed oval;

green dashed lines indicate the gap edges. At

� 0.6 T, a non-Majorana state is crossing zero

bias with a slope equal to � 3 meV/T (indi-

cated by sloped yellow dotted lines). Traces in

(a) are extracted from (b). From [24].

Figure 9.13 (main) V vs. I for Al-Bi2Se3-

Al S-TI-S devices of dimensions (L, W ) D
(45 nm, 1 µm) for B D 0, 2, 3, 5, 8, 10 mT and

at a temperature of 12 mK. At B D 0, IC is

850 nA, which is reduced upon increasing B.

For this device, the product ICRN D 30.6 µV,

which is much lower than theoretically ex-

pected for conventional JJs. (Upper-left in-

set) I–V curves overlap for all values of B at

V � 2Δ/e � 300 µV. (Lower-right inset)

Sweeps up and down in I show little hystere-

sis, indicating that the junction is in the over-

damped regime. Adapted from [36].


