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Two discrete rings of nonlinear oscillators with topologically trapped kinks exhibit features due to coupling

interactions between the rings. These interaction effects include phase locking between kinks in different rings,

precession of the kink/antikink collision region, excitation of kink/antikink pairs, and time-dependent switch-

ing. We study these phenomena in simulations of two coupled discrete sine-Gordon equations, and in experi-

ments on two inductively coupled rings of niobium Josephson junctions. @S0163-1829~98!06237-7#

I. INTRODUCTION

Discrete rings of coupled nonlinear oscillators have long

served as model systems in studies of spatiotemporal pattern

formation. Turing’s pioneering analysis of morphogenesis1

was largely concerned with instabilities and spatial patterns

in a discrete ring of N cells, each governed by nonlinear

chemical kinetics and coupled together by diffusion. Rings

of nonlinear oscillators have also been used to model arrays

of physical systems composed of phase-locked loops,2–4

lasers,5 Josephson junctions,6,7 pendula,8 chemical

oscillators,9 and chaotic circuits.10

Certain kinds of rings have an interesting topological
property: they can trap an integer number of kinks. To be
concrete, consider an open-ended chain of pendula coupled
to their nearest neighbors by torsional springs. Twist the
chain a few times and then form a ring by connecting the
first and last pendula by another torsional spring. Assuming
that the springs remain intact, the net number of twists al-
ways remains constant, no matter how the system evolves.
Winfree11 calls this principle ‘‘the conservation of winding
number.’’ It holds whether the twists spread out or form
localized kinks and antikinks. More generally, trapped kinks
can occur in any ring of elements satisfying the following
conditions: the state of each element involves a circular
phase variable, and the state’s amplitude does not vanish
anywhere along the ring. Trapped kinks have been studied in

model rings of biological and chemical oscillators with

strongly attracting limit cycles,11,12 and in long annular Jo-

sephson junctions.13–17

The dynamics are particularly rich if the oscillators are

underdamped and the ring is discrete. Then, for small forc-

ing, the twists remain localized. As these kinks propagate,

they excite small-amplitude linear waves in their wake.18,19

When driven at certain speeds, a rotating kink can phase lock

with its own radiation, leading to novel resonances that have

recently been predicted6 and observed experimentally in dis-

crete Josephson rings.20 Because of the discreteness, it is also

possible for kinks and antikinks to travel at different speeds
in a single system, giving rise to quasiperiodic resonances
with more complicated spatiotemporal patterns.7,21

In this article, we explore a system of two discrete rings of
underdamped oscillators, using inductively coupled Joseph-
son junctions as an experimental realization. The nonlinear
dynamics of two coupled discrete rings are almost uncharted.
However the continuous counterpart, a stacked long Joseph-
son junction ring system, has been studied
experimentally,22,23 numerically,24 and analytically.25 An in-
teresting feature is the phase locking between kinks and an-
tikinks in the two rings. Such a phase-locking has been ob-
served in continuous ring-systems.22,28 Together with the
literature describing symmetries shared by ~open-ended!
continuous and discrete coupled systems,26,27 we approach
the discrete coupled ring system with a certain intuition as to
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the types of phenomena which might be observed.
Besides the phenomena seen in single discrete rings ~trap-

ping of kinks, resonances between kinks and linear waves in
the same ring!, we report fascinating effects that occur be-
cause of interactions between the rings. Our results include
phase-locking between kinks in separate rings, a precession
of the kink/antikink collision region in the ring, and an ex-
treme sensitivity of excited states to the system parameters.
We view this Josephson array as a model system for study-
ing spatiotemporal dynamics of coupled oscillators, and
more specifically for exploring kink interactions in discrete
lattices, a topic that is also important in, e.g., the dynamics of
dislocations and ferromagnetic domain walls.29,30

II. THE SYSTEM

The layout of a discrete coupled ring system with N junc-
tions per ring is shown in Fig. 1 for N54. Current is fed into
the nodes of the outer ring ~shown by arrows!, flows radially
through the junctions and is extracted at the center island.
The Nb-AlOx-Nb junctions are 333 mm2, and the critical
current densities of the samples measured are in the range of
100 A/cm2.31 The radius of the outer ring is 28 mm. When
the system is cooled in the presence of a perpendicular mag-
netic field to below the superconducting transition, the total
flux bounded by the continuous superconducting rings be-
comes trapped in units of Fo5h/2e . A single unit of quan-
tized flux is called a vortex if the flux is along the applied
field and an antivortex if it is opposite. A vortex and antivor-
tex correspond to a kink and antikink. If there are mv,in and
mv,out kinks in the two rings, and ma,in and ma,out antikinks,
then the net, conserved phase winding in each ring is M in

5mv,in2ma,in and M out5mv,out2ma,out .
We use f j and c j to represent the phase of junction j in

the outer ring and inner ring, respectively. The dynamics are
governed by two coupled discrete sine-Gordon equations:

N @f j#2Lout
2 ¹2f j2Ib /Ic5Qv,outN @c j#1Qh,out~N @f j11#

1N @f j21# !, ~1!

N @c j#2L in
2 ¹2c j2Ib /Ic5Qv,inN @f j#1Qh,in~N @c j11#

1N @c j21# !, ~2!

where N @w(t)#[ẅ1Gẇ1sinw returns the total normalized
current through a junction in response to its phase w(t), and
¹2w j5w j1122w j1w j21 is the discrete Laplacian. The bias
current is normalized to the Josephson supercurrent, Ic . G
measures the damping in the system. In our normalization,
the Josephson relation gives the instantaneous voltage at a

junction as: ẇ jG5V j /IcRn , where Rn is the junction’s
normal-state resistance. Experimentally, we measure the dc
voltage across a ring, which is proportional to the spatiotem-

porally averaged ^ẇ&. The parameters L in
2

5LJ /L in and

Lout
2

5LJ /Lout are the ratios of the Josephson inductance LJ

5Fo /2pIc to the cell inductances, L in and Lout . ~Due to the
planar geometry, we have L in,Lout .) These ratios measure
the spatial extent of localized kinks in each ring. The mag-
netic coupling between the two rings is dominated by the
mutual inductance of adjacent cells in each ring, Qv ~see Fig.
1!. The nearest-neighbor coupling within a ring Qh is also
included. All inductances are normalized to the self-
inductance of a cell, giving Qv,x5Qv /Lx and Qh,x5Qh /Lx ,
where ‘‘x’’ refers to either ‘‘in’’ or ‘‘out.’’

The net twist trapped in a ring alters the otherwise peri-
odic boundary conditions by

f j1N5f j12pM out , ~3!

c j1N5c j12pM in . ~4!

The governing equations are invariant to changes in M in and
M out by 6N .21 We will assume that M x>0, so that the num-
ber of excited pairs in a ring is simply ma,x . Note that in our
experiment M in can be different from M out .

Due to the magnetic coupling between rings, the motion
of kinks and antikinks in one ring excites linear waves in
both rings. When M inÞM out ~and ma,in5ma,out50), two lin-
ear waves are excited with wave numbers k152pM out /N
and k252pM in /N; however, the amplitudes of the linear
waves in each ring may be different. The inductive coupling
also causes splitting of the dispersion relation for these linear
waves. When M in5M out , the calculation is the same as for
an open-ended system, which, for m kinks or antikinks
(k52pm/N), gives an approximate dispersion relation32,27

v6~m ,x!'
2Lxusin~mp/N !u

A122Qh,xcos~2mp/N !7Qv,x

. ~5!

This expression was derived for equal numbers of m kinks
or antikinks in coupled identical sine-Gordon systems, for
small G . We will use Eq. ~5! as a semiquantitative estimate
in the more general cases. It should be noted that the disper-
sion ~5! is considered to be valid when kinks trapped in a
given ring are closely packed and overlap one another, i.e.,
mLx /N@1. If they are well-separated and localized ~i.e.,
mLx /N!1), then one expects a correction term that be-
comes significant when Lx becomes small.6,20 The difference
in the dispersion relation depending on packing of the kinks
has been recently studied more carefully by Zheng et al.33 as
well as by Strunz and Elmer.34

FIG. 1. Schematic of inductively coupled ring system. A uni-

form current Ib is fed into each node, as indicated by arrows and is

extracted from the center island. In experiments, we measure the dc

voltages V inner and Vouter . Qv is the mutual inductance between two

adjacent cells of the inner and outer rings.
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III. EXPERIMENTAL FEATURES OF THE SYSTEM

We first choose a case where M in51 and M out50 in or-
der to introduce some of the interesting features of our sys-
tem. Figure 2 shows simultaneous measurements of the inner
and outer ring voltages while the bias current is varied. In the
figure, we use an open circle to represent kinks and a cross to
represent the antikink. As the bias current is increased from
zero, the single kink trapped in the inner ring begins to
move, producing an average dc voltage across the inner ring
junctions. Meanwhile, the outer ring, which has no trapped
kinks, remains superconducting.

Since the system is discrete, the kink phase locks with
linear waves in the system.20 As the kink’s rotational speed
v/k approaches the phase velocity for these linear waves,
v6(m ,x)/k , further increases in the bias current tend to in-
crease the amplitudes of the excited linear waves rather than
the speed of the kink. As a result, steps of almost constant
voltage appear in the IV. When mv,x5M x so that there are no
antivortices, we refer to the corresponding resonant step as a
flux flow step ~FFS!. This is the discrete analog to the Eck
step,35 which is also called a FFS, in continuous systems.36

As the inner ring approaches a constant voltage at the
FFS, we can assume ~and numerical simulations confirm!
that the excited linear waves in both rings have significant
amplitudes. When the current is monotonically increased
from zero, at approximately Ib57.2 mA the outer ring’s su-
perconducting state becomes unstable, and a step appears.
The up path of the IV is shown separately in the left inset of
Fig. 2. This instability can be associated with the excitation
of a kink/antikink pair.21,37 To lowest order, the contributions
of the kinks and antikinks in a given ring simply add up,
resulting in voltage steps at v5v6(mv ,x)1v6(ma ,x).21

We refer to these as high-voltage steps ~HVS!, since they are
similar in nature to the corresponding FFS but are higher in
voltage.

As soon as the outer ring switches to the HVS, the voltage
of the inner ring ~on a FFS! shifts to a slightly lower value.
The step which appears on the up path of the outer ring IV

has approximately twice the voltage of the inner ring step.
This is consistent with the picture that the outer ring kink and
antikink move at nearly equal speeds and in opposite direc-
tions, producing twice the dc voltage of the kink moving in
the inner ring. The sudden shift in the inner ring FFS voltage
~which is clearer in the inset! indicates that the inner ring
kink slows down when a pair appears in the outer ring. This
suggests that the inner ring kink may have slowed to phase
lock with the kink in the outer ring and that together they
travel at a speed corresponding to v2.

At still higher driving current, the excited pair disappears
again as the FFS in the inner ring becomes unstable. At this
point ~near 7.75 mA), the outer ring switches back to the
superconducting state and the inner ring switches to a uni-
form whirling state.7 On the down path ~the right inset of
Fig. 2 with current decreasing monotonically from 10 mA), a
pair is again excited in the outer ring and persists as the
current bias is decreased even below 7.2 mA, causing hyster-
esis in the IV. Surprisingly, the voltage of this HVS gradu-
ally decreases to well below twice the voltage of the inner
ring FFS. When the pair disappears from the outer ring, the
inner ring kink speeds up again, as indicated by the shift in
the FFS voltage at I55.6 mA.

The experiments show two surprising results. First, a shift
to a lower voltage occurs in the FFS as soon as the outer ring
is on the HVS. This adjustment of the kink velocity clearly
illustrates the existence of interactions between the two
rings. Second, the voltage of the FFS is not exactly half of
the voltage of the HVS. This observation indicates that not
the whole array is phase-locked. We have performed many
simulations to study these aspects in more detail. Some re-
sults will be presented in the next section.

IV. SIMULATIONS: KINK AND ANTIKINK

INTERACTIONS

In order to better understand the interactions described by
the data in Fig. 2, we have simulated the system with param-
eters similar to our experiments. However, we find that simu-
lations of systems with larger N, where the kinks are very
localized and easy to identify, are the most elucidating. Fig-
ure 3 shows an IV characteristic from a simulation. In this
case, there are N551 junctions in each ring. For a range of
bias currents (Ib,0.57 Ic), kink/antikink pairs are excited in
the outer ring. The inset shows the relative motions of the
kinks and the antikink when one pair is excited in the outer
ring.

In Fig. 3, we plot the average dc voltage for each ring vs
bias current. As the current is increased, the kinks move
faster, and the dc voltage increases. The inner ring FFS
reaches a maximum at a voltage of 0.0151 IcRn . The outer
ring has a phase-winding of zero, but exhibits HVS. The first
step in the outer ring at 0.0297 IcRn is due to a single excited
pair. As in the experiment, the voltage of the FFS step jumps
to a lower voltage value when the outer ring switches to the
HVS.

Along the FFS, we find that the average voltage of the
outer ring is not quite twice that of the inner ring’s, indicat-
ing that the speeds of the two kinks and the antikink are not
identical. Figure 4 plots the space-time portrait of the motion
at Ib50.45 Ic . The two kinks, drawn as open circles, travel

FIG. 2. Current-voltage curves for the N54 system with M in

51 and M out50. The sample parameters are L in521 pH, Lout

526 pH, and jc(T50)5139 A/cm2. T57.22 K, giving G

50.0823, L in
2

52.55, Lout
2

52.07.
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at approximately the same speed with a constant phase sepa-
ration between them. Hence, we see that the coupling gives
rise to phase-locking between kinks of the same sign in dif-
ferent rings.

A more dramatic interaction effect is the precession of the
collision region between the kink and antikink in the outer
ring. The antikink travels in the opposite direction and
moves more slowly than the kink. As it periodically collides
with the kink, the interaction perturbs its motion slightly.
Because of the difference in their speeds, they collide at a
different location for each revolution, and the collision re-
gion precesses around the ring, as shown from the solid line

in Fig. 4. Slopes of the lines indicate that v(mv,in)
5v(mv,out)50.0151, and v(ma,out)50.0146. The difference
v(mv,out)2v(ma,out) gives the precession rate of the kink/
antikink collision region. This difference may be attributed
to the two kinks traveling at a higher speed which ap-
proaches v1(1,out) in Eq. ~5! while the speed of the anti-
kink approaches v2(1,out).38

When the current is increased above Ib50.52 Ic , a sec-
ond pair is excited in the outer ring and a voltage step ap-
pears at 0.065 IcRn . At this point, the inner ring voltage
shifts to a slightly higher value. Since the system is discrete,
we might expect the two vortices in the outer ring to travel
more slowly than the single vortex in the inner ring. Instead,
space-time plots ~not shown! indicate that, again, the kinks in
both rings move together at equal speeds and the antikinks in
the outer ring move together at a slower speed. When a third
pair is excited at Ib50.54 Ic , the FFS voltage of the inner
ring does not change. Finally, at Ib50.57 Ic the pairs disap-
pear and the outer ring switches to a uniform whirling state.7

The inner branch persists up to higher current and jumps at
Ib50.72 Ic .

V. EXPERIMENTS: A SYSTEM WITH MANY STATES

Now we study the system when there are nonzero phase
windings in both of the rings (M xÞ0). To illustrate, M in

52 and M out51 are used in Fig. 5, which shows a close-up
of the FFS in both rings above Ib52.2 mA. There are two
kinks ~drawn as open circles! trapped in the inner ring and
one in the outer ring. As the current bias is increased along
the FFS, the amplitudes of excited linear waves grow until at
least one of the FFS destabilizes. At this point, one or both
rings may switch to a HVS with the excitation of one or
more kink/antikink pairs.

In Fig. 5~a! the HVS occurs at Ib52.75 mA, when a kink/
antikink pair is excited in the outer ring, causing the voltage
across the outer ring to increase. The IV steepens as the two
kinks and the single antikink reach their maximum speeds. In
both experiments and simulations, we observe additional
steps at voltages corresponding to: v5n

v
v6(mv ,x)

1nav6(ma ,x), where n
v

and na are integers. Although

FIG. 3. Simulated IV characteristic for parameters: M in51,

M out50, N551, G50.1, Lout
2

51.76, L in
2

52.55, Qh,out50.08,

Qv,out50.12, Qh,in50.12, and Qv,in50.17. The nearly constant volt-

age steps correspond to the motion of the kinks ~represented by

open circles! and antikinks ~represented by crosses! at their maxi-

mum speeds. The inset shows the relative motion of the kinks and

the antikink for one excited pair in the outer ring.

FIG. 4. Space-time diagram of the kinks for Ib50.45 Ic marked

by a dashed line in Fig. 2. The kinks are represented by open

circles, while the antikink is marked by crosses. The kinks in the

two rings are phase locked ~note the parallel lines of circles!. The

antikink travels more slowly, causing its point of intersection with

the kink to precess.

FIG. 5. Measured IV characteristic with N54. These close-ups

begin at a bias current of 2.2 mA, when both rings are on FFS. The

sample parameters are Lout526 pH, L in521 pH, and jc(T50)

583.3 A/cm2. M in52 and M out51. ~a! T55.59 K, giving G

50.0507, L in
2

52.67, and Lout
2

52.23. A kink/antikink pair is ex-

cited in the outer ring at Ib52.75 mA, causing an HVS. ~b! T

55.73 K, giving G50.0514, L in
2

52.74, and Lout
2

52.29. A kink/

antikink pair is excited in the inner ring at Ib52.9 mA.
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there are many possible combinations of FFS and HVS states
for the system of two rings, we observe only a limited set of
states. In fact, for the case na5n

v
51, our measurements of

N54 and N58 systems exhibit only one out of the possible
HVS for a given M in and M out .

Even more intriguing is the fact that, unless M in5M out ,
HVS appear in only one ring at a time. An interesting ques-
tion, then, is which ring will have an excited pair and when.
The answer depends on temperature, which directly affects
the parameters Lx and G . Figure 5~b! shows the IV at a
slightly higher temperature, corresponding to an increase of
Lx and G by only 1.3 percent from the IV in Fig. 5~a!. At
this temperature an HVS appears in the inner ring instead.

We find that for every distinct combination of M in

ÞM out , a parameter regime where pairs are excited only in
the outer ring, another parameter regime where pairs are ex-
cited only in the inner ring, and a transition region in tem-
perature from one state to the other. The reason for a transi-
tion from one state to another as the parameters are varied is
related to the stability of the states. In fact, we observe simi-
lar transitions among many of the possible dynamical states
of the system. For a given M in and M out , each ring can be in
one of the following states: ~1! V50, ~2! FFS, ~3! HVS, and
~4! whirling branch ~admittedly a simplified picture, for the
purpose of discussion!, leading to 16 possibilities for the
system. Which of these possible states appears depends on
both the driving current and the system parameters. As seen
in Fig. 2, more than one state can be stable for a given
driving current when the system is hysteretic.

We find a surprising feature in the evolution of the
coupled ring IV curves as the temperature is varied. As the
temperature is monotonically changed, the range of bias cur-
rents for which a given state is stable can shrink to almost
zero until a new state appears at that current value. At this
transition temperature, there is no visible hysteresis in the IV
curves. This situation is illustrated in Fig. 2. At about Ib

57.75 mA, the system switches from a combination of @in
5FFS, out5HVS# to @in5whirling branch, out5zero volt-
age#, with no hysteresis. While this may turn out to be a
simple coincidence, the result can be dramatic experimen-
tally. The tiniest bit of AC drive added to the input current

can switch the system between two largely different voltage
outputs. In the future, these transitions will be studied in
more detail.

VI. SUMMARY

We have studied the dynamics of two inductively coupled
Josephson rings. Different numbers of kinks ~vortices! can
be trapped in each of the rings. A generic feature of our data
is that voltage shifts in one ring occur when the other ring
changes its dynamic state such that kinks and antikinks are
excited or annihilated. Numerical simulations show that a
phase locking occurs between the kinks in separate rings but
the antikinks may move at different velocities. The two rings
are therefore not completely phase-locked and a precession
of the kink/antikink collision region occurs.

The dynamics is especially complicated when each ring
contains kinks but not of the same number. Our experiments
show that kinks and antikinks are only excited in one ring at
the time. In which ring these pairs are excited depends on the
system parameters ~i.e., the temperature in the experiment!.
Many details of the interaction effects between the two
coupled rings are not understood at present. For instance, we
cannot quantitatively explain the voltage shifts that occur
when kinks and antikinks are excited in the other ring. Nor
do we have a complete picture of the intriguing transitions
between dynamical states which occur at a single point in
parameter space and are characterized by a sudden absence
of hysteresis in the IV curve. The present paper only presents
an exploration of the interesting interaction effects between
kinks in two coupled rings of nonlinear oscillators. As such,
a system of two coupled Josephson rings is an ideal model
for further studies.
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