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ABSTRACT

The effect of thermoelastic dissipation as an

energy loss mechanism in micromechanical

resonators is described.  Specifically, we demonstrate

that slots in resonant beams disrupt the heat flow from

thermoelastic dissipation and alter the quality factor.

Fully coupled finite element solutions and

experimental verification are used to show that the

location of the slots micromachined into the beams

have a strong impact on the quality factor.  Slots

machined near the anchors and near the center of the

beams are shown to have the strongest influence on

quality factor.  This is an indication of the complex

interaction between the thermal and mechanical

domains.
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INTRODUCTION

Micromechanical silicon resonators are

considered by many to be on the verge of making a

major impact as alternatives to quartz oscillators for

frequency reference applications [1].  However, a

solid understanding of how these resonators operate is

imperative if they are to displace a well established

technology such as quartz.  One of the major areas of

micromechanical silicon resonators which is still not

entirely understood is quality factor, Q.  Quality

factor is a complex parameter, because it is influenced

by all the different ways a resonator can lose energy.

This includes gas damping, anchor loss, intrinsic

material loss, surface dissipation, and thermoelastic

dissipation (TED).  This work is an investigation of

TED as an energy loss mechanism in silicon

micromechanical resonators.

BACKGROUND

Clarence Zener first formalized thermoelastic

dissipation in 1937 [2, 3].  Theoretical models of TED

have since been reformulated and expanded several

times [4-6].  Recent work by others has treated

thermoelastic dissipation with a modified form of

Zener’s theory by applying it multiple times to

different geometric features within the resonator [7,

8].  However, this method is not generally accurate,

and a more advanced treatment is required.  The finite

element method enables more advanced treatments,

and is beginning to see use for prediction of quality

factor in resonators [9].  This work utilizes finite

element simulations that are derived from the

fundamental equations of thermoelasticity [10, 11].

The process of thermoelastic dissipation can

be described with the following example.  A beam is

flexed, placing one side in tension and the other in

compression, fig. 1.  The side in compression will get

slightly warmer, and the side in tension will get

slightly cooler due to the coupled nature of the

mechanical and thermal domains.  A temperature

gradient now exists across the beam.  A thermal

gradient across a material with nonzero thermal

conductivity will result in heat flow.  This heat flow is

an irrecoverable energy loss, a Q limiting mechanism.

This is because mechanical energy is used to generate

the temperature gradient.  If the temperature gradient

relaxes, this energy can not be returned to the

mechanical domain.  Another way to view this energy

loss is that energy is used to change the entropy of the

system, and this energy is permanently lost to the

entropy upon relaxation of the temperature gradient.

Figure 1.   Conceptual drawing of process of

thermoelastic dissipation on a flexed beam.

Differential strain leads to temperature gradient,

which leads to heat flow.

Zener developed theory for the 1-

dimensional case of thermoelastic dissipation.  In

doing so, he defined a thermal time constant, τ, which

is representative of the time necessary for a

temperature gradient to relax, equation 1.  It comes

from the solution for the fundamental thermal mode

of the beam.
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b is the dimension across the beam in the direction of

the flexing.  Cp is the specific heat capacity at

constant pressure. ρ is the material density, and κ is



the thermal conductivity.  Zener compared this

thermal time constant to the mechanical frequency of

vibration, ω, to predict the maximum possible Q as

limited by TED, equation 2.   Of course, the Q could

be lower if an energy loss mechanism other than TED

dominated, but the Q could never be any higher than

the value predicted by the equation.
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The comparison between thermal time

constant, τ, and mechanical frequency of the beam, ω,

results in a Lorentzian-type function, There is also a

coefficient to the Lorentzian which depends on

specific heat capacity, density, Young’s Modulus (E),

thermal coefficient of expansion (α), and temperature

(T0).  The Lorentzian gives three regions of behavior

for the Q-limiting equation, figure 2.  At high

frequency, there is no heat flow because the beam

flexes back and forth faster than the heat can flow.  A

temperature gradient is formed across the beam, but

the beam flexes back before the temperature gradient

can relax.  Therefore, no energy is lost.  This

frequency range is typically referred to as the

adiabatic regime  In the middle range of frequencies,

where the energy loss is the greatest, the beam flexes

and allows just enough time for the temperature

gradient to relax before the beam changes direction.

At low frequency, no temperature gradient is formed,

because the temperature gradient is dependent on the

strain rate.  This frequency range is typically referred

to as the isothermal regime.

Figure 2.   Limitation of Q from thermoelastic

dissipation using Zener theory.

Zener theory works quite well for simple

beams.  However, it is not suitable for structures with

geometry more complex than a simple beam.  This is

because only a single thermal time constant couples

well into the mechanical resonant mode of a simple

beam, while a more complex beam will be affected by

many thermal time constants.  The finite element

method is necessary if TED-limited Q for arbitrary

geometries is to be solved.  One way to use the finite

element method to solve this problem is to recreate

Zener’s method.  Zener’s method involved three steps

(1) Solve for the desired mechanical resonance

without taking the thermal domain into acocount.  (2)

Solve for the thermal modes, including the

mechanical resonance.  (3)  Calculate the interaction,

or “overlap”, between the mechanical and thermal

modes.  This overlap determines how the mechanical

energy is lost to the thermal domain, which

determines Q.  Another finite element method for

determining Q is to use the fully-coupled thermal-

mechanical equations [10, 11].  This avoids explicit

calculation of the individual thermal and mechanical

modes and solves the entire system simulatenously.

This work uses the fully-coupled simulations.

Equations 3 and 4, which are essentially a wave

equation and Fourier’s Law with additional coupling

terms, are the basis for the fully-coupled simulations.

Displacement is represented by u, and Poisson’s ratio

is ν.
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RESULTS

It has been previously shown that

micromachining slots into flexural resonant beams

can have a significant impact on the Q of the

resonator [12].  While the previous work verified that

slots did have an impact on the resonator Q, it did not

investigate if there is any dependence of Q on where

on the beam the slot was located.  This work provides

insight about where on the beams slots should be

placed to have the greatest impact.

Some insight into where slots may have an

effect can be seen from the fully-coupled finite

element simulation of a simple beam.  As can be seen

in fig. 3, regions where the strain gradient is more

pronounced are likely to generate a larger temperature

gradient.

Figure 3.   Temperature profile of solution for

fully-coupled eigensolution in FEMLAB.  Note the

increased temperature gradient near the end and

center of the beam.

Fully-coupled simulations were used to

predict the Q for flexural beam resonators with slots

placed at various locations.  The geometry of the

device used in the experimental spread is shown in

fig. 4.  The architecture is a doubly-clamped tuning

fork, with two slots in each beam.  A tuning fork



architecture is used to minimize clamping loss,

because the presence of any other energy loss

mechanisms will make energy loss due to TED harder

to measure.  Everything about the resonator

architecture, including beam length, beam width, slot

length, and slot width, is kept constant, except slot

location.  Parameters used in the simulations are given

in Table 1.

Figure 4.   Schematic view of doubly clamped

resonator.  The resonator consists of two beams

coupled together at both ends.  Each beam has two

slots cut into it a certain distance away from the

coupling beam.

Table 1.   Material properties and design

information for beams with heat interrupting slots.

Parameter Value Units

Slot Length 40 µm

Slot Thickness 1 µm

Beam Length 400 µm

Beam Thickness 12 µm

Resonant Frequency ~600 kHz

Density 2330 kg/m3

Young’s Modulus 157 GPa

Poisson’s ratio 0.3

α, CTE 2.6e-6 1/K

Thermal Conductivity 90 W/m/K

Specific Heat 700 J/kg/K

Temperature 300 K

The simulated devices showed a dependence

of Q on slot location.  Simulations of the beams with

different slot locations are shown in fig. 5.  The slots

have a noticeable impact on the temperature profile.

For example, the temperature profile at the center of

the beam differs between the beams with slots on the

edge and in the center.

Figure 5.   FEMAB fully-coupled solution for

400 µm beam with slots 2 µm, 75 µm, and 158 µm

from end of the beam.  Temperature profile is shown

on deformed beam.  Half of each beam is shown.

The devices were fabricated within a wafer-

scale vacuum encapsulation [13].  The vacuum

(~0.003 mBar) prevents gas damping from limiting

the quality factor of the resonator.  As an additional

check, the resonator with the highest Q was tested in a

commercial vacuum chamber to confirm that gas

damping was not an energy loss mechanism.  Fig. 6

shows a cross section of a resonator beam with slot.

Figure 6.   Cross section of encapsulated tuning

fork resonator with slot.

The resonators were tested and seen to be in

good agreement with the quality factor predicted by

simulation, fig. 7.  For reference, the Q of a beam of

the same dimensions without slots is ~10,300.  While

the addition of slots improved the Q for all the cases

here, this is not generally true.  The addition of slots

can decrease Q, depending on the specific geometry

and frequency.  This change in Q caused by simply

moving the location of the slots stresses the

importance of structure design for TED-limited

quality factor.  It is important to point out that, while

some intuition can be useful in placing slots near

areas of high strain, it does not provide all the

information necessary.  The coupling between the

thermal and mechanical modes is very complex, and

the fully-coupled simulations are necessary for an

accurate prediction of TED-limited Q.  It is not

accurate to estimate multiple thermal time constants

across the beam and apply Zener’s equations to each

time constant.  The work given here shows that there

is more complexity than two critical dimensions



across the beam, because the placement of the slots

along the length of the beam affects Q.

Figure 7.    Comparison of simulation to

experimental results for resonators with the same

geometry, excep t  for the location of the heat

interrupting slots.  Experimental data confirms that the

location of slots on resonant beams has an impact on

quality factor.

CONCLUSIONS

Effects of resonator geometry on TED-

limited Q were explored.  Specifically, slots were

micromachined into flexural beams to alter the

coupling between the mechanical and thermal

domains.  The complexity of this coupling, as

evidenced by the dependence of Q on slot placement,

makes the use of amendments to Zener’s Q equation

insufficient for arbitrarily complex geometries.  The

TED-limited Q was shown to be a function of the slot

location along the beam, with slots at regions of high

strain having the greatest impact.
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