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Abstract-We have measured a novel phase-locked 
state in discrete parallel arrays zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Josephson junctions 
which can be used for oscillator applications. Previ- 
ous Josephson junction oscillators have been based on 
the Eck step, where a large-amplitude wave of nearly 
a single harmonic travels through the system. Multi- 
row systems biased on the Eck step could improve 
the output power, but their in-phase oscillations are 
difficult to stabilize. A new in-phase state which is 
very stable has been measured as a step in the dc I-V 
characteritic of one and two row systems. Simulations 
show that large-amplitude oscillations of two harmon- 
ics characterize the state. The rows are phase-locked 
and in-phase for the higher harmonic. We present an 
analytic expression for the oscillation frequencies and 
their magnetic tunability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. INTRODUCTION 

Long Josephson junctions and Josephson junction ar- 
rays have potential for microwave oscillator applications. 
Underdamped long Josephson junctions biased on the Eck 
step produce oscillations a t  frequencies proportional to 
the step voltage. Radiation from these devices has been 
measured, a t  power levels of 5 y W  at  440GHz [l] and 
linewidths of about 1 MHz. Discrete parallel arrays of 
short junctions also produce an Eck step and are expected 
to radiate a t  frequencies proportional to the step volt- 

age [2]. Although the discrete version is not expected 
to significantly improve upon the power level or linewith 
of long junction oscillators, the output impedence more 
closely matches typical microwave circuit loads. Vari- 
ous configurations have been proposed to improve the 
oscillator power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand linewidth, including series arrays of 
short junctions, two-dimensional arrays of short junctions, 
stacked long junctions, and shorted arrays of short junc- 
tions. The proposed geometries increase the number of 
junctions across which the output voltage is measured. If 
the output junctions can be phase-locked in-phase, then 
the power and possibly the linewidth of the oscillator are 
improved. In addition, these devices have an increased 
output impedence which can be cont,rolled. 
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Recent studies of underdamped discrete parallel arrays 
and stacked long junctions have shown that the output 
junctions can be phase-locked in a state with very large 
amplitude oscillations (31, [4]. Measurements of two dis- 
crete rows and of two stacked junctions show that, in both 
systems, the Eck step splits into two states. The lower 
voltage state corresponds to oscillations in the two rows 
which are exactly out-of-phase, while the higher voltage 
state corresponds to in-phase oscillations. Biased in the 
in-phase state, the oscillator power is expected to double 
(for two rows). For an arbitrary number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN of rows oscil- 
lating in-phase, the power should be N times the power 
of a single row [5]. However, the in-phase state of the Eck 
step is difficult to stabilize experimentally, and the out- 
of-phase state can produce at most the power of a single 
row oscillator (if N is odd). 

In contrast, we have found a new state in discrete ar- 
rays which is stable experimentally and, according to sim- 
ulations, produces voltage oscillations which are in-phase 
across all the output junctions. This state is manifested 
as a step in the dc I-V curve at a voltage which is be- 
low the Eck step. Simulations indictate that oscillations 
occur at a frequency corresponding to the step voltage 
and a t  twice this frequency. It is this second harmonic 
which is in-phase between the rows. We have measured 
this state in single and double rows of 54 junctions per 
row. We find that it is analogous to the sub-structure 
observed in discrete ring arrays [6] and is possible only 
in discrete systems. Simulations of arrays with up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
rows show that all rows are phase-locked, and that the 
higher harmonic adds in-phase. Thus, the output power 
to a matched load should scale as the number of rows. In 
addition, the linewidth is still expected to scale as 1/N 
[5]. Although ac measurements must be made to verify 
these characteristics, our studies indicate that this device 
has potential for oscillator applications. 

11. EXPERIMENTS 

Q B  

Fig. 1. Schematic of array. 54 junctions per row. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Current-Voltage characteristic of 54x2 array. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 14 and 
A; = 0.68. V- and V+ are the split Eck peak, while V2 is the 
second harmonic state, 

We have measured arrays of two rows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N  = 2), with 54 
junctions per row. Fig. 1 shows a schematic of our device. 
Resistors are used at positions indicated by the arrows 
in Fig. 1 t80 make the applied bias current as uniform 
as possible. The voltage of each row can be measured 
separately at the array edge. The array is placed above 
a superconducting ground plane, and a separate control 
wire is used to apply a magnetic field. Because the system 
is discrete, we expect its properties to be periodic with 
magnetic field. Thus we will discuss the applied field in 
terms of frustration, which is the flux applied to a single 
loop of the array, normalized to the flux quantum, f = 
@)app/@o. The applied flux is proportional to the control 
current. 

Samples were fabricated using a Nb trilayer process 

[7]. The junctions are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 x 3," with a critical cur- 
rent density of j,(T = 0) = 1400A/cm . Device pa- 
rameters have been determined using the diagnostic pro- 
cedures described by van der Zant et al. [8]. We find 
that the normal-state resistance R, = 15.3Q, the self- 
inductance of a single loop in the array L ,  = 8.5pH, the 
nearest-neighbor coupling ratios (to L,) 1Mh = Mu = 0.13, 
t8he capacitance C = 342fF, and the Josephson induc- 
tance, LJ = @,/(2nI,(T = 0)) = 2.8pH. Our measure- 
ments were taken at T = 7.4K. At this temperature, the 
Stewart-McCuniber damping parameter p = RiC/LJ  = 
14 and the discreteness parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA; = L J / L ,  = 0.68. 

Previous measurements of this particular device at a 

higher temperature (p = 8.1 and A; = 1.2) have already 
been reported [ 3 ] .  We now lower the temperature so that 
A: is less than one, and additional resonances appear in 
the 1-V. The most prominent of these is marked as V2 in 
the I-V of Fig. 2. The split Eck step is also niarked as V -  
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVf. Fig. 2 shows the voltage across a single row of 
the array. Measurements of the second row are identical 
except at very low voltages. All of the resonances respond 
periodically to a changing magnetic field. In Fig. 3 we 
plot this behavior. The V2 step has twice the period and 
about half the amplitude of the Eck step. It can be tuned 
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Fig. 3. Magnetic tunability of step voltages. The solid lines are Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 for m = 1 and m = 2,  with /3 = 14 and A; = 0.9. The symbols 

are data  points. 

in a voltage range of about 0.12 - 0.25 mV. Since it is the 
second harmonic being considered, this corresponds to a 
bandwidth of 120 - 240 GHz. 

111. SIMULATIONS 

The governing equations for the system are derived by 
applying Kirchoff's current laws and using the RSJ model 
for the current through a single junction. We normalize 
the current to I,, the voltage to I,R,, and time to m. 
With I? = ,8-'J2, our equations become 

N d j l  - Mh(N43-11+ Jv[dj+lI) - M J w j l  

= Ib/Ic + h:(dj+l  - 2 d j  d- d j - I )  

"jl - ~h(N[llij-lI+ N[+j+ll) - MuJwj l  

= Ib/Ic + A:('$j+l - 2$j + $'j-l) 

(1) 

and 

(2) 

where $j and $j represent the gauge-invariant phase dif- 
ferences across the upper row and lower row junctions 
respectively. The functional n/[$,(t)] 5 d j ( t )  + I'd, ( t )  + 
sin qhl(t) returns the total current through junction j .  For 
consistency in comparing with theory, we include only 
nearest-neighbor inductances, Mh and M u .  We integrate 
using a fourth-order Runge-Kutta scheme. Our met 
is described in more detail in [3]. 

Figure 4 shows a simulated I-V curve with the same 
features found in the experimental measurements. In this 
simulation, frustration= 0.3, p = 14, A: = 0.9. The dis- 
creteness parameter used is slightly larger than that 
culated for experiments, since smaller values of A; y 
more fine-structure than that which appears in exper 
ments. The Eck step (V+ and V - )  and the V2 step a 
marked. These steps are tunable with frustration, as 
our experiments. In Fig. 5 we plot the phase vs. time 
of the middle junction in each row while the system is 
biased at the top of the V2 step. The inset shows th  
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Fig. 4. Simulated Current-Voltage characteristic which shows the 
same features as experiments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 14 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11; = 0.9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
voltage vs. time. Two harmonics dominate the time evo- 
lution of the junctions. The lower harmonic, which has 
a frequency corresponding to the step dc voltage, is out- 
of-phase between the two rows. The second harmonic is 
in-phase. This relationsliip becomes clearer when we take 
the Fourier transform of the voltage signals. Fig. 6 com- 
pares the Fast Fourier Transform of the ac voltage from 
a single row to the transform of the sun1 of both rows. 
When the voltage across the two rows is added, the am- 
plitude of the second harmonic doubles, while the lower 
harmonic disappears. Simulations for up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 rows of 54 
junctions show that the voltage across N rows scales as 
N .  However, prelirninary results on a 10-row array sug- 
gest that there is a slight phase-shift between rows which 
causes a saturation of the second harmonic voltage ampli- 
tude across larger arrays. Simulations also indicate that 
the oscillation amplitude in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV2 state is about three 
times smaller than the oscillation amplitude on the Eck 
step of a single row. Thus, it is necessary to bias three 
rows on the V2 step to obtain equivalent voltage output. 

IV. DISCUSSION 

Substructures on the flux-flow part of the I-V charac- 
teristics have already been observed in single-row discrete 
rings [6]. In this system, a vortex was trapped and driven 
with a dc current, forcing it to travel with a constant ve- 
locity around the ring. The resonance frequencies in the 
system were first presented by Ustinov ef al.[9] by lineariz- 
ing the governing equation and calculating the dispersion 
relation. Petgralia et  al. extended the analysis to include 
an arbitrary number of inductively coupled rows by de- 
riving such a relation for the linearized system of coupled 
equations [ll]. For two rows, the leading order term reads: 

(3) 
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Fig. 5. Phase vs. time of vertically adjacent junctions in a 2x54 array 
biased at V 2 .  Inset shows voltage vs. time of the two junctions. 

The parameter K,. is the wavenumber and p is the lattice 
spacing. In an annular system, this linear wave wa.s phase- 
matched to the kink by a condition 

(4) 

where w and K are the kink rotation frequency and its 
wavenumber, respectively. The kink frequency w is pro- 
portional to the dc voltage while K is determined by the 
periodic geometry. (For M vortices trapped in an n- 
junction ring, K = 2nM/(ny) . )  Therefore, the condition 
predicts a discrete set of special voltages, that were iden- 
tified with the observed resonant steps. 

When the phase-matching condition (4) is fulfilled, the 
solutions would appear as a traveling wave, with a wave- 
form being a superposition of a kink and a small ampli- 
tude oscillation. Such a traveling wave was found to be 
the dominant type of solutions not only on the resonant 
steps but generally in the flux-flow region [lo]. Then, 
the functional form of the solutions is tightly restricted 
and can be written in the form: q5j(t) = E + @ ( E )  where 
< = wt  + tcpj is a moving coordinate with a kink, and 6, 

is the 2~-periodic part of the waveform function. Start- 
ing from this traveling wave assumption, the interaction 
between the kink and the “linear” wave can be quantita- 
tively taken into account. The function 6, is first expanded 
into Fourier modes, and the system can be rewritten in 
terms of these modes. The modal equations then appear 
as a coupled system driven by a kink [12]. 

These traveling wave solutions are not sensitive to the 
boundary conditions, and the same resonance mechanism 
is expected also in the arrays with open boundaries [3]. In- 
stead of a periodically circulating kink, an evenly-spaced 
train of vortices propagates through the system in this 
case. The solution is still of the above form, but the wave- 
length K = 27rf can now be continuously tuned. (This 
continuous dependence on f distinguishes this type of step 
from Fiske steps, which could occur in a similar voltage 
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Fig. 6. Fast Fourier Transform of AC voltage signals. The dotted 
line represents the output of a single row. The solid line is obtained 

by adding the ac voltage across two rows and then computing the 

transform. The voltage is normalized to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC& and the frequency is 
normalized to cP0/(2nlcRn). 

region of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-V for shorter arrays but a t  fixed resonant 
voltages.) We have indeed observed the splitting of the 
Eck peak in a system of two coupled arrays, and explained 
the resonance from this approach [3]. The Eck peak in a 
discrete array corresponds to the resonance between the 
kink and the first harmonic of the waveform function a. 
Therefore, the higher harmonics were neglected and the 
liarrnonic balance approximation was carried out. 

The new step we have €oiind in Fig. 2 corresponds to 
when the second harmonic also has a non-negligible am- 
plitude. The analysis of the modal equations is still possi- 
ble in principle, but generally becomes complicated when 
higher harmonics are involved. Assuming that the cou- 
pling between modes are negligible and that the ampli- 
tudes of the inodes are small, the resonance of the m-th 
Fourier mode is expected to occur at: 

in terms of voltage [la]. To first order, the linear analysis 
[ll] would also yield this result. We compare the expres- 
sion to our data in Fig. 3. By using a slightly larger value 
of A$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.9 we obtain a reasonable fit for both Eck peak 
and the V2 steps. We do not know if this discrepancy 
between the parameters can be explained by taking the 
coupling and the amplitudes of the modal equations into 
account. In addition, no splitting of the m = 2 step is 
observed; the reason is also to be studied further. 

V. CONCLUSIONS 

We have found a new phase-locked state in parallel ar- 
rays of Josephson junctions. This state has been measured 
as a step in the I-V characteristic of two row arrays with 
54 junctions per POW. The step is tunable with magnetic 
field and has half the period of the Eck step. Simulations 
for up to 5 row arrays indicate that,  in this state, the 

junctions undergo large amplitude oscillations with two 
harmonics. The higher harmonic is in-phase for all the 
rows, and the ac voltage of the system is N times the ac 

voltage of a single row biased on this step. Unfortunately, 
simulations show that the oscillation amplitude of a single 
row biased in this state is three times smaller than when 
the row is biased on the Eck step. Thus the array must be 
relatively large to improve upon the power output of sin- 
gle row oscillators. However, additional rows are expected 
to narrow the linewidth by a factor of 1/N. The higher 
output impedence of a larger system is also important for 
coupling to typical microwave circuit loads. 
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