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Abstract—The advent of ultra-low noise microwave amplifiers
revolutionized several research fields demanding quantum-limited
technologies. Exploiting a theoretical bimodal description of a
linear phase-preserving amplifier, in this contribution we analyze
some of the intrinsic properties of a model architecture (i.e., an
rf-SQUID based Josephson Traveling Wave Parametric Amplifier)
in terms of amplification and noise generation for key case study
input states (Fock and coherent). Furthermore, we present an anal-
ysis of the output signals generated by the parametric amplification
mechanism when thermal noise fluctuations feed the device.

Index Terms—Microwave photonics, noise figure,
superconducting microwave devices.

I. INTRODUCTION

N
OWADAYS, the technological progress in several fields

of research, spanning from quantum computation and

communication [1]–[3], radio-astronomy [4], radio detection

and ranging [5]–[8], up to fundamental physics experiments [9]–

[11], led to the demand for ultra-low noise microwave amplifiers

for broadband high-fidelity readout. All these applications are

deeply affected by the noise performances of such amplifiers.

In this contribution, the standard Haus-Caves description of

noise generation in an ideal bosonic phase-preserving linear

amplifier is taken into account [12]–[14]. In this representation
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the amplifier is considered as a two-ports black-box driven at

a pump frequency ωp that amplifies a bosonic input mode at

frequency ω. The amplification is associated with the creation

of a second mode at frequency ω′ = ωp − ω (the so-called idler

mode of a three-wave mixing parametric amplification [15]) that

is commonly considered as an internal mode of the amplifier that

causes the onset of noise at the output port. Here, we extend and

give a different perspective of this description considering the

case in which an uncorrelated idler mode is already present at

the input port (i.e., considering a bimodal input field), analyzing

the effect of the interaction between these modes inside the

amplifier in terms of typical noise estimators. This operative

condition may arise in real measurement setups where the am-

plifier is exploited, for instance, for the multiplexed readout of

broadband signals [16] or for the joint detection and amplifi-

cation of probing signals in a microwave quantum illumination

experiment [8].

The theoretical framework presented in this manuscript is

supported with numerical simulations of the noise estimators for

a realistic implementation of a quantum-limited amplifier [13],

[14] such as the rf-SQUID based Josephson Travelling Wave

Parametric Amplifier (JTWPA) [17]–[21], which represents a

promising realization of a microwave amplifier with high gain,

large bandwidth and quantum-limited added noise [22]. The

core of this device is a repetition of rf-SQUIDs, embedded in a

coplanar waveguide, that generate a non-dissipative and highly

non-linear superconducting metamaterial.

II. GAIN, QUANTUM EFFICIENCY, AND NOISE FIGURE

Within the Heisenberg picture, a generic two-ports phase-

preserving linear amplifier driven at frequency ωp combines two

uncorrelated input modes at frequency ω and ω′ = ωp − ω �= ω,

described through their dimensionless complex-amplitude oper-

ator âω,in and âω′,in, in an output mode at frequency ω

âω,out = u(ω)âω,in + iv(ω)â†ω′,in (1)

with [âω,in, â
†
ω′,in] = δω,ω′ . A pictorial representation of the sys-

tem is given in Fig. 1. The output mode operator fulfils the
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Fig. 1. Pictorial representation of a linear amplifier, driven at ωp, having at
the input port two uncorrelated fields at frequency ω and ω′ = ωp − ω.

common bosonic commutation relation only if the complex

functions u(ω) and v(ω) respect the unitary condition

|u(ω)|2 − |v(ω)|2 = 1 (2)

As reported in [21] for an rf-SQUID based JTWPA, an ex-

pression of these functions can be analytically derived exploiting

a circuit quantum electrodynamics description of the system.

These quantities depend both on the design parameters of the

device and on the driving conditions (i.e., on the pump frequency

ωp and on the amplitude of this tone, that can be quantified

in terms of the intensity of current Ip). In this derivation, the

ideality condition of the phase-preserving linear amplifier is

guaranteed neglecting all the possible dissipation sources, such

as the dielectric losses or the side-band generation [23]. All the

numerical simulations given below are evaluated for the circuital

parameters described in [21] for an amplifier operating in the

three-wave mixing regime and pumped with a current intensity

Ip at frequency ωp = 2π · 12GHz.

The expectation value for the photon number of the output

field is given by

〈n̂ω,out〉 = 〈â†ω,outâω,out〉

= |u(ω)|2〈n̂ω,in〉+ |v(ω)|2〈n̂ω′,in〉

+ i
(

u∗(ω)v(ω)〈â†ω,inâ
†
ω′,in〉

− u(ω)v∗(ω)〈âω′,inâω,in〉) + |v(ω)|2 (3)

where the first term is the input field at ω frequency being

amplified of a factor |u(ω)|2, while the second term represents

the contribution to the amplification of the input field at ω
frequency given by the input field at ω′. The third and fourth

terms represent respectively the contributions deriving from the

spontaneous annihilation or creation of a pump photon, that

respectively implies the creation or the annihilation of a couple

of photons at ω and ω′. Eventually the last term, independent

from the input fields, represents the number of photons with

frequency ω added by the amplifier (the so-called added noise

photons).

Supposing a vacuum state |vac〉 = |0〉ω|0〉ω′ as the input

state of the amplifier, one can easily derive from (3) that the

expectation value for the photon number of the output field is

〈n̂vac
ω,out〉 = 〈vac|n̂ω,out|vac〉 = |v(ω)|2 (4)

This means that the added noise photons can be equivalently

seen as the product of the amplification of an input vacuum state.

Furthermore, from (3) derives that the spectral gain distribution

of the amplifier G(ω), meant as the scale factor of the sole input

Fig. 2. Gain spectrum (G(ω)), expressed in dB, as a function of Ip normalized
on the critical current Ic of the Josephson junctions composing the referenced
device. The dashed lines identify the bandwidth of this device at the 3 dB
threshold level.

mode at frequency ω, is given by

G(ω) ≡ |u(ω)|2 (5)

whereas, in order to take into consideration the contribution

given by the input field at ω′ frequency, it is possible to define a

bimodal gain Gb(ω) as

Gb(ω) ≡
〈n̂ω,out〉 − 〈n̂vac

ω,out〉

〈n̂ω,in〉
(6)

This latter quantity reduces to G(ω) when the ω′ input field

is in the vacuum state.

Fig. 2 reports the spectral distribution of the gain G(ω) as a

function of Ip normalized on the critical current of the referenced

Josephson junctions Ic. It has to be noticed that, being the rf-

SQUIDs the nonlinear core of the modeled JTWPA, the driving

pump current Ip flowing through the amplifier can exceed the

critical current of the Josephson junctions Ic (i.e., the pump

current can be unevenly divided between the two branches of the

rf-SQUIDs, maintaining the junctions in their superconductive

state). The gain results negligible for small values of Ip, whereas

an increase in the pumping current increases the intensity of

coupling between tones and thus the gain of the amplifier, with

a corresponding reduction of the bandwidth. The dashed lines in

Fig. 2 represent the edges of this bandwidth, defined exploiting

a gain threshold of 3 dB.

To evaluate the performance of an ideal phase-preserving

linear amplifier it is possible to define its quantum efficiency

spectrum as the ratio between the vacuum fluctuations in the

input field and the fluctuations of the output field, this latter

quantity normalized on the bimodal gain of the amplifier [16]

η(ω) ≡
〈(∆âvac

ω,in)
2〉

〈(∆âω,out)2〉/Gb(ω)
=

1/2 ·Gb(ω)

〈(∆âω,out)2〉
(7)

where 〈(∆âω,in (out))
2〉 = 〈â2ω,in (out)〉 − 〈âω,in (out)〉

2 is the vari-

ance of the input (output) annihilation operator with frequency

ω. Another commonly exploited figure of merit to evaluate the

performance of an amplifier is the noise figure spectrum F(ω),
defined as the ratio between the input signal to noise ratio (SNR)

and the output SNR

F(ω) ≡
SNRin(ω)

SNRout(ω)
(8)
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with

SNRin(ω) ≡
〈n̂ω,in〉

2

〈(∆n̂ω,in)
2〉

(9)

and

SNRout(ω) ≡
〈n̂ω,out〉

2 − 〈n̂vac
ω,out〉

2

〈(∆n̂ω,out)
2〉

(10)

where 〈(∆n̂ω,in (out))
2〉 = 〈n̂2

ω,in (out)〉 − 〈n̂ω,in (out)〉
2 is the vari-

ance of the input (output) photon number with frequency ω. In

the definition of the output SNR given in (10) the contribution

given by the added noise photons has been excluded from the

amplified output field [24].

The definitions given so far hold for any bimodal input states.

In the following subsections, the quantum efficiency and the

noise figure associated with two particular classes of them are

presented.

A. Bimodal Fock Input States

Considering a generic bimodal Fock state |ΨF〉 =
|nω〉ω|nω′〉ω′ as the input state of the amplifier, it can be

easily demonstrated that the bimodal gain is

Gb,F(ω) = |u(ω)|2 +
nω′

nω
|v(ω)|2 (11)

and the variance of the output annihilation operator at ω
frequency is 〈(∆âω,out)

2〉F = 1/2 · [(1 + 2nω)|u(ω)|
2 + (1 +

2nω′)|v(ω)|2]. Exploiting (2) and (5) the quantum efficiency

results in

ηF(ω) =
G(ω) + (G(ω)− 1) · (nω′/nω)

2G(ω)[1 + nω + nω′ ]− 2nω′ − 1
(12)

In the high gain limit (i.e., G(ω) ≫ 1) this quantity tends to

ηF(ω) →
nω + nω′

2nω(1 + nω + nω′)
(13)

In this limit, supposing the input ω′ mode in the vacuum

state (i.e., nω′ = 0) the quantum efficiency reduces to ηF(ω) =
1/[2(1 + nω)], at most equal to the standard quantum limit

(SQL) ηSQL(ω) = 1/2. The introduction of an ω′ field at the

input port (i.e., nω′ �= 0) induces an increase of the quantum

efficiency of the amplifier, up to the limit 1/(2nω).
Regarding the noise figure spectrum, it can be derived that

FF(ω) = ∞, being SNRin(ω) = ∞, for any value of nω and

nω′ . Fig. 3 presents the SNRout(ω) for three different bimodal

Fock input states as a function of Ip/Ic. For a given input state,

across all the frequency spectrum, the SNRout(ω) decreases with

the increase of Ip (thus with the raise of the gain of the amplifier,

as shown in Fig. 2). On the contrary, when Ip tends to zero, the

amplifier slightly perturbs the input state, and the SNRout(ω)
diverges, recovering the value of SNRin(ω). In accordance with

the gain profile, a drastic reduction of the SNRout(ω) occurs for

Ip values that increase with the increase of the distance of the

considered mode ω from the center of the band of the amplifier.

Furthermore, for a fixed value of Ip, an increase of the occupancy

of the input ω mode induces a raise of the SNRout(ω), while

Fig. 3. Signal to Noise Ratios of the output field at ω frequency (SNRout(ω)),
expressed in dB, for three different bimodal Fock state inputs as a function of
Ip normalized on the critical current Ic of the Josephson junctions composing
the referenced device.

Fig. 4. Quantum efficiency spectrum (ηC(ω)) for six different bimodal co-
herent input states as a function of Ip normalized on the critical current Ic of the
Josephson junctions composing the referenced device.

an increase of the occupancy of the input ω′ mode induces a

reduction. Therefore, the drawback of the enhancement of the

output power at ω frequency promoted by an ω′ input field is the

degradation of the SNRout(ω).

B. Bimodal Coherent Input States

In this subsection a bimodal coherent state |ΨC〉 =
|αω〉ω|αω′〉ω′ = D(αω)|0〉ωD(αω′)|0〉ω′ , with D the displace-

ment operator, is considered as the input state of the amplifier.

For this input state the bimodal gain results to be

Gb,C(ω) = |u(ω)|2 +
α2
ω′

α2
ω

|v(ω)|2

+ i
αω′

αω
(v(ω)u∗(ω) + u(ω)v∗(ω))) (14)

while the variance of the output annihilation operator is

〈(∆âω,out)
2〉C = 1/2 · (|u(ω)|2 + |v(ω)|2). Fig. 4 presents the

spectral distribution of the quantum efficiency for six different

bimodal coherent input states as a function of Ip/Ic. The shape
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Fig. 5. Noise figure (FC(ω)), expressed in dB, for six different bimodal
coherent states input as a function of Ip normalized on the critical current Ic of
the Josephson junctions composing the referenced device.

of the distributions recalls once again the one of the gainG(ω). It

can be observed that, when the ω′ mode of the bimodal coherent

input state is in the vacuum state (i.e., αω′ = 0), the quantum

efficiency in the high gain limit tends to the SQL ηSQL(ω) = 1/2.

Differently from what was described in the previous subsection,

this limit is exceeded when the average occupancy of the inputω′

mode is non-zero. The former result clearly indicates that going

beyond the SQL is non-limited to a linear amplifier working in

the phase-sensitive regime (i.e., when ω = ω′), but it can also

be obtained in the phase-preserving regime, in presence of a

bimodal coherent input state with a non-zero average occupancy

of the ω′ mode. In a complementary way, the exceed of the

SQL can also be shown evaluating the noise figure for different

coherent input states. Being for these states SNRin(ω) = |αω|
2,

the noise figure can be written as FC(ω) = |αω|
2/SNRout(ω).

Fig. 5 reports the spectral distribution of the noise figure

for six different bimodal coherent input states as a function

of Ip/Ic. Similar to what was previously discussed, for a fixed

value of Ip, an increase in the average occupancy of the input

ω mode (i.e., αω) induces an increase of the noise figure. In the

high gain limit, when αω′ = 0, this quantity tends to the SQL

FSQL(ω) = 2, whereas an increase in the average occupancy of

the input ω′ mode (i.e., αω′ ) allows to reach values beyond this

limit.

III. EFFECTIVE TEMPERATURE

The quantification of the noise spectrum generated by an am-

plifier commonly requires the definition of its effective tempera-

ture Teff(ω) as the temperature that a Bose-Einstein distribution

should have to equal the output ω mode occupancy generated

by a vacuum input state (see (4)) [22]

1

e�ω/kBTeff(ω) − 1
= |v(ω)|2 (15)

where � is the reduced Planck constant and kB is the Boltzmann

constant. The expression for the effective temperature derives

Fig. 6. Spectral distribution of the normalized effective temperature
Teff(ω)/G(ω), as a function of Ip normalized on the critical current Ic of the
Josephson junctions composing the referenced device.

from (15) exploiting the unitary condition given in (2) and the

gain definition given in (5)

Teff(ω) =
�ω

kB

[

ln

(

1 +
1

|v(ω)|2

)]−1

=
�ω

kB

[

ln

(

1 +
1

G(ω)− 1

)]−1

(16)

which implies that an ideal phase-preserving linear amplifier

acting as a passive element (i.e., G = 1) has an effective tem-

perature equal to zero while, when acting as an active element

(i.e., G > 1), its effective temperature increases with the in-

crease of the gain. Fig. 6 reports the numerical evaluation of

the spectral distribution of the normalized effective temperature

Teff(ω)/G(ω) for the referenced device as a function of Ip/Ic.

Here it can be noticed that, in the high gain limit, the ratio

Teff(ω)/G(ω) tends to the SQL �ω/kB, corresponding to the

sum of the equivalent temperature of a half of quantum of noise

associated with the signal mode, plus the equivalent temperature

of the minimal added noise that the idler mode has to inject in the

ω mode in order to preserve the bosonic commutation relations

at the output [25].

IV. ENVIRONMENT CONTRIBUTION TO THE OUTPUT NOISE

In this section, the behaviour of the amplifier when inserted in

a realistic measurement setup is taken into account. In particular

the case in which the input field of the amplifier is a bimodal

thermal-noise state generated by the surrounding environment

at a given temperature T is considered. The density operator for

this state can be written as

ρth =

∞
∑

n=0

enβ�ω

1− eβ�ω
|n〉ω〈n|ω

∞
∑

m=0

emβ�ω′

1− eβ�ω′ |m〉ω′〈m|ω′

(17)

whereβ = 1/kBT . The expectation value for the photon number

of the output field at frequency ω is obtained tracing over both

the two modes Fock basis

〈n̂ω,out〉th = Tr [ρth n̂ω,out]

=
∞
∑

j,k=0

〈j|ω〈k|ω′ · ρth n̂ω,out · |j〉ω|k〉ω′ (18)
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Fig. 7. Spectral distribution of the adimensional ratio (r(ω)) between the
expectation value of the output photon number produced by the amplification
of an input thermal-state and the added noise photons, as a function of the
temperature T of the environment. For this numerical computation the pump
current was set to Ip = Ic.

To isolate the contribution to the output field given by the ampli-

fication of the thermal noise and compare it with the contribution

given by the added noise generated by the device itself, we define

the ratio r(ω) = (〈n̂ω,out〉th − 〈n̂vac
ω,out〉)/〈n̂

vac
ω,out〉. Fig. 7 presents

this quantity as a function of both the mode frequency and the

temperature of the surrounding environment for the referenced

device. It can be appreciated that in the low-temperature regime

the main contribution to the output noise, across the entire

frequency spectrum, is given by the added noise (r(ω) < 1),

while an increase of T induces an increase of r(ω) as fast as

the considered mode ω is far from the center of the band of the

amplifier.

V. CONCLUSION

The behaviour of a generic phase-preserving linear amplifier

having at the input port a bimodal signal composed by two

uncorrelated fields at frequency ω and ω′ = ωp − ω was inves-

tigated. For this, a definition of the spectra of gain, quantum

efficiency, noise figure, and effective temperature was given.

Afterwards, the behaviour in terms of noise estimators of a

rf-SQUID based JTWPA driven at different conditions and with

different input states was simulated, as a case study of the

theoretical framework. It was demonstrated that feeding the

amplifier with bimodal Fock input states leads to a quantification

for the noise estimators that is within the SQLs, while when

exploiting bimodal coherent input states these limits can be

exceeded. The results represent a key model to predict the

behaviour of rf-SQUID based JTWPA [18], [19] and other

Josephson-based metamaterials [23] for quantum computing

(via quantum-limited amplification of complex signals) [17],

[26], [27] and for quantum information (via the generation

of non-classical radiation [5]–[8], [28]) in non-ideal cryogenic

environment [29].
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