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Preface 

The last 10 years research on macroscopic quantum phenomena in superconductivity has made a 
number of significant advances and continues to forge-ahead at a breathtaking pace. On the one hand, 
improvements in lithographic techniques and deposition technologies have made it possible to 
decrease the spatial dimensions structures to sub-micron scales, thereby enabling the observation of 
charging and proximity effects in single junctions and the realization of complex dynamical systems 
formed from 3D superlattices. On the other hand, the development of powerful desk-top computers 
has made it possible to simulate the physical properties of very complex classical systems (by 
including the effect of the fuii  inductance matrix), as weii, those of quantum systems (by means of 
quantum-Monte Carlo and multiple-scattering techniques). In parallel with these developments, the 
discovery of high Tc superconductivity opened the doors to the possible use of superconducting 
devices at the nitrogen temperature and acted as a stimulus for further technological developments. 

This book is aimed at filling  a gap in the current literature on macroscopic quantum phenomena in 
superconducting arrays and mesoscopic systems. In the recent past, specialist workshops devoted to 
possible technological applications of Josephson junction arrays (JJA) have been organized in 
Europe and USA, but the proceedings from these have been of a specialized nature. Moreover all 
existing texts written to introduce people to properties of superconducting hybrid structures are 
out-of-date and miss the latest developments in the field. The EU-financed Euroschool on 
Superconductivity in networks and mesoscopic systems held in Pontignano in September 1997, 
provides a timely opportunity to fill  this lacuna. Thank to the efforts of all the lecturers involved in 
the Euroschool and to the support of the EOARD (European Office of Aerospace Research and 
Development) and the GNSM (Gruppo Nazionale di Struttura della Materia) it has been possible to 
compile this volume of top-level tutorial-style contributions, which encompasses the physics of 
classical long Josephson junctions, classical and quantum JJAs and phase-coherent quasi-particle 
transport in hybrid superconducting-normal (S-N) structures. Our efforts have been directed towards 
ensuring a coherent and harmonicdevelopment of the material contained in the School. The 
enthusiastic response of students attending the Euroschool convinced us of the need to publish the 
volume in the present form. We believe that the book will  be an asset to PhD students in Solid State 
Physics, to scientists wishing to know more about macroscopic quantum phenomena in 
superconducting arrays and mesoscopic systems and to researchers already involved in the subject 
who wish to have a reference book on their desk. 

The volume is divided in five sections. The first is devoted to vortex dynamics in classical systems 
because the displacement of vortices is the phenomena on which is based the development of many 
cryodevices. This section is opened by a tutorial lecture on the dynamical properties of a single 
Josephson junction given by P.L. Christiansen and N.F. Pedersen. The basic nonlinear equation of 
motion is introduced and then applied (sine-Gordon equation) to the case of long and annular 
Josephson junctions. The condition for the formation of solitonic excitations are discussed, together 
with the stability conditions and the development of chaotic trajectories. This dynamical description 
is extended by A. Ustinov to the case of the stacked junctions describing the fluxon-fluxon interaction 
and the Cerenkov radiation of fluxons. A simple introduction to JJ arrays is given by G. Costabile 
and G. Filatrella who discuss implications of discretizing the sine-Gordon equation. A detailed and 
rigorous description of how to model the JJAs is given in the contribution by J.C. Ciria and C. 
Giovannella. Starting from the JJA Langrangian, a general equation of motion, that includes the 
contribution of the full  inductance-matrix, is derived and then extended to the more complex case of 
granular superconductors. A description of vortex dynamics in over damped JJAs follows together 
with the numerical procedures employed in the simulations. An experimental verification of vortex 
dynamics in JJA is described in the contribution by T. Doderer that uses LTSEM (Low Temperature 
Scanning Electron Microscopy) to  study   average vortex dynamics,   JJ locking induced by an 
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external microwave field and, finally, JJ microwave emission. An overview of possible applications 
of the JJA is given in the two concluding papers of section I: the first by J. Mygind, describes the 
present state-of-the-art in the development of low-Tc RSFQ (Rapid Single Flux Quantum) 
cryoelectronics while the second focuses on possible applications of high-Tc JJ arrays as voltage 
standards, microwave radiation sources and mixers. 

The second section of this volume deals with critical properties of the JJ arrays and related systems. 
It opens with a contribution, by V.V. Moschchalkov at al., on static magnetic properties of 
wire-arrays, ranging from a single plaquette to extended arrays. An accurate description of the 
boundary conditions that determine the Tc(H) phase boundary is given. A detailed description of the 
critical unbinding of vortices as a function of temperature is given by P. Minnhagen. The mapping 
between the XY model and the 2D coulomb gas is described and the characteristics of the BKT 
(Berezinskii-Kosterlitz-Thouless) transition reviewed. An up-to-date overview of the present 
understanding of the critical properties of the JJA, as obtained by computer simulations, is given by 
J.V. Jose. He discusses, first, the values of the critical exponents of unfrustrated and fully  frustrated 
XY model as obtained by Monte Carlo simulations and compares critically the RSJ (Resistive 
Shunted Junction) and the TDGL (Time Dependent Ginzburg Landau) dynamics by applying both 
to the description of experimental results on magnetic flux noise. 

The contribution of H.S.J van der Zant introduces the reader to quantum aspects of the vortex 
dynamics in JJA, when the charging term, Ec, is no longer negligible. After a description the vortex 
motion in underdamped JJA, where vortices can be described as classical massive particles, the author 
introduces the concept of Bloch wave function and discusses the macroscopic quantum tunneling of 
vortices and phenomena such as Bloch oscillations. When the charging energy dominates, single 
electron tunneling becomes the only relevant transport mechanism in JJ. Based on such phenomena 
a new family of devices, starting with the SET transistor, can be envisaged and many new 
experiments realized. The reader is introduced to this fascinating subject by P. Hadley. 

As for the classical counterpart, a very interesting subject is represented by the investigation of the 
critical properties of the quantum JJA. A first overview on the subject is given by R. Fazio and G. 
Schön. Following an introduction to the basic formalism (coarse-grain approach and duality 
transformation) the authors discuss the phase diagram and transport properties of the quantum JJA. 
A complementary theoretical and numerical view of the subject can be found in the contribution by 
J.V. Jose. The paper focuses on semi-classical analytic studies (WKB-RG) and quantum Monte Carlo 
simulations giving a detailed comparison with experimental results. Finally the last contribution of 
the fourth section by P. Delsing et al. is devoted to experiments on low capacitance JJA, including 
phase transitions and the Hall effect. 

The fifth and last section of the book is dedicated to a recent development in weak superconductivity, 
namely the proximity effect and the transport properties in hybrid normal-superconducting 
nanostructures. This section is opened by a review of quasi classical Green's function methods by 
A.F. Volkov and V.V. Pavlovskii. The potentiality of the method is shown by applying it to the 
conductance of different S/N structures, to the subgap conductance of the SIN tunnel junctions and 
to the long-range phase coherence in SNS structures. This overview is complemented by a 
contribution from R. Raimondi, who discusses the boundary conditions used by the theory. An 
alternative approach to transport in hybrid superconducting nanostructures is described by C.J. 
Lambert, who gives an introduction to the multiple scattering approach to transport and describes 
several paradigms of Andreev scattering, including phase-coherent transport, reentrant and long range 
proximity effects, Andreev reflection and Andreev interferometers. This section is concluded by a 
tutorial introduction to experiments by P. Charlat, H. Courtois and B. Pannetier, which outlines recent 
experiments on proximity effects in metallic mesoscopic structures. 

VUl  



The topics covered by this book are all vibrant areas of current research, though with different levels 
of maturity. Many questions are still without answers and many problems have not been solved. 

Progress in physics depends on people and this book and the related euroschool would have not been 
realizable without the encouragement, advice and optimism of one man, Robert Dana Parmentier, 
who we dearly missed one year ago at the end of 1996. Bob was a rare man who was always looking 
for a constructive solution to problems and for ways to encourage people to achieve the best from 
themselves. It often happened that an e-mail arrived from Bob pointing out a novel paper or a 
particular opportunity for research. Bob has been a huge loss not only for his coworkers and Salerno 
University but for the physics community as a whole. We hope that this book will  form a small tribute 
to his memory. 

C. Ciovannella 
C. Lambert 
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I. ARRAYS IN CLASSICAL  REGIME:  
VORTEX  DYNAMICS  AND APPLICATION  



NONLINEAR DYNAMICS OF THE 
JOSEPHSON JUNCTION 

P.L. Christiansen 

Department of Mathematical Modelling, The Technical University of Denmark, DK-2800 
Lyngby, Denmark 

N.F. Pedersen 

Department of Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark 

Abstract. 
The basic equations for the Josephson junction are derived in a simple way. We 

discuss the properties of such junctions under various circumstances - including 
the effects of damping and capacitance - according to the shunted junction model. 
Also the effects of an external rf bias current are discussed; this leads to a defini- 
tion of the various characterizing frequencies and to the appearance of many new 
phenomena, rf-applications such as SIS-mixers and parametric amplifiers will  be 
mentioned. The introduktion of spatial dimensions leads to problems concerning 
cavity excitations, solitons, and their stability. Finally, conditions for the appear- 
ance of chaos in Josephson junctions will  be discussed. 

Introduction  
The following description concentrates on the properties of superconducting Joseph- 
son junctions, in particular the unique nonlinear properties that have so much 
promise for useful applications. Although we largely think in terms of the "old" 
superconductors, simply because the corresponding thin film Josephson junctions 
are well characterized, we expect most of the following to hold also for the new 
high Tc ceramic superconductors; modifications may occur, of course, because of 
changed parameters. 

The basic physics of superconductivity ("old" and new) has been discussed in [1,?] 
and will  not be dealt with in any detail here.   However, Section 1 gives a brief 

CP427, Superconductivity in Networks and Mesoscopic Systems 
edited by Giovannella/Lambert 

© 1998 The American Institute of Physics I -56396-750-2/98/$ 15.00 
3 



account of the properties of the (autonomous) Josephson junction. Section 2 deals 
with the Josephson junction in external circuits, in particular a cavity. Section 3 
discusses the properties of a long Josephson junction, i.e. a Josephson transmis- 
sion line with solitons. The section summarizes soliton dynamics by perturbation 
theory, soliton experiments for the overlap geometry and the annular geometry, 
sampling measurements of solitons, stability of solitons, and applications of the 
Josephson transmission line. Section 4 introduces very briefly the topic of external 
pumping with time-varying signals, i.e. rf properties. Finally, Section 5 discusses 
the chaos that appears in the special case of very large pumping signals. The paper 
is summarized in Section 6. 

1. The Autonomous Josephson Junction 

The most widely investigated Josephson junction system is the current-driven 
Josephson junction, a description of which may be found, for example in one of the 
good recent books on the subject [3,4]. 

Figure 1. Equivalent diagram for a small Josephson junction. 

The Josephson junction consists of two superconducting electrodes separated by 
a tunnelling barrier. The equations with an external driving current IDC may be 
written [3,4] 

CdV/dt + V/R + I0sincf> = IDC (1) 

d<t>/dt = 2eV/H. (2) 

Eq. (2) is the famous Josephson frequency to voltage relation and Eq. (1) is 
Kirchhoff's law applied to the Josephson junction equivalent circuit shown in Fig. 
1. The equation for a Josephson junction also describes other important physical 
systems, such as the synchronous motor, the phase-locked loop, pinned charge 
density waves, and the damped driven pendulum. In a Josephson junction the 
tunnelling currents are due to two different kinds of charge carriers, Cooper pairs 
and normal electrons. The unique nonlinear properties are due to the Cooper pair 
current, which may be expressed as I0sin<j>. Here <j> is the pair phase difference 
across the junction, and IQ is the maximum pair current. In addition, a shunt 
resistance R carries a normal electron current (V/R), and a capacitance C carries a 



capacitive current C(dV/dt). (h is Planck's constant and e is the electron charge). 
With time normalized to the reciprocal plasma frequency LOQ

1
 
= (fiC/2e70)

1/'2 and 
current normalized to the critical current I0, these equations may be combined into 
a single dimensionless equation, [3,4] 

2.0 

1.6 - a /y 
1.2 

OB .   2 

0< 

0 

y 
i 1              '              ' 

0.( 0.8 12 16 

IOOOC- 

d 

Figure 2. (a) I-V curves for the shunted junction model, (b) The McCumber curve. 

$« + a$t + sin$ = r\ (3) 

v = $(. (4) 

The plasma frequency, u>o, is a natural oscillation frequency for the Josephson 
junction, corresponding to the pendulum frequency in a pendulum. The damping 
parameter a is given by (l/\/ßZ) where ßc - the McCumber parameter - is given by 
ßc = 2eR2IoC/h, 77 is the normalized (to I0) dc bias current, and v is the voltage 
normalized to hcü0/2e. 

The dynamical behaviour of Eq.   (3,4) may be described in the following way. 
For r) (current) below one, a time-independent solution $ = arcsinr] and voltage 



v = 0 is possible. 

For very large values of r\ the average voltage < v > is determined by the resis- 
tance (the average value of the supercurrent is less than one), i.e. 77 RJ a < $( >. 
If  we choose another normalizing frequency, the so-called characteristic frequency 
wc = 2eRI0/h, and normalize the time to l/wc and the voltage to RI0, we may 
obtain a convenient plot of a series of I-V curves with ßc as a parameter [3,4]. 
These are shown in Fig. 2a. We notice that for high damping, ßc = 0 , the curve 
is single valued. For ßc = 0 hysteresis occurs, i.e. for t]c < rj < 1 a zero-voltage 
solution coexists with a solution at a finite voltage. The threshold bias value )?c 

is a function of the damping parameter, which is shown in Fig. 2b. The details 
of the dynamical behaviour of the so-called shunted junction model may be found 
in [3,4]; it is the most important and widely used Josephson junction model. It 
should be mentioned that no general analytical solution to it exists; however, the 
qualitative behaviour, approximation formulas, and numerical calculations are de- 
scribed in great detail in the literature. 

2. The Josephson Junction with External Circuits  

For the purpose of the present paper we will  write Eqs. (3,4) as a set of two coupled 
first-order equations. 

$ = u (5) 

V = T) — • sin$ — is (6) 

where we have introduced is for the interaction with the external circuit (see Fig. 
3). Eqs. (5,6) is a set of coupled first order differential equations that with is = 0 
describes the bare junction. For a Josephson junction interaction with external 
circuits (is > 0) additional equations describing those circuits are necessary. An 
example is a Josephson junction coupled to a cavity. Its equivalent diagram is 
shown in Fig. 3a; with time normalized to the inverse plasma frequency w0 = 
(hC/2eI0)

1/2 it is described by Eqs. (5,6) for the basic Josephson junction together 
with 

l, = (v- {w0l4ßc)r'i s)ßL (7) 

for the series resonance circuit. Here, r is the resistance normalized to the junction 
shunt resistance R and ßi = 2eLI0/h. 

We choose instead to normalize to the characteristic frequency wc = (2eRI0/h). 
Further, for all practical purposes we have r'<<  R and may thus disregard the 
current through R. Accordingly, we will  use r instead of R in the definition of LOC 

and ßc [5]. 



Eqs. (5-7) then we get the nice structure of two equations for the Josephson 
junction, Eqs. (8-9), and one for the external circuit, Eq. (10), with coupling 
between them, Eqs. (9-10), through is 

<i> = v 

v — (r) — rv — sin§ — is)/ßc 

is = {v- %s)lßL- 

(8) 

(9) 

(10) 

The qualitative behaviour of a junction coupled to a cavity is the following. A 
Josephson junction with a dc voltage V0 oscillates at a frequency which is given 
by w = 2eV0/h. When that frequency is in the vicinity of the cavity resonance 
frequency, a nonlinear interaction with frequency locking may occur. For strong 
locking the oscillation frequency is determined by the cavity frequency. When the 
frequency is only slightly detuned from resonance, the system may oscillate at the 
cavity frequency for some time and then shift to the "Josephson frequency" for 
some time - before going back to the cavity frequency, and so on. The motion be- 
comes intermittent [4,5]. The I-V-curve of such a system is shown qualitatively in 
Fig. 3b. The detailed dynamical behaviour of the system, Eq. (8 - 10), is described 
in [5]. 

Figure 3. Josephson junction coupled to a cavity, (a) Equivalent diagram, (b) The 
I-V curve with a cavity-induced step near P. 

3. Long Josephson Junctions: Spatial Dependence 

Already in the previous section, the cavity mode involves a spatial variation of 
the phase, although it is not explicitly visible in the lumped element equivalent 
circuit diagram. 



As another extension of the simple Josephson junction let us consider what hap- 
pens when a spatial variation of the pair phase is allowed. We may get a new type of 
excitation called a soliton. Indeed, the long Josephson junction, or the Josephson 
transmission line (JTL), is one of the physical systems where soliton propagation 
is accessible for direct experimental measurements [6,7]. For the purpose of this 
presentation it suffices to note that the physical manifestation of the soliton is a 
fiuxon, i.e. a quantum of magnetic flux $0 = h/2e = 2.064 X 1(T15 Vs. Mov- 
ing fluxons in the Josephson transmission lines manifest themselves as the so-called 
zero field steps (ZFS) in the dc current-voltage characteristic of the Josephson junc- 
tion - somewhat similar in appearance to the cavity step discussed in the previous 
section. Fig. 4a shows the equivalent diagram for a JTL and Fig. 4b shows the 
geometry of a long junction of the so-called overlap type. The physical origin of 
the inductance L' shown in Fig. 4a is Cooper pair currents within the so-called 
London penetraction layer of thickness XL (Fig. 4b). A possible resistance, R , 
due to a flow of normal electrons in the same layer is also shown. Taking all these 
circuit elements into account, the wave equation for the JTL may be written as an 
extension of Eqs. (3-4) 

Figure 4. (a) Equivalent diagram for a Josephson transmission line, (b) Schematic 
drawing of junction geometry. 

f lx + $« + sin® = T] - a$t + ß$xxt (11) 

with (normalized) voltage v = $< (as in Eq. (4)) and (normalized) current i = -$x. 
Eq. (11) is the perturbed sine-Gordon equation [8]. The additional normalizations 
used are as follows: Length is measured in units of the so-called Josephson penetra- 
tion depth Xj = ^(h/2defi0J). The damping parameter ß is given by ß = L'UJQ/R , 
J is the current density, and d is the magnetic thickness of the junction, d = 2XL+T. 

The junction length, L, is assumed large, and the width, W, is assumed small com- 
pared with Josephson penetration depth. Finally, velocities become normalized to 
the velocity of light in the barrier, c, given by c = c^/rjd, where c is the velocity 
of light in vacuum. The expression for c reflects the fact that electric fields exist 
only across the tunelling barrier of thickness, r, wheras magnetic fields exits both 
in the barrier and the penetration layers (see Fig. 4b). For typical experimental 
junctions ("old" superconducters) c is a few per cent of c. 



3a. Perturbation Calculation for the Infinite Line Soliton Dynamics 

The methods and ideas in this section are largely based on the work of McLaugh- 
lin and Scott [6]. With right-hand side equal to zero, Eq. (11) is the sine-Gordon 
equation. The loss and bias terms on the right-hand side are considered as a per- 
turbation to the sine-Gordon equation. The unperturbed sine-Gordon equation has 
the well-known analytical single-soliton solution [6]. 

$ = 4tan    exp ( (12) 

where 6 = (x — ut)~f(u) and j(u) = l/v/(l  — w2) is the Lorentz factor. The solution 
gives rise to a 2ir phase shift over a length of a few \j, and its derivative 3>4 

represents a voltage pulse. Note that the form of the solution —a travelling wave 
in the parameter 0 = j(u)(x — ui)— is a consequence of the Lorentz invariance 
of the sine-Gordon equation. The sine-Gordon soliton behaves very much like a 
relativistic particle with energy, H, and momentum, P, given by 

H = 87(u), P = 8u7(u). (13) 

With the normalizations used here the rest mass of the soliton is 8. In Eq. (12) 
the velocity u is a free parameter. As shown in [6] the perturbation terms are 
included by assuming a solution of the same form as that in Eq. (12), but with u 
to be determined by a power balance equation. Requiring either the hamiltonian 
or the momentum to be independent of time on finds the velocity (momentum) to 
be determined by [6,7,9] 

wV/4 = u-((u){a + ß/{3(l-u2))). (14) 

As is clear from Eq. (14) the velocity is determined by a balance between the losses 
represented by a and ß and the energy input represented by the bias term ??. In 
the case ß = 0 the velocity may be found explicitly as 

1/^/(1 + (4a/*r,)>) (15) 

i   i i | 1—rn-| 1 r-rr 

QDooi aooi aoi 

Figure 5. Soliton-antisoliton annihilation curve on the infinite line. Full curve: Eq. 
(21). Circles: Numerical simulation. 
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Because Eqs. (14-15) are derived by a perturbational approach, they are not ex- 
pected to be valid if  the perturbing terms are large, i.e. if  the bias term approaches 
one, and/or the system is heavily damped. Various corrections have been consid- 
ered in [10]. 

Another solution to the sine-Gordon equation that may be perturbed under the 
influence of bias and losses is the soliton-antisoliton solution that may be written 

[6,7,11] 

$=4tan_1(smhT/wcoshX) (16) 

where T = wy{u)t and X = f(u)x. Assuming only shunt-losses (for ß > 0 a 
calculation was done in [12]) it is possible in a similar way as for the single soliton 
case to perform a power balance calculation by requiring the time rate of change 
of the energy, H, to be zero, i.e. calculating the integral [7,11] 

dH/dt = j{ri$ t - a§? - ß(Qxt)
2)da. (17) 

with $ inserted from Eq. (16). For this case a qualitatively new phenomenon 
occurs. For high incident energies the soliton and antisoliton will  pass through 
each other with a phase shift S (spatial advance) given by [6] 

6=-2Vl-u2\nu. (18) 

For bias below a certain threshold, TJTH, to be calculated below, the soliton and 
antisoliton will  annihilate each other, create a breather, and eventually die out as 
small amplitude damped plasma oscillations. In evaluating Eq. (17) one finds after 
rather lengthy calculations [11] that the collision gives rise to an energy loss, AH, 
for ß — 0 given by 

AH = 47r2a. (19) 

Figure 6. Collision between a soliton and an antisoliton. a = 0.2, r\ — 0.22, I = 40. 
The wiggles for small time are transients that have not yet been damped out. [A. 
Davidson and N. F. Pedersen, unpublished]. 
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Part of this energy is dissipated on propagating but decaying oscilliations of the 
line. The annihilation threshold [11] may be found by requiring that the total 
energy of the soliton and antisoliton before the collision, H = 167(1/), is equal to 
the energy loss plus the rest of a stationary soliton and antisoliton, i.e. 

167(1*) « Air2a + 167(0). (20) 

Eq. (20) together with Eq. (15) leads to [11] 

VTH 
: {2af2. (21) 

Figure 5 shows Eq. (21) together with a numerical simulation. The agreement 
is excellent except for a larger than approximately 0.2. Fig. 6 shows a numerical 
calculation af a soliton-antisoliton collision where both the above phenomena - the 
energy loss and the phase shift - are easily observed. The case 77 = 0 is treated in 
Ref. [13]. 

3b. Soliton Experiments: dc I-V-curves 

The overlap JTL 

In the overlap junction (Fig. 4b) the bias current is uniformly distributed over 
the junction length, and rj — I0/JWL may be assumed in Eq. (11). Due to the 
moving fluxon, the mechanism of which is described below, a phase shift of 2ir takes 
place in a time interval £/u, where / is the (normalized) length of the junction. This 
in turn gives rise to a (normalized) dc voltage, v, given by 

v = (2n/£)u. (22) 

The overlap junction has boundary conditions requiring that no currents flow out 
at the ends, i.e. 

$x(<M) = **(*>*)  = 0- (23) 

This boundary condition is mathematically equivalent to a soliton-antisoliton 
collision, which was treated in the previous section. 

In the I-V-curve the moving soliton gives rise to the so-called zero field steps 
(ZFS). The mechanism for the first ZFS, n = I, is that a fluxon moves along the 
junction and is reflected at the boundary as an antifluxon. Since the reflection at 
x = I is equivalent to a collision with a virtual antifluxon at x = £, the problem 
may be treated in the framework af Eq. (18) for the phase shift and Eq. (20) for 
the energy loss. If  the junction length, £, is very large, the details at the boundaries 
play only a minor role, and the voltage of the first step is given by Eq. (22). Thus, 

11 



for example Pedersen and Welner [9] were able to completely neglect the effects of 
collision in a comparison between experimental soliton ZFS on a very long overlap 
junction (£ - 45) and perturbation theory. Fig. 7 shows an example of one of their 
experimental curves. If the junction length is smaller (for example of the order 
5-10),   he energy loss and the phase shift will  give rise to corrections [11]. 

V IJJV)  

Figure 7. Experimental zero field steps a long overlap junction. (From [9]). 

The annular JTL 

This circular geometry, which looks mostly like an overlap junction that is folded 
back into itself, has the simple periodic boundary conditions 

$x{Q,t) = $x{t,t) + 2pir 

used by many authors [14,15]. Here p gives the number of full phase rotations 
along the line. For topologial reasons p is a conserved number; for example in 
experiments it may only be changed by taking the junction through the transition 
temperature, thus changing the superconducting wave function completely. 

The simplest case to consider is p — 1, i.e. a single fluxon on the circular line. 
This case is shown in Fig. 8 [16]. In that case there is no supercurrent, since as 
soon as a uniform bias current is applied, the fluxon starts moving with a velocity 
u determined by Eq. (15), and a voltage (Eq. (22)) developes. 
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Hence for the annular junction with one trapped fluxon on supercurrent exists 
and the dc voltage is a direct measurement of the velocity of the single soliton 
[17]. The I-V-curve is shown qualitatively in Fig. 9. In addition to the single 
soliton further solitons may be created only by introducing soliton-antisoliton pairs 
(for topological reasons), in which case the effects of collisions must be taken into 
account. Disregarding the collisions for simplicity, the voltage of these different 
configurations are given by multiplying the voltage in Eq. (22) by the total num- 
ber, n, of fluxons and antifluxons, i.e. voltage steps are to be expected at voltage 
vx,vz — 3t>i, v5 = 5i>i, ect. (shown as the dashed curves in Fig. 9). For the higher 
order branches, v$, V5, ■ ■ ■, the qualitative effect of the collisions is to lower the aver- 
age voltage somewhat compared with nv\. Also a lower bias threshold, 7777/, where 
a fluxon and an antifluxon annihilate each other (cf. Eq. (21)) is to be expected. 
Fig. 9. shows qualitatively the higher order steps based on these arguments (full  
curves). Ref. [15] shows for p — 2 a numerically simulated I-V-curve, which con- 
tains all the essential features of Fig. 9. 

Experimental measurements of solitons on the annular junction have been re- 
ported [16,17]. In the experiment the p-value could be changed only by taking 
the junction through the transition temperature, p = 1 appeared qualitatively as 
discussed above, p = 0 (zero fluxons trapped) showed the full supercurrent and 
fluxon-antifluxon steps at voltages v2 ~ 2i>i, v4 w 4ui, ■ • • , etc.. 

Figure 8.   Computer-generated equivalent pendulum array with a 27r-kink.   a 
0.02, ß = 0.01, rj = 0.4, I = 8. (From [16]). 
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Figure 9. Qualitative I-V-curve of the annular JTL with one trapped soliton. De- 
tails of the curves are discussed in the text. 

The long annular junction experiment demonstrates in a very clean way the 
existence of a topological sine-Gordon soliton with a phase change of 27r. The ex- 
periment and its interpretation are elegantly connected with fundamental theory 
of superconductivity, which requires the phase to change only in multiples of 2n 
along a superconducting ring [1] - [4]. 

3c. Stability of Solitons 

In this section we discuss the stability of the solitons under the influence of small 
and large perturbations [18,19]. In the previous sections we have seen that the 
current singularities in the I-V characteristic, the so-called zero-field steps (ZFS), 
can be ascribed to solitons travelling forth and back on the JTL. Thus n solitons 
will  be present on the n th ZFS. 

Another excitation of the JTL is the spatially uniform solution $0 = $o(*), which 
for a = ß = rj = 0 in Eqs. (11,23) is given [20] 

$o(i) = 2am[t/k; k] (25) 
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where am is the Jacobian elliptic function of modulus k. for non-zero small values 
of a, /?, and T] we may assume that (25) still solves Eq. (11) in the power-balance 
approximation. As a result 

T) - 4aE(k)/(nk) 
< $, >= n/(kK(k)) 

(26) 

where K{k) and E(k) are complete elliptic integrals of first and second kind re- 
spectively. The spatially uniform excitation gives rise to the so-called McCumber 
branch (MCB) of the I-V characteristic for the JTL. 

Fig. 10 shows an experimental measurement of the I-V chracteristic for a Joseph- 
son junction of length I — 3.2 and an a-loss term with a = 0.02, while the /3-loss 
term is not well defined. 

It is seen that if  the JTL operators on the McCumber branch and the bias current 
/ is lowered switching to the zero field steps (ZFS 1 and ZFS 2) occurs at certain 
critical values of the bias current. The switching is indicated by dotted lines. Thus 
at these critical values the spatial excitation is no longer stable and solitons are 
found instead. 

A similar result was found by direct numerical solution of the perturbed sine- 
Gordon equation (11). Fig. 11 illustrates the results for a = 0.05,/? = 0.02, and 
1 = 2. The inset shows in detail the region where ZFS1 forms the 

100 |iA  

ZFS1 ZFS2 

• -<?* 

50 (iV 

Figure 10. Detail of the I-V characteristic of an experimental sample. Dotted lines 
indicate switching from higher-voltage to lower-voltage states. (From [18]). 
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Figure 11. I-V characteristic calculation from Eqs. (11,23) using a = 0.05, ß = 
0.02, and £ = 2, showing the McCumber background curve (MCB) and the first 
zero'field step (ZFS1). Inset shows detail where ZFS1 joins the MCB. (From [18]). 

MCB-curve. In order to demonstrate the instability numerically the imposition of 
an inhomogeneous initial condition is required. Accordingly, for a given rj, a "pure" 
McCumber solution was launched and allowed to stabilize for 100 normalized time 
units, after which a small perturbation was added. In the instability region, i.e. 
for ?7_ < T] < r] + or w_ < w < u>+ (see Fig. 11), the perturbation grows, causing 
the system to switch to ZFS1. Outside of the instability region the perturbation 
decays, and the system relaxes back to the McCumber curve. 

In order to perform the stability analysis we express the solution of Eq. (11) in 
the vicinity of the McCumber solution as 

$(x,*) = *<)(*)  + $(*>*) (27) 

where $0(*) is given by (26), and # is a small perturbation of the form 

$(a:,i) = y(t)exp(ibx) (28) 

with b constant. Inserting Eqs. (28 and 27) into Eqs. (11,23) we obtain an ordinary 
differential equation for y(t): 

y + (a + ßb2)y + {b2 + cos[%(t)]}y = 0 (29) 

where b = mr/t, n = 0,1,2, • • • . Eq. (29) is a damped Hill's equation [21], which 
may have unstable solutions in certain regions of parameter space. In such regions 
small initial disturbances will  lead to a large response in the solution, giving rise 
to the onset of a solution with spatial structure, in contrast to the McCumber 
solution. The equation is investigated in Refs. [18,22]. In the limit of small k it 
can be shown that the stability boundaries of LO,CO+, and w_ are solutions to 

16 



,w, + 
2w2 :i-jij)4[(i  8w4 f-Lü2{a + ßb2)]1'2- 

8w2 (1 8w4^ 

(30) 

provided the argument of the square root is positive. If  the argument is negative, no 
instability region exists for the given parameter values. Using Eq. (26) the voltage- 
stability boundaries w+ and w_ can be translated into the corresponding current 
value, r] + and ?y_. Inserting the parameter values a = 0.05,/? = 0.02,6 = TT/2 

into Eq. (30) we thus obtain rj+ = 0.1711 and rj- = 0.1404. From the direct nu- 
merical solution of Eqs. (11,23) described above we find the corresponding values 
rt+ = 0.1712±0.0005 and ?7_ = 0.1401 ±0.0001, which are in satisfactory agreement 
taking the approximations made in order to obtain Eq. (30) into account. 

In the case of an external magnetic field the boundary conditions Eq.  (23) for 
the overlap JTL are replaced by 

$x{0,t) = $x(l,t)-H, (31) 

where H is the normalized external magnetic field. In Ref. [18] the stability analy- 
sis is generalized to the case H  ̂0, and the full  curves for w+ and w_ as functions 
of H, shown in Fig. 12, are obtained. The curves are seen to be 

<«>.> 

Figure 12. Stability boundaries for ZFS1 in average voltage < $( > as a function of 
magnetic field H measured experimentally (circles) and calculated from generalized 
stability theory [18]. Fixed parameter values: a = 0.026 and £ = 3.16.0 < ß < 0.07 
giving rise to the shaded regions between solid curves. (From [18]). 

in resonable agreement with the experimental results indicated by circles in the 
figure. Thus classical stability theory provides an approximate prediction of the 
switching between the two nonlinear dynamic states in the JTL. 

For high values of the bias current, r], the soliton state becomes unstable again 
and the JTL switches to the running state. Thus the ZFS's have a finite height and 
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a jump back to the McCumber branch occurs. In Ref. [19] this switching mecha- 
nism is studied both in the annual geometry Eq. (24) with p = 1 and the overlap 
geometry Eq. (23). In the former case there are no collisions with boundaries, 
which makes the dynamics more smooth. This is important when the perturbation 
77 in Eq. (11) becomes large. 

As a result of the large perturbation term the shape of the solitons is changed 
away from the sine-Gordon soliton shape given by Eq. (12). The modification 
becomes more pronounced as the bias current is increased. In Fig. 13 we show the 
numerical computation of the x-derivative of the soliton 

Figure 13. <bx at two different bias levels rj = 0.75 (solid curve) and rj = 0.8 (dashed 
curve). (From [19]). 

shape of the solution to Eqs. (11,24) with p = 1. Parameter values are a = 
0.05,/? = 0.02, £ = 8, and 77 = 0.75 (full curve) and 77 = 0.8 (dashed curve). The 
main difference from sine-Gordon soliton shape is the presence of an overshoot 
at the travelling edge of the soliton. This overshoot is present when the surface 
impedance term /3$ra( is not negligible. In the following we shall show that it is 
the presence of this term in Eq. (11) that limits the maximum bias current 77 that 
sustains the soliton motion in the annular JTL with periodic boundary conditions 
Eq. (24). As 77 is increased the overshoot develops more and more and ultimately at 
a critical value, r\svl, the JTL switches to the McCumber branch (MCB in Fig. 11). 
In Fig. 14a-g a detailed time sequence of the switching is shown. The parameter 
are in this case: a = 0.18,/? = 0.1,  ̂= 32, and 0.89 < 7? < 0.90. All  the plots are 
referred to reference frame moving with soliton. The switching can be described 
in the following way: first the overshoot at the trailing edge of the soliton starts 
to grow in size and decreases its speed (Fig. 14a-b); when the overshoot is large 
enough it breaks into a soliton-antisoliton pair (Fig. 14b, in this plot a soliton is 
represented be a positive pulse); the new soliton starts to move forward bunching 
with the original soliton, while the antisoliton starts to move backwards driven 
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by current bias (Fig.   14c); the process of nucleation of soliton-antisoliton pairs 
continues to add new solitons and 

0        5        10       15       30       25       30       35 
15        20       25        30 ,   35 

Figure 14. Time sequence of the switching in the annular JTL. Parameters given 
in text, (a) t = 25; (b) t = 50; (c) t = 55; (d) t = 60. (From [19]). 

19 



10       25       30 ,   35 

Figure 14. Time sequence of the switching in the annular JTL. Parameters given 
in text, (e) t = 65; (f) t = 70; (g) t = 75. (From [19]) 

antisolitons pairs continues to add new solitons and antisolitons (Fig. 14d); when 
the group of solitons meets the group of antisolitons which has travelled 
all the way around the JTL a multiple collision occours (Figs. 14 e and f). As a 
result a net energy loss occours in each soliton and antisoliton to such an extent 
that are unable to survive the next collision, breather-like structures are formed, 
and these waves do not gain energy from the bias current and relax down to a flat 
configuration with $* = 2n/£,$t » 1 (Fig- 14g). Finally, a uniform phase twist 
increasing quickly in time is obtained. This state corresponds to the McCumber 
branch for the annular JTL. 

In Ref. [23] a travelling wave assumption is inserted into Eq. (11). The resulting 
ordinary differential equation contains the parameters a,ß,rj, and u, where u is 
the velocity of the travelling wave. The travelling pulse corresponds to a trajectory 
connecting two fixed points on phase space. For each value of the driving bias 77 
this trajectory exists for a given value of the velocity u = u{rj)  up to a certain value 
of the bias, r] crMcai. For r]  = r] cr a global bifurcation is found numerically. Since r/cr 

hass the same value as the r\sw in the direct computational solution of the partial 
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differential equation (6,19) the global bifurcation is associated with the switching 
phenomenon. Also the spectral analysis introduced in Ref. [24] may be interesting 
to use in a study of the development of the switching despite the fact that a large 
bias perturbation is applied in Eq. (11). 

*(x.t)  
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Figure 15. Time sequence of switching in overlap JTL. Parameters given in text, 
(a) 0 < t < 18. (b) 18 < t < 38. (From [19]) 

The switching in the overlap geometry Eq. (11,23) is now considered. In Fig. 15 
this transient is shown in detail for an overlap JTL with a — 0.05,/? = 0.02,1 = 12 
and T) = 0.74. The phase, $(a;,t), is displayed at successive times t during the 
switching starting at the arbitrarily chosen reference time t = 0. at r\ = 0.73 the 
soliton oscillation is stable. Increasing r\ to the value of 0.74 the soliton becomes 
unstable and after a couple of oscillations forth and back on the JTL the soliton hits 
the right-hand boundary at x = t = 12 at t ~ 6 and during the reflection at this 
boundary it becomes unstable. Immediately after the reflection the phase has in- 
creased by 4w but it is now unstable and continues to increase after the time t ~ 14 
leading to the formation of additional solitons which travel from the right-hand 
boundary towards the left boundary. At time t ~ 18 these solitons are reflected 
from the left-hand boundary and annihilate the oncoming ones. Eventually the 
phase developes into the spatially uniform rotation as can be seen from Fig. 15b. 
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From Fig. 15 it is evident that the soliton is destabilized at one of the boundaries 
during the reflection and thereby triggers the formation of successive solitons which 
unwind during the next refection at the opposite boundary. Thus switching on the 
overlap JTL occuors at a lower value of the bias than on the annular JTL where 
the overshoot of the soliton causes the switching as we have seen. 
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Figure 16.  r)sw as a function of ß for a = 0.05 and £ - 12.  (a) overlap geometry, 
(b) annular geometry, (c) boundary model. (From [19]) 

In Fig. 16 we show the switching value of the bias, r]svn as a function af ß for 
(a) the overlap geometry and (b) the annular geometry. For ß -» 0 all curves tend 
to r)sw — 1. For increasing values of ß,rjsw decreases more for the overlap JTL (a) 
than for the annular JTL (b). 

The interesting decrease of stability for increasing surface resistance loss term is 
predicted by the boundary model introduced in [19]. In this model the dynamics 
of a single pendulum at the JTL boundary at x = £ under the soliton-antisoliton 
collision corresponding to the soliton reflection at this boundary is investigated. In 
the perturbed sine-Gordon equation (11) the terms $tt + a$t + sin® at x — £ are 
then being driven in time by the terms r) + $xr + ß<&xxt with the soliton- antisoliton 
collision given by 

<&(a:,i) = sin 1r/ + 4tan  1[-sinh(w7*i)sech(7*x) 

inserted. Here 7* is the corrected Lorentz factor 

7* = (1-T?
2
)
1/4

7(«), 

(32) 

(33) 

u is the soliton velocity, and x = £. The boundary model predicts switching at the 
^-values shown as a function of ß in curve c in Fig. 16. Apart from an almost 
constant shift for ß > 0 the boundary model is seen to be capable of predicting 
qualitatively the switching values for the overlap JTL. Of course the introduction 
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of the soliton-antisoliton collision expression Eq. (32) leads to too high stability in 
the model. 

3d. Applications of Solitons on the JTL 

Solitons on the JTL may very well have technical applications. We will  briefly dis- 
cuss three possible applications that have emerged; these are (i) microwave oscilla- 
tors and amplifiers, (ii) digital information processing, and (iii)  analog amplifiers. 

(i) Microwave Oscillators and Amplifiers 
Several designs of microwave oscillators based on the properties of fluxons in over- 
lap or annular JTL's exist [6,25,26]. A particularly promising scheme is the flux 
flow oscillator [27] with a demonstrated performance of as much as 10-6 Watts 
available on the substrate at frequencies tunable between 100 and 400 GHz. This 
is far superior to other results and is fully sufficient for a pump source in an inte- 
grated Josephson junction millimeter wave receiver. 

(ii) Digital Information Processing 
The basic idea behind digital applications is the use of the soliton as the basic bit of 
information. Already in the early seventies, the so-called flux shuttle was proposed 
by Fulton et al. [28]. In the flux shuttle, fluxons are situated in potential wells 
created by perturbing the geometry of the JTL at desired positions. The fluxons 
may be moved around and manipulated by applying currents and magnetic fields. 
Results described in [29] and elsewhere demonstrate that this is possible. 

(iii)  Analog Amplifiers 
The Josephson junction has been demonstrated to have superior properties in al- 
most all areas of electronics, it is therefore remarkable that the fundamental ele- 
ment - a Josephson transistor - does not directly exist. However, Likharev et al. 
[30] suggested that an overlap JTL with current injection in many points in par- 
allel is an almost complete analog of a semiconductor transistor, where the role of 
electric charge carriers is being played b,=A5,-fluxons. In that scheme the control 
current is being applied to a film on top of the upper electrode but isolated from 
it. Somewhat similar concepts have been investigated experimentally [31] - [33]. 
Current gain of order 2-5, very fast responder and low power dissipation have been 
found. 

4. rf-Properties of Josephson Junctions 

A very important topic within Josephson junctions are the rf-applications as the 
millimeter wave sources [34] and as SIS mixers and detectors [35]. For the last- 
mentioned devices the situation is the same as in the next section dealing with 
chaos. The main difference is that the pump power levels are below the threshold 
for chaos, though often not very far below for best performance. In the next sec- 
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tion on chaos we will  consider the situation when the pump strength is above the 
threshold. 

5. Chaos in Josephson Junctions 

Another non-linear signature appearing quite often in Josephson junctions is chaos 
together with its accompanying bifurcations. In fact, quite often the Josephson 
junction is used as a model system for chaos in numerical simulations. A particular 
feature of chaos in Josephson junctions is that both the effect of thermal noise and 
the effect of deterministic noise (chaos) are very important for experiments. The 
interplay between those two sources of noise is at best very complicated, and at 
worst makes it impossible to interpret experiments. This has led to new theoretical 
and numerical work on 500 the non-linear interaction between thermal and deter- 
ministic noise. 

5a. Deterministic Chaos in the Josephson Junction 

The most widely investigated Josephson junction system is the rf-driven Josephson 
junction for which the equation may be obtained by adding a term infsinu-i to Eq. 
(2a), i.e. in normalized units 

<f>tt + a(f>t + sincf) = t}o + rjisinivt. (34) 

Figure 17. Characterization of solutions in the Cl — rji, plane ßc = 25,?? = 0. 
crosshatched region: chaos. Hatched region: complicated periodic. Indexing (p,q) 
corresponds to the pth subharmonic on the qth rf induced step. (From [37]). 
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Since analytical solutions do not exist one has to do numerical simulations in the 
four-dimensional parameter space of a,»?o, and u> [36] - [41]. A Particularly thor- 
ough investigation of the parameter space was done in [41]. Typically, the system 
has been investigated numerically in the rjx — u plane for a fixed damping parameter 
a, a plot which more or less has become a standard for such systems [36] - [39]. 
Fig. 17 shows such a plot with its complicated mapping of different dynamical 
behaviour. 

Note that for to > w0, i.e. fi > 1, the threshold rises dramatically because the 
capacitor shorts out the applied rf-current. For u> < 1/RC, i.e. ft < l/\/Ä ; the 
system is able to adiabatically follow the rf-current, and chaos occurs only if  771 > 1. 
For to « OJO, the threshold for chaos is lowest. 

Another method of a somewhat computational nature is to use electronic analo- 
gous simulating the Josephson equation. Such systems have the advantage of being 
very fast, and Poincare sections and bifurcation diagrams may be readily displayed 
[38,42]. The disadvantage is the limited precision and resolution, and the drift of 
analog electric circuits. 

5b. Thermally Affected Chaos in the Josephson Junction 

In [43] a Josephson junction system with parameters such that two solutions ex- 
isted, was investigated. The authors found that the basin boundaries between the 
two solutions were fractal, and thus the solutions could come infinitely close to 
each other in the phase plane. Under such circumstances a small amount of ther- 
mal noise may take the system back and forth between the solutions. The authors 
found that this mechanism gave rise to approximately 1/f noise for some parameter 
regions. 

In another extensive numerical simulation including a thermal noise term in Eq. 
(2), Kautz [44] was able to obtain the very high noise temperatures (RS 106) that 
have been observed experimentally, for example in [45]. For a situation with over- 
lapping rf-induced steps the origin of the very high noise temperatures [44] was 
hopping between phaselocked and metastable chaotic states induced by thermal 
fluctuations. This may even lead to the surprising result that the low-frequency 
noise power increases as the temperature is reduced. 

In the absence of thermal noise numerical calculations of chaotic regions in the I-V 
curve typically contain a wealth of complicated-structure displaying bifurcations, 
chaos, periodic solutions, etc. This may be seen in Fig. 18, which shows a numerical 
calculation of an rf-induced step with loss of phase lock [46]. In experiments, such 
interesting and complicated structure is typically washed out because of thermal 
noise, and only a smooth curve - which does not in a simple and convincing way 
demonstrate chaos - is obtained. Thermal smoothing due to a temperature of less 
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than 100 mK is sufficient to 
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Figure 18. Typical results of a numerical calculation for zero temperature Q = 
0.16, ßc = 4,T7i = 1.05. (a) the zero'th rf-induced step and (b)= the second step. 
The numbers inside the squares denote the periodicity on the substep. (From [46]) 

remove most of the traces of complicated dynamically behaviour. By comparing 
experiments with a calculation that includes thermal noise, however, the existence 
of chaos may be demonstrated indirectly ( [46]). 

5c. Experiments on Real Josephson Junction 

Common to all the experimental results is that they are not nearly as spectacular 
as the numerical simulations. The main reason is that thermal noise, which is most 
often not taken into account in simulations, has a major effect on the outcome of 
the experiments. This is because the energy levels in the thermal oscillations may 
very well be of the same order of magnitude as the intrinsic energy levels in the 
Josephson junction, and complicated non-linear interactions occur. Thermal effects 
may produce not only quantitative changes but also qualitative an quite dramatic 
changes as we shall see below. 

5d. dc Observation of Chaos 
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Before the term chaos was connected to Josephson junctions, researchers sometimes 
noted very irregular and erratic I-V curves in samples subject to strong applied rf 
signals. In many cases such junctions were discarded because of assumed defects 
during fabrication. 

It is now known that such irregular I-V curves may be a signature of chaos. Exam- 
ples of such irregular behaviour, in particular the loss of phaselock on an rf-induced 
step, may be found in [46] - [48]. 

By comparing such experimentally obtained, irregular I-V curves with numerically 
obtained ones, one has in principle the simplest experiment on chaos [46]. An 
example of such a dc experiment is illustrated in Fig. 19, which shows an experi- 
mentally obtained I-V curve with loss of phaselock on the rf induced step. Also 
shown in the figure is the spectrum of halfharmonic generation as measured with 
a sensitive microwave spectrometer. Note that these experimental curves, which 
contain two period-doubling bifurcations and a chaotic region on a rf-induced step, 
can be considered as a standard example of the period-doubling route to chaos. 
These experimental results are very similar to the numerical results shown in Fig. 
1 of Ref. [40] and to analog results [42]. 

TT 

500 1000 
current (JIA) 

Figure 19.  Experimental microwave irradiated I-V curve and corresponding half- 
harmonic generation. / = 17.6GHz,T = 3.54A'. (From [48]). 

5e. Chaos and Parametric Amplification 
For Josephson junction parametric amplifiers low-noise temperatures were found in 
some cases, often, however, experiments showed considerable excess noise [49]. For 
experimentalist the observed noise rise has been a major puzzle. A large number of 
theoretical and numerical papers [50] have dealt with the problem. The conclusion 
is that the very large noise temperatures cannot be explained by traditional noise 
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sources such as Johnson noise, shot noise, or quantum noise. Hubermann et al. [36] 
first suggested that chaos was the origin of the excess noise. This suggestion was 
further substantiated in Ref. [37]. 

More recently, a slightly different type of Josephson junction Parametric amplifier 
was investigated [51] by another group, which drew the conclusion that noise in 
this amplifier cannot arise from deterministic chaos alone: The observed noise rise 
required the presence of thermal noise. They suggested that the noise rise was due 
to thermally induced hopping between a bias point that would be stable in the 
absence of thermal noise and an unstable point. The observation demonstrates the 
importance of thermal noise in modelling chaos in Josephson junction systems. As 
much as 106 K of noise temperature may be obtained. 

5f. Other Josephson Junction Systems 
One of the first experiments to demonstrate chaos in Josephson junctions was done 
on a system different from the standard system in Eq. (16). Miracky et al. [5,52] 
used a junction shunted with a resistor having a substantial self-inductance (see 
Fig. 3a,b), i.e. a junction coupled to a cavity as described in section 3. By varying 
the bias current they found experimentally very large increases in the low-frequency 
voltage noise, with noise temperatures as high as 101 K or more. The excess noise 
arose from switching between subharmonic Josephson relaxation modes. More 
moderate noise increases (101 K) could be characterized as noise affected chaotic. 
The experiment was done in a 1 GHz bandwidth where low-noise amplifiers and 
frequency-independent coupling is available. 

Simulations on this system indicated that for certain bias points the addition of 
thermal noise gave rise to an approximately 1/f noise spectrum by creating hopping 
between subharmonic modes. 

6. Conclusion 

This paper has discussed mainly the non-linear properties of Josephson junctions 
that have so much promise for both applications and continued research on funda- 
mental problems. The problems we have dealt with have all been defined on the 
basis of the old superconductors. The future work involving the new high Tc super- 
conductors will  most likely have to deal not only with the same type of problems 
with changed parameters, but also with completely new non-linear phenomena, for 
example due to anisotropy. It may be safely predicted that a lot of interesting 
non-linear physics lies ahead. 
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Long Josephson Junctions and Stacks 
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Abstract. Magnetic fluxons in long Josephson junctions in many cases behave as 
solitons. Soliton dynamics can be experimentally studied in Josephson junctions with 
a great degree of precision, impossible for many other physical systems with solitons. 
This fact brought together the interest of mathematicians, physicists, and engineers 
which resulted in many theoretical and experimental studies of long Josephson junc- 
tions during the past three decades. This review describes fluxon properties and ex- 
periments with long junctions, as well as recent studies of stacked junctions (Josephson 
superlattices). High-frequency applications of fluxon oscillators are also discussed. 

I    INTRODUCTION 

As a field of research, physics of solitons in long Josephson junctions appears in 
various contexts within nonlinear physics, superconductivity, and high-frequency 
device applications. A soliton in a long Josephson junction is often called a "fluxon" 
since it accounts for a magnetic flux quantum $0 = h/2e = 2.07 x 10~15 Wb moving 
between two superconducting electrodes of the junction. 

Mathematical aspects of the solitons in Josephson junctions are introduced by 
Christiansen [1] in the preceding review of this book. Here, I will  focus mainly on 
the experimental side, discussing physical effects associated with the soliton motion 
in long Josephson junctions and stacked arrays of such junctions. For an interested 
reader, several earlier reviews of the field of fluxons in long junctions should be also 
recommended [2-4]. Progress in studies of stacked junctions has been reviewed 
more recently [5,6]. 

This paper is structured as follows. First, fluxons in conventional quasi-one- 
dimensional Josephson junctions are discussed. The mutual coupling between flux- 
ons, their interaction with environment and other excitations in the junction are 
explained using an annular Josephson junction as an example. The most recently 
developed field of fluxon dynamics in stacked junctions is introduced starting from 
the simplest case of two coupled junctions. Recently discovered beautiful phe- 
nomenon is the fluxons's Cherenkov radiation in these systems. I briefly discuss 
stacks of many junctions (Josephson superlattices) which are at the front of present 
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research and their complex properties are not yet well understood. Finally, appli- 
cations of long Josephson junctions as oscillators for the integrated receivers in the 
sum-millimeter wave band are addressed. 

II     LONG JOSEPHSON JUNCTIONS 

A fluxon in a long Josephson junction carries a magnetic flux equal to one flux 
quantum $0- Its appearance can be understood from Fig. 1. This figure sketches 
the cross view of the junction in the plane perpendicular to the external magnetic 
field H. Josephson tunnel barrier is a thin (1 - 2 nm thick) layer of insulator (I) 
between two superconducting electrodes (S), which are formed usually as thin films 
evaporated on a dielectric substrate. Due to the Meissner effect, the external field is 
screened by circulating supercurrents and it penetrates inside a bulk superconductor 
to the distance known as the London penetration depth, XL. Typically, AL is of 
the order of 100 nm. In the region of the Josephson barrier the screening effect is 
weakened, thus the magnetic field penetration distance is larger. This distance is 
called the Josephson penetration depth, Xj. Its value depends on the strength of the 
Josephson coupling (determined by the thickness of the tunnel barrier) and typically 
is of the order of 10,uni. The screening currents form a "tangle" penetrating to the 
distance of about Xj into the Josephson junction. 

We will  be interested in the case when the junction is "long", so that the Joseph- 
son barrier extends over the distance considerably larger than Xj in the substrate 
plane. With increasing the magnetic field, the screening current tangle at the junc- 
tion edge becomes unstable and forms a closed loop which enters the interior of the 
junction. This circulating supercurrent is often called Josephson vortex. Due to 
the flux quantization inside a superconductor the magnetic flux generated by the 
supercurrent loop is equal to <J>0. This is why the Josephson vortex is often named 
as fluxon. One can easily estimate the critical value of the external magnetic field 
Hci which is required for the fluxon to penetrate inside the junction. Since the 
area surrounded by the circulating currents of the fluxon is about (2XL + t) x Xj 
(where t is the oxide thickness, t <C XL), we can guess HcX ~ $0/(2ALAJ).   Ex- 

screenmg current 

FIGURE 1. Schematic cross section of a long Josephson junction with a magnetic field applied 
perpendicular to the plane of the picture. Dimensions are not to scale. 
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FIGURE 2. Practical geometries of long quasi-one-dimensional Josephson junctions: (a) com- 
monly used overlap junction; (b) annular junction. Dimensions are not to scale. 

act calculation of the fluxon penetration field in infinitively long junction gives 
Hcl = $0/[n(2\L + t)\j][7\.  

So far we did not consider the influence of the junction's extension in the 
y—direction, perpendicular to the plane of Fig. 1. The junction can be viewed 
as quasi-one-dimensional if  it is either infinitively large in the y—direction or very 
narrow, with the width W <C Xj. Of course, only the second option has physical 
sense. The examples of the two most common quasi-one-dimensional junction ge- 
ometries, the straight overlap junction and annular junction (Josephson ring), are 
shown in Fig. 2. In both cases, the junction width W is made smaller than Xj and 
the junction length L larger than Xj (for the annular junction L is equal to the 
circumference of the ring). 

A    Perturbed Sine-Gordon Model 

Mathematically, the fluxon corresponds to a 1-K kink of the quantum-mechanical 
phase difference (p between the two superconducting electrodes of the junction. 
The perturbed sine-Gordon equation which describes the quasi-one-dimensional 
dynamics of the system [2,8], in normalized form, is 

<Pxx - <Pn - sin <p = oupt - ß(pxxt - 7. (1) 

Here, the subscripts denote the derivatives in x and t. Time t is measured in units 
of LOQ

1
, where w0 is the Josephson plasma frequency, the spatial coordinate x is 

measured in units of Aj, a is a dissipative term due to quasi-particle tunneling, ß 
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is a dissipative term due to surface impedance of the superconductors, and 7 is a 
normalized bias current density. The derivation of Eq. (1) is based on the Maxwell 
and Josephson equations and can be found, e.g., in Refs. [2,7,8]. The characteristic 
velocity for electromagnetic waves propagating in the junction is called the Swihart 
velocity, c — \jui0. In fact, the velocity c plays a role of the velocity of light in 
the junction and, typically, is two orders of magnitude smaller than the velocity 
of light in vacuum. To account for the behavior of a real junction, Eq. (1) must 
be solved together with the appropriate boundary conditions which depend on the 
junction geometry and take into account the magnetic field applied in the plane of 
the junction [2-4,8]. We will  discuss the boundary conditions below in Sec. IIC 1. 

(a) 

(b) 

x 
—► 

FIGURE 3. A fluxon in a long Josephson junction accounts for a 27r-kink in the phase difference 
tp(x) (a) with the self-generated magnetic field proportional to <px{x) (b). 

Equation (1) for both open and periodic boundary conditions has been discussed 
in detail by Christiansen in the preceding review [1]. Let us summarize the most 
essential facts which we will  need here. An important solution to Eq. (1) with zero 
r.h.s. is the soliton 

ip = 4 tan   e V1-«2 
(2) 

This solution is sketched in Fig. 3(a). It describes a 27T—kink moving with a velocity 
u and located at x = Xo for t — 0. The velocity u is measured in units of c. A 
unique property of real Josephson junctions is that the parameters a, ß, and 7 are 
small. Thus, the solution of the perturbed Eq. (1) can be well approximated by 
(2). According to the perturbation theory of McLaughlin and Scott [8], the soliton 
velocity is determined by a balance between the losses, governed by a and ß, and 
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the energy input due to the bias 7. According to the perturbational approach, u is 
approximately given by the expression 

u =    ,     \ (3) 

and thus may assume values 0 < u < 1. In this formula, in order to obtain an 
explicit expression for u, we assume ß — 0; see also Eqs. (14) and (15) in Ref. [1]. 
For low values of the bias current u oc 7, while for large values of 7/a the normalized 
velocity u asymptotically approaches unity, i.e., a fluxon behaves like a relativistic 
particle with respect to the limiting velocity c. As u -> 1, the magnitude of the 
local magnetic field ipx in the center of the fluxon increases and its width decreases, 
according to the well-known relativistic effect of the Lorentz contraction. 

B     How to observe fluxons? 

Now, let us discuss how to detect fluxons in experiments with long Josephson 
junctions. In general, a fluxon passing by a given point x = x0 inside the junction 
induces the time-dependent voltage proportional to <pt(x0). To have fluxon moving 
one just has to apply a dc bias current through the junction which is easy to do in 
experiment. The bias current acts with a Lorentz force on the fluxon and provides 
the energy input which is sufficient to compensate the dissipative losses. After 
the fluxon has passed the point x0, the phase difference (p(x0) increases by 2TT. 

It is easy to see that in the annular junction shown in Fig. 2(b) the fluxon will  
return to the same point after one turn around the junction. Thus, the fluxon will  
continue revolving as long as the bias current flows through the junction. Since 
every fluxon's turn around the junction increases the phase by 2ir, fluxon motion 
will  be accompanied by a dc voltage V = (d$/dr) = §0uc/L ($ is the flux and r 
is time). Below we discuss various ways by which the voltage generated by moving 
fluxons can be observed in experiments. 

1    Steps on I —V characteristics 

In experiments with long Josephson junctions, the most common signatures of 
fluxon motion are the so-called zero-filed steps (ZFSs) at voltages Vn = n$0c/L 
which appear in the current-voltage characteristics (I - V curve) of the junction. 
These steps were first observed by Fulton and Dynes in 1973 [9] who suggested that 
the step index n is equal to the number of fluxons oscillating in the junction. The 
I — V curve reflects the dependence of the average fluxon velocity u oc V on the 
driving force 7 a/. In a long overlap junction, such as that shown in Fig. 2(a), 
a fluxon arriving at the junction boundary undergoes reflection into an anti-fluxon 
which is driven then back into the junction by the bias current.  A discussion of 
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FIGURE 4. Experimentally measured current-voltage characteristics (J - V curve) of a single 
fluxon in an annular Josephson junction. Junction diameter D «  130 fim, temperature 5.7 K. 

The influence of boundaries can be avoided in the special case of a ring-shaped 
(annular) junction geometry. An annular junction serves as an excellent model for 
investigation of soliton dynamics, it can be studied here under periodic boundary 
conditions. Due to the magnetic flux quantization in a superconducting ring, the 
number of fluxons initially trapped in the annular junction is conserved. An ex- 
ample of experimentally measured I — V curve of a single fluxon trapped in an 
annular Josephson junction is given in Fig. 4. A circular motion of the fluxon 
under the influence of a current passing through the junction induces a dc voltage 
proportional to its average velocity. When increasing the bias current, the fluxon 
velocity increases and approaches the Swihart velocity which corresponds to the 
dc voltage V\ = $0c/(nD) as 50 yuV, with D being the junction diameter. In 
Fig. 4 one can see that the critical current of the annular junction with the trapped 
fluxon is very small, it means that we need to apply a very small force to start the 
fluxon motion in this almost pinning-free system. Below we will  see that in annular 
junction one can also induce a well-defined potential well for fluxons and control it 
in the experiment. While the fabrication of annular junctions is rather easy, trap- 
ping of fluxons in them remains a difficult art. Using various trapping techniques, 
both single-fluxon [10] and multi-fiuxon [11,12] dynamics have been investigated in 
annular junctions. 
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Let us return to conventional junctions with open boundaries such as that shown 
in Fig. 2(a). Subjected to a sufficiently large external magnetic field H, a long 
Josephson junction operates in the so-called flux-flow regime. In this mode fluxons 
are created at one boundary of the junction, move through the junction under the 
influence of the bias current, and annihilate at the other boundary. The spacing 
between the moving fluxons is inversely proportional to H. At large bias current, 
the fluxon motion with the velocity close to the Swihart velocity c is manifested 
experimentally by the flux-flow step (FFS) in the I — V characteristics [13]. The 
step appears at the dc voltage VpF = (2AL + t)cH. The flux-flow regime is the very 
important for high-frequency applications of long Josephson junctions as discussed 
below in Sec. IV. 

2    Observation of fluxon voltage pulses 

Direct measurements of the shape of the fluxons is possible by detecting the 
voltage pulses which fluxons generate during their motion. The technique of doing 
this is rather difficult since it requires detection of small voltages (below 1 mV) 
with very high time resolution (of the order of 1 ps). Such experiments have been 
done using Josephson junction sampling circuits [14,15] and as well as traditional 
electronics [16]. Using direct measurements of fluxon pulses it was possible to 
observe fluxon propagation, contraction, reflection and fluxon-antifluxon collisions. 

3   Radiation detection 

Fluxons are moved by the bias current flowing through the junction and their 
motion leads to an electromagnetic radiation. The radiation is mainly emitted 
during fluxon collisions with the junction boundary which can be coupled by some 
sort of antenna to a receiver. The frequency / of the radiation emitted by a moving 
fluxon chain is given by the Josephson relation / = V/$o, where V is a dc voltage 
induced by the fluxon motion. Fig. 5 shows an example of the radiation spectrum 
measured from a long Josephson junction coupled by means of the so called finline 
antenna to a room temperature receiver. One can see that the radiation linewidth 
is very small (A/// ~ 10~5 in Fig. 5, but even much smaller linewidth have been 
measured in other experiments). This makes long Josephson junctions attractive 
for oscillator applications. 

For a shuttle-like fluxon motion, such as ZFS regime, fluxons and antifluxons 
undergo reflections from the junction boundaries and their radiation frequency 
/ZFS = u/(2L) is determined by the junction length L and the fluxon velocity 
v = uc. In general, for both ZFS and FFS regimes, the radiation linewidth A/ is 
related to thermal fluctuations of the fluxon velocity v. Joergensen et al. [17] showed 
that, in spite of a different nature of the phase slippage in short (small) and long 
junctions, the linewidth of the resonant single-fluxon radiation in a long junction 
(at ZFS) is given by the formula similar to that of small junctions.   In contrast 
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FIGURE 5. Direct radiation spectrum measurements from Nb/AI-AlO^/Nb long Josephson 
junction at T — 4.2 K coupled with a finline antenna to a W-band room temperature receiver; 
estimated integral power at the receiver input is of the order of several pW. 

to ZFS, the contribution of thermal fluctuation into the radiation linewidth of the 
flux-flow regime is not yet well understood, this problem is discussed below in the 
review of oscillator applications. 

4    Imaging of fluxons 

In the past decade spatially-resolved imaging of fluxons has proved to be a pow- 
erful experimental approach for studying fluxon dynamics in large Josephson junc- 
tions. The major method which has been used by now for such imaging is the 
low temperature scanning electron microscopy (LTSEM). A high energy electron 
beam carrying negligible current is used for local heating the junction area of about 
few microns around its focus, as sketched in Fig. 6. This hot spot acts as a small 
thermal perturbation and can be used as an active [11] or a passive probe [18,20]. 
In the first case a beam of high power is used as a tool to modify the state of 
the junction - for example, to introduce fluxons into the system. In the second 
case, where an e-beam of low power does not destroy the dynamic state of the 
junction; a small beam-induced perturbation of the junction voltage or its critical 
current is measured as a function of the beam coordinate in the junction plane. 
The obtained 2D response maps the dynamical state of the junction. The largest 
voltage perturbation typically occur in the region of fluxon collisions with other 
fluxons or junction boundaries. Using LTSEM, the Lorentz contraction of solitons 
[19], various multi-fluxon modes in long junctions [20-23], and complex dynamics 
in two-dimensional junctions [24] have been investigated. A review of the results 
obtained by LTSEM technique is given by Doderer [25]. 
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FIGURE 6.  Electron beam scanning of a long Josephson junction in a dynamic state with 
moving fluxons. 

C    Fluxon interactions 

Fluxons moving in a long junction cannot avoid interaction with the environ- 
ment of the junction and with other fluxons. Here we will  discuss some of such 
interactions. 

1    Fiske steps and displaced linear slope 

The simplest type of the interaction with environment is the interaction with the 
boundaries. It has to take into account the externally applied magnetic field and 
injected currents. The common way to write the boundary conditions for Eq. (1) 
is 

^(0, t) + ß<fxxt{0, t) = rj + K;   <px(£, t) + ßipxxt(£, t) = r)-K (4) 

where i = L/\j, r\ is a normalized measure of the y— component of the external 
magnetic field, K is the normalized external current injected at the junction bound- 
ary. For an ideal quasi-one-dimensional Josephson junction the fluxons are well 
described by the perturbed sine-Gordon model (1) with the boundary conditions 
(4) [2-4,8]. 

According to the boundary conditions (4), a small magnetic field r\ > 0 adds 
energy to fluxons reflecting at x = £ and subtracts energy from fluxons reflecting 
at x = 0. Sufficiently large t\ kills fluxon reflections at x = 0 and leads to the 
appearance of the so-called Fiske steps at half the voltages of ZFSs. Fiske steps 
occur at voltages Vm = m$0c/(2L), where m is an integer. Using the fluxon 
model, Fiske steps were attributed to fluxon absorption at x = 0 accompanied 
by emission of a packet of small-amplitude oscillations [26]. This wave packet 
propagates towards the opposite boundary x = £ of the junction and triggers a new 
fluxon which starts moving towards x = 0, and so on [4]. 
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FIGURE 7. Displaced linear slope on the I —V characteristics of a long junction measured at 
two values of magnetic field (solid symbols). The detected radiation power in the 3 GHz band 
around the local oscillator frequency /LO = 89.2 GHz is shown by open symbols. 

The above described mechanism, however, yields stable Fiske steps only in the 
very narrow parameter range at low r\. At high fields r\ » 1 long junctions show 
Fiske steps [27] which are very similar to that in short junctions; they correspond 
to resonances between the Josephson frequency and the cavity modes of the junc- 
tion [28]. In the intermediate field range r\ ~ 1 the junction dynamics is very 
complicated and manifested by the so-called displaced linear slope (DLS) on I —V 
characteristics [29]. DLS does not have a pronounced resonant shape and, in a 
limited range, its voltage can be smoothly tuned by the magnetic field. Recent 
radiation measurements and numerical simulations showed that DLS is character- 
ized by intrinsically chaotic fluxon dynamics [30]. Typical radiation measurements 
of DLS regime are shown in Fig. 7. The half-power radiation linewidth estimated 
from the voltage width AV of the emission peak is as large as 13 GHz! Indeed, 
numerical simulations of the junction dynamics at low fluxon density indicate a 
chaotic state in the junction [30]. 

2   Potential well inside the junction 

Another type of fluxon interaction with environment takes place in an annular 
junction placed in the external magnetic field H parallel to the plane of the junction. 
Gr0nbech-Jensen et al. [31] proposed a model suggesting that the field adds an 
additional term /isin ^f- in the r.h.s of Eq. (1). The dimensionless field amplitude 
h is proportional to the external magnetic field H. [31,32].  This additional term 
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FIGURE 8. (a) Schematic top view of an annular junction placed in the external magnetic field 
H. The fluxon trapped in the junction feels the field-induced potential well (b). 

leads to an effective field-induced potential for fluxons in the junction. As it is 
schematically sketched in Fig. 8, a fluxon trapped in a Josephson ring interacts 
with the radial field component and therefore experience a cos —like potential with 
the amplitude proportional to H. The minimum of the potential is located in the 
region of the ring where the magnetic moment of a fluxon is directed along the 
field. When the bias current is applied through the junction, the potential tilts and 
its average slope increases with current. 

The fluxon coordinate is described by the equation which equivalent to that for 
the coordinate of a particle placed in the washboard potential [33]. This equation 
describes a driven pendulum in a lossy medium, as well as the superconducting 
phase difference on small underdamped Josephson junction with no spatial exten- 
sion. Both static [34] and dynamic [35,36] properties of fluxons in annular junctions 
with the field-induced potential have been recently studied experimentally. 

3   Interaction with plasma waves 

Besides the nonlinear soliton solution discussed above, Eq. (1) has also well- 
known small-amplitude solutions of the type f = ip0e

l^kx~wt^ called plasma waves. 
These quasi-linear waves have the dispersion relation w2 = 1 + k2. Fluxon interac- 
tion with plasma waves leads to experimental signatures called fine structure reso- 
nances on ZFSs [37-39], Plasma waves are generated when fluxons move through 
some inhomogeneous regions in the junction such as tunnel barrier inhomogeneities 
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FIGURE 9. Numerically .simulated current-voltage characteristics of a single fluxon in annular 
junction with parameters £ = 7.8, a = 0.05 and h = 0.5. The resonant step associated with the 
fluxon interaction with plasma waves is seen at u « 0.75. The insets show voltage oscillations at 
x — 0 for two different points of the -f(u) curve. 

[40] or imperfect junction boundaries [41]. 
Let us return to the example of the field-induced potential discussed above in 

Sec. IIC 2. This system offers an elegant and well controlled way to generate 
plasma waves in the junction [36]. If  a moving soliton, as a particle, is accelerated 
of decelerated in the potential, it emits radiation. Therefore, the soliton rotation 
in the junction under the action of the bias current leads to an emission of plasma 
waves. The interference between the soliton and plasma waves which it radiates 
leads to a resonance at a certain soliton velocity. The resonance indicates locking 
of the fluxon rotation frequency to the frequency of plasma waves. This effect is 
illustrated in Fig. 9 showing numerical simulations which well agree with experiment 
and with simple kinematic model [36]. 

4    Bunching of fluxons 

Very interesting phenomenon in multi-fiuxon dynamics is the so-called bunching 
effect between moving fluxons of the same polarity. Static fluxons of equal polarity 
repel each other. It turns out that at high velocity they can form a bound (bunched) 
state which, within a certain length scale, is characterized by mutual attraction. 
This bunching effect is usually explained by the influence of the ß—term in Eq. (1) 
as it was first discovered in computer simulations [42]. A fluxons moving with 
velocity close to the Swihart velocity develops a trailing "tail" which is oscillating. 
The oscillating tail acts as a trap for other fluxons and leads to a formation of 
multifluxon bound states. 
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FIGURE 10. Measured current-voltage characteristics of an annular Josephson junction for 
different number n of trapped fluxons (n is indicated on the plot for every curve). Junction 
diameter D R;  130 (im, temperature 4.2 K, zero magnetic field. 

First experimental indication for fluxon bunching [43] has been found by mea- 
suring the radiation emitted from a linear junction. Later experiments [11] and 
detailed numerical study [12] of annular junctions have indicated that the bunching 
effect breaks the symmetry and "helps" the chain of fluxons to overcome dissipa- 
tive losses. The average velocity of fluxons at a given bias current becomes higher 
than that of a single isolated fluxon. As an example, recent author's measurements 
of the annular Josephson junction with different number n of trapped fluxons are 
shown in Fig. 10. The top parts of the curves for n = 1,2 are very smooth, while 
that for larger n clearly indicate a complicated fine structure. This structure can 
be explained by states with various configurations of fluxons moving at the velocity 
close to c. The bunching effect breaks the equidistant fluxon chain into different 
bunched states such as, e.g. for the step n = 5, states "1 + 2 + 2", "3 + 2", "4 + 1", 
etc. 

Ill     STACKED JUNCTIONS 

Fluxons in coupled long junctions have recently become a subject of intensive 
theoretical and experimental investigations. The discovery of the intrinsic Joseph- 
son effect in some high-temperature superconductors such as I^S^CaCiizOs+y 
(BSCCO) convincingly showed that these materials are essentially natural super- 
lattices of Josephson junctions formed on the atomic scale [44-48]. The spatial 
period of such a superlattice is only 1.5 nm, so the Josephson junctions are ex- 
tremely densely packed. The superconducting electrodes are formed by the copper 

43 



oxide bilayers as thin as 0.3 nm and are separated by the non-superconducting BiO 
layers. 

Superlattices with many Josephson layers can naturally be expected to show very 
complex dynamics. Therefore, it is important at first to understand in detail the 
dynamics of stacked junctions with very few layers. 

A    Two coupled junctions 

For the first time fluxon dynamics in two inductively coupled long Josephson 
junctions was considered theoretically by Mineev et al. [49]. The perturbation 
approach for small coupling has been further explored by Kivshar and Malomed 
[50] and Gr0nbech-Jensen et al. [51]. A very important step towards quantitative 
comparison with real experiments was made by Sakai et al. [52] who derived a model 
for arbitrary strong coupling between the junctions. According to that model, 
two stacked junctions are described by a system of coupled perturbed sine-Gordon 
equations: 

XX 

Here <pA(x,t) and <pB(x,t) are the superconducting phase differences across the 
stacked junctions A and B, respectively, and *fA and jB are the bias currents. The 

coupling coefficient S = — (j- + coth^- + coth^-J sinh^- can be calculated 
from experimental parameters such as the tunnel barrier thickness i, the middle 
electrode thickness d, the thickness of the top and bottom electrodes de. Obviously, 
the coupling parameter 5 vanishes for d ^> Xi. It is associated with screening 
currents in superconducting electrodes which are shared by fluxons belonging to 
different layers. A typical experimental value for S lies in the interval from —0.2 
to -0.9. 

Eqs. (5) lead to two different modes, one with in-phase and another with out- 
of-phase oscillations in the two junctions. These modes have been predicted in 
the linear approximation many years ago by Ngai [53], but only recently observed 
experimentally [54]. The wave propagation velocities for these modes are noted as 
c_ = c/\/l — S (out-of-phase) and c+ = c/y/1 + S (in-phase) [55]. 

When applying a magnetic field H parallel to the Josephson barrier, one finds the 
Fiske steps in the I — V curve of stacks. By measuring the voltage spacings between 
neighboring Fiske steps AVI  = c_$o/(2£) and AV+ = c+$o/(2L) the characteristic 
velocities c_ and c+ can be measured ^experimentally for double-junction stacks with 
different thickness d of the common superconducting layer [55]. With decreasing d, 
the coupling is increasing, thereby increasing the difference between c_ and c+ . A 
detailed analysis of experimental data is found to be in good quantitative agreement 
with theory [55]. 

Possible configurations of fluxon chains in a two-stack junction are shown in 
Fig. 11. In statics, the only stable state at high magnetic field is that in Fig. 11(a). 
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FIGURE 11. Sketches of a cross-section of two stacked long Josephson junctions. Fluxons 
may occupy both junctions in either out-of-phase configuration (a) corresponding to repulsion, or 
in-phase configuration (b) corresponding to mutual attraction between fluxons in different layers. 

Its formation was studied by Song et al. [56]. In the dynamic state, in general, both 
configurations (a) and (b) may exist [57]. The transition from the state of Fig. 11(a) 
in the state of Fig. 11(b) is accompanied by a change in the spectrum of radiation 
generated by fluxon motion, as observed by Shitov et al. [58]. Numerical study of 
the states shown in Fig. 11 versus fluxon velocity can be found in Refs. [59,60]. 
Due to the difference of parameters (damping, bias current) between two junctions 
the locked state of moving fluxon chains may exist in a limited velocity range and 
can be destroyed via delocking transition [61] accompanied by flux-flow drag [62]. 

Fluxon configurations in two-stacked junction can be noted [JV|M] meaning N 
fluxons located in one LJJ and M fluxons in the other LJJ (N, M < 0 describe 
anti-fluxons). Using numerical simulations [52], it has been demonstrated that 
two solitary fluxons form the stable bound state [1|1] with identical phases in two 
junctions tpA(x,t) = ipB(x,t). This state has been analytically shown to be stable 
in the velocity range c-/c < u < c+/c [63]. The coherent fluxon-antifluxon 
state ([1| — 1]) which is stable up to the limiting velocity c_ has been reported in 
experiments by Carapella et al. [64]. The asymmetric [1|0] fluxon mode in two-fold 
stack leads to Cherenkov radiation which is discussed below in Sec. Ill  C. 

B    Multi-layer stacked junctions 

Josephson superlattices consisting of many stacked tunnel junctions were dis- 
cussed in the literature long before they first became available for experiments 
[65-67,52]. Such a multi-junction stack of the overlap geometry is sketched in 
Fig. 12. It consists of N alternating superconducting and isolating layers. In a 
magnetic field H applied parallel to the layers, fluxons penetrate into different 
Josephson junctions and, under the influence of the bias current 1^ may move 
coherently due to the interaction of their screening currents flowing in the inner 
superconducting layers. 
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FIGURE 12. Stack of long Josephson junctions of the overlap geometry. In a typical experiment 
the magnetic field H is applied in the plane the tunnel barriers and the bias current / flows across 

them. 

1    Model 

The equations for such a stacked junction system may be obtained as a general- 
ization of the single junction sine-Gordon equation [52]. Josephson junction stacks 
consisting of N junctions (i — 1,..., N) contain N + 1 superconducting layers. The 
system of equations which describe the Josephson phase dynamics in the stack can 
be written in the following form [52]: 
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where y>,- is the superconducting phase difference on i—th junction, x is the coor- 
dinate (not normalized). The coupling is determined by the parameters 

d' = U + X 
d*'1 d' !_1 coth -—- + A' coth -rr 
A'-1 A' 

and 
-A! 

sinh(d7A'')  ' (7) 

where ti is the tunnel barrier thickness, d{ and A; are the thicknesses of the su- 
perconducting layer i and its London penetration depth, respectively. The sum of 
current components across the junction is 

$ $o 1 
Jh^^cVu + ^äri + jlM^)-?- (8) 
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Here C, R, jc and j are the junction capacitance, resistance, critical current and 
bias current densities, respectively. 

Resonant modes for superlattices have been first calculated by Kleiner [68]. Simi- 
lar to Fiske modes of conventional single-barrier junctions, Kleiner obtained general 
expressions for eigenfrequencies corresponding to standing wave patterns in the di- 
rections normal to the layers and along the layers. For N—junction stacks there 
exist N different modes [68,55]. Kleiner modes are characterized by phase shifts 
between Josephson oscillations in different layers. In fact, the above mentioned 
c_ and c+ Fiske modes of two-fold stacks are nothing else but the lowest and the 
highest Kleiner modes: For a two-junction stack there are only two modes possible, 
the symmetric mode and the antisymmetric mode. 

2   Low—Tc technology 

Superconducting thin film technology of our days allows to grow high-quality mul- 
tilayers with many Josephson tunnel barriers. Artificially  prepared low-Tc stacked 
junctions serve as model systems for layered high-Tc superconductors [69]. The best 
multi-junction low-Tc stacks are made using Nb/Al-A10x/Nb junctions [70,71]. Re- 
cent achievements in this technology allowed fabrication of high quality stacks [72] 
with up to 28 layers [73] having parameter spread between layers of less than 5%. 
Other multi-layer junction technologies based on NbN [74] and NbCN [75] until now 
did not achieve parameter spread and junction quality comparable with Nb-based 
technology. 

3    Experiments and simulations 

Experiments with (Nb/Al-AKXV/Nb  stacks with N = 7 and N = 9 [72,76] 
demonstrated collective motion of fiuxons in N — 2 layers of the stack under the 
influence of the bias current. For the intermediate magnetic field range, pronounced 
resonant modes with large voltage spacing were found and interpreted as Kleiner 
resonances discussed above. Due to rather complex dynamics it is difficult  to treat 
experimental data without detailed numerical modeling of these systems. Using 
the parameters of experimentally studied Nb/Al-AlO^/Nb stacks, such simulations 
were presented by Thyssen et al. [77]. Fig. 13 shows numerically simulated I — V 
curves for a 7-junction stack which indicates voltage-locked flux flow among the 
inner 5 junctions. The numbers of fiuxons in the top and bottom junction were 
found to be larger than those in the inner junctions because of the thicker top and 
bottom Nb-electrodes. Numerical data showed good overall agreement with the 
experiment. The obtained voltage spacing between resonances is found to be very 
close to the experiment. This suggests that the dominating Kleiner mode is the 
lowest mode and every junction oscillates out of phase with its neighbor. 
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FIGURE 13. Simulated I — V characteristics for the 7-fold stack [77]:(a) individual junction 
voltages; (b) total voltage on the stack. 

4    Intrinsic high—Tc stacks 

Single crystals of BSCCO and as well as some other exotic superconducting mate- 
rials [78] show many properties of natural multi-layer Josephson junctions. Among 
these properties are the multi-hysteretic switching of individual tunnel junctions 
to gap voltages [44-46], the magnetic field dependence of the c—axis critical cur- 
rent [47] and flux-flow voltage [48,79], and Josephson radiation emission detected 
in several frequency bands [79]. Though some important intuitive knowledge can 
be inferred from comparing experimental data with numerical simulations using 
Eqs. (6) [68], the intrinsic junction stacks remain much more difficult to compare 
with theoretical models that artificially made Nb-based stacks. 

C    Cherenkov radiation of fluxons 

The idea of possible Cherenkov radiation by a fluxon moving in a Josephson 
junction has been discussed in several theoretical papers [50,80,81]. Very recently, 
first experimental evidences for Cherenkov radiation have been obtained. These 
experiments, performed on two very different systems are briefly discussed below. 
The mechanism of the phenomenon is very general: Cherenkov radiation can be 
generated if  the fluxon velocity v ~ uc becomes equal to the phase velocity u/k of 
linear electromagnetic waves. This condition can be satisfied if  the fluxon velocity 
v exceeds the lowest phase velocity of linear waves in the junction. Naturally, this 
can not be the case in conventional long junctions described by Eq. (1). 

48 



Very clear evidence for Cherenkov radiation by moving fluxon has been found 
by Goldobin et al. [82] in a system of two stacked annular Josephson junctions. 
Numerical simulations of the so called [1|0] configuration (1 fluxon moving in junc- 
tions A and no fluxon in junction B) shown in Fig. 14(a)-(d) demonstrate that the 
fluxon in junction A moves together with is its image in junction B. As soon as 
the fluxon velocity v exceeds c_, an oscillating wake corresponding to Cherenkov 
radiation arises behind the moving fluxon and its image, as shown in Fig. 14(b)-(d). 
With increasing the fluxon velocity, the wavelength of the radiation increases while 
the amplitude and length of the wake quickly grow. When an integer number of 
Cherenkov radiation wavelengths fit into the circumference of the junction, reso- 
nances occur. Resonances result from interaction of the Cherenkov wave with the 
fluxon. The experimentally measured single-fluxon step with Cherenkov resonances 
is shown in Fig. 14(e). Resonances CS2 and CS3 are observed at v > c_ where 
c_ corresponds to the junction voltage of about 29 //V. Numerical simulations of 
the I — V curve using experimental parameters showed excellent agreement with 
measurements [82]. 
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FIGURE 14. (Simulated profiles of <ps' (x) in [1|0] state of two stacked annular junctions [82]: 
(a) fluxon at velocity v < c_, and (b), (c), and (d) with steadily increasing of v above c_. (e) 
Experimental I —V characteristic of such stack in [1 JO] state [82]. Cherenkov resonances are 
marked CS2.3- The inset shows schematically the sample geometry. 

Recently, Hechtfischeret al. [83] observed very unusual broadband non-Josephson 
radiation emission from BSCCO samples. At the higher magnetic fields, an addi- 
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tional microwave emission is found at voltages much higher than the voltage of the 
Josephson signal. The intensity of this signal is increasing towards the top of the 
flux-flow branch and is by almost one order of magnitude higher than that of the 
Josephson signal. Based on the magnetic field dependence of the radiation power 
and numerical simulations Hechtfischer et al. [83] suggested that the emission is 
due to the Cherenkov radiation by Josephson vortices moving in the multilayered 
stack. For a stack with N junctions, there are N different linear mode velocities. 
For strong coupling, the lowest mode velocity is about C/A/2 [79]. As soon as the 
fluxon velocity v rise above c/\/2 Cherenkov emission should appear. A numerical 
illustration of this effect in a system of 7 stacked Josephson junctions is shown 
in Fig. 15 [83]. To eliminate the influence of the boundaries, periodic boundary 
conditions were used. Fig. 15 shows a single vortex steadily moving in the middle 
junction with a velocity of 0.816 c, which is above the lowest two linear mode ve- 
locities. The waves trailing the vortex are caused by Cherenkov radiation: these 
waves are only observed when the lowest mode velocity of 0.721 c is exceeded! For 
real intrinsic stacks with large number of layers simultaneous Cherenkov emission 
is expected at many close frequencies, therefore mixing between them does explain 
the broad band emission found in the experiment [83]. 
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FIGURE 15. Spatial distribution of the supercurrents in a strongly coupled stack of seven 
Josephson junctions with periodic boundary conditions. A single vortex indicated by a circle 
is moving in the middle junction at a velocity of 0.816 c which is higher than the lowest two 
mode velocities, 0.721 and 0.765 c. Cherenkov radiation in the form of a trailing wave and waves 
induced in the neighboring junctions can clearly be seen [83]. 

IV    APPLICATIONS 

Millimeter-wave oscillators using Josephson junctions go up to sub-THz frequen- 
cies and are promising devices for various sub-millimeter band applications. A 
significant stimulus for the development of Josephson millimeter-wave oscillators 
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is undoubtedly the fact that another Josephson element, the SIS mixer, is already 
firmly established as the best choice for a low-noise front-end detector in the range 
from ~ 100 GHz to ~ 1 THz. The intrinsic noise temperature of SIS mixers is 
limited only by fundamental quantum-uncertainty effects. Consequently, the idea 
of a fully  integrated superconducting receiver assumes considerable importance, es- 
pecially for space-borne communications and radio-astronomical systems in which 
high sensitivity and low weight, volume and power consumption are crucial. Long 
Josephson junctions operated in the flux-flow mode have shown rapid success as lo- 
cal oscillators in integrated sub-millimeter wave superconducting receivers [84,85]. 
Koshelets et al. [86,87] have already demonstrated an integrated 500 GHz quasiop- 
tical receiver which combines a flux-flow oscillator and an SIS mixer on a single 
chip. The receiver showed the tuning range of more than 100 GHz and the double- 
side-band noise temperature as low as 140 K at 500 GHz. This is only a few times 
the fundamental quantum value 2irhf /k  ̂(h is Planck's constant, fcß is Boltzmann's 
constant). 

Flux-flow oscillators based on long Nb/Al-A10x/Nb Josephson junctions have 
been successfully tested up to 850 GHz. This is already above the gap frequency of 
Nb! The power levels of up to 5 /uW at 440 GHz sufficient to pump an SIS-mixer, 
have been convincingly demonstrated. For spectral radio astronomy applications, 
besides the low noise temperature, also a high frequency resolution of the receiver 
is very important. This resolution is determined mainly by the linewidth of the 
local oscillator, and its longtime frequency stability which should be better than 
10-6 of the center frequency. 
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FIGURE 16. IF power spectra recorded at 4.2 K when the signal from the flux-flow oscillator 
(/ = 435 GHz) is mixed with 45-th harmonic of the synthesizer signal (/ — 9.7 GHz) for the 
case of (a) an autonomous flux-flow oscillator (b) the frequency locked by the microwave counter. 
The inset shows the IF power spectrum (b) recorded with a 5 dB/div scale. 

Although the output power level of flux-flow oscillators is quite satisfactory for 
the integrated receiver applications, the radiation linewidth of the flux-flow oscilla- 
tor remains one of the basic unsolved problems. Experimental measurements of the 
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linewidth of flux-flow oscillators have demonstrated reasonably low values. One of 
the best results obtained by Koshelets and co-workers [88] is presented in Fig. 16. 
The flux-flow oscillator spectra measured at the intermediate frequency (IF) of 1.5 
GHz. In this type of measurements, the linewidth A/ (full width at half power 
level) as low as 200 kHz has been measured at 450 GHz at the temperature of 2 K. 
It should be noted that the narrowest linewidth has been measured on very steep 
resonant steps Fiske steps which have extremely low dynamic resistance. But even 
at the resonant steps the flux-flow oscillator linewidth appears to be by almost 
one order of magnitude larger than that predicted by the theory for Josephson 
oscillations in a lumped tunnel junction. The theoretical model for the flux-flow 
oscillator linewidth [89] predicts its extreme broadening at high fluxon velocities 
while the existing experimental data [88] show some radiation linewidth broadening 
but without clear velocity dependence. 

For receiver applications, there is a need to get a more detailed understanding 
of the performance of the flux-flow oscillators under various operating conditions 
(losses, magnetic field, etc.), thus, more detailed study of the multi-fluxon regime 
should be done. Problems to investigate are the conditions of subharmonic locking 
by the external signal, the parameter range of stable operation, and the radiation 
linewidth problem mentioned above. In general, phase-locking of several oscilla- 
tors offers larger output power and a narrower linewidth. Using stacked junctions 
is a very promising way to realize mutually phase-locked operation of flux-flow 
oscillators [58]. 
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INTRODUCTION 

The investigation of discrete structures consisting of a network of lumped Joseph- 
son junctions has followed the study of the continuous case of extended junctions. 
In fact, the technology to build reproducible and accurately defined structures con- 
sisting of many junctions has become available only after extended investigations of 
the electrically long structures. Also the theoretical investigations of the properties 
and the modelling of discrete structures has followed the development of the model 
for the continuous case. In this Chapter we will  introduce the modelling of Joseph- 
son junction arrays following somehow the historical developments, i.e., showing 
that a parallel array is but a discretized version of the continuous long Joseph- 
son junctions governed by the well known sine-Gordon equation (plus perturbative 
terms). 

The modelling of 2-D arrays will  be introduced as an extension of the equations 
of the 1-D case. The model equations can be derived with a different degree of 
accuracy, and the conditions under which the different models can be utilized is of 
particular importance for a comparison between the theoretical predictions and the 
experimental results. In fact most of the analytical predictions have been worked 
out in the context of the simplest Hamiltonian describing the system, the so called 
XY model. Actually most of the interest in 2D arrays of Josephson junctions has 
arisen because of the possibility to apply to such systems the known results for the 
XY model. It is therefore of great importance to understand under which conditions 
the XY equations are an acceptable model for 2-D arrays. 

Another point that must be borne in mind are the conditions to neglect the 
so called charge effects. The problem arises when one considers junctions of very 
small capacitance, for which the passage of a single electron produces an appreciable 
voltage. In more accurate terms, when the energy of the capacitors Ec charged with 
a single electron is comparable to the Josephson energy Ej, the models introduced 
here are not complete. In the crudest approximation, the condition Ej >>  Ec can 
be expressed in terms of the junctions parameters as HIo/2e » e2/2C (Ic being 

CP427, Superconductivity in Networks and Mesoscopic Systems 
edited by Giovannclla/Lambcrt 

© 1998 The American Inslilulc of Physics 1-56396-750-2/98/$ 15.00 
56 



the critical current of the junction and C the capacitance), and therefore one can 
decide a priori  if  the model described in the following is adequate for a specific 
array. Since the new terms are due to the granular nature of the charge, the arrays 
for which the charge effects can be neglected are often referred to as classical arrays. 

ONE-DIMENSIONAL ARRAYS 

One-dimensional superconductive arrays (1-D arrays) are periodic structures 
made of a row of Josephson tunnel junctions (or microbridges) biased in parallel 
and connected by superconductive links. Here, we shall not consider the case of se- 
ries biased arrays, that, though very important for some applications {e.g., voltage 
standard) exhibit a dynamic behaviour that is very different from the behaviour of 
the parallel arrays. The main reason for the difference is that the junctions in series 
arrays are not closed in superconducting loops and therefore the quantization rule 
does not apply. The derivation of the equations for these arrays is straightforward 
from Kirchhoff laws and will  not be shown here. 

FIGURE 1. Sketch of an experimental geometry... 

Among the several geometries that can be adopted to fabricate a 1-D array, 
the most simple is shown in Fig. 1, where the bias current is supplied through 
the two superconducting electrodes to the Josephson tunnel junctions that are 
fabricated (mostly using a window technique) in the region where the "fingers" of 
the electrodes overlap. A schematic diagram of the array is shown in Fig. 2, with the 
equivalent circuit based on the assumption that the junctions (SIS type) are well 
described by the RSJ model, that the current distribution is uniform, and that the 
"holes" between the junctions can be modeled by inductances connecting the RSJ 
elements; the resistance in parallel to the inductance accounts for high frequency 
losses in the superconductive films when some excitations propagate along the array. 

Much of the basic dynamics of 1-D arrays can be understood looking at their 
continuum counterpart, i.e., to the long overlap junction shown in Fig. , having 
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in mind, however, that the discreteness introduces some typical phenomena (like 
the localization of magnetic flux quanta) that cannot take place in continuous, 
homogeneous structures. 

For a long overlap junction, the partial differential equation that describes the 
dynamics of the system [1], the Perturbed Sine Gordon Equation (PSGE), in nor- 
malized form, is: 

Vxx - V« - sin(y>) = a<pt + ßtpxxt - 7, (1) 

with the boundary conditions 

<^(0, t) + ßpxt(0, t) = px{L, t) + ß<?xt{L, t) = T}. (2) 

In Eq. 1, <p is the quantum phase difference between the two superconducting 
electrodes of the junction, (fit is the normalized voltage, a is a dissipative term due 
to quasiparticle tunneling, ß is a dissipative term arising from the surface resistance 
(at high frequency) of the superconductors, 7 is the bias current (normalized to 
the critical current IQ), and x and t are normalized space and time, respectively. 
In Eq. 2, r\ is a normalized magnetic field applied in the plane of the junction, 
perpendicular to its long dimension and L is the normalized junction length. The 
normalization is such that the length scale is given by the Josephson penetration 
length 

Xj- 2̂e^J^ (3) 

and the time scale by the inverse of the plasma frequency 

2eJ0 

" J = ^Tc (4) 

where Jo is the critical current density, d is the magnetic thickness, i.e. the sum of 
the London penetration depth in the electrodes plus the barrier thickness, and C 
is the distributed capacitance. 

The long Josephson junction can sustain a large variety of dynamical states [2]: 
small and large amplitude localized oscillations, localized oscillations, and solitons, 
the most interesting in this context. A soliton here is an excitation that carries a 
magnetic flux quantum $0 = h/2e in different dynamical configurations. The most 
important configurations, that can be clearly identified from current structures in 
the I — V characteristics of the junctions, are: 

1. the zero-field steps, states that arise with no external magnetic field. They 
consist of one or more fluxons oscillating back and forth in the junction with 
constant period; at each end, a fluxon is reflected as an antifluxon. In a more 
detailed analysis one finds [3] that the fluxon is reflected only if  the energy 
lost by radiation at the reflection (due to the dissipation parameter a) is small 
enough; 
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2. the Fiske steps, consisting of fluxons, forced into the junction by an external 
magnetic field, propagating in one direction. When a fluxon reaches the junc- 
tion end, it is not reflected, but a wave comes back and triggers a novel fluxon 
in; 

3. the flux-flow steps, originated in such a high magnetic field that a chain of 
fluxons is established in the junction. The chain moves in the junction with 
constant (average) velocity and constant (on the average) number of fluxons. 

A quite standard approach for the numerical integration of Eqs. 1-2 involves spatial 
discretization [4]. The approximation of the first derivative with the central differ- 
ence and the approximation of the second derivative with a three-point difference, 
assuming an array of N points having a lattice spacing of a, yields the following 
set of equations: 

• at point 1: 

^ = -|(V2-Vi) + ^f(H-Vi)-8inV>1-aV 1+7--; (5) at       or cr a 

• at point n, 2 <n < N — 1: 

dVn      1  . ß 
-77- = -J (Vn-1 - 2</?n + tfn+l)  + ~ 
dt       a' a 

-JT = 7i (V"-i  - 2<fn + Vn+i) + ~j (K-i  - 2V„ + K+i) - sin yn - aVn + 7; 

(6) 

• at point N: 

dVN 2   , ,       2/3 ,xr ,r  \ • ir      , 2)?        m\ 
—77- = T (VJV-i - Viv) + T (Viv-i  - VAT) - smy>jv - aV^v + 7 ;    (') 
at       a' a'' a 

• at all points: 

£-V.. (S, 

Therefore the discretization of the PSGE produces a set of 2N first-order ordinary 
differential equations that are recognized to be the Kirchhoff circuit-law equations 
for the 1-D array that one would write down for the schematic model of Fig. 2. In 
other words, the discretization process applied to the distributed parameter model 
of the continuous overlap junction turns into a lumped element approximation that 
is, on the other hand, the most appropriate model for the 1-D array. 

The question that arises is to what extent the solitonic solutions of the PSGE are 
preserved in the set of Eqs.5-7, or, physically, to what extent we can expect that the 
various dynamical states (zero-field steps, Fiske steps, flux-flow steps) considered 
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above may take place in the 1-D array, and to which extent they are modified. 
To answer this question, numerical simulations [5] were performed, showing that a 
crucial role is played by the parameter a. In fact, as long asa<l the discreteness 
effects are negligible, but as a —> 1 the effects become appreciable. 

In both cases, as the shape of the fluxon is modulated by the discreteness of 
the array, small amplitude oscillations are generated, which can interact signifi- 
cantly with the fluxon itself. Therefore it is relevant to investigate, numerically 
and analytically, this mechanism. The idea of linearizing the equation for the small 
oscillations radiated by a modulated fluxon, and looking for stationary solutions 
of the linearized equations was first introduced by Peyrard and Kruskal [7], and 
later on developed by Ustinov et al. [8].The starting point for the analysis [8] is the 
dispersion relation for the discrete system, that is qualitatively different from the 
dispersion relation in the continuous system. In fact, while the dispersion relation 
for Eq. 1 (neglecting losses and bias, and assuming an infinite line) is 

u? = 1 + k2 (9) 

where w is the angular frequency and k is the wave number, the dispersion relation 
for Eq. 8 is 

w' = l + ±sin2^, (10) 
a2 2 

which reduces to Eq. 9 in the limit a —^ 0. From Eq. 10 one can calculate the 
phase velocity for small amplitude oscillations and find the conditions for resonant 
interaction with a fluxon [8]. The interaction is manifested in the I-V characteristic 
of the array by the splitting of the zero-field step in sub-steps regularly spaced. 

TWO-DIMENSIONAL ARRAYS 

To describe the fundamental features of a two-dimensional (2-D) array, it is not as 
convenient as in the 1-D case to start from considering its continuum counterpart, as 
the progress in the knowledge of the dynamical states in two-dimensional Josephson 
junctions is far behind that of long Josephson junctions. Hence, after a summary 
of basic definitions, we shall start from the most elementary cell to identify the 
physical quantities that are relevant to model the 2-D array and the meaning of 
the approximations that can be introduced. 

Basic definitions 

We shall assume that a 2-D array is made by a planar structure consisting of SIS 
Josephson tunnel junctions connected by superconducting films as shown in Fig. 4. 
The lattice of Fig. 4 is made by elementary cells that are squares having one junction 
at each side.   One may consider, alternatively, other geometries that can fill  the 
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plane with a periodic structure (e.g. triangles), but the complexity of the problem 
will  be the same. One can also consider arrays made of SNS Josephson junctions, 
or resistively shunted Josephson junctions. Such arrays, indeed, are fabricated and 
investigated whenever a nonhysteretic behaviour is required, and can be modeled 
with simpler models neglecting the junction capacitance. However, for the sake 
of generality we shall consider the array of Fig. 4 with the assumption that the 
junctions are described by RSJ model, as for the 1-D array, and we show in Fig. 5 
the circuit model of a single cell. 

In Fig. 6 it is shown a schematic view of an N x M array with the nomenclature 
commonly used in the literature. In the figure, y>£ • is the phase difference across 
the junction to the right of node i, j, while y>" • is the phase difference across the 
junction on top of node i,j. 

The elementary cell 

To elucidate the problem of modelling a 2-D array, we shall consider the simplest 
structure coupling two Josephson junctions in a superconducting loop, i.e. the 
Josephson interferometer sketched in Fig. 7. Since there is a single superconducting 
loop, the fluxoid quantization [9] requires that 

2ir  [ $ 
if2-<fi  = -r-fA-dl + 2nn — 2n — + 2mr. (11) 

where y>i# are the gauge invariant phases across the two junctions and $ is the 
total magnetic flux threading the loop. The same condition can be re-written in 
terms of the circuit model from the Kirchhoff's law: 

^(V52_¥51) + L^ = 0 (12) 

that can be integrated producing 

V2 — f>\ — 27T——h const. (13) 
$0 

In Eq. 12 Is is the screening current circulating in the loop. This interpretation 
clearly shows that the most general model for the 2-D array should take into ac- 
count either any magnetic flux threading each cell, or, equivalently, the sum of 
the screening currents generated in each cell by the magnetic flux, in addition to 
the bias current. (In the literature, the screening current is often named "mesh" 
current). 

Considering again the simple interferometer configuration, using current balance 
we may write the following equations of motion for the phase difference in the two 
junctions: 

I,- -h + IoSinip1 + ——(pi + C—ipi (14) 
ii  Ze Ze 
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- /, = -h + h sin¥2 + STr^i + C7T& (15) it le ze 

that must be solved with the supplementary condition of Eq. 13 in order to find 
the three quantities <pu <p2 and Is. The magnetic flux linked to the interferometer 
can be splitted in two parts, one generated by an external independent field {e.g., 
generated by an external coil), one generated by the screening current Is: 

$ = $ext + LIS. (16) 

Hence, Eq. 13 may be put in the form 

y>2 - ¥>i = 2;r/+ —/, (1/) 

introducing the parameter /, said the frustration parameter, defined as 

foext 

/ = V (18) 

Substituting Eq. 17 in Eqs. 14-15 we obtain two normalized independent nonlinear 
equations, in the form 

1 2n 
<Pi + <pi + smtpi='y- — (<p2-¥li) + -ä-f (19) 

PL PL 

1 27T 
V52 + ^2 + sinv?2 = 7 - ^~ (^2 - Vi) -"S-/ (20) 

PL PL 

where 

is the dissipation parameter, 

a=y^k (2i) 

Ä = ^ (22) 

is the so-called SQUID parameter or coupling parameter, 7 is the bias current 
normalized to the critical current I0, the time is normalized to the inverse of the 
Josephson frequency 

™-m (23) 

If  we neglect the screening current, we obtain a drastic simplification.  Ill  fact, 
Eqs. 19-25 take the form 
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V>i + <Pi + Sln fi = 7 (24) 

<P2 + <fi2 + sin (^2 = 7 (25) 

and the fluxoid quantization becomes 

<^2 - Vi = 2JT/. (26) 

Taking the sum of Eqs. 24-25 and inserting Eq. 26, one obtains the equation for 

7 = V?i + <r>i + Ö tsin Vi + sin (Vi _ 27r/)] (27) 

i.e., a single equation, that in the special case / = 1/2 is further simplified into a 
linear equation. In other words, the suppression of the screening current eliminates 
one degree of freedom: the system is now "rigid" as the difference between the 
Josephson phases of the junctions is constant, only determined by the external 
magnetic field. 

The screening currents 

The discussion in the previous section shows clearly that the approximation of the 
magnetic flux $ affecting a superconducting loop containing Josephson junctions 
with the flux 3>ezi generated by an external coil can change qualitatively the model, 
and, of course, the expected behaviour of the system. To proceed further in the 
analysis of the problem, we may think of the total flux threading an array cell as 
consisting, in the most general case, of three contribution: 

$ = $ext + $s + $c,Vc. (28) 

The first two contribution, $ext and $s = LIS, are those that have been discussed 
in the simple case of the single interferometer. The third contribution, $c,rc, arises 
in the case of a multiple cell device, i.e., a 1-D or a 2-D device. It comes from the 
field lines threading a cell generated by currents circulating in other cells of the 
array. In other words, $s is due to the self-inductance of the cell and $arc is due 
to the mutual inductance between the cells. Therefore, we can list the models in 
increasing order of complexity: 

1. neglecting all but the flux generated by an external, independent source $ex< 

we put rigid constrains between the junction phases given by the external field 
(XY or spin glass model); 

2. adding the self-field flux $s = LIS we add internal degrees of freedom to the 
system and a more complex model (the Nakajima-Sawada approximation) [10]; 
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3. adding the mutual inductance effects as well, 

(a) we can take into account only the interactions between cells that have a 
branch in common (nearest neighbours approximation); 

(b) we can take into account the interaction of any cell on any other of the 
array (full matrix description) [12]. 

Unfortunately, it is not always a simple matter to understand to what degree a given 
array can be approximated with one of the simplest models, because this depends 
not only on the intrinsic parameters of the array, but also on the operating range. 
To clarify this point, we shall consider the calculation of the maximum screening 
current 7™ (denned as 7™ = maa; 17,/70|, i.e. the maximum value of the screening 
current normalized to the critical current of a single junction) of a 10 x 10 array 
using the Nakajima-Sawada approximation [11]. 

In Fig. 8 it is evident that in same regions of the parameter space the screening 
currents could be neglected and the XY model could provide a satisfactory descrip- 
tion of the arrays, while in others the screening currents can be several times larger 
than the junction critical currents. 

The XY model 

The two extrema in the complexity scale of the array modelling are the full  
matrix approach and the XY model. The latter is very appealing, not only for the 
sake of simplicity, but also because it relates the arrays to other physical systems 
and brings in some very useful tools of analysis [13]. There is a very wide literature 
on this topic; here we will  give only a simple description of the approach, referring 
the reader to the bibliography cited in Ref. [13]. 

Let us consider a Josephson junction lattice as in Fig. 6 and indicate by <j>k the 
gauge invariant phase of the superconducting electrode that is at node (i,j) and 
by <j>i  the gauge invariant phase of the superconducting electrode of node (i + 1, j) 
so that 

9\ 4>k - — / A • d\. (29) 
Tic Jk 

Therefore, the Josephson current and the voltage across the considered junction 
are given by 

IosmU-fa-^^A-dlj (30) 

and 

'S-sK*-*-^-*)- "» 
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The energy stored in the junction can be calculated from the last two equations 
[14] as 

4 = -—cos U-fa-^J^A-dlY (32) 

where the coefficient Ej = hl0/2e is known as the "Josephson coupling energy". 
If there is no external magnetic field, the last term in Eq. 32 is zero, and the 
Hamiltonian for the whole array, summing the interactions of each electrode with 
its nearest neighbours, can be written as 

H = -Y,Ejcostf,-fa). (33) 
kl 

If  the electrode wavefunction phase <j>  is reinterpreted as the angle that a unit vector 
s makes with a fixed axis, then the last equation can be put in the form 

# = -2>jsk-s,, (34) 
kl 

i.e., the same Hamiltonian that is written for a two-dimensional lattice of spins. 
From this observation, one can translate into the array description a number of 
results already worked out for the so-called spin glass system. The most important 
is the spontaneous insurgence of vortices at finite temperature and the possibility 
of a Kosterlitz-Thouless (KT) transition. In the spin system, at zero temperature 
in the ground state all the spins are parallel; in the array, this corresponds to 
no difference between the electrode phases whatsoever, and hence no current in 
any junction. But at finite temperature vortex-antivortex pairs are spontaneously 
generated. In the spin glass, they consist of the spins pointing radially around a 
symmetry center, directed outward (vortex) or inward (antivortex). In the array, 
this would correspond to a current circulating around the simmetry center, with a 
density decreasing as 1/r, clockwise or counterclockwise. The current is originated 
by the difference between the phases being other than zero, and its density de- 
creases as 1/r because the larger is the radius of the circumference considered, the 
smaller is the phase difference between nearest neighbours. At low temperature, the 
pairs are bound. But there is a critical temperature, said the Kosterlitz-Thouless 
transition temperature TKT, at which the pairs start to unbind. Without giving 
any detail, we shall only mention that theory predicts a different behavior of the 
I—V characteristic obtained biasing the array: below TKT 

a power law is expected, 
V oc I°(T\ while exceeding TKT the free vortex motion produces ohmic dissipation 
and, therefore, a linear dependence is expected. If an external magnetic field is 
applied to the array, the full  Hamiltonian must be considered: 

H = -££jcos U, - fa - |^jf' A • dl) (35) 

and the states are quite more complex, as the magnetic field breaks the symmetry 
of the system and favours the generation of vortices of one polarity. 
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CONCLUSIONS 

The choice of the appropriate model for discrete arrays cannot be done easily, 
the model to be used not only depends on the numbers of details that one wants 
to reproduce, but also by the value of the parameters of the array. In fact a model 
that can prove to be appropriated in a certain region of the parameters can be 
inadequate to describe the array in another region of the parameters. While the 
model choice for numerical simulations might be just a problem of computational 
cost, the analytical investigations of the arrays has been developed essentially with 
the simplest XY model. It has therefore happened that the problem has been quite 
often reversed: to try to fabricate an array whose behavior is described accurately 
enough by the simplest model. 
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FIGURE 2. Schematic model of the 1-D array 

FIGURE 3. Sketch of the geometry of a long overlap Josephson junction 

FIGURE 4. A 2-D array of square cells, having one junction at each side. 
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FIGURE 5.   Circuit model for a single cell of the array of Fig. 4.   The inductance of the 
superconductive loop, L, is evenly shared among the four sides, h is the bias current. 
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FIGURE 6.  A schematic representation of the 2-D array.   To simplify the figure, the loop 
inductances were suppressed from the drawing. 
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FIGURE 7. The Josephson interferometer and its circuit model. 
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FIGURE 8.  Maximum screening current as a function of 7 and / for an array 10 x 10 with 

0L = 1 and a = 1. 
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Abstract. 
These lecture notes are divided in three main sections. In the first one we give a 

detailed derivation of the equation of motion of an array of resistively and capacitively 
shunted Josephson Junctions (JJA). The derivation starts from a Lagrangian written 
for the gauge invariant phase, faj, and its conjugate variable, 4>ij>  and ;t is done m 

the full inductance-matrix approximation. The ohmic dissipation due to the shunt- 
ing resistances is taken in account through the introduction in the Euler-Lagrangian 
equation of a convenient Rayleigh's function. The JJA formalism, then, is extended 
to the much more complex case of a granular superconductor. In order to make clear 
the relationship between the JJA formalism and those developed in the framework of 
other discrete models, like the discrete sine-Gordon and the Frenkel-Kontorova ones, 
a paragraph is devoted to their comparative analysis. The relationship between phase 
and 'particle' dynamics is also briefly discussed. In the second section we provide the 
'beginners' with some basic ideas on how to perform numerical simulations based on 
the JJA formalism. Finally, in the third section we give a flavour of the physical prob- 
lems that one can solve by 'running' numerical codes like the ones we have developed. 
The dynamical properties of single massless and massive vortices and those of a JJA 
subjected to an external ac driving force are briefly discussed. 

INTRODUCTION 

Arrays of Josephson Junctions (JJAs), see fig. 1, constitute one of the most 
intriguing examples of coupled non-linear oscillators [1], [2], due to the richness 
of their physics (macroscopic quantum phenomena, phase transitions, locking and 
chaos, etc.) which finds counterparts in many physical and biological systems [3]. 
and to the possibility of using JJAs in the production of useful cryoelectronic devices 
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with unique properties and an extreme low power consumption (see the lectures 
notes by T. Doderer, J. Mygind and M. Darula). 

All  the interesting applications of JJAs in cryoelectronics rely on the formation 
and on the displacement of special quasi-solitonic excitations in the gauge invariant 
phase: the so called vortices/antivortices. 

As shown in the previous lecture notes by G. Filatrella and G. Costabile. a 
vortex is an 'object' that obeys the fluxoid quantization rule: the sum of the gauge 
invariant phase circulation along any path enclosing the vortex plus the magnetic 
flux through the surface defined by this path has to be always 2mr where n is an 
integer number, see fig. 3 of the by A. Ustinov's lecture notes. 

Vortex-antivortex couples develop in JJAs whenever a perturbation breaks the 
symmetry of the flowing current on a local scale and acts for long enough to transfer 
into the system the needed formation energy. As an example, in biased samples, 
vortices form because of current spikes, of geometrical defects, of an inhomogeneous 
spatial distribution of the bias current, of a perturbation caused by an incoming 
photon, and so on [4]. 

Why are vortices/antivortices so relevant for cryoelectronics devices? 
In overdamped JJAs vortices can be likened to massless particles; their displace- 

ment can be used to transfer elemental bits of information. 
In underdamped JJ systems, on the other hand, the vortices acquire a mass (i.e. 

a kinetic contribution to their energy) and can be reflected at the border of the 
sample. One can use the periodic reflections of the vortices to fabricate oscillators 
able to emit and detect electromagnetic radiation in the hyperfrequency domain. 
Unfortunately, the e.m. power emitted by a single oscillator (vortex/antivortex) is 
quite low (of the order of a micro Watt) as, also, its output impedance (a few Ohms) 
[5]. In JJAs, however, under certain experimental conditions, several vortices may 
couple each others giving origin to a coherent motion (a dynamical locked state) 
that, in principle, should lead to an electromagnetic emission whose power is pro- 
portional to TV2, where N is the number of the oscillators involved in the process 
(see the lecture notes by T. Doderer and M. Darula for further details). 

The main aim of this lecture notes is to give a rigorous derivation of the equation 
of motion that regulates the dynamics of the vortices in the JJAs. 

THE DISCRETE 'JJ ARRAY FORMALISM' 

The discrete JJA Lagrangian 

The Langrangian of a Josephson junction array subjected to the action of an 
external forcing term (a bias current applied along the y-direction) and to a local 
random force (the thermal noise) is given by: 

L = EjiYXcoskj - 1) + | E42 + E iezt-ÄiDG)-1 D]mcj>u - £ i,^ 
ij ij i;kl ij  
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-YPtt + l-Kf)*  {tC^-{RRTYxRM)j t0.H }.      (1) 

Here, fa = 0{ - Oj - a»j is the gauge invariant phase difference along the junction 
ij. 6{ is the phase of the pseudo-wavefunction describing the state of grain /. 
\y$i\exp(iOi), where |$,|2 = ns (n, is the density of the superconducting pairs and 
|$i| is constant for all the grains:|*i| = |*|). a{i is related to the vector potential 
A through a{j =  ̂ff A- dx. i, j stand for nearest-neighbour points and p runs 
over the plaquettes of the array. A and A will  be defined further on in this section. 

The physical meaning of operators Pr, D and G is simple to understand. As is 
well-known, any vector field can be expressed as the sum of a solenoidal field plus 
an irrotational one (with vanishing divergence and curl, respectively). We call the 
operator that, applied to any field, select its solenoidal (irrotational) component Pr 

(Pd). These operators can be expressed as Pd = G(i?G)_1 D (where G and D are 

discrete versions of the operators gradient and divergence), Pr = RT (RRT) R 
(with R the discrete rotational operator). Of course, RG = 0, PrPd = 0, P,Pr = Pr, 
PdPd = Pd, Pr -f Pd = 1. We have chosen the London gauge (y • A - 0), so that 
(DG)~lD<i> = 0, (Pd^ij = 0i - 0j and (Pr<%. = -ay. 

The <f>ij  are connected to the normalized junction voltage drop v = (2e//?)V 
measurable at the junction through the Josephson relation: fa = 2nv. 

Ej = ($0^c/27r) is the junction coupling energy and $0 is the elemental quantum 
of flux. ($o = h/2e = 2.068 • l(T15Vs),. Kij-u is the full inductance matrix, 
normalized to $0/(2nIc). ßc = 

2eIf2° is the McCumber parameter where R and C 
are respectively a characteristic shunt resistance and capacitance (see further on for 
their definition), i is a thermal-induced noise current. The currents are normalized 
to the critical current of the junction, Ic. r = *^t is the normalized time. 

Equation (1) has been written using the conjugate pair of variables <j> and 6 to 
stress that the gauge invariant phases are the relevant dynamical variables (the 
equivalence between phase and vortex dynamics is discussed further on either in 
these lecture notes and in the lectures notes by H. van der Zant). 

Let us now examine one by one the terms of the Lagrangian. The first one 
accounts for the energy stored in the Josephson junctions. The second term repre- 
sents the energy stored in the electric field; it depends both on the capacitance of 
each single island with respect to the ground, Ct-, and on the capacitance between 
the nearest-neighbour islands, Cy, i.e. the capacitance of the junctions. Since C-,j 
is always much larger than C{ [6], in the rest of this lecture notes the contribution 
due to the self-capacitance will  be neglected. 

The third and fourth terms are related to the work done on the system by the 
external current generator (either dc or ac) and by a white-noise current (that takes 
into account the thermal noise generated by the resistors). Usually this latter is 
chosen so that < UJ{T) >=  0 and < «,J(T + T0)ikl(T) >=  ^-S(T0)5ij;ki. 
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The last terms of equation (1) represent the main difference between the X\ 
formalism, where Ax is always taken equal to oo [7] and the 'JJ array formalism 
where Ax can assume finite values [8], [9], [10]. They are related to the energy 
stored in the magnetic field due to the mutual inductance of branches of the array. 
The normalized inductance matrix (A) connects the induced magnetic flux through 
the plaquettes to the mesh currents defined on each cell (the relation between link 
and mesh current is given further on in this section, see also figure 1): 

$tnd; p = £ AM V (-) 

The vector potential includes the contributions from both the external and the 
internal magnetic fields: 

a'j = AT /   \A>r.ext + Aj;int) dr. (3) 

The flux of the external magnetic field through plaquette p is 

2n 2n  f - 
{Raexi)p = 2nfp = — / BexidS, (4) 

where S is normal to the surface of the plaquette, S, and Bexi = V x Äert- 
The aij-int are due to the currents circulating in the array (iy) [10]: 

aij;int  = Z_.  .    ,    ffij;kl  hi, (5) 
kl   47rA-L 

where Ax is the normalized effective penetration depth of the array [8]: 

X   -   l    $0 (6) 
2n HoIJa 

with la the lattice spacing of the array. ffij-,ki is a form factor matrix related to the 
geometry of the array. In most cases all the non-diagonal elements of the // matrix- 
can be assumed to depend only on the relative distance between the links of the 
array, r = rij  — rui and not on the shape of the Josephson junction. The self-term, 
on the other hand, diverges when r —> 0 and this forces us to consider the particular 
geometry of the junction in order to introduce the appropriate geometrical cut-off. 
For further details see next section. 

The link currents are related to mesh currents through iunk = -R^mesh + MUxt- 
Mij-k = 1 if  A; is a site belonging to the first row, and ij  is a vertical link aligned 
with it; otherwise, Mij-k = 0. The Biot-Savart equation (5) can be expressed as 

§ind = Aimesh + Aiext => imesh = A"1   ($,w - Aiext) . (7) 

where the matrix A is defined as: 
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A=-^RffM; (S) 

and A can be easily related to //: 

A=-^RffRT. (9) 
47rAj. 

We stress that by means of eq. (5) the current contribution to the local vector 
potential, aij-int, can be worked out exactly for each link and is no any longer 
introduced as a mean-field quantity [11]. The difference may be quite important. 
especially for finite 2D systems with relatively small dimensions, such as the ones 
commonly used in the experiments. 

Since in this lecture notes we deal with arrays for which charging effects and the 
fluctuations of the amplitude of the superconducting order parameter are negligible, 
we have dropped Lagrangian terms like —hnsPd$i and —(ns — n)qPdVi that are 
related to the displacement of charges (ns is the density of the superfluid. n is the 
back-ground charge density and Vi is the scalar potential); by applying Lagrangian 
equations to these terms, the Josephson voltage relationship can be obtained [12]. 

The equation of motion 

The Euler-Lagrange equations for our system are 

d(öL\      dL + 8T m 

dt yd&J      dfrj      any- 

where J- is Rayleigh's function giving the ohmic dissipation 

F = 2 J2 &AS) aH*i  <M5)- (11) 
ij;kl  

a is an operator defined as 

a = G(DG)~1r-1(DG)-1D + R-\ (12) 

where r and R are diagonal operators whose elements are, respectively, R; (the 
resistance of the superconducting island i with respect to the ground), and Rtj (the 
resistance between the ith and the fh islands, i.e. the junction resistance due to the 
tunneling of the quasi-particles for SIS junctions and the normal state resistance for 
the SNS junctions). In general one neglects the self-resistance (Resistive Shunted 
Model, RSJ) and, as well, the coupling between the tunneling quasiparticles and 
the environment; one has to note, however, that island resistance with respect to 
the ground is the basic dissipative term in the TDGL model [13] (see the lecture 
notes by J. Jose), while the coupling to the environment may lead to a redefinition 
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of Ej for junctions with a normal resistance of the order of 100 tt (the environment 
impedance) [14] . Moreover almost always one assumes a constant Rij, neglecting 
the dependence of Rij on <f>;  basically, this is equivalent shunting the junction with 
an external resistance Re smaller than the junction resistance. To take account of 
the dependence of Rij{4>) = 1/G(<f>) on <j>  one can use the following expression [15]: 
G(V) = Gsg + (1 - Gsg)[l - tanha(l - V/Vg)}/2, where Gsg is the ratio of subgap 
conductance to normal-state conductance, K is a constant, and vg = 4IcRn/K is 
the gap voltage. 

Another common approximation is to neglect the spatial distributions of the R;J 

that may result from the limits of the fabrication process. 
Thus neglecting R{ and taking Rij as a constant, from equation 42 one obtains 

a set of equations whose matrix form, in normalized units, is 

ßc4> + 4> + icsmcf> + l-[G{DG)~%xt - PrMiext 

+RTA~1 (R4> + 2fff) + i^A^Aiext = 0 (13) 

By considering the irrotational and solenoidal components of eq. (13) one obtains 
the two sets of the Kirchoff and the Biot-Savart equations. In fact, by taking the 
divergence of eq. (13) one has 

D (ßc<i>  + 4>+ iC;4, sin <f> + i) = DiUnk = U«, (14) 

where ii;nk are the currents flowing along the links. This vector equation reads, for 
each node i, 

£&^X + £  ̂+ £^^sin{cj)ij) + £iy - ii;ext =0, (15) 
3 3 3 3 

On the other hand, by realizing that G{DG)~l iext = G(DG)~1D iu„k = Pdhnk- 
and using iunk = ÄTimGSh + Miext, Pr + Pd = 1 and PaRT — 0 we can group the 
first six terms in eq. (13) to give 

ilink  - G(DG)-1 iext - PrMiext  = ^mesh- (16) 

Applying (fii?T)-1i? to (13), one obtains the Biot-Savart equation (7). 
It is worthwhile stressing that, since the nodes of the array are represented by 

point grains, fluxoid quantization is automatically fulfilled:  

£ fa + 2TT/ + $,nrf = 2npir. (17) 

Sy'ea stands for the counterclock-wise sum along the links of the a-plaquette 
and 4>ij are restricted to vary in the interval (—7r,7r]. $ = 27r/ + $,-„d is the total 
flux through the cell. 

It should be noted that the dynamics of the mesh currents and that of the 
phases of the superconducting nodes can be separated by operating the following 
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sustitution for the gauge invariant phase [16] <f> — DT6 + RL imeah (a fact that 
implies the existence of two dynamics having different time-scales, as clearly pointed 
out in ref. [9]); if  just the self-inductance of the cells are considered than RL can 
be factorized as LR, where L is the self-inductance. As a consequence a reduction 
of the number of the coupled differential equations is obtained. 

The JJA formalism and the granular superconductors 

The 'JJ array formalism' and its lagrangian allows us also to describe the case 
of weakly coupled granular superconductors for which the phases are not uniform 
inside each grain. To do this one should consider the intragranular currents and 
phase shifts. A way of implementing this is to describe each superconducting site 
as a plaquette, see figure 1; a supercurrent, linear with the phase, flows within it. 
Thus, we must generalize the gauge-invariant phases, currents and fluxes, to add 
new variables corresponding to the superconducting-grain links and cells: 

4> -» 4> = {<f)j,4>s}, $ ->■ $ = {$J,$s}, ilink -» Mink = {ilink;J,ilmk ;s} imesh -» 

Imesh = i.lmesh;J) lmesh;Sj- 
The intragranular currents are proportional to the gradient of the phase along 

the border of the grain: i^s — s4>ij-,s where c = nseh/m and ns is, as usual, the 
density of the superconducting pairs. The discrete operators used up to now must 
also be generalized. Now, the curl along a plaquette contains contributions both 
from Josephson and superconducting branches, see fig. 1 

£)-*(£)• *-(?&) 
Inside the grain, the magnetic flux is 0 [Rss4>s = 0), thus <f>s is an irrotational field 
[(f)s - GssV). On the other hand, iunk = (Ä)Timesh + Miext (M is the immediate 
generalization of matrix M defined above). The divergence and gradient operators 
are also generalized D -> D, G —> G, and expressions D = [G)T, RG = 0 are still 
valid. The Biot-Savart equation now reads 

$ind;j = Awsh + Aiext . A = (A AjS), (19) 

where contributions coming both from Josephson-like and superconducting currents 
are considered. As previously stated, link-currents are related to mesh currents 
through 

iH„k;j\ /i£0 U WhiJ  \ + AKxt (20) 

llink;S  / \  *>-JS   nSS  )   \  !mesh;S / 

Zero magnetic flux inside grains implies Rss4>iink;S = 0. This, together with eq. 

(20) gives RSSRJS WsM = -RssR-ls Wshjs; here M has been defined in such a 
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way that the curl of Miext is null in the superconducting plaquettes (see fig 1). We 
can now re-express the Biot-Savart relation as 

$ind;J = Äimesh;J + Alext . Ä = A - A^^SsR-h)R̂sSÄJS- C21) 

The generalized lagrangian is now 

L(l'4>) = Ej{ coscj>j - 1 + !J$4>J + (iext)T[(ßG)_1 D}]>-i T<t>J - |<PsT<?s 

--{H + 2?rf + Äiext)   A"1 (U + 2rf + Aiext) 

+^T(ÄfiT)-1
JRAfiext } ■ (22) 

Equation (42) applied to (22) gives a set of Euler-Lagrange equations. On applying 
D to this equations, Kirchoff expressions are obtained. The Biot-Savart law is then 
obtained by applying (RRT)~lR. As <j>s = GssV, $s = 0 is trivially  obtained. 

This procedure increases considerably the number of independent variables of 
the problem, and becomes highly CPU-time consuming. 

To conclude this subsection, we wish to point out that the forcing term, ii-^-t- 
may include both a dc component and an ac term, iacs'm(ut). The presence of 
the latter opens a vast field of research related to the competition between the 
frequency of the external forcing terms and the characteristic frequencies of the 
JJAs. This latter is a subject that will  be discussed briefly in the third section of 
these lecture notes. An interesting, although not complete, review on this specific 
topic can be found in ref. [9]. 

Comparison with other discrete models 

From the previous lecture notes one has learned how to described the physics of a 
long junction by means of the sine-Gordon equation. Here we discuss in more details 
its discretization and its relation with the 'JJA formalism'. We have seen that the 
phase-invariant gauge is a continuous function that varies along the junction 6(x). 
and obeys the equation [17] 

M - CS +sin^  = -<**  + d §F -1- <23> 
We remind that here ßc is the Mc Cumber parameter, aj> is the usual resistive 
term due to the tunnelling of normal electrons across the junction; the d £§ term 
accounts for the dissipation due to the flow of normal electrons parallel to the 
junction [18]; 7 = i/i c is the usual bias term. If  one neglects the third-derivative 
term and discretizes this model [19], [20] one obtains 

ßc4>n + a<l>n + in sin( n̂) = iext;n + — V2 4>n (24) 
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where XJ2<t>n = {4>n+i  + </>n-i _ 2<f>„)  is the discrete Laplacian, and iv = D/Xj is 
the discreteness parameter (D is the distance between points i and j, and A,- is the 
junction penetration depth). The continuous model is obtained by making w ->■ 0. 

An analogous model is obtained when considering ID Josephson junction arrays. 
as shown in fig. 1. In fact, conservation of the current at node i yields 

ßÄi + 4>i + s'm(<f>i) = iext + ii  - ii-i (25) 

Here, & are the vertical gauge-invariant phases, and i{ is the mesh current for cell /. 
as defined above. Along the superconducting horizontal links the current density is 
given by Js = [(nseh)/m]{(\/0- (27r/$0)A]) (ns is the superfluid density). Making 
the approximation that Js is uniform, the (normalized) superconducting current is 
is = aJs/h (c is the cross-section of the current). Integrating the term v^ along 
the border of plaquette i, one obtains §{^Q)dx = 2n7r, which implies 

a    n.eh ,„ , _ . . -,. 
2n = —- ^-{2rnTr + 4>i+1 - & - $,• ), (26) 

LD    m 

thus 

ii  - z,-_i = TT- -£— (</>i+i + &-i  - 2<f>i)  + $,-_! - $i + 27r(n; - ??,_!) (27) 
icL>   zra 

If the array inductance is neglected and the external field is uniform, ($, = 
2TT/ ) we obtain an equation which is formally equivalent to (24), with w2 = 
(IcD/a) 2m/(nseh), plus an extra term taking into account the vortices existing in 
the array. Note that here the expression of w is strictly related to the characteris- 
tics of the supercurrent flowing in the horizontal branches, while that given in eq. 
(24) derives from the discretization of the Josephson current, a procedure needed 
to perform numerical simulations. 

To include screening effects [21], one can proceed as follows. The mesh currents 
are linked to the flux across the plaquettes by $ = Aimesh + Aiext- If  the external 
current is homogeneous APtjiext-j — &i eXi, where £,- = ]T]j  APiJ\ Now, on neglecting 
the non-diagonal terms of A, the magnetic flux is given by $; = A0,oii + ^i>ext + 2~/ 
and thus the current i, is given by 

(1 + aA0,o) ii  = a (2n;7T + <j> i+1 - fa) - a^iext - a2irf, (28) 

where a — -fjy *^p The limit A —\ oo implies Ao,o —> 0, and equation (27) is 
obtained. Instead when Ax is small enough so that Ao,o > 1, the whole equation 
(28) must be considered, and thus the current conservation at the ith node reads 

ßcfa + fa + sm(fa) =    (29) 

/j.      >    ,| 2/Ka     . . a , 

"(&  - k-i)   + i  , „*.>  - n-i) + TTTT- V2 fa + e 1 + aA0,o /      1 + aA0,o 1 + aA0,o 
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where e contains the contribution to the currents *,-, i»_i coming from the fluxes 
across the rest of the plaquettes. Neglecting the non-diagonal components of A. 
again an equation formally equivalent to (24) is obtained, with w = ^/Ao.o (provided 

that QA0,O >> 1); note that in this particular system Xj oc v/Ao,o- 
In all the sine-Gordon-like equations considered above, w can be interpreted as 

a generic coupling strength between the vertical phases. The limit  w ->■ 0 implies 
that 4>i ->■ (/>,-+i; large values of a allow large horizontal variations of the phases. 

In fact, the discrete sine-Gordon form is an approximate version of the equation 
of motion derived from the 'JJ array formalism', for when the phases vary slowly 
along the x-direction [22]. In fact, if one writes down the equations of motion 
(imposing Kirchhoff's law) for any pair of opposite nodes in the array (#,>,,. Oi.doim)- 
and subtracts them, one gets the following equation: 

[1 - (|rV2)]&|^) niv + [1 - (J^V2)]^^)»;, + icsinfa») 

~ J2 ow#(n) - V>(" + i)]sin[<f>(n)  - 4>{n + t)]/2 = itxt. (30) 
^ly :'=±1 

Here, tp(i) = 0;)Up + 0i,doum, and the ^'s are, as usual, the gauge-invariant phases 
along vertical links. Equation (30) becomes sine-Gordon like if: a) all the combined 
space and time derivative of order three or higher are negligible; b) the variation of 
6 along the x axis is sufficiently slow so that the cosine factor can be taken as 1, 
and the sine factor can be linearized, 

d2 d i 
ßc-Tp{4>)n;y + a — (<f>) n;y + in;ySin(4>n;y) - ltxt - -^r \J2 {<j>)n; V = 0. (31) 

The V2 operator emerges in a natural way because of the coupling along the x 
direction and because of the imposition of Kirchhoff's conservation low at the nodes. 

By comparing eqs. (24) and (31) one immediately sees that in the latter the 
role of the discreteness factor is played by the coupling anisotropy of the array, 
ix/2iy. Indeed, for ix » iy, in order to keep the currents within reasonable limits. 
the horizontal phases must be small; their time derivatives (<t>x,4>x) become thus 
negligible, and conditions a) and b) are fulfilled. 

Thus the discrete sine-Gordon model, which describes systems of non-linear oscil- 
lators linearly coupled along the x-direction, is equivalent to the 'array formalism" 
in the limit  of a highly anisotropic JJ ladders. 

It may be also interesting to point out that if, in eq. (30), one does not neglect all 
the combined space and time derivative, a term formally identical to the (Pcp/dx2 

present in eq. (23) is obtained. Their physical meaning, however, does not coincide. 
Let us now consider the Frenkel-Kontorova (FK) model. For a recent review on 

this model see ref. [23]. The FK model is used to describe systems composed of a 
set of particles, interacting through a linear force, placed on a periodic potential, 
see fig. 1, where, as an example, the ID case is shown. The Hamiltonian is 
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H = ^,{V(ui) + U(AUij)} = £{T^[1 - cos(2nUi)] + \{Au,3f}        (32) 

where u is the position of the ith particle and the sum on j is over first-nearest 
neighbours; K gives the amplitude of the periodic potential. The FK model applies 
to systems of particles whose number is not constrained to be equal to the number 
of the potential minima, it can be either larger or smaller. In order to apply the FK 
model to the case of the JJ ladder we have to identify the positions of the particles 
with the gauge invariant phases of the JJs lying along the y direction, <• />,.,,. As a 
consequence the number of the minima of periodic potential is fixed and equal to 
the number of the <f>i- y minus one. If  one adds also a dissipative and a kinetic term, 
the FK model can be straightforwardly mapped onto the discrete sine-Gordon one. 

'Particle' vs phase dynamics 

In the previous subsections we have shown that a complete description of the JJA 
dynamics can be given in terms of the gauge invariant phases. To conclude this 
section and, as well, that part of the review devoted to the 'JJ array formalism'. 
we would like to discuss the relationship that exists between the vortex and phase 
descriptions of JJA dynamics. 

In a very general manner, a vortex can be treated as a particle [24], [25] that. 
under the action of a certain potential, V(x), is forced to move in a viscous medium. 
Periodically it has to overcome energy barriers related to the links encountered 
along its trajectory. 

When we consider the dynamics of a single vortex the potential V(x) can be 
identified with its Gibbs energy, U(x). This latter can be decomposed into six 
terms [27], [28]: the core energy Uc = 7r2/2, defined as half the energy needed to 
create a vortex-antivortex pair; the energy of a vortex in the absence of magnetic 
fields and external currents, Uo(x); the energies due to the interactions with the 
external field and with the bias current, U/(x) and Ui(x); the term related to the 
periodicity of the array, Upot(x), and Umag(x) the term due to the screening currents. 
Strictly speaking, U depends also on the vertical coordinate, y. Here, in order to 
simplify the discussion, we assume that the vortex moves along the central row of 
the array (y=0). The analytic expressions of Ui(x), Uj(x), Upot(x) and Umag(x) in 
terms of HIc/(2e), with x normalized to a, are given by 

Ui(x) =-2iri  (x +  ̂, (33) 

Upot{x) = --EB COS (2TTX). (35) 
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Umag(x) = - iii„k T -pi-// i«nk =  r aT 4TTAX// * a. (36) 

where L is the array dimension in the direction perpendicular to the flow of the 
bias current; the coordinates are normalized to the cell dimension a; and EB is the 
energy barrier the vortex must overcome to move from one cell to the next one. 
We fixed the origin of the coordinates, x = 0, at the central column of the array. 

As far as UQ(X) its expression for finite samples and Ax = oo is 

£/„(*)  = *  In (H£ cos (^)). (37) 

The modification of UQ(X) for finite value of Ax [28] is discussed in details in a 
recent review [29]. 

Given the above expression the equation of motion for the vortex can be written 
in the following way: 

., , ..        EjdU        . . 
Mv laX : : »? laX =4- 

la ax 

Mv lax + r}l ax + -r[  vEB sin (2TTX) - 2ni + An2fx + -^ + -^  ̂   = 0    (38) 
/„    \ ax ax    ) 

Where r] is the coefficient of viscosity. The equation of motion of the particle 
(vortex), thus, resembles very much that of the phase of a single JJ subjected to a 
washboard potential. 

It is natural to associate the kinetic term 1/2 CJ2ij V£ vvith 1/2 Mvx
2. In zero 

magnetic field and in the no-screening approximation the profile of the phase around 
a vortex is given by [30], <f> = arctan[(yi — yo)/(xi — xo)}- In the quasistatic limit  
one obtains [12] K'j = {$o/2n){x/la)(<t>i  ~ <t>j)  and by summing over the phases one 
arrives at, in agreement with ref. [25] to the following mass expression: 

*.-*£ m 
On the other hand, the power dissipated by the moving vortex is equal to the 

sum of the power dissipated in all the links of the array, rju2 — J2ij ^'i/fRij- >1 
can be expressed in terms of the effective shunt resistance re (i.e. the equivalent 
resistance of the whole circuit between two sites i and j) [26] 

$o2 

Ware 
(40) 

Now, if  in eq. (38) one makes the substitution 2nx —>■ <j>  one obtains, in the limit  
of very large samples (L —> oo), the following expression: 

27T220+27r22r, 2J+^^ + ^(£ssin^-2iei() = 0. (41) 
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that shows the equivalence between phase and 'particle' dynamics in the limit of 
large samples and / -f 0. Indeed, only in these limits are Umagn and U0 independent 
of x in the bulk of the array (i.e. at a distance from the border larger than the 
vortex size), and the "arctan" expression is applicable. ^From eq. (41) it emerges 
that the depinning current of the array is id = EB/2- We can define vortex-like 
quantities analogous to junction-like ones ßc and up = y/ß~c/(RC) (the plasma 
frequency) by ßcv = Eßßc and upv = y/Esup. 

Finally one has to note that eq. (39) implies no dependence of M on screening 
and, also, a linear dependence of M on C while eq. (40) implies a constant i] if. 
like in the Bardeen-Stephens model, re is taken costant. However, strong deviation 
from the behavior predicted by eq. (39) and (40) have been 'observed' [31]. [32]. 
[28], [33] in both overdamped and underdamped junctions A detailed discussion on 
this topic can be found either in the lecture notes by H. van der Zant (only for the 
underdamped JJAs) and in ref. [29]. 

NUMERICAL SIMULATIONS 

The models described in the previous section are not analytically solvable. As a 
consequence, one has to perform numerical simulations in order to extract useful 
information on quantities measurable in the experiments. In this section we give 
a short introduction to the numerical simulations of the JJA dynamics. We will  
provide the readers with some elementary advices and tricks on how to make the 
simulations easier and faster. Due to their number and complexity, such algorithms 
deserve a more extended description. We suggest the reader to take these lecture 
notes just as a starting point: if  he likes the flavour of it, a wide world opens in 
front of him, willing to be explored. 

Solving differential equations 

To study the JJA dynamics one has to solve a set of non-linear differential equa- 
tions. Basically, one knows 

a) the value of a certain group of variables </>, at a given time t 
and 
b) the functional expression of their time derivative <f>t = f(t, <ft). 
Which are the values of the <^>'s at t + Af?. A simple answer to this question can 

be given by the following equation 

cj>(t + At) = 4>(t) + Atf(t,cf>), (42) 

known as the Euler method. 
The Euler method, in fact, can be applied also to the case of second order dif- 

ferential equations: if  we know <f>(t),<j>(t)  and the function <f>(t)  = f(6(t),p(t)) an 
immediate generalization of (42) leads to 
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#< +A*)  = #*) +At/(#*),#*))  
<f>(t  + At) = 4>{t) + At j>(t). (43) 

The Euler's method is based on a Taylor expansion in At of <f>(t  + At) cut at the 
first term; the associated error, thus, is of the order 0(At2). 

When the the procedure is iterated the error propagates and one has to find a 
convenient way to control it. Of course, it is always possible to reduce At —> 0. but 
the price to pay is an increase of the computing time. It is, thus, essential to find 
a compromise between precision and CPU time consumption. 

In equation (42) one considers only the derivative of </> at the leftmost point of 
the interval (t,t + At). A more accurate calculation of <f>(t  + At) can be obtained 
by considering also the derivatives at intermediate points of the time interval At. 
In fact we can guess the value of </>(t + At/2) and then calculate the derivative at 
this point: 

cf>(t + At) = <f>(t)  + Atf{t + At/2, <f> + h), (44) 

This is known as the second order Runge-Kutta formula. What we have clone is. 
basically, to construct an expression (44) that reproduces a Taylor expansion up to 
the term of order 0(At3): 

This result would encourage to iterate the procedure: in principle, one can choose 
extra terms that, added to (44), reproduce a Taylor series expansion with any 
desired precision. However, it turns out (and this is the key-point) that one does 
not need to use derivatives of <p of second and higher order. It is enough to work 
with the function f(t,<j>)  and choose a series of adequate points (tn,<j>n). Provided 
that the /(tn,</>„) values are multiplied by adequate coefficients, it is possible to 
build up expressions with a precision of the order of 0(At4), 0(At5), 0(At6)... 
By far, the most popular of these approximations is the fourth-order Runge-Kutta 
formula [34] 

*I  = |A</(<^(<)) 

k2 = ^Atf(t + At/24>{t) + h) 

A3 = -At/(t + At/2<£(t) + k2) 

k4 = Atf(t + At,4>{t) + k3) 

<j>(t  + At) = <l>(t)  + j  + j  + kj + % (46) 
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characterized by an error of the order 0(Ai5) (as one can verify by developing the 
series expansion for all these terms, adding them up, and comparing the sum with 
the Taylor expansion of <f>).  

Obviously one may ask: is it worthwhile to get into such a mess ?. f must be 
evaluated 4 times over the interval (t,At) and to evaluate / one has to multiply 
a given vector for a matrix whose size increases as TV2, where N is the size of the 
array. In which case is this method preferable with respect to the Eider's one? We 
should use it provided that it allows us to operate over an interval 4At in one step 
and, to obtain at least the same accuracy we would achieve by using the Eider's 
method on four At -steps. 

A crucial point is the choice of At. Its optimal value depends on the form of the 
function /. For a linear /, any value of At is reasonable, no matter how large it 
is because we can cover large time intervals in just one step; on the other hand, a 
jagged / with sharp peaks and valleys requires very small steps. To improve the 
method, one can add a "controller" to the program and adjust the value of At to 
satisfy the requirements of the moment. Such an algorithm is known as adaptativf 
stepsize Runge-Kutta method. We will  describe a very simple way to perform such 
an adaptive control. Let us suppose one uses the fourth-order Runge-Kutta formula. 
The results obtained with steps At and At/2 must be compared, let us call them 
4>a and d>b; the related errors are At5A and 2{At/2fA (A « 1/(15!) cPa/dt5. as is 
obtained by the Taylor expansion). The difference <f>a — fa = e can be taken an 
indication of the error. If  we want determine <f> with a precision higher than CQ, we 
must modify At in such a way that 

At -> At = At (-) ' . (47; 

Matrix multiplication 

The dynamical behaviour of JJA's is governed by the matricial equation 

j> = Md(<f>). (48) 

In the previous section we have illustrated some methods useful to solve this equa- 
tion. Whichever of the methods discussed above one intend to use, it will  always 
involve several matrix multiplications. 

If  the self-inductance of the array is neglected, there are nxny — 1 degrees of 
freedom (DOF). This is because an array nxny has a U(l) symmetry, i.e. its 
properties are invariant under a global shift of all the phases. As a consequence 
we are allowed to fix one of the phases; this reduces the number of DOF by one 
unity. The DOF of the systems increases if  one consider also the self-inductance 
of the array; in fact one has to consider {nx — l)(ny — 1) additional DOF that are 
related to the magnetic fluxes that thread the plaquettes of the array. In both 
cases, however, the range of M is of the order or nxny so that to solve the equation 
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(48) one has to perform (nxny)
2 operations. It would be certainly advisable to have 

an efficient method to perform matrix multiplication! 
In the case of periodic boundary conditions (pbc), the equation (48) represents 

just the discrete convolution of vectors r and <j> (r being the first row of M). In 
fact 

JV-l 

(<t>*r)(m)  = £ ^rm-n = W)n, (49) 
n=0 

Due to the convolution theorem 

(4>*r)  = <i>r, (50) 

(where <j> and r are the Fourier transforms of (f> and r) to calculate Md> one needs 
to: 

1. Calculate </> -+ 4>: K operations 

2. Multiply 4>r : N operations 

3. Calculate 4> -+</>:  K operations 

If  K < N2 (i.e. if  one can find a fast method to calculate the Fourier transforms). 
because of the convolution theorem, a reduction of the CPU time would be achieved. 

And what about free boundary conditions (fbc)? In this case, M(j> is not any 
longer a convolution. With some make up, however, a system with fbc may be 
mapped on another one with pbc. In fact, one can apply the following transforma- 
tion 

H>i,j  r.0-¥nx-Uj--0-*ny-l    ~  ̂  <Pi,j  i:0-t-3nI/2-l;i:0-S-3n!,/2-l 

^'•J'-"1 0 elsewhere [    ' 

and substitute M by M, (where M is a 3nx/2 x 3ny/2 matrix obtained from M 
that represents a periodic system), see figure (2). 

Such a technique is known as zero padding. Up to now, with this transformation 
we have not gained any CPU time, on the contrary we have lost some of it because 
M is larger than M. Anyway, as we will  see in the next subsection, the possibility 
to deal with discrete convolution will  make us obtain profit from this investment. 

Fast Fourier Transform 

The problem is, now, to calculate the Fourier transform, D, of the vector d[6): 

D = F d , Fkj = exp{27ri kl/N} (52) 
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Here F is a iV x N matrix. As a consequence the calculation of equation (52) 
involves NxN operations. If  there were not any mathematical shortcut to calculate 
a Fourier transform we would have nothing to gain in following this method with 
respect to the standard procedure used to solve equation (48). 

Fortunately, Daniel and Lanczos showed that a discrete Fourier transform involv- 
ing N components is equivalent to two transforms that involve N/2 components 
each: it is enough to separate the even and the odd components of the vector: 

N-l N-l 

Dk = J2 exp{27T2 k2l/N}d2i + £ exp{27ri k(2l + l)/N}d2l+1 

1=0 1=0 

= De
k+ exp{27T* k/N}D°k. (53) 

where k ranges from 0 up to N; Dk,Dk are periodic with period A'"/2 (Dk = 
De

k+N,2). One can iterate this process and obtain, at the different steps, transforms 
with a periodicity N/4, N/8, and so on. 

Let us suppose that N is even and a power of 2. After log2 N steps, we obtain a 
set of 1-periodic transforms D: 

1st stage 2nd stage 3rd stage 
k is N/2-periodic        k is N/4-periodic       k is N/8-periodic 

Dl = Df + F£D? 

r\eee 
Dee     f)eee j_  z?8 j~\eeo l^k 
Uk    — Uh     "r FkUk peeo 

r\eoe 
Deo = Deoe + pSjjeoo k 

Df = D°k
ee + F%D°k

e' 

Dl = D? + F£D°k° 
Jk   — ■• 

J~\ooe 
r\oo     Dooe   I    jp8 riooo ^k 
Uk    — Uk     + rk Uk J-)000 Uk 

where F™ = exp H^E. At the dth step one has to calculate 2d coefficients Dk
oe- 

for each value of k. The computation of each D implies an addition and a multipli- 
cation. Due to the k symmetry (Dk

oe"' = F>k°^,,2d,), it is not necessary to compute 
all the D factors for each value of k; it is enough to consider only those values of 
k contained in the range 0 —> N/(2d) — 1. The total number of operations needed 
at each step is, thus, proportional to N. Since one needs to perform log2( A

r) steps, 
the total number of operation needed to complete the FFT procedure is Ar log2 (N). 

The calculation of the FFT begins from the last step by evaluating Dk
oeoe- = 

exp(27r? km)dm. The key point of the FFT algorithm lies in the following ob- 
servation: X>«oeoe- is symmetric and periodic in k with period 1, i.e. De™°e- 
takes the same value for whichever value of k.   This implies that each last-step 

86 



r\eoeoe ^ = Deoeoe... g;ve us one 0f the components of {d}. The question that it lasts 
to answer now is the following: which is the map {d} -> {D}?  Or, in other words, 
which dm shold be put in correspondance to each D%oeoe- ? 

By using the binary code to identify the {d} components the answer is immediate: 
d(0) = d(00..0), d(4) = d(0..0100) and so on. In working out De we have considered 
only the even components of«/, i.e. those components for which the least significant 
bit is zero. To calculate Dee one has to consider only those d components for which 
the second bit is equal to 0, and so on. In general, to calculate Deoco we have to 
select the numbers for which the last four digits of the d components are: ...1010. 
This gives us the key rule: the D components calculated with the last step are 
equal to the d ones over which has been operated a bit-reversal. As an example, 
let's consider the case N = 8: 

/ Deee \ ( ^000 \ 
ryeeo d\ao 
y\eoe doio 
r\eoo duo 
r\oee dooi 
r~\oeo dioi 
D°oe don 

\ D00° ) V dm / 

(54) 

The d quantities have been organized in such a way that: ofooo «-> dooo, <W <-> f/ioo- 
ofoio ^ doio, don <-> duo, dioi **  dm and dm f» dm. 

Up to now we have assumed that N is a power of 2. If not, we can choose 
between two different procedures: the simplest one consists in adding a set of 0 
to our vector with the aim to build up a new one whose length is a power of 2. 
An alternative is to develop an algorithm, analogue to that we have just discussed, 
with the aim to reduce progressively the size of the sub-vectors down to a factor 
which divides N. However this is a quite dangerous procedure: if such factor is 
too large, the efficiency of our new algorithm will  be very poor (in the limit  of a A' 
that is a prime number, one has to perform again N2 operations!!). 

There exist other algorithms that are based on the subdivision of the initial vector 
into subvectors of length 4 (based-4 FFT's), 8 {based-8 FFT's), etc. by making 
profit of the special symmetries of these numbers. For example, the coefficients of 
the Fourier transform of a vector with 4 components are simply l,i,-l,-i  and the 
transformation of such vectors is immediate. These algorithms are slightly faster 
than the based-1 FFT described above. 

To conclude with this topic it is worth noting that the computation time can 
be reduced by realizing that the vectors we are working on are real. In fact, it is 
possible to pack the numbers into an N/2 complex vector (the even components 
become the real parts of the new vector while the odd ones become its imaginary 
parts). The transform of this N/2 vector can be trivially related to that of the 
original N-real vector: 
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/    d0    \ 
dx 

\ dx-i I 

-+d 

(     d0     \ 

V dN/2-i ) 

I      do + i' di      \ 

d2i + i d2i+i  

V dn-2 + i dN-i ) 

(55) 

It is easy to calculate the Dk(k — 0...N — 1) terms once that their respective 
transforms Dk(k = 0...N/2 - 1) are known, in fact: 

Dk 

Dk + D N/2-k        J2*k/NDk       D*N/2-k 

Dk = D* N_k 

(k = 0-*N/2-l) 

(k = N/2-*N-l) (56) 

The Inductance Matrix  

Another delicate point of the simulations of the JJA properties is the calculation 
of the full inductance matrix. Such a matrix can be calculated starting from the 
Biot-Savart low: at a point f, the magnetic field due to a current density J is given 
by 

B{f) 4 
J(r')   x f so   [ J{r')    > 

IT J      If  — T1 
.Ot , 

If  we choose the gauge V • A = 0, the expression for the vector potential becomes 

J{?) 
A(F) 

47T J     \y — fr\ 
58) 

where J is the current density. 
Let us consider a uniform current flowing in the link ij  (Iij  = Jij/crij,  with au 

the cross section of the conductor). The integral of the vector potential along the 
path connecting the points k and / is related to the current 7,-j in the following way: 

Akl = ( AdU £2. / / Sr'dll  ̂= ^fhwlij. 
Jk 47T Jk J  an \r — r 47r 

:-59) 

The matrix // can be calculated from eq. (59), either numerically or analytically. 
There exist several methods to solve equation 59 and their degree of complexity 
depends on the specific geometry of the systems [35]. As far as the case dealt with 
in these lecture notes, some general indications can be given at a glance considering 
the form of the equation (59): 

• Since A is parallel to J, only mutual inductances between parallel links have 
to be considered. 
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• // and thus the mutual inductances have to falls as 1/r with the distance r 

When two links are far enough (i.e. when their cross section are small compared 
with their distance) their mutual inductances are independent of their specific 
shape. This latter, on the other hand, becomes important and must be taken 
into account when one calculates the self-inductance (and, as well, the mutual 
inductances between close thick conductors). 

The general form of the mutual inductance between two parallel filaments of 
respective lengths / and m is (see figure 3) 

// . £ («dBh- (J) - ** ■!.- (f) - 7si„h-  (1) + «„h-  0 

-Va2 + d2 + yjß2 + d2 + -/y2 + d2 - VS2 + dA . 

a = l + m + S, ß = l + 6,i = m + 6.     (60) 

We remember that, in MKSA units, p0/(
47r) = 10~7Henry/m. S may have 

negative values (e.g., in figure (3)b, S = —I). 
If  the axes of both filaments are aligned (figure (3)c), equation (60) reduces to 

ff = t±((l  + m + 5) ln(Z + m + 6)-(l + 5) ln(/ + S) 

-{m + 5)ln{m + S) + 5ln{8)) (61) 

that becomes even simpler if  their extremes are in contact (figure (3)d): 

"=eH^)+ ™'"(^))  
To conclude, we give the expressions that one has to use to calculate the self- 
inductance of either a round conductor of radius p and length I 

//-,-£a(ta(f)-J), («s) 
and a wire with rectangular cross section of sides b and c: 

"-'-H h,(£H)- 
From the above expressions the matrix A relating the fluxes and the mesh currents 

($ = Ai) can be easily obtained since A = ^-RffRT. It may be interesting for 
the reader that we point out some general characteristics of the matrix A: [9]: 

• The diagonal terms are all positive; all the off-diagonal terms are negative. 

• The sum of all the A-components of a row is zero (because of the continuity 
of the flux lines). 

• The value of the A-components decrease with r as r-3 
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SOME NOTES ON THE COMPUTER SIMULATIONS 
APPLIED TO THE STUDY OF THE VORTEX 

DYNAMICS IN JJAS 

These lecture notes cannot be extended enough to review all the interesting 
results that have been obtained by numerical simulations in the recent past. Here 
we give only an up-to-date list of some intriguing topics that are still objects of the 
current research and that may stimulate the readers to get involved into the JJA 
subject. Detailed reviews can be found in the references [29] and [9]. 

Dynamics of massless vortices: overdamped JJAs 

Massless vortices are the excitations characteristic of the overdamped JJAs for 
which, we remind it, the capacitance C ~ 0. The dynamical properties of massless 
vortices in ladders and 2-D JJAs have been almost completely revised in the recent 
past. In particular, by temporarily breaking a vertical link, it has been possible to 
study the dynamics of a single vortex [36] and, as a consequence: 

• to determine the dynamical value of the energy barrier that a vortex must 
overcome in order to pass from one cell to the next, EB- It has been shown that 
either for the ladders and for 2D arrays [28], [32], the dynamical EB takes quite 
different values from the static ones [30], [37] (we recall that these latters define 
the strength of the pinning potential and the value of the depinning current). 
EB, either static [8] [38] or dynamic [28], [32], is substantially affected by the 
decrease of Ax and also by finite-size effects. 

• to determine the vortex velocity under various operative conditions [28], [32], 
and to show that also this physical quantity is strongly affected by the value of 
Ax, by that of the coupling anisotropy Jx/Jy [29] [39] and, in some conditions, 
by the vertical size of the array. 

• to show that the viscosity coefficient cannot be assumed constant [28] [29] [31] 
[32], but that it depends on Ax, the size of the array and the bias current: i.e. 
on the size of the vortex, the core of which is normal. This means that the 
Bardeen-Stephens model [40], by itself, does not give a satisfactory description 
of the dissipative mechanisms associated with the motion of the vortex. 

In addition it has been possible: 

• to image, by means of the LTSEM (Low Temperature Electron Scanning Mi-  
croscope) [41], a new dynamical state, the so-called alternate-vortex motion. 
AVM [42]. The computer simulations have confirmed the hypothesis formu- 
lated by the experimentalists [43] and contributed to understand the conditions 
under which such dynamical state develops [28] [29] [44].  It turns out that. 
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provided that the bias current is high enough, the existence of an initial vor- 
tex (generated because of any symmetry-breaking mechanism, including the 
self-inductance of the array) is a sufficient condition for the development of 
the AVM (for further details see the lecture notes by T. Doderer and ref. ( 
[29]). 

At present the research on the vortex dynamics in overdamped JJAs is con- 
centrated mainly on the anisotropic systems for which Jx ^ Jv [39], while the 
vortex-vortex and the multi-vortex interaction remains as an almost unexplored 
subject. 

If  one wishes to compare the dynamical properties of the anisotropic JJAs (often 
called also inductive coupled arrays) with those of continuous systems, like long 
and stacked Josephson junctions, one has to move to the study of vortex dynamics 
in the underdamped JJAs. 

Dynamics of massive vortices: underdamped JJAs 

In underdamped JJAs the capacitance is not negligible, ßc, ^ 0, and the vortex- 
acquires a mass. 

Many detailed information on the physical properties of the underdamped JJAs 
can be found in other lecture notes included in this book and in the references cited 
therein. In these lecture notes, again, we can only summarize the most relevant 
results achieved in the recent past. 

Information on the average vortex dynamics can be obtained by measuring the 
I-V characteristics, which in underdamped arrays become hysteretic providing ev- 
idence of a finite value of the vortex mass [6]. 

By numerical simulations one can investigate the details of the vortex motion 
and, as shown in figure 4 [29], prove the existence of many different dynamical 
regimes [45]. In a different way, instead of using the v — ßc plane, one can calculate 
the average voltage drop at the edge of the array and plot the results in the I-V 
plane, as shown in many other lecture notes, to compare simulations and measured 
I-V characteristics. 

To give to the reader an idea about the present 'state of the art' of the research 
on the vortex dynamics in underdamped JJAs we resume here the most relevant 
results obtained in the recent past: 

• The depinning current decreases as Jßv,c [46]. 

• The vortex velocity, v, decreases with ßv%c and, as for the massless vortices. 
depends on idc and Aj.. Up to now there are no detailed studies on its depen- 
dence of the size of the array. A detailed study of the energy barrier for the 
cell-to-cell vortex motion is also missing. 

• For low values of ßVtC there exists an 'annihilation' regime: a vortex generated 
everywhere in the array annihilate at the borders [45] [29] [39].   When the 
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current of bias is high enough vortices are continuously generated at one border 
and annihilate at the opposite one so that a non-zero voltage is measured: this 
regime, in analogy with the case of the long Josephson junction, is called the 
flux-flow regime. It is worth to mention that a certain number of studies has 
been dedicated to investigate the flux flow resistance [31] . 

• When ßVtC is high enough a vortex/antivortex is reflected at the border in an 
antivortex/vortex [45] [29] [39]: iterated reflections produce a Zero-field step 
similar, although not identical, to what observed in long Josephson junction 
[45]. 

• A Bardeen-Stephens-like ohmic dissipation [40] does not explain the experi- 
mental observations. An additional dissipation mechanism has been identified 
in the excitation of spin waves in the wake of the moving vortices [6]. This 
mechanism has been proved correct by numerical simulations [37] [46] and by 
the appearance of resonances in the I-V characteristics recorded in both the 
linear [47] and the non-linear (Fiske steps) regimes [48]. 

• The discreteness of the system induces a bending of the acoustic branch at the 
border of the Brillouin zone (as observed for the array modes of a ID system 
in the linear regime) and the appearance of an optical branch when the array 
is composed by alternate junctions having two different critical currents [49]. 

• In particular conditions, i.e. if  the vortices have an energy just higher than 
what they need to overcome the depinning barriers (being these latter as low 
as possible like in triangular arrays) and are allowed to move in an unbiased 
sample, then it is possible to observe experimentally a ballistic vortex motion 
[50]. From the point of view of the simulations, however, the situation is not 
very clear and does not seem to agree with experiments. The realization of 
some more simulations and experiments would be advisable. 

• Beyond a certain value of ßV)C the vortex dynamics becomes unstable and one 
observes the so-called row-switch [51] [15]. It consists in the switch to the 
normal state of one or more entire rows of Josephson junctions. The row- 
switched phenomena have been imaged and confirmed by LTSEM [42]. 

The investigation of the underdamped JJAs, however, is far away to be completed 
and, in fact, many groups are still working on the subject. 

Non-autonomous dynamics: phase locking in 
underdamped JJAs 

When a JJA is driven by an external current that has an ac component. 
iacsin(ujt), it becomes isomorphic to a system composed by a set of non-linear 
coupled oscillators driven by an external torque, see equation (14). This is another 
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very interesting field of investigation that spans from collective synchronization to 
chaos and turbulence. Once more we cannot go here in all the details; in the fol- 
lowing we give only a short introduction to the subject and, then, summarize some 
relevant results. 

The key point is the competition between the frequency of the driving force and 
the natural frequencies of the arrays. The solution of the conflict depends strongly 
on the boundary conditions of the problem (the amplitude of the driving force, its 
frequency, the coupling strenght of the junctions, etc.). In a very general manner, 
like for a single junction [52], one may observe: 

• a locked dynamics, i.e. the driving force and the array synchronize: 

• a quasiperiodic dynamics: i.e. the ratio of the two characteristic frequencies 
is an irrational number; 

• a chaotic dynamics. 

In the first case the motion of the oscillators is periodic. For a single junction 
one can write: <j)(t0 + qT) = <j>{t 0) + 2irp -+ < j> >= ^v, where T = I is 
the period of the driving force and p and q are integer numbers. Making use of 
the Josephson equation V = £<£, one obtains the relationship between v and the 
average voltage values, < V >, that, in the I-V characteristic, manifest themselves 
as set of plateaux: the so called Shapiro steps: 

< V >=  P-^v. (65) 
q2e 

Periodic solution are observed also in the case of the JJAs [53]. Experiments 
and numerical simulations can be fitted by an expression similar to that of a single 
junction: 

<V >=--* ■— (66) 
q   2e 

Note that now the height of the Shapiro steps are multiplied by a factor A*,,, the 
number of junctions along the direction of the bias current. Because of this they 
are usually call Giant Shapiro Steps (GSS). When the ratio 2 is equal to an integer 
n all the junctions along the direction of the incoming current oscillate coherently, 
as they were a single oscillator, and their contributions to the total average voltage 
add up. 

When the ratio E is not equal to a integer number one can observe also the so 
called Fractional Giant Shapiro Steps (FGSS). This has been first observed for JJAs 
placed in a magnetic field when the normalized flux density across the plaquettes 
of the array was (/ = $/$o = p/<l)- It is worth to note that in a single Josephson 
junction Fractional Shapiro Steps are observed only if  the junction is underdamped 
[54] while in more complex systems, like the JJAs, FGSS are observed also when the 
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arrays are composed by overdamped JJs. A simple explanation to the appearance 
of the FGSS in the JJAs has been first given by Benz et al. [55] (BRTL description) 
and confirmed by the numerical simulations reported in ref. [56]: when an external 
field of intensity / = E is applied to the array, the dynamical ground state of the 
array consists of q vortices arranged in a sub-array of q x q-celh. The application 
of a bias current is able to induce a coherent motion of the whole sub-array. It 
is the synchronization between the motion of the sub-arrays and the frequency of 
external ac-current that causes the observation of the GFSS's: in fact, the vortex 
configuration reproduces itself periodically with a period T = K 

The BRTL description, however, is only a part of the story; in fact we know now 
that: 

• there are several vortex configurations compatible with one locking state. As 
an example, for / = 1/2 the ground state coincides with that given by the usual 
checker-board configuration, but other vortex configurations, characterized by 
the presence of one or more domain-walls, are also allowed [57] [58]. These 
extra configurations are stable against field perturbations and temperature 
fluctuations. Moreover, when the array inductance increases (Aj_ decreases), 
the vortex-vortex interaction becomes attractive [9], and configurations with 
more and more domain-walls become stable. 

• a complete set of FGSSs are observed also in very small arrays (included the 
smallest one: a single plaquette) [59]. This is an observation that cannot, be ex- 
plained by the simple BRTL description. And this is not all, in fact by tuning 
the geometrical disorder of the array a spectacular result has been achieved: 
the observation of a Devil's staircase structure with the expected fractal di- 
mension, D = 0.87 [60]. The appearance of a Devil's staircase constitutes a 
strong evidence for the occurence of a competition between the frequency of 
the driving force and those characteristic of the array. The physical reason for 
that can be found in the breaking of the translational simmetry of the array 
that may be caused by the presence of any form of defect or disorder, by an in- 
homogeneity of the bias current, or, more simply, by the screening currents due 
the self-inductance of the array. Many computer simulations support this idea 
[9]. The ground state configuration of the vortices associated to each FGSS 
and the relative extension of the plateau depend strongly on the geometry of 
the sample and on the particular cause of the symmetry breaking. 

As an example, a non-inductive array exhibits subharmonic steps if it has 
defects, or if  edge fields are generated 'ad hoc'. A microscopical insight shows 
a structure defined by tilted rows of vortices and antivortices (in half-integer 
steps, vortex/antivortex rows are alternate; for n/3 steps, for each vortex row 
there are two antivortex ones). 

The inclusion of the array inductance also leads to the creation of subharmonic 
steps. The detailed form of the vortex patterns depends very much on the 
interaction voltage between vortices (which, in turn, is a function of the value 
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of Ai, the way of modelling the induced fields, etc.). For a long penetration 
depth, the vortex-vortex interaction is repulsive, while for short values of Aj_ 
it is attractive, and vortices tend to group together [9]. 

In small systems the choice of a particular geometry favours the selection of 
specific FGSSs, those for which the vortex distribution is commensurate to 
the size and to the geometry of the array [57], in agreement with the BRTL 
interpretation. 

To conclude this subsection we wish to point out for the JJAs not too much is 
known on the route to chaos and that very few studies have been devoted, up to 
now, to the turbulent regime. 
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FIGURE 1. Examples of JJ arrays: (a) a 2D square network, (b) 2D triangular network, (b) 2D 
granular superconductors: the grains are now extended and the phase, changes along the grain. 
The <f>s are the gauge invariant phases variations along the junction (J) and along the grain (G) 
<j>j  = 8i — 8j — A,j. Aij is the contribution due to the vector potential and it is defined in text 
(c) a JJ ladder (one JJ is placed on each branch of the array and each grain is characterized by 
a single phase, 0j). (d) an extremely anisotropic ladder (inductively coupled ID JJ chain); (e) a 
schematic representation of a dynamical system described by the Frenkel-Kontorova equation. 
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Dynamics of Josephson junction arrays 
— Microscopic investigations and 

applications 

Thomas Do derer 

Physikalisches Institut, Lehrstuhl Experimentalphysik II, Universität Tübingen, 
Auf der Morgenstelle 14, D-72076 Tübingen, Germany 

Abstract. We discuss the dynamics of two-dimensional arrays of Josephson junctions 
in the overdamped regime. Our discussion is restricted to "classical" arrays, where the 
Josephson coupling energy is much larger than the charging energy. Such arrays repre- 
sent a highly controllable system to study the dynamics of vortices. Furthermore, they 
are promising for applications like, e.g., a coherent microwave source. The experiments 
have been performed with arrays of Nb/A10x/Nb-tunnel junctions allowing a high de- 
gree of junction uniformity across the array. The typical array size is 10x10 junctions. 
We show spatially resolved measurement results obtained by low-temperature scanning 
electron microscopy, and demonstrate the merit of these investigations for the clarifica- 
tion of complex regimes of vortex dynamics as well as for the optimization of coherent 
microwave sources. In the case of external microwave irradiation with increasing power, 
a continuous transition from a non-locked to a completely locked oscillation state is 
presented. In addition, we report on the quantitative measurement of the emitted 
microwave power from the arrays. 

INTRODUCTION 

Arrays of Josephson junctions have been extensively studied for various reasons 
both experimentally and theoretically (see, e.g., [1]). The experimental investi- 
gations deal with various problems, such as vortex dynamics under the influence 
of dc or ac currents, or the application of arrays as coherent microwave radiation 
sources. Due to the complexity of the nonlinear coupled differential equations used 
for approximation, the theoretical studies have focused on numerical calculations 
during the recent years. Two-dimensional arrays are appealing for basic research of 
superconductivity because they represent an artificial two-dimensional system, and 
they can be considered, to some extent, as a discrete version of a superconducting 
thin film having well-defined properties. On the other hand, they represent a set of 
nonlinear (Josephson) oscillators which are coupled to each other by means of the 
superconducting wires. Thus, for achieving maximum microwave emission, one is 
interested in a circuit that favors the in-phase oscillation state. 
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In this article we shall first discuss the fabrication of Josephson junction arrays 
based on the Nb-technology. Since we are mainly interested in producing highly 
reliable and large arrays (typically 10x10 junctions and larger) having small mar- 
gins, we have restricted our studies to Nb/A10x/Nb-junctions. In the subsequent 
section the dynamics of overdamped arrays is explained in terms of the motion 
of individual vortices in the case of a small dc bias current. In the last two sec- 
tions microwave experiments are presented. Here we shall see that there is a close 
correspondence between microwave injection and microwave emission. 

SAMPLE FABRICATION 

The arrays consist of rectangular or square networks of superconducting wires 
with Josephson junctions placed between the line crossings. A sketch of a network 
is shown in Fig. 1. Most of the arrays consist of square elementary cells with four 
junctions each. We have used different array circuits for the experiments: sam- 
ples from the National Institute of Standards and Technology (NIST) in Boulder 
(CO) and others from the Physikalisch-Technische Bundesanstalt (PTB) in Braun- 
schweig, Germany. The basic design of both series of arrays is similar to each 
other. One difference is the size a of the unit cell: the NIST arrays have a « 17 
fim, whereas the PTB arrays have a fa 41 fim. The NIST samples and their fab- 
rication are described in [2]. In the following we give a brief description of the 
fabrication process of the PTB samples. 

Figure 2 shows a sketch of a single junction together with an external shunt re- 
sistor (about 1 fi for each junction). We have used a sample fabrication process 
that defines the junction area by anodization and includes external shunt resistors. 
This process has been developed at PTB for the manufacture of rapid single flux 
quantum circuits [3]. Seven photomasks are needed to prepare the circuits. Ther- 
mally oxidized silicon wafers are used as substrates.   All  Nb layers are deposited 
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FIGURE 1. Sketch of typical array geometry with N columns of M junctions. Each junction is 
symbolized by a cross. The notation of the x and y direction is shown. The dc bias current flows 
in the direction of the y axis. The array voltage drop along the whole array is measured in the 
same direction. 
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FIGURE 2.  Cross-sectional view of a complete shunted Josephson junction (vertical axis not 
to scale). 

by dc magnetron sputtering and patterned by CF4/O2 reactive ion etching (RIE). 
Insulating SiC>2 layers are rf-sputtered, holes for connecting metal layers through 
the insulating layers are etched by CHF3/O2 RIE. The Pd layer is deposited by 
magnetron sputtering and patterned in an Ar plasma to form the resistors. To 
improve electrical insulation the groundplane and the base electrode are anodized 
up to voltages of 25 V and 45 V, respectively. By depositing the shunted Josephson 
junctions on top of a superconducting groundplane we can put the groundplane as 
close as 200 nm to the junctions, shielding magnetic fields very effectively, thus sig- 
nificantly decreasing the self-inductance of a unit cell and the mutual inductances 
of the array. 

The areas of the junctions are between 9 /«n2 and 25 /1m2, and the critical 
current density is about 1 kA/cm2 at 4.2 K. The McCumber parameter is ßc ^ 1. 
The inductance of a single loop has been measured yielding the SQUID parameter 
ßL = 2-irLic/$0 ~ 1.5 at 4.2 K for a loop on top of a superconducting groundplane; 
L is the loop inductance, ic the critical current of a junction, and $0 the flux 
quantum. For the spread of the critical currents of the junctions, values of 3% have 
been obtained for one standard deviation from the mean value. To improve the bias 
current uniformity in the array, 1 fi feeding resistors have been used, connecting 
each current injection line at both sides of the array to a Nb busbar (not shown in 
Fig. 1). 

For on-chip detection of the emitted microwave power the array is coupled to a 
detector Josephson junction via a microstripline. A coupling capacitance allows sep- 
arate dc biasing of the detector and the array. The layout of our microwave circuit 
is schematically shown in Fig. 3. The detector junction, acting as a load, is matched 
to the microstripline by choosing its shunt resistor such that the impedances of both 
are expected to be equal. 
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FIGURE 3. Cross-sectional view of an array with a microwave coupling circuit and a detector 

junction (not to scale). 

DYNAMICS OF VORTICES 

Very similar to the current-induced breakdown of superconductivity in super- 
conducting wires and thin films, the resistive state of a two-dimensional array of 
Josephson junctions can be described by the propagation of current vortices per- 
pendicular to the bias current / of the array. The array's critical current Ic is thus 
determined by the critical Lorentz force that equals the pinning force of the vor- 
tices. Without externally applied magnetic field, there are current-induced vortices 
penetrating the array from the boundaries if  / > I c, and Ic is given by the edge 
pinning potential. This conception is powerful in particular if  the magnetic radius 
of a vortex, namely the magnetic penetration depth Ai = h/(2efioic) of the array, 
is smaller than a. h denotes Planck's constant divided be 27r, e the elementary 
charge, and Ho the permeability of free space. For the arrays used for the present 
investigations, Ax < a. This situation somehow resembles that of a type-I super- 
conductor in the sense that there is the possibility to observe more than one flux 
quantum in a single unit cell. On the other hand, if  Ai > a we are dealing with a 
situation similar to a type-II superconductor. 

Now we are interested in experimental observations which yield further informa- 
tion about the array's dynamics that can be described in terms of the dynamics of 
vortices. The simplest experiment is just the recording of the dc current-voltage 
(I — V) characteristic. Figure 4 shows an example. Obviously, there is a rich 
structure in this curve which becomes very obvious if  one looks at the derivative 
(dV/dI)(I). Such kind of characteristic has been observed for all of our arrays, and 
Fig. 4 shows a typical example. One can roughly divide this curve into three main 
parts: (I) is the subcritical region, (II) is the region showing rich structure, and 
(III)  is a region having constant differential resistance. 

In the following, we shall link up the three regions with particular modes of 
the vortex dynamics. A more extensive discussion together with the presentation 
of the results of numerical simulations is given in [4]. Dealing with region (I), 
there is no dynamics. However, by means of a local perturbation of the system 
close to a pinning center, one can depin individual vortices from this site and, 
subsequently, they will  propagate through the array, if  there is some bias current 
present for driving them. During propagation there is a voltage drop at the array 
that can be measured. With this method it becomes possible to identify the pinning 
centers. Such a local perturbation can be made available by a focused electron beam 
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FIGURE 4. I — V characteristic of a 10 x 10 array together with the differential resistance 
(dV/dI){I) measured at a temperature T a 4.5 K. 

which locally heats the sample. With the help of a scanning electron microscope 
equipped with a low-temperature sample stage, we have been able to perform such 
experiments. The technique is called low-temperature scanning electron microscopy 
(LTSEM) [5-7]. 

The LTSEM images of the array dynamics shown in this paper always represent 
so-called voltage images, which are generated as follows. We apply a constant bias 
current to the array and scan the electron beam across the sample surface. With 
the beam parameters use for most of our studies (25 kV, approximately 100 pA) 
the temperature increase at the beam focus amounts to about 0.4 K. The sample 
is thermally well coupled to a liquid helium bath and kept at a temperature of 
about 4.5 K. It is well shielded from dc and ac magnetic fields by means of p-metal 
shielding at both room and liquid-helium temperature. The electron-beam-induced 
voltage change AF(io, J/o) is recorded as a function of the coordinates (a;0, j/o) of the 
beam focus. In order to increase the sensitivity, the beam is chopped at a certain 
frequency (about 20 kHz) and the voltage response signal AV is phase-sensitively 
detected by a lock-in amplifier. The spatial extension of the heated area close to 
i%o,yo), namely the thermal healing length rj, determines the spatial resolution 
of this imaging technique. T) is of the order of a few /im. For the interpretation 
of these voltage images one has to recognize that the measured response signal 
represents a time average on the time scale of the Josephson dynamics because the 
time constant of the former is in the range of ms, whereas the time constant of the 
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latter is in the range of ps to ns. 
Let us now briefly discuss what kind of voltage image is expected in the subcritical 

region. For I < Ic vortices are pinned at those edges of the array which are parallel 
to the bias current (parallel to the y axis in Fig. 1). If  the electron beam increases 
the temperature at a position close to an edge junction, the critical current of 
this edge junction is decreased, and thus the energy barrier for vortex entrance is 
lowered. Note that the energy barrier for a vortex to enter the array or to move 
from one unit cell to the neighboring one is proportional to the Josephson coupling 
energy Ej = hic/(2e) of the junction at the border-line of the array or of the two 
neighboring unit cells [8]. From this, a positive voltage signal AV(x0, i/o) is expected 
if  the beam's focus (xo, J/o) is close to the edges of the array parallel to the bias 
current flow. Figure 5 shows such an example. This voltage image totally agrees 
with our expectation and thus confirms the conception of vortex edge pinning. 

Notice the negative voltage response signals at the position of the feeding resis- 
tors. Since the response signal is measured across these resistors in addition to the 
voltage drop across the array, any temperature dependence of these resistors results 
in a response signal. From the sign of these signals it follows that the resistor show 
a negative differential temperature dependence. However, it is not clear whether 
really the resistors behave like this or if  this is more due to some interface effects 
occuring between the resistive and the superconducting thin films. 

Next, we shall discuss the vortex behavior in region (II) (see Fig. 4). Figure 6(a) 
shows the LTSEM image for a bias current in the low-current regime of this region. 
The voltage image is taken for a bias current of / = 1.5IC with Ic denoting the 

0      XoQim)     150 

FIGURE 5. Gray value representation of the voltage image AV(xo,yo) of a 10 x 10 array at 
T w 5 K. The array is biased at J » 0.9/c. The dc bias current flows vertically through the array. 
The array boundaries lie between 0 and 150 pm in both directions. A positive (negative) e-beam 
induced voltage signal AV is indicated by the dark (bright) areas, whereas zero signal is shown 
by the areas surrounding the array. The rows of feeding resistors are marked by the arrows. 
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array's critical current. In Fig. 6(c) a line scan for row No. 3 is presented. 

In order to understand this image in more detail it is important to discuss the 
generation of the e-beam-induced voltage response signal in dependence of the 
vortex dynamics at (x0,y0). In this article we can only give a brief introduction 
to this problem; for more details, see [9]. Qualitatively, the basic principle of the 
LTSEM imaging of vortex dynamics in arrays of junctions is simple. It turns out 
that the most prominent response signals are generated for (x0,yo) close to the 
array's edges which are parallel to the bias current [9]. For a qualitative discussion 
it is very helpful to consider so-called image vortices, which are virtual vortices 
of opposite vorticity outside the array, and located as a mirror image of a real 
vortex inside the array with the array's edge as the mirror axis. Since vortices of 
opposite vorticity attract each other, every array vortex is attracted towards the 

0 ,     N       150 

x0(um) 

FIGURE 6. (a) Gray value representation of the voltage image AV(xo, yo) for a 10 x 10 array 
at T « 5 K. The array is current biased at I = 1.57c and a voltage of 0.9 mV. The dc bias 
current flows vertically through the array. The array boundaries lie between 0 and 150 /mi in 
both directions. A positive (negative) e-beam induced voltage signal AV is indicated by the dark 
(bright) areas, whereas zero signal is shown by the areas surrounding the array. The individual 
rows of junctions are indicated by the small arrows numbered 1-10 from top to bottom, (b) 
Schematic display of the vortex motion found by inspection of (a). 0 and <g> denote the vorticities 
of the vortices. The rows of junctions are numbered as in (a), (c) Line scan for row No. 3. 
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array's edges. Due to the e-beam-induced decrement of Ej the vortex-antivortex 
attraction is decreased. Now let us consider a vortex that enters the array. The 
beam-induced decrement of the intervortex force accelerates the real vortex during 
its propagation at the beginning. From this, we expect a beam-induced voltage 
increase at every junction where vortices enter the array. For a vortex that is close 
to the point of exit, we expect just the opposite because the electron beam causes 
a decrement of the intervortex force and, hence, the attraction towards the image 
vortex is decreased. From this the velocity of the real vortex passing (x0, i/o) is lower 
compared to the situation when the beam is switched off. Therefore, we expect a 
beam-induced voltage decrease at every junction where vortices leave the array. 

Figure 6(b) shows the vortex dynamics which can be inferred from Fig. 6(a). It 
is worth to recall that the LTSEM images taken with the technique of the lock-in 
amplifier yield only results in the time average and, thus only steady vortex modes 
are visible. In principle, three cases are possible for the motion of current-induced 
vortices driven by the Lorentz force across the array in zero applied magnetic field: 
(1) nucleation of a vortex and an antivortex at the two opposite edges, respectively, 
both moving towards the center where they annihilate; (2) nucleation of a single 
vortex at one sample edge, moving subsequently to the opposite edge; (3) the 
inverse process of case (2) for an antivortex. All  three possibilities are observed in 
the array as can be seen in Fig. 6. 

Figure 7 represents an impressive result obtained with a larger array. Here, it 
becomes very obvious that the propagation of the vortices is correlated in the dif- 
ferent rows (perpendicular to the bias current). The dynamics is characterized by 
a large spatial domain located around the center of the array, where vortices and 
antivortices move across the array in opposite directions in adjacent rows (alternat- 
ing crossing vortex motion, ACVM). In [10] we have shown more details about the 
nucleation of the ACVM domain together with the transition from ACVM to other 
modes when the bias current is increased. The ACVM can be qualitatively ex- 
plained for energetic reasons, namely the repulsion of vortices of the same vorticity 
[9]. It is worth to add, that such kind of vortex motion is unknown for continu- 
ous systems like thin film microbridges of superconductors. The ACVM mode was 
also found in numerical simulations of the array dynamics performed with realistic 
parameters [4,11]. 

Up to now, we restricted our discussion to bias currents just above Ic and found 
the ACVM mode as the only steady mode. When the bias current is increased 
further but is still in region (II), the LTSEM voltage images look less regular [4], 
and it is by no means straight forward to infer details about the vortex dynamics any 
more. Extensive numerical simulations have been performed also for this region and 
found a highly complex vortex motion, representing a transition from pure ACVM 
to coherent behavior [4]. 

Summarizing the dynamics of region (II) (see Fig. 4), for low bias currents (just 
above the array's critical current) the vortices propagate in a specific mode, the 
ACVM mode, where vortices and antivortices tend to move in opposite direction in 
adjacent rows. For higher transport currents in this region, a transition to a more 
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FIGURE 7. Voltage image for the 20 x 10 array with superconducting groundplane at T « 5 K. 
The array is current biased at 1.25 mA and a corresponding voltage of 3.0 mV. The array critical 
current Ic ss 750 ßk. Notice that in this image the dc bias current flows horizontally through 
the array (the image is turned by 90°with respect to the other images in this article). The array 
boundaries lie between 0 and 150 ßm in x direction and between 0 and 315 ^m in y direction. 
A positive (negative) e-beam-induced signal AV(xo,yo) is indicated by the white (black) areas, 
whereas AV(xo,yo) « 0 is shown by the gray value of the areas surrounding the array. 

complicated vortex dynamics can be observed. Since the I — V curve shows rich 
structure in region (II), we attribute part of this structure to the vortex dynamics, 
as has already been done for the vortex dynamics in the current-induced resistive 
state of continuous superconducting thin films [12]. In addition, at least the broad 
resonance around 2.6 mA in Fig. 4 can be explained by a LsC-resonance with Ls 

being the inductance of the external shunt resistor and C being the capacitance 
of a single junction [13]. This resonance stabilizes the coherent oscillations of the 
junctions. 

Finally, in the third region (see Fig. 4) the LTSEM images are simple [an example 
is shown in Fig. 9(a)]. The voltage response of every junction is practically the same 
[10], and the numerical simulations indicate a wave-like dynamics, where fronts of 
vortices move inwards from the boundaries [4]. In the middle the vortex fronts 
annihilate. 

MICROWAVE INJECTION 

The most prominent application of two-dimensional arrays of Josephson junc- 
tions is using them as a microwave radiation source [2]. For a thorough review 
on microwave sources based on Josephson junctions, see [14]. Before we shall dis- 
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FIGURE 8. dV/dl versus 1/ of a 10 x 10 array measured at a temperature T w 4.5 K. V 
is measured across the feeding resistors and thus includes a contribution from the bias current 
through these resistors. Microwave (70 GHz) with maximum power (P = 1) is applied. The first 
five integer Shapiro steps are marked by arrows. 

cuss this topic in more detail in the following section, some results obtained with 
injection locked arrays are presented now. The coupling of array junctions to an 
external ac drive also reveals some important properties of the mutual interaction 
of the junctions. 

Figure 8 shows the differential resistance dV/dl versus the array voltage mea- 
sured for a certain microwave power and the frequency is 70 GHz. The differential 
resistance of this 10x10 array without microwave injection looks very similar to 
the one shown in Fig. 4 obtained for another 10 x 10 array. The sample is irradiated 
with the microwave from free space without using an antenna. 

Notice that only the step n = 4 in Fig. 8 shows zero differential resistance as 
expected for complete locking. Such a behavior has also been frequently observed 
by others [15-17]. The finite differential resistance of the Shapiro steps has been 
attributed to thermally activated phase slips, thermally induced vortices, nonuni- 
form current flow, or a spread in the critical currents of the junctions. Besides 
these possible microscopic reasons for nonperfect phase locking of all junctions, it 
is also important to look at the global behavior of the array [18]. In the following, 
we demonstrate that clusters of junctions, which are not locked to the external 
microwave irradiation, appear for finite differential resistance of the Shapiro steps. 

Figure 9 shows the LTSEM voltage image of a 10 x 10 array, current biased at a 
voltage corresponding to the fourth Shapiro step. From Fig. 9(a) to 9(d) the power 
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FIGURE 9. Gray value representation of the voltage image AK(xo,yo) of a 10 x 10 array at 
T Rs 4.5 K for different P (70 GHz). The array is dc current biased at V « 6 mV, which 
corresponds to the fourth Shapiro step. The array boundaries lie between 0 and 150 //m in both 
directions. A negative e-beam-induced signal AV is indicated by dark areas, (a) P = 0, (b) 
P = 0.55, (c) P = 0.67, (d) P = 0.95. 

P of the external microwave is changed from P = 0 to P = 0.95. P is normalized to 
the maximum available power in our experimental set-up. In Fig. 9(a) the heating 
of each junction gives rise to a voltage decrease AV of the array. A signal from 
each junction can be detected. With increasing microwave power, the total number 
of junctions generating a voltage signal AV is decreasing [Figs. 9(a)-9(d)]. With 
P = 1 no voltage response from the junctions is detected. 

If  a junction's oscillation is locked to the external microwave field, the voltage of 
this junction is given by the frequency of the external source. Hence, if  we slightly 
perturb a locked junction with the electron beam, we do not detect a voltage 
response. When all junctions of the array are locked to the external signal, the 
voltage response is zero for all junctions. Notice that the spatial distribution of the 

114 



clusters of locked junctions is stable in time, because it does not fluctuate during 
taking the LTSEM image which takes about three minutes. For a more detailed 
discussion of this experiment, see [18]. 

In most cases, almost whole rows of junctions are locked as can be seen in Fig. 
9. The rows lie in the direction perpendicular to the direction of the dc transport 
current flow. This behavior is consistent with the assumption that phase locking 
in two-dimensional arrays of Josephson junctions is described by coherent vortex 
motion perpendicular to the transport current [17,19]. In some cases, we observed 
that all junctions of one row, but not the edge junctions, give a voltage signal. 
The inhomogeneous distribution of the dc and ac currents in the array, due to 
current-induced magnetic fields [20], may be responsible for this phenomenon. 

The minimum value of dV/dl for a given Shapiro step can be tuned by the 
microwave power in accordance with the tunability of the number of locked junc- 
tions that can be determined from LTSEM images as those shown in Fig. 9. The 
number of locked junctions A normalized to the total number of junctions NM 
is determined by counting the junctions which do not show a voltage response in 
the LTSEM images as those shown in Fig. 9. Figure 10(b) shows the result of 
our measurements. The solid line in Fig. 10(b) is the fit A = a(Pt - P)1/2 with 
a = 1.153 ± 0.014 and Pt = 0.303 ± 0.005, with Pt denoting the threshold value of 
the normalized microwave power where the junctions start to lock. 

In order to recognize the relationship to another system of oscillators, namely the 
laser, in Fig. 10(a) the textbook example of the dependence of the emitted laser 
intensity from the pump power is presented. Obviously, the coherently emitted 
microwave power from an array of Josephson junctions is determined by the square 
of the phase-locked junctions measured by A2 in our case of injection locking. For 
comparison, we plot A2 in Fig. 10(c). The solid line again shows the fit A2 = 
b(Pt - P) with b = 1.129 ± 0.043 and Pt = 0.292 ± 0.014. For calculating the solid 
curves, the data points with A = 0 have been omitted. If  the injected microwave 
power P for the junction array is identified with the pump power for the laser, 
we observe very similar behavior for the emission of coherent radiation: there is 
a threshold value Pt for the injection (pump) power which has to be exceeded for 
the coherent emission; for P > Pt the coherently emitted radiation power increases 
linearly with P. 

For the laser it is known that the transition from incoherent to coherent emission 
can be identified with a non-equilibrium phase transition of the second kind, when 
the pump power is increased from a value below to above the threshold [21]. Now 
one can speculate whether the two-dimensional Josephson junction array also shows 
such a second-order phase transition [18]. This question is not completely answered 
up to now. 

There are alternative quantities which can be used as the control parameter for 
the observation of the transition from incoherent to coherent oscillation of the array 
junctions. Besides the injected microwave power used above, the dc bias current can 
be taken [22]. In this case, we observe a similar transition as for the case presented 
above where the injected power has been used as control parameter and A as 
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FIGURE 10. (a) Sketch of the intensity Ii  of the emitted laser light as a function of the pump 
power (after Ref. [21]). (b) The open squares show the normalized number A of locked junctions, 
deduced from the spatially resolved measurements. The solid line shows a fit (see text), (c) The 
open squares show A2; the solid line shows a linear fitting function (see text). 

order parameter. Dealing with one-dimensional series arrays without microwave 
injection, Wiesenfeld et al. have shown theoretically that a current-biased array of 
nonidentical junctions can undergo a similar transition from incoherent oscillations 
to complete phase locking [23]. They also have used the dc bias current as the 
control parameter. 

MICROWAVE EMISSION 

All  results shown in this section have been obtained for autonomous arrays (with- 
out external microwave irradiation). For the measurement of the emitted microwave 
power, we have manufactured two-dimensional arrays of Josephson junctions cou- 
pled to a detector Josephson junction via a microstripline. A sketch of the sample 
is shown in Fig. 3. 

The value of the suppression of the critical current of the detector junction can be 
used as a first indication of emission from the array. This suppression is not sensitive 
to the degree of coherence of the radiation (wide-band detection). However, the 
observation of Shapiro steps in the I — V curve of the detector indicates (partial) 
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FIGURE 11. Simulated and experimental I — V curves of the detector junction. The arrows 
point to integer Shapiro steps. 

coherence. In Fig. 11 we show an example of the detector I— V curve for a 10 x 10 
array. This detector has a critical current of 0.31 mA and a shunt resistance of 0.125 
fi. The emitted power can be quantitatively determined from this I — V curve 
by numerical calculations of the curve using realistic parameters of the detector 
junction, and the injected microwave power as the only adjustable parameter [24]. 
We have performed such calculations by using the program PSCAN [25]. For the 
situation shown in Fig. 11 we estimate a detected microwave power of 56 nW at a 
frequency of 147 GHz. 

For the estimation of the emitted power one has to consider various possibilities 
for transmission loss between the array and the detector. The main loss mecha- 
nism is expected due to non-perfect impedance matching between two neighboring 
elements, namely the array and the coupling stripline on the one hand, and the 
coupling stripline and the detector junction on the other hand. With LTSEM it is 
possible to measure directly the reflection coefficient at these two interfaces [24]. 
Figure 12 shows an example of such a measurement result for the case of a ta- 
pered coupling microstripline, indicating a pronounced standing wave inside the 
microstripline. Due to non-perfect impedance matching on both sides of the mi- 
crostripline, the stripline acts as a resonator, and a standing wave appears if  some 
microwave power is transmitted. Details of this imaging mode are presented in 
[26,27]. 

In brief, to measure the reflection coefficient r between array and coupling mi- 
crostripline, we use the appearance of self-induced current steps in the I — V curve 
of the detector junction. Such steps appear for resonator coupled junctions due 
to feed-back of the emitted radiation at the voltages corresponding to the reso- 
nance frequencies of the resonator. The shape of the steps depends on the quality 
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FIGURE 12. LTSEM image of the standing wave in a tapered microstripline, coupled to a 
10 x 10 array. Bright areas indicate regions of the microstripline where the microwave surface 
current amplitude is high, whereas nodes of the surface current are indicated black. The brighter 
the image, the larger is the local microwave current amplitude. 

Q of the resonator. If there is a standing wave excited inside the resonator, the 
electron-beam-induced local heating decreases Q. This decrement depends on the 
magnitude of the rf surface currents present at (x0, J/o): the larger these rf currents 
the larger is the decrement of Q and, hence, the larger is the change of the current 
step. The latter is measured by recording the change of the detector voltage while 
dc biased on a step. The impedance mismatch between coupling capacitance and 
detector is measured in the same way with the array using as the resonator cou- 
pled element. From such images, like that shown in Fig. 12, the voltage standing 
wave ratio (VSWR) of the microstripline is directly measurable, and from this the 
reflection coefficients for both interfaces can be determined. 

For the circuit used for obtaining Fig. 11 we have estimated r = 0.2 for the 
interface between array and microstripline, and r = 0.55 for the interface between 
microstripline and detector [24]. By taking these results into account, the emitted 
microwave power is larger than the detected one by a factor of 2.8, and thus the 
array emits with a power level of about 160 nW. This power level indicates the in- 
phase oscillation of all junctions, as can be estimated from the maximum available 
power by using the Stewart-McCumber model for the array junctions. 

After fabrication of the samples, for some of the arrays we have observed no 
coherent emission, but a suppression of the detector's critical current at 4.2 K, 
thus indicating incoherent emission. Theoretical considerations suggest that the 
parameter ßi must be small in order to observe the in-phase oscillation state in the 
presence of junction nonuniformities [28,29]. A simple method to decrease /?£, after 
the fabrication of the samples is to increase the temperature above 4.2 K during 
the measurement but, of course, keeping it below the superconducting transition 
temperature of the sample (about 9 K for Nb). The higher the temperature, the 
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FIGURE 13. I — V curves of the detector junction for different array bias currents at 6.4 K. 

Subsequent curves are offset by 0.1 mA. 

smaller is ic and, therefore, the smaller is ßL. From this it is expected that the 
coupling strength among the junctions can be tuned to a certain amount by the 
temperature. 

This is indeed what we have found. Figure 13 shows examples for the detector 
I — V curves when measured at a raised sample temperature [30]. For an array 
bias current / = 2.90 mA a pronounced Shapiro step is observed in the detector's 
I — V curve corresponding to a frequency of 67 GHz. We have estimated the de- 
tected power for this bias current of the array in the same way as described above, 
and found a value of 57 nW which again is close to the value expected for the in- 
phase oscillation state [30]. In addition, we have observed that the tunability of the 
array improves at higher operation temperature. Similar behavior has also been 
reported by Cawthorne et a/., who measured (at constant temperature) the emit- 
ted microwave power from two-dimensional arrays having different critical current 
densities [31]. 

It is important to notice that the maximum available output power Pmax of an 
array decreases with increasing temperature because Pmax oc t\. Nevertheless, for 
this particular array, the entrainment of the coherent oscillation state due to the 
reduction of ßi predominates the reduction of Pmax due to the reduction of ic. 
Further studies will  be performed in the near future regarding the nature of the 
transition from incoherent to coherent oscillations by variation of the temperature 
and, thus, variation of ßi. 

Let us now turn to diagnostic tools in order to examine experimentally the de- 
gree of coherence of junctions' oscillations. Without special precaution regarding 
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the mutual interaction among the junctions or the uniformity of the junction param- 
eters over the array, one- or two-dimensional do not show the in-phase oscillation 
state. Therefore, besides thorough theoretical analysis, it is mandatory to examine 
experimentally the degree of coherence. Up to now, coherent oscillations in one- 
and two-dimensional arrays of Josephson junctions have been observed in experi- 
ments making use of different methods. One can measure the power of the emitted 
radiation, which depends on the number of phase-locked junctions [2,24,32,33]. An- 
other way is to measure the linewidth of the emitted radiation, which decreases as 
the number of phase-locked junctions increases [34,35]. However, both methods are 
associated with restrictions. Determining the power one has to take into account 
losses due to damping or reflections for non-perfect impedance matching between 
the array and the microwave detector (see above). On the other hand, the linewidth 
of the emitted radiation may be affected by resonances in the microwave coupling 
circuits [35]. 

We have introduced a new method for the detection of mutual locking [36]. The 
method is based on the same LTSEM imaging technique presented above in the 
section Microwave Injection, but now there is no external irradiation of the array 
with microwaves. However, due to the mutual coupling of the junctions, each 
junction in the array feels the microwave that is emitted from the other junctions, 
and the junction can be entrained this way. If  the power of the electron beam is low 
enough (about 1 juW, corresponding to a local temperature increase of about 0.2 
K) such that the junction which is close to the e-beam focus does not lose its phase- 
coherence, this junction does not show a voltage response signal (AV(x0,yo) — 0). 
On the other hand, if the focus is close to a non-locked junction for the same 
beam power, we are able to detect a voltage response signal (AV(a:o, t/o) 7^ 0)- By 
applying this method to an array of junctions, we can detect those junctions which 
are not locked to the (partial) coherent oscillation mode. 

For the experiment we have used the same circuit design as for the measurements 
of the emitted power (Fig. 3). Here, the detector's I—V curve indicates the presence 
of coherent emission by the appearance of Shapiro steps. For the array investigated 
here, we have observed coherent radiation for some range of the bias current. Thus 
we can compare coherent and non-coherent states in the experiments. Figures 14(a) 
and 14(c) show LTSEM images for different bias currents. In Figs. 14(b) and 14(d) 
the corresponding I — V curves of the detector junction are presented. For a bias 
current of the array / = 2.17 mA [Figs. 14(a) and 14(b)], no Shapiro steps in the 
detector I—V curve are observed. The structure in the I — V curve is due to 
resonances in the coupling circuit. The corresponding LTSEM image shows beam- 
induced voltage response signals of different signs and magnitude from almost all 
junctions. The maximum detected voltage signal |AV| shown in this figure is less 
than 0.5 fiV. For the two LTSEM images presented in Fig. 14 we have used the same 
scaling for coding the voltage response in form of gray values, therefore the two 
images can be directly compared to each other. Similar behavior as shown in Fig. 
14(a) has been found for other samples which do not emit coherently [4,9]; those 
images have been attributed to vortex dynamic regimes (see section Dynamics of 
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FIGURE 14. LTSEM voltage images for non-locked and mutually locked array states. A posi- 
tive (negative) e-beam-induced voltage signal AV(xo,yo) is indicated by the dark (bright) areas, 
whereas zero signal level is shown by the areas surrounding the array. The dc bias current flows 
vertically through the 10 x 10 array. The dotted black box indicates the position of the array. The 
size of the array is 370 x 370 fim2. (a) Array's bias current I = 2.17 mA, no coherent emission is 
observed, (c) / = 1.90 mA, almost all junctions are locked. The corresponding I — V curves of 
the detector junction are shown in (b) and (d). (b) I — 2.17 mA, no Shapiro steps, (d) / = 1.90 
mA, Shapiro steps at 0.315mV (1st) and 0.63 mV (2nd), indicated by the arrows. Temperature 
r«4.5K. 

Vortices above). 

On the other hand, for a slightly lower bias current of 1.90 mA [Fig. 14(c) and 
14(d)] Shapiro steps are clearly visible in the detector I — V characteristic corre- 
sponding to a frequency of 152 GHz. Only very few junctions generate a beam- 
induced voltage signal. From the detector I — V curve we estimate a detected 
microwave power of approximately 35 nW. In consideration of reflection losses dur- 
ing the transmission of the microwave power from the array to the detector and of 
the non-matched load (detector) impedance, this amount of detected power indi- 
cates a high degree of coherence in the array. A careful inspection of the junctions 
which are not perfectly locked [indicated by the dark signals (hardly visible) in 
Fig. 14(c)] shows that these junctions deviate from the others by a different value 
of their critical current.  This can be inferred from LTSEM images taken at bias 
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currents at which there is no coherent emission present. 
An advantage of LTSEM for the investigation of the coupling of junctions in 

arrays is that it allows the observation of coherent oscillating states without the 
need of an extra coupling circuit. Coupling structures practically always come with 
resonances. 

Regarding the practical application of arrays of Josephson junctions as microwave 
radiation source, encouraging progress has been obtained during the recent years 
[14]. The activities can roughly be divided into two categories: one- and two- 
dimensional arrays of junctions. Practically all promising results have been ob- 
tained with arrays made from low temperature superconductors (mainly Nb-based). 
This comes from the fact that, at present, the high temperature superconducting 
(HTS) junctions cannot be fabricated with small margins in a large number, so 
that only cryoelectronic devices with the demand for only a few junctions can be 
realized from HTS [37]. For one-dimensional series arrays, on-chip detected power 
levels of 47 ^W (at 394 GHz with 500 junctions) [32] or 160 /xW (at 240 GHz with 
1968 junctions) [33] have been attained. For a one-dimensional parallel-biased ar- 
ray, a detected power of 0.1 /uW (at 680 GHz with 11 junctions) has been reported 
[38]. For the two-dimensional arrays, the power levels amount to 400 nW (at 150 
GHz with a 10 x 10 array) [2], 150 nW (at 210 GHz with a 10 x 10 array) [31], or 
56 nW (at 147 GHz with a 10 x 10 array) [24], just to name a few results. However, 
for a direct comparison of the maximum detected power, besides possible transmis- 
sion losses between array and detector, one has to take into account the principal 
parameters governing the level of emitted power (provided that the in-phase os- 
cillation state has been achieved): the number of phase-locked junctions and the 
critical current (or the product of critical current and normal state resistance) of the 
junctions. Of course, the primary goal cannot be to make maximum (incoherent) 
emission available, but to attain the complete in-phase oscillation state of a large 
number of junctions in an array, thus ensuring minimum linewidth. Furthermore, 
the tunability of the emitted frequency is an important requirement. 

CONCLUSIONS 

We have discussed some selected topics regarding the dynamics of two- 
dimensional arrays of Josephson junctions. For this, we have restricted to over- 
damped junctions where, in addition, the Josephson coupling energy predominates 
the charging energy, because such arrays are promising as possible coherent mi- 
crowave radiation sources. 

Due to the very complex nonlinear dynamics of such arrays (see, e.g., [39,40]) 
various dynamical modes are expected to exist. From all these modes only the 
in-phase mode is useful for the practical application as a microwave source. The 
array's dynamics for low dc bias currents (of the order of, but still larger than 
the array's critical current) can well be described by the propagation of individual 
vortices, very similar to the current-induced resistive state of a superconducting thin 
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film. Due to the presence of some resonator devices the coherent oscillation mode 
is supported and observed experimentally for a certain range of the bias current. 
Such a resonator can be given by the capacitance of each junction together with the 
inductance of the shunt resistor loop. Since the quality of this resonator is low due 
to the large damping determined by the shunt resistance, there is the possibility of 
tuning the frequency of the emitted radiation in spite of coupling the junctions to 
a resonator. 

We have presented imaging results which demonstrate directly different vortex 
dynamic regimes. These vortex modes have also been found in extensive numerical 
simulations including all self and mutual inductances of the array. Furthermore, 
applying the LTSEM technique to injection locked or autonomous (intrinsically 
locked) arrays we have succeeded in imaging the non-locked junctions. Dealing 
with an external ac drive, there is a global transition from incoherent to coherent 
oscillations of the junctions, including a threshold value for the drive power at 
which the number of coherently oscillating junctions starts to grow from zero. The 
identification of the non-locked junctions in the mutually coupled case (without 
external ac drive) is very valuable for the optimization of the circuits serving as a 
microwave source. 

For any future optimization of overdamped arrays of Josephson junctions the 
junctions itselves deserve further attention. As in the case of other high-frequency 
applications of overdamped, lumped junctions, as, e.g., rapid single flux quantum 
(RSFQ) circuits, it would be highly desirable to fabricate overdamped junctions 
without the need of external shunting. This can be accomplished by using intrin- 
sically shunted junctions, as some species of the high critical temperature super- 
conductor Josephson junctions, or by attaining an extremely high critical current 
density for the Nb-based tunnel junctions. Together with the miniaturization of 
the junctions and the loops of the array, a high output power together with a low 
value of ßh should be attainable. However, a high degree of junction uniformity 
across the array still remains as a key requirement. 
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Abstract. Rapid Single Flux Quantum (RSFQ ) logic has a great potential as 
fast digital and high frequency analog electronics. Several Logic/Memory base 
elements and integrated sub-systems in the RSFQ family have been devised and 
tested since the pioneering work in the mid 1980s by K. K. Likharev's group at 
Moscow State University [1,2]. It is argumented why the RSFQ digital circuits 
are superior to the voltage state family circuits, which were utilised in the first 
development of Josephson logic. Also the parameter space for operation of the 
1-D RSFQ transmission line is discussed. 

Presently most RSFQ circuits are made with low-Tc superconductors using 
the now mature whole-wafer NbA10xNb technology, which allows for large and 
densely packed integrated circuits. Recently, a few operational high-Tc RSFQ 
circuits have been reported. An important development within the last two years 
is the advent of general-purpose on-chip bit-by-bit verification test systems. Tim- 
ing of RSFQ circuits and a few recent RSFQ "highlights" are briefly mentioned. 
Basically the RSFQ technology appears "ready" for widespread industrial use. 

One of the key components is the RSFQ transmission line, which can both 
generate and transmit SFQ pulses. In order to demonstrate the importance of 
the fluxon dynamics we discuss a new phenomenon observed in a parallel array of 
identical junctions. Steps with extremely low differential resistance in the I — V 
characteristic are found to be due to the self-induced magnetic field produced by 
the edge current fed to the array. The underlying mechanism is that the non- 
uniform field divides the moving fluxon into "domains" covering several (unit) 
cells. The experimental/numerical results illustrate practical and may be more 
fundamental limits to RSFQ electronics. 

INTRODUCTION, PAST AND PRESENT 

The fluxoid quantization in units of the Single Flux Quantum (SFQ, $0 = 
h/2e) in a superconducting contour is the basic physical mechanism for RSFQ 
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electronics. The vortex (or fluxon) in a bulk type-II superconductor (Abrikosov 
vortex) has a normal conducting core and is distinctly different from the vortex 
inside a Josephson tunnel junction (Josephson fluxon), which has a partly 
insulating core. Propagation and storage of fluxons as quantum mechanical 
entities in a network consisting of Josephson junctions and superconducting 
interconnections is the important advantage of the RSFQ concept. In addition, 
the inherent low power dissipation as well as the unique combination of fast 
response and high energy resolution theoretically make the RSFQ circuits 
superior to semiconductor devices in several applications. Within the so-called 
RSFQ family [2]  of logic circuits the presence or absence of a circulating current 
in an inductive superconducting network loop (with one or more Josephson 
junctions) represents a logic "one" or "zero". As discussed below RSFQ logic 
is expected to operate up to subterahertz frequencies. Fluxoid quantization is 
particularly important also for clocking and synchronisation of RSFQ circuits. 

The RSFQ concept gained momentum around 1990 when some of the very 
active researchers from Moscow State University and Institute of Radio En- 
gineering and Electronics (IRE) moved to the New York area (SUNY, Stony 
Brook and Hypres, Inc.). 

Three decades of voltage state logic 

The alternative Josephson logic circuit - the voltage state family - is fun- 
damentally different. Here logic "one" and "zero" are given by the presence 
or absence of a « 3 mV voltage signal. Most of the Josephson switching 
circuits developed over the last three decades have been of the voltage state 
type. The first simple circuits were made at IBM where since the late 1960s 
many new design concepts and inventive fabrication methods were developed. 
The project terminated in the early 1980s mainly because it became obvious 
that the lead-alloy technology and the problems with producing an opera- 
tional random access memory (RAM) impede profitable competition with the 
rapidly growing semiconductor industry. Parallel to the IBM project several 
other universities and government institutes (Berkeley, NIST, Tohoku, Tokyo, 
Moscow, et al.) and industries (TRW, Bell, Sperry, et al.) developed their 
own logic circuits and junction production technologies using other strategies. 

A major step towards reliable and densely packed superconducting circuits 
was the whole-wafer NbA10xNb tri-layer process, which now is a standard 
technology mastered by over hundred laboratories around the World. The 
development of the tri-layer process to a large extend was the result of the 10- 
year MITTI  (Japan Ministry of International Trade and Industry) supercon- 
ducting computer project started in 1981. A number of Japanese companies 
and government institutes (ETL, Fujitsu, NEC, NTT, et al.) made important 
progress in Josephson logics using the tri-layer process. An updated overview 
of Superconductor Electronics may be found in Ref. [3]. 
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Circuit production 

Hypres [4] and IRE now serve as commercial foundries for the community 
delivering chips with both voltage state and RSFQ based circuits. Josephson 
10 V voltage standard chips with more than 20.000 junctions are routinely 
made with reasonable yield at Hypres using standard optical « 2.5fim res- 
olution lithography. The alternative and indeed very attractive technology 
based on high-Tc superconducting materials still is very young and only a few 
industries (Conductus, NKT, a. o.) have entered junction and circuit fab- 
rication. Several numerical design and circuit simulation tools (PSCAN [2], 
JSPICE [5], MALT  [6], a. o.) as well as programs able to evaluate inductances 
of superconducting circuits are available. 

The state-of-the-art superconductor electronics make use of electron beam 
lithography and nanoprobes (STM, AFM, etc.) to fabricate complex circuits 
with sub-micron and even nanometer size junctions. This advanced technol- 
ogy is driven by the recent developments in optics (quantum lasers, quantum 
wells, etc. based on the 2-D electron gas in e. g. GaAs/AlGaAs/GaAs semicon- 
ducting structures) and electronics based on tunneling of single charge carriers 
(SET and SCPT, Single Electron and Single Cooper-Pair Tunneling). 

RSFQ status, highlights 

In spite of the theoretical superiority no commercial instrument with neither 
voltage state nor RSFQ Josephson logic has yet been produced. This is due to 
the competition from semiconductors, mainly because of their favourable cost- 
benefit but also the impressive continued increase in performance of silicon 
integrated circuits is hard to beat. Together with technological conservatism 
especially the irrational aversion against cooling this only leaves a small num- 
ber of niches where superconductor electronics is evidently superior. Today 
only two applications are widely used: the SQUID (utilised for magnetome- 
ters, biomagnetism, etc.), and the SIS mixer (deployed at every millimeter 
wave astronomy telescope). Both are analog and rely on few junctions. Useful 
Josephson logic requires large scale integration with many junctions and inter- 
connections in complex digital circuits. Compared to modern semiconductor 
chips even the most elaborate superconducting circuit (the abovementioned 
Josephson voltage standard) has a low scale of integration. Time will  change 
this and the RSFQ concept in the authors opinion is the most promising can- 
didate for future superconductor electronics . 

Space limitations only permit a very brief discussion of RSFQ digital cir- 
cuits. Reference should be made to proceedings from the major conferences in 
superconductivity (ASC, EUCAS, ISEC, CPEM, a. o.) which contain series 
of papers and updated reviews describing the recent developments. Here I will  
mention four applications two of which seem prune to practical realisation. 

128 



1) The RSFQ time-to-digital converter (TDC) [7] is a fast 14 bit (20 GHz, 
50 ps) instrument dedicated to register time-of-fiight (TOF) in all branches 
of high-energy physics (HEP) and nuclear physics, where the determination 
of the mass or energy of a particle relies on accurate and fast measurement of 
the flight path. Most modern HEP instruments already are cooled to liquid 
helium temperatures or below, and the low power operation of the RSFQ logic 
makes it far superior to semiconductor electronics. Presently the small signals 
from the cooled front-end detectors (Photon counters, etc.) are transmitted 
to the room temperature electronics (amplifiers, counters, etc.) via low-heat 
conducting cables. The best semiconductor TDC provides 16 ps resolution but 
its 6 W power consumption prevents cryogenic integration. The RSFQ TDC 
only dissipates 0.5 mW and can be placed directly onto the photon detectors. 
By integrating the clock generator (or a multiplier) with the TDC on the same 
chip one expects operational frequencies above 100 GHz. 

2) The RSFQ analog-to-digital converter (ADC) has been investigated for 
several years and many designs have been devised [3]. It is superior to semi- 
conductor ADCs in power dissipation, speed, dynamic range, and sensitivity. 
A recent counting type ADC with 2100 interferometers and junctions showed 
16 bits accuracy for a 5 MHz analog signal using a 10 GHz clock [8]. The 
ADC occupies 4 x 4mm2 and dissipates 0.6 mW. This is one of the remarkable 
demonstrations of the state-of-the art RSFQ circuits, but many new results 
also by other groups indicate that in the near future the RSFQ ADC is a very 
prominent candidate for real practical applications. Several high-Tc ADCs 
including DC-SFQ circuits have been successfully operated. 

3) The inverse, the Josephson digital-to-analog converter (D/A) has been 
designed and used as a programmable voltage standard to synthesise metrolog- 
ically accurate-ac waveforms [9]. It is based on the Josephson D/A proposed by 
Hamilton et al. (see Ref. [10]) for programmable voltage standards. The D/A 
is a binary sequence of series arrays each with N resistively shunted tunnel 
junctions. When biased with a microwave frequency each junction generate 
constant-voltage steps at Vn where n is the quantum step number. The array 
bias determines n = ..,-1,0,+1,.. and thus the step number of the array. 
Since the number of pulses per period 1// is n each array of N junctions 
generates an average voltage VN = N ■ Vn This pulse quantizer holding 32 
768 SNS junctions fabricated with NIST's tri-layer process in 9 independently 
selectable arrays on a single chip has been able to generate voltages in the 
range -1.2 V to +1.2 V. Instead of changing n and N the output voltage can 
also be controlled by changing the applied frequency. The NIST group has 
shown that if  a pulse excitation is used instead of the sine wave the amplitude 
of the voltage step is independent of the pulse repetition rate below a charac- 
teristic frequency. Thus it is now possible to generate any complex waveform 
by gating the incoming pulse train by a long digital word generator, or visa 
versa knowing the digital code, the clock frequency, and N one can precisely 
calculate the output waveform. In metrology as with the dc Josephson voltage 
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Standard there is a need for accurate ac voltages with known waveforms. In 
preliminary experiments using 1000 junctions clocked at 12 Gbits/s, a «5 mV 
sine wave has been synthesised at frequencies up to 1 MHz. 

4) Finally, an elegant method for on-chip linewidth measurements of 
Josephson oscillators using RSFQ T-flip-flops (TFFs) has been devised by a 
group at Conductus, Inc. [11]. Measurements can be done on a single short 
junction but may be extended to long junctions. The oscillator junction is 
connected by a RSFQ transmission line (discussed below) to the first TFF. A 
divider circuit of eight series connected TFFs is used to divide the oscillator 
frequency by 28 = 256. Each TFF has a Josephson storage interferometer, 
which (also discussed below) can only hold a single SFQ. If  the TFF is in the 
"0" state an arriving SFQ pulse will  insert a flux quantum, and if  the TFF 
is in the "1" state the SFQ pulse will  eject the existing flux quantum. Thus 
there will  be an SFQ pulse on the output of the TFF for every other SFQ 
pulse on the input, so each TFF divides its input frequency by two. After 
division on can use a (cheaper) low frequency spectrum analyzer to measure 
the frequency and linewidth of the Josephson oscillator. The actual test circuit 
with standard NbA10xNb junctions was able to measure linewidths as small 
as 1 kHz at 20 GHz. The TFF frequency division scheme is used also for 
demodulation by other groups. 

Fluxon dynamics, other structures 

In the following we mainly consider one-dimensional circuits. Fluxon dy- 
namics is of great importance in many other structures, and an extensive 
theoretical and experimental work is being done on two-dimensional arrays 
(frustration, commensurability, Kosterlitz-Thouless transition, row/column 
synchronisation, rf induced Giant Shapiro steps) [12]. The interaction be- 
tween Abrikosov and Josephson vortices in stacked Josephson structures may 
explain many of the physical properties of the high-Tc materials. 

I    RSFQ VS "VOLTAGE STATE" LOGIC 

RSFQ circuits consist of small (dimensions < Aj) shunted junctions con- 
nected by superconducting electrodes. The Josephson penetration depth 
Aj = J'2„* Q

dJ is the depth to which magnetic flux enters into a long (length 
L> Aj, width W< Aj) Josephson tunnel junction with current density Jc and 
effective magnetic thickness d. The junction parameters and in particular the 
inductance and other transmission line properties of the interconnects are im- 
portant for the dynamics of fluxons within the RSFQ network. Below we shall 
follow the original ideas in the seminal review by Likharev and Semenov [2] 
and supplement with arguments by Feldman [13]. 
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Elementary RSFQ cells can store, transfer, and generate an SFQ represent- 
ing a data bit. The cell has one ore more stable flux states and an incoming 
SFQ pulse may force the cell to change its state and possibly produce an out- 
going SFQ pulse. When a bit is transferred it is accompanied by a picosecond 
voltage pulse V(t) with a quantized size 

[  V{t)dl = §0 = h/2e « 2mV • ps (1) 

i. e. given by fundamental constants. Eq. (1) relates the voltage pulse height 
V'max and width r, approximately VmaxT = $o- The pulse width r is a very 
important parameter for RSFQ circuits. In order to distinguish two SFQ 
pulses, say a clock pulse and a data pulse, they must arrive at a given cell 
with a time separation of « 2T, meaning that the maximum clock frequency 
is less than l/2r. It is a general rule that the maximum intrinsic circuit speed 
scales with 1/r. 

For an isolated small Josephson junction with critical current Ic and shunt 
resistance R the standard RSJ-model current biased at a current Ib > Ic gives 
the following time dependent voltage: 

„(61) = , "V" 1    ,, (2) 
ib + sin(u;T + 0o) 

where the voltage v{6) is normalized by RIC, the bias current ib by Ic, and time 
6 by $0/{2TTRIC). The "effective" angular velocity is w = (i\ - 1)1/2, and <£0 is 
an arbitrary phase angle. When the junction is biased with ib being slightly 
larger than unity, Eq. (2) shows that v{6) consists of a series of voltage spikes 
with maximum voltage vmax = i + l«2. The full  width at half maximum is 
26. In real units the pulse height is 2ICR. The pulse width is $o/{nIcR) and 
the product of these is (2/7r)$0- The larger R the smaller is the width of the 
SFQ pulse. 

The tunnel junction used in RSFQ circuits also has an inherent capaci- 
tance C and usually R is chosen so that the McCumber parameter ßc = 
2-KICR

2
C/$O « 1. The reason is that a larger ßc value makes the junction 

hysteretic. A simulation [13] of the pulse shape for ßc = 1 shows a some- 
what distorted pulse with an asymmetric pattern of oscillations. The product 
of pulse height and pulse width is slightly larger than the ßc — 0 case and 
approaches « $o- 

For a typical cell with standard (3.5Mm)2 NbA10xNb junctions the minimum 
clock period is 10-20 ps. Theoretically [2] a 1- 2 ps clock period can be obtained 
using submicron technology. 

A basic switching in a simple voltage state circuit is shown in Fig. (1). A 
bias current Ib is supplied to the two-junction SQUID gate at sa 80 % of its 
critical current Ic. An applied control current Icont reduces the critical current 
of the SQUID and it switches from the zero voltage state (logical "zero") to the 
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FIGURE 1. Voltage state logic. The control current Icont reduces the critical current of 
the dc SQUID loop and it switches along the load line and becomes a high resistance. A 
fraction, II, of the bias current lb is diverted into the load. 

voltage state (logical "one"). The current II  is delivered to the load resistor 
RL here representing the transmission line to the next gate. The SQUID gate 
current remains positive in the "one" state and the output is non-inverted. 
This is a serious weakness of the voltage state family logic since many general 
logic operations involve inversion. A number of logic circuits rely on direct- 
coupled overdrive to switch between states instead of the inductive coupling 
shown here. Another important process is the resetting of the gate to the 
"zero" state. As described below this limits the switching speed of the voltage 
state family. 

The maximum speed for the voltage state logic originates in the fact that 
the fundamental parameters for the Josephson effect are current and phase 
(/, 4>) and not current and voltage (/, V). In the finite voltage state the phase 
is basically undefined. If  we use the simple pendulum model for the small 
Josephson junction it is clear that in order to reset the junction from a rotating 
state at the voltage (given by the 1st Josephson equation) 

V = 
2n dt (3) 

to the zero voltage state, the phase must be "recaptured" from an essentially 
randomly distributed phase to the phase 4>b given implicitly  by the bias current 
via the 2nd Josephson equation 
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Ib = Ic sin <j> b (4) 

Any 2TT periodic "bias" phase <% = $b + n2n will  satisfy this. In the case where 
the initial phase is in the vicinity of the separatrix between two neighbouring 
(say nton + 1) attractors the junction will  take some time to decide where to 
settle. If  this time is long it causes a bit error. Using the simple capacitively 
shunted CRSJ model the bit-error rate , BER is given by [13] 

BER = -e-"*> t0 (5) 

where t0 is the time used to reset, and upb is the plasma frequency, upb = 

wPo [1 - »11*, in the bias point Here wp0 = [f^] 5 is the maximum plasma 

frequency. 
If  we set t0 equal to one quarter of the clock period Eq. (5) predicts a 

BER « 1 ■ 10-9 per reset using a 10 GHz clock rate and a standard NbA10xNb 
junction with Jc = 1 kA/cm2. This cannot be tolerated for an integrated 
circuit with many junctions and therefor severely limits the applicability of 
the voltage state family logic. 

Since the RSFQ family relies on the "natural" Josephson parameters (7,0) 
it does not suffer from this calamity. As mentioned above clock periods of 
order 10 ps can routinely be achieved for a single cell. However, as described 
below, the inductance, and in general the transmission line properties of the 
interconnects may impose restrictions on operation times in extended circuits. 

II     INDUCTANCES IN RSFQ NETWORK 

If  we combine the two Josephson equations (Eq. (3) and Eq. (4)) with 
Faraday's induction law 

V = _^i =    d(Lj/ ) (6) 
dt dt 

($j is the magnetic flux, here formally inside the junction), and integrate we 
can represent the junction by the so-called Josephson inductance 

Lj = Ljo-^-r    With  LJO = r~y- (7) 
sin q> ^7TJC 

where 4> is the phase difference across the junction. 
Consider the simple RSFQ cell shown in Fig. 2 with a Josephson junction 

in parallel with an inductor L made out of a thick superconductor. The bias 
current 7b divides with Ih flowing in L and h in the junction. Using the 
vortex quantization condition (n is an integer) for the loop and that <j> is 
gauge invariant we find 
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FIGURE 2. DC bias current distribution in a simple RSFQ cell consisting of a Josephson 
junction in parallel with an inductor. 

6 = 2TT— 2irn (8) 

where $L is the magnetic flux enclosed by the loop. If no external flux is 
applied $L = Lit, since no (real) magnetic flux is inside the junction. Eq. (8) 
can be rearranged to get the "effective" flux in the loop 

$L,eff = LIh - Ljlj  = n$0 (9) 

which always is an integer number of flux quanta. Knowing n and the in- 
ductances L and Lj we can calculate the currents in the two arms. This 
illustrates the usefulness of the Josephson inductance. The same procedure 
can be applied to more complex RSFQ circuits. If  we represent each junction 
by its Josephson inductance the whole RSFQ network consists of inductances 
and the dc bias current will  divide as in a resistive network but with the R's 
replaced by L's (n = 0 in Eq. (9)). 

Thus, when analysing RSFQ circuits we can view the dc bias as generating 
an integer flux quanta background onto which we superimpose the transients. 
This is feasible because Lj in Eq. (7) is a slowly varying function of 7j, in- 
creasing only 16 % at I]  — 0.87c and to n/2 at 7j = Ic. 

The NbAlOsNb junctions now used in RSFQ network typically an area 
of (3.5/mi)2 and Jc = 1000 A/cm2. This gives Ic « 100//A, which is very 
appropriate since inductors with correct L are easily produced. Even more 
important is that the corresponding Josephson coupling energy is much larger 
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than kßT at helium temperatures keeping the thermally induced bit error rate, 
BERT, very low. 

The Josephson inductance Lj in Eq. (7) should not be confused with the 
small signal incremental Josephson inductance 

_ djLjIj)       _$o  (10) 

aij 2iuc cos (pb 

used in the analysis of the Josephson parametric amplifier. 
For a SQUID loop the LJc-product determines its ability to store magnetic 

flux. If  LIC is « 1.5$o it can store, if  LIC is « 0.5$0 incoming flux will  quickly 
be transmitted. In terms of the Josephson inductance a storage cell must have 
anisj lOLj while a transmission line cell only needs L « 3Lj. We return to 
the L7c-product below. 

Ill     FLUXON PROPAGATION IN A 1-D 
JOSEPHSON ARRAY 

Consider a one-dimensional structure, a transmission line for fluxons formed 
by a discrete array of Josephson junctions interconnected by inductances (see 
Ref. [14] and references herein). This transmission line is one of the basic ele- 
ments in RSFQ networks. The SFQ dynamics in this structure in many ways 
resembles the fluxon dynamics in a long Josephson junction with periodically 
spaced narrow (compared to Aj) inhomogeneities [15,16]. 

The scenario is illustrated in Fig. 3. The McCumber parameter ßc mea- 
sures the damping of the individual junctions. In the perturbed sine-Gordon 
equation modelling the long Josephson junction (with time normalized to the 
reciprocal of the maximum plasma frequency wp0) the shunt damping pa- 
rameter is a = 1/v^c- The vertical dashed line and hatched area divides 
the parameter space in two half-planes: ßc < 1 corresponds to overdamped 
(shunted, nonhysteretic) junctions; and ßc > 1 corresponds to underdamped 
(unshunted, hysteretic) junctions. 

The vertical axis in the figure is the discreteness parameter, which unfor- 
tunately is defined differently in many papers and text books. Physically the 
parameter relates the Josephson inductance Lj (Eq. (7)) to the total induc- 
tance L of the loop that forms the primitive cell of the array. For a 2-D network 
of Josephson junctions the primitive cell can comprise up to four junctions, 
while for a parallel 1-D array, the cell is a two junction dc SQUID. The well 
established SQUID parameter 

ßL=L=2j^L (n) 

is one discreteness parameter. Ref. [12] p. 226 uses the screening parameter 
ßm = (1/T)/?L where ßm < 2/TT avoids magnetic hysteresis of the SQUID. 
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FIGURE 3.  Overview of phenomena in parameter space given by the McCumber and 
discreteness parameters 

In practice one often uses the square root, either 

«1/2 (12) 

or 

Aj  = ßt12 (13) 

This is because the product D = x ■ Aj = x/a, where x is the length of the 
primitive cell, has the same meaning for the discrete array as the Josephson 
penetration depth Aj has for the long Josephson junction. When Aj > 1 (or 
a < 1) D corresponds to the fluxon size, in the opposite case Aj < 1 there 
seems no physical meaning of it. The latter case, however, is typical for the 
RSFQ circuits (see Fig. 3), and the most convenient choice for the discreteness 
parameter is 

IcL     ßh      1 . (14) 

The magnitude of r) directly shows how many fiuxons the primitive cell of 
the array can keep in the absence of any bias currents and magnetic fields. 
The horizontal dashed line at 7? =1 in Fig. 3 marks the frontier between multi 
fluxon states and single fluxon states of the primitive cell. The application of 
magnetic fields and bias currents are broadening the frontier horizontally as 
indicated by the hatched field. 
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The area " 1" in Fig. 3 is where the main features of continuum long Joseph- 
son junctions, like zero-field step (ZFS), Fiske steps (FS), and flux-flow steps 
(FFS) exist. At higher discreteness parameter values in area " 2", new reso- 
nances appear due to the discreteness of an unshunted array [17-19]. These 
resonances can be described in the same way as it is done for quasiparticle 
motion in a periodic potential [17], and for these resonances both optical and 
acoustic dispersion relations has been found experimentally [18]. Areas "1" 
and "2" in Fig. 3 will  not be discussed further here. 

As mentioned above RSFQ circuits (area "3" in Fig. 3) are mainly build 
as a network of two kinds of interferometers. The first type with parameter 
0.5 < 7? < 1 is used mainly for transferring fluxons and the other with 1 < 
77 < 2 for storage of a single fluxon. 

The RSFQ transmission line is one of the key components: it transfers SFQ 
pulses between the active elements, it provides the time delay of fluxon propa- 
gation, and it can be employed to amplify the magnetic field energy connected 
with the flux quantum [2]. Experimentally its high frequency properties up 
to several 100 GHz can be tested by rather simple dc measurements using the 
Josephson voltage relation (Eq. (3)). 

IV    THE RSFQ TRANSMISSION LINE WITH 
EDGE CURRENTS 

In order to illustrate the importance of the fluxon dynamics in RSFQ net- 
works we shall discuss in more detail the simple twenty-junction parallel- 
current-biased array. An equivalent diagram is shown in Fig. 4. When an 
additional current is injected to one of the edge junctions it generates SFQ 
pulses which propagate down the line. Unexpected steps appear in the 7 - V 
curve [20] which cannot be explained by the simple two-junction interferome- 
ter model. Here we describe the formation of internal dynamical fluxon struc- 
tures which together with and resonances in the connecting superconducting 
network may limit  the maximum speed of the RSFQ logic. 

A    The non-resonant transmission line 

A standard trilayer Nb-AlCvNb technique (Jc = 1 kA/cm2) was employed 
to fabricate the samples. The junctions were identical (circular with diameter 
5 /zm) with the following characteristics: Critical current Ic = 265/iA, junction 
resistance (including the external shunt resistance) R = 1.75Q. The junction 
capacitance is estimated to 0.8 pF, giving a McCumber parameter ßc = 2. 
The capacitance of the overlap geometry is negligible. The inductances, Lx - 
L2o, as measured with a two-junction interferometer located on the substrate 
close to the array, were 9.4 pH. 
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FIGURE 4. Equivalent circuit of one-dimensional array of over-damped Josephson tunnel 
junctions (crosses). The resistances Rx - R2o provide a uniform bias current. A magnetic 
field may be introduced by adding a current, Jj,, to one of the edge currents, say 7ei and 
subtracting it from the other, 7e2. The array voltage, V, is measured across one of the edge 
junctions. 

The unit cell is a two-junction interferometer sharing its junctions with 
the neighbouring cells. There are three bias currents supplied to the array, 
ib, is a uniformly distributed dc current applied to the individual junctions 
through the resistances Rx - R2o- These resistances are ten times larger than 
the junction shunt resistances. The current 7el is fed directly to the edge 
junction Jx. Ie2 is fed directly to the edge junction J2o and is used only when 
applying a magnetic field, which is controlled by adding a dc current, 1  ̂to 
7ei and subtracting the same current Ie2 — — ii, at J2o- The array voltage, V, 
is measured across one of the edge junctions. The experimental V(Ib) curve 
with fixed 7ei appears as a smooth curve that accurately fits to the predictions 
of the RSJ model for a single junction. An external magnetic field introduced 
by Ih does not change the shape of the I - V characteristic. It means [20] 
that the bias current 7b is uniform and does not influence the magnetic field 
distribution in the array. 

On the contrary, as seen in Fig. 5 an applied edge current 7el significantly 
changes this distribution. The experimental V(Iei) curves obtained with zero 
magnetic field (7h = 0) for ten different fixed values of 7b shows that the par- 
allel junction array is used as an SFQ generator. When an additional bias 
current is applied to the edge junction, it generates flux quanta, which prop- 
agate down the transmission line and a number of characteristic steps appear 
in the 7 — V curve of the fluxon generator junction. These steps have prac- 
tically zero differential resistance. The extremely small differential resistance 
of the steps in the junction array is interpreted [14] as being due a non-linear 
resonant interaction briefly described below. It is definitely not a geometri- 
cal resonance since the step voltage varies with the common bias current 7b 
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(as given above), and also because the V(Jb) characteristic is smooth. Fur- 
thermore the damping of the circuit is much too large for the observation of 
geometrical resonances. 

The bias current, Jb, defines the velocity of fluxons moving through the ar- 
ray and influences the voltage positions of the (nearly) horizontal steps. From 
the experimental curves we have found that the current width, AJei.> of the 
steps is given by AJei = ®o/L, where L is the inductance connecting the junc- 
tions. The numerical simulations confirmed this picture. Accordingly, a new 
step appears when an additional fluxon penetrates into the array. This effect 
is similar to the one observed for a non-symmetrically biased two-junction 
interferometer, where the bias current induces a magnetic field in the interfer- 
ometer loop, resulting in the well-known modulation of the J - V curve. 

B    Numerical simulations 

Extensive numerical simulations have revealed [20,14] that the edge currents 
causes a splitting of the array into sections (domains) each having predom- 
inantly the same number of fluxons per unit cell. In fact the non-uniform 
magnetic field caused by the edge current penetrates into the array over a 
distance significantly larger than the Josephson penetration depth observed 
in long tunnel junctions. This is somewhat unexpected since the discreteness 
parameter 77 » 1.3. The first step in Fig. 5 seems to be due only to the edge 
current which is constant and dictates the repetition rate of the fluxon exci- 
tation. The step voltage depends on this repetition rate and on the average 
velocity of the fluxon. This also explains the increase of the step voltage with 
increasing total bias current 

A more complex picture appears for higher order steps. The fluxons group 
themselves by a highly non-linear process in a complex pattern of "domains" 
that move collectively along the array. On the second step we have two do- 
mains and so forth. The domains not reaching the edges are spatially sym- 
metric; the junction in the middle (we call it the leading junction) switches 
first, producing a fluxon and an antifluxon which in turn propagate in opposite 
directions. That means that the total fluxon number within a symmetrical 
domain is conserved at all times. The simulation shows that the number of 
domains changes as we go from one step to another, and that a variation of the 
edge current within the same voltage step only changes the spatial position 
of the leading junction in the edge domains. It looks as if  there is a mutual 
phase-locking between the leading junctions belonging to different domains. 
The junctions are connected by a superconductor and therefor must be syn- 
chronized, leaving only the spatial location of the leading junction as the free 
parameter. LTSEM experiments [21] have confirmed this interpretation of the 
results. 
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FIGURE 5. Array voltage, V, versus edge current, /ei, measured for different values of 
the common bias current, 4 (values given in the right column) for zero external magnetic 

field (7h = 0, 7e2 = 0). 

C    20-junction array with resonant interconnections 

The high frequency properties of the SFQ transmission lines are vital in 
RSFQ logic. Unanticipated effects may deteriorate their performance such as, 
for example, internal resonances in the microstrip lines connecting the junc- 
tions. To elucidate this it is important to test an RSFQ circuit in the low 
damping limit, with all shunting resistances removed. In a supplementing 
experiment [22] we connected the individual 20 junctions (similar to the 20- 
junction parallel array described above) by short superconducting microstrip 
sections and found a clear 600 GHz resonator-induced step in the I — V char- 
acteristics corresponding to the electromagnetic resonance in the microstrip 
line. In fact due to the relatively low damping (see area "4" in Fig. 3) and the 
strong mutual coupling the junctions phase locked. This makes the resonant 
transmission line a narrow linewidth oscillator. The resonant step could be 
tuned by applying an external magnetic field. A fine agreement was found be- 
tween experiment and numerical simulations of the circuit. Recently, we have 
devised a method [23] to directly measure the spectral linewidth of the emit- 
ted 600 GHz radiation by integrating the oscillator with a small SIS junction 
used as a high- harmonic mixer. At lower frequencies an alternative would be 
the TFF frequency divider scheme already mentioned. 
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V    TIMING AND CLOCKING IN RSFQ CIRCUITS 

The recent progress in circuit design and fabrication makes the RSFQ fam- 
ily a possible candidate to first cross the 100 GHz clock scale in large scale 
digital applications. A comprehensive and up-to-date review of timing and 
clocking of RSFQ circuits is given in Ref. [24]. RSFQ logic may utilize both 
synchronous and asynchronous timing schemes, but synchronous clocking with 
an external system clock becomes increasingly inadequate as the speed of op- 
eration increases. Until now single phase synchronous clocking (every gate is 
clocked at the same instant) has been successfully used in virtually all RSFQ 
circuits. The reason why RSFQ operates so well even at high speed using 
this standard semiconductor synchronous clocking scheme is that the SFQ 
timing pulses propagate in the clock circuit in the same manner as the data 
flow. This calls for pipelined clocking, either counterflow or concurrent (the 
clock SFQ travels in the opposite or the same direction as the data SFQ) 
giving a positive or negative clock skew, respectively. For future larger and 
more complex circuits where also non-linear transmission properties become 
important at the minimum clock period, asynchronous or even sequential (one 
circuit block generates the clock SFQ for the next) timing schemes are needed. 
Other schemes also suited for 2-D N x N array RSFQ circuits are proposed 
in Ref. [24]. 
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High-Tc Josephson junction arrays and 
their applications 
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Abstract. This paper deals with the specific problems of fabrication of arrays of 
Josephson junctions using high-Tc superconductors. The attention is focused espe- 
cially on facts, which are important for possible applications of such arrays. After 
introduction of the basic properties of high-Tc superconductors (HTS), which are rel- 
evant for the fabrication of HTS Josephson junctions and arrays, the main areas of 
possible applications are discussed in details. Namely, we focus on application of HTS 
arrays as voltage standards, microwave radiation sources and mixers. 

INTRODUCTION 

The physics of Josephson junction arrays was the object of many theoretical 
and experimental studies in the past decades. Several possible application areas 
have been addressed to. Arrays as voltage standards found already commercial 
application, high frequency applications are under strong investigation. However, 
most of the experimental work on Josephson junction arrays was done using the low 
Tc (Nb) superconductor technology. This, of course, limits the exploration of these 
devices because of the hard cooling requirements. The systems have to be cooled 
using liquid He or special (two stage) cryocoolers. This makes the final device too 
complicated and expensive and thus less attractive for customers. The discovery of 
the new high-Tc superconducting (HTS) materials [1] [2] with critical temperature 
well above 77 K (the temperature of liquid nitrogen) brought hope to overcome 
this cooling barrier. Indeed, the liquid nitrogen is broadly available for reasonable 
price. Recent strong developments in cryocooler techniques promise the availability 
of low cost (of the order 1000$ and less) and reliable closed cycle cryocoolers for 
the temperature range around the temperature of liquid nitrogen [3]. The purpose 
of this paper is to discuss the possibility of realization of Josephson junction arrays 
using HTS technology keeping in mind the target applications. We will  focus on 
the areas of voltage standards , high frequency applications as microwave sources 
and mixers . Before talking about particular applications we first address some 
general notes concerning HTS superconductors and Josephson junctions based on 
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these materials.   Then the arrays are discuss in the context of each particular 
application. 

HTS SUPERCONDUCTORS AND JOSEPHSON 
JUNCTIONS 

Soon after discovery of the first HTS superconductor La2_ISra;Cu04 [1] with 
relatively low critical temperature Tc = 38/\ several groups of materials with Tc 
well above the temperature of liquid nitrogen were synthesized. The compounds 
most frequently used in practical applications are listed in Table 1 along with the 
lattice constants. In Table 2 the superconducting parameters of HTS materials are 
listed. For comparison, the parameters for most common low Tc superconductor 
Nb are also listed in Table 2. 

We see that the critical temperatures indeed offer the possibility to work at 
relatively high temperatures. However, in order to fabricate arrays of Josephson 
junction using these materials several technological problems have to be solved. 
First of all the technology for fabrication of good quality thin films of HTS materials 
must be available. At present, there are several standard procedures for deposition 
of high quality thin films. Mostly the magnetron sputtering, co-evaporation and 
pulsed laser deposition method are used. Details about these and other method 
can be found in the review [4]. Further, the substrate used for film deposition 
plays a very important role since good lattice matching is required for epitaxial 
growth of the films. On the other hand the substrate properties should fit the 
proposed application, e.g. for microwave application the dielectric properties are 
very important. In the Table 3 the substrates commonly used for HTS thin film 
deposition are listed. 

Once having a HTS thin film on proper substrate one can try to fabricate Joseph- 
son junctions. Unfortunately, the complicated material properties of HTS, espe- 
cially the high anisotropy and the extremely small coherence length (see Table 1 and 
2) do not allow to mimic simply the well developed technology of low Tc three-layer 
niobium superconductor-isolator-superconductor (SIS) tunnel junctions. In order 
to get HTS Josephson junctions it is necessary to use different procedures. 

In Figure 1 some approaches, where already relatively good results were obtained, 
are schematically shown. More details about HTS Josephson junctions and their 
properties can be found in [5] [6]. 

TABLE 1. High Tc superconductors and their lattice constants. 

Material a (Ä) b (A) c (A)  
YBa2Cu307 (YBCO) 
Bi2Sr2Ca2Cu3Oio (BSCCO) 
Tl2Ba2Ca2Cu30io+^ (TBCCO) 
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The first type of HTS Josephson junction we will  discuss is the so-called step- 
edge junction, shown schematically in Figure 1(a). Before the film deposition a 
steep-step in the substrate is fabricated. The film over the step grows with differ- 
ent crystalographic orientation and thus at the edges of the step grain boundaries 
are formed. This grain boundary effectively works as Josephson junction. In fact, 
using this technique, two junctions are created the in the step area, however the 
technology can be controlled in such a way that the junctions have different critical 
currents and thus only one of them is effectively working. Another type of grain 
boundary HTS Josephson junction is the bicrystal junction shown in Figure 1(b). 
The film is deposited on a special bicrystal substrate which consists of two parts 
with different crystalographic orientation. The epitaxially deposited film follows the 
crystallographic orientation of the substrate and at the place of the crystallographic 
missorientation the grain boundary Josephson junction is formed. The propertries 
of this junctions depend strongly on the angle of missorientation. Another possi- 
bility  how to create the HTS Josephson junction is to use weakened bridges, Figure 
1(c). A small part of the bridge is modified by ion or electron beam irradiation 
to change the electrical properties of this region and thus to create a weak con- 
nection between the superconductors. The common feature of the junction types 
discussed up to know is, that they relay on single superconducting layers. This is 
an advantage, because the fabrication process requires only a limited number of 
technological steps. Unfortunately, the properties of these junctions often do not 
fulfil  the requirements especially with respect to reproducibility, spread in junction 
parameters as well as to geometrical restrictions. Therefore the HTS Josephson 
junctions based on more advanced multi-layer technology are under development. 
One typical example of this kind of junction is shown in Figure 1(d). After the 
deposition of a bilayer (superconductor + insulator) a flat ramp is fabricated using 
a special etching technique. Then a very thin (of the order of coherence length) 
barrier, which can be normal conducting or isolating is deposited. Finally, the 
structure is covered by a top superconducting layer and properly patterned. The 
advantage of this topology is that the interaction between the superconducting 
electrodes takes place in a-b direction where the coherence length is substantially 
larger than in c-direction (see Table 2). 

In Figure 2(a) [7], curve 1 we show as an example a typical current-voltage 
characteristic (IVC) of a HTS Josephson junction. In this particular case it was a 

TABLE  2. Superconducting properties of HTS materials. Aa6 is energy gap in 
a — b direction, Ac is energy gap in c direction, £ab and £c are coherence in respective 
direction.  

Material      Tg (K)      Aaj, (meV)      Ac (meV)      £„), (nm)      £e (nm)  
YBCO 92 15-25 3-6 1.5 0.1-0.4 
BSCCO 110-115 25-35 5-9 1 < 0.1 
TBCCO 118 25-30 5 2 0.03 
Nb 9.2 1.45 1.45 40 40 
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bicrystal junction on MgO substrate [7]. As a film YBCO with thickness of 200 nm 
was used. YBCO is the most frequently used high-Tc superconductor (all circuit 
shown below were made using YBCO) because of it's relatively high coherence 
length and not very complicated procedure of film growth. We observe, that the 
IVC of this junction is non-hysteretic, which is typical for overdamped (shunted) 
junctions with very small capacitance. The ideal Josephson junction should follow 
the resitively and capacitively shunted junction (RCSJ) model [8]: 

h = Ic sin 4> + Vt/RN + CdVt/dt, Vt = ^^ (1) 

where /& is biasing current of the junction, Ic is the critical current, RN is normal 
resistance of junction, <f> is phase difference across the junction, Vt is the instan- 
taneous voltage across the junction, C is the capacitance and $o is flux quantum 
(2.06810-15 Wb). By solving (numerically) the Eqs. (1) the time dependence of Vt 

can be calculated. The general feature of this solution is that (for Tj, > Ic) the 
voltage across the junction oscillates with a very high frequency 

/ = V/*0, , (2) 

where V is time averaged voltage Vt. Because of the very high frequency of oscil- 
lation of Vt, typically in upper GHz frequency range, the value which is measured 
experimentally is the average voltage V. For a given biasing point If, the average 
voltage V can be easily numerically calculated from solution of Eqs. (1) and the 
theoretical IVC can be obtained. In Figure 2(b), curve 1, the result of the calcula- 
tion for experimental parameters is shown. We see that the calculation reproduce 
the measured curve perfectly. 

One of the most striking features of Josephson junctions is their behavior in the 
presence of microwave radiation. The internal oscillations of Josephson junction can 
be synchronized (phase-locked) to the external microwave radiation which results 
in a constant voltage over a certain bias current interval. The typical so called 
Shapiro steps appear on the IVC at voltages 

V = n%fext (3) 

where fext is the frequency of incident microwave radiation. This is shown on 
experimentally measured curves for the case of two values of microwave power. Fig- 
ure 2(a), curve 2 and 3. Corresponding curves calculated using Eqs. (1) are shown 
in Figure 2(b), curve 2 and 3. Here we observe also an almost identical agreement 
between experiment and calculation. Thus, the RCSJ model is a relatively simple 
tool which describes the dynamics of HTS junctions well. It gives us the possibility 

147 



of theoretical predictions and allows to model even more complicated circuits based 
on HTS Josephson junctions. 

We see on Figure 2(a) that the junction has characteristic voltage Vc = ICRN 

approx. 2 mV. This quantity is important when the junction is to be operated 
at very high frequencies. In many application the optimal operation frequency is 
related to the characteristic frequency fc - Vc/$o- In the ideal case Vc should be 
close to the gap voltage, which should be around 20 mV according to Table 2. We 
observe that our junction has a significantly reduced Vc which is probably caused 
by imperfection during the fabrication or by intrinsic properties in the barrier 
region. Nevertheless, even this reduced Vc is about one order of magnitude higher 
than typical values for overdamped Josephson junction based on classical low Tc 
superconductors. 

The data shown on Figure 2 where measured at relatively low temperature. In 
order to make HTS technology attractive for application good quality junctions 
which operate at much higher temperatures are needed. Recently, progress was 
achieved in fabrication of good quality junctions working at relatively high tem- 
peratures. As an exmple we show results obtained with a grain boundary junction 
fabricated on bicrystal substrate out of yttria stabilized zirconia oxide (YSZ). The 
YBCO thin film was deposited by reactive high-oxygen-pressure co-evaporation. 
The junctions showed very promising properties at temperatures well above 77 K 
[11]. In Figure 3(a) the IVC measured at 80 K is shown. We see a substantial 
critical current even at relatively high temperatures and well developed Shapiro 
steps which follow the prediction of the RSJ model, Figure 3(b). 

HTS JOSEPHSON JUNCTIONS ARRAYS FOR 
VOLTAGE STANDARDS 

We have seen in Figure 2 that a Josephson junction under microwave radiation 
exhibits Shapiro steps at voltages given by Eq. (3). Since the frequency of the 
external microwave radiation can be usually precisely controlled and the average 
dc voltage is related to this frequency only via fundamental constant, the resulting 
voltage can be tuned with extremely high accuracy. Based on this idea precise 
voltage standards can be constructed. When using a single junction the voltage 
steps are typically in the fiV range, which is too low for applications. The solution 
is to connect the junctions in series and thus multiply the voltages. Indeed, using 
arrays based on low Tc Josephson junctions commercially available voltage stan- 
dards were fabricated [9]. The traditional design of a voltage standard was based on 
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underdamped junctions with high capacitance. Standards based on such junctions 
suffered from dynamical instabilities due to chaotic behavior of the underdamped 
junctions in presence of microwave radiation with the frequency close to junction's 
plasma frequency 

U = yJlc/2n 0̂C. (4) 

The plasma frequency is a natural junction resonance defined by the capacitance 
and inductance of the junction. The modern trend in the arrays for voltage stan- 
dards is to use arrays of overdamped junctions with very low capacitance. In low 
Tc technology a special shunting procedure for SIS junction must be used or an- 
other type of junctions like superconductor - normal metal - superconductor (SNS) 
junctions must be taken [10]. As we have seen in the previous paragraph, the 
typical HTS Josephson junction is an overdamped junction and therefore a natural 
candidate for voltage standard. Before discussing the suitability of HTS technology 
for implementation in voltage standard some important features will  be discussed 
and demonstrated using a simple simulation based on the RCSJ model. 

The general idea is to connect the junctions in series and thus add the voltages 
at the Shapiro step. The idea works well when the junction are identical or nearly 
identical. This is demonstrated for the case of the array consisting of three junc- 
tions connected in series and biased by common current in the Figure 4 (aa)-(ad). 
Differences in the critical currents and the normal resistances of the junctions are 
within a 1 % interval in this case. Clearly, a step at a voltage, which is three times 
the voltage of an individual junction, is obtained. The situation changes dramat- 
ically when much larger spread in junction parameters exists. Such situation is 
illustrated on Figure 4 (ba)-(bd) where the spread is 20 % . No steps are observed 
on the resulting IVC despite of the well developed steps of each junction. We see 
that the spread plays a crucial role when the voltage standard consisting of several 
hundred junctions should be constructed. 

Unfortunately, high spread in both critical currents as well as in normal re- 
sistances of junctions is typical for the present stage of HTS technology. Some 
partial solution which reduces at least spread in normal resistances was developed 
by Klushin et al [12]. In this approach the bicrystal junctions are covered addi- 
tionally by normal metal and thus additionally shunted. The resistance is then 
defined by this external shunt rather than by the intrinsic value of normal resis- 
tance. The array consisting of 108 junction fabricated using this procedure showed 
proper operation as it is illustrated in Figure 5 [13]. The additional effect connected 
with this method is the reduction of impedance of junction and the reduction of 
characteristic voltage Vc-  This must not be necessarily the disadvantage for this 
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particular application since lower Vc allows to work with lower driving frequency. 
It is well known that in order to get Shapiro steps with optimal heights the driving 
frequency must be close or higher than the characteristic frequency of the junctions 
fc[U}.  

The promising results presented here give hope that HTS arrays will  find soon 
application as voltage standard. The voltage standard in classical meaning is a 
device which generates exact but only one value of voltage. Using arrays, however, 
there exists the possibility to get standards with variable and digital controlled 
voltage output. It is possible to fabricate so called programmable voltage standards 
or digital to analog (D/A) converters with ultimate accuracy. The circuit was 
invented by Hamilton et al [15] and it is schematically shown in Figure 6. The 
series array of junctions is divided into a binary sequence of segments consisting 
of 2J'-1 junctions (j is the number of sequence). Each segment can be individually 
biased so that all junctions in the segment are at either zero voltage or at the 
voltage of the first Shapiro step. Thus, by changing the bias of individual segments 
different total voltage can be achieved with AV — <&ofext (fext is the frequency 
of external microwave radiation) resolution. The realization of a D/A converter 
based on a similar idea but using HTS Josephson junction arrays is in progress [13]. 
When connecting such a device with a digital measurement equipment (voltmeter), 
an instrument with fundamental accuracy could be constructed. This certainly 
will  have strong impact on development and broad commercial application of HTS 
Josephson junction arrays. 

HTS JOSEPHSON JUNCTION ARRAYS AS 
RADIATION SOURCES 

In Figure 7 [16] the dependence of the generated microwave power of different 
sources as a function of frequency is shown for the THz and the sub-THz frequency 
range. We observe that with increasing frequency the available power decreases 
for almost all presently existing devices. Especially, above 1 THz there is a gap 
and oscillators which would generate substantial microwave power in this frequency 
band are needed. 

As already mentioned in the introduction the Josephson junction is in fact an 
ideal voltage to frequency tranducer where the frequency is related to the dc voltage 
of the junction via Eq. (2). For typical characteristic voltage of HTS Josephson 
junction Vc — 2mV we get a frequency of about 1 THz. Therefore, the generator 
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of microwave radiation based on HTS Josephson junctions is one of the potential 
candidates to fill  the gap in THz generators. The idea of using devices based 
on Josephson junctions as microwave generators is not new and during several 
decades different type of devices utilizing low Tc superconductor (Nb) Josephson 
junctions were developed. The underdamped SIS junctions can be fabricated with 
high reproducibility and therefore they are the natural choice for fabrication of 
generators. Based on this type of junction the so-called flux-flow oscillators, where 
the microwave power is generated as a result of moving of Josephson vorticies along 
the long Josephson junction, can be constructed. Considerable progress has been 
achieved in this field [17] [18] and at present the oscillator integrated with SIS 
mixer on one chip is available [19]. However, there is a frequency limitation for 
devices based on Nb due to relatively low value of superconducting gap of this 
material (see Table 2). Above « 800 GHz a strong degradation of the performance 
occurs. In addition, the barrier due to strong cooling requirements exists. The 
HTS superconductor should have advantages with respect to both, the energy gap 
(see Table 2) as well as the cooling issue. Unfortunately, in HTS technology high 
quality SIS-type underdamped junction are not available. Therefore, alternative 
concepts of oscillators must be used. Already in low Tc technology, the oscillator 
based on arrays of discrete Josephson junctions were developed parallel to flux-flow 
oscillator [20]. These arrays utilize overdamped junctions and therefore they are 
the natural choice for realization in HTS. Before discussing different HTS array 
concepts some general considerations should be addressed. 

The maximal power emitted from single overdamped, short (with geometrical 
dimension shorter than Josephson penetration depth) Josephson junction is [20] 

1 
-ICRN- (5) 

For a typical HTS Josephson junction with Ic = ImA and RN = lfi  we get from 
Eq. (5) P ~ 0.1/J.W. Already this value is not very high and in typical experimental 
arrangements the microwave losses cause that the practically available power is 
much lower, typically on the level pW — nW [21]. Another important point which 
requires the consideration is the issue of linewidth of microwave radiation generated 
from Josephson junction. For applications in receivers for the sub-THz frequency 
band a linewidth of the local oscillator in the kHz-MHz region is required. Since the 
frequency of Josephson junction is controlled by the junction's voltage any voltage 
fluctuation will  cause the broadening of the linewidth. In the ideal case, when only 
the fluctuation due to thermal noise are considered the linewidth is [20] 
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where && is Boltzman constant, T is working temperature and Rd is differential 
resistance at the bias point. For typical HTS Josephson junction at 4 K we get the 
linewidth A/ ~ 16QMHz. This value is of course too large for most applications. 
The problem of low radiation power and large linewidth can be solved, if more 
junctions are connected in arrays. According to simple rules the available power 
increases with the number of junctions and at the same time the linewidth decreases 
[20]. However, all this is true only if  all junctions oscillate coherently, i.e. if  they are 
mutually phase-locked. This is a not trivial issue, because the mutual phase-locking 
depends on several factors like topology of the arrays, the loading of arrays and also 
the spread in junction parameters plays important role. The problem of mutual 
phase-locking in different types of arrays of Josephson junction was investigated 
in many papers and the scientific discussion still continues. Even in the simplest 
case, when junction are connected in series, the situation is not trivial. For the 
resulting behavior of such arrays the value of the McCumber parameter of the 
junctions ßc = 2wCIcR%/$o is important. If  the junctions are overdamped with 
ßc = 0 and the whole array is loaded by an inductive load stable in-phase locking 
is possible (i.e. all junctions oscillates with the same phase) [20]. For ßc — 1 the 
stable in-phase locking exists also for a pure resistive load [22]. A general complex 
load and finit  ßc causes a complicated situation where several dynamical states co- 
exist what in presence of thermal noise results in chaotic-like behavior [23]. Other 
very important requirement for stable phase-locking is the low spread in junction 
parameters. The requirements are here even more severe as we seen in the case 
of arrays for voltage standard. Depending on the array topology (series arrays, 
two-dimensional arrays) different, but in general relatively low spread, of the order 
of maximum 10-20 % is allowed. 

An example of a HTS series array consisting of 23 HTS step-edge Josephson 
junctions is shown in Figure 8(a) [24]. The junctions are located at the places where 
the meander-like stripline crosses the step in substrate (shown by dashed line). 
The array is embedded into spiral-type antenna in order to couple the array to the 
environment. In a special quasi-optical microwave setup and using a conventional 
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receiver the radiation power from the array was measured. The receiver was tuned 
to the fixed frequency 12 GHz and the radiation was detected during the sweep of 
bias current of the array. The result for the case of array consisting of 10 junctions is 
shown in Figure 8(b). The radiation peaks prove the ability of the array to generate 
microwave radiation. However, the fact that several peaks appear indicates that 
the array did not operate in a phase-locked mode. Most probably the spread was 
too high to achieve the total phase-locking. On the other hand the same array (i.e. 
with the same spread) can respond well to external microwave radiation and all 
junction can be synchronized on the first and second Schapiro step as it is shown 
in the inset of Figure 8(b). 

After such experiments it became clear that one simple and clear experiment is 
required in which the phase-locking of HTS Josephson junctions can be studied. 
For this experiment a circuit had to be choosed which tolerates larger spread and at 
the same time allowed for observation of dynamical properties using simple exper- 
imental tools. For this purpose the circuit where arrays of Josephson junction are 
closed into a superconducting loop, the so called multi-junction superconducting 
loop (MSL), was used [25] [26]. Schematically, the circuit is shown in Figure 9(a). 
Here, the MSL consisted of four junctions. Additional leads allowed the simultane- 
ous measurement of the voltages of all junctions as a function of the bias current. 
If  all voltages are the same, because of Eq. (2) the frequency of oscillations are also 
the same. In addition, if  this occurs not only for one particular value of bias current 
but in some interval of bias currents (locking interval) the conclusion is evident, 
that the junctions oscillate not only with the same frequency but also with locked 
phases [20]. 

The result of such an experiment is shown in Figure 9(c). During sweep of 
bias current the voltages of junctions were simultaneously recorded. We observe 
in certain locking interval that the voltages are indeed the same. This indicates 
that phase-locking in HTS arrays is possible. The question, however, must be 
answered whether such circuit is able to generate radiation power. For this purpose, 
together with the MSL the detector junction was integrated on the same chip and 
connected to the MSL via a coupling structure. The design allowed to bias both, 
MSL and detector junction, independently. When biasing the MSL within the 
locking interval, radiation should be generated and this radiation should influence 
the detector junction. The Shapiro steps should appear on the IVC of the detector 
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junction at voltages which correspond to the frequency of generation of the MSL. 
Indeed, such steps are seen on experimental IVC of detector junction, Figure 9(d) 
curve 1. When the MSL was biased in the zero voltage state or outside of the 
locking interval the IVC of the detector junction without step was observed, Figure 
9(d) curve 2, which prove that the radiation was really generated by the MSL. The 
operation of the MSL up to 50 K was observed. 

This experiment demonstrated that HTS Josephson junction arrays can be op- 
erated in a phase-locked mode and can generate microwave radiation. However, as 
an unsolved problem remains the relatively large linewidth of generated radiation. 
It is at the present stage of HTS technology not possible to extend the design to 
several hundred or thousand junctions. Some other approach how to lower this 
linewidth must be found. The external impedance seen by the Josephson junction 
influences strongly the behavior of junction. Especially resonant circuits connected 
to the junction change the shape and character of the junction's IVC. On Figure 
10 the calculated IVC of a Josephson junction connected to a LC resonant circuit 
is shown. At the resonant frequency we observe a strong decrease of the differential 
resistance. According to Eq. (6) this means that also the linewidth will  decrease. 

There are different ways how to integrate the arrays into resonators. There is 
one design which uses not only resonator feature but integrate the junctions in the 
way that even large spread can be tolerated. This is the so called parallel biasing 
scheme (PBS) [20], shown schematically in the Figure 11(a). Junctions are closed 
into long superconducting loops and they are biased through these loops in par- 
allel. Due to the superconducting loop the average voltages across the junctions 
must be automatically the same. For high frequencies, however, the large loop 
inductance do not allow the microwaves to propagate through the loops and high 
frequency interaction between junctions similar to the case of simple series arrays 
occurs. The superconducting loops can be designed in the form of coplanar res- 
onator as indicated in Figure 11(a). It is expected that the resonance should have 
influence on the linewidth of radiation. The circuit was fabricated using bicrystal 
Josephson junctions on LaAl203 substrate [27] as well as on sapphire (A1203) [28]. 
On the experimentally measured IVC of the PBS shown in Figure 11(b), curve 1 
[27] we observe self-induced steps due to interaction of junctions with the coplanar 
resonators. The influence of resonators can be also seen on experimentally mea- 
sured radiation from the array.   Two examples of radiation curves are shown in 
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Figure 11(b). The curve 2 demonstrates the case when array was biased between 
self-resonances, in the region with relatively large differential resistance. According 
to Eq. (6) larger linewidth is expected what is also observed experimentally. In 
contrast to this case we observe strong decrease of linewidth when measurement 
was made in the vicinity of a resonant step as it is shown in Figure 11(b), curve 3. 
The maximal microwave power detected on chip from this type of array was 4 nW 
[27]. 

The PBS is a promising candidate for application as radiation source based on 
HTS Josephson junctions. However, still the power delivered from such array is 
limited. From experiments done with low Tc Josephson junction arrays it is known 
that one solution is the use of two-dimensional (2d) arrays of Josephson junctions 
[29]. Such arrays have a much more complicated dynamical behavior as series arrays 
but in general they should tolerate relatively large spread [30]. There were several 
attempts to fabricate 2d HTS arrays using different type of junctions [31] [32]. Due 
to topological limitations the bicrystal Josephson junctions cannot be used in this 
case. The example of 2d HTS arrays fabricated using step-edge junctions is shown 
in Figure 12 [33]. Here we see the so-called shorted 2d array, where horizontal 
junctions are replaced by inductors. The advantage of this design over classical XY 
2d array is, that even in presence of large spread the average voltage of junctions 
in the row is the same. Thus, the junctions in the row are forced to oscillate 
with the same frequency. It remains to clear the interaction between rows. In the 
experimental layout additional leads to the rows allowed to measure the voltages 
of the rows simultaneously, and thus using DC measurement indirectly observe the 
rows dynamics. These leads can be also used for additional biasing of single rows 
and thus influence the behavior of the circuit. The typical experimental result is 
shown in Figure 12(c). Here, the row's voltages as a function of biasing current 
are shown. We see, that only two rows have the same voltages in certain bias 
interval, which indicates complicated behavior of the circuit. In finit  magnetic field 
it was occasionally possible to observe weak locking of all rows, but the system was 
extremely sensitive to change in external magnetic field and disturbances. 

It is clear that in order to operate 2d HTS arrays properly, the interaction be- 
tween rows must be increased. This can be done by adopting the idea of parallel 
biasing for 2d arrays. The design of such an array, called a parallel biased 2d array 
(PBS2D), is shown in Figure 13 [33]. The rows are closed into superconducting 
loops which distributes in parallel the bias current to the junctions. The experi- 
mentally fabricated PBS 2D array shown in Figure 13 was coupled via a stripline 
to another Josephson junction, which served as a frequency and power sensitive 
radiation detector and allowed thus the on-chip detection of radiation from the ar- 
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ray. The stripline was terminated by a capacitor on one end and by a short in close 
vicinity of the detector junction on the other end as is shown in Figure 13(a)-(b). 
Similarly to PBS discussed earlier the edge loops were designed in form of coplanar 
resonators which give the possibility to influence the linewidth of radiation and 
to couple the rows electromagnetically. The photograph in Figure 13 (b) shows 
the structure in the stage before fabrication of the top gold coupling loop. The 
experimentally measured IVC of the array (Figure 13(c)) shows the self-resonant 
steps due to interaction with the coplanar resonators, similar to the simple parallel 
biased series arrays. The detector junction integrated on-chip allowed to detect 
the radiation generated from the array. The result of such experiment is shown in 
Figure 13(d), where the IVC of detector was recorded while the array was biased 
at different voltages. On the IVC of the detector junction clear Shapiro steps ap- 
pear and the position of the steps exactly coincides with the generated frequency. 
This proves the proper operation of the array. The clear detector response was ob- 
served in the frequency range 90-500 GHz, which demonstrates the relatively large 
tunability of the array. 

As it is clear from the experiments presented in this paper the problem of HTS 
Josephson junction microwave generators is not closed. Some promising approaches 
already exist, however considerable work must be done before implementation of 
such array in commercial applications. Nevertheless, in relatively short time since 
the discovery of HTS considerable progress was done in this field, and certainly, 
HTS Josephson junction arrays should be seriously considered as candidate for THz 
microwave generators. 

HTS JOSEPHSON JUNCTION ARRAYS AS 
MICROWAVE MIXERS 

As already mentioned, the array generators have perspectives for applications as 
local oscillators for THz receivers. An exciting idea is to connect such HTS local 
oscillator with HTS microwave mixer. Low Tc superconductor mixers based on 
SIS junction are probably the most important success of superconducting electron- 
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ics. Certainly, the transformation of this idea into HTS would have revolutionary 
impact on development in high frequency instruments. Unfortunately, as already 
mentioned HTS SIS type of junction is not available. The hope is connected with 
intrinsic Josephson effect seen in HTS monocrystalls [34]. The layered nature of 
HTS material produces natural underdamped Josephson junctions. These intrinsic 
junctions are able to generate microwave power and there are already mixing ex- 
periments available [35]. However, clear SIS operation, that means the operation 
where the quasiparticle tunneling is explored, was not demonstrated yet and also 
such devices are not available in thin film technology. The alternative approach can 
be to use overdamped HTS junction or arrays of such junction as mixer. The idea 
of the Josephson mixer was developed since the discovery of Josephson effect and 
such mixers were investigated using low Tc materials [36] [37]. Recently, the data 
about implementation in HTS are available [38] [39]. In these experiments mostly 
single junction was used, which makes the design more simple. On the other hand 
arrays of HTS junction can bring some advantages. Especially, the impedance 
matching can be improved when series array are used. Konopka et al [40] made 
mixing experiments using series HTS array. On Figure 14 [40] the result of such 
mixing experiment is shown. We see the response at intermediate frequency of 3.5 
GHz when the array was irradiated by two microwave sources. One source was 3rd 
harmonic of Gunn oscillator and second source was 2nd harmonic of backward-wave 
oscillator at 291 GHz. The appearance of the peak at the intermediate frequency 
demonstrated the ability of such an array to convert down microwave signals and 
the temperature dependence suggests the ability to operate at higher temperatures. 
As an open question remains the sensitivity of such a mixer and how the spread in 
junction parameters influence the performance of the array. 

Not without importance is the exciting idea to use such arrays in the so-called 
self mixing mode, where the array plays the role of local oscillator and mixer at 
the same time. This would lead to an enormous simplification of the whole receiver 
design. The demonstration of self mixing using HTS was already made on the level 
of single junctions [41], the transfer into array is in progress. 

CONCLUSIONS 

In this paper we addressed some application areas of Josephson junction arrays 
based on high-Tc (HTS) superconductors. In particular, we discussed the possibil- 
ity of construction of voltage standards, high frequency radiation sources and mixers 
using HTS arrays. The aim of the paper was to give a picture about problems and 
available solutions in this field. We showed, that in the case of voltage standards 
the real industrial application can come soon, while high frequency sources and 
mixers need still more investigation. Although, the basic solutions for principal 
problems already exist. HTS Josephson junction arrays are examples, how exciting 
physics can be converted into practical and useful devices. 
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TABLE  3.  Substrates used for deposition of 
HTS thin films. 

Substrate Lattice constant (Ä) er 

SrTi03 3.790 300 
LaA103 3.793 24 
MgO 4.213 10 
NdGaOa 3.837 23 
YSZ 5.140 29 
AI2O3 3.48 9.3 

FIGURE 1. HTS Josephson junctions. 
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current, (d) Curve 1 - the response of detector junction when MSL was biased at the phase-locking 
conditions, curve 2 - the IVC of detector when MSL was "switched-off" (biased at zero voltage 
state). 
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FIGURE 10. (a) Josephson junction connected to resonant circuit and it's IVC (b). 
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FIGURE 11. (a) Scheme of parallel biased series array with coplanar resonator, (b) Curve 1 
- IVC of the array, curve 2 and curve 3 - the radiation from the array at 80 and 122 GHz. The 
measurements were made at 4.2 K 
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FIGURE 12. (a) Scheme of shorted 2d arrays, (b) Photograph of the circuit, (c) Depdence of 
voltages of rows as a function of bias current in zero magnetic field, (d) in finite magnetic field. 
The measurements were made at 4.2 K 
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FIGURE 13. (a) Circuit scheme of parallel biased 2d array, (b) photograph of the circuit, 
(c) IVC of array, (d) response of detector junction when array biased at different voltage. The 

measurements were made at the temperature 10 K. 
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FIGURE 14. Intermediate frequency spectral lines for mixing of 3rd harmonic of Gunn oscillator 
and 2nd harmonic of BWO at 291 GHz. 
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II.  ARRAYS IN CLASSICAL  REGIME:  
CRITICAL  PROPERTIES 



Confinement and Quantization Effects 
in Mesoscopic Superconducting 

Structures 

V. V. Moshchalkov, V. Bruyndoncx, E. Rosseel, L. Van Look, M. 
Baert, M. J. Van Bael, T. Puig1, C. Strunk2 and Y. Bruynseraede 

Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, 
Celestijnenlaan 200 D, B-3001 Leuven, Belgium 

Abstract. We have studied quantization and confinement effects in nanostructured 
superconductors. Three different types of nanostructured samples were investigated: 
individual structures (line, loop, dot), 1-dimensional (ID) clusters of loops and 2D 
clusters of antidots, and finally large lattices of antidots. Hereby, a crossover from 
individual elementary "plaquettes", via clusters, to huge arrays of these elements, 
is realized. The main idea of our study was to vary the boundary conditions for 
confinement of the superconducting condensate by taking samples of different topology 
and, through that, modifying the lowest Landau level ELLL(H). Since the critical 
temperature versus applied magnetic field TC(H) is, in fact, ELLL(H) measured in 
temperature units, it is varied as well when the sample topology is changed through 
nanostructuring. We demonstrate that in all studied nanostructured superconductors 
the shape of the TC(H) phase boundary is determined by the confinement topology in 
a unique way. 

I     INTRODUCTION  

A    Confinement and Quantization 

"Confinement" and "quantization" are two closely interrelated definitions: if  a 
particle is "confined" then its energy is "quantized", and vice versa. According to 
the dictionary, to "confine" means to "restrict within limits", to "enclose", and even 
to "imprison". A typical example, illustrating the relation between confinement and 
quantization, is the restriction of the motion of a particle by an infinite potential 
well of size LA- Due to the presence of an infinite potential U(x) (Fig. 1) for x < 0 
and x > LA, the wave function $(x) describing the particle is zero outside the well: 
\I> = 0 for x < 0 and x > LA and, in the region with U{x) = 0 (0 < x < LA), 
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2'  Currently at: University of Basel, Institute for Physics, CH-4056 Basel, Switzerland 
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the solutions of the one-dimensional Schrödinger equation correspond to standing 
waves with an integer number n of half wavelengths A along LA ' ■ n Xn/2 = LA- 

This simple constraint results in the well-known quantized energy spectrum 

V« 

FIGURE 1. Confinement and quantization of the motion of a particle by an infinite potential 
well with size LA for n = 1, 2 and 3. 

En = 
h2kl     h\2n/\nf 
2m 2m 

h2n2 
 3 

2mL\ (1) 

Here kn is the wave number and m is the free electron mass. To have an idea about 
the characteristic energy scales involved and their dependence upon the confinement 
length LA-, we have calculated (see Table 1) the energies E\ (Eq. (1)) for electrons 
confined by an infinite potential well with the sizes 1 Ä, 1 nm and 1 urn. 

TABLE 1. Confinement by the infinite potential well 

Confinement length LA  Energy Ei  Temperature T 
1Ä 

1 nm 
1 jim 

40 eV 
0.4 eV 

0.4 ^eK 

4 x 105 K 
4 x 103 K 

4mK 

B    Nanostructuring 

Recent impressive progress in nanofabrication has made it possible to realize the 
whole range of confinement lengths LA : from 1/xm (photo-and e-beam lithography), 
via 1 nm to 1 A (single atom manipulation) and, through that, to control the 
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confinement energy (temperature) from a few mK higher up to far above room 
temperature (Table 1). 

This progress has stimulated dramatically the experimental and theoretical stud- 
ies of different nanostructured materials and individual nanostructures. The in- 
terest towards such structures arises from the remarkable principle of "quantum 
design", when quantum mechanics can be efficiently used to tailor the physical 
properties of nanostructured materials. 

Nanostructuring can also be considered as a sort of artificial modulation. We can 
identify then the main classes of nanostructured materials using the idea of their 
modification along one-, two- or three-axes, thus introducing 1-dimensional (ID)-, 
2D- or 3D- artificial modulation (Fig. 2). The ID or "vertical" modulation repre- 

B 

B 

ID (a) 

A*  A*  A 
B* B »B 

A» A «A 
B »B« B 

2D 

A' A*  A 
• B • B • B 
A« A • A 
• B • B • B 

B • B • B • 
A' A • A 

B« B *B 
A • A« A 

A» A*  A • 
B' B • B 

A*  A • A*  
B • B« B 

3D=1D+2D 

FIGURE 2. Schematic presentation of the vertical modulation in superlattices or multilayers 
(a), of the horizontal modulation achieved by a lateral repetition of elements A and B (b) and of 
the 1D+2D=3D artificial modulation (c). 

sents then the class of superlattices or multilayers (Fig. 2a) formed by alternating 
individual films of two (A, B) or more different materials on a stack. Some examples 
of different types of multilayers are superconductor/insulator (Pb/Ge, WGe/Ge,...), 
superconductor/metal (V/Ag,...), superconductor/ferromagnet (Nb/Fe, V/Fe,...), 
ferromagnet/metal (Fe/Cr, Cu/Co,...), etc. 

The "horizontal" (lateral) superlattices (Fig. 2b) correspond to the 2D artificial 
modulation achieved by a lateral repetition of one (A), two (A,B) or more ele- 
ments. As examples, we should mention here antidot arrays or antidot lattices, 
when A=microhole ("antidot"), or arrays and lateral superlattices consisting of 
magnetic dots. 

If  the 2D lateral modulation is applied to each individual layer of a multilayer 
or superlattice, then we deal with the 1D+2D=3D artificial modulation (Fig. 2c). 
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For example, if  arrays of antidots are made in a multilayer, then we have a system 
with 3D artificial modulation which combines 2D lateral "horizontal" with the ID 
"vertical" modulation. 

Finally, macroscopic nanostructured samples, with a huge number N of repeated 
elementary "plaquettes" (A,B,...), are examples of very complicated systems if  the 
confined charge carriers or flux lines are strongly interacting with each other and 
the relevant interaction is of a long range. In this case the essential physics of 
such systems can be understood much better if  we use clusters of elements (N ~ 
10), instead of their huge arrays (N ->• oo) (Fig. 3). These clusters, occupying an 

0 
A A A A A A 

A A A A 

A A A A A A 

A A A A A A 

INDIVIDUAL        CLUSTER HUGE ARRAY 
STRUCTURE 

FIGURE 3. Schematic presentation of an individual structure, a cluster and a huge array. 

intermediate place between individual nanostructures (iV = 1) and nanostructured 
materials (N -* oo), are very helpful model objects to study the interactions be- 
tween flux lines or charge carriers confined by elements A. The "growth" of clusters 
on the way from an individual object A to a huge array of A's can be done either in 
a ID or 2D fashion (Fig. 3), thus realizing ID chains or 2D-like clusters of elements 
A. 

C    Confining the Superconducting Condensate 

The nanostructured materials and individual nanostructures, introduced in the 
previous section, can be prepared using the modern facilities for nanofabrication. 
It is worth, however, first asking ourselves a few simple questions like: why do we 
want to make such structures, what interesting new physics do we expect, and why 
do we want to focus on superconducting (and not, for example, normal metallic) 
nanostructured materials? 

First of all, by making nanostructured materials, one creates an artificial poten- 
tial in which charge carriers or flux lines are confined. The size LA of an elementary 
"plaquette" A, gives roughly the expected energy scale in accordance with Table 1, 
while the positions of the elements A determine the pattern of the potential mod- 
ulation. The concentration of charge carriers or flux lines can be controlled by 
varying a gate voltage (in 2D electron gas systems) [1] or the applied magnetic 
field (in superconductors) [2]. In this situation, different commensurability effects 
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between the fixed number of elements A in an array and a tunable number of charge 
or flux carriers are observed. 

Secondly, modifying the sample topology in nanostructured materials creates a 
unique possibility to impose the desired boundary conditions, and thus almost "im- 
pose" the properties of the sample. A Fermi liquid or a superconducting condensate 
confined within such materials will  be subjected to severe constraints and, as a re- 
sult, the properties of these materials will  be strongly affected by the boundary 
conditions. 

While a normal metallic system should be considered quantum-mechanically by 
solving the Schrödinger equation: 

— {-i%V-eÄ)2y + Uy = Ey , (2) 
2m 

a superconducting system is described by the two coupled Ginzburg-Landau (GL) 
equations: 

1-(-ihV-e*Ä)29t + ß\V.\2V. = -aV. (3) 
2m 

js = V x h = £  ̂[*:(-:ftV  - e*I)* s + tt,(tftV - e*Ä)^:\ , (4) 

with A the vector potential which corresponds to the microscopic field h = rot A/[to, 
U the potential energy, E the total energy, a a temperature dependent parameter 
changing sign from a > 0 to a < 0 as T is decreased through Tc, ß a positive 
temperature independent constant, m* the effective mass which can be chosen 
arbitrarily and is generally taken as twice the free electron mass m. 

Note that the first GL equation (Eq. (3)), with the nonlinear term /?|$s|
2$s 

neglected, is the analogue of the Schrödinger equation (Eq. (2)) with U = 0, when 
making a few substitutions: $s o \P, e* <-+ e, —a f-» E and m* «-»■ m. The 
superconducting order parameter 9, corresponds to the wave function $ in Eq. (2). 
The effective charge e* in the GL equations is 2e, i.e. the charge of a Cooper pair, 
while the temperature dependent GL parameter a 

(5) 2m* £2(T) 

plays the role of E in Schrödinger equation. Here £(T) is the temperature dependent 
coherence length: 

f  (T) = -A_ (6) 
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The boundary 
conditions for interfaces normal metal-vacuum and superconductor-vacuum are, 
however, different (Fig. 4): 

* **|6 = ° (7) 
(-tftV - e*A)*J     = 0 (8) 

i.e. for normal metallic systems the density is zero, while for superconducting sys- 
tems, the gradient of $s (for the case A = 0) has no component perpendicular to the 
boundary. As a consequence, the supercurrent cannot flow through the boundary. 
The nucleation of the superconducting condensate is favored at the superconduc- 
tor/ vacuum interfaces, thus leading to the appearance of superconductivity in a 
surface sheet with a thickness £(T) at the third critical field H&{T).  

For bulk superconductors the surface-to-volume ratio is negligible and there- 
fore superconductivity in the bulk is not affected by a thin superconducting sur- 
face layer. For nanostructured superconductors with antidot arrays, however, 
the boundary conditions (Eq. (8)) and the surface superconductivity introduced 
through them, become very important if  LA < £(T). The advantage of supercon- 
ducting materials in this case is that it is not even necessary to go to nm scale (like 
for normal metals), since for LA of the order of 0.1-1.0 fim the temperature range 
where LA < f (T), spreads over 0.01 — 0.1 K below Tc due to the divergence of f (T) 
at T -► T* (Eq. (6)). 

In principle, the mesoscopic regime LA < f(T") can be reached even in bulk 
superconducting samples with LA ~ 1 cm — 1 m, since £(T) diverges. However, the 
temperature window where LA < £(T) is so narrow, not more than ~ 1 nK below 
Tco, that one needs ideal sample homogeneity and perfect temperature stability. 

In the mesoscopic regime LA < £(T), which is quite easily realized in (perforated) 
nanostructured materials, the surface superconductivity can cover the whole avail- 
able space occupied by the material, thus spreading superconductivity all over the 
sample. It is then evident that in this case surface effects play the role of bulk 
effects. 

Using the similarity between the linearized GL equation (Eq. (3)) and the 
Schrödinger equation (Eq. (2)), we can formalize our approach as follows: since 
the parameter -a (Eqs. (3) and (5)) plays the role of energy E (Eq. (2)), then the 
highest possible temperature TC(H) for the nucleation of the superconducting state 
in presence of the magnetic field H always corresponds to the lowest Landau level 
ELLL(H) found by solving the Schrödinger equation (Eq. (2)) with "superconduct- 
ing" boundary conditions (Eq. (8)). 

Figure 5 illustrates the application of this rule to the calculation of the upper 
critical field Hc2(T): indeed, if  we take the well-known classical Landau solution 
for the lowest level in bulk samples ELLL(H) = hw/2, where u> = e*ix0H/m* is the 
cyclotron frequency. Then, from -a = ELLL(H) we have 
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2m*e(T)       2  H=Hc2 

and with the help of Eq. (5), we obtain 

^<r>=2^fj (10) 

with $o = h/e* = h/2e the superconducting flux quantum. 
In nanostructured superconductors, where the boundary conditions (Eq. (8)) 

strongly influence the Landau level scheme, EHL{H) has to be calculated for each 
different confinement geometry. By measuring the shift of the critical temperature 
TC(H) in a magnetic field, we can compare the experimental TC(H) with the cal- 
culated level ELLL{H) and thus check the effect of the confinement topology on 
the superconducting phase boundary for a series of nanostructured superconduct- 
ing samples. The transition between normal and superconducting states is usually 
very sharp and therefore the lowest Landau level can be easily traced as a function 
of applied magnetic field. Except when stated explicitly, we have taken the mid- 
point of the resistive transition from the superconducting to the normal state, as 
the criterion to determine TC(H). 

In this paper we present the systematic study of the influence of the confinement 
geometry on the superconducting phase boundary TC(H) in a series of nanostruc- 
tured samples. We begin with individual nanostructures of different topologies 
(lines, loops, dots) (Section II) and then focus on "intermediate" systems: clusters 
of loops fabricated in the form of a ID chain of loops (Section III.  A) or 2D antidot 
clusters (Section III.B). Finally, we move on to huge arrays of antidots in Section 
IV where we report on the TC(H) boundary for superconducting films with antidot 
lattices. The main emphasis of the paper is on the demonstration of the importance 
of the confinement geometry for the superconducting condensate and on the related 
quantization phenomena in nanostructured superconductors through the study of 
the phase boundaries TC{H). 

II     INDIVIDUAL  STRUCTURES: LINE, LOOP AND 
DOT 

We begin this section by presenting the experimental results on the TC(H) phase 
boundary of individual superconducting mesoscopic structures of different topology. 
Simultaneously, we have kept other parameters of these samples, like material from 
which they are made (Al), the width of the lines (to = 0.15 fim) and the film 
thickness t = 25 nm the same for all three structures, thus directly relating the 
differences in TC(H) to topological effects. The magnetic field H is always applied 
perpendicular to the structures. 
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A    Line 

In Fig. 6a the phase boundary TC(H) of a mesoscopic line is shown.  The solid 
line gives the TC(H) calculated from the well-known formula [3]: 

TC(H) = Tc0 
$o      ) 

(11) 

which, in fact, describes the parabolic shape of TC(H) for a thin film of thickness w 
in parallel magnetic field. Since the cross-section, exposed to the applied magnetic 
field, is the same for a film of thickness w in a parallel magnetic field and for a 
mesoscopic line of width w in a perpendicular field, the same formula can be used 
for both [4]. Indeed, the solid line in Fig 6a is a parabolic fit of the experimental 
data with Eq. (11) where f(0) = 110 nm was obtained as a fitting parameter. The 
coherence length obtained using this method, coincides reasonably well with the 
dirty limit value f(0) = 0.85(fo^)1/2 = 132 nm calculated from the known BCS 
coherence length £0 = 1600 nm for bulk Al [5] and the mean free path £ = 15 nm, 
estimated from the normal state resistivity p at 4.2 K [6]. 

We can use also another simple argument to explain the parabolic relation 
TC(H) oc H2: the expansion of the energy E(H) in powers of H, as given by 
the perturbation theory, is [7]: 

E{H) = E0 + AXLK + A2SH2 + ■■■ (12) 

where A\ and A2 are constant coefficients, the first term E0 represents the energy 
levels in zero field, the second term is the linear field splitting with the orbital 
quantum number L and the third term is the diamagnetic shift with S, being the 
area exposed to the applied field. 

Now, for the topology of the line with a width w much smaller than the Larmor 
radius r# > w, any orbital motion is impossible due to the constraints imposed by 
the boundaries onto the electrons inside the line. Therefore, in this particular case 
L — 0 and E(H) = E0 + A2SH2, which immediately leads to the parabolic relation 
Tc oc H2. This diamagnetic shift of TC{H) can be understood in terms of a partial 
screening of the magnetic field H due to the non-zero width of the line [8]. 

B    Loop 

The TC(H) of the mesoscopic loop, shown in Fig. 6b, demonstrates very distinct 
Little-Parks (LP) oscillations [9] superimposed on a monotonic background. A 
closer investigation leads to the conclusion that this background is very well de- 
scribed by the same parabolic dependence as the one which we just discussed for the 
mesoscopic line [4] (see the solid line in Fig. 6a). As long as the width of the strips 
w, forming the loop, is much smaller than the loop size, the total shift of TC(H) 
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can be written as the sum of an oscillatory part, and the monotonic background 
given by Eq. (11) [4,10]: 

TC(H) = TcQ 
! _ ± (EMEZIL)   e2(Q)/    *\ 2 

3   I       $o       ) R2   V       $0J (-r  (13) 

where R2 = R\ R2 is the product of inner and outer loop radius, and the magnetic 
flux threading the loop $ = nR2p0H. The integer n has to be chosen so as to 
maximize TC{H) or, in other words, selecting ELLL(H). 

The LP oscillations originate from the fluxoid quantization requirement, which 
states that the complex order parameter <P5 should be a single-valued function when 
integrating along a closed contour 

Ivy dl = n2n n = --,-2,-1,0,1,2, ■■• (14) 

where we have introduced the order parameter as *s = |*5|exp (if). Fluxoid 
quantization gives rise to a circulating supercurrent in the loop when $ ^ n$0, 
which is periodic with the applied flux $/$0- 

Using the sample dimensions and the value for f (0) obtained before for the meso- 
scopic line (with the same width w - 0.15 fim), the TC(H) for the loop can be 
calculated from Eq. (13) without any free parameter. The solid line in Fig. 6b 
shows indeed a very good agreement with the experimental data. It is worth not- 
ing here that the amplitude of the LP oscillations is about a few ml< - in qualitative 
agreement with the simple estimate given in Table 1 for LA — 1 fim- 

Another interesting feature of a mesoscopic loop and other mesoscopic structures 
is the unique possibility they offer for studying nonlocal effects [11]. In fact, a single 
loop can be considered as a 2D artificial quantum orbit with a fixed radius, in 
contrast to Bohr's description of atomic orbitals. In the latter case the stable radii 
are found from the quasiclassical quantization rule, stating that only an integer 
number of wavelengths can be set along the circumference of the allowed orbits. 
For a superconducting loop, however, supercurrents must flow, in order to fulfil  the 
fluxoid quantization requirement (Eq. (14)), thus causing oscillations of the critical 
temperature Tc versus magnetic field H. 

In order to measure the resistance of a mesoscopic loop, electrical contacts have, 
of course, to be attached to it, and as a consequence the confinement geometry is 
changed. A loop with attached contacts and the same loop without any contacts 
are, strictly speaking, different mesoscopic systems. This "disturbing" or "invasive" 
aspect can now be exploited for the study of nonlocal effects [11]. Due to the 
divergence of the coherence length £(T) at T = T& (Eq. (6)) the coupling of the 
loop with the attached leads is expected to be very strong for T -¥ Tc0. 

Fig. 7 shows the results of these measurements. Both "local" (potential probes 
across the loop Vi/V2) and "nonlocal" (potential probes aside of the loop V1/V3 
or V2/V4) LP oscillations are clearly observed. For the "local" probes there is an 
unexpected and pronounced increase of the oscillation amplitude with increasing 
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field, in disagreement with previous measurements on Al microcylinders [10]. In 
contrast to this, for the "nonlocal" LP effect, the oscillations rapidly vanish when 
the magnetic field is increased. 

When increasing the field, the background suppression of Tc (Eq. (11)) results in 
a decrease of £(T). Hence, the change of the oscillation amplitude with H is directly 
related to the temperature-dependent coherence length. As long as the coherence 
of the superconducting condensate protuberates over the nonlocal voltage probes, 
the nonlocal LP oscillations can be observed. 

On the other hand, the importance of an "arm" attached to a mesoscopic loop, 
was already demonstrated theoretically by de Gennes in 1981 [12]. For a perfect ID 
loop (vanishing width of the strips) adding an "arm" will  result in a decrease of the 
LP oscillation amplitude, what we observed indeed at low magnetic fields, where 
f(T) is still large. With these experiments, we have proved that adding probes 
to a structure considerably changes both the confinement topology and the phase 
boundary TC(H). 

C    Dot 

The Landau level scheme for a cylindrical dot with "superconducting" boundary 
conditions (Eq. (8)) is presented in Fig. 8. Each level is characterized by a certain 
orbital quantum number L where $s - |\Ps|exp (^iLip) [13]. The levels, corre- 
sponding to the sign "+" in the argument of the exponent are not shown since they 
are situated at energies higher than the ones with the sign "-". The lowest Landau 
level in Fig. 8 represents a cusp-like envelope, switching between different L values 
with changing magnetic field. Following our main guideline that ELLL(H) deter- 
mines TC(H), we expect for the dot the cusp-like superconducting phase boundary 
with nearly perfect linear background. The measured phase boundary TC(H), shown 
in Fig. 6b, can be nicely fitted by the calculated one (Fig. 8), thus proving that 
TC(H) of a superconducting dot indeed consists of cusps with different L's [14]. 
Each fixed L describes a giant vortex state which carries L flux quanta $0- The 
linear background of the TC(H) dependence is very close to the third critical field 
Hc3(T) ~ 1.69 Hc2(T) [15]. Contrary to the loop, where the LP oscillations are 
perfectly periodic, the dot demonstrates a certain aperiodicity [16], in very good 
agreement with the theoretical calculations [14,17]. 

Ill     CLUSTERS OF LOOPS AND ANTIDOTS 

A    ID Clusters of loops 

After the description of the confinement effects of several individual supercon- 
ducting structures (A = line, loop, dot) we are ready to move further on to clusters 
of elements A (Fig. 3) on our way from "single plaquette" samples to materials 
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nanostructured by introducing huge arrays of elements A. First we take A = loop 
and consider one-dimensional multiloop structures: "bola", double and triple loop 
Al structures. Figure 9 shows a AFM image of the structures. For these geometries 
some interesting theoretical predictions have been made, for which no experimental 
verification has been carried out up to know (see more in Ref. [18]). The loops in all 
three structures have the same dimensions, thus leading to the same magnetic field 
period //oAi7 = 1.24 mT. The strips forming the structures are 0.13 \im wide and 
the film thickness t — 34 nm. In all the experimental data we show, the parabolic 
background (Eq. (11)) is already subtracted in order to allow for a direct compar- 
ison with the theory. In the temperature interval where we measured the TC(H) 
boundary, the coherence length £(T) is considerably larger than the width w of the 
strips. This makes it possible to use the one-dimensional models for the calculation 
of ELLL{H) and thus TC(H). The basic idea is to consider |VP,| = constant across 
the strips forming the network and to allow a variation of |\PS| only along the strips. 
In the simplest approach |\PS| is assumed to be spatially constant (London limit  
(LL)) [19,20], in contrast to the de Gennes-Alexander (dGA) approach [12,21,22], 
where |<J>S| is allowed to vary along the strips. In the latter approach one imposes: 

?('l  + |AH(a;))* s(a;) = 0 (15) 

at the points where the current paths join. The summation is taken over all strips 
connected to the junction point. Here, x is the coordinate defining the position 
on the strips, and A\\ is the component of the vector potential along x. Eq. (15) 
is often called the generalized first Kirchhoff law, ensuring current conservation 
[22]. The second Kirchhoff law for voltages in normal circuits is now replaced by 
the fluxoid quantization requirement (Eq. (14)), which should be fulfilled for each 
closed contour around a loop. 

In Figs. 10-12 the phase boundaries of the three structures are shown. The 
dashed lines are the phase boundaries obtained with the LL, while the solid lines 
give the results from the dGA approach. As we discussed in Section II.  B for a 
mesoscopic loop, attaching contacts modifies the confinement topology, so that the 
amplitude of the local LP oscillations is lowered at low magnetic fields. Here as 
well, the inclusion of the leads reduces the amplitude of the oscillations. The dash- 
dotted line in Figs. 10-12 give the result of the dGA calculation where the presence 
of the leads has been included. The values for £(0) obtained from the fits agree 
within a few percent with the £(0) values found independently from the monotonic 
background of Tc($) (see Eq. (11)). 

First, in Fig. 10, we consider the mesoscopic "bola" - two loops connected by a 
wire. Fink et al. [22] showed that, in the complete magnetic flux interval, the spa- 
tially symmetric solution, with equal orientation of the supercurrents in both loops, 
has a lower energy than the antisymmetric solution. Coming back to the similarity 
between a mesoscopic loop and a hydrogen atom, we discussed in Section II.B, 
we can then compare the bola with a H^ molecule, where the symmetric and the 
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antisymmetric solutions correspond to singlet and triplet states, respectively. In 
fact, Tc($) of the bola is the same as for a single loop provided that the length 
of the strip connecting the two loops is short, as confirmed by the LP oscillations 
observed in the experimental Tc($) (Fig. 10). 

In what follows we will  focus on the phase boundaries of the double (Fig. 11) 
and the triple loop (Fig. 12). To facilitate the discussion we divide the flux period 
in two intervals: flux regime I for $/$0 < 9 or $/$0 > {1 - g) and flux regime II  
for g < $/$o < (1 - g)- In the flux regime I the phase boundaries, predicted 
by the different models, are nearly identical. Near $/$0 = 1/2 (flux regime II), 
however, clear differences are found between the dGA approach and the LL. The 
dGA result fits better the experimental data with respect to the crossover point g 
between regimes I and II, and the amplitude of the Tc oscillations. Using the dGA 
approach we have calculated the spatial modulation of j^s| and the supercurrents 
for different values at the Tc($) boundary. In the flux regime I |*,| varies only 
slightly and therefore the results of the LL and the dGA models nearly coincide. 
The elementary loops have an equal fluxoid quantum number (and consequently an 
equal supercurrent orientation) for both the double and the triple loop geometry. 
For the double loop this leads to a cancellation of the supercurrent in the middle 
strip, while for the triple loop structure the fluxoid quantization condition (Eq. (14)) 
results in a different value for the supercurrent in the inner and the outer loops. 
As a result, the common strips of the triple loop structure carry a finite current. 

In the flux regime II, qualitatively different states are obtained from the LL and 
the dGA approach: the states calculated within the dGA approach have strongly 
modulated |\f4| along the strips. This is most severe for the double loop: $s 

shows a node (|\PS| = 0) in the center of the common strip, the phase ip having a 
discontinuity of -K at this point. This node is a one-dimensional analog of the core of 
an Abrikosov vortex, where the order parameter also vanishes and the phase shows 
a discontinuity. In Fig. 13 the spatial variation of |WS| along the strips is shown 
for $/$o = 0.36 close to the crossover point g. The dashed curve gives |$s| in flux 
regime I, which is quasi-constant. The strongly modulated solution, which goes 
through zero in the center, is indicated by the solid line. Although there exists a 
finite phase difference across the junction points of the middle strip, no supercurrent 
can flow through the strip due to the presence of the node. This node is predicted 
to persist when moving below the phase boundary into the superconducting state 
[23,24]. Already in 1964 Parks [25] anticipated that, in a double loop, "a part of the 
middle link will  revert to the normal phase", and that "this in effect will  convert 
the double loop to a single loop", giving an intuitive explanation for the maximum 
in Tc($) at $/$0 = 1/2. Such a modulation of |$s| is obviously excluded in the 
LL, where the loop currents have an opposite orientation and add up in the central 
strip, thus giving rise to a rather high kinetic energy. An extra argument in favor 
of the presence of the node is given by the much better agreement for the crossover 
point g when the presence of the leads is taken into account in the calculations (see 
dash-dotted line in Fig. 11). 

For the triple loop structure the modulation of |\PS| is still considerable in flux 
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regime II, but it does not show any nodes. Therefore the supercurrent orientations 
can be found from the fluxoid quantum numbers {n,},  obtained from integrating 
the phase gradients along each individual loop. When passing through the crossover 
point between flux regime I and regime II  only the supercurrent in the middle loop 
is reversed, while increasing the flux above $/$0 = 1/2 implies a reversal of the 
supercurrent in all loops. 

Surprisingly, the behavior of a microladder with a linear arrangement of m loops 
appears to be qualitatively different for even and for odd m in the sense that m 
determines the presence or absence of nodes in the common strips. For an infinitely 
long microladder |\P»| was found to be spatially constant below a certain $ < $c 

[26], which is analogous to the states we find in flux regime I. For fluxes $ > $e 

modulated |\PS| states, with an incommensurate fluxoid pattern, were found. At 
<J>/$0 = 1/2, nodes appear at the center of every second common (transverse) 
branch. 

B    2D clusters of antidots 

As a 2D intermediate structure between individual elements A and their huge 
arrays (Fig. 3), we have studied the superconducting micro-square with a 2x2 
antidot cluster. In this case A= "antidot". The micro-square with the 2x2 antidot 
cluster consists of a 2x2 \xm2 superconducting square with four antidots (i.e. square 
holes of 0.53 x 0.53 /im2). A Pb/Cu bilayer with 50 nm of Pb and 17 nm of Cu 
was used as the superconducting film for the fabrication of this structure. The 
thin Cu layer was deposited on the Pb to protect it from oxidation and to provide 
a good contact-layer for the wire-bounding to the experimental apparatus. An 
AFM image of the Pb/Cu 2x2 antidot cluster, is shown in Fig. 14 together with 
a reference sample (i.e. a Pb/Cu micro-square of 2x2 fim2 without antidots). 
The Pb(50 nm)/Cu(50 nm) bilayer behaves as a Type II superconductor with a 
Tco = 6.05 K, a coherence length, £(0) « 35 nm and a dirty limit penetration 
depth, A(0) « 76 nm. The TC(H) measurements on the reference sample revealed 
characteristic features originating from the confinement of the superconducting 
condensate by the dot geometry (see Section II.C). The additional features observed 
in the TC(H) phase boundary of the antidot cluster can therefore be attributed to 
the presence of the antidots. 

The experimental TC(H) phase boundary is shown in Fig. 15. It was measured 
by keeping the sample resistance at 10% of its normal state value and varying the 
magnetic field and temperature [27]. Strong oscillations are observed with a peri- 
odicity of 26 G and in each of these periods, smaller dips appear at approximately 
7.5 G, 13 G and 18 G. The parabolic background superimposed on TC(H) can again 
be described by Eq. (11). 

Defining a flux quantum per antidot as <J>0 = h/2e — BS, where B = ß0H and 
S is an effective area per antidot cell (S= 0.8 fim2), the minima observed in the 
magnetoresistance and the TC(H) phase boundary at integer multiples of 26 G can 
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be correlated with a magnetic flux quantum per antidot cell, $ = n$o- The ones 
observed at 7.5 G, 13 G and 18 G correspond to the values $/$o=0.3, 0.5 and 0.7. 

The solutions obtained from the London model (LL) define a phase bound- 
ary which is periodic in $ with a periodicity of $o- Within each parabola 
ATC — 7($/$o)2j where the coefficient 7 characterizes the effective flux pene- 
tration trough the unit cell. The 7-value is determined by the combination of A 
and the effective size of the current loops. In Fig. 16, the first period of this phase 
boundary, ATC($) = Ta - Tc($) versus $/$0 is shown. Note that there are six 
parabolic solutions given by a different set of flux quantum numbers {rc8} , each 
one defining a specific vortex configuration. In Fig. 16a, this is indicated by the 
numbers shown inside the schematic drawings of the antidot cluster. Note that 
some vortex configurations are degenerate. 

From all these possible solutions, for each particular value of $/$o, only the 
branch with a minimum value of AT C($) is stable (indicated with a solid line in 
Fig. 16a). Note that for the phase boundary, calculated within the ID model of 4 
equivalent and properly attached squares, no fitting parameters were used since the 
variation of Tc($) was calculated from the known values for £ and the size. One 
period of the phase boundary of the antidot cluster is composed of five branches 
and in each branch a different stable vortex configuration is permitted. For the 
middle branch (0.37< $/$o <0.63), the stable configuration is the diagonal vortex 
configuration (antidots with equal rii  at the diagonals) instead of the parallel state 
(dashed line in Fig. 16a). 

The net supercurrent density distribution circulating in the antidot cluster for 
different values of $/$o has been determined using the same approach. Circular 
currents flow around each antidot. For the states n,=0 and n;=l currents flow 
in the opposite direction, since currents corresponding to rc,=0 must screen the 
flux to fulfil  the fluxoid quantization condition (Eq. (14)), whereas for n,=l they 
have to generate flux. At low values of $/$o, currents are canceled in the internal 
strips and screening currents only flow around the cluster. When we enter the field 
range corresponding to the second branch of the phase boundary, a vortex (rn—1) 
is pinned around one antidot of the cluster (see Fig. 16a). At the third branch, the 
second vortex enters the structure and is localized in the diagonal. In the fourth 
branch of the phase boundary the third vortex is pinned in the antidot cluster. 
And finally, the current distribution for the fifth branch is similar to that of the 
first branch although currents flow in opposite direction. 

Figure 16c shows the first period of the measured phase boundary Tc($) after 
subtraction of the parabolic background. For all measured samples, the first period 
of the experimental phase boundary is composed of five parabolic branches with 
minima at $/$o = 0, 0.3, 0.5, 0.7,1. If  we compare it with the theoretical prediction 
given in Figure 16a, the overall shape can be reproduced although the experimental 
plot has two major peaks at $/$o = 0.2 and 0.8 whereas the theoretical curve only 
predicts cusps around these positions. 

The agreement between the measured and the calculated Tc($) is improved if  we 
assume that the coefficient 7 can be considered as a fitting parameter. This seems 
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to be feasible if  we take into account the simplicity and limitation of the used ID 
model. Due to the relatively large width of the strips forming the 2x2 cluster, 
the sizes of the current loops can change since they are "soft" in this case and not 
defined very precisely. 

As a result, the coefficient 7 can not be treated as a known constant. If  we use 
it as a free parameter (Fig. 16b) then the curvature of all parabolae forming TC(H) 
can be changed and the calculated TC(H) curve becomes closer to the experimental 
one though the amplitude of the maxima at $/$0 = 0.2 and 0.8 is still lower than in 
the experiment (Fig. 16c). The discrepancy in the description of the amplitude of 
the maxima at $/$0= 0.2 and 0.8 could also be related to the pinning of vortices by 
the antidot cluster when potential barriers between different vortex configurations 
may appear. At the same time, the achieved agreement between the positions 
of the measured and calculated minima of the TC(H) curves confirms that the 
observed effects are due to fluxoid quantization and formation of certain stable 
vortex configurations at the antidots. 

IV    SUPERCONDUCTING FILMS WITH AN 
ANTIDOT LATTICE 

Laterally nanostructured superconducting films having regular arrays of antidots 
are convenient model objects to study the effects of the confinement topology on the 
TC(H) phase boundary in two different regimes. The first (or "collective") regime 
corresponds to the situation where all elements A, forming an array, are coupled. 
. From the experimental TC(H) data on antidot clusters we expect for films with 
an antidot lattice, higher critical fields at $ = n§0, which is in agreement with 
the appearance of the Te(H) cusps at $ = n$0 in superconducting networks [28]. 
Here, the flux $ is calculated per unit cell of the antidot lattice. 

On the other hand, by applying sufficiently high magnetic fields, the individual 
circular currents flowing around antidots, can be decoupled and the crossover to 
a "single object" behaviour could be observed. In this case the relevant area for 
the flux is the area of the antidot itself and we deal with surface superconductivity 
around an antidot. 

Figure 17 shows the critical field for a Pb(50 nm) sample with a square antidot 
lattice (period d = 1 \im and the antidot size a = 0.4 fim). The TC(H) boundary is 
determined at 10% of the normal state resistance, Rn. In this graph two distinct 
periodicities are present. 

Below ~ 8 mT cusps are found with a period of 2.07 mT, corresponding to one 
flux-quantum per lattice cell. These cusps or "collective oscillations" [29] are remi- 
niscent of superconducting wire networks [28] and arise from the phase correlations 
between the different loops which constitute the network. These cusps are obtained 
by narrowing the minima at n$0 with increasing size N of the N x N antidot clus- 
ter (see the sharpening of the minima at $ = 0, $0 in Fig. 18; note that the phase 
boundary in the N -> 00 case has a similar shape as the lowest energy level of 

185 



the Hofstadter butterfly [2,31]). An important observation is that the amplitude 
of these "collective" oscillations depends upon the choice of the resistive criterion. 
This is similar to the case of Josephson junction arrays and weakly coupled wire 
networks [30] where phase fluctuations dominate the resistive behavior. The inset 
of Fig. 17 shows the first collective period, measured using three different criteria. 
As the criterion is lowered the cusps become sharper and the amplitude increases 
well above the prediction based on the mean field theory for strongly coupled wire 
networks [28]. At the same time, cusps appear at rational fields $/$0=l/4, 1/3, 
1/2, 2/3 and 3/4 arising from the commensurability of the vortex structure with 
the underlying lattice. 

Above ~ 8 mT, the collective oscillations die out and "single object" cusps ap- 
pear, having a periodicity which roughly corresponds to one flux quantum $0 per 
antidot area, a2. These cusps are due to the transition between localized super- 
conducting edge states [29] having a different angular momentum L. These states 
are formed around the antidots and are described by the same orbital momentum 
introduced in Section II.C for dots. 

Figure 19 shows the same critical field as shown in Fig. 17, but normalized by 
the upper critical field HC2 of a plain film without antidots, /-toHC2 — $O/2TT^

2
(T) 

( £(0) = 36 nm). The dashed line is the calculation of the reduced critical field 
for a plain film with a single circular antidot with radius R = 0.24 /urn. The 
positions of the cusps correspond reasonably well to the experimental ones, taking 
into account that the model only considers a single hole. From this comparison, 
an effective area irR2 — 0.187/xm2 is determined which is close to the experimental 
value a2 = 0.16 /im2. 

From Figures 17 and 19 it is possible to show that the transition from the network 
regime to the "single object" regime takes place at a temperature T* given by the 
relation w « 1.6 £(T*), (where w is the width of the superconducting region between 
two adjacent antidots). 

Experiments on systems with other antidot sizes demonstrate that the a/d ra- 
tio determines the relative importance of the "collective regime" and changes the 
cross-over temperature T*. The relation w « 1.6 £(T*), seems nevertheless to hold 
reasonably well and is similar to the transition from bulk nucleation of superconduc- 
tivity  to surface nucleation in a thin superconducting slab parallel to the magnetic 
field [15], which happens at a temperature Tcr satisfying w = 1.8 {(To-). 

Comparing the bulk HC2(T) curve with the TC{H) boundary for films with an 
antidot lattice, we clearly see a qualitative difference between the two, caused by 
the lateral micro-structuring. In the network limit, TC{H) can be related to the 
lowest ELLL level in the Hofstadter butterfly [2,31] with pronounced cusps at n$0 

and the substructure within each period. Reducing the size of the antidot, we are 
modifying Te(H) substantially but the cusps at n$0 are still clearly seen [32]. 

Finally, by introducing antidot lattices we stabilize the novel flux states, which 
can be briefly characterized as follows. For relatively large antidots sharp cusp-like 
magnetization anomalies appear at the matching fields Hm. These anomalies are 
caused by the formation of the multi-quanta vortex lattices at each subsequent Hm 
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[33-36]. The multi-quanta vortex lattices make possible a peaceful coexistence of 
the flux penetration at the antidots and the presence of a substantial superfluid 
density in the space between them. This leads to a very strong enhancement of the 
critical current density in films with an antidot lattice. For smaller antidots the 
vortices are forced to occupy the interstitial positions after the saturation of the 
pinning sites at antidots [36-38]. This leads to the formation of the novel composite 
flux-line lattices consisting from the interpenetrating sublattices of weakly pinned 
interstitial single-quantum vortices and multi-quanta vortices strongly pinned by 
the antidots. When the interstitial flux-line lattice melts, it forms the interstitial 
flux-liquid coexisting with the flux solid at the antidots. 

V    CONCLUSIONS 

We have carried out a systematic study of and quantization phenomena in nanos- 
tructured superconductors. The main idea of this study was to vary the boundary 
conditions for confining the superconducting condensate by taking samples of dif- 
ferent topology and, through that, to modify the lowest Landau level ELLL(H) and 
therefore the critical temperature TC(H). Three different types of samples were 
used: (i) individual nanostructures (lines, loops, dots), (ii) clusters of nanoscopic 
elements - ID clusters of loops and 2D clusters of antidots, and (iii)  films with 
huge regular arrays of antidots (antidot lattices). We have shown that in all these 
structures, the phase boundary TC(H) changes dramatically when the confinement 
topology for the superconducting condensate is varied. The induced TC(H) vari- 
ation is very well decribed by the calculations of ELLL{H) taking into account 
the imposed boundary conditions. These results convincingly demonstrate that 
the phase boundaryin TC(H) of nanostructured superconductors differs drastically 
from that of corresponding bulk materials. Moreover, since, for a known geometry 
ELLL{H) can be calculated a priori, the superconducting critical parameters, i.e. 
TC(H), can be controlled by designing a proper confinement geometry. While the 
optimization of the superconducting critical parameters has been done mostly by 
looking for different materials, we now have a unique alternative - to improve the 
superconducting critical parameters of the same material through the optimiza- 
tion of the confinement topology for the superconducting condensate and for the 
penetrating magnetic flux. 
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FIGURE    4.       Boundary     conditions     for     interfaces     normal     metal-vacuum     and 

superconductor-vacuum. 
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FIGURE 5. Landau level scheme for a particle in a magnetic field.   From the lowest Landau 
level ELIL{H) the second critical field HC2{T) is derived (solid line). 
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FIGURE 6. The measured superconducting/normal phase boundary as a function of the re- 
duced temperature Tc(H)/Tco for a) the line, and b) the loop and the dot. The solid line in (a) is 
calculated using Eq. (11) with £(0) = 110 nm as a fitting parameter. The dashed line represents 
TC(H) for bulk Al. 

FIGURE 7. Local (Vi/V2) and nonlocal phase boundaries (V1/V3 or V2/V4) TC(H). The measur- 
ing current is sent through ii/Tj.  The solid and dashed lines correspond to the theoretical TC(H) 
of an isolated loop and a one-dimensional line, respectively. The inset shows a schematic of the 
structure, where the distance P = 0.4 pim. 
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FIGURE 8. Energy level scheme versus normalized flux <5>/$o for a superconducting cylinder 
in a parallel magnetic field. The cusp-like Hc3{T) line is formed due to the change of the orbital 

quantum number L. 
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FIGURE 9. AFM micrographs of the studied structures: a) the bola, b) the double loop, and 
c) the triple loop. 
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FIGURE 10. Experimental Tc(<3>) data for the bola with the parabolic background (Eq. (11)) 
subtracted. The dots are the experimental data points, while the lines correspond to the different 
theoretical results as explained in the text, a) Single period of Tc($), b) A few periods of the 
experimental Tc($) curve. 
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FIGURE 11. Experimental Tc($) data for the double loop with the parabolic background 
(Eq. (11)) subtracted. The dots are the experimental data points, while the lines correspond 
to the different theoretical results as explained in the text, a) Single period of Tc($), b) A few 
periods of the experimental Tc ($) curve. 
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FIGURE 12. Experimental Tc($) data for the triple  loop with the parabolic background 
(Eq. (11)) subtracted. The dots are the experimental data points, while the lines correspond 
to the different theoretical results as explained in the text, a) Single period of Tc($), b) A few 
periods of the experimental Tc($) curve. 
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FIGURE 13. Calculated variation of |\Pj| along the circumference of the double loop, at the 
phase boundary ($/$o = 0.36). The dashed line is the solution with |\Pj| nearly spatially constant, 
while the solid line is the state with a node in the center of the strip connecting points A and D. 
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FIGURE 14. AFM image of the Pb/Cu 2x2 antidot cluster (on the left) and of the reference 
sample (on the right). 
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FIGURE 15. Experimental phase boundary, ATC(H) for the Pb/Cu 2x2 antidot cluster. 
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FIGURE 16. (a) Theoretical phase boundary, Tc($/$0), calculated in the London limit of 
the Ginzburg-Landau theory without any fitting parameter (solid line). All  possible parabolic 
solutions are represented by dotted lines. The dashed line indicates the non-stable parallel con- 
figuration. The schematic representation of the {n,}  quantum numbers at the antidots and char- 
acteristic current flow patterns for each parabolic branch are also sketched, (b) The Tc($/$o) 
phase boundary, calculated as in Fig. 16a , but with the curvature "7" of the parabolae taken 
as a free parameter. The 7-value was increased by a factor of two with respect to its calculated 
value used in Fig. 16a. (c) First period of the measured phase boundary shown in Fig. 15 after 
subtraction of the parabolic background. 
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FIGURE 17. Critical field of a Pb(50nm) film measured at 10% Rn, with d = 1/J.m, a - 0.4//m. 
The inset shows a zoom of the first cusp at different criteria 50% Rn, 10% Rn and 0.5% R„-  
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FIGURE 18.    Calculations of the  first   TC(H)  period  for  an  N x   N   antidot  system 
(N = 1,2,3,4, oo) in the London limit. 
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FIGURE 19. The critical field of Fig. 17 normalized by * 0/2^2(r) versus the applied field. 
The dashed line (right axis) shows the theoretical result for a single circular hole with a radius 
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Abstract. Vortices for 2D superfluids are introduced and are described in terms 
of a 2D Coulomb gas. The 2D classical JJ array is modeled by a 2D XY-model 
and a mapping between the XY-model and the Coulomb gas is given. The 
physical properties of a JJ array are then given in terms of the corresponding 
Coulomb gas properties. First aspects of the Kosterlitz-Thouless vortex unbind- 
ing transitions are reviewed. Consequencies for the resistance as well as the 
frequency dependent conductivity are described. Next the vortex unbinding in- 
duced by an external current is considered with Consequencies for the non-linear 
rV-characteristics. Finally some some effects of a perpendicular magnetic field 
are discussed in terms of an interplay between free vortices and bound vortex 
pairs. 

I    INTRODUCTION 

Two-dimensional (2D) classical Josephson junction arrays, superconducting 
films and 4He-films are physical realizations of 2D superfluids with the same 
generic vortex physics. [1] This vortex physics gives characteristic features 
to the response of the system in certain regions of the parameter space and 
the present lectures are aiming at describing such characteristic features. We 
will  start by defining what a vortex is and how the vortex physics for the 
various realizations are related. This will  take us to the 2D Coulomb gas 
model for vortex physics and to a description of the JJ array in terms of 
the Coulomb gas model. We can roughly think of the vortex physics as the 
interplay between bound vortex pairs and free vortices. In fact the transition 
from the superfluid state to the normal state for a 2D superfluid is driven by 
thermally created vortices: below the transition there are only bound vortex 
pairs whereas at the transition the pairs start to unbind so that above the 
transition there are both bond pairs and free vortices present.   This is the 
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Kosterlitz-Thouless transition [2] and consequences for the resistive transition 
and the complex conductivity will  be described. It is possible to induce pair 
breaking also below the transition by imposing a current. This current induced 
pair breaking gives rise to a non-linear IV-characteristics where the vortex 
physics is reflected in the non-linear IV-exponent. Some ideas about this are 
reviewed together with results from simulations. Another way of inducing free 
vortices below the transition is by imposing a perpendicular magnetic field. 
The resulting complex conductivity obtained from numerical simulations is 
discussed together with an interpretation in terms of free vortices and bound 
vortex pairs. 

II     VORTEX  

A 2D superfluid can be described in terms of a complex order parameter 
ip(r) — |^(r)|eiflW where r is the position vector in the 2D plane and IVK 1")!2 = 
p(r) is the (areal) mass density of superfluid particles (for a superconductor 
the superfluid particle is just a Cooper pair). The gradient of the phase 0(r) is 
related to the superfluid velocity. The simplest case is the neutral superfluid 
for which the relation is just 

v„(r)  = -^W(r) (1) 

where m* is the mass of the superfluid particle. 
The order parameter has a unique value at each point r. This means that 

the value of 6 at a point is unique up to a multiple of 2ir. Consequently the 
line integral around a closed loop f V0(r) • dl has likewise to be a multiple of 
27T. If  the line integral (in the anti-clockwise direction) for an arbitrary small 
closed loop around the point r0 is 27r, then there is an elementary vortex with 
vorticity s = 1 positioned at this point. Since ip(to) must have a unique value, 
this means that \ip(r)\ and the density of the superfluid particles p(r) has to 
vanish at r0. Thus an elementary vortex with vorticity s = 1 is associated 
with a point where the order parameter is zero and around which a closed 
loop integral is 2ir. Likewise if  the loop integral is —27r there is an elementary 
vortex of vorticity s — — 1. 

Let us consider a single vortex with vorticity s = 1 at the origin. By sym- 
metry tp(r) only depends on the distance r from the origin so that for any line 
integral around a circle with radius r we have 27rrW(r) = 2ir. Consequently 
|W(r)| = 1/r and the magnitude of superfluid velocity around the vortex 
center is vs{r) = h/(m*r), as inferred from eq.(l). The energy associated with 
this vortex is the kinetic energy E  ̂= Jdr2p(r)Vg(r)/2 stored in the mass 
current around the vortex center. Ekin can be estimated by 

• Skin Pa   , ti ,,1   fL n     ,1 11,,., 
^-^T^2/0

27r^ = T^2lnL/ro 

201 



where p0 is the mass density in the absence of the vortex, the small distance 
cut off ro reflects the fact that the mass density p(r) vanishes as the vortex 
center is approached, and the large distance cut off L is the linear size of the 
system. The ratio between the energy for a vortex and the thermal energy 
kßT is what appears in the Boltzmann factor and this ratio determines the 
probability for the spontaneous creation of a vortex at a finite temperature. 
The parameter TCG where 

CG _      kBT . . 

~^& () 

can be interpreted as an effective dimensionless temperature for the vortices. 
[1] The energy for a single vortex obviously diverges with the system size. 
This means that it is not possible to spontaneously create a single vortex by a 
thermal fluctuation. However, if  we instead consider two vortices of opposite 
vorticity a distance a from each other then the mass current from the one 
vortex at a distance larger than of the order of a from its center destructively 
interferes with the mass current from the other. Consequently the kinetic 
energy of such a vortex-antivortex pair can be estimated as the kinetic energy 
of two single vortices where the mass flow vanishes for distances much larger 
than a. Thus a serves as a large distance cut off so that 

E)dn 1    ,    a, .  . 
W = T^ln70 

(3) 

Hence vortex-antivortex pairs can be spontaneously created by thermal fluc- 
tuations. Eqs (2) and (3) forms the basis for the Coulomb gas analogy of 
vortex fluctuations: The potential V(r) outside a charge at the origin is given 
by Poisson's equation V2V(r) = -2irs5(r) where s is the charge. This gives 
V(k) = 2iv/k2 which in two dimensions corresponds to a logarithmic interac- 
tion. Thus we can interpret lna/ro as the Coulomb energy associated with 
two particles separated a distance a and with charge s = 1 and s = —1, re- 
spectively. This correspondence between Coulomb gas charges and vortices 
can be made very precise: [1] The superfuid density p(r) vanishes smoothly 
at the vortex center so that a vortex is characterized by a particular vortex 
core structure. This means that the corresponding Coulomb particle has a 
particular single charge distribution given by [3] 

Id fp(r) 
nv[ r) = s- — I  

2-Krdr \ p0 

where s = ±1 is is the total charge of the Coulomb particle. A general vortex 
configuration corresponds to a Coulomb charge density 

n (r) = J2 SiTiy(r - n) 
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where st (r-j) is the vorticity (position of the center) of vortex i. The kinetic 
energy of the mass flow corresponding to the vortex configuration is given by 
the Coulomb self-energy 

\l ifik  
n(k)V(k)n(-k) 

(27T) 

In addition to the kinetic mass flow energy of a vortex there is an energy 
associated the depletion of the superfluid density towards zero at the center of 
a vortex. This energy corresponds to a constant energy Ec for each Coulomb 
particle. [1] 

So far we have discussed the Coulomb gas analogy of vortices for a neutral 
superfluid. What happens for a charge superfluid like a superconducting film? 
In this case the flow of the superfluid particles (the Cooper pairs) induces a 
magnet flux in the 3D space. Each vortex is associated with a flux quantum 
$o = 2-Khc/\e*\ penetrating the superconducting film perpendicular to the 
plane of the film. The magnetic flux is largest through the vortex center and 
falls off from the center on a length scale given by the perpendicular magnetic 
penetration length 

4      2A2       1   (m*c\2  _, 
A"  — = ^{—)    *  

where A is the usual London penetration length and d is the thickness of the 
thin film. [4] A is typically a macroscopic length and is in practice often larger 
than the sample size. The only modification caused by the induced magnetic 
field in the description of Coulomb charge analogy of the vortex is that the 
Coulomb self-energy for a vortex configuration becomes 

If  rf2fe n(k)FA(k)n(-k) 
(27T) 

where the logarithmic Coulomb interaction is replaced by V^{r) which is cut 
off for distances larger than A. However, since A is in practice a macroscopic 
length, V\ can be replaced by the Coulomb interaction V(r). Consequently, 
the Coulomb gas analogy of vortex fluctuation for all practical purposes also 
applies to a 2D superconductor. [1] 

III     THE COULOMB GAS MODEL 

The energy for a neutral (£, s, = 0) configuration of N vortices is in the 
Coulomb charge analogy given by 

EN = NEC + ±NU(0) + W siSjU(rij ) 
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= NEc + Wsisj(U(rij)-U(0)) 

where U(k) = nv(k)Vr(k)nv(—k) is the effective particle interaction and 
\U'\y) « InL/ro is the self-energy for a particle which diverges with the size 
of the system L. The probability for the occurrence of a vortex configuration 
is given by the Boltzmann factor exp(-EN/T

CG). Non-neutral configurations 
have vanishing probability since E  ̂oc U(0) J2i $i which for a non-neutral 
configuration diverges with the system size. The grand partition function 
for vortex fluctuations is consequently given by the corresponding one for a 
neutral Coulomb gas 

« {e-Ec,T™)N    j^ wvw-um (4) 

where A is the phase space division of a particle. This phase space division is 
related to the size of the particle so that A oc TQ. 

For a superconducting film it is often the case that a phenomenological 
Ginzburg-Landau (GL) description applies to good approximation. In this 
case the Coulomb gas analogy of vortex fluctuations turns into the specific 
Ginzburg-Landau Coulomb gas(GLCG) model where Ec and U(r) are unique. 
The extension of the vortex core is given by the GL coherence length £ i.e. 
r0 = £• In this case the vortex properties are only a function of the two 
variables TCG and £ so that all sample specific properties are absorbed into 
these two effective variables. [1] 

Static thermodynamic properties caused by the vortex fluctuations are ob- 
tainable from the Coulomb gas partition function Z. A particularly important 
quantity is the charge density correlation function 

g(k) = I(n(k)n(-k)>  

where Ü is the (2D) volume and () denotes the thermal average. The charge 
density correlation function is in turn related to the static dielectric function 
e(k) by 

W)'1-^ (5) 

In the absence of vortex fluctuations the superfluid density is given by poiT) 
which is in general temperature dependent. The vortex fluctuations renormal- 
ize po into [5,6] 
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__      Po 
P     e{k = 0) 

and the phase transition from the superconducting state p > 0 to the normal 
state p = 0 consequently corresponds to a Coulomb gas transition from a 
l/i(k = 0) > 0 phase to a l/e(k = 0) = 0 phase. 

The vortex fluctuations also cause dynamical effects on the properties of the 
superconductor caused by the motion of the vortices. This motion can for a 
superconducting film often to good approximation be described by a Langevin 
equation of the form [7] 

^  = 5^F«+ »?(*) (6) 

where r(t) is the position of a vortex, Ftot is the total force acting on it, D is 
a vortex diffusion constant, and t)(t) is a random force obeying 

(va(t)riß(t')) = 2D6aß6(t-t') 

where a and ß denote Cartesian coordinates. Consequently both the static 
and dynamic properties of the vortex fluctuations can be obtained within a 
Coulomb gas analogy.   In particular the complex conductivity o(w) for the 

superconductor is given by a{w) = (^-J  poä{uj) where [7,1] 

5^ ) = -^k-\ (7) 
twe(0,w) 

Here e(k, w) is the k and u> dependent complex dielectric function. 

IV     XY-MODEL 

Let us discretize the order parameter ^>(r) by putting it on a lattice (for 
convenience a square lattice). The discretized version is then ipj = \ißj\el9' 
where the index j denotes the lattice points. We simplify further by neglecting 
the variations of the magnitude of the order parameter and take \ipj\ = \ip\ to 
be a constant. The energy for a superconductor is given by (compare section 
2) 

n 2̂„    fj2„(V0(r))2 2*&«l  d'r>  
2 

In the discretized version this energy takes the form 

HXY = J'£U($ij = ei-6j) (8) 
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where J = 27r(;£r)2|V'|2 and the sum is over nearest-neighbour pairs. The 
lattice constant is taken to be one so that $y = 6{ — 6j corresponds to V9. 
The function [/($) has to be equal to $2/2 for small $ in order to yield the 
correct continuum limit and in addition £/($) has to be a periodic function 
of 27T since the phase angle 8, for each lattice point is only defined up to a 
multiple of 2-K. A possible choice for U{$) is 

[/($) = 1 - cos($) 

With this particular choice the model becomes the usual 2D XY-model or the 
planar rotator model. This form of the interaction would e.g. arise if  each 
lattice point was a small superconducting island which was Josephson coupled 
to its nearest-neighbours. In this sense the 2D XY-model is an approximate 
model for a JJ array. The coupling energy for a Josephson junction is -A-,ic{T), 
where ic is the critical current of the junction, so the XY-coupling can also be 
expressed as J = -Adc(T). 

However, from the point of view of vortex fluctuations any 17($) fulfilling  
the necessary requirements stipulated above will  do. For example the sequence 

*<*)-£ l-«w*(f)j  (9) 

will  do for any value p > 1 where p = 1 corresponds to the usual XY-model. 
The practical point with such a flexibility  is that the vortex density increases 
with increasing p. [8] Since the characteristic of vortex fluctuations depends 
on the vortex density, it may well be the case that the vortex characteristic 
for a particular JJ array is better described by an XY-model with ap^l. 

The restively shunted Josephson(RSJ)-model is a dynamical version of the 
Josephson junction coupled array which from the point of view of the vortices 
corresponds to the Coulomb gas with Langevin dynamics. Another possible 
dynamics is a Langevin equation for the phase at each lattice point sometimes 
termed a TDGL(time-dependent Ginzburg-Landau)-type dynamics 

~lT = -T-d9- + rii{t) (10) 

where T is a constant which determines the relaxation and 77, (t) is a fluctuating 
noise associated with each lattice point such that 

(Tk{t)vj(fi)) = TT6(t-f) 

This dynamics is easier to numerically simulate than the full  RSJ-dynamics. 
The basic feature of the vortex dynamics is believed to be very similar for 
these two types of dynamics. [9] 

The discrete XY-model can be mapped to the Coulomb gas model just as the 
continuum model in the preceding section. The closest mapping is obtained by 
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observing that U' = ^^ corresponds to V$. [10] More precisely po oc (U") 
so that the Coulomb gas temperature is given by 

TCG = T/[2TTJ{U")] 

and the Coulomb gas charge nj, corresponding to the elementary plaquette I, 
is given by the directed sum (corresponding to a line integral) over the four 
links (ij)  making up the square [10] 

rpCG 

This means that the Coulomb gas particle corresponding to a vortex has a 
charge which is spread over several lattice spacings. 

The dielectric function is given by 

Re 
e(k,ui) e(k,0) 

+ /    at smuit G{k,t) 
Jo rp2 (11) 

Im 
e(k,u}) 

■ I    at cos u>tG{k,t) 
Jo 

where 

T2     JO 

2-KT
CG 

(12) 

e(k,0) 
= 1 J>2 G(k,0) 

and G(k,t) is related to the charge density correlation function g(r, t) 
£(n(r,*)n(0,0))by 

For the lattice models G(k,t) is given by [11] 

G(k,t) = ±{F(k,t)F(-k,t)) 

where F(k) is the ID Fourier transform 

F(M) = £^m, 
m 

m labels the rows of the lattice, and finally 

Fm(t)= £ ir&aim 
(ij)em 

where the sum is over all the links making up the row m. 
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V    VORTEX UNBINDING 

The phase transition for the 2D Coulomb gas is reflected in the static di- 
electric function as follows: For small k one has [1] 

1        1      k2 

i{k)     ek2 + X~2 

where As is the screening length caused by free charges. The condition for 
the high (low) temperature phase is l/e(0) = 0(> 0) (see section 3). Thus 
As is finite (infinite) in the high (low) temperature phase i.e. free charges 
are present (not present) in the high (low) temperature phase. In this sense 
the low temperature phase only contains bound dipole pairs and the phase 
transition can be interpreted as a charge unbinding transition. In the low 
temperature phase we have l/e(0) = 1/e and i can be interpreted in terms of 
the polarization due to bound dipole pairs. 

The charge density correlation function is given by 

g(r) = -2(n+(r)n-(0)) + (n+(r)n+(0)) + {n~ {r)n~ (0)) 

where n+(—)(r) is the particle density for positive (negative) charges at a point 
r. The energy needed to create a pair of opposite (equal) charges separated a 
distance r is 2EC + U(0) — (+)U(r)  in the absence of all other particles so that 
(n+(r)n_(0)) oc exp[(2Ec+U(0) -U{r))/TCG] and similarly for equal charges. 
The presence of the other particles can approximately be taken into account 
by replacing U(0) with the linear screened interaction ÖL(k) = U(k)/e(k). 
Thus g(r) can be approximated by [12,13] 

g(r) = -2A-2e-2E^TCG2e^[u^r)-u^0)] [l  - e^^] (13) 

Below the phase transition the screening length vanishes and eq.(13) reduces 
to (since Uh(r) - UL(0) « \ In r/r 0 and UL(0) = oo) 

g{r) oc -eE*» Inr/r° oc (J^j ? (14) 

Thus the correlations fall off like power laws in the low temperature phase. 
From eqs.(5) and (14) we get the connection 

W)=l  + T^r dr'^3sir') *  1 - \const\ j~ dr'{r'f-l&  

The last integral diverges for large r if  TCG > l/4e and consequently the low 
temperature phase requires TCG < l/4e. The phase transition at TGG = l/4e 
is the Kosterlitz-Thouless (KT) transition [2,1] and the critical behaviour can 
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(TCG - T C
CG)"  

FIGURE 1. Comparison between simulations of the 2D Coulomb gas and the critical 
behaviour of As in eq.(15): the data for \~2 (open circles) should fall on straight line 
for small enough values of \~2 or equivalently large enough values of (TCG - TC

CG)-1/2. 
However, the values of \~2 reached in the simulations are not small enough to be within 
the critical region. If  TC

CG is treated as a free parameter then the data can be made to fall 
on a straight line as is demonstrated by the solid squares, but this is a spurious feature and 
does not represent the true critical behaviour. (From ref. [16].) 

be obtained from Kosterlitz renormalization group equations. [14] In particular 
As diverges as 

As oc e 
y/rCG-TCG (15) 

when TCG approaches the transition from above. 
Eqs (13) and (5) together with Üi(k) = Ö"(k)/e(k) form a self-consistent set 

of equations which can be solved numerically. [12,13] From these equations 
the width of the critical region can be estimated and this width is found to 
be extremely narrow (0.95 < TCG/TGG < 1.05) [15] which makes the critical 
properties very hard (if not impossible) to observe in real systems like JJ 
arrays. For example to be inside the critical region A/r0 has to be larger than 
of the order of 200. If r0 is given by the lattice distance this implies scales 
corresponding to 200 junctions. Such scales are usually in practice masked by 
other length scale effects coming from i.e. finite sample size, finite A, as well 
as tiny but non-vanishing currents and magnetic fields. [1] 
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Figure 1 illustrates the divergence of As at the KT transition obtained from 
simulations for the 2D Coulomb gas: [16] lnA^2 is plotted against 

l/yjTCG - TGG and the data (filled dots) should according to eq. (15) fall on a 

straight line for large 1/JTCG — TGG. This critical behaviour is not reached 
in the simulations. However, one may note that if  TGG was used as a free 
parameter (instead of being independently determined) then lowering it by 
13% would bring the data for In A~2 in fig. 1 on a straight line (open circles). 
The flux flow resistance R is proportional to the density of free vortices, np, 
which is proportional to X~2, so experimentally one measures R. [1] Since it 
is often in practice hard to determine TC

CG with the required precision, TGG 

is often used as a free parameter when analyzing resistance data. A straight 
line like the one obtained in fig. 1 is then taken as evidence of a critical KT- 
behaviour. As demonstrated by the example in fig. 1, this is usually not the 
correct conclusion. Nevertheless, the resistive drop at the transition can often 
be tied to the vortex-unbinding scenario through the GLCG-model. This 
connection manifestate itself in the existence of a unique resistance scaling 
curve for samples which are describable within the GL-phenomenology. [1] 

The interplay between bound pairs and free vortices is also reflected in 
the complex conductivity a(cj) which is proportional to i/we(0, w) (compare 
eq.(7)). The diffusion of free vortices give rise to a usual Drude form of the 
vortex response 

w2 

R^HM)  = -^T4 (16) 

e(0,w)7 ~    W2 + CT0
2 M^]=-^5 (17) 

where <x0 = .D/A2 is the corresponding Coulomb gas conductivity at zero 
frequency. However, when the bound vortex pairs dominate the response it is 
instead well described by the response function [1,17,11,16] 

Re (    1    ) = I_^L_ (18) 
\e(0,u))J      ew + wo 

/    1     \         I2uu)0lnu}/u}0 /inv 
Im   T7T—r    = —r 5 — (19) 

\e(Q,U))J £!T     W2-Uj 

where u>o is a characteristic frequency which decreases with decreasing tem- 
perature and vanishes at the transition. Thus, as the temperature is increased 
from the transition, the response gradually crosses over from a bound pair 
dominated response to a free particle response because the vortex unbinding 
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FIGURE 2. Demonstration of the peak ratio 2/ir for the response function l/e(0,o>) 
obtained from simulations for a 2D XY-model with TDGL dynamics. The figure shows the 
real part (open circles) and absolute value of the imaginary part (filled circles) of po/e(0,w) 
for a fixed frequency a; as a function of the "real" temperature T. The broken curve is 2/ir  
times the real part and cuts the imaginary part precisely at the maximum. (From ref. [11].) 

causes the proportion of free particles to gradually increase relative to the 
bound vortex pairs. A manifestation of this vortex unbinding effect is con- 
tained in the peak ratio (PR) where PR = |/m(l/e(0, wmax)/fie(l/e(0, wmax)| 
and wmax is the frequency for which |7m(l/e(0,w)| has a maximum. For the 
free particle response this ration is 1 whereas it is 2/n for the vortex pair 
response. Figure 2 shows a simulation for a 2D XY-model for a fixed a; as a 

function of "real" temperature T: [11] the imaginary part has a maximum 
for a certain T and, as seen from eqs (19) and (17), this maximum corresponds 
to U)/CJQ(T) = 1 (w/a0(T) = 1) for pair (free particle) dominated response. 
This means that at the T, corresponding to the maximum as a function of T 
for fixed w, we have wmax = ui. The example in fig. 2 corresponds to PR = 2/TT 

which means that at this w the peak in T occurs at a T which is close enough 
to the transition for the pairs to completely dominate the response. A higher 
(jj moves the peak to a higher T where the proportion of free vortices is higher 
and consequently the peak ratio becomes larger, i. e. the peak ratio increases 
from 2/-K towards 1 with increasing w as a consequence of the vortex unbinding. 

[11] 
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VI    IV-CHARACTERISTICS 

A finite applied current I gives rise to a Lorentz force proportional to I which 
corresponds to an applied electric field £ in the Coulomb gas analogy. This 
Lorentz force induces vortex unbinding. The energy associated with a pair, as 
a function of separation r, can then be estimated (in the Coulomb language) 
with E(r) = I In rlr Q — \£r which has a maximum at rmax = £-1 oc 7_1. For 
separations larger than rmax the Lorentz force wins and the pair unbinds. The 
pair breaking rate may then be estimated as an escape over barrier rate i.e. 
[7] ■ 

' r+ OC e~T&Z l*r„Wro  ^ £Tfcg 

If  we assume a simple two particle recombination process then the recombi- 
nation rate T_ goes as the square of the density of free vortices np- and the 

steady state condition T+ = T_ implies np oc T\ oc £21^". The voltage 
between two points in a superconductor is just proportional to the flow of flux 
quanta passing between the points or, in other words, the voltage is propor- 
tional to the current of Coulomb gas charges IQG- The velocity of a vortex 
is proportional to the force acting on it. Thus the contribution from the free 
vortices to IQG is proportional to ££arvv so that V oc Ia where the exponent 
o is given by a = 2ĝ CG + 1. [7] Figure 3 shows the result from simulations 
of the 2D Coulomb gas for fixed particle density np. [16] The data for a does 
not fall on the line a = 2ĝ CG + 1 but on the line a — j^ä — 1- A heuristic 
argument for the exponent found in fig. 3 considers the stretching of a pair to 
the breaking point at rmax. [18] 

At the moment a pair breaks it has already contributed to the transport of 
Coulomb gas charge over the length rmax so that the corresponding contribu- 
tion to the Coulomb gas current IGG is proportional to rmaxr+ oc £~1£TF  ̂= 
£TrZz~l i.e. a = ^g- — 1 in agreement with fig. 3. [18,19] The simulations 
also suggests that IQG OC n£ for small np where the exponent b is approxi- 
mately 1 — (2 + 5.1eTCG)_1. [20] Since T+ is expected to be proportional to 
rip in a canonical ensemble, the pair stretching mechanism (oc T+) suggests 

b = 1 whereas the free particle mechanism (oc T|) suggests b = 1/2. The ex- 
ponent b found in the simulations falls between these two values and depends 
on TCG. This points towards a somewhat more involved connection between 
the induced vortex unbinding and the IV exponent. 

Precisely at the KT transition condition l/eTCG = 4, the data in fig. 3 as 
well as the two exponents a = jjf^W  + 1 and a = f^tt? — 1 agree on the value 
a=3. This value is also obtained from a dynamical scaling argument which 
links the exponent a to the dynamical critical exponent z through the relation 
a = 1 + z. [21] For conventional relaxation type dynamics one expects z = 2 
which gives a = 3. Thus the result that a = 3 precisely at the KT transition 
seems to be particularly robust. 
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FIGURE 3. The non-linear IV exponent a obtained from simulations of the 2D Coulomb 
gas model with Langevin dynamics. The data points are for four different densities np 

and are plotted against l/(eTCG). The broken straight line is a = -  ̂- 1 whereas the 
full drawn straight line is the AHNS prediction o = ^0 + 1. The data clearly suggest 

a = ijW - 1. (Prom ref. [16].) 

VII     EFFECT OF FRUSTRATION  

Applying a magnetic field perpendicular to the JJ array gives another way of 
changing the proportion between bound vortex pairs and free vortices. Since 
each vortex is associated with an elementary flux $0, the magnetic field corre- 
sponds to an induced density of vortices f/p where / is the frustration defined 
as the magnetic flux per elementary plaquette of the JJ array imposed by the 
applied magnetic field and p is the area of the plaquette. Let us focus on the 
low temperature phase where, for / = 0, there are only bound vortex pairs. 
Let us further choose the temperature T so low that there are in fact very few 
bound pairs present but where T is still higher than the melting of the flux 
lattice formed by a small applied magnetic field. 

For a small frustration we expect, at such a T, to get a response dominated 
by the free vortices which are induced by the magnetic field. Figure 4 shows 
a simulation for the XY-model (with TDGL dynamics) in this situation and 
as seen the response is indeed of the Drude form given by eqs (16) and (17) 
with PR=1. [22] What happens as the frustration is increased? First of all 
the TCG increases with increasing / because the "bare" superfluid density p0 
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FIGURE 4. The dielectric function l/i(0,uj]  obtedned from TDGL-simulations of the 
XY-model on a triangular lattice with / = 1/64 and TCG = Tc

CG/3. The open circles 
correspond to Re[l/i]  and the filled circles |7m[l/e]|. The broken curves are a fit to the 
Drude form given by eqs (16) and (17). The inset shows that the leading behaviour of 
Re[l/i]  for small u is proportional to w2. (From ref. [22].) 

Reprinted with kind permission of Elsevier Science - NL, Sara Burgerhartstraat 25,1055 KV 
Amsterdam, The Netherlands. 

decreases with /. A larger TCG means more vortex pair fluctuations which 
makes the response more pair like. However, the simulations suggests that 
there is something more striking: even if  the simulations are done at a constant 
TCG there is a dramatic cross over to a pair like response with increasing /. 
This is illustrated in fig. 5 which shows the same simulation as in fig. 4 for the 
same TCG but at a higher frustration. As seen the response is now very pair 
like and well described by eqs (18) and (19) with PR « 2/TT. [22] Thus the 
simulations suggest that an increasing / induces more vortex pair correlations 
which pushes the response towards the pair like one. 

VIII     FINAL REMARKS 

We have discussed effects of vortex pair unbinding caused by changing the 
temperature T, the externally imposed current I and the frustration /. Some 
of these effects are directly accessible to experiments like the peak ratio re- 
lated to the complex conductivity described in connection with fig. 2 [11,17] 
and similarly the /-dependence of the complex conductivity a{u)) discussed 
in connection with figs 4 and 5. [11,22,23] Other effects should in practice be 
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FIGURE 5. Same simulations as in fig. 4 but at a larger / = 1/8. The broken c urves are 
a fit  to the bound pair response form given by eqs (18) and (19). (Prom ref. [22].) 

Reprinted with kind permission of Elsevier Science - NL, Sara Burgerhartstraat 25,1055 KV 
Amsterdam, The Netherlands. 

extremely hard (if  not impossible) to observe like the KT critical behaviour 
for the resistance described in connection with fig. 1. Some requires that the 
Coulomb gas temperature TCG can be determined as a function of T like in the 
expressions for the non-linear IV characteristics discussed in connection with 
fig. 3. This is also possible since TCG ex l/po(T) and Im(wa{u) oc p0/e(0,uj)) 
and <T(W) can be measured. [23] 

So to sum up there are many aspects of vortex pair unbinding in connection 
with JJ arrays. A lot has been done so far, but quite a lot is not yet well un- 
derstood in particular concerning the dynamical aspects of vortex unbinding. 
So here is work remaining for the future and much more information can no 
doubt be obtained from experiments and simulations. 
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Abstract. In this lecture notes I briefly review results on the equilibrium critical 
properties of models of classical Josephson junction arrays (JJA). The calculational 
approaches involve Monte Carlo and Langevin dynamical simulations. Specifically, we 
mention results from: (i) Monte Carlo results on the critical properties of the classical 
two-dimensional frustrated and unfrustrated XY models, (ii) Equilibrium dynamical 
critical properties from Langevin calculations of the unfrustrated JJA. In particular 
its magnetic flux noise spectra, which favorably compares with experimental results. 

INTRODUCTION 

This is a brief review that deals with different aspects of the equilibrium crit- 
ical and dynamical properties of Josephson-junction arrays (JJA). These arrays 
have been extensively studied in the last few years [1]. Modern photolithographic 
techniques have allowed the fabrication of these arrays with tailor made proper- 
ties. They were initially  fabricated as true model systems to study the Berezinskii- 
Kosterlitz-Thouless (BKT) phase transition [2,3]. 

Evidence for the BKT vortex unbinding scenario has been found experimentally 
in superfluid helium [4], thin superconducting films [5] and Josephson junction 
arrays (JJA) [6,7]. The XY-model exhibits the BKT transition and Josephson 
junction arrays are an experimental realization of this model. They can be fabri- 
cated with a high degree of uniformity, and have controllable parameters that make 
them an ideal model system to study the critical behavior of the BKT transition. 
In addition, it allows for a direct comparison with dynamical simulations, like the 
one we discuss in this work. Earlier experimental studies of the BKT transition 
in arrays focused on the I-V characteristics [6,7]. In this experimental setup the 
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Structures" Eds. C. Giovannella and C. Lambert, AIP, 1998 
2)  Permanent address 
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system is driven by an external current and is consequently not in equilibrium. 
Other experiments have been concerned with probing properties using the two-coil 
technique [8]. This also involves applying an external drive to the system and is 
generally confined to measuring the response at a specific frequency. 

One of the main motivation for the work described here [10] is the experimental 
work by Shaw et al. [9]. They have measured the magnetic flux noise 5$ generated 
by the equilibrium fluctuations in the vortex density, which is directly related to 
the vortex noise Sy- The importance of this work lies in the fact that it employs, 
basically, a non-invasive probe to measure the equilibrium dynamics associated with 
the BKT transition, in clear contrast with the experiments done before. The flux 
noise has a low frequency w -C ^ white-noise part and for UJ 3> w$ a power-law 
behavior 5$ ~ w~a, where u>£ is a characteristic frequency and QWI. Similar but 
less extensive measurements have been performed earlier by Lerch et al. [11] below 
TBKT- The frequency dependence, in particular the observed value of a, is different 
from predictions of phenomenological theories by Ambegaokar et al. (AHNS) [12] 
and Minnhagen [13], and other numerical results et al. [14]. The value of the 
exponent a = 1 indicates that the critical vortex density fluctuations are of a 1/z/- 
noise type (here v denotes the frequency). A number of phenomenological models 
have been proposed to explain these observations (see e.g. [15]). The occurrence of 
l/i/-noise in these systems is not well understood and it is still the subject of intense 
research. In Josephson-junction arrays l/i/-noise from vortices is unexpected in 
view of previous theoretical analyses [12,13]. 

To set up the stage I start this paper with a brief introduction to the critical 
properties of the X-Y model and the fully frustrated XY model, FFXMM. The 
latter model has been the source of many studies and it is still not fully  understood.. 
Then we will  move to discuss the dynamical critical properties of the XY model, 
using the Langevin dynamics that is the appropriate one for the arrays. Here 
we find some interesting surprises that agree in many respects with the Shaw et 
al. results. The surprise is that a time-dependent Ginzburgh-Landau model gives 
better results than the RSJ model, that has been assumed to be the correct model 
for overdamped JJA. 

CRITICAL PROPERTIES THE ZERO AND FULL 
FRUSTRATION XY MODELS 

We start by considering results from Monte Carlo studies of the critical properties 
of the 2-D XY model at zero and full  frustration in a square lattice. We obtained the 
critical exponents of the models from explicit calculations of the thermodynamic 
and correlation functions for the spin and chiral (frustration) degrees of freedom 
[16]. 

The critical behavior of the fully frustrated 2-D XY model has been studied 
extensively, both theoretically [2,3] and experimentally [1]. The model is defined 
by the Hamiltonian 
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H = -Y.  EjcoS(e(f)-0(r!) + f(r,r/)), (1) 
<rfi> 

where 6(r) is the angle at site f, with f = (ia0, ja0), i,j  integers and a0 the lattice 
spacing; < f,rf > stands for a sum over nearest-neighbor lattice sites, and Ej is the 
exchange constant. In the JJA case in a homogeneous transverse magnetic field, 
the bond variables f(r,rl)  are given by the line integral f(r,r/) =  ̂If'  A-dl, with 

A the magnetic vector potential. The frustration parameter, /, is defined by 2nf = 
J2v /(^> ?f) = $*" fp A • dl, with V a plaquette. The uniformly frustrated model is 
periodic in / with period one, and with reflection symmetry about / = 1/2. The 
XYM corresponds to the unfrustrated / = 0 case, while the fully frustrated case 
to / = 1/2. The effect of / in this case is to produce alternate rows with ferro- 
and antiferromagnetic couplings, while the couplings along the columns are all 
ferromagnetic. Each plaquette has one antiferromagnetic and three ferromagnetic 
bonds, or vice versa, leading to a ground state that has a two-fold degeneracy 
with half-integer vortices of opposite circulation or chirality [17]. Thus, the system 
displays two symmetries: the underlying continuous U(l) Abelian symmetry for the 
phases and a discrete Z2 or Ising-like symmetry associated with the chiral degrees 
of freedom, leading to the possibility of true long-range order in two dimensions. 
In contrast, the unfrustrated 2-D XY model (XYM)  only possesses a continuous 
U(l) Abelian symmetry: its low temperature phase is characterized by quasi-long 
range order rather than true long-range order. In spite of the many experimental 
and theoretical studies of the FFXYM, there are several questions that remain 
to be resolved. For example, it is not clear whether one phase transition exists 
at the critical temperature Tc which is a combination of a Berezinskii-Kosterlitz- 
Thouless (BKT) type transition for the U(l) symmetry plus an Ising-like transition 
for the Z2 symmetry, or whether there are two successive phase transitions at 
critical temperatures Tu(i) and Tz2. Even the order in which they may occur is 
controversial. More importantly the nature of the transitions, as characterized by 
their critical properties, is not yet fully understood. In the XYM the nature of the 
BKT phase is characterized by the approximate analytic expression for the spin-spin 
correlation functions. However, unlike in the XYM case, it has been very difficult  
to calculate the correlation functions for the FFYXM analytically. All  the studies 
carried out previously have mostly concentrated on calculating thermodynamic 
quantities in which it is is difficult  to separate the Z  ̂from the U(l) contributions. 

The purpose of our work was to fill  this gap by explicitly calculating the U(l) 
and Z2 correlation functions. One further complication is that at present there is 
no available analytic theory for the /  ̂0 case that could suggest what form these 
correlation functions should have and we needed to make an ansatzs for them. 
Generally, we assumed that they decay exponentially or algebraically with distance. 
We used different statistical measures to test for the two possibilities. When our MC 
results for the correlation functions were consistent with an exponential decay we 
extracted a correlation length £(T), while if  they were consistent with a power law 
decay we extracted the corresponding t](T) exponent. In the case that £(T) diverged 
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at Tc from above it could diverge as a power law or with the BKT form £(T) ~ 
exp {B(T - Tc)-"). In the / = 0 case the critical exponent u(f = 0) = 1/2. In the 
low temperature phase of the XYM the correlation function decays algebraically 
with distance r as ~ r' 11, where the r\ exponent is a continuous function of T and 
takes the universal value r)(f = 0, TBKT) = 1/4. In addition, other MC simulations 
have provided an accurate evaluation of the / = 0 XYM critical exponents [18]. 
The high statistics estimates for / = 0 are v = 0.4695(1) and 77 = 0.235, with the 
critical temperature TBKT — 0.8953 [18]. 

In order to understand the nature of the phase transitions in the FFXYM we 
studied a variety of quantities, several of which separately describe each particular 
symmetry. The thermodynamic quantities calculated were: the helicity modulus, 
T, the square of both the staggered chiral magnetization, M2

S, and susceptibility, 
X5. We also carried out an extensive analysis of the gauge invariant U(\) correlation 
function, g(u(i){r) and their corresponding even and odd coherence lengths. These 
calculations allowed us to extract the U(l) critical temperature, Tu(i), and its 
critical exponents v and r\. For the Z-z freedoms we calculated the chiral correlation 
function, gx(r), and its corresponding coherence length, £x, which allowed us to 
estimate the critical exponent vx and the critical temperature Tz2 ■ Our result for 
the exponent i/x is in very good agreement with the MC transfer matrix calculation 
[19]. 

Exponents 

We will  now outline the main results of our study. We begin by discussing the 
helicity modulus Y(T). Previous studies of the FFXYM and the fully frustrated 
Coulomb gas have indicated the possibility that the jump in T(T) may be different 
from the universal XYM  result. To further shed light onto this problem we studied 
T(T) as a function of temperature for different lattice sizes and carried out a finite 
size analysis of Tj/(i) = T(T = 7V(i)) obtained from runs for L = 8, 16, 32 with 
250K MCS and L = 60 with 200K MCS. We note that at low temperatures the 
finite size effects are almost negligible, however, they become important in the 
critical region. We performed a finite size analysis of T at the critical temperature 
TU,,,. = 0.44, found from a high temperature analysis of the correlations.   The 

simulations were carried out in lattices of size L = 8, 16, 24, 32, 48, 60, 72, 84, and 
96 and extrapolated to infinite lattices giving the result, 

Tu{1) = 0.37(1). (2) 

This result suggests that for the lattice sizes and statistics of our simulations, the 
jump in the helicity modulus for the FFXYM is about 23% below the XYM result. 
Note, however, that one cannot rule out the possibility of a smaller value of ^Tu{i) 

for larger lattices. Nonetheless, we do not believe that the trend would change 
significantly from the result given here. 
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We also studied the staggered magnetization Mstagg due to the supercurrents 
circulating around the plaquettes as a function of T for L = 16 and 32. It is non- 
zero at low temperatures and drops sharply at about T = 0.42. We note that finite 
size effects are almost negligible for these lattice sizes. The behavior of Mstagg as a 
function of temperature suggests that it may be considered as an order parameter 
for the 17(1) phase transition. Note, however, that the chirality is defined in terms 
of the direction of the circulating currents about the plaquettes and thus Mstagg 

can also be thought of as an order parameter for chirality. 
We calculated the staggered chiral magnetization Ms. However, Ms oscillates 

too irregularly between positive and negative values, thus it was more convenient 
instead to study M2

S and its fluctuations xl- M2
S goes to unity at low temper- 

atures and it decays sharply to zero close to the critical region. We note that 
X2

S displays an asymmetric behavior close to Tz2(~ 0.42 for L = 60), where it 
has a sharp maximum. This indicates that the critical exponents for xl above 
and below Tz2 should be different. For T > Tz2 we fitted the MC data to 
M2 ~ (-£z2)

20, and xl ~ (ez2)~27 while for T < Tz2 xl was fitted 
to xl ~ (~ez2)~

2'y'- We extracted the critical exponents 2/?, 2j and 2f t by 
a straight line fits to ln(M2

s) vs \n(ez2(L)) and ln(x^) vs ln(|e 2̂(Z,)|) for tem- 
peratures within 10% from the estimated Tz2{L). Here we used the notation 
tz2 = (T - Tz2)/Tz2(L), with Tz2(L) the temperature at which M2

S goes steeply 
to zero and xl shows a maximum for a given L. The exponents obtained for the 
largest lattice were 

2/3 = 0.1936(35),     27/ = 1.025(79),    and     27 = 1.82(13). (3) 

These exponents clearly differ from the corresponding 2-D Ising model exponents 
2/5 = 1/4, 27 = 27/ = 7/2. We note that our chiral order parameter exponent does 
agree with the value 2ß = 0.20(2) obtained from MC transfer-matrix studies of the 
FFXYM [19]. 

We now discuss our MC results for the gauge invariant phase correlation func- 
tions obtained from simulations in lattices from L=16 up to L=240, with periodic 
boundary conditions. To reduce finite size effects the lattice sizes at each temper- 
ature were chosen such that L/£ > 5. We note that <7(7(i)(r) has an oscillatory 
behavior with period 1/2 which comes from the Aharanov-Bohm phase factors 
[16]. At higher temperatures we find that the oscillatory behavior disappears, as 
one would expect. As the critical temperature is approached from above the oscil- 
lations increase in amplitude and saturate below Tu(iy This oscillatory behavior 
led us to separate the correlation functions into two components; one for the odd 
and one for the even lattice sites, with their corresponding coherence lengths £„ and 
£e. The MC data for the zero momentum correlation functions was fitted to the 
periodic version of the ansatz given in for T > Tu(\)- This procedure incorporates 
the periodic boundary conditions due to the finiteness of the lattice. We carried 
out unconstrained non-linear 3-parameter fits to the data to obtain £(T), r](T) and 
the coefficient A for the odd and even correlation functions. We fitted the MC data 
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to the linear functions ln(g(r)) = In A + ln[r~ne~r  ̂+ (L — r)~ve~(-L~r^i], varying rj  
until a minimum for x2 was reached. As one gets closer to the critical temperature 
from above, the coherence length increases exponentially and one needs longer sim- 
ulations and larger lattices in order to get statistically reliable data. Furthermore, 
the fitting parameter r](T) increases and oscillates rapidly, for both the odd and 
the even lattices so that an estimate of t] (TU(I)) was not attempted. We also found 
that as the temperature decreases, A0 decreases while Ae increases, both slowly. 
Far from the critical region we got reliable results for £0 and £e using lattices of size 
L < 60. In the determination of the critical exponents and the critical tempera- 
ture it is crucial how one fits the data. We first tried a 4-parameter unconstrained 
non-linear fit to the MC data of the BKT type obtaining the results, 

i/e = 0.3133(57),     and v0 = 0.3005(6), (4) 

which are close to 1/3. We then fixed the values ve = v0 = 1/3, and carried out a 
3-parameter fit  to the data for both lattices. The quality of the fits improved and 
hence we could surmise that the correct value of this exponent may indeed be 1/3. 

As an additional test of the reliability of the results for Tu{\) and u, we carried out 
a finite size scaling analysis of the data for £0 and £e. For a finite system, assuming 
periodic boundary conditions, the usual T > Tu(i) finite size scaling ansatz for a 
BKT transition is £(T,L) ~ L F^L'1 exp(Z?£e_")), with F% the scaling function, 
not known ä priori, which must satisfy the conditions F^(x) = 0, as x —> 0, 
F^(x) < 00, as x —> 00. The idea is to find the set of parameters B, u and Tb(i) 
for which the data for different temperatures and lattice sizes fall onto one curve. 
Fixing v = 1/3, we varied the values of B and Tu(\) about their vahies obtained 
in the previous fits. We found that as we moved away from those values in the 
increasing or decreasing directions, the data became more scattered. However, 
very close to the values found from the previous fits the data fell very close to 
a unique curve. The values for which the data collapsed approximately onto the 
universal curve were Be = 1.045, B0 = 0.999, and T£(1) = 0.440, T£(1) = 
0.442. These numbers are in rather good agreement with the values found in the 
previous fits. We also calculated r] e and r)0 at the average critical temperature 
Tu(i) = 2(^1/(1) + -^7(1)) obtained from the high temperature analyses for lattices 
with L — 32, 40, 48, 60, 72, 84 and 96. However, the 77's do seem to reach the 
asymptotic values 

r)o(Tu{1)) = 0.1955(3)    and    r,e{Tu{l)) = 0.1875(3). (5) 

On the other hand for the XYM we obtained 

Vo(Tmi))) = 0.2521(3)    and    Ve(Tm)) = 0.2480(3), (6) 

assuming the exponential fits to the correlations. 
Let us now turn to the discussion of the correlation functions for the chiral degrees 

of freedom. Our study was less detailed than in the U(l) case, mainly concentrating 
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on the temperature region above Tz2- Prior information about the chiral critical 
exponents is available so that we can compare our results to them. The calculation 
of the zero momentum chiral correlation functions was less demanding than in the 
U{1) case since one expects that £x diverges algebraically, that is £x ~ (tz2)~

Vx- 
The analysis of gx(r) followed a similar logic to that of the U(l) study. The results 
obtained from different fits gave 

Ax = 0.36(3),    and   Tz2 = 0.432(9),    for   vx = 0.760, (7) 

with x2 = 9-7 x 10~2. Our result for vx agrees quite well with finite size scaling 
analysis that gave vx = 0.85(3), as well as with the MC transfer matrix calculations 
[19]. The advantage of the finite size scaling analysis is that vx was obtained from 
a one parameter fit without needing a precise value for Tz2, as in our analysis. 
Therefore it appears that the vx and Tz2 values obtained here from the nonlinear 
fits may in fact be very close to the correct ones. It is important to emphasize that 
the Tz2 found here is consistent with the temperature at which M?s fell to zero, and 
Xs displayed a sharp maximum. In summary, our numerical analysis of the chiral 
degrees of freedom led to the critical exponents 

2/5 = 0.1936(35),    27/= 1.025(79),    27 = 1.82(13),    and   vx = 0.875(35).  (8) 

These results strongly indicate that the Z? phase transition is not an Ising-like 
transition as had been suspected from previous thermodynamics sttidies of this 
model. Note that in our calculations the difference between the Tz2 and T^i), is 
about 7%, which may not be considered as different within the size of our estimated 
errors. Equivalently, one cannot rule out the possibility that in improved numerical 
simulations and closer to the critical point this difference may disappear. 

In this section we have briefly reviewed results from extensive MC calculations 
of the FFXYM [16]. We have explicitly analyzed the separate contributions from 
the U(l) and Z2 freedoms. We have extracted the U(l) and Z2 critical exponents 
from direct calculations of their corresponding correlation functions and selected 
thermodynamic properties. We found compelling quantitative evidence that the 
U(l) and Z2 critical exponents are clearly different from those of the usual 2-D 
XY and Ising models. We have tested our results using several consistency checks. 
There are no other calculations of the U(l) exponents to with which to compare 
our results. However, a reanalysis of the experimental data lead to an r\ exponent 
that is clearly different from the XYM result and that agrees with the one found 
in our calculations [20]. 

LANGEVIN DYNAMICAL  EQUATIONS OF MOTION 

Josephson-junction arrays consist of superconducting islands that are Josephson- 
coupled either by proximity effect (SNS) or through an insulation barrier (SIS). 
Typically, these islands are arranged in regular two-dimensional lattice structures, 
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e.g. square or triangular. The amplitude of the order parameter can be assumed 
to be constant in time and the same for all islands since there are no significant 
spatial variations in the SNS arrays. Each island is then characterized by the order 
parameter phase 6. The supercurrents carried for each junction in the array is given 
by 7s(r,r') = l csin(0(r) - 0(r') - 2nf(r,r')). Here r and r' denote the coordinates 
of neighbor islands, Ic is the critical current of the junction. When one applies a 
voltage across a junction, or applies a bias current that exceeds the critical current, 
resistive currents will  flow in the junction, and the phase difference will  change in 
time. The voltage V(r, r',t) across a Josephson junction is Josephson's relation: 

V(r,r',t) = yej t(0(r,* ) - W,* ) - 2*r/(r,r', t)). (9) 

The dynamics of a classical JJA is governed by a set of coupled single-junction 
equations, if necessary supplemented by Maxwell's equations when screening is 
important [21-23]. Obviously, the model is also appropriate to describe junctions 
that are explicitly shunted by a resistor. Shunting underdamped SIS junctions 
with resistors is a way to make these junctions overdamped. The charging of the 
junction capacitance is described in terms of a shunt capacitor. The general RCSJ 
equation then divides the total current I(r,  r') through the junction in three parts: 
the capacitive current, the resistive current and the Josephson current: 

+ /csin[0(r,r')-27r/(r,r')]. (10) 

Here C is the junction capacitance and ö(r, r') is defined as the phase difference 
6(v) — 0{v'). The arguments r and r' refer to nearest-neighbor islands. To describe 
the effect of non-zero temperature, a white noise term must be added to Eq. (10). 
It is convenient to write the RCSJ model in dimensionless units, in which it takes 
the following form: 

z(r, r') = ße(9{r, r') - 2jr/(r, r')) + 0(r, r') - 2nf(r, r') 
+ sin[0(r,r')-27r/(r,r')]. (11) 

Here the dots represent time derivatives. The currents are expressed in units of 
the junction critical current Ic; time is measured in units of the characteristic time 
l/u>c = h/(2eRnI c), and ßc = (uc/wp)

2 is the Stewart-McCumber parameter, with 
the plasma frequency u>p defined as u2 = 2eIc/hC. Kirchhoff's law of current 
conservation holds at every island in the array: ^2ai(r,r + a) = iext(

r)i where the 
summation runs over all nearest neighbor islands r + a. These conditions provide 
the coupling of the individual junction equations (11) into a set of equations that 
describes the array. If  we use the conservation conditions to eliminate the variables 
i(r,  r') in (11), we obtain 
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£ G-X(r, r')A^(r') = £ A(*(r)  - 0(r + a)) (12) 
r ' a 

= Jext(r)-£sin(0(r,r + a)-27r/(r,r + a)). (13) 
a 

Here we defined A = ßcd(+dt and G_1(r, r') is the inverse two-dimensional lattice 
Green function. We assume that in the coupled set (13), the magnetic field that en- 
ters via the variables /(r, r') is only due to an externally applied uniform magnetic 
field, thus neglecting here the magnetic fields induced by the currents flowing in 
the array. As mentioned above the dynamical properties of the driven arrays stud- 
ied in SNS experiments have been successfully explained in numerical simulations 
using the RSJ dynamics. The RSJ dynamics is obtained from some microscopic 
considerations. On the other hand, the time-dependent Ginzburg Landau (TDGL) 
dynamics is proposed to describe the SNS JJA dynamics as a purely phenomeno- 
logical theory of the relaxation of the order parameter 0(r). The TDGL approach 
has been used by Martinoli et al. [24,25] to interpret the results of linear-response 
experiments on Josephson-junction arrays. TDGL dynamics has also extensively 
been used in numerical investigations of the dynamics of the XY-model [14]. Since 
one of our aims was a critical re-examination of both RSJ and TDGL models, we 
decided to study them both at the same time. The dynamical equations of motion 
in the overdamped case needed for the analysis of the experiments for both models 
are then. 

I)G-1(r,^(p'1<) = -r (J  ̂+ V■ ,ft(r)) , RSJ (14) 

dt0(r,t) = -r(J  ̂+ V3(r)y TDGL (15) 

The magnitude of the thermal noise is determined by the microscopic dissipation 
mechanisms using the Fluctuation-Dissipation theorem. For RSJ dynamics we add 
fluctuating currents 771 to the bonds, whereas for TDGL dynamics we add thermal 
noise n2 to the islands. 

(r ll(r,r  + a,t)m(r\r'  + a',t')} = 2T5(!>L,a')6(r,r')6(t-t'), 

(m(v,t)rj2(v',t')) = 2TS(v,r')5(t-t'). 

Note that the two sets of equations have very different mathematical properties. 
The RSJ involves the Green function that makes the explicit calculations much 
harder to do than in the TDGL model. However, in the equilibrium limit the 
macroscopic properties, like the helicity modulus, for both models are essentially the 
same, as would be required from the principles of statistical mechanics. However, 
the equilibrium dynamical properties are significantly different as we see in the 
following subsections. 
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Flux noise 

In the paper by Shaw et al. [9] they assume that the time-dependence of the 
magnetic flux correlation function in time Sg, ~ {$(*)$(()))  is essentially the vortex 
density correlation in time, Sv ~ {N{t)N{0)). Here $ is the magnetic flux through 
the SQUID and TV the vorticity within the SQUID. We therefore assume that the 
magnetic flux noise S<s> is equivalent to the vortex noise Sv- In the experiment 
the SQUID occupies a smaller area than the area of the array. For that reason we 
replace the SQUID used in experiments by pseudo-SQUIDS, that is we consider 
vortex fluctuations in an Z x / part of the array. More explicitly, the net vorticity 
in part i of the array is 

N{(t)= £n(R,*). (16) 

The vorticity of a plaquette R is given by: 

2™(R)= £(0(r,i)-0(r',*)). (17) 
7>(R) 

Here V(R) denotes an anticlockwise sum around the plaquette R and the phase 
difference 0{r,t) - 0(r',t) is taken between -IT and +n. Given the vorticities N} 
in part i of the array, we calculate the time-correlation function, and average this 
correlation function over all the Mi different pseudo-SQUIDS: 

£{*)  = jjr  £ {(m)N!(0)) - W(0))2) . (18) 

The time-average {• ) is defined as follows: 

(A(t) A(0)) = -r^—EAit + t^Ait'). (19) 

Here Nt is the number of time-averaging steps. The technical advantage of the 
pseudo-SQUID approach is that since one averages over Aft = LxLy/l

2 different and 
independent realizations of gf. For example using / = 4 reduces the statistical error 
approximately an order of magnitude compared to / = 32. We have also calculated 
the correlations gf(t) of the fluctuations of the absolute vorticities Na{t), that is 
instead of the net vorticity one takes the sum of positive and negative vortices. We 
determined the vortex noise Sv as the Fourier transform of the time correlations 
gY of the net vorticity N; within a part of the system consisting oil xl plaquettes 

Sv(u) = Jdtei"t(Nl(t)Nl(0)). (20) 

This method of calculating Sv has two advantages over the method used previ- 
ously [14].   We evaluate Sv directly, using a definition in terms of the vorticity 
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itself, instead of using a derived quantity. Our method faithfully represents the ex- 
perimental procedure and allows us to study the dependence of Sv on the effective 
SQUID size /. 

To gain further insight in the nature of the vortex dynamics we have also con- 
sidered the spatial vortex configurations and followed the spatially-resolved vortex 
dynamics in real time. We find that single vortices hardly move on the time scales 
considered and that for T > TBKT the spatial configurations are dominated by 
clusters consisting of vortices and antivortices in neighboring plaquettes. In view 
of these results it is possible that the vortex clusters are a natural candidate for 
explaining the 1/v spectrum in arrays. We therefore analyzed the behavior of vor- 
tex clusters. We have calculated the cluster distribution function and the time 
correlations in the number of clusters. We find that the number of vortices that are 
part of a cluster increases with temperature, and that clusters, depending on their 
net vorticity and size, relax differently and with a different characteristic time. We 
have compared the a obtained here to one from a system without clusters. In the 
latter we find for low temperatures a « 1.5. For that reason we suggest that the 
measured a can be connected to the dynamics of vortex clusters. 

Thermodynamic results 

We start comparing the results for the helicity modulus calculated by Langevin 
dynamics to the Monte Carlo results. As discussed before, in the MC calculations 
it was found that the universal jump in T slowly converges with the system size 
to the universal value 2TBKT/^- The value we obtain here for L — 64 using the 
dynamical equations is T(T = 0.90) = 0.63(5), which is approximately the same 
as the one T(T = 0.9035) = 0.623(2) obtained for L = 60 in Ref. [16]. 

We have also calculated the spin-spin correla- 
tion function gg = < cos(9(r) — &(r'))  > for the RSJ and TDGL dynamics with 
both full  periodic boundary conditions and semi-periodic boundary conditions (i.e. 
free in one direction). The algorithm for calculating g$ is O(L) slower than the 
time-integration step itself. We used the complete spin wave expression Ar~n to 
fit  ge(r), [16]. Here A is already determined and the number of fitting parameters 
is reduced by one. We have fitted the results for g$ to six different functions. The 
results for T and g$(r) for the RSJ and TDGL dynamics are identical within the 
statistical error. 

Above TBKT free vortices appear in the system and the phase correlations decay 
exponentially with a correlation length: £(T) = foexp [,T_T

b . u,) , with v = \. 
This expression is only valid for low vortex densities or large £. However, in practice 
numerical and experimental results can be fitted to this form for somewhat higher 
vortex densities. 

We have calculated the static correlation function gg(r) above TBKT 
and found 

rather good fits to the expected results. For T close to TBKT the statistical error 
in gg for large separation r > 10 is visible. The points for T = 1.08 oscillate above 
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the fitting curve. The resulting error in the coherence length f, that is determined 
as a fitting parameter, can be as large as 10% for T < 1.08. For T > 1.12 the 
error is smaller than 5%. We fit the Kosterlitz-Thouless prediction to the £(T) 
obtained from the ge-fi.ts. The results for TDGL and RSJ dynamics in this case 
are slightly different: to = 0.230(1), b = 1.45(1) and TBKT = 0.935(1) (TDGL) and 
to = 0.274(30), b = 1.41(10) and TBKT = 0.917(10) (RSJ). These differences are 
mainly due to the differences in the values of t(T) obtained for the dynamics below 
T < 1.12. The quoted error estimates are obtained by determining the change in 
the fitting parameters when one removes a point £(T) from the data. The RSJ 
fit (11 points) is less robust than the TDGL fit (22 points). One can compare 
these fitting parameters with the ones obtained from Monte Carlo calculations [16] 
that obtain: to = 0.2050, b = 1.6113, TBKT = 0.9035 and v = 0.4797. There the 
exponent v was also a fitting parameter, while here we fixed it to v = 0.5. The 
agreement is reasonable, given the fact that in their study they calculated t(T) for 
temperatures closer to the critical temperature TBKT and larger system sizes (up 
to 240 x 240). 

Dynamic equilibrium results 

The dynamical critical exponents are obtained from a scaling analysis of the 
data that we describe in this subsection. Based on the work by Shaw et al. [9] one 
expects the vortex noise to be a scaling function of the relevant frequency scale 
W£ ~ t(T)~z and tne lengths £(T), array size L, SQUID size / and the vertical 
distance d between the SQUID and the array. In Ref. [9] the following form is 
proposed: 

S*{u;) = tß'Hului,Llt,llt,dlt). (21) 

The scaling function corresponding to T in the time domain is: 

9r(t) = tßG(t/r0L/t,l/t,d/t)- (22) 

When L > I » £ there is no I or I dependence and therefore gj can be written 
as t0O{tltz)- We perform our scaling analysis in the time domain. In this domain 
we have an estimate for the statistical errors and we can weigh the data points 
accordingly in the scaling procedure. We only use data with I > £. Data for larger 
/ has usually large statistical errors, that increase when the temperature gets closer 
to TBKT- Therefore only data with £ < 8 is included. We collapse curves onto Q 
using a nonlinear fit procedure, where we show that the data collapses for TDGL 
and RSJ dynamics. One notes that the function Q for TDGL is different from 
the one for RSJ dynamics. We have collapsed the data for / = 16 and / = 32 for 
TDGL and / = 16 for RSJ. The statistical error in the / = 32 data sets for RSJ 
dynamics was too large to yield a reasonable collapse. In the plots of the data 
collapse the statistical errors become visible for t > 10.  Shaw et al. [9] defined a 
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characteristic frequency w^ at the intersection of the critical part of the spectrum 
with the white noise plateaus in a log-log plot. We did the same but by scaling in 
the time i-domain. The numerical value of w^ itself will  not be the same, but the 
dependence on £(T) is the same. The value of z is obtained from scaling over only 
a limited grange f = 2 - 6.4. We do obtain distinctly different results for the two 
dynamics, 

and 

2.2(4) TDGL (23) 

0.90(5) RSJ (24) 

Note the significant difference between the two results, with TDGL closer to the 
experimental value but the RSJ results clearly off. We have also collapsed the data 
for / = 4 and 8. This gives lower values for z. 

We found that the vortex noise Sv is flat for u> > wj, and a straight line, 
Sv ~ w~a for u » W£ (where u>£ is a characteristic frequency). The flat part of the 
spectrum is characteristic of white noise and indicates that the vortex fluctuations 
are uncorrelated. For that time scale g[ is approximately zero. The high frequency 
power-law part is the critical portion of the spectrum. For the TDGL case the 
exponent 

OLTDGL = 0.748(2)    for  T = 0.84     and      aTDGL = 0.916(2)      for    T = 1.12. 

(25) 

We obtained the exponent a by fitting the apparent straight part of the curve to a 
line. Adding points to, or removing points from the fit  changes the exponent a by an 
amount typically not exceeding 0.05. For curves with a critical spectrum spanning 
only a small frequency range or with large statistical errors this effect can be larger. 
The quoted errors are obtained from the variances of the fit  itself and do not involve 
the aforementioned effects. For the highest w-value in our simulations the curve 
deviates from a straight line. There is a divergence in the analytic form for gj{t) 
for small t, because uj~a is non-integrable. In our simulations we obtained a finite 
#,v(0). The u~a behavior can therefore not persist up to the highest frequency. 

The RSJ results are almost linear over the entire time range and the cosine- 
transform yields an u)~a dependence over approximately 2 decades, with 

(XRSJ 1.17. (26) 

Comparing this to the behavior of gj(t) one finds that initially gj decays slowly 
almost like logi but then dies out faster for larger times. This behavior leads to 
the characteristic low frequency white-noise plateau in Sv- For TDGL dynamics 
we find a slightly lower value for CXRSJ. 
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CONCLUSIONS 

We now give a vortex interpretation of the dynamic calculation results. Ther- 
mally excited vortex pairs screen the interaction between two separate members of 
a given pair. When the vortices in a pair are separated over a distance larger than 
£ they are free. There are free vortices and pairs in the array, but there are also 
neutral and non-neutral clusters consisting of more than two vortices. In gj we 
measure the net charge present within a SQUID. The presence of clusters influences 
the time correlations; clusters of different charge and size decay to other clusters 
on a different time scale and with a different functional form. We made this ideas 
a bit more quantitative by studying the average number of clusters Pc of a specific 
size c and the time correlations gc in the number of clusters of a specific size. 

Close to TBKT we find that the vortex configurations consists mainly of small 
vortex pairs. For a higher temperature the fraction of small pairs decreases and 
more single vortices appear. At T = 1.20 the fraction of single vortices, Pi±, 
saturates and the fraction of larger charged clusters P3±, Ps± and so on, increases. 
The fraction of larger neutral clusters also increases. The statistical error in these 
quantities is estimated to be approximately 1%. The actual number of vortices 
{cNc) in larger clusters grows even faster. 

We also determined gc for clusters consisting of two or more vortices. Non- 
neutral clusters of different size c = 1+, 3+ and 5+ relax on different time scales 
and contribute with a different weight Wi(c, c) to gj. The weight Wi(c,c) depends 
on temperature via Pc. It is also clear that g2 decays faster and in a different way 
than gz+. The presence of larger clusters reduces the decay time of a unit of net 
vorticity and when more vortices are part of a cluster, gj decays faster. The scaling 
of T£ with £ is related to the vortex density increment (and £ decreases), so there 
are more clusters. In animations of the spatial vortex configuration versus time we 
have seldomly observed a vortex moving more than one plaquette. The clusters, 
however, change on a faster time scale. To study the noise created by "free" vortices 
alone, we have simulated a system with a small frustration / = 0.02. Due to this 
frustration there is, even at low temperatures, a finite number of vortices in the 
sample. In this situation there are no large clusters and pairs that will  influence 
the relaxation of vorticity fluctuations. 

With increasing temperature vortex-antivortex pairs and other clusters will  enter 
the system. The exponent a then decreases with temperature to a ss 1. Therefore, 
when there are only single vortices in the system, we obtain a critical spectrum 
consistent with diffusive decay of vortex density fluctuations, and hence diffusive 
motion of vortices. When there are pairs and clusters present in the system, the 
spectrum is inconsistent with a simple diffusive vortex motion. This suggests that 
pairs and clusters are somehow responsible for the observed value of a. When 
there are clusters in the system there is an additional mechanism for the transport 
of vorticity. Clusters can change in size, of charge and shape. From the animations 
of the spatially-resolved vortex dynamics, and more quantitatively from the time- 
correlation functions gc we calculated, we find that this indeed happens on a faster 
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time scale than vortex jumps. These combined processes of vorticity transport can 
be interpreted as the motion of effective vortices (renormalized by clusters). The 
(fractional) random walk of independent vortices can be directly connected to the 
vortex noise that is measured by a SQUID. The vortex random walk is characterized 
by a Hurst exponent Hv, that gives a = 1 + Hv. For a regular random walk 
Hv = \- A fractional random walk, Hv ^ §, corresponds to anomalous diffusion. 
Theron et al. [24] find non-Drude behavior of the vortex dynamics in the array for 
T < TBKT and in a small magnetic field /. They interpret this behavior as a sign of 
anomalous vortex diffusion. For the same parameter regime we obtain a = 1.0-1.5, 
also indicating anomalous vortex diffusion If the two types of anomalous vortex 
diffusion are the same needs to be studied in more detail. 

Next we consider an analytic way of thinking about the results obtained here. 
Schönfeld [28] gave an explanation for the l/z/-noise, with a low-frequency white- 
noise component. Such a spectrum can be obtained from independent vortex fluctu- 
ations, N(t), that relax according to a 2~1/2 statistical law, and decays fast enough 
for longer times. The occurrence times of these fluctuations are distributed in a 
Poisson-like fashion. The t-1/2 relaxation can be obtained from a one-dimensional 
diffusion equation. Our numerical results for gf can be also be fitted to a Bessel 
function K0 form: 

TOO 

g( ~ K0(üt) oc e~nt f   dr e-
2"T[r(r + t)}'1'2. (27) 

Jo 

When the ergodic theorem is valid, this gives for the fluctuations themselves: 

N,(t) oc -Le-11*. (28) 

which is precisely the form suggested in the work by Schönfeld. This suggests that 
the flux noise is generated by independent vortex fluctuations diffusing across the 
boundary of the SQUID. 

A derivation of the particular form of gf based on the microscopic vortex dynam- 
ics is presently lacking and remains a challenge for the future. Further experimental 
work may elucidate the precise functional form of gY based on the possibilities sug- 
gested in this paper. 

There are, however, still a number of questions to be answered in this problem 
that need further analysis. 
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III.  ARRAYS IN QUANTUM  REGIME:  
VORTEX  PROPERTIES AND 

APPLICATIONS  



Particle-like aspects of vortices in 
Josephson arrays 

H.S.J. van der Zant 

Department of Applied Physics and DIMES, Delft University of Technology, Lorentziueg 1, 2628 
CJ Delft, The Netherlands 

Abstract. Vortices in Josephson-junction arrays are bosonic quantum mechanical 
particles with repulsive interactions which move in a known periodic potential. Free- 
dom in choosing the array geometry and junction parameters allows for manipulation 
of single massive vortices and quantum vortex experiments. High-energetic vortices 
are not affected by the periodic potential and can move ballistically in a force-free 
environment. Quantum vortices tunnel through the barriers of the periodic potential. 
They may exhibit Bloch oscillations analogous to conduction electrons in semiconduc- 
tor superlattices. 

I    INTRODUCTION 

For a long time, it has been known that vortices in long continuous Josephson 
junctions behave like relativistic particles [1]. As their name already implies long 
Josephson junctions are long and their length is generally too large to allow for 
quantum fluctuations in the vortex position. Discrete Josephson arrays consist of 
superconducting islands which are coupled to each other by Josephson junctions. 
With present day technology these junctions can be made so small that charging 
effects become important: tunneling of a charge Q from an island is prevented 
unless an energy of the order of the charging energy, Ec, is available. 

The phases of the order parameter (<f>) on each island define the vortex. Around 
the vortex center, the junction phase differences of any closed contour add up to 
2TT. The characteristic energy scale for the coupling between <£'s on adjacent islands 
is the Josephson coupling energy Ej. There is a competition between Ec and Ej 
because </> and Q are non-commuting variables: AQA(f> > e. In the classical regime 
(Ej 3> Ec), <f> is well defined (i.e., the vortex position is well defined) and there are 
large fluctuations in Q. In the opposite regime (Ec ^> Ej) charges are localized 
and fluctuations in 4> are large (vortices are delocalized). It is this competition 
between Ec and Ej that leads to the quantum mechanical nature of vortices. 

A great advantage of arrays is that they can be made in different geometries. A 
few examples are shown in Fig. 1: a ID Josephson ring, a 2D array in a square 
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FIGURE 1. Various Josephson-junction arrays. The crosses represent the Josephson junctions. 
The black square are the superconducting islands; black lines superconducting strips. 

or triangular geometry and a quasi-lD array. When performing experiments on 
quantum arrays, the environment of the arrays is of crucial importance. Arrays are 
usually connected to the outside world by superconducting strips (wires) which are 
then connected through bond wires, special micro-wave filters and coaxial cables 
to the measuring equipment. The superconducting wires form transmission lines 
with impedances of the order of 100 Cl for relevant frequencies [2]. 

These low impedances prevent the observation of quantum effects in Josephson 
rings. Junctions can be decoupled from the environment by placing high-ohmic 
resistors in the leads within a distance of order /im or by using high-ohmic junctions 
themselves. For example, the quasi-lD array shown in Fig. lc is an interesting 
system for the study of quantum effects. Under influence of a current, quantum 
vortices move in the middle row which is decoupled from the 
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environment by the junctions in the outer rows. 
The dynamics of quantum vortices will  be discussed in the second part of this 

paper. We will  first discuss the classical dynamics of Josephson arrays. The discrete 
nature of Josephson arrays introduces new phenomena in the dynamics that are 
absent in continuous superconducting systems. In arrays, there can be an energy 
barrier for vortex motion from one cell to the next. Vortices are then subject 
to a periodic potential similar to electrons in solids. In a discrete system, the 
dispersion relation is periodic in the wave vector k. This periodicity enables a 
coupling between moving vortices and the linear modes in the arrays (spinwaves 
or the oscillatory motion of the junction phase around its equilibrium position). 
We will  calculate the vortex mass and discuss the damping vortices experience. 
The coupling to spinwaves plays a crucial role but does not prevent ballistic vortex 
motion in discrete Josephson arrays. 

The concepts we introduce in the first part of this paper are applicable to arrays 
with arbitrary shape but we will  in particular concentrate on the arrays shown 
in Fig. 1 as they are most widely studied. We will  discuss the properties of sin- 
gle vortices and not their collective response. For instance we will  not treat the 
Kosterlitz-Thouless-Berenzinskii phase transition in classical arrays associated with 
the unbinding of vortex and antivortex pairs at the transition. Likewise, part II  
will  not contain a detailed discussion on quantum phase transitions in Josephson 
arrays. A recent overview on the latter subject can be found elsewhere [3]. 

II     CLASSICAL VORTEX DYNAMICS 

In Josephson arrays, damping occurs through ohmic dissipation inside the junc- 
tions and is characterized by the McCumber parameter ßc — 2nIcCR2J 0̂, where 
Re is the effective damping resistance, Ic the junction critical current, C its capac- 
itance and where <J>0 is the flux quantum h/2e. In arrays made of underdamped 
tunnel junctions dissipation can be extremely low (ßc > 1). At high temperatures, 
Re is equal to the normal-state junction resistance Rn but at low temperatures the 
Re of tunnel junctions is determined by the much higher subgap resistance. As 
a consequence, the electric energy stored in the junction capacitors when vortices 
move, can no longer be neglected. This electric energy acts like a kinetic energy 
term, thereby defining a vortex mass [4]. In the next two subsections, we will  calcu- 
late the vortex mass and derive the equation of motion for a single vortex. We will  
first discuss some general details of niobium and aluminum tunnel-junction arrays. 

Aluminum arrays at Delft used for the study of (semi-)classical vortex dynam- 
ics are typically built of junctions of size 1 by 1 /im2 with C as 100 fF and 
0.1 kft < Rn <1 kft. For aluminum at low temperatures, the IcRn product equals 
0.32 mV. Nowadays, niobium arrays are made commercially [5] and are also avail- 
able for the study of the underdamped, classical dynamics of vortices. Presently, 
the smallest reliable niobium junctions are 3 by 3 /mi2. Typical junction param- 
eters are C - 340 fF and Rn values ranging from 10 to 100 ft.  For niobium the 

239 



IcRn product at low temperatures equals 1.9 mV. Thus, for the niobium arrays the 
junction critical current is considerably higher than in aluminum arrays. The main 
consequence of this higher critical current is that in niobium arrays self-field effects 
can no longer be neglected. 

In 2D, the self-inductive effects are parameterized by X± which is the ratio of the 
Josephson inductance of a junction Lj — $0/2nIc to the self-inductance of a cell 
L0 « fioP- In units of the lattice parameter p, Aj_ = Lj/L0 is the penetration depth. 
There are two general types of self-field effects [6]. First, there are self-inductance 
effects which are short-ranged and caused by the self-inductance of the cell loop. 
It turns out that the cell-to-cell energy barrier is dominated by these short-range 
interactions. Second, there are mutual-inductive effects which have a longer range. 
For example, the current distribution in the middle of a current-driven 2D array 
changes from an exponential fall-off  for self-inductances to an algebraic fall-off  when 
the mutual inductances between all cell pairs are included. 

In the purely ID case (Fig. Id), self-fields always play a role since the supercon- 
ducting wires connecting the junctions act like inductors. In ID, the penetration 
depth Aj is the square root of the penetration depth in 2D, i.e., Aj = JLJ/LQ. In 
addition, long-range interactions are not as important. One can to a good approx- 
imation only consider self-inductances when replacing Aj by an effective Aj,e// [7]. 

A    Vortex mass 

Moving vortices lead to phase changes across junctions. They therefore result 
in voltage differences VJ between islands. Islands in Josephson arrays are not only 
capacitively coupled to each other by the junction capacitors C but also to a far 
away ground plane by Co- Both C and C0 contribute to the electric energy, a 
moving vortex induces. In fabricated arrays, however, Co is generally orders of 
magnitude smaller than C so that the main contribution to the electric energy 
comes from the junctions: 

where the sum is over all the junctions in the array. 
In a quasi-static approach this sum can be calculated by comparing the phase 

differences across each junction at times t and t+p/u: A(j> = A(f>t+p/u — A<j>t- Here, 
u is the averaged vortex velocity. The electric energy then acts like a kinetic energy 
term and the proportionality factor defines the vortex mass: 

Eel = 
l-Mvu

2   with   Mv = ^  ̂Ecl £(A&+p/u - 
A^)2 , (2) 

where Ec = e2/2C. The problem of calculating the vortex mass is now reduced to 
finding the phase differences across junctions at times t and t + p/u. Equation (2) 
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is a general result which can be applied to various array geometries if  the phase 
configuration around a vortex is known. 

In large 2D Josephson arrays with a single vortex situated at (x0, Vo), the phase on 
island (x, y) can be approximated by 4>x,y = arctan[(j/ - yo)/(x - x0)]- This arctan- 
approximation is valid for arrays in which self-field effects are small. Assuming that 
this arctan-phase configuration remains the same when the vortex moves through 
the array , numerical evaluation of the phase differences in a large 2D square array- 
yields £(A</>*+p/„ - A(f>t)

2 = 2ir2. With Eq. (2), one obtains 

Note, that in this calculation half of the vortex mass is due to the junction the 
vortex crosses; the other half comes from all the other junctions in the array. For 
a triangular array, a similar calculation can be done and the vortex mass is twice 
the mass of a square array. 

It has been shown [8] that near array edges the vortex mass vanishes when it 
approaches a free boundary of the array. These boundary effects are, however, 
negligible if  the vortex is a few lattice spacings away from the edge. One can also 
include self-field effects. Currents now extend over a distance Ax from the vortex 
center so that the arctan approximation can no longer be used. As the vortex is 
effectively reduced in size, the sum of the VJ-'s can be restricted to those junctions 
which are Ax from the vortex center. The result is a smaller vortex mass and its 
decrease with decreasing Ax is given in Ref. [9]. As Ax ->• 0, Mv —»■ 0. The vortex 
mass is also dependent on the Ej/Ec ratio. It vanishes at the superconductor-to- 
insulator (SI) transition but to a good approximation has the value given in Eq. (3) 
for arrays with Ej/Ec > 1 [10]. 

In a ID array with N junctions, the vortex phase configuration is given by 
<f>x — 4arctan[exp((a; — x0)/Aj)}, where x0 denotes the position of the vortex center 
in units of p. For Aj < N, the vortex has a kink-like shape, which extends over 
a distance of the order of Aj; for Aj > N the vortex is spread out equally over 
the whole system with 4>x+1 - 4>x « 27r/iV. Therefore, A<f> t+P/U - A<j> t = 2ir/N and 
Mv - h2/(8Ec{Np)2) for Aj > N. For 1 < Aj < N the sum can be computed 
numerically or in a continuum approximation. We find that the sum over the phase 
differences squared is equal to 8/Aj [11]. Hence, 

M* = -rrn- E~c  for i< Aj < w. (4) 

In other geometries, the phase configuration of a vortex is not exactly known. 
It can in principle be calculated. However, since a substantial part of the mass is 
determined by the junction the vortex crosses, Eq. (3) can be used as a estimate 
for the quasi-static vortex mass in these cases. 
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B    Equation of motion for a single vortex 

A vortex in a Josephson array moves under influence of a Lorentz force &oI/p in 
a direction perpendicular to the current flow. A phenomenological clamping term 
and the periodic lattice potential U(x) provide additional forces. The equation of 
motion can therefore be written as: 

dU       $0I 
Mvx + rjx = -— +  , (0 

ax p 

where x is the vortex position, / is the applied current per junction and where ?? is 
the viscosity coefficient. In a Bardeen-Stephen like model 77 can be calculated. The 
total power loss is the sum of all the resistive losses in the junctions: J2 \']2/Re. 
Assuming Re to be identical for all junctions, the sum in the total power is the 
same as in the calculation of the vortex mass. For example, rj = $>o/2Rep

2 for a 
large square 2D array. 

Neglecting interactions with array edges and with each other, vortices are only 
subject to the periodic lattice potential: U(x) = ^Ejs'm(2Trx/p). Here, 7 is the 
energy barrier in units of Ej a vortex has to overcome when moving from one cell 
to the next. In large 2D arrays with no self fields, 7 = 0.2 in a square geometry 
and in a triangular geometry the barrier is about a factor five lower, 7 = 0.043 
[12]. Inclusion of self-field effects can be done and 7 increases dramatically for 
Ax < 1 [6]. In contrast, there is no energy barrier in ID arrays if  Aj > 1 [7]. 

The problem of vortex dynamics in Josephson arrays can directly be mapped 
onto the problem of the phase difference across a single junction: vortices in arrays 
produce the same dynamics as a single junction with a critical current per junction 
of 7/c/2, a McCumber parameter ßc>v = jßc and a plasma frequency wPil, = y/7wp. 
The dynamics can be visualized as that of a massive particle moving in a washboard 
potential. For the junction problem motion is in artificial ^>-space; for the vortex 
problem motion is in real space. 

Just as in single junctions, hysteresis at low voltages is seen in the measured 
array I-V characteristic when ßCtV > 1 as is illustrated in Fig. 2. This figure is 
measured on a square, aluminum 2D array [13] and the depinning current is close 
to the expected value of 7/2/c = 0.1 Ic per junction. We do not observe, however, 
a RCSJTike I-V characteristic. Above the depinning current, the I-V is almost a 
straight line with a slight bending in the direction of the voltage axis opposite to 
what is expected from the analogy with the single junction problem. This is also 
seen in simulations on the properties of a single vortex in a 2D array with periodic 
boundaries [14]. In that paper, a nonlinear viscosity coefficient was introduced 
which described the simulated data very well. 

For currents well above depinning (above 50 fiA in Fig. 2), hysteresis is commonly 
seen in underdamped arrays. At high currents the flux-flow state becomes unsta- 
ble and the I-V enters a row-switched state. In this row-switched state, rows of 
junctions across the whole array width start to oscillate coherently [15]: all phases 
rotate continuously in time with a phase shift between them. 
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0.5 1.0 
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FIGURE 2. A current-voltage characteristic of a 2D square, aluminum array measured at low 
temperatures in a magnetic field of 0.1 $o applied per cell (/ = 0.1). The arrow at the left indicates 
the expected depinning current of 0.1NIC with N the number of junctions perpendicular to the 
direction of the current flow. For small voltages hysteresis is seen. The flux-flow region is found 
above the depinning current but below the current at which row switching sets in (arrow at the 
left). 

One should realize that the curve in Fig. 2 was recorded at an applied magnetic 
flux of 0.1 $o Per cell (/ = 0.1). The frustration index / is a measure of the 
number of vortices in the array. On average there is approximately one vortex per 
1// cells. Thus at / = 0.1, the average distance between vortices is only three cells. 
At such a short distance, vortices will  interact with each other. The influence of 
these vortex-vortex interactions on measured I-V characteristics is not known in 
detail. 

Additional evidence for massive vortices is found in simulations on the influence 
of free boundaries on vortex motion [16]. The numerical calculations show that a 
vortex may be reflected at the boundary, thereby changing its sign (i.e., it becomes 
an antivortex). This behavior is qualitatively explained with the model (Eq. (5)) 
of a massive vortex interacting logarithmically with the image vortices outside the 
array. The authors also note that the way in which vortex inertia manifests itself 
depends on the dynamical situation considered. Changes in the applied current 
may induce oscillations in the phases (spinwaves) which introduce a new dissipation 
mechanism for the vortex (to be discussed in the next subsection). 

C    Coupling to spinwaves 

In arrays with free boundaries, energy barriers for vortex entry exist near the 
array edges [17].   These barriers are not present in a ring geometry.   This fact 
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FIGURE 3. a: Experimental I-V curves corresponding to the five possible situations with M 
kinks trapped in a ring of N — 8 junctions. Inset: voltage position of main steps versus M. Curve 
is the predicted voltage position according to a sinusoidal dispersion relation, b: Enlarged view 
of the curve with M = 1 taken at a slightly lower temperature. Inset: voltage position of the 
substructure versus m. Curve is theoretical prediction (no fit parameters used). 

makes the Josephson ring an ideal system for a quantitative comparison with the 
theory presented in the previous subsection. 

Figure 2 plots I-V curves of a niobium Josephson ring cooled down in different 
applied magnetic fields. Cooling down in a field of about M flux quanta $0 corre- 
sponds to trapping exactly M vortices in the ring, i.e., the number of vortices in the 
ring can only be an integer. When the ring is cooled through Tc in zero field, the 
I-V curve shows a critical current and jumps to the gap voltage at 0.84Ar/c. When 
cooling through Tc with M = 1 applied to the ring, the critical current vanishes and 
a current step appears near V — 200/iV. The jump to the gap voltage now occurs 
at Imax = 0.55NIC. The absence of a depinning current for the curve with M - 1 
in Fig. 3a is consistent with the absence of a lattice potential in the equation of 
motion for Aj > 1. With M = 2,3, and 4 applied to the ring, the voltage position 
of the steps increases to about 350, 430, and 480 fiV respectively. 

In contrast to the experiments on continuous Josephson rings [18], the voltages of 
the steps shown in Fig. 3a are not proportional to M. This is a direct consequence 
of the discrete nature of the Josephson array. The voltage positions map out the 
dispersion relation of the array. In a discrete system the dispersion relation bends 
near the Brillouin zone edges making the differences in voltage positions smaller 
for larger values of M. This bending is clearly visible in the inset of Fig. 3a. In 
this inset the voltage is normalized to Vo = <J>0Wo/27r with w0 = l/y/L0C. 

We now turn to the M — 1 case, i.e., to the case of a Josephson ring with one 
vortex trapped in it. In Fig. 3a, one clearly sees that the M = 1 step contains 
smaller steps. These steps are enlarged in Fig. 3b. For high A2j (high tempera- 
tures; not shown in the figure) the I-V curve is smooth indicating a continuous 
acceleration of the vortex. In this high Aj regime, the I-V curve can quantitatively 
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be described by the equation of motion as discussed in the previous subsection if  
one includes the relativistic nature of the vortex [11]. However, as A^ approaches 
1, substructure becomes visible in the I-V characteristic and in Fig. 3b six reso- 
nant steps are present. The substructure does not follow from our vortex model 
(Eq. (5)). 

The substructure is caused by a phase locking between the propagating vortex 
and the linear waves (spinwaves) it excites in its wake [19,20]. Damping is low in 
Josephson systems and as a consequence small-amplitude oscillations in the junc- 
tion phases generated by the moving vortex, have not died out when the kink passes 
by again. The possible ringing frequencies of these small-amplitude oscillations are 
the lattice eigenfrequencies. By matching the circulation frequency of the kink 
(which is proportional to the voltage position of the step) to an integer multiple m 
of ringing periods, the resonant voltages can be calculated. As illustrated in the 
inset of Fig. 3b, this model explains the positions of the resonant steps very well. 

The coupling to linear waves can be viewed as an additional source of damping 
for the vortex. On a resonant step, further increases of the current do not lead 
to further increases in the vortex velocity. Instead, the energy is consumed in 
amplifying the linear waves. 

Spinwave damping also determines the effective viscosity in the flux-flow regime of 
2D highly underdamped, aluminum arrays [21]. Experiments showed that vortices, 
when driven with a large current, experience more damping than can be explained 
by ohmic dissipation alone. In a simple semi-quantitative model, the effective 
viscosity due to coupling to spinwaves was calculated. The result is r)pi — -^f   . 

where the constant c equals 7r for a square array and c = 37r for a triangular 
array. When comparing this viscosity coefficient to the Bardeen-Stephen viscosity 
coefficient, one sees that the more underdamped the arrays are, the more dominant 
the damping due to energy lost in the wake of the vortex becomes. This result, 
however, is obtained from the measurement on the flux flow resistance and one 
should be careful with applying this result more generally. The situation might be 
different when this transport current is absent and vortices move at low velocities 
(see next subsection). 

D    Ballistic vortex motion 

If  vortices are massive particles, they should keep on moving if  the current were 
to turned off suddenly. In an experiment, this idea can be realized by accelerating 
vortices up to a high velocity u0 so that their kinetic energy is much larger than the 
lattice potential. With Eq. (5) one finds that u0/p « $oI/p2r]  if  one neglects the 
lattice potential. Then, these fast moving vortices can be launched into a force-free 
environment where voltages probes can be used to detect their path through this 
region. The criterion Ekin > Epot translates into a minimum vortex velocity 
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Note, that for a ID system with Aj > 1, 7 « 0 so that the minimum vortex velocity 
is small. 

The vortex velocity, on the other hand, can not be chosen arbitrarily large. Fast 
moving vortices can trigger row switching in the array. Simulations [22] indicate 
that in 2D arrays the vortex velocity must be limited to u/p < up. In ID arrays 
u/p < 7Tu>o/4 [20] (see also Fig. 3). 

Another limitation comes from coupling to spinwaves. In 2D arrays, there is a 
threshold vortex velocity (wth) below which this coupling is weak. In a continuum 
approximation [23,24], it has been shown that a moving vortex only couples to 
spinwaves above uth/p ^ 0.1wp. With Eq. (6), this indicates that ballistic motion 
is possible in triangular arrays just above depinning. In a recent paper, Fazio 
et al. [10] treat the charge transfer as a discrete process. The result is a stiffer 
spinwave spectrum and a reduction of spinwave dissipation even for classical arrays 
with large Ej/Ec- Their calculations show that there is wider window for ballistic 
motion with uth/p « 0.5wp. 

With no current applied and for high-energetic vortices, Eq. (5) reduces to Mvu + 
T]u = 0, indicating that the vortex velocity decreases exponentially in time as 
u0exp[—Mvt/rj\. A mean free vortex path can be defined as 

Xfree        u0Mv I 

P pr\ Ic 

with a = 1/n for a square 2D array and a = ITAJ/4 for a ID array. The factor 
al/l c is typically of order 0.1 so that at high temperatures with Re = Rn, Ayree « p. 
At low temperatures with Re ^> Rn (the corresponding ßc can be high as 10'), 
Xfree ~> P- 

Ballistic vortex motion has not only been observed in long continuous junc- 
tions [25], where there are no energy barriers and no spinwave coupling, but also in 
discrete ID arrays [26] and in 2D aluminum arrays [27]. Here, we discuss the exper- 
iment with 2D arrays. The sample consists of two 2D arrays which are connected 
by a narrow channel of 20 cells long and 7 cells wide as shown in Fig. 4a. Super- 
conducting banks on both side of the channel confine the vortices in the channel. 
To reduce the influence of the lattice potential, arrays and channel are made in a 
triangular geometry. 

In one array, vortices generated by a small magnetic field, are accelerated up to a 
high velocity. Some of these high-energetic vortices will  enter the channel and will  
then be launched into the detector array. There is no driving current applied to this 
array. A set of voltage probes around the detector array is used to detect the places 
where vortices leave the force-free environment. (The voltage measured across two 
probes is proportional to the number of vortices passing the probes per unit time.) 
At high temperatures, vortices move diffusively and voltages are observed between 
all voltage probes. At low temperatures, subgap damping is extremely low and the 

246 



a) 
^ 

accelerate  
array  

m 

detector  
array  

[E]     channel      |y4]  

b) 

M a 
o 

10-2 
500 1000 

T(mK)  

FIGURE 4. a) Special sample lay-out to measure ballistic vortices, b) Voltage across different 
voltage probes. At low temperatures, the voltage across the two probes opposite from the channel 
is almost equal to the voltage across the channel: all vortices that go through the channel leave 
the array between V7 and V8. Inset: with reversed current direction vortices are accelerated in 
the opposite direction and no ballistic motion is observed. 

voltage measured between the two probes situated just opposite to the channel is 
almost equal to the channel voltage. Vortices cross the second array in a narrow 
beam (see Fig. 4b). 

This ballistic vortex motion is observed for small applied magnetic fields (0.01 < 
/ < 0.025) and for currents just above depinning. For high magnetic fields, vortex- 
vortex interactions start to play a role when more than one vortex is in the channel 
at the same time and for too high currents coupling to spinwaves starts to play a 
role. 
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Ill     QUANTUM VORTEX DYNAMICS 

If  vortices are massive particles that move ballistically, one has to think of them 
as quantum mechanical objects. Like an electron, a vortex in a periodic potential 
will  also have a Bloch wave function with momentum p = %k and thus a wavelength 
of h/uMy. At present, many experiments have verified the concept of a quantum 
vortex [3,28-32]. In this paper we will  discuss the macroscopic quantum tunneling 
of vortices [3] and their motion in a periodic potential [29-31] in more detail. We 
will  not discuss the observation of vortex interference in a hexagon-shaped array [32] 
and the predicted persistent motion of quantum vortices in corbino arrays [33]. We 
will  start this chapter with some general considerations. 

In a classical description vortices oscillate in the minima of the washboard po- 
tential with frequency uv<v. In quantum arrays, these oscillations are quantized. 
To estimate when quantum fluctuations in the vortex position become important, 
we compare the zero-point energy \TILOV,V  =   ±y/8jEjEc to the energy barrier 

Ubar - jEj. The two energies are equal if Ej/Ec = y/fyj- m this quantum 
vortex regime, the zero-point fluctuations are large enough to allow for quantum 
tunneling of vortices (next subsection). 

These fluctuations also influence the depinning current in the array. We 
found [35] that the depinning currents in quantum arrays are substantially lower 
than the expected value of 0.1NIC. The Chalmers group [28] has reported a similar 
observation. Like in single junctions [34], quantum depinning should also show up 
as a saturation of the array critical current distribution as temperature is lowered. 
In Delft, we have tried to measure this effect but found a more complicated behavior 
than in single junctions [35]. 

The quantum nature of vortices becomes more prominent as the ratio Ej/Ec 
is decreased. There is, however, a limit to decreasing this ratio. In zero magnetic 
field depending on their Ej/Ec ratio, arrays at low temperature are either super- 
conducting or insulating. Experiments [3,36] show that in square 2D arrays this S-I 
transition occurs at Ej/Ec ~ 0.6 in agreement with theoretical predictions [37]. 
When a magnetic field is applied to arrays with Ej « Ec, a collective quantum S-I 
transition involving a Bose condensation of vortices can occur. Arrays which are in 
the superconducting state at zero magnetic field can be driven into the insulating 
state by a magnetic field of only 1 Gauss [3,38]. At low magnetic fields, vortices are 
pinned and the array is in the superconducting state. For higher fields a critical 
vortex density is reached at which they Bose condense. The vortex superfluid now 
leads to an infinite resistance. 

Arrays in which charging effects are important are made of aluminum with a 
shadow evaporation technique. For the study of quantum vortex effects, arrays 
typically have junctions of size 0.1 by 0.1 fim2. Their capacitance C is 1 fF. The 
charging energy Ec = e2/2C then corresponds to a temperature of 0.9 K. At low 
temperatures, the Josephson coupling energy is given by Ej/kß = ^oh/'^kß = 
1.2R~l K when the normal-state resistance Rn is expressed in Ml. Quantum vortex 
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arrays have 1 kfi < Rn < 15 kfi. In low-capacitance arrays supercurrents flowing 
around the vortices induce a negligible magnetic field so that self-field effects can 
be neglected; the penetration depth Ax is larger than the array sizes. 

A    Macroscopic quantum tunneling of vortices 

In Fig. 5, we plot the resistance per junction (linear response) as a function of 
temperature for two square arrays; a classical array in (a) and a quantum array 
in (b). The resistance of the classical array decreases exponentially all the way 
down to the lowest temperatures. The slopes define the barrier for this thermally 
activated process: R oc exp [-U barlkBT\ = exp[-7/r]. In contrast, the resistance 
of the quantum array levels off at a certain normalized temperature rcr below 
which it remains constant. We denote this constant value with Rc. Above rcr, 
again thermally activated behavior is observed. 
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FIGURE 5. Zero-bias resistance per junction versus the inverse normalized temperature mea- 
sured for two different square arrays. 

From the analogy with the single-junction problem, the tunnel rates and hence 
Rc can be estimated. In the moderate damping regime [34] one finds: 

Rc « UORJy/se- (8) 

where s is given by 

7.2Uhar 0.87 
S  =   —  1   +   —7= 

RwD.„    I       . m... 
(9) 
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Here, Rq = hjAe2 — 6.45 kfi.   Since hu>PiV — ■̂yEjEc, s is proportional to 

y/Ej/Ec. 
An estimate for rcr can be obtained by equating s to 7/V. Neglecting the term 

with ßc,v, the result is: 

o K     I TP _ 

(10) 

With Ej of the order of Ec, l/r cr is typically somewhat larger than 2.5 in agreement 
with the data of Fig. 5. 

We have compared the measured values of Rc with the estimates (Eq. (8,9)) and 
found that the tunnel rates in the measurements are lower than expected even when 
taking Rn as the resistance determining ßCiV. The measured values of Rc are about 
a factor exp [4] too small. A smaller Rc is consistent with a single vortex model 
in which the vortex mass is an order of magnitude larger than the one calculated 
in the quasi-static approximation. It is likely that vortices do not move as rigid 
objects and calculations have shown that the dynamic band mass of a vortex can 
be an order of magnitude larger [39]. 

A surprising result is that the array in Fig. 5a doesn't show a sign of quantum 
tunneling. Our simple argument given above indicates that for this array the zero- 
point energy is of order 0.2Ej. The absence of quantum tunneling is explained by 
the fact that in Fig. 5a the measured energy barriers are of order Ej, instead of 
0.2Ej. We have studied the thermally activated behavior in other arrays as well 
and found a systematic increase of the measured energy barriers with decreasing 
Ej/Ec ratio as shown in Fig. 6. At EjjEc = 2, however, there is sudden decrease 
with about 2Ej in the measured energy barriers. Quantum tunneling is observed 
in the small region from Ej/Ec = 2 down to the S-I transition. 

We believe that the observed dependence of the measured energy barriers with 
Ej/Ec has something to do with coupling to the oscillatory junction modes: the 
dashed line in Fig. (6) represents a barrier of 0.2Ej + hwp, i.e., the predicted energy 
barrier for a large array plus the plasma energy of a single junction. For Ej/Ec < 2, 
an energy of HUJP can no longer be transferred to the junction because Tiu>p is larger 
than 2Ej, the maximum energy a single junction can absorb. This would then 
explain the sudden decrease of the measured energy barrier near Ej/Ec = 2. Since 
the precise mechanism behind this coupling is unclear, we can not be sure that the 
single-vortex model accounts for our experimental data. We can not exclude the 
possibility of collective tunneling. 

B    Quantum vortex transport in a periodic ID potential 

Electrons in metals move in the periodic potential created by the positively 
charged ions. The electron wave functions overlap and energy bands are formed. 
A constant electric field accelerates electrons, but in the absence of scattering, 
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FIGURE 6. Measured energy barriers in units of Ej as a function of the Ej/Ec ratio for square 
(solid squares) and triangular (solid triangles) 2D arrays. Around Ej/Ec = 2, a sudden decrease 
by an amount of 2Ej is found in the measured energy barriers. The S-I transition for this value 
of applied magnetic field (/ = 0.1) occurs at Ej/Ec » 0.9, slightly above the zero-field value of 
0.6. 

electrons would be Bragg reflected at the zone edges. Electrons then undergo an 
oscillatory motion in space (Bloch oscillations). No charge would be transported. In 
metals scattering takes place before the electrons can reach the zone edge. Bloch 
oscillations do not appear and charge is transported. In semiconductor supper- 
lattices [40] Bloch oscillations have recently been observed because of the larger 
superlattice period and because of less scattering in the controlled fabricated struc- 
tures. 

Vortices in a periodic potential should also from energy bands. We will  consider 
the geometry of Fig. lc. For low densities, vortices move in the middle row only 
experiencing a ID sine potential. For a free vortex the energy depends quadratic 
on the wave vector k: E(k) = h2k2/2Mv. The quasi-static vortex mass is approxi- 
mately given by the value in Eq. (3) so that E(k) = 2Ec(p/n)2 k2. At the Brillouin 
zone edge k = n/p, the energy is equal to 2Ec- In a periodic potential, energy gaps 
open up at the zone edges. The gap is equal to the Fourrier coefficient of the lattice 
potential [41]. For a sine potential |7.Ejsin(27ra:), the gap is therefore -yEj. Thus, 
vortices in arrays form energy bands with a bandwidth of order Ec and an energy 
gap of \fEj as is illustrated in Fig. 7. 

If  a small constant force (= $oI/p) is applied to the vortex, the wave vector will  
change linearly in time because $oI/p — frdk/dt. In the absence of damping, the 
vortex will  always reach the Brillouin zone edge where it will  be Bragg reflected. 
This Bragg reflection results in an oscillatory motion in fc-space. On average the 
vortex velocity (— H~1dE(k)/dk) is zero due to the periodicity of the bands. The 
time it takes the vortex to complete one oscillation follows from At = Ak/ < 
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FIGURE 7. Schematic drawing of the energy bands for a vortex moving in a quasi-lD Josephson 
array. Dots: numerical calculated energy bands starting from Schrödingers equation with a cosine 
potential [42]. The dashed line shows the first band of a cosinusoidal dispersion relation with the 
same band width. 

dk/dt > with Ak = 27r/p. The corresponding Bloch oscillation frequency (UB) is: 

VB 
I_ 

2e 
[ID  

The Bloch frequency increases linearly with increasing bias current. When biasing 
an array with 1000 junctions with currents of order JUA'S, Bloch frequencies will  be 
of the order of 1-10 GHz. 

The amplitude of the Bloch oscillation can be estimated from combining the 
equations given in the previous paragraph ($0I/p — hdk/dt and dx/dt = 
%~ldE(k)jdk). If  the bandwidth is 2Ec, the result is: 

x 

P 

Ecjc_ 
Ej 2TTI 

(12) 

Since Ec « Ej and Ic/I is typically 100, the Bloch oscillations extend over 10 cells. 
What will  be the characteristic feature of Bloch oscillating vortices in a. dc 

current-voltage characteristic? For very small bias, there will  be a small super- 
current because vortices need to overcome the energy barriers near the array edges. 
Just above the depinning current, vortices start to move but even the smallest 
amount of dissipation will  prevent the occurrence of Bloch oscillations. Thus, an 
increase of the current will  yield an increase of the measured voltage across the ar- 
ray. However, when increasing the current even more at some point the dissipation 
is not strong enough to prevent the vortices from reaching the zone edges. Bloch 
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oscillations are now possible. In the I-V characteristic a sudden decrease of the 
voltage is then expected with a negative differential resistance: the oscillating vor- 
tices do not contribute to the net transport of vortices through the array. In Delft, 
I-V characteristics with a negative differential resistance have been measured in 
quasi-lD quantum arrays [29]. The data indicate a more complicated picture than 
our single-vortex model presented here. In the experiment, vortex-vortex interac- 
tions seem to play a role as well. To date, it has been impossible to measure the 
response of one vortex in the array. 

When the periodicity of the underlying lattice is distorted, the spatial extent of 
the vortex wave functions will  be reduced. This phenomenon is called Anderson 
localization [43]. In one-dimension, localization is strong even with weak disorder. 
Anderson localization of quantum vortices in disordered arrays has recently been 
reported [30]. The arrays have vertical rows with larger junctions. The larger 
junctions create additional energy barriers for vortex motion. If  the spacing between 
rows is equal, a superlattice is obtained with a new cell given by the distance 
between the rows and the array width. In these arrays, vortex wave functions are 
still extended since at the lowest temperatures a finite, temperature independent 
resistance remains. Vortices are mobile and tunnel through the energy barriers of 
the array. Disorder is introduced by changing the distance between adjacent rows 
with the larger junctions. A dramatic difference is found in the resistive behavior. 
When lowering temperature, the resistance monotonically decreases. There is no 
leveling off as observed for the arrays with a superlattice. The vortices in the 
disordered array are localized. For high vortex densities, however, the response 
is not so different. Vortex-vortex interaction have led to a delocalization of the 
vortices due to their repulsive interaction. 

These vortex-vortex interactions also play a dominant role in the transition to a 
Mott insulator [31]. In a periodic potential vortices localize when their density is 
commensurate with the ID lattice potential. This transition is due to a collective 
effect associated with vortex-vortex interactions. 
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Single-Electron Tunneling Devices 

P. Hadley 

Department of Applied Physics and DIMES, Delft University of Technology, PO Box 5046, 2600 
GA Delft, The Netherlands 

Abstract Single-electron tunneling devices can detect charges much smaller than the 
charge of an electron. This enables phenomenally precise charge measurements and it has 
been suggested that large scale integration of single-electron devices could be used to 
construct logic circuits with a high device packing density. Here the operation of the two 
basic types of single-electron tunneling transistors is reviewed. The applications of single- 
electron tunneling in precision measurements and in general purpose computation is dis- 
cussed. Particular attention is paid to the characteristics of single-electron tunneling tran- 
sistors in the superconducting state. 

Introduction 

Single-electron tunneling (SET) devices can monitor and manipulate the motion 
of individual electrons.1"5 These devices lie at the intersection of two major re- 
search trends: mesoscopic physics and the miniaturization of electronic circuits. 
Much of the original motivation for the studying of SET devices came from 
mesoscopic physics. Mesoscopic physics is the study of artificially constructed 
systems that exhibit quantum behavior. Sometimes the systems that are fabricated 
are called artificial atoms because the devices that are produced behave in many 
ways like atoms. Mesoscopic physicists often study the electrical transport through 
a small island of metal or semiconductor (also called a quantum dot) by weakly 
attaching leads to the island. The capacitance of these islands can be so small that 
adding a single electron to the island causes the voltage to jump significantly. By 
adding electrons to the island of a SET transistor one can investigate the quantum 
mechanical level spacing in the island,6"8 the spin splitting of the quantum me- 
chanical levels in a magnetic field,9'10 the interaction of electrons on the island, the 
modulation of the shot noise due to the Coulomb blockade,11 and how electrical 
transport through the island is coupled to the electromagnetic environment. The 
physics of electrical transport through a island is more complex if  either the leads 
or the island itself is superconducting. In that case, current can flow due to the 
motion of Cooper pairs or due to the motion of normal electrons, or due to a com- 
bination of both. 

Another important research trend that has focused attention on SET devices is the 
miniaturization of electronic circuits. The information technologies that are be- 
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coming increasingly important in our society are advancing so quickly because we 
keep finding ways to manufacture circuits more cheaply. Powerful computers have 
become widely available for a reasonable price. One of the essential ingredients to 
the success of the information technologies is the miniaturization of electronic cir- 
cuits. As the circuits are made smaller, more devices can be manufactured simul- 
taneously, resulting in cheaper circuits. The smaller the circuits are made, the 
smaller the amount of charge that is used to represent a bit. It is necessary to re- 
duce the amount of charge that represents a bit because in the commonly used 
logic schemes, the amount of energy that is dissipated when a bit is manipulated is 
related to the charge that represents the bit times the voltage level. The power dis- 
sipated by a circuit is one of the factors limiting the miniaturization of electronic 
circuits. The smallest amount of charge that can be used to represent a bit is a sin- 
gle electron. Therefore SET devices have been investigated where bits are repre- 
sented by individual electrons or just a few electrons. These circuits can be made 
very small and dissipate little power making them potentially useful for dense in- 
tegrated circuits. Quite a number of logic schemes using SET devices have been 
proposed. To understand how these devices work, we will  begin with the simplest 
components of SET circuits, the single-electron tunneling transistors. 

Single Electron Tunneling Transistors 

The most widely studied SET device is the capacititvely coupled SET transistor. It 
consists of a metallic island that is coupled to three electrodes as shown in Fig. 1. 
Two of the leads are coupled to the island via high resistance tunnel junctions and 
the third lead (the gate) is capacitively coupled to the island. The transistor shown 
was fabricated in a Au/SiO/Al three layer process.13 Since aluminum is a super- 
conductor, this device can be operated either in the superconducting state or in the 
normal state where the superconductivity is suppressed by applying a magnetic 
field. SET transistors can be made using a wide variety of metals, semiconductors, 
or conducting polymers. 

The electrical characteristics of the capacitively coupled SET transistor are shown 
in Fig.2. The current that flows through the two tunnel junctions can be modulated 
by changing the charge on the gate. Two current-voltage curves are shown for this 
device in the normal state and two curves in the superconducting state. In the 
normal state, on the curve labeled q = 0, no current flows until there is a finite 
voltage across the two junctions. This is known as the Coulomb blockade. The 
origin of the blockade has to due with the finite energy that is necessary to add an 
extra electron to the island. The Coulomb blockade is maximized any time the 
charge on the gate is an integer multiple of the charge of an electron, e. The Cou- 
lomb blockade can be suppressed by adjusting gate charge to (n + ¥t)e, where 
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FIGURE 1 A SEM photo of a capacitively coupled SET transistor. First gold layer was de- 
posited on an oxidized Si substrate and this was patterned by liftoff to form the gate. Next 
SiO was deposited to electrically isolate the gate and the island. Finally the aluminum 
source, drain, and island were defined by liftoff. The two tunnel junctions at the corners 
where the island meets the source and the drain were defined by shadow evaporation. 
(Courtesy of Erik Visscher) 
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FIGURE 2. The current - voltage characteristics for the same SET transistor in the normal 
state and in the superconducting state. 
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n is an integer. When the Coulomb blockade is suppressed, the curve labeled q = 
ell is observed. In the superconducting state, hardly any current flows through the 
device below a bias voltage of ANe even when the Coulomb blockade is sup- 
pressed. Here A is the superconducting gap. 

A SET transistor can be used to measure charge either in the normal state or in the 
superconducting state. Typically, the SET transistor is voltage biased at a point 
where there is a large modulation of the current as a function of the gate charge. 
The charge that is to be measured is coupled to the gate and the current through 
the gate is monitored. By this means charges much smaller than the charge on an 
electron can be measured. The charge resolution that can be achieved is about 10" 
el4m. at 10 Hz. SET transistors offer by far the best charge resolution of any of 
the available charge measurement devices. The charge resolution of the SET tran- 
sistor is better in the superconducting state due to the larger current modulation at 
the optimum bias point.14 

People familiar with superconducting electronics may be puzzled by the lack of a 
supercurrent in Fig. 2. If  the tunnel junctions were larger so that they had a resis- 
tance of about 1 Q, a supercurrent would flow through the two tunnel junctions in 
series. This supercurrent would not be sensitive to the charge on the gate. Such 
large tunnel junctions exhibit the Josephson effects in the superconducting state 
and behave like resistors in the normal state. As the junctions are made smaller, 
the resistance of the junctions increases and their capacitances decrease. The first 
significant deviation from large junction behavior occurs when the junction resis- 
tance exceeds about 100 Q. This has to do with the impedance of the environment 
in which the junction is embedded. The environment usually consists of the leads 
which act as either an antenna or a transmission line and transport high frequency 
radiation away from the junction. From the junction's point of view, the environ- 
mental impedance can often be modeled as an ohmic resistor with a value of about 
100 Q. (see Fig. 3) The impedance of the environment is in parallel with the junc- 
tion and can be neglected if  the junction impedance is much lower that the imped- 
ance of the environment. In the large junction limit, the impedance of the junction 
is typically 1 ß and thus the impedance of the environment can be safely ne- 
glected. When the impedance of the junction exceeds about 100 fl, the environ- 
ment effectively shunts the junction at high frequencies and it cannot be neglected. 
This results in additional high frequency damping which is sometimes reflected in 
the measured dc characteristics. An excellent discussion of these effects is given 
in the second edition of Introduction to Superconductivity by M. Tinkham. For 
any devices with impedances larger than 100 Q the high frequency damping of a 
low impedance environment should be kept in mind. 
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FIGURE 3. A superconducting tunnel junction and the impedance of the environment it 
sees at high frequencies. A typical environment has an impedance of 100 Ü. If the junc- 
tion resistance is much less than 100 Cl, the effect of the environment can be ignored. For 
junctions with impedances larger than 100 fl, the environment increases the high fre- 
quency damping. 

As junctions are made still smaller another qualitative change in the behavior of 
the junctions occurs when the resistance of the junctions approaches the quantum 
resistance hie2 = 25 kQ, familiar from the quantum Hall effect. This resistance 
marks the transition where the dynamics of a superconducting junction can better 
be described by the motion individual electrons and Cooper pairs than by the mo- 
tion of individual vortices. Since the voltage across a superconducting junction is 
the number of vortices that pass by per second and the current is the number of 
electrons that pass by per second, the resistance is the ratio of the number of vor- 
tices that pass by to the number of electrons that pass by. For resistances much 
below the quantum resistance many electrons pass through the junction for every 
vortex that goes by. In this regime, the circuit can best be described in terms of the 
motion of individual vortices. When the resistance is much higher than the quan- 
tum resistance, many vortices pass through the junction for every electron that 
passes by. Here the circuit can best be described in terms of the motion of individ- 
ual electrons and Cooper pairs. 

When the resistance of the junctions in a circuit is approximately equal to 25 kQ, 
the circuit must be analyzed quantum mechanically. When this is done for a SET 
transistor one finds that the current that flows onto the island and the charge on 
the island are noncommuting variables. One consequence of this is that the super- 
current can be modulated by changing the charge on the gate. It is possible to use 
the modulation of the supercurrent to measure the charge on the gate. Charge 
measurements can be made more quickly when the supercurrent is monitored than 
when the quasiparticle current is monitored because the output impedance is 
lower.16 As the resistance is increased further, the supercurrent is suppressed. For 
junctions with resistances more than 100 kQ, the current that flows is primarily 
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FIGURE 4. If the tunnel junctions resistances are much larger than the quantum resis- 
tance then the voltages across the tunnel junctions in circuit (a) can be approximated by 
solving for the voltages across the equivalent system of capacitors in circuit (b). 

due to quasiparticles and the current-voltage characteristics has the form shown in 
Fig. 2. 

For resistances much larger than the quantum resistance it is possible calculate the 
Coulomb blockade region by first ignoring tunneling and treating the circuit as a 
system of capacitors (see Fig. 4). When this is done, the voltages across the two 
junctions can be determined. 

v2=M(c,-c2)ub-q-cgug) 

Here q is the charge on the island and d is the total capacitance, Cx = C\ + C2 + 
Cg. The charge on the island can be decomposed into an integer times the charge 
of an electron plus an offset charge, q = ne + q0. The offset charge is due to the 
polarization of the island by charged defects in the vicinity of the island. A current 
will  flow through a SET transistor in the normal state if  the voltage across one of 
the junctions exceeds e/(2C£). The condition that IVJ < e/(2C£) and \V2\ < e/(2C£) 
corresponds to a different diamond shaped region in the f/& - Ug plane for every 
value of n. This is shown in the stability diagram of Fig. 5a. The Coulomb block- 
ade occurs inside the diamonds. The periodicity of the stability diagram is e/Cg 

along the Ug axis. In the superconducting state, the condition that no significant 
quasiparticle current flow is IVil  < e/(2Cx) + 2A and IV 2I < e/(2C£) + 2A. This re- 
sults in the stability diagram shown in Fig. 5b. 

Measurements of the current through a superconducting SET transistor are shown 
in Fig. 6. The most prominent feature in the figure is the zigzag pattern across the 
top which indicates the onset of significant quasiparticle current flow through the 
SET transistor. This zigzag pattern follows the top of the overlapping diamonds 
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FIGURE 5. (a) The stability diagram for a capacitively coupled SET in the normal state. 
The Coulomb blockade occurs inside the diamonds. The periodicity along the Ug axes is 
e/Cg. (b) The stability diagram for the same SET transistor in the superconducting state. In 
the superconducting state the diamonds overlap. The dotted lines indicate where resonant 
Cooper pair tunneling can take place. For convenience the offset charge, q0, was taken to 
be zero in these figures. A nonzero offset charge displaces the stability diagrams along 
the Ug axis. 

shown in Fig. 5b. The periodicity of the pattern along the gate voltage axis can be 
used to calculate the gate capacitance and the slopes that form the zigzag pattern 
can be used to calculate the capacitances of the two junctions using the formulas 
given in Fig. 5b. 

The isolated current peaks at a bias voltage of about 0.4 mV are due to the 3e 
processes described by Maassen van den Brink.17 The intersecting ridges of cur- 
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FIGURE 6. Contour plot of the current through a superconducting SET transistor as a 
function of the bias voltage and the gate voltage. The current varies from 0 to 3 nA. 

rent are due to the Josephson - quasiparticle cycle.18 Both of these processes in- 
volve the tunneling of quasiparticles and Cooper pairs and fall on the dotted lines 
given in Fig. 5b. 

One of the difficulties with using a capacitively coupled SET transistor is adjust- 
ing for the offset charge.19 There are charged defects in the vicinity of the island 
that act like an extra gate and give the charge on the island a random offset. In cir- 
cuits consisting of just a small number of SET transistors, one can compensate for 
the offset charges by coupling a gate to each island. This solution is impractical 
for circuits consisting of more than a few SET transistors. The effect of the offset 
charges can be seen in Fig. 7a where the offset charge changed suddenly while a 
SET transistor was being measured in the normal state. The abrupt change in cur- 
rent at -0.25 mV was caused by a change of the offset charge. It is not uncommon 
for offset charges to change on the time scale of hours or days. Offset charges can 

263 



khum flY^Mlt 

<b) 

1 sec 

FIGURE 7. (a) The current - voltage characteristic of a capacitively coupled SET transistor 
in the normal state. At a gate voltage of -0.25 mV the offset charge suddenly changed, (b) 
The time dependence of the current for a rapidly oscillating offset charge. 

also fluctuate more rapidly. A rapidly fluctuating offset charge is shown in Fig 7b. 
The existence of fluctuating offset charges makes the behavior of SET transistors 
somewhat unpredictable. This makes it difficult to design reliable circuits using 
capacitively coupled SET transistors. 

Another sort of transistor which is not sensitive to offset charges is the resistively 
coupled SET transistor. This also consists of a metallic island connected to two 
leads via tunnel junctions but in this case the control terminal is resistively cou- 
pled to the island. To insure that the charge on the island is well defined, the re- 
sistor must have a resistance greater than the quantum resistance. The stability 
diagram for a resistively coupled SET transistor is shown in Fig. 8 for the super- 

FIGURE 8. The schematic of a resistively coupled SET transistor and its stability diagram. 
The dashed line in the stability diagram identifies the region where the Coulomb blockade 
exists in the normal state and the solid line indicates the region where no significant quasi- 
particle current flows in the superconducting state. 
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conducting state and the normal state. The region where no significant current 
flows is determined again by neglecting tunneling and requiring that the voltages 
across the two tunnel junctions satisfy IVil  < e/(2Cj) and \V2\ < el(2C-£) in the nor- 
mal state and IVil  < el{2Cj) + 2A and IVy < e/(2Cz) + 2A in the superconducting 
state. Unlike a capacitively coupled SET transistor, the characteristics of a resis- 
tively coupled SET transistor are not a periodic function of the gate voltage and 
are not dependent on the offset charge. It is therefore easier to design circuits us- 
ing the resistively coupled SET transistor. 

Measurements using SET transistors 

Because of their charge sensitivity, SET transistors are very well suited for making 
precision charge measurements. Many measurements have been made studying 
charge transport in the SET transistors themselves. By adding electrons to the is- 
land of a SET transistor one can investigate the quantum mechanical level spacing 
in the island, the spin splitting of the quantum mechanical levels in a magnetic 
field, the interaction of electrons on the island, the coupling of states in the leads 
to states in the island, the modulation of the shot noise due to the Coulomb block- 
ade, and how electrical transport through the island is coupled to the electromag- 
netic environment. SET transistors are also very sensitive to applied radiation. 
Photon assisted tunneling has been observed and the absorption of individual 
photons of microwave radiation can be detected. 

SET transistors have been capacitively coupled to a variety of systems so that the 
charge motion of those systems could be observed. Metallic SET transistors have 
been coupled to semiconductor quantum dots to monitor the charge fluctuations in 
the quantum dot.21 They have been coupled to superconducting particles where it 
is possible to observe whether the particle has an odd number or an even number 
of electrons on it.10 An even number of electrons has a lower energy because all of 
the electrons can pair to form Cooper pairs. When the number of electrons is odd 
one must remain unpaired which increases the energy by the superconducting gap 
A. This odd-even energy difference can be observed even when the particle con- 
tains a billion electrons. SET transistors have also been scanned over semicon- 
ductors to measure fluctuations in the dopant distribution.22 The spatial resolution 
of these measurements was 100 nm and the charge resolution was 0.01 e. Funda- 
mental measurements such as an experiment to make a more accurate measure- 
ment of the fine structure constant have been proposed.23 Furthermore, it is possi- 
ble to use SET transistors to monitor the occurrence of unlikely higher order tun- 
nel events which occur at sub zA currents. 
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One of the potential applications of SET devices is a fundamental current stan- 
dard. In such a device, a known current is established by transferring individual 
electrons through the device with a frequency/. This results in a current I = ef. A 
number of different schemes for doing this have been proposed which include 
modulating the gates coupled to the islands in a series array of tunnel junc- 
tions,24,25 modulating the tunnel barriers in a semiconducting quantum dot,26 trans- 
ferring Cooper pairs in a superconducting circuit,27 and using surface acoustic 
waves to transport individual electrons.28 The most intensively studied current 
standard is called an electron pump. It consists of a number of tunnel junctions in 
series with a gate connected to each island between the junctions. By modulating 
the gates successively one can draw a single electron through the array of tunnel 
junctions. The accuracy that has been achieved with this current standard is 15 
parts per billion.29 

All  of the measurements that have been described so far have been made at very 
low temperatures, typically 0.1 K. This is partly because the SET transistors only 
work at low temperatures and partly because the phenomena that was being stud- 
ied with SET transistors only manifest themselves at low temperature. The neces- 
sity for very low temperatures is not a great problem for fundamental measure- 
ments but it is a problem for applications in general purpose computation which 
will  be discussed in the next section. 

SET logic and memories 

The small size and low power dissipation of SET circuits makes them potentially 
useful for the information technology industry. Quite a number of logic schemes 
have been presented. Some of the schemes are very similar to CMOS where bits 
are represented by voltage levels.30"33 Figure 9 shows two CMOS-like inverters 
constructed from SET transistors where the complementary nature of the logic can 
be seen. Other logic schemes resemble superconducting single flux quantum 
logic.1 In this case, bits are represented by the presence or the absence of individ- 
ual electrons. Some logic schemes contain elements that act like electron pumps 
for moving charge around.34 One scheme is based on the phaselocking of single- 
electron tunneling oscillations to an ac signal35 and other logic schemes have a 
neural net architecture.36 Several schemes are based on the bistability of certain 
element where the electrons can exist in two configurations which have an 
equivalent energy. Reversible logic elements as well as the more typical irre- 
versible logic schemes have been proposed. 

One practical problem that all of the SET logic schemes face is the necessity for 
low temperature operation. The problem is that if  the energy that is necessary to 
add an electron to the island of a SET transistor is smaller than the characteristic 
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FIGURE 9. (a) The schematic of an inverter, (b) A SET inverter realized with capacitively 
coupled SET transistors. The offset charges q are specified to insure proper inverter op- 
eration, (c) A SET inverter realized with resistively coupled SET transistors. 

thermal energy kBT, then the Coulomb blockade will  be washed out by thermal 
fluctuations. The path that must be followed to make circuits that operate at higher 
temperatures is clear; the dimensions of the devices must be reduced. This will  
decrease the capacitances and increase the amount of energy that is necessary to 
add an electron to the island of a SET transistor. In the last few years there has 
been considerable progress in fabricating smaller devices. A large international 
effort in nanofabrication is underway that will  eventually make molecular-scale 
devices a reality. It is not yet clear whether the mass production of molecular-scale 
devices will  be economically competitive but it is clear that the devices will  be- 
come available in the next few years. When SET circuits are scaled down to mo- 
lecular dimensions, they will  function at room temperature. This shrinking of the 
circuit dimensions has a number of consequences both desirable and undesirable. 
As the size and the capacitance of the devices decrease, the operating temperature, 
the operating voltage, and the device packing density increase. These are desirable 
consequences of the shrinking of SET devices. However, as the dimensions de- 
crease, the electric fields, the current densities, the energy dissipated per switching 
event, and the power dissipated per unit area all increase. These are undesirable 
consequences of shrinking. 

Another practical problem that many of the logic schemes face is that of offset 
charges. Most of the logic schemes simply will  not work if  the offset charges are 
not somehow eliminated. It is not just the fluctuations of the offset charges that is 
a problem. Even stationary random offset charges completely disrupt the operation 
of most logic schemes. The prospects for eliminating the offset charges seem 
rather dim. It is therefore important to focus on logic schemes which are offset- 
charge independent. 

Exactly how SET devices will  contribute to the enterprise of general purpose 
computation remains unclear. No SET logic scheme is presently threatening to 
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overthrow the semiconductor industry standard CMOS technology. However, dif- 
ferent schemes are continuously being proposed and one of these may prove to be 
superior in some ways to mainstream semiconductor devices. In any case, minia- 
turization will  likely remain an important aspect of dense integrated circuits and 
single electron effects will  almost certainly play a role in devices with very small 
dimensions. 

A separate issue from using SET circuits for logic is the applicability of SET cir- 
cuits for memories. Right now the memories seem more promising than the logic. 
Two memories in particular are worth mentioning. The first is an offset-charge 
independent DRAM cell which was described by Likharev and Korotkov.40 In 
their circuit, a bit is represented by the presence or absence of a charge of a few 
electrons which is stored on an island. The charge on the island is monitored by a 
SET transistor. When the memory cell is read, the circuit is biased so that any 
charge on that may be on the island is removed. If  there was charge on the island 
when the memory cell is read, the current through the SET transistor undergoes 
oscillations as each electron tunnels off the island. If  there was no charge stored 
on the island there are no oscillations of the current. The oscillations of the current 
through the SET transistor occur for any value of the offset charge. 

Another type memory called a single-electron MOS memory (SEMM) is also 
based on the motion of individual electrons.41'42 This device is very similar to a 
conventional floating gate MOS memory. The charge on a floating gate modulates 
the conduction through a channel nearby the gate. The gate is made so small that 
even if  one electron is added to the floating gate, the conduction through the chan- 
nel changes appreciably. 

Conclusions 

Single-electron tunneling devices are contributing to our understanding of how 
charge is transported in tunnel junction circuits and how to treat circuits quantum 
mechanically. It is likely that SET circuits will  make a lasting impact in the field 
of precision measurements either as a fundamental standard of capacitance, or a 
fundamental current standard, or both. A great number of SET logic schemes are 
being proposed but it is not yet clear if  any of them will  be competitive with semi- 
conductor circuits. SET memories that should work at very high packing densities 
have been proposed. The realization of these memories will  have to wait for fabri- 
cation technologies that can produce them at those densities. 
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Abstract. In this chapter we review the quantum phase transitions and transport 
properties of low-capacitance Josephson junction arrays. We will  present the models 
and introduce the relevant topological excitations. The phase diagram depends in a 
very rich way on various control parameters. We will  discuss the universality or or 
absence of universality of the transport properties at the quantum phase transition. 

I    INTRODUCTION 

Josephson junctions arrays (JJA) are ideal model systems to study a variety of 
non-conventional phase transitions [1-3]. In the last years, due to the development 
of the microfabrication techniques, it became possible to fabricate Josephson ar- 
rays whose junctions are of submicron size. In these systems the competition of 
single electron effects [4] with the Josephson effect, leads to a number of quantum 
phase transitions with a very rich phase diagram. In this chapter we review some 
theoretical aspects of quantum critical phenomena in these systems. This topic will  
be also touched in the chapter of J.V. Jose while a review on experiments is given 
in the chapters of H. van der Zant and P. Delsing. 

In JJA it is important to distinguish between local and global superconductivity. 
When cooling the sample, each island of the array becomes superconducting (devel- 
ops a nonvanishing gap A) at a critical temperature Tc. However, dissipation-less 
conduction requires phase coherence of the superconducting order parameter Ae"^' 
across the whole system. This can set in at a much lower temperature Tj, which 
defines the superconducting transition temperature. Alternatively, if  the junction 
are submicron size, the low temperature phase of the array may be insulating even 
though each island is superconducting [5-7]. 

The two characteristic energy scales in the system are the Josephson energy Ej 
which is associated to the tunneling of Cooper pairs between neighboring islands 
and the charging energy Ec = e2/2C (where C is the geometrical capacitance of 
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the junction) which is the energy cost to add an extra electron charge to a neu- 
tral island. The electrostatic energy inhibits the fluctuations of the charge due to 
tunneling; equivalently, it enhances the quantum fluctuations of the phases </>'s of 
the superconducting order parameters of the islands. If  Ej ^> Ec the system turns 
superconducting at low temperatures since the fluctuations of the <^'s are weak 
and the system is globally phase coherent. We will  refer to the Ej/Ec ->■ oo limit  
as the classical case (in the classical limit JJA's are a physical realization of the 
two dimensional XY-model). In the opposite limit, Ej -C Ec, the array becomes a 
Mott insulator since the charges Qi in each islands are localized (Coulomb block- 
ade of Cooper pairs) while strong quantum fluctuations of 4>i prevent the system 
to reach long range phase coherence. At a critical ratio of these coupling energy a 
superconductor-insulator (SI) transition occurs. It has been observed experimen- 
tally by the groups of Delft and Göteborg [5-7]. 

In the classical limit  vortices are the topological excitations which determine the 
(thermo)dynamic properties of JJA. Deep in the quantum limit (E} <C Ec) the 
charges on each island are the relevant degrees of freedom. Vortices and charges 
play a dual role and many features of JJA can be observed in the two limits if  the 
role of charges and vortices are interchanged [12,13]. 

Many of the properties discussed here, are also observed in granular superconduc- 
tors [8] and ultra thin superconducting films [9-11]. In granular systems disorder 
plays a crucial role, while this is virtually absent in JJAs, or it can be introduced in 
a controlled way. In ultra-thin films it is believed that pre-formed Cooper pairs exist 
and that phase fluctuations, which can be controlled by varying the film thickness, 
drive the system through the SI transition. 

It is well established that in classical arrays an applied magnetic field leads 
to frustration [16], with similar effects predicted for quantum JJAs [14,15]. In a 
quantum JJA an applied gate voltage relative to the ground plane Vx introduces a 
charge frustration. The combination of charge frustration and finite-range Coulomb 
interaction leads to the appearance of various Mott insulating phases [17]. They are 
characterized by crystal-like configurations (with a lattice constant which depends 
on Vx) of the charges on the islands. In addition a new phase, characterized by 
the coexistence of off-diagonal (superconducting) and diagonal (charge-crystalline) 
long range order, occurs. This phase is known as supersolid. The combination of 
charge and magnetic frustration may lead to qualitatively new effects [25]. The most 
striking prediction is that for certain ratios of the magnetic to charge frustration 
the JJA is in a Quantum Hall phase [26]. 

In quantum phase transitions the dynamics and thermodynamics are intimately 
interconnected. Hence rather peculiar transport properties are expected close to 
the SI transition. One of the most striking predictions in this respect is that at 
the transition the conductance is finite and universal [27,28]. Since the original 
prediction of a metallic behavior at zero temperature for two-dimensional super- 
conductors there has been a substantial interest in the actual value of the universal 
conductance, and in the possibility of non-universal corrections [29]. 

This chapter is organized as follows.  In the next section the models which are 

274 



used to study quantum JJA will  be introduced. Although different in many details, 
all those models have similar phase diagrams. In section III  some theoretical tools 
to study the phase diagram are briefly discussed: the mean field approximation, 
the coarse graining approach to derive a Ginzburg-Landau effective free energy, 
and the Villain transformation which leads to a description in terms of charges and 
vortices. These approaches capture most of the essential physics. The subsequent 
section is devoted to a description of the phase diagram including the case when 
there is charge and/or magnetic frustration. Since the number of parameters which 
can be varied is rather large, the phase diagram is discussed only in some limiting 
cases. The last section is devoted to a discussion of the transport properties close 
to the SI transition. In this chapter we will  not discuss the effects of disorder. This 
may lead to an additional glass transition [39-41] as it will  discussed by J.V. Jose 
in this volume. 

II     THE MODELS 

A quantum JJA consists of metallic islands (which undergo a superconducting 
transition of the BCS type at a transition temperatures Tc) which are connected 
by tunnel junctions. Each island has a capacitance to each of the other islands, to 
the ground and to any neighboring metallic region (such as gates or leads). The 
electrostatic energy of the system is entirely specified by the capacitance matrix 
dj [42] and the charge configuration Qi = 2e$ of each island ($ being an integer 
number). Moreover, as known from the classical arrays, the Josephson coupling 
across the junctions introduces another contribution to the energy. Since at low 
temperatures the fluctuations of the amplitude of the order parameter can be ig- 
nored, the only relevant dynamical variables are the phases </>,- of each island, and 
the charge, Both are canonically conjugated variables [43] 

[4>u Qj] = 2e i Sij 

Thus the relevant physics is captured by the following model, frequently defined as 
the Quantum Phase Model (QPM) 

#QPM = Y,(qi - qx) Uij (qj - qx) - E3 Y, cos (& _ h ~ Aij) ■ (!) 
hi <*,]> 

The Coulomb interaction is described by the matrix Uij = e2C^1. The simplest, 
sufficiently realistic, model for the capacitance matrix dj includes only the ground 
capacitance Co and the junction capacitance C, with the corresponding energy 
scales Ec = e2/2C and Eo = e2/2Co- The range of the electrostatic interaction 

between Cooper pairs is , in units of the lattice spacing, A = JC/CQ- A control 
(external) voltage Vx applied to the ground plane enters via the induced charge 
Qx = 2eqx = Y^j CijVx (a homogeneous situation is considered here). When tuning 
Vx different charge configurations minimize the electrostatic energy. It suppresses 
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tunneling (Coulomb blockade) except at degeneracy points. A perpendicular mag- 
netic field with vector potential A enters the QPM in the standard way through 
Aij = 2e J/ A-d\. The relevant parameter which describes the magnetic frustration 
is / = (l/27r) J2A{j, where the summation runs over an elementary plaquette. 

The QPM accounts only for Cooper pair tunneling, in some case one has to 
take into account the tunneling of quasiparticles and/or the flow of Ohmic current 
through the substrate or between the junctions. These effects will  be discussed in 
the section devoted to the transport properties. 

In the case of strong on-site Coulomb interaction Uu = Uo and very low tem- 
peratures only few charge states are important. If  the gate voltage is tuned close 
to a degeneracy, the relevant physics is captured by considering only two adjacent 
charge states of each island, and the QPM is equivalent to an anisotropic XXZ 
spin-1/2 Heisenberg model [20] 

HS = -h£ s; + £ s; utj s; - ^  £ (eiA- s? sj + e~
iA- sf s~) .    (2) 

The operators S-, Sf, S~ are the spin-1/2 operators, 5f being related to the 
charge on each island ($ = Sf + |), and the raising and lowering Sf operators 
corresponding to the "creation" and "annihilation" operators e±%*' of the QPM. 
The "external" field h is related to the external charge by 

A = (fe-l/2)£t/tf. 
3 

Various magnetic ordered phases of the XXZ Hamiltonian correspond to the dif- 
ferent phases in the QPM. Long range order in (S+) indicates superfluidity in the 
QPM while long range order in {Sz) describes order in the charge configuration. 

There is yet another closely related model which is mostly used in the context of 
superconductivity in ultrathin films, the Bose-Hubbard model [39] 

H=-Y,niUijUi  -n J2rii - - Y,{h\hi + h-c-) (3) 
Z   i Z <y> 

where b\ b are the creation and annihilation operators for bosons and n,- = bjbi is the 
number of bosons. Again Uij describes the Coulomb interaction between bosons, 
fi is the chemical potential, and t the hopping matrix element. The connection 
between the Bose-Hubbard model and the QPM is easily seen by writing the field 
bi in terms of amplitude and phase and then approximating the amplitude by its 
average, i.e. bi ~ e"*'. The hopping term is then associated with the Josephson 
tunneling while the chemical potential plays the same role as the external charge in 
the QPM. This mapping becomes more accurate as the average number of bosons 
per sites increases. 

The three models are equivalent in the sense that they belong to the same uni- 
versality class (they lead to the same Ginzburg-Landau effective free energy). How- 
ever, the non-universal features like the location of the phase transitions depend 
quantitatively on the specific choice of the model. 
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Ill     ANALYTIC  TOOLS 

A    Mean Field 

The mean field approximation consists in approximating the Hamiltonian of 
eq.(l) by [44,45] 

#MF = ö S 1iUiM ~ zEj(cos(4>)) E cos(^) 
i,j 3 

where z is the coordination number in the lattice and i\> = (cos((f>)) is the order 
parameter. It has to be calculated self-consistently according to 

<cos(<£)) = Tr {cos(^) exp{-ßHMF)} /Tr {exp(-/?ffMF)}   • 

Close to the transition point, the thermal average on the r.h.s can be evaluated 
by expanding in powers of V • To third order, a Ginzburg-Landau type equation 
arises: 

fß 
- zE]      drlcos 4>AT) cos 4>i{0))ch 

Jo 
^A3«.,3 </>+(-^J   Hf =0 (4) 

Here the average < ... >ch is performed over the eigenstates of the charging part of 
the Hamiltonian only and the quantity B entails the four point phase correlation. 
If  the charging term is absent, the phase-phase correlator in Eq. (4) is one and 
we recover the classical result ßcrzEj = 2. Due to the charging effects the phase 
starts to fluctuate and the critical temperature is depressed. The correlator is easy 
to evaluate. For instance in the self-charging limit Utj = Uo6(j at T — 0 it is 
(U0 = 8^o only if  the junction capacitance is zero). 

(cos &(r)  cos &(<))>**  - (l/2)exp{-(f/0/2)r (1 - r//3)} . 

As a result the SI transition at zero temperature occurs at 

2zEj = Uo . 

For larger values of the charging energy the array does not acquire phase coherence 
even at zero temperature. The full phase diagram will  be described in details in 
the next section. 

Similar types of mean field approaches can be used to study the effect of frustra- 
tion in these systems. In this case, however, a nontrivial space dependence of the 
order parameter may arise. 
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B    Coarse-Graining approach 

By using the coarse-graining approximation it is possible to go from the micro- 
scopic models introduced in the previous section to a Ginzburg-Landau effective 
free energy which depend only on the order parameter [47,48]. Since the transition 
in this case is governed by quantum fluctuations, the order parameter will  depend 
both on space and (imaginary)-time [49]. 

The coarse-graining proceeds in two steps: 

• An auxiliary field I/>(X,T) (which has the meaning of an order parameter) is 
introduced through a Hubbard-Stratonovich transformation. The partition 
function is then expressed as a path integral over i}>.  

• The assumption that the order parameter is small close to the transition allows 
a subsequent cumulant expansion to obtain the usual (polynomial) GL effective 
free energy. The coefficients depend on the details of the microscopic model. 

The partition function of the QPM is given by 

Z = Tr{e-ßH*™} = ZA(TTe-ffdTH'M) (5) 

where the subscripts ch and j indicate the charging and Josephson part to the 
Hamiltonian of Eq.(l). Applying the Hubbard-Stratonovich transformation to the 
Josephson term we get 

exp { -W   drY, e'+'e-'+i + h.c. \ 

~ /zHTDi&expl- [ßdrYl(E})7j
imrmr)+ fßdrJ2[mr)eiMT) + h.c.}\ 

J {    Jo       {iJ) Jo • j  

(6) 

Here we introduced a matrix (Ej)ij  which is equal to Ej if  ij  are nearest neighbors 
and zero otherwise. Now the partition function can be written as 

Z = ZA J DrFVtl;  exp {-F[t/>]} (7) 

where the effective free energy F is defined as 

rß     _       /      tß 
F = ~l  ̂ B^)ö-V?(rMr)-ln/-j(  dr£ [#(r)e«*M + A.c.] • (8 

ch 

After truncation of higher order terms and a gradient expansion, the effective free 
energy reads 
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F = Jd2rdrdT'r(r,r)\^ 
,      1 /V     2e -V 

fl(T - T') > i/>(r,  T') 
2£J 

+K [d2r dT\i>(r,T)\4 . (9) 

The dynamics of the field ip is governed by the phase-phase correlator 

g(r) = (exp{i(f>i(r) - i<fc(0)})ch , 

while Ac depends on a 4-point phase correlator. The effect of a magnetic field and 
frustration can be introduced in the standard way by the replacement V -)• V+2eA 

In the mean field approximation the phase transition is obtained for 

i-jf**"- <10) 

which coincides with the results of the previous section. In the coarse graining 
approach, however, a systematic treatment of the fluctuations is possible. 

C    Duality Transformations 

In this section we derive some properties of quantum JJA using dual transfor- 
mations [50-53]. We follow closely the derivation given in Ref. [12]. Our starting 
point is the partition function expressed in terms of the Euclidean action [4], 

Z = U        ̂      £       L DMr)exp[-S{4>}}. (11) 
i   J0 {m,=0,±l,...r  ̂

Here the path integration is carried out with the boundary conditions 

&(0) = ^o);    4>i(ß) = 4>?) + 27rmi, (12) 

with ß being the inverse temperature. These non-trivial boundary conditions ex- 
press the fact that the charges of the grains are integer multiples of 2e [4]. The 
Euclidean effective action S{<f>} has the form 

^=/o'  
dAr-2 B&) 2 + £ £(<& - hf - Ej £ «»to- - 4>i) }■    (i3) 

löe   .• öe (ij) (ij) J 

The first two terms are easily recognized to be charging energy expressed in terms of 
voltages (<f>  = 2eV;)- It is clear that when the Josephson energy is either much larger 
or much smaller than the charging energy, the properties of the array are governed 
either by vortices or charges. It is therefore useful to express the action of the 
system in terms of these degrees of freedom. Vortex degrees of freedom have been 
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introduced in the classical limit by means of the Villain transformation [54]; the 
quantum problem requires some additional steps [12]. We introduce the lattice with 
spacing e in time direction; this spacing is of order of inverse Josephson plasmon 
frequency, e ~ (8JEJ.EC)

1
''
2
- In the Villain approximation one replaces 

exp {-e£j£[l-  cos(<fc,T - <foT)]}  -»•  £ exp {  - ^y £ lv&> ~ 27rm*>|2} - 
{ij),r {m,v} «> 

A resummation of the expression on the r.h.s. yields 

£ exp {  - —— £ |JfT|
2 - »JirV^v} . 

{J,,}        2£JEJ
 ... 

After this step the Gaussian integration over the phases can be performed, with 
the result 

Z = ££exp{ - £l>£W - öATE lJ.>l2}  • (14) 
9<T   JiT !,i,T ^fci'J    ,'>T 

The summation is constrained by the continuity equation, 

VJ,-T - qir = 0 . 

Here and in the following the time derivative stands for a discrete derivative /(r) = 
eß1[ f(T + ev) ~ f(r)}- The constraint is satisfied by the parameterization [55] 

jW = n^CnV)"1^ + e^V„AiT , 

where A,-T is an unconstrained integer-valued scalar field. The operator (nV)-1 is 
the line integral on the lattice (in Fourier space it has the form i(kx + ky)-1), while 
e'M") is the antisymmetric tensor. 

With the use of the Poisson resummation (which requires introducing a new 
integer scalar field u,-T) the partition function can be written as a sume over two 
integer valued fields defined on the space-time lattice, the charges q  ̂and vorticities 
Vir, 

Z =  £ exp -S{q, v} . 

The effective action is 

S{q,v}=       drYl {^e2qiTUijqjT + nEjviTGijVJT + iqiT®ijVj T + j—jjrqiTGijqjT}. 

(15) 

It describes two coupled Coulomb gases. The charges interact via the inverse ca- 
pacitance matrix.  The interaction among the vortices is described by the kernel 
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Gij, which is obtained as the Fourier transform of k 2. At large distances r„ > a 
between the sites i and j it depends logarithmically on the distance 

The charges and vortices are coupled in the dynamical theory as described by the 
third term. Here 

I Hi —' 
Qij = arctan I '■ 

describes the phase configuration at the site i if  a vortex is placed at the site j. 
The coupling has a simple physical interpretation: a change of vorticity at site j 
produces a voltage at site i which is felt by the charge at this location. The last 
term qGq represents a spin-wave contribution to the charge correlation function. 

The effective action (15) shows a high degree of symmetry between vortex and 
charge degrees of freedom. In particular, in the limit C0 <C C the inverse capac- 
itance matrix has the same functional form as the kernel describing the vortex 
interaction, e2Cfj

1 = EcGij/i: , and the charges and vortices are (approximately) 
dual. The duality is broken by the last term qGq. This term is "irrelevant" for 
the phase transitions, i.e. it merely shifts the transition point. However, it has 
important implications for the dynamical behavior. 

Recently the same duality transformations has been applied to double layers [13]. 
They will  be reviewed by J.V. Jose in this volume. 

IV    THE PHASE DIAGRAM 

The phase diagram in quantum JJA depends sensitively on the exact model 
considered. Moreover in the presence of charge and/or magnetic frustration the 
boundaries changes and new phases appear. This section is organized in small 
subsections which briefly describe the main features of the phase diagram in various 
limiting cases. 

A    Long range Coulomb interaction, C ^> CQ 

At transition temperature the vortex-unbinding KTB transition, from the su- 
perconducting to the resistive phase, is shifted by quantum fluctuations to values 
below the transition temperature Tj of the classical array (with Ec = 0). In the 
case Co = 0 the shift of the transition temperature is [56] 

*E1_Ec (6) 
J       2 6 v    ' 

If  C ^> Co another phase transition occurs at finite temperature [57]. In this limit  
charges interact logarithmically. Hnece they undergo a charge-unbinding KTB tran- 
sition, which now separates an insulating low-temperature phase from a conducting 
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high-temperature phase. In the limit  of weak Josephson coupling the charge-KTB 
transition occur at a temperature [12] 

IT tic 

Hence the array has three different phases. Upon increasing the charging energy the 
system undergoes first a superconducting - resistive transition and then a resistive 
- insulating transition. At T - 0 there is a direct superconducting - insulator 
transition which occurs at a critical point 

EL   1 
EC   ~7T2 

At this critical point the system is self-dual with respect to interchanging of charges 
and vortices. The duality is strict only in the ideal case of vanishing self-capacitance 
and the absence of the spin-wave duality breaking term in eq. (15). The phase 
diagram corresponding to this case is shown in Fig.(l). Experimental evidence of 
this behavior has been found van der Zant et al. [6,58]. 

B     Short range Coulomb interaction, C <C Co 

In this case the phase boundary can be obtained using the mean field theory. The 
phase - phase correlator needed in Eq. (10) can be easily calculated for a general 
capacitance matrix [46]. In Fig. 2 we show the phase diagram for the self-charging 
model (C = 0) as a function of the external charge qx at zero temperature. As a 
function of qx a lobe structure appears. A finite external charge lowers the energy 
cost to transfer Cooper pairs between neighboring grains, increasing the regime of 
the superconducting phase. At the degeneracy points the superconducting phase 
extends to down to arbitrary small Josephson couplings. 

For finite-range Coulomb interaction, further insulating phases are stable, and 
the phase diagram becomes rather rich. In this case not only Mott-insulating phases 
with the same integer filling  of each island are allowed, but new lobes with crystal- 
like structure of the filling,  e.g. $ = 0 or 1 arise. The simplest is a checkerboard 
pattern with alternating filling  of neighboring islands. In general, with increasing 
external charge, a sequence of inhomogeneous charge configurations minimizes the 
energy. Since the Mott-insulating lobes are incompressible (there is a gap in the 
excitation spectrum), the average charge (q) is pinned to a fractional value in the 
whole lobe. In Fig.3 a schematic phase diagram is shown, where on-site U0 and 
nearest neighboring Ui Coulomb interaction are taken into account. In this case 
the only fractional filling  which can occur is the checkerboard configuration with 
(g) = 1/2. At finite temperature the thermal occupation of higher charges states 
smears the lobe structure [46,59]. 

The combined effect of Josephson coupling and finite range interaction with 
charge frustration leads to the possibility of new phases, called supersolids.  The 
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concept of supersolids dates back to the early 70's when Andreev and Lifshitz [18] 
proposed that vacancies in a quantum crystal might undergo a Bose-Einstein con- 
densation without destroying the crystal order. In such a phase the superfluid order 
and the crystalline order coexist. 

The exciting possibility of a supersolid phase in Josephson junction arrays and 
Bose-Hubbard systems has been extensively investigated in recent years. Loosely 
speaking, the supersolid phase is located in an intermediate region around the half- 
filling  lobe. A simple way to understand its existence is to focus on a region close 
to the phase boundary at qx ~ 1/2. In this case there will  be a finite density 
of vacancies. They have bosonic character and therefore have the possibility to 
Bose condense. In a limited range of parameters they can become superfluid (and 
therefore are able to move freely through the system) without being able to destroy 
completely the crystal order (since they have a low density). 

There are various methods to study the supersolid phase in JJA. We follow here 
a variational approach discussed in Ref. [60] (valid only at zero temperature). The 
idea is to consider a variational wave function of the Gutzwiller type, as discussed 
in early treatments of spin [61] and Bose-Hubbard [62] models. It is convenient to 
write down the variational ground state using as a basis the charge on each island 
(| qi)). For simplicity we choose it as a product of single-site wave functions 

oo 

iGo>=z-in£e_M?," 'ni)2/2k>! (i7) 
n=l [m]  

where &,- and m; are variational parameters, and Z is a normalization constant. 
In the limit of zero charging energy, each island of the array has a fixed phase 
<f>, this corresponds to a coherent superpositions of charge states, i.e. fc,- = 0 in 
the variational wave function. In the case of non-zero charging energy, states in 
which the islands have non-zero charge are suppressed. This effect is controlled by 
the variational parameter k. The other variational parameter m fixes the average 
charge on each island. 

The variational parameters are determined by minimizing the energy expectation 
value EQPU = (Go | #QPM | GO). The various phases are determined by evaluating 
the average of the superconducting order 

*i  = (Go | e*'* | Go) , 

and the structure factor (which signals crystal order) 

S(*,«) = jj5(Go\ £ (-1)|,WW I Go) • 
n=a,j 

A finite S(w,7r) corresponds to a checkerboard arrangement of the charges on the 
islands. Due to discrete sums required in the evaluation of the expectation values 
the calculation should be done numerically. Results are shown in Fig. 4. 
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V    TRANSPORT PROPERTIES 

In two dimensions at the SI transition at T = 0 the conductance has been 
predicted to be finite and universal [27,28]. This is quite striking since a metallic 
behavior should be present even in the absence of dissipation. This effect is entirely 
due to the presence of collective modes which become critical at the transition point. 
The prediction of a metallic behavior at zero temperature created a lot of interest 
both on the experimental and the theoretical side. The universal conductance in a 
model with no disorder was considered in Ref. [30] by means of 1/JV expansion [63] 
and Monte Carlo simulations and in Ref. [37] by means of an e-expansion [63]. 
The dirty boson system and the transition to the Bose glass phase (including the 
case of long-range Coulomb interaction) was extensively studied in [35,31]. Wen 
employed a scaling theory of conserved currents at anisotropic critical points [64] 
identifying many universal amplitudes. One of these amplitudes in two dimensions 
reduces to the universal conductance a*. The finite frequencies properties close 
to the transition point were analyzed by means of the 1/N expansion [33,34]. On 
the numerical side, besides the Monte Carlo simulations, exact diagonalization 
calculation [36] were employed to evaluate the universal value of the conductivity 
a*. 

The simplest way to evaluate the conductivity is to use the Ginzburg-Landau 
formulation of Eq.(9) in imaginary time and then to continue the result analytically 
to real times. The conductivity in the linear response regime can be determined 
from the functional derivatives of the partition function. Noticing that the current 
is the derivative of the free energy with respect to the vector potential and that the 
electric field is the time derivative of the vector potential (with a negative sign), 
the conductivity is expressed as 

«w-^*«^«^' (18) 

Using Eq.(9), the longitudinal conductivity craa(u)ß) can be expressed in terms 
of two- and four-point Green's functions. In the absence of a magnetic field we 
have [30] 

™-& V &**»-'jffi**ir«WH*»i>\   (19) 

where the q = (qx, qy,Uv) are vectors in the 3-dimensional space-time, k = (0,0, u)ß) 
and RQ — h/4e2. There are various approaches to evaluate these correlators. The 
most straightforward is the Gaussian approximation which turns out to be the first 
term in a 1/N expansion [30]. Evaluating the correlators with the quadratic part 
of the free energy one gets 

*K)  = ^-4 £ / dk fc3 G^  "»)  [£(fc> ^) - G(fc> ^ + "»)]  • 
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where G(k,ull) = [e+ k2 + C^l]'1- Performing the fc-integrals and the analytical 
continuation to real frequencies, the real and imaginary parts of the conductivity 
are 

_      / , .2 \ 
,2 U*(uj) = — (l-^)e(uJZ-u,2) (20) 

$sa(u;) 
8RQ [    u 

2wc (.     ul , u - wc 

IJJ + Wc 

(21) 

The threshold is u)c = 8UoJ(l — E}/Uo) (in the case of on-site interaction). It 
vanishes at the SI transition thus leading to a finite d.c. (to —> 0) conductivity, 

iv 4e2 

• * = ST- (22) 

Corrections to the next order in the 1/N expansion correct the Gaussian result 
by roughly 30% yielding a* ~ 0.251CTQ. Another powerful method for evaluating 
critical quantities is the e-expansion [63]. In order to set up the e-expansion one 
should move away from two-dimensions and consider systems with d — 1 spatial 
dimensions. Eq. (19) should be rewritten accordingly (i.e. the three-dimensional 
vectors should be replaced by d-dimensional ones). This approach allows also to 
obtain the scaling form of the frequency dependent conductance (for more details 
the interested reader is referred to Ref. [37]). In two dimension, to order e2, the 
universal conductance is 

4e2 

<r* = 0.315— . (23) 
h 

slightly larger than the result of the Monte Carlo simulation of Ref. [30]. 
The question arises how a system of bosons can have a dissipative dynamics at 

zero temperature. A look at the available experiments shows indeed a finite con- 
ductance at zero temperature, however, its value appears not to be universal. The 
origin of the dissipative dynamics may be Ohmic shunts or quasi-particle tunneling 
between the islands, which been studied extensively in the past (see e.g. Ref. [67]). 
Pair breaking processes are another mechanism for damping. These processes are 
present in inhomogeneous films if  the order parameter is locally suppressed, or due 
to Andreev scattering at the boundaries of the grains. Dissipation may arise also 
due to electronic degrees of freedom, which can be introduced in the model of Eq.(l) 
by means of what is know as the 'local damping' model. Local damping changes 
the universality class of the SI transition [29], it also has been known to influence 
the low frequency dispersion of the vortex response in classical arrays [65,66]. 

In the presence of Ohmic shunts the effective Euclidean action (13)) for the array 
gets the additional contribution 
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SuA<f>] = \f drdr' Y, <*ij(T  - T') [MT) - Mr')] 2 • (24) 
2 Jo y 

For Ohmic baths the Fourier transform of the kernel is a,j(wM) = |wj(a0 

+aifc2)/27r. In this general expression shunts to the ground (ao = RQ/RO) and 
shunts between the islands {a\ — RQ/R) are accounted for. The shunts break the 
27r-periodicity in the phase variables since they allow for continuous charge fluctua- 
tions. The local Ohmic damping (the term proportional to ao) correlates the phase 
of a single island at different times. In proximity-coupled arrays, which consist of 
superconducting islands on top of a metallic film, the model with local damping 
is appropriate to describe the flow of normal electrons into the substrate. This 
process induces a dissipation for the phase fa, rather than for the phase difference 
fa — <f>j  as in the resistively shunted junctions (RSJ) model. The number of Cooper 
pairs in each island is allowed to decay in the presence of a local damping, whereas 
the RSJ model describes only charge transfer between neighboring islands. 

By going over the same steps outlined in the section on the coarse graining, it 
is possible to obtain also in this case an effective Ginzburg-Landau free energy. 
The only difference is that now the phase-phase correlator g(r) has to be evaluated 
including the local damping term. For small frequencies the Fourier transform 
reads (for more details see Ref. [29]) 

g(uß) = g(0) - n \tüß Is - C^l      with s = - - 1 . (25) 
a 

The coefficients n and £ can be determined from the phase correlator, their value is 
not important for our purposes. Using this expression for g(coß), the free energy (9) 
contains a non-Ohmic dissipative term (oc \u>ß\

s) (reducing to Ohmic, or 'velocity 
proportional' damping only in the special case s = 1). This means that an Ohmic 
damping in the quantum phase model yields a non-Ohmic dynamics for the coarse- 
grained order-parameter. 

The phase boundary in the saddle point approximation is shown in the inset of 
Fig. 5. Increasing damping shifts the phase boundary to smaller values of Ej. At 
T = 0 a quantum phase transition is ruled out beyond the critical value a = 2. 
The value of the d.c. conductivity at the transition is displayed in Fig. 4. The 
non-dissipative transition has a finite basin of attraction: 0 < a0 < 2/3. Here the 
dissipation is an irrelevant operator, and the transition is characterized by z = 1 and 
a universal critical conductivity. However, for stronger damping a0 > 2/3 a new 
universality class describes the transition, with a damping dependent conductance 
a* and z = 2/s as observed experimentally. 

ACKNOWLEDGMENTS 

We thank L. Amico, R. Baltin, C. Bruder, G. Falci, G. Giaquinta, A. van Otterlo, 
K.-H. Wagenblast, G.T. Zimanyi and D. Zappalä for valuable collaboration on these 

286 



topics. The financial support of INFM under the PRA-QTMD, the SFB 195 of the 
DFG, the Programma Vigoni, and EU TMR programme (Contract no. FMRX-CT 
960042) is acknowledged. 

REFERENCES 

1. Proceedings of the NATO Advanced Research Workshop on Coherence in supercon- 
ducting networks, J.E. Mooij and G.Schön Eds., Physica B 152 (1988). 

2. J.E. Mooij and G. Schön in Single Charge tunneling H. Grabert and M.H. Devoret 
Eds., NATO ASI series Vol.294 (Plenum, NY 1992), p. 275. 

3. Proc. of the Conference on Macroscopic quantum phenomena and coherence in su- 
perconducting networks C. Giovannella and M. Tinkham Eds., World Scientific (Sin- 
gapore, 1995). 

4. G. Schön and A.D. Zaikin, Phys. Rep. 198, 237 (1990). 
5. L.J. Geerligs, M. Peters, L.E.M. de Groot, A. Verbruggen, and J.E. Mooij, Phys. 

Rev. Lett. 63, 326 (1989). 
6. H.S.J. van der Zant, L.J. Geerligs, and J.E. Mooij, Europhys. Lett. 19, 541 (1992). 
7. CD. Chen, P. Delsing, D.B. Haviland, Y.Harada, and T. Claeson, Phys. Rev. B 50, 

3959 (1995). 
8. R. Yagi, T. Tamaguchi, H. Kazawa and S. Kobayashi, J. Phys. Soc. Jpn. 65, 36 

(1996). Very recently the same group has studied the SI transition also in JJA, R. 
Yagi, T. Tamaguchi, H. Kazawa and S. Kobayashi, J. Phys. Soc. Jpn. 66, 2429 
(1997). 

9. D.B. Haviland, Y. Liu, and A.M. Goldman, Phys. Rev. Lett. 62, 2180 (1989). 
10. A. Hebard and M. Palaanen, Phys. Rev. Lett.65, 927 (1990). 
11. S.L. Sondhi, S.M. Girvin, J.P. Carini, and S. Shahar, Rev. Mod. Phys. 69, 315 

(1997). 
12. R.Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991). 
13. Ya. Blanter and G. Schön, Phys. Rev. B 53, 14534 (1996). Ya. Blanter, R.Fazio and 

G. Schön, Nucl. Phys. B 58, 79 (1997). 
14. R.S. Fishman, and D. Stroud, Phys. Rev. B 37, 1499 (1987). 
15. A. Kampf and G. Schön, Phys. Rev. B 37, 5954 (1988). 
16. S. Teitel and C. Jayaprakash, Phys. Rev. B 27, 598 (1983); S. Teitel and C. 

Jayaprakash, Phys. Rev. Lett. 51, 1999 (1983); T.C. Halsey, Phys. Rev. B 31, 5728 
(1985); W. Y. Shih and D. Stroud, Phys. Rev. B 30, 6774 (1984); W. Y. Shih and 
D. Stroud, Phys. Rev. B 28, 6575 (1983); D. Ariosa, A. Vallat and H. Beck, J. Phys. 
France 51, (1990). 

17. C. Bruder, R. Fazio, and G. Schön, Phys. Rev. B 47, 342 (1993). 
18. A.F. Andreev, I.M. Lifshitz, Sov.Phys. JETP 29, 1107 (1969). 
19. H. Matsuda and T. Tsuneto, Suppl. Prog. Theor. Phys. 46, 411 (1970). 
20. K.S. Liu and M.E. Fisher, J. Low Temp. Phys. 10, 655 (1973). 
21. E. Roddick and D.H. Stroud, Phys. Rev. B 48, 16600 (1993); E. S0rensen and E. 

Roddick, Phys. Rev. B 53, 8867 (1995). 
22. A. van Otterlo, K-H. Wagenblast, Phys. Rev. Lett. 48, 16600 (1994). 

287 



23. R.T. Scalettar, G.G. Batrouni, A.P. Kampf, G.T. Zimanyi Phys. Rev. B 51, 8467 
(1995). 

24. E. Frey and L. Balents, Phys. Rev. B 55, 1050 (1997). 
25. L. Amico, G. Falci, R. Fazio, and G. Giaquinta, Phys. Rev. B 55, 1100 (1997). 
26. A. Stern Phys. Rev. B 50, 10092 (1994).; A.A. Odintsov and Yu. N. Nazarov, Phys. 

Rev. B 51, 1133 (1995).; M.Y. Choi Phys. Rev. B 50, 10088 (1994). 
27. M.P.A. Fisher, G. Grinstein and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990). 
28. X.G. Wen and A. Zee, Int.J.Mod.Phys. B 4, 437 (1990). 
29. K.-H. Wagenblast, A. van Otterlo, G.T. Zimanyi and G. Schön, Phys. Rev. Lett. 78, 

1779 (1997); ibid. 79, 2730 (1997). 
30. M.-C. Cha, M.P.A. Fisher, S.M. Girvin, M. Wallin, A.P. Young, Phys. Rev. B 44, 

6883 (1991). 
31. E.S. S0rensen, M. Wallin, S.M. Girvin, and A.P. Young, Phys. Rev. Lett. 69, 828 

(1992). 
32. M. Wallin, E.S. S0rensen, S.M. Girvin, and A.P. Young, Phys. Rev. B 45, 13136 

(1992). 
33. A. van Otterlo, K.-H. Wagenblast, R. Fazio, and G. Schön, Phys. Rev. 48, 3316 

(1993). 
34. A.P. Kampfand G. T. Zimanyi, Phys. Rev. 47, 279 (1993). 
35. G.G. Batrouni, B. Larson, R.T. Scalettar, J. Tobochnik, and J. Wang, Phys. Rev. 

B 48, 9628 (1993). 
36. K. Runge, Phys. Rev. B 49, 12115 (1994). 
37. R. Fazio and D. Zappalä, Phys. Rev. B 53, R8883 (1996). 
38. K. Damle and S. Sachdev, cond-mat.9705206 
39. M.P.A. Fisher, B. P. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 

546 (1989). 
40. G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev. Lett. 65, 1765 

(1990). 
41. W. Krauth and N. Trivedi, Europhys. Lett. 14, 627 (1991). 
42. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, 1975. 
43. P.W. Anderson, Lectures on the Many Body Problem, Caianiello Ed., Academic Press 

(New York, 1964), p.113. 
44. K.B. Efetov Sov. Phys. JETP 51, 1015 (1980). 
45. E. Simanek, Phys. Rev. B 23, 5762 (1982). 
46. C. Bruder, R. Fazio, A. Kampf, A. van Otterlo and G. Schön, Physica Scripta T42, 

159 (1992). 
47. S. Doniach, Phys. Rev. B 24, 5063 (1981). 
48. J.G. Kissner and U. Eckern, Z. Phys. B91, 155 (1993) 
49. J.A. Herz, Phys. Rev. B 14, 1165 (1976). 
50. J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 

(1977). 
51. L. P. Kadanoff, J. Phys. A 11, 1399 (1978). 
52. R. Savit, Rev. Mod. Phys. 52, 453 (1980). 
53. B. Nienhuis, in: Phase transitions and critical phenomena, Vol. 11, ed. by C. Domb 

and J. L. Lebowitz (Academic Press, London, 1987)., p.l. 

288 



54. J. Villain, J.Physique 36, 581 (1975). 
55. S. Elitzur, R. Pearson, and J. Shigemitzu, Phys. Rev. D 19, 3638 (1979). 
56. J. V. Jose and C. Rojas, Physica B 203, 481 (1994). 
57. J.E. Mooij, B.J. van Wees, L.J. Geerligs, M. Peters, R. Fazio, and G. Schön, Phys. 

Rev. Lett. 65, 315 (1990). 
58. R. Yagi, T. Tamaguchi, H. Kazawa and S. Kobayashi, J. Phys. Soc. Jpn. 66, 2429 

(1997). 
59. B.-J. Kim, J. Kim, S.-Y Park and MY. Choi, cond-mat 9704176 
60. A. van Otterlo, K.-H. Wagenblast, R. Baltin, C. Bruder, R. Fazio, and G. Schön, 

Phys. Rev. 52, 16176 (1995). 
61. D.A. Huse and V. Elser, Phys. Rev. Lett. 60, 2351 (1988). 
62. W. Krauth, D. Caffarel, and J.-P. Bouchard, Phys. Rev. 45, 3137 (1992). 
63. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Cambridge University Press 

(1989). 
64. X.G. Wen, Phys. Rev. B 46, 2655 (1992). 
65. H. Beck, Phys. Rev. B 49, 6153 (1994). 
66. S.E. Korshunov, Phys. Rev. B 50, 13616 (1994). 
67. S. Chakravarty, G.-L. Ingold, S. Kivelson, and G.T. Zimanyi, Phys. Rev.B 37, 3283 

(1988) and references therein. 

289 



TiT/E  

FIGURE 1. The phase diagram for a quantum JJA in the limit  of long range (logarithmic) 

interaction between charges. 
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superconductor 

Ej/U0 

FIGURE 2. The T = 0 phase diagram in the limit of on-site interaction as a function of 
the charge frustration. At the values of qx for which two charge states are degenerate, the 
superconducting phase extends to arbitrary small Josephson coupling. 
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FIGURE 3. The same as in Fig. 2 including a small rearest neighbor charging term Ui. Around 
qx — 1/2 the half-integer lobe appears. 
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FIGURE 4. The phase diagram as obtained from the variational calculation. Mi= Mott insula- 
tor, Sol = solid (with a chekerboard structure), SF = superfluid, Ssol = supersolid. (Ui/Uo - 0.2 
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FIGURE 5. The critical conductance as a function of the strength of the local damping. In the 
inset the SI phase boundary in the presence of dissipation. 
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Abstract. We briefly review results from extensive semi-classical analytic and quan- 
tum Monte Carlo studies of a model of ultrasmall Josephson junction arrays (JJA). 
Specifically, we mention results: (i) Close to the renormalized semi-classical crit- 
ical temperature and its successful comparison to experiment, (ii) The existing 
renormalization-group, self-consistent harmonic approximation and QMC evidence for 
a low temperature quantum induced phase transition in zero magnetic field. 

INTRODUCTION 

Josephson junction arrays (JJA) have been the source of many experimental and 
theoretical studies in the last few years [1]. This interest has been due in part 
because JJA represent experimental realizations of the two-dimensional XY model. 
Furthermore, due to the recent advances in sub-micrometer technology it has 
been possible to fabricate relatively large arrays of ultrasmall SIS (superconductor- 
insulator-superconductor) Josephson junctions [2-5]. These arrays can have junc- 
tions with areas that can vary from a few microns to submicron sizes, with effective 
capacitances that can be smaller than a few femto Farads (fF=10 x 10-15 Farads). 
Under these circumstances the electric field between the areas that form the junc- 
tions has to be quantized. The nature of the possible order present in these devices 
depends on the competition between the Josephson energy Ej, that tries to es- 
tablish long range phase coherence, and the charging energy Ec that disrupts this 
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order. The relevant parameter to study this competition is 

with Ecm and Ej the charging and Josephson energies, respectively, and Cm the 
mutual capacitance of a junction. In this paper we briefly present the results 
of work done in collaboration with C. Rojas (more details are given in [6] and 
in his Ph.D. thesis [7]). We have studied the phase coherence of models of JJA 
that quantitatively represent the experimentally fabricated devices, including the 
specific experimental values for a [3]. For the most part the experimental sys- 
tems have been two-dimensional, but quasi-three-dimensional samples have also 
been fabricated. Here quasi- means two layers of JJA capacitively coupled at each 
lattice site [8]. From the type of junctions fabricated there are two main contribu- 
tions to the charging energy. The charging energy associated with adding a single 
charge to a superconducting island is given by Ec, = e2/2Cs, whereas the corre- 
sponding energy necessary to transfer a charge from an island to a nearby one is 
Ecm = e2/2Cm, with e the electronic charge. For the Delft experiments, the self 
capacitances were typically on the order Cs ~ 3 x 10-17F, while the mutual ca- 
pacitances were Cm ~ 1 x 10~15F. This means that Cm is two orders of magnitude 
larger than Cs. 

The resulting phase diagram as a function of temperature vs am, for zero and 
full frustration, is shown in Fig. (1). For small am there is a superconducting 
phase in which the Cooper pair charges are delocalized, while on the right hand 
side the system has localized vortices and thus it is an insulator. In the following 
sections we discuss aspects of this phase diagram that have been obtained in ex- 
periment and compared to our renormalization group (RG) and Quantum Monte 
Carlo simulations. 

TWO-DIMENSIONAL  MODEL  

The appropriate model Hamiltonian representing the JJA is 

U = Ec + Ej = |- £ ntrOC-^fi, f2)h{f2) + Ej   £   [1 - cos(4>(n) ~ M))]> 

(2) 

where q = 2e; 4>(f) is the quantum phase operator, n(f) is its canonically conjugate 
number operator which measures the excess number of Cooper pairs in the r island. 
These operators satisfy the commutation relations [9] [h{ri),4>{fi)]  = —i8?u?2. The 
matrix C_1 {f\, r2) is the electric field Green function and its inverse, C(ri, f2), is the 
geometric capacitance matrix, which must in principle be obtained from solving the 
Poisson equation subject to the appropriate boundary conditions. This is not easy 
to do in general and typically this matrix is approximated, both theoretically and 
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in the experiments, by diagonal plus nearest neighbor contributions: C(ri,f2) = 
(Cs + zCm)Sp1/3 — Cm Y.gSp ?2+£ , where the vector d runs over nearest neighboring 
islands, and z is the coordination number. 

Here we are interested in calculating the thermodynamic properties of the model 
defined by H. The quantity of interest is the partition function Z = Tr {e_// • 

The trace is taken either over the phase variables, $, or over the charge number 
operators, n. To evaluate the partition function we used its path integral rep- 
resentation [14]. This means that we add one more dimension to the problem, 
the imaginary time dimension r, with a range re[0,ßh], where H = h/2n, with h 
Planck's constant and ß = 1/fcßT, where T is the absolute temperature and fcg 
Boltzmann's constant. At zero temperature we have a three-dimensional system, 
while at finite temperatures it is quasi-three dimensional. To evaluate the partition 
function in this representation we discretize the imaginary time axis in LT slices 
with spacing e = £-. 

To write a convenient expression for the partition function in the imaginary time 
representation we use the Poisson summation formula and obtain the explicit form 

[6] 

T=0 

Here we defined the action 

1 

Z=^sß^mn^-2ämr)t   exp 
m(r,,r)=—oo 

\sm,{m}\ (3) 

h S[W},{m}] 
Lr-l  

T=0     L 

^-Hj({4>(r,f)})  + J^£fo(T+l,fi) - #T,fi) + 27rm(r,ri)] x 

xC(r1,r2)[4>(r+l,r 2)-<l>(T,r2)  + 2irm(T,r2)] 

+0(l/Ll),  

+ 

(4) 

where the important quantization condition <j){L T,r) = (/)(0,r) is implicit. Now, to 
recover the quantum solutions at low temperatures, where we expect novel things 
to occur, we need to take the continuum limit in the imaginary time direction, 
which means taking an LT very large. This is what makes the QMC computer 
simulations of this problem difficult and that's why we need to have alternative 
analytic ways to check the numerical results wherever possible. We discuss this in 
more detail in the following sections. 

WKB-RG ANALYTIC  STUDY 

Our approach here is to perturb the physics described by #j({</>(f,  r)}),  in the 
limit  when the charging energy is small. When a = 0, Hj describes the physics of 
the classical 2-D XY model [10,11].  In this case we have the BKT scenario that 
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depends on the thermal nucleation of vortex-antivortex pairs (VAP). The density 
of VAP increases exponentially as the temperature rises until they unbind at the 
critical temperature TBKT(a = 0) = T^T = (TrEj/2kB). The BKT scenario is best 
understood in terms of a renormalization group (RG) analysis [10,11]. The RG 
flow diagram is obtained from a perturbation expansion in powers of the vortex 

pair density y = 2/0e
_22"A. Here K = ßEj and y0 is the initial condition for the 

bare vortex pair density. In the standard BKT picture there is a line of fixed 
points for 0 < T < TBKT> with algebraically decaying correlation functions. In the 
self-capacitive model, at T = 0, one can map the problem to an anisotropic three- 
dimensional XY model, which must have a standard phase transition at a critical 
value of ac

s. Around the T = 0 critical point ac
s, one expects to have exponentially 

decaying correlation functions while at ac
s the correlations must decay algebraically. 

The important question is then: How do we go from the BKT regime, with algebraic 
decaying correlation functions to the very low temperature exponentially decaying 
one? There must be a discontinuity in going from one limit (as = 0, T ^ 0) to the 
other one (as ^ 0, T = 0). Below we discuss the evidence we have found, including 
a possible experimental candidate, that there may indeed be a quantum induced 
phase transition (QUIT) at low temperatures. 

The situation when Cs = 0 and Cm ^ 0 is actually quite different. In that case 
the T = 0 limit  can be approximately represented by two coupled three-dimensional 
XY models, one describing the phase degrees of freedom and the other the charges. 
As a function of am we can go from a phase dominated region, with a 3-D type XY 
model critical properties to one dominated by a 3-D Coulomb gas. There is not 
much known about the critical properties, and in particular the correlation function 
behavior, of the two coupled 3D XY models. So, strictly speaking, we can not state 
what kind of crossover we should expect when going from T = TBKT(otm,ces) to 
T = 0. Some understanding of the physics in this limit  can be obtained by using 
the Villain transformation, both for the charging energy term and for the phase 
contribution [12]. The Villain approximation is, however, valid only in a restricted 
range of a values which do not cover the full experimental range. One could 
conjecture, however, that the properties of the Villain approximated models is in 
the same universality class as the full  coupled XY models, which is in fact the case 
when a — 0 [11], but this needs to be explicitly shown. Furthermore, the general 
case treated here where both Cs ^ 0 and Cm ^ 0 is more complicated since the 
effective Coulomb gas in the insulating phase has a finite screening length. All  
these issues need to be studied further. 

To find the corrections to the BKT scenario due to the charging effects we carry 
out a semiclassical or WKB analysis of the model. This was originally done for 
the self-capacitive model in Ref. [13]. Here we follow a similar approach for the 
mutual capacitance dominated regime, except that technically the problem is more 
demanding. 

To evaluate the partition function in the SC to N, or small a regime, we notice 
that we can extend the range of integration of the phases in Eq. (3) from [0,2TT] 
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to [—00, oo], while at the same time all but one of the summations over the set of 
{m}'s  can be eliminated. The resulting expression for the partition function, in the 
LT —>■ oo limit, then reads 

r      » "* m(r)=—oo T=0 r      T ^ ^ 

r,r   x 

x exp 
1   [Pn 

- /     drlE 
ft Jo 

where the Euclidean Lagrangian is 

*-H;  <H ,r"2  > 

The boundary condition now reads 

<t>(r,  /3ft) = 4>(r, 0) + 27rm(r), 

(5) 

(6) 

(7) 

where the {m(r)}'s  are the winding numbers. We note that since the Lagrangian is 
invariant under the transformation <f>(r,Q) -> <f>(r,  0) + 27r/(f) for all integers {l(r}},  
we can extend the limits of integration over <f>(r,0) to [—00,00], the difference 
coming only from an overall multiplicative constant. Now that the limits of Eq. (5) 
are all from [—00,00] we can make the following change of variable [14] 

2;r _ 
4>{T,r) = ■g^m{r) T + <f>(r)  + (J>J{?,T). (8) 

Here <f>j(r,  r) represents the quantum fluctuations of the path about its mean value 
4>{r). These quantum fluctuations become larger than the thermal ones as a in- 
creases or as the temperature decreases. This means that we would need to take 
higher order harmonics in the Fourier series into account when the quantum ef- 
fects are not relatively small. Because of the periodicity in Eq (7), (f>f(r,T) can be 
expanded in the Fourier series 

Mr,r) = (/Jft)-1'2 J2lM^"r + C.C.], (9) 
*=i  

where the u  ̂= 2irkjßh are the Bose Matsubara frequencies. Substituting Eqs. (8) 
and (9) in Eq. (5), expanding the Josephson term up to second order in <^>fc(r), 
i.e. up to order 0(q2) or equivalently to 0(a), we obtain an effective action for 
the classical variables <j>(r)  after evaluating the integrals. In obtaining the effective 
action we note that once the integrations over the 4>k{r)'s are carried out, the 
partition function still includes a summation over the m(r)'s. In the semiclassical 
limit the contributions to the partition function from configurations with m(r) 
different from zero are exponentially small, so that we can safely take m(r) = 0 for 
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all f. A most important property of the Josephson Hamiltonian Hj is that it is a 
periodic function of its argument. This implies that in the expansion the second 
order derivative with respect to the argument in Hj is proportional to Hj itself. 
Specifically, for the cosinusoidal form of Hj we have H'j = —Hj + constant. This 
important property of Hj allows us to write the effective partition function as a 
2-D classical XY model with an effective coupling constant. The effective partition 
function to this order of approximation is3 

Z'S1 = /1! ^ exp[-&ffffj(?)], (10) 
f 

where the effective inverse temperature is given by 

ß« = ß- ij jp- [c-^o) - C-i(d)} . (11) 

Note that we have explicitly used the fact that C(r"i, r2) = C(|fi — f 2|), valid for a 
periodic lattice, so that we can Fourier transform the capacitance matrix. 

Once we have a Hamiltonian which is just like the 2-D classical XY model, we 
can write down the corresponding effective RG recursion relations to lowest order 
in x as 

dl y (2Kx-iy [    ' 

jjf  = [2 - Tä-(1 - xK))y. (13) 

In writing these equations we defined the variables 

ar=lÄj[ C" 1(°)-C" 1^ ]' (14) 

2 2 

V = exp[-y/iT(l - xK)] = exp[-yAV/]. (15) 

The variable x is the a parameter when the capacitance matrix is not just the self 
or the mutual capacitance. The RG equations are solved using as initial conditions 
Kejf(l  = 0) = K°JJ and y(l = 0) = y0. As written, the RG equations are valid for 
an arbitrary ratio between the self and the mutual capacitances. We first notice that 
in the x = 0 limit  the RG equations reduce to the standard Kosterlitz RG equations 
[10,11], as they should.  The form of the vortex density y is most important.  As 

3' We must note that in obtaining the effective partition function we assumed that the phases 
took values between [-oo, co], whereas in the classical XY model the phases are constrained to lie 
in the [0,27r] range. Following this route makes the derivation of the effective action more direct. 
However, in the small a regime of interest here the differences between the two ranges for the 
phases can be shown to be exponentially small. 
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mentioned above, y(x = 0) grows exponentially with temperature. When x ^ 0 
and as a function of temperature, y exhibits a low temperature minimum. This is 
shown in the discontinuous line in Fig. 2. This behavior for y is easy to understand 
physically. At high temperatures the difference between y and y is very small. 
However, below the minimum the increase in the vortex pair density is due to 
nucleation of VAP via quantum phase slips. Of course, we need to remember that 
we have done a perturbative calculation in x and therefore we may not be on safe 
ground when y starts increasing again at low temperatures. Nevertheless, as often 
happens with WKB derived results, the fact that the perturbative analysis shows a 
low temperature instability is likely to be true. In fact we also have found numerical 
evidence for the low temperature instability in our QMC calculations [15]. 

The RG equations have two nontrivial fixed points, one that corresponds to the 
effective BKT thermal fluctuations driven transition, and the other that corre- 
sponds to the QUantum fluctuations Induced transition (QUIT) [13,15]. 

The RG level curves in the (y, K) phase space, to lowest order in x, result from 
solving Eq. (15) and 

nxK - TrlnÄ" - |r + 2ir3y2 = A, (16) 

for different initial conditions. Figure 2 shows the RG flows for different initial 
conditions starting with different values for (y0, K°) along the discontinuous line 
in the figure. Each RG flow line corresponds to a different temperature with the 
arrows indicating the direction of increasing /. We clearly see from the figure that we 
can divide the temperature axis into three different regions. In the region between 
[KQUIT->KBKT\I 

as the value of I increases we eliminate VAP, with the unusual 
property that the vortex density can initially grow for a while before tumbling to 
the critical line y = 0. This means that in this region at / = oo there are no VAP 
with infinite separation, i.e. unbounded. Below KQ\JIT, as / increases, the RG 
trajectories grow away from the y = 0 line, non monotonically, indicating that the 
perturbation expansion in y is no longer valid. If  we associate the instability in the 
perturbation theory with the normal state behavior, one could say then that this 
behavior is characteristic of a reentrant phase transition, i.e. going from N to SC 
to N. This is certainly the case in the high temperature regime but not necessarily 
so at low temperatures. The single line that divides the two types of behaviors 
mentioned above is the separatrix that determines the critical temperature. This 
is the line with the highest temperature for which we can touch the y = 0 line. 
The corresponding separatrix value of the constant A = Ac is determined from the 
condition that it passes through the point {KBKTIV 

= 0)- This leads to the result 
that the critical point is obtained from solving the equation, 

2 
itxKc - 7rlnA'c - —27r3exp{-7r2A'c(l - xKc)} = Ac(x), (17) 

where Ac(x) is obtained from Ac{x) — 2nxKc — ir  — 7rlnKc, and Kc is the solution to 
the equation 2 = TTXKC(1 — xKc). We'll come back to the problem of determining 
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KBKT in the next section, where we make a comparison with the experimental 
results. It is known, however, that the determination of TBKT using the RG equa- 
tions is not quantitatively exact, since the RG analysis is explicitly derived for the 
Villain action. In comparing with experiment in the next section we will  take this 
into account. Here we present the corrections to the classical results to the leading 
order in x, which give the correct qualitative trends. Specifically, expanding in 
powers of x we find that TBKT 

an<i TQVIT are given by 

TBKr^T T̂- x̂ + 0(x% (18) 

TQUIT « T-x + 0{x% (19) 

Notice that these equations are applicable not only in 2-D, for if the system 
described by Eq. (10) has a transition point at some I<l K then the equation 
I<l s = K - xK2 has two solutions for K, which are the ones implied in Eq. (13). 
Moreover, notice that the results to the first order in x are independent of the spe- 
cific value of T|£T. This means that if  we consider the finite magnetic field case, the 
corresponding critical temperature will  be Te(B) » T(°\B) - (Ej/kB)x + 0{x2). 
Furthermore, we notice that, to the lowest order in x, the TQUIT must be the same 
with and without a field. This fact will  be compared with the experiments in the 
next section. 

The explicit leading order calculation of the correction to the BKT critical tem- 
perature in the asymptotic limits in which either the self or the mutual capacitance 
dominates results in 

(§i)2l,      if  Cs»Cm 
■L (20) 

(^)J,   ifCs«Cm 

TBKT _ 
T(o)   - < 

-'BKT 

here z is the coordination number of the array, and for a square array in two 
dimensions, z = 4. 

QUANTUM MONTE CARLO APPROACH 

To carry out our QMC calculations, we tried different methods but ended up 
settling with the standard Metropolis algorithm since we needed to update not 
only the phases but the integers given in the partition function Z (Eqs. (3), (4)) 
together with the quantum boundary conditions. The advantage of this approach 
is that it is general enough to be used over all ranges of am covered in the phase 
diagram. We then have a set of angles <j>{r,r)  G [0,27r), located at the nodes of 
a three-dimensional cubic lattice, with two space dimensions, Lx and Ly, and one 
imaginary time dimension, LT. The quantum periodic boundary condition appears 
from the trace condition in Z, and we also took periodic boundary conditions along 
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the spatial directions. The link variables m(T, r) are denned in the bonds between 
the lattice sites along the r-direction and they can take any integer value. 

As the phases are updated we restrict their values to the interval [0,27r), so that 
if  after an update a </>(r, r) is outside this interval, we carry out the transformations. 

if  <f>(r,r)  <0, then 

^{r,f) -* ■ </>(T,r)  + 2ir, 
m(r,r) -)■ m(r,r) + l, 
m(r + l,f) -> m(r + l,f) - 1. 

if  4>{T,T) > 27T, then 

<j>(T,r) -» <j>{T,r)-2n,  
m{r,r) -> T7I(T, f) — 1, 
m(T + l,r) ->■ m(r-|- l,f) + 1. 

(21) 

From Eq.(4), we see that the action is invariant under these transformations. More- 
over, the shifts in the column and individual phase moves are adjusted to keep the 
acceptance rates in the range [0.2,0.3]. 

When am is small, the fluctuations of the phases along the imaginary time axis 
as well as the fluctuations in the m's are suppressed by the second term in Eq. (4). 
Attempts to change a phase variable have a very small success rate. Therefore we 
implemented two kinds of Monte Carlo moves in the phase degrees of freedom. In 
one sweep of the array we update Lx x Ly imaginary time columns, by shifting all 
the phases along a given column by the same angle. This move does not change 
the second term in Eq. (4), and thus it probes only the Josephson energy [15]. 
To account for phase fluctuations along the imaginary time axis, which become 
more likely as (am/T) increases, we also make local updates of the phases along 
the columns. We did check on the reliability of this procedure by comparing with 
our RG-WKB and self-consistent harmonic approximation results [6]. Another 
aspect of the implementation of the MC algorithm is the order in which we visit 
the array. This is relevant for the optimization of the computer code for different 
computer architectures. In a scalar machine we used an algorithm that updates 
column by column in the array. For a vector machine we used the fact that for local 
updates, like the ones we used, the lattice can be separated into four sublattices 
in a checkerboard-like pattern. This partition is done in such a way that each of 
the sublattices can be updated using a long vector loop without problems of data 
dependency. Using this last visiting scheme, the cpu time grows sublinearly with 
the size of the array. One of the problems that this type of visiting scheme has in a 
vector machine, like the Cray C90, is that the array's dimensions have to be even, 
and this produces memory conflicts. We have not made attempts to optimize this 
part of the code. 

We also replaced the U(l) symmetry of the phases by the subgroup Z(N), with 
JV = 5000 [15]. This allows the use of integer arithmetic for the values of the phase 
variables, and to store lookup tables for the Josephson cosine part of the Boltzmann 
factors. This can not be done for the charging energy part of the Boltzmann factors, 
except in the Cm = 0 case where the m's can be summed up in a virtually exact 
form. In the latter case we can also store lookup tables using the following definition 
of an effective potential Vefi, 
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exp WIM« =    H   exP • i(^K*+*™)s (22) 

These sums can be evaluated numerically to any desired accuracy. 
We calculated thermodynamic averages after we made iV phase updates and M 

of the m updates through the whole lattice. Typically, for am small we used N — 4 
and M = 1. In the opposite limit we used N — 1 and M = 8,10,.... This is 
so because our local updating algorithms for the m's have serious decorrelation 
time problem, due to the long range interaction among the charges. We typically 
found that in order to get reasonably small statistical errors, we needed to perform, 
in most cases, about Nmeas = 212 = 4096 measurements of the thermodynamical 
quantities, other times we made up to JVmeas = 213 = 8192 measurements. 

High temperature results 

In this section we present some of our quantum Monte Carlo results at high 
temperatures. In this limit  the results are quite reliable since essentially /3S< 1 
and thus the quantum fluctuations act mostly to renormalize the classical results, 
as originally discussed many years ago [13]. A proper way to measure the long 
range phase coherence in the model is by calculating the helicity modulus, which is 

defined by T = g^
F . Here e~l3F — Z, defines free energy F, and A denotes 

a twist of the phases along the hatx direction, so that T gives the response of 
the system to this twist. We calculated the T in the small am region and the 
inverse dielectric constant e_1 in the large am regime, and both quantities in the 
intermediate region. 

Most of the calculations we performed used the capacitances values from ex- 
periment. These were the only external parameters used in the calculations. In 
particular, the ratio between the self and mutual capacitance was kept fixed around 
the values Cs/Cm « 0.01 and 0.03, with the bulk of the calculations carried out for 
0.01. We found that in the case of the helicity modulus both values give essentially 
the same results. Almost all of the calculations were done by lowering the temper- 
ature, in order to reduce the chances for the system to be trapped in metastable 
states [16]. Our results are given in Fig. (1). There we see that the experimental 
and numerical results are indeed quantitatively close in the / = 0 case and have 
the correct qualitative trend in the / = 1/2 case. 

We have also carried out WKB renormalization group calculations valid for ßti -C 
1, and they agree quite well in the small am regime of Fig. (1) as well. The WKB- 
RG results are in principle only valid for ßk <C 1. However a persistent property 
of the results is the evidence for a low temperature instability. We discuss this 
possibility next. 
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Low temperature results 

As we mentioned above, motivated by the WKB-RG results, there has been an 
extensive search for what has been called a QUIT  (QUantum Induced Transition). 
Originally this prediction was made for the case where the capacitive matrix only 
has a self-capacitive term. This means that there is only a superconducting phase 
in the T-vs-a phase diagram. For the specific type of fabricated samples it was 
then necessary to consider the case where both Cs and Cm where included and 
with Cm being larger than Cs by two orders of magnitude. We carried out the 
corresponding WKB-RG calculations and again they led to the possibility of having 
a low temperature QUIT. An important aspect of the analytic results is that to 
leading order in am the TQUIT ~ <*m independent of an applied magnetic field. This 
means that TQUIT for zero for / = 1/2 fields to leading order in a must be the same. 
This result is important since to test the existence of a QUIT in a field, as was tried 
in Ref. [16] much lower temperatures had to be simulated. Here we concentrate 
in the / = 0 case to keep things clearer, for the / = 1/2 case has its own special 
excitations that may confuse the TQUIT issue. Our approach was then to calculate 
T for relatively large values of am so as to enhance the possibility of seeing the 
transition but this implied that much larger lattices and runs had to be carried out. 
In Fig. (2) we show typical results for T for fixed values of a but varying LT. There 
we see that there is a reentrant type behavior for T but it shows that as LT increases 
the reentrant temperature decreases. The important question is what happens in 
the LT -4 oo limit. In Fig. (3) we show the LT —► oo for one am = 2.0. There 
we see that the extrapolated T(LT -» oo) gives evidence for TQurr{<Xm = 2.0)) ^ 0 
the same'is true for a calculation with ctm — 2.25, however for am = 2.5 the 
extrapolated value for TQUIT becomes negative indicating that it must be zero. 
The conclusion we draw from these calculations is that there is a critical value for 
am below which there is a finite QUIT and above which it disappears. We also 
carried out a self consistent harmonic approximation analytic (SCHA) analysis 
to carefully study the important dependence on Lr. We did find quantitative 
agreement between our analytic SCHA results and those obtained from our QMC 
analysis thus given further validity to the results obtained. Therefore we conclude 
that our evidence points to the existence of a QUIT for the system where the mutual 
capacitance dominates. There is some evidence for a low temperature instability 
as well in the experiments but it is not yet conclusive [3]. More experimental and 
theoretical work is needed to ascertain the real existence of this QUIT. 

COMPARISON TO EXPERIMENT 

We now move on to a brief discussion of how we obtained the results presented in 
Fig. 1. As mentioned before, in trying to find quantitative correspondence between 
experiment and theory it is important to ascertain the validity of the theoretical 
models employed to study the arrays. We have carried out two different types of 
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checks. One based on the RG analysis described in the previous sections and the 
other from a nonperturbative quantum Monte Carlo calculation [6]. We discuss the 
RG analysis here and only briefly mention the QMC results, with more details left 
for other publications [6,7]. 

As mentioned before, it is known that the RG equations do not lead to quan- 
titatively exact results for the critical temperatures. They do, of course, lead to 
the correct universal critical exponents. However, what has so far been measured 
experimentally is the phase boundary between the SC and the N phases. We then 
need a consistent way to compare the RG results with the experimental results. 

We first note that the phase diagram of Fig. 1 is plotted as a function of am = 
%nL, since experimentally as is three orders of magnitude smaller. We can then 
write Kefj = K(l — xK) with Cs = 0 as 

KeSS = K-?fK\ (23) 

Next we set the critical temperature for the classical model to be the one obtained in 
classical MC simulations (e.g. [20]) 1/A'C

(0' « 0.93, so that the critical temperature 
Tc(am) of the actual model is given by the equation 

kBTc(am) = —joy 
2Ä, 

To lowest order in am this equation gives 

1 + ./l_22»Af> (24) 

Tc(a) = Te(0) - ^f, (25) 

whereas the maximum value of am for which there is a physical solution is 
am = |fcßTc(0) « 1.4. The results obtained from this analysis are shown as a 
discontinuous line in Fig. 1. By following this approach we see that for am < 1 the 
RG result is actually quite good when compared to the experimental and the MC 
results. 

We also have extended our previous QMC calculations to the case when the off- 
diagonal capacitance is dominant. The results are shown in Fig. 1 by the crosses, 
including their error bars. It is clear from these results that the correspondence 
between experiment and QMC results is excellent, up to nonperturbative values of 
am. This leads us to the conclusion that the model studied here does provide a 
good representation of the experimental system, at least in the SC to N regime. 
In the next section we will  briefly discuss what happens in the insulating region to 
normal region. 

The discussion presented above dealt with the SC to N phase boundary. What 
about evidence for a QUIT? In this regard we note that in the experimental results 
of Ref. [3] there are results for a sample with a nominal am = 1.67 for which 
there is a double type of reentrant behavior.  The low temperature glitch seen in 
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the resistance versus temperature diagram occurs at T' = AOmK. Moreover the 
latter instability is also characterized by an increase in noise fluctuations in the IV 
characteristics measured in this sample. If  we assume that what is seen at T' is 
related to the QUIT, using Eq.(24) and the parameter values of the experiment we 
get a TQUIT = SSmK, rather close to the experimental value. Furthermore when 
the same experiment is repeated in a small magnetic field the low temperature 
instability is found at he same temperature, i.e.; T'(f = 0) = T'(f = 0.08). This 
result is also consistent with Eq. (24) which also leads to a TQUIT independent of / 
at leading order in am. These results may just be coincidental and more work needs 
to be done to conclusively connect the TQUIT with the low temperature instability 
already seen in the Delft experiments. 

INSULATING TO NORMAL CROSS OVER 

As mentioned in the introduction, as am increases there is a SC to I transition at 
finite temperature. In the as = 0 case, the insulating phase has been modeled as 
a two-dimensional Coulomb gas of charges with a possible BKT charge unbinding 
transition [21,22,12]. This situation has been studied extensively, in particular in 
Ref. [12]. Here we ask if  there is an equivalent QUIT in the insulating phase at low 
temperatures. If  we draw an analogy to the quantum induced vortices in the SC 
phase one could also imagine that the the number of free dipoles in the arrays could 
increase due to quantum fluctuations. However, as we show below the vortices and 
charges are not dual to each other in that sense. 

The calculation described here aims at finding the leading correction to the 
charging Hamiltonian due to Josephson junction fluctuations. We then expand 
the Josephson contribution to Z as 

exp 
l    rßh 1 1    WJfi 1       rßh    rßh 

d dTHj{T) Ml~d dTHj{T)+wi 1 *""*)*.  J(r') + 

(26) 

As before, we use Eqs.   (12) and (13), but this time we integrate out both <J>J[T, r) 
and cf>(r), which leaves us with an effective action for the {m}'s, 

Z ss Z$ JJ    ^2    exP 
r   m(r)=—oo 

—TfT ^ (TO(f  + d) - m(r)Y 4Ken -- r,d 

(27) 

where we have assumed that Cs <C Cm. The function Z$ does not contain the {m} 
variables, and the effective coupling constant Keg is 

Ki = i<- 1 H|£U*) (28) 
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given as a function of K = (ßEcm)/2ir. As in the vortex dominated case, we have 
ended up with a Coulomb gas problem but with a renormalized coupling constant. 
The function g(K) determines the importance of the zero point fluctuations of the 
phases on the charge dominated phase. The function g(K) is defined as 

/• 1/2 
g(K) = /     dt[l  - COS(2TT*)] exp 

Jo 
.<^(i-0 (29) 

For a BKT type phase transition we have Kejf = KQKT = 2/n [12]. It is important 
here to see if, within this approximation, the system shows a QUIT or a reentrant 
transition. We then need to study the number of solutions to this equation. From 
the fact that A'BKT ~ ^(D we can see ^a* ^or any vame °f l/am the function g(K) 
has only one solution for Kc. This means that, to this order of approximation, there 
is no QUIT in the charge dominated phase in this model. 

A question that immediately arises is: Why is there a difference between the 
vortex and charge dominated phases, in particular in view of the duality between 
the two phases extensively studied in [12]? The reason is that the duality is not 
exact since there is a term in the action, obtained using the Villain approximation, 
that breaks this symmetry. If  one includes this term we then see that the cost of 
producing quantum fluctuations in the vortices is bounded from above whereas the 
corresponding cost in the charge dominated phase is unbounded. In our calculation 
we have kept these contributions intact. 

CONCLUSIONS 

We have briefly presented results from a thorough study of the am vs. T phase 
diagram for an array of ultrasmall Josephson junctions in zero and / = 1/2 exter- 
nal magnetic fields. One of our main goals was to perform different calculations 
for these arrays using experimentally realistic parameters. For convenience of cal- 
culation we derived a path integral formulations of the quantum partition function 
of the JJA. In the small am limit  we used a WKB-RG approximation to find the 
first order correction in am to the classical partition function. The result of this 
calculation was an effective classical partition function of a 2-D XY model, where 
the coupling constant is modified by the quantum fluctuations. Our quantitative 
comparison between our / = 0 calculations and experiment was excellent and only 
needed as adjustable parameter the capacitance ratios given by experiment. The 
results for the / = 1/2 agreed only qualitatively though. In the low temperature 
limit  we provided evidence for the existence of a QUIT, and still more experimental 
and theoretical work is needed to further elucidate the properties and reality of the 
QUIT. One of the conclusions from these calculations is that the general trend 
of the Monte Carlo results for the helicity modulus can be traced to the degree of 
discretization along the imaginary time axis. 

We also performed some Monte Carlo calculations of the inverse dielectric con- 
stant of the 2-D Coulomb gas, in order to find the conducting to insulating phase 
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boundary. We found that the present Monte Carlo path integral implementation 
of our model does not allow us to make fully reliable calculations of this quantity. 
Our results for this transition are only qualitative. The reason for this is that 
in the simulations we have to update simultaneously phases and the charges that 
have long range interactions. Further technical improvements are needed in order 
to make solid quantitative statements about the insulating phase. 

Finally, these type of systems hold the promise of leading to a great variety of 
novel experimentally observable phenomena. There are other possibilities not dis- 
cussed here, like that of two arrays capacitively coupled [24,23], in which there is a 
vortex-charge interaction of gauge nature that deals with the interplay of quantum- 
classical effects, and may lead to a possible quantum Hall effect either in the gas 
of charges or that of vortices. 
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FIGURE 1. Temperature vs. quantum parameter am phase diagram, for zero magnetic field 
and for full  frustration / = 1/2. SC stands for superconducting, N for normal and I for insulating 
phases. The experimental results are denoted by squares. The quantum Monte Carlo results are 
denoted by crosses (f=0) and circles (f=l/2) joined by continuous lines as guides to the eye. The 
QMC results include the statistical error bars in the calculations. 

FIGURE 2. Renormalization group flow diagram. The discontinuous line indicates the vortex 
pair density as a function of temperature. See text for a discussion of the analysis of this diagram. 
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FIGURE 3. T vs temperature for am = 2.5, Lx = Ly = 20. At this value of am the drop in the 
helicity modulus at low temperatures yields essentially T = 0. This abrupt drop is probably due 
to having a finite LT. Note that the decrease of the T as T is lowered tends to a nozero TQUIT 

temperature (see text for more details) 
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Abstract. We describe transport properties of two-dimensional arrays of low capac- 
itance tunnel junctions, such as the current voltage characteristic and its dependence 
on external magnetic field and temperature. We discuss several experiments in which 
the small capacitance of the junctions plays an important role, and we also describe 
the methods for fabrication and measurements. 

In arrays where the junctions have a relatively large charging energy, (i.e. when 
they have a low capacitance) and a high normal state resistance, the low bias resis- 
tance increases with decreasing temperature and eventually at very low temperature 
the whole array may become insulating even though the electrodes in the array are 
superconducting. This transition to the insulating state can be described by thermal 
activation, characterized by an activation energy. We find that for certain junction 
parameters the activation energy oscillates with magnetic field with a period corre- 
sponding to one flux quantum per unit cell. 

In an intermediate region where the junction resistance is of the order of the quantum 
resistance and the charging energy is of the order of the Josephson coupling energy, the 
arrays can be tuned between a superconducting and an insulating state with a magnetic 
field. We describe measurements of this magnetic-field-tuned superconductor insulator 
transition, and we show that the resistance data can be scaled over several orders of 
magnitude. Four arrays follow the same universal functin provided we use a modified 
scaling parameter. We find a critical exponent close to unity, in good agreement with 

the theory. 
At the transition the transverse (Hall) resistance is found to be very small in com- 

parison with the longitudinal resistance. However, for magnetic field values larger than 
the critical value, we observe a substantial Hall resistance. The Hall resistance of these 
arrays oscillates with the applied magnetic field. Features in the magnetic field depen- 
dence of the Hall resistance can qualitatively be correlated to features in the derivative 
of the longitudinal resistance, similar to what is found in the quantum Hall effect. 
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I    INTRODUCTION 

The electrical transport in two-dimensional (2D) arrays of small Josephson tunnel 
junctions can be described either in terms of charges or in terms of vortices [1,2]. 
Transport of charge generates a current which acts as a driving force for the vortices. 
The charge transport may be obstructed by a large charging energy, EQ = e2/2C, 
C being the capacitance of the individual junction. On the other hand, transport 
of vortices generates a voltage which acts as a driving force for the charges. The 
vortex transport may be hindered if  the Josephson coupling energy is large. At 
low temperature the Josephson coupling energy is given by Ej = (RQ/RN)/(A/2), 

where RN is the normal state resistance of the individual junctions, RQ = h/Ae2 K, 

6.45 kfi  is the quantum resistance , and A is the superconducting energy gap of the 
electrodes. 

Adding a single charge to an electrode in the array gives rise to an electrostatic 
potential distribution which is sometimes referred to as a charge soliton [3]. A 
missing charge gives rise to the counterpart, an anti-soliton. The charge solitons 
can move in the array by single-charge tunnel events. When the electrodes are 
superconducting, both Single Electron Solitons (SES) and Cooper Pair Solitons 
(CPS) can exist. An exact calculation of the potential distribution in a 49 x 47 
junction array assuming only nearest neighbor coupling, is shown in Fig. 1, for two 
different cases: A single electron in the center of the array, giving rise to a SES, 
and the fundamental excitation, a soliton/anti-soliton pair at adjacent electrodes. 

The size of the soliton is given by JC/C0 as long as C > C0- C0 is the capacitance 
between an electrode in the array and infinity. However if  C is of the order of C0 

the nearest neighbor approach is not a good approximation [4]. 
On the other hand, due to the existence of a macroscopic phase of the super- 

0.8 I 

0.6- 

Ö 
£.  0.4 

ID 
0.2- 

0 

0.4 

0.2- 

j , Column # 0   0 j, Column # 0   0 

FIGURE 1. The exact solution for the potential distribution Uij in a 49 x 47 junction array, 
were the ratio between the junction capacitance and the self capacitance of each electrode is 400. 
The current leads are connected at i = 1 and i = 49 a) A single electron in the center of the array 
giving rise to a single electron soliton. b) The fundamental excitation, a soliton/anti-soliton pair 
at neighboring sites. 
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conductor, a vortex, i.e. a phase winding of 2TT, with an associated magnetic flux 
quantum $0 = h/2e, can exist in a loop of the array. In a two-dimensional (2D) ar- 
ray of small Josephson tunnel junctions the duality between charges and vortices is 
especially pronounced. Therefore it is a very suitable object to study the dynamics 
of both charges and vortices. 

The arrays which have high junction resistance, RN > RQ and large charging 
energy, Ec > Ej, become insulating at low temperature due to the Coulomb 
blockade [5,6], regardless of whether the electrodes are superconducting or normal. 

In the opposite limit, RN < RQ and Ec < Ej, superconductivity prevails and 
the resistance goes to zero at low temperature. In this limit  where the Josephson 
energy dominates, vortices act as classical or quasi-classical particles and there 
is a large number of papers describing such systems theoretically [7-10] as well 
as experimentally [11-17] With normal electrodes and RN > RQ the array goes 
insulating at low temperature while in the opposite limit  RN -C RQ , the array stays 
resistive even down to very low temperature. 

In this paper we will  concentrate on the arrays where the charging energy is 
comparable to or larger than the Josephson coupling energy, and where the junction 
resistance is of the order of or larger than RQ. Throughout this paper, we will  refer 
to an array with normal electrodes as being in the N-state, and to an array with 
superconducting electrodes as being in the S-state. 

If the interaction between the charges (or vortices) is logarithmic, the transi- 
tion to the insulating (superconducting) state would be of the Kosterlitz-Thouless- 
Berezinskii (KTB) type [18,19]. As the temperature is increased, an insulating 
2D array can undergo a charge unbinding transition [20] at some transition tem- 
perature, which results in a conductive state. Likewise, a superconducting array 
can undergo a vortex unbinding transition to a resistive state. It has been shown 
that the superconducting transition can be described as a vortex unbinding, KTB 
transition [11]. In more recent years there has also been a lot of interest in arrays 
where the dynamics is best described in terms of charges [20-27]. In several papers 
there has been a discussion whether the observed transition to the insulating state 
can be described as a KTB transition as well [20,24,25]. In a paper by Tighe et 
al. [25] it was pointed out that the transition could be well described by thermal 
activation of charge solitons. Comparing results of three different groups [20,24,25], 
they found an activation energy Ea as \EQ in the N-state, a value which can be 
theoretically justified. They also suggested that in the S-state at B = 0, Ea should 
be \Ec + A0, where 2A0 is the superconducting energy gap at B = 0 and T — 0. 
An interesting new result is that of Kanda and Kobayashi [27] where they find a 
thermal activation behavior at higher temperatures but a stronger dependence at 
lower temperature in the N-state. An interesting theoretical development in this 
field is a recent paper by Feigelman et al. [28], where they treat the posibility of 
parity effects 2D arrays. In section IV we will  describe measurements where we 
have investigated the transition to the insulating state extensively. 

For arrays in the intermediate regime (RN ~ RQ and Ec ~ Ej) which just 
barely go superconducting, a small magnetic field can drastically change the low 
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bias resistance and in fact drive the array into the insulating state [29]. In a the- 
oretical description of this effect [30], the field induced excess vortices drive the 
system from a vortex glass superconducting phase into a Bose-condensed insulat- 
ing phase. The zero-magnetic-field KTB vortex-unbinding transition is replaced by 
a field-tuned vortex-delocalization transition. A superconductor-insulator(SI) tran- 
sition can also be driven by other external variables such as electric field [31,32] 
or dissipation [33]. In Section V we show experiments on the magnetic-field-tuned 
superconductor-insulator transition. The zero bias resistance, R0 was measured 
as a function of temperature and frustration. The frustration, / is defined as the 
magnetic field normalized to B0, where B0 is the field corresponding to one flux 
quantum per unit cell in the array. The scaling curves demonstrate how R0, plotted 
as a particular function of T and /, display a transition from insulator to supercon- 
ductor. According to theory the resistance at the critical frustration fc should be 
universal and equal to RQ. From the data of four different arrays we find a value 
which is of the order of RQ but sample dependent. We can also deduce a dynamic 
exponent close to unity, which is in agreement with the theory [30]. 

Right at the critical frustration, the Hall resistance is very small compared with 
the longitudinal resistance, indicating a small Hall effect at the SI transition. How- 
ever for frustration values larger than the critical frustration the Hall resistance 
can be relatively large. Hall measurements in both conventional superconductors 
[34,35] and high-Tc superconductors [36,37] have shown a sign reversal of the Hall 
resistivity in the vicinity of the superconducting transition temperature Tc, where 
the samples are in a mixed state. Hall measurements have also been performed on 
disordered superconductors near the superconductor-to-insulator transition [38]. 
In Section VI we present the frustration dependence of the longitudinal resistance 
RßXX and the Hall resistance Roxy. Both the longitudinal and Hall resistance are 
periodic functions of the magnetic filed, and the Hall resistance changes sign at 
several magnetic fields within one period. We also describe the dc measurements 
of longitudinal voltage Vx and the Hall voltage Vy as a function of bias current Ix. 

II     SAMPLE FABRICATION AND MEASUREMENTS 

The arrays are fabricated on unoxidized silicon substrates, using a combination 
of photo- and electron-beam-lithography and an angle evaporation technique. Alu- 
minum is used for both top and bottom electrodes. The number of junctions in 
each row, N, is the same as the number of junctions in each column, with N ranging 
between 10 and 168. Therefore, the array resistance equals the individual junction 
resistance, assuming a homogeneous array. 

The samples are made in two steps. First a gold contact pattern is made with 
conventional photo lithography, and then the actual array is made with electron- 
beam lithography The contact pattern contains a large number of 7x7 mm2 chips 
distributed over a 2 inch wafer area, each with 16 contact pads leading to a central 
area of 160x160//m2.  A double metal layer of 20 nm chromium-nickel and 80 nm 
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gold is evaporated and the redundant metal is lifted off in acetone. The chromium- 
nickel film makes the gold stick better to the surface. 

A double layer e-beam resist consisting of a ~210nm thick bottom layer of 
P(MMA/MAA)  copolymer is spun onto the wafer and a ~60 nm thick top layer of 
PMMA(950k) is used. The chip is mounted in an e-beam lithography instrument 
and the central area of each chip is exposed using the array pattern. A current of 
20-30 pA corresponding to a beam size of about 10 nm is used. The beam voltage 
is 50 kV and the area dose is 160-200 ^C/cm2. 

Each chip is then developed in two different developers: first for ~10-20s in the 
PMMA developer which consists of a 1:3 mixture of toluene and isopropanol, then 
for 20-40 s in the copolymer developer which consists of a 1:5 mixture of ethyl- 
cellosolve-acetate (ECA) and ethanol. As an alternative the nontoxic mixture of 
5-10 % water in isopropanol can be used to develop both layers in one step, with a 
development time of 1-2 minutes. 

After development, the resist mask contains an undercut pattern with suspended 
bridges [39,40] which will  be used to form the junctions. By depositing bottom and 
top electrodes from different angles the overlap can be controlled. The base and 
top electrodes are evaporated from tungsten boats, while the substrate holder is 
tilted at two different angles (~ ±15 °C) to give the desired overlap. Before the 
top electrode is deposited, a tunnel barrier is formed by introducing 0.01-0.1 mbar 
of oxygen to the chamber for 3-10 minutes, by adjusting the oxidation parameters 
we get the desired junction resistance. 

A drawback with the angle evaporation technique is that a relatively large junc- 
tion is formed in series with the small tunnel junction, see Fig. 3. The effect of this 
larger junction can in most cases be neglected, if  its area is much larger than the 
area of the smaller junction. This is easy to make, but this requirement limits the 
minimum unit cell size of the array, which in turn decreases the soliton size. 

The fabrication procedure results injunctions with normal state resistances in the 
range 4 to 150 kfi, capacitances of the order of IfF, and Ao « 200 ^V per junction. 
The typical unit cell size is of the order of Aceu « 1 fj,m2 These values are deduced 
from the TV-characteristics, assuming an offset voltage of V0JJ = Ne/2C (for a 
discussion of the offset value see Ref. [25]). The Josephson coupling energies of the 
individual junctions are determined [41] from RN and Ao- The superconducting 
transition temperature Tc for the aluminum is in the range of 1.35 to 1.60 K. 

The self capacitance of each electrode C0 depends on the size of the electrode 
and the size of the array, and can be estimated to be of the order 10-20 aF for the 
smaller arrays (#2 and #3) and about 2aF for the other arrays. This results in a 
soliton size in the range of 11 to 35, measured in units of the lattice spacing. 

The most important parameters of the 2D arrays described in this paper are listed 
in Table 1. The arrays are divided into 3 groups. Arrays #1-3 show a decreasing 
resistance for decreasing temperature, and are referred to as the "superconducting" 
arrays. They have a low resistance, R  ̂< RQ and a relatively large Josephson 
coupling energy, Ej/Ec > 1. 

Arrays #4-8 show also go superconducting at low temperature, but they display 
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the magnetic field tuned SI transition, and are referred to as the "intermediate" 
arrays. They have RN an RQ and Ej/Ec « 1. 

Arrays #9-15 show an increasing resistance for decreasing temperature, and are 
referred to as the "insulating" arrays. They have a high resistance, R  ̂> 15kfi 
and a relatively small Josephson coupling energy, Ej/Ec < 0.5. 

The arrays are mapped onto a so called quasi-Schmid diagram [42,43] in Fig. 2, 
showing the Ej/Ec and the RQ/RN parameters of each array. The Ej/Ec and 
RQ/RN values in the range 0 to oo are scaled onto the horizontal and vertical axes 
in the range 0 to 2, using the function f(z)=2z/(l+z). The diagonal line represents 
A0 = 2Ec, i-t. where the charging energy for a Cooper-pair is equal to 2A0. The 
dotted line represents the border to the insulating region predicted by Fazio and 
Schön [2]. The dashed line corresponds to a Stewart MacCumber parameter of 
ßc = (n2/2)(EjIEC)(RNIRQ)

2
 — 1- Above this line a classical Josephson junction 

(in the upper right part of the diagram) shows hysteresis [44,45]. 

Our classification of the "insulating" arrays roughly agrees with the classification 
suggested by Fazio and Schön [2] shown as a dashed line in Fig. 2. However, a few 
of the arrays (#9-11) which show "insulating" behavior fall slightly outside the 
insulating area predicted by Fazio and Schön. 

TABLE  1. Parameters for the 15 arrays. The resistance Rpj, the capacitance C, and the 
superconducting energy gap 2A0, were deduced from the IV-cmves. The charging energy 
Ec, and the Josephson coupling energy Ej, were calculated from these values. BQ is the 
magnetic field corresponding to one flux quantum per unit cell. A is the soliton size measured 
in units of the lattice spacing. Eas is the activation energy for normal electrodes. 

# N RN 
(kn) 

Bo 
(G) 

A Ej/kB 

(K) 
Ec/kB 

(K) 
Ao/Ec EaN/Ec Ej/Ec 

1 112 3.98 10.4 35 1.82 0.37 6.08 0.56 4.91 
2 20 4.08 10.4 16 1.78 0.36 6.12 0.66 4.93 
3 10 4.49 10.4 11 1.62 0.38 5.98 0.70 4.25 

4 146 7.54 16.3 19 0.95 0.60 3.64 _ 1.57 
5 168 10.7 16.3 23 0.68 0.55 3.97 - 1.24 
6 146 12.5 16.3 27 0.57 0.72 3.04 - 0.80 
7 168 13.5 16.3 27 0.53 0.59 3.71 - 0.90 
8 146 13.5 16.3 29 0.56 0.73 3.25 0.24 0.77 

9 146 24.4 16.3 22 0.33 1.22 2.05 0.24 0.27 
10 80 35.4 27.6 23 0.21 0.88 2.62 0.25 0.24 
11 80 38.0 27.6 22 0.194 0.92 2.49 0.24 0.21 
12 100 49.3 43.1 24 0.159 1.27 1.91 0.26 0.12 
13 100 59.7 43.1 23 0.132 1.35 1.82 0.25 0.10 
14 80 88.4 27.6 21 0.090 1.09 2.27 0.28 0.08 
15 100 151 43.1 20 0.057 1.75 1.52 0.31 0.03 
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RQ/RN 

FIGURE 2. AT = 0 phase diagram showing the Ej/Ec and the RQ/RN parameters for the 
measured arrays. The diagonal line represents Ao = 2Ec- The dotted line represents the border 
to the insulating region predicted by Fazio and Schön. The dashed line corresponds to a Stewart 
MacCumber parameter of ßc — 1. 

In Section IV, we will  concentrate on the "insulating" arrays, but we will  also 
present the N-state properties of the "superconducting" arrays. The N-state may 
be thought of as lying on the x-axis of the diagram in Fig. 2. Sections V and VI  
will  discuss the "intermediate" arrays. 

Fig. 3 shows a typical sample, and the inset shows the probe layout for the Hall 
measurements. There are four Hall probe pairs situated at 1/6, 1/3, 1/2 and 5/6 
the distance between the ends of the array. Each Hall probe is actually an array of 
3x3 junctions, with the outer side shorted by a strip from which the Hall voltage 
is taken. In this way we can reduce the influence on the sample behavior arising 
from the presence of the voltage probes, and we are less sensitive to local defects 
possibly occurring in the probe. The resistance of the probe arrays is presumably 
similar to that of the array itself. This resistance is much smaller than the input 
impedance of our voltage amplifiers. 

The measurements are performed in a dilution refrigerator which is situated 
in an electrically shielded room. A magnetic field up to about 1400 G is applied 
perpendicular to the substrate. The magnetic field needed to produce one magnetic 
flux quantum per unit cell, B0, varied between 10.4 G and 43.1 G for the different 
arrays. This is much less than the critical magnetic field, Bc (~ 800 G), which was 
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needed to bring the aluminum electrodes into the N-state. 

All  measurements are made with the biasing and the measurement circuitry 
symmetric with respect to ground. The current-voltage(iV)-characteristics of the 
arrays are recorded at temperatures down to about 25 mK. The threshold volt- 
ages are deduced from the IVC measured as the voltage at which the current has 
dropped to two times the noise level (going from large bias). The rms current-noise 
determined at low voltage is typically of the order of 0.1 pA or less. 

For the insulating arrays we deduce the zero bias resistance i?0 from the IV- 
characteristics. For the "superconducting" and "intermediate arrays", R0 can also 
be measured with an ac-technique using lock-in amplifiers, with excitation currents 
in the range 0.01-3 nA, and frequencies of the order of 10 Hz. 

The longitudinal voltage Vx is measured at the superconducting strips at the 
ends of the array, and the Hall voltage Vy is measured on the probes located on 
opposite sites of the array. The Hall data presented here were measured from the 
probes located in the center of the array, see the inset of Fig. 3 

FIGURE 3. A SEM picture of a part of an array. Each island measures 0.5 by 1 /im, the overlap 
between neighboring islands defines the tunnel junction. The insert shows the probe layout. Each 
Hall probe consists of 3 x 3 junctions, the junctions are identical to the junctions in the array. 
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Ill     CURRENT VOLTAGE CHARACTERISTICS 

The large scale /V-characteristics of the arrays are very similar for the 11 arrays 
and they resemble the /^-characteristics of a single high resistance Josephson junc- 
tion. In the S-state there is a sharp rise in the conductance at a voltage ~ N-2Ao/e. 
At high voltages the /^-characteristics are linear and there is the usual offset volt- 
age which is due to the Coulomb blockade [5,6]. In the N-state the gap feature 
disappears but the offset voltage remains. 

For low bias in the S-state, the /^-characteristics differ drastically for the differ- 
ent arrays. Qualitative similarities can be found between these /V-curves and those 
of single junctions biased through high impedance resistors [46]. Arrays #1-8 show 
a supercurrent-like feature at low bias, and R0 decreases for decreasing tempera- 
ture. Arrays #9-15 show a Coulomb blockade feature at low bias, and Ro increases 
for decreasing temperature. 

A    The threshold voltage 

The threshold voltage Vt is the voltage at which solitons can be injected into the 
array. According to theory [3], the threshold voltage for injection of SESs in the 
N-state should be 

for a symmetrically biased array with C ^> Co- It is important to make the 
distinction between symmetric and asymmetric (one side grounded) bias of the 
array, since the latter gives a factor of two lower threshold voltage. However, it has 
been show by Middelton and Wingreen [47] that the background charges modifies 
the picture and that the threshold voltage actually scales with the length of the 
array if  the effect of random background charges is taken into account. 

In the N-state, all arrays show Coulomb blockade feature at low temperature 
and low bias, but the threshold is smeared. However there is no sharp threshold 
voltage in the N-state for most of the arrays. Only for array #15 , which has the 
largest RN, we can deduce a threshold voltage of about 0.25mV(see Fig. 4). Note 
that the onset of current occurs at a substantially higher voltage for intermediate 
magnetic fields. For those fields however the onset was more gradual. A similar 
behavior was observed in all of the "insulating" arrays. 

All  of our arrays were symmetrically biased and for array #15 we get a theoretical 
value of VtN — 2.3 mV, according to Eq. 1. The fact that the measured value 
is substantially lower than the theoretically predicted one, is consistent with the 
picture that quantum fluctuations effectively lower the energy barrier for injection 
of charge [26]. 

In the S-state there was a sharp threshold for all the "insulating" arrays, except 
for arrays #10 and #11. Vt is shown as a function of B for four of the arrays in 
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FIGURE 4. The TV-characteristics of sample #15 at different values of magnetic field. In 
the S-state (B=0G), the threshold is Vts = 2.75 mV, while in the N-state (B = 1140 G), the 
threshold is VtN = 0.25mV. Note that the onset of current occurs at an even larger voltage for 
an intermediate value of B. 

Fig. 5. For several of the arrays Vt oscillates with B, demonstrating that Cooper pair 
solitons are injected at low magnetic fields. The period of oscillation corresponds 
to one flux quantum per unit cell and agrees well with the Bo values of the different 
arrays. The oscillations in Vt correspond to the oscillations in activation energy, 
described in Section IV, and the oscillation peaks in Vt and Ea occur at the same B 
values (compare Figs. 8 and 5). For increasing magnetic field the threshold voltage 
increases and peaks at a field in the range of 250 to 450 G, which is well below the 
critical field Bc for the electrodes. Vt then decreases rapidly at larger B. 

The threshold voltage in the S-state has, to our knowledge, not been described 
theoretically in the literature. However, following the arguments in Ref. [3], and 
neglecting the Josephson coupling energy, we can estimate Vt for two different 
situations. For direct injection of Cooper pair solitons, we get a threshold voltage 
which is two times higher than the value for single electron solitons, Vts2e = 2VJjv 
The other possibility is that a Cooper-pair is broken up and then a single electron 
is injected. Then the threshold would be Vtse — VtN + A4Ao/e for the case of 
symmetric bias. For all our arrays Vts2e < Vtse at B = 0, and therefore we would 
expect injection of Cooper pairs to be responsible for the threshold. 

This agrees well with our observation of the oscillating Vt at low magnetic field. 
The increase of Vt with increasing magnetic field can be understood in the following 
way. Since A, and thereby Ej, decreases with increasing magnetic field it becomes 
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FIGURE 5. The positive and negative threshold voltages as a function of B for two of the 
arrays at T « 25mK, a) #9 At low magnetic field Vt oscillates with one flux quantum per unit 
cell, showing that Cooper pair solitons are injected, b) #15. 

harder to inject Cooper-pairs, and therefore Vt increases. At some magnetic field 
the threshold for single electrons will  become equal to that for Cooper-pairs (Vts2e — 
Vtse) and we would expect a crossover from Cooper-pair injection to single electron 
injection. This is observed in all the samples as a peak in Vt at magnetic fields 
in the range 250 to 450 G. Beyond this crossover Vtse decreases as a function of 
increasing B, due to the decreasing A. 

To get a more quantitative description, other effects depending on the array size 
and the background charge, as well as co-tunneling and the Josephson coupling, 
would have to be included. The fact that the observed values at B = 0 are generally 
lower than the "theoretical" value VtS2e> can possibly be explained if  the Josephson 
coupling energy is taken into account. A step in this direction is a recent paper 
on ID-arrays where the threshold dependence on Ej is discussed [48]. The current 
above the threshold has been analyzed using scaling theory by Rimberg et al. [49]. 

B    Hall voltages 

In an array which is strongly superconducting there is no Hall voltage since the 
Hall probes would be shorted. In an array with a strong Coulomb blockade the 
whole array is insulating and therefore the Hall probes are effectively disconnected, 
and no Hall voltage can be measured. Therefore it is not surprising that it is only 
the "intermediate" arrays which show some Hall voltage. In Fig. 6a we see the IXVX 

characteristics for sample #5 which shows a sharp dip in the current before entering 
the flux-flow regime, characterized by I being proportional to V. The IxVy curve, 
shown in Fig. 6b, displays a very similar feature, but the Hall voltage is about two 
orders of magnitude smaller. As the current is reversed, the Hall voltage changes 
sign as expected. 

In the flux-flow regime, both Vx and Vy increases linearly with applied current 
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until the longitudinal voltage reaches the sum gap voltage of the entire array (Ar ■ 
2A0 « 63 mV). At this point, the Hall voltage reaches a maximum of about 0.2 mV 
and then starts to fluctuate, gradually decreasing almost to zero. At still higher 
currents, the Hall voltage displays rich structure, which can also be seen in the 
derivative of Vx with respect to Ix. 

At very high currents, when Vx is on the normal resistance branch of the Ix — Vx 

curve, the Hall voltage Vy also increases linearly with the applied current, with 
slope 2.1 fi. Because this slope is a small fraction of RN (0.02% for array #5 and 
0.1% for array #7) we conclude that small non-uniformities exist in the array. For 
array #7, the Hall voltage as a function of bias current shows very similar behavior 
to that of array #5. 

IV     THE INSULATING TRANSITION 

The zero bias resistance was measured as a function of both temperature and 
magnetic field. All  arrays showed an "insulating" behavior in the N-state, meaning 
that R0 increased as a function of decreasing temperature. Over a fairly wide 
range of temperature the Ro(T) dependence was exponential as can be seen in 
Fig. 7, indicating thermal activation of charge solitons. However, Ro saturates and 
is no longer temperature dependent at the lowest temperatures, (beyond the range 
displayed in Fig. 7). This saturation has been discussed in Ref. [26] and here we 
will  concentrate on the thermal activation. 

In the S-state, RQ increased even more rapidly as a function of decreasing tem- 
perature for the "insulating" arrays. The R0 versus T curves can be divided into 
three temperature regions (see Fig. 7). i) In a temperature range below 500 mK, fi 0 
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FIGURE 6. The longitudinal voltage Vx (a), and the Hall voltage Vy (b) measured as a function 
of bias current for sample #5 at T « 20mK, and / « 0. Note that at low bias Vx and Vy are very 
similar 
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increases exponentially with decreasing temperature, and an activation energy can 
be defined, ii) At higher temperatures the dependence was not purely exponential 
due to the temperature dependence of the superconducting gap. iii)  For the lowest 
temperatures Ro became larger than 1 Gfi (not shown in the figure), and could not 
be measured accurately with our experimental setup. 

In a temperature interval roughly between 200 mK and 500 mK, R0 for the "in- 
sulating" arrays could be fitted by a thermal activation dependence over the whole 
magnetic field range, such that 

R0{B,T) = b-exp 
Ea(B) 
kBT 

(2) 

where Ea is the activation energy and b is a constant. It should be noted that 
there is a region of magnetic field slightly below Bc where the superconducting 
gap goes to zero in the temperature interval where the fit is made to determine 
Ea- Therefore, the ln(R0) vs. 1/T plots are not perfectly linear at those magnetic 
fields. However the Arrhenius law (2) is still a fair approximation. 

The fact that we do not observe a KTB charge unbinding transition in these 
arrays is not altogether surprising. It was shown by Zaikin and Panyukov [50], that 

1/T (K -1) 

FIGURE 7. The zero bias resistance R0 for array #10, vs. 1/T for B = 0G, S-state (o), 
and for B = 1400G, N-state (x). Note the very good fit to the thermal activation Arrhenius 
dependence for the N-state. The resulting slope is very close to ^Ec and the extrapolation to 
infinite temperature ends up right at Äjv- At low temperature the data in the S-state can also 
be fitted to an Arrhenius dependence with a slope close to \Ec + A0. 
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the effect of offset charges will  effectively cut of the logarithmic interaction between 
the charges. Also, the finite size of our samples is probably a limiting factor. 

In the N-state, Ea was found to be close to \EC (see Table 1), and b was very 
close to RN, for all the "insulating" arrays. This value of Ea agrees well with that 
of Tighe et al. [25]. If the conduction is caused by thermal activation of single 
electron solitons we expect that Ea = \EC in the N-state. The energy required 
to create a soliton anti-soliton pair starting from an uncharged array, i.e. the 
tunneling of a single charge, is the so called core energy Ecore = e2/4C = ^Ec for 
single electrons, and four times as high Ecore - 2EC for Cooper-pairs. Similarly to 
thermal activation in other systems the activation energy becomes half of the core 
energy. 

We next consider the S-state case, where we can imagine two alternative transport 
mechanisms. On one hand, we can calculate the energy needed to brake up a 
Cooper pair and to create a SES pair. We would expect Ecore = \Ec + 2A0 and 
therefore, Ea = \Ec + A0 if  the charge transport was entirely due to SESs, created 
from broken Cooper pairs. If  on the other hand, we assume that only CPSs are 
activated, we would expect the activation energy to be four times higher (because 
of the 2e charge) than for SESs in the N-state, so that Ea - Ec. This picture 
is of course a bit naive because the Josephson coupling energy is not taken into 
account. Nevertheless, if  this simple picture holds, we would expect that for arrays 
with A0/Ec < f, thermal excitation of SESs would always be advantageous, and 
we would expect Ea = Ec + A(B). If  on the other hand A0/Ec > f , we would 
expect a crossover from activation of CPSs to activation of SESs as A is suppressed 
by the magnetic field. All  the "insulating" arrays had A0/Ec > |, and we thus 
expect the crossover behavior with magnetic field. 

Our observations suggest a somewhat more complicated picture. As we enter the 
S-state, by lowering the magnetic field belowBc, Ea increases for all the "insulating" 
arrays. At zero magnetic field, we find that Ea is equal to or smaller than \Ec + A0 

but larger than Ec, for all seven arrays. In Fig. 8 the magnetic field dependence 
of Ea is shown for two of the arrays, and it is compared to \Ec + A(B), which is 
represented by a dashed line. Here, Ao is measured for each array and the form of 
the function A(B/BC)/A0 is also determined from the measurements [26]. 

From our simple picture outlined above we would expect the ratio Ao/Ec to be 
important. We find that for arrays with a ratio A0/Ec less than 2, (arrays #12,13, 
and 15), Ea(B) has a behavior which is very close to \Ec + A(B), as can be seen 
for array #13 in Fig. 8a. Arrays #12 and #15 show a very similar behavior. Tighe 
et al. [25] have also obtained the same result at B = 0 for arrays where the ratio 
A0/Ec was less than 2. However, for the other arrays #9-11, and #14, where 
Ao/Ec was larger than 2, Ea(B) is lower than \Ec + A(B). This can be seen in 
Fig. 8b, for array #9. It is obvious that the ratio A/Ec is important. We find that 
the critical value is about 2. 

In several arrays, we observe oscillations in Ea(B). The period of oscillation 
corresponds to one flux quantum per unit cell (see the inset of Fig. 8b). The period 
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FIGURE 8. The activation energy Ea, as a function of magnetic field B for two of the arrays. 
At high magnetic field (in the N-state), Ea is close to \Ec- The dashed lines corresponds to 
\Ec + A(S). a) Array #13. Note the good agreement between the experimental data and the 
dashed line, b) Array #9. Note the oscillations, the period correspond to one flux quantum per 
unit cell, the amplitude is roughly equal to Ej. 

agrees very well with the B0 values, determined from geometry. The oscillations 
show that the Josephson coupling affects the activation energy. The oscillations are 
observed in all arrays where the measurements were taken with sufficiently small 
steps of the magnetic field. The amplitude of the oscillations is roughly Ej. Arrays 
with a large Ej also showed an increase of (the average of) Ea with increasing B 
resulting in a peak at 100 to 200 G (Fig. 8b). 

These effects can be understood since the creation of CPS/antiCPS pairs should 
be dependent on the Josephson coupling. For a weaker Josephson coupling, it 
should be harder to create CPS/anti-CPS pairs and Ea should increase. The 
Josephson coupling £jcos($/$0) is affected in two ways by the magnetic field. 
At low field the cosine part is affected, resulting in an oscillating Ea with maxima 
where (B — n + |)50, n being an integer. The oscillations of Ea demonstrate clearly 
that at least part of the current at low bias is carried by Cooper-pair solitons. At 
higher magnetic field the increasing Ea with increasing B may be explained by a 
decreasing A, and thereby also a decreasing Ej. At even higher fields A/Ec be- 
comes smaller than 2 so that SES creation dominates, and thus Ea decreases with 
increasing field 

In summary, our results for the N-state agree well with thermal activation behav- 
ior, and an activation energy of \Ec for single electron solitons can be extracted. 
For the S-state we find that as long as A/Ec < 2, pairs of SESs are created by 
breaking up Cooper pairs so that Ea = \Ec + A(B). For larger values, A/Ec > 2, 
pairs of CPSs are responsible for a substantial part of the charge transport and Ea 

oscillates as a function of temperature. 
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TABLE 2. Parameters and scaling exponents for four of the arrays which 
showed the superconductor insulator transition. The variables are defined 
in the text. 

# Ej/Ec TKTB 

(K) 
fc ZBVB 

(kft) 
Ft* ■^oxy 

(Q) 

4 
5 
6 
7 

1.57 
1.24 
0.80 
0.90 

0.70±0.04 
0.46±0.04 
0.44±0.05 
0.35±0.04 

0.122±0.012 
0.039±0.007 
0.047±0.005 
0.034±0.010 

4.75±0.5 
8.20±1.0 
1.47±0.2 
4.45±0.5 

2.45±0.15 
1.23±0.10 
2.20±0.15 
1.61±0.15 

28±5 

34±5 

V    THE MAGNETIC FIELD TUNED 
SUPERCONDUCTOR INSULATOR TRANSITION 

As mentioned previously arrays which are superconducting a low temperature 
can display a vortex-unbinding KTB [18] transition to a resistive state above a 
certain critical temperature TKTB- In zero magnetic field, the theory for KTB 
vortex-unbinding gives a relation between the superconducting correlation length 
£ and the transition temperature TKTB- The correlation length is determined by 
a control parameter which, for example, can be the disorder of the system. A 
Josephson junction array can be described by the classical 2D-XY model and can 
be associated to the KTB transition in continuous films [12]. In the presence of 
disorder, the conductivity at low temperature is governed by variable-range hop- 
ping(VRH) [51] and £ should scale with TKTB- In a highly disordered film, the 
long-range vortex-pair order is destroyed, and TKTB is substantially suppressed 
compared with that of a disorder-free film. Provided that the transition between 
insulator and superconductor is continuous, right at a critical disorder, £ should 
diverge and TKTB should vanish. If  the disorder is smaller than but close to the crit- 
ical disorder, Fisher [30] predicted, based on the analogy of VRH of vortices to VRH 
of electrons, that £ should diverge as (B — Z?C)

-"B with exponent VB > 2/J = 1, 
where d=2 is the dimension of the system. The scaling theory developed for the 
zero field case implies a power law dependence of TKTB on £, i.e. TKTB ~ £~ZB, 
with an exponent zg of unity. Furthermore, the dual transformation suggests a 
T — 0, B = Bc fixed point where the magnitude of the resistivity (vector sum 
of the longitudinal and transverse components of the resistivity) should also be 
universal and equal to RQ. 

Experiments on homogeneous thin films in zero magnetic field demonstrated a SI 
transition by changing the film thickness. The transition was found to occur when 
the film sheet resistance was close to a critical value of RQ [52]. A magnetic field 
tuned transition was found for films close to the critical resistance [38,53,55-57] and 
agreement with the scaling theory [30] was obtained. In Josephson junction arrays, 
a SI transition can be achieved by changing the junction normal state resistance 
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FIGURE 9. Linear resistance Ro at zero bias as a function of frustration for a) array #4 mea- 

sured at several temperatures (from the top, 20, 200,400, 600, 700 mK). At / = fc « 0.12, dR0/dT 

changes sign and, R*0 « 2.4 kQ. b) array #6 at low temperatures (from the top 50, 70, 90, 125 

mK). 

RN and the junction capacitance C [23,30]. The transition is found to occur near 
a critical point at RN &RQ and Ej/Ec f» 1. We therefore expect a magnetic-field- 
tuned SI transition for arrays near the critical point. However, there is a major 
difference between a uniform film and a regular array in the presence of an external 
magnetic field. In the former case the vortices form an Abrikosov (triangular) 
lattice in the ground state [58] whereas in the latter case the vortices are pinned 
in a periodic potential, imposed by the array lattice [59]. The array lattice results 
in a ground state energy which is an oscillatory function of the applied magnetic 
field with period A/=l [59]. The ground state energy is not only periodic, but has 
minima at rational frustrations, i.e. /=l/2, 1/3, 2/3, etc. From one point of view, 
frustration is simply proportional to magnetic field and should be related to B in 
the scaling theory [30]. From another point of view, frustration can be consider as 
introducing defects from the ordered lattice at rational / values, in which case the 
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KTB transition under consideration is the melting of the vortex lattice. We thus 
expect that the / value can act as a control parameter for the SI transition, and 
the scaling theory can be applied, provided one accepts that the correlation length 
diverges at some critical value of / as (/ - fc)~

VB ■ Experimentally, we find that the 
SI transition occurs at f=n±S and n+l/2±e (where n is an integer and 5, c <<  1), 
and that the scaling analysis is applicable to both cases. 

The important parameters are listed in Table 2. The charging energies Ec were 
judged from the offset voltage of the /V-characteristics at large bias. B0 was about 
16 G for all the intermediate arrays. For sample #6 the superconducting mean- 
field-transition temperature, Tc=1.51 K, was measured on an aluminum wire which 
was fabricated on the same chip as the array. The KTB transition temperature 
TKTB could be deduced from the onset of the linear dependence of R0(f) [17], the 
values are listed in Table 2. This method of deducing TKTB has been confirmed 
both theoretically [18,60] and experimentally [53,61]. 

R0(f) for sample #4 at T < TKTB is depicted in Fig. 9. Below a critical 
frustration/,; « 0.12, the resistance is lower for lower temperature, indicating a 
superconducting transition. Above fc, the resistance is higher for lower tempera- 
ture, implying an insulating transition. The resistance at /c, #*, can be identified 
from Fig. 9a and is about 2.4 kfi. 

Fig. 9b illustrates the R0{f) dependence for sample #6 at low temperatures. 
While arrays #4 and #5 do not show a resistance higher than their normal resis- 
tances RN at any / in the accessible temperature range, the resistance of arrays 
#6 and #7 in the most insulating case (at / « 0.4) are much greater than their 
RN. Remarkably, the resistance of array #6 changes by more than five orders of 
magnitude going from / « 0 to / « 0.27 at 15 mK. The IV characteristics measured 
in the superconducting state and in the insulating state for array #6 are displayed 
in Fig. 10. In the superconducting state, the array exhibits clear Josephson-like 
current, with R0(f « 0) ~ 130 ti, whereas in the insulating state, the array shows 
an insulating behavior with R0(f ~0.27) >37 Mfi  and a back-bending feature in 
the IV characteristics similar to the behavior of higher resistance arrays (Rw «17 
kfi) reported earlier [21,23]. This feature is easily smeared by increasing tempera- 
ture, resulting in a drastic decrease in the measured R0 in the insulating phase as 
seen in Fig. 9b. RQ(T) curves for array #6 in the range 0 < / < 0.27 are shown as 
an inset of Fig. 10. The fiattening-off of the resistance at non-zero frustrations at 
low temperatures is attributed to a finite size effect, explained within the context 
of the (vortex) VRH picture [62]. In this picture, the hopping range increases at 
low temperature. When the hopping length becomes larger than the sample size, 
a temperature-independent resistance is expected. This flattening-off behavior was 
also reported in Refs. [29,26] and can be shown to depend on the sample size [17]. 

To appreciate the scaling theory, all the data from both the superconducting and 
the insulating sides should collapse onto a single curve when plotting the resistances 
against the scaling variable \f — fc\-T~llZB"B. This is done using both fc and ZBVB 

as free parameters. The curves were determined by minimization of the mean 
square deviation from an averaged curve on the insulating branch.   The scaling 
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was performed in the temperature range 50mK< T < TKTB and in the frustration 
range 0 < / < 0.2. The scaling parameters as well as R*0 are listed in Table 1. 
Scaling curves for arrays #4 and #6 are shown in Fig. 11. All  data point in the 
insulating branch collapse onto the same trend. For the superconductor transition 
the low temperature points deviate from the general trend due to the finite size 
effect. 

The form of the scaling curves are very similar in the different cases, in fact 
it is possible to make the curves from all four arrays overlap by offsetting the 
graphs slightly in the x and the y direction. The different offsets in the y direction 
demonstrates that the zero temperature fix  point is different for the different arrays 
and that we get sample dependent values of R*0. The offset in the ^-direction 
shows an interesting, and unpredicted, linear dependence on the Ej/Ec ratio. 
This is shown in Fig. 12 where xc is ploted versus the Ej/Ec ratio. xc is the 
a;-value at which the superconducting transition extrapolates to zero resistance. 
Disregarding the low temperature points on the superconducting side, we find that 
we can describe all the data of the four arrays with a single formula (Eq. 3), where 
the scaling parameter deduced from theory is normalized to the Ej/Ec ratio. 

0.0 
V[mV]  

FIGURE 10. Magnetic field dependence of on the IV characteristics of array #6 taken at 
15 mK. In the superconducting state (/ « 0,i?o « 132Ü) it shows a clear supercurrent whereas 
in the insulating state (/ « 0.27, Ro «37.2 MQ) it exhibits a back-bending feature. The zero 
bias resistances differ by more than five orders of magnitude, while the change in magnetic field 
is only 4.4G. The inset shows Ro(T) for the same array for 0< / <0.27. 
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R0(f,T) = R*0-F( 
Ec   \f-fcl 
Ej ' T1

I
Z
B

V
B • 

(3) 

Here F is a universal function describing both the insulating transition and the 
superconducting transition, and R*0 is a nonuniversal, sample dependent parameter. 

We find, similar to Hebard and Paalanen [53], that the quality of the scaling is 
more sensitive to fc than to ZBVB- Using an improper fc value may cause large 
discrepancies at the left side of the plot and slightly shift R*0, whereas an improper 
zBvB degrades the scaling but does not change R0*. Note that the scaling analysis 
is limited to low / values by the commensurability between the applied flux and 
the array lattice. The theory predicts that the transition temperature should scale 
with the correlation length as TKTB ~ £~ZB ■ This, together with the fact that £ 

depends on the critical frustration as fc ~ if-2, leads to the relation fc ~ TKfB. 
Fitting fc and TKTB for the four samples as shown in the inset of Fig. lib, we can 
deduce ZB = 1-05. This can be compared to the theoretically predicted value of 

unity [30]. 
In the case of /=l/2 the region of sample parameters where the phase transition is 

observable shifts to lower RN and larger Ej/Ec. For array #4 we find fc = 0.5 ± e, 
with e = 0.055 ± 0.001 and R*0 is 4.33±0.15 kfL The scaling is shown as an 
inset in Fig. 11a, the frustration range was 0.5 </ < 0.6.   For array B, we find 

lo-4 io-3 io- 
If-fl/T 1'"  

T- 
10-" IO' 3 IO' 2 

lf-f„l/T""  

FIGURE 11. Äo as a function of the scaling parameter |/ - /c| • T~
1!2BVB

 for array #4 and 
array #6, 0 < / < 0.2. The data collapse onto one curve: the upper part for the insulating 
transition and the lower part for the superconducting transition. The low temperature points on 
the superconducting side deviate from the general trend due to the finite array size, a) Sample #4. 
The inset shows the scaling for array #4 close to full  frustration, 0.5 </ < 0.6. b) Sample #6. 
The inset shows a log-log plot of the critical frustrations fc as a function of the Kosterlitz-Thouless 
transition temperature Tc for the four measured samples. The critical exponent ZB «1.05 can be 
obtained from the relation fc ~ Tj^g. 
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FIGURE 12. The critical x-value, xc versus the Ej/Ec value for the four arrays #4-7. 
data shows a clear linear dependence which is not predicted by theory 

Our 

e = 0.030 ±0.003 and R*0 « 5.40±0.15kfi. Arrays #6 and #7 have a larger RN and 
a smaller Ej/Ec ratio, it is thus not surprising that the R0(/) curves at various 
temperatures do not cross near / = 1/2. 

Returning to the S-I transition at / close to zero, the scaling curves for all four 
arrays exhibit similar bifurcation shape, but with a different R*0. As other mea- 
surements on 2D arrays [29,54] and on superconducting films [55,56] also showed a 
different #*, we conclude that R* is non-universal and sample dependent. Accord- 
ing to theory [30] the vector sum of the longitudinal resistance Roxx (previously 
R0) and the Hall resistance Roxy should be universal and equal to RQ at / = /c, 
To check this prediction, we performed measurements of Roxy for arrays #5 and 
#7. Four pairs of Hall voltage probes allow us to check the spread of the junction 
parameters in an array, which is found to be within 3%. Roxy(f) shows a rich struc- 
ture, the details will  be published elsewhere. For both arrays Roxv is of the order 
of 30 ft, see Table 2. The sum of R*£.x and R* x̂y is thus smaller than Rqfov both 
arrays. It should be noted that the smallness of R*xy compared with R*xx agrees 
well with recent experiments on thin films [38]. The Hall angle at the transition, 
is about 1.2° for both arrays. 

In the thin film case [38] a critical field was found also for the Roxy data. In our 
case the linear region in the Ix vs. Vy characteristics is very small at finite /, which 
limits the excitation current and, consequently, the resolution in Roxy. Therefore 
it is hard to determine the crossing point in the Roxy(f) curves at T < Tc for both 
array #5 and #7. Nevertheless, the frustration above which the Roxy{f) curves at 
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various T start to deviate from each other seems to be very close to fc. This is in 
contrast to the case of disordered films [38] where the "critical field" at which all 
Roxy(f) curves cross is higher than Bc and is associated with the suppression A. 
This is evidently not the case for 2D arrays, since the field needed for suppression 
of A of our arrays is about 800 G [26], which is much greater than the critical field 
(=f cB0) of a few G. 

VI    THE HALL  EFFECT 

Superconducting films can, to some extent, be modeled as a 2D array of Joseph- 
son junctions, and understanding their transport behavior can be reduced to the 
problem of vortex dynamics. Many interesting phenomena occurring in supercon- 
ducting films can also be seen in 2D Josephson junction arrays. In fact, the phe- 
nomena can be more easily modeled in the latter system because complications due 
to the (often unknown) microstructures do not exist, and phenomenological param- 
eters such as the junction normal state resistance, RN, Josephson coupling energy 
Ej, and charging energy Ec, can be independently determined. However, there 
is a major difference between a uniform film and a regular array in the presence 
of an external magnetic field. In the former case the vortices form an Abrikosov 
(triangular) lattice in the ground state whereas in the latter case the vortices are 
pinned in the periodic potential imposed by the array lattice [59]. The array lattice 
of loops of area A, results in a ground state energy which is an oscillatory function 
of the frustration. The ground state energy is not only periodic, but has minima 
at rational frustrations, i.e. f = 1/2,1/3,2/3, etc. [59]. In the vicinity of these 
rational frustrations, the dynamics is dominated by the motion of "defect" vortices 
[16] and the vorticity of the majority defect is reversed upon passing through these 
rational frustrations. 

The frustration dependence of Roxx and Rxy for sample #7 at various temper- 
atures is shown in Fig. 13. Rxx is an oscillatory function of the applied magnetic 
field with period A/ = 1 and minima at rational frustrations, / = 1/2,1/3 and 
2/3 as can be seen in Fig. 13. There is a critical frustration, fc ~ 0.034, below 
which the resistance decreases as the temperature is lowered, and above which the 
resistance increases as the temperature is lowered. The longitudinal resistance at 
fc, R*0xx = 1.61 kfi , can be identified from an expanded view of Fig. 13a around 
f — /c, as well from a scaling analysis on these curves which we have discussed in 
detail in Section V, see also Ref. [63]. 

The Hall resistance Roxy as a function of frustration is shown in Fig. 13 where 
we see that it also oscillates with the applied field having the same period A/ = 1. 
At / = 0, Roxy is zero, and Roxy(f) has a very small negative slope. As the 
frustration is increased, R0xy goes through a minimum, increasing to Rgxy — 34 fl 
at / = fc. Thereafter it rapidly increases, reaching a maximum value at / RJ 0.23. 
As the frustration is increased further, Roxy starts to decrease and at / > 2/5, 
it becomes negative.   At / « 0.45, Roxy reaches a local minimum and starts to 
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FIGURE 13. (a) The longitudinal resistance R0xx and (b) the Hall resistance Roxy, and (c) 
the Hall angle 6, as functions of frustration. RQXX, and Roxy are shown for various temperatures 
(from the top at / «0.25, T = 20, 75, 100, 125, 150, 175mK). Raxx is symmetric at / = 0 and 
/ = ±1/2 whereas R0xy changes sign upon passing through these frustrations. The data are for 
sample #7 
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increase to zero at / = 1/2. Roxy{f) is anti-symmetric about / = 0 and locally 
anti-symmetric about/ = 1/2. In the raw data a small symmetric part arises 
due to sample non-uniformities. This symmetric part can be removed by taking 

(Roxy(f) — Roxy(—f))/2- The removed symmetric part looks identical to, but is 
only 3% of, Roxx. The data shown in Fig. 13 has the symmetric part removed. 
The difference in shape at / = 0 and / = ±1 is not understood although it is 
reproducible for —1.2 < / < +1.2. 

The Roxx and Roxy data can be combined to generate a third plot of the Hall 
angle 0 = arctan(RoxV/Roxx) which is shown in Fig. 13 at T = 20 mK. Comparing 
our results to those of van Wees et al. [13] we find a much larger Hall angle. 
Furthermore they did not observe an anti-symmetric Roxy versus / curve. This is 
probably because their array was in the classical limit  Ej > Ec, whereas ours were 
in the quantum limit  Ej sa Ec where a finite R0xy has been predicted [30,64] 

The Hall angle can be interpreted as the angle between the vortex velocity vector 
Vv. and a unit vector perpendicular to the direction of current flow J. The moving 
vortices generates an electric field given by 

E = -qvnv4>0Vv x z (4) 

with qv — ±1 describing the vorticity, n„ the area density of vortices, and z the 
unit vector perpendicular to the plane of the array. Vortex motion in the direction 
of J x z creates a field E parallel to the transport current J. The force on a moving 
vortex is the Magnus force [65] 

F = n.ei 4o (v. - K) X z (5) 

a 
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FIGURE 14. A comparison of Roxy (solid curve) and dRoxx/df (dotted curve) for sample #7 
at T = 20mK, plotted with arbitrary scale. Both curves show a similar behavior, minima and 
maxima occur at the same values of frustration 
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where ns is the superfluid electron density and Vs = J/nse is the superfluid 
velocity. Due to this force, there is a component of vortexjmotion parallel to the 
applied current which produces a transverse field in the - J x z direction. 

In two dimensional regular arrays, the field E at irrational frustrations is gen- 
erated by the motion of "defect" or vacancy vortices. From Eq. 4, it is clear that 
the sign change in the vorticity is responsible for the sign reversal of R0xy in the 
vicinity of / = 1/2, because the defects have opposite vorticity to the field induced 
vortices. 

We find that the structures in Roxy{f) can be correlated to structure dR0xx/df 
as shown in Fig. 14. The correlation is most clear in the vicinity of / = 1/2. This 
is similar to what is found in the Quantum Hall effect in two dimensional electron 
gases (2DEGs), where R0xx{B) on dRoxy/dB. That we find traces of the opposite 
derivative law is probably related to the fact that our system is described in termes 
of vortices rather than in terms of electrons as the QHE in 2DEGs. 

VII     CONCLUSIONS 

Based on the parameters of the tunnel junction we find that we can divide the 
properties of the 2D arrays into three different categories: i) Those which are dom- 
inated by the Coulomb blockade and go insulating at low temperature, ii) those 
which are dominated by the Josephson effect and go superconducting at low tem- 
perature, and iii)  the intermediate arrays which just barely become superconducting 
at low temperature, but can be made insulating by applying a magnetic field. 

We find that the transition for the insulating arrays can be well described by 
thermal activation of charge solitons both when the electrodes are normal and 
when they are superconducting. When the electrodes are in the normal state we 
find thermal activation of single electron solitons, with an activation energy Ea « 
\Ec- When the electrodes are in the superconducting state we find a much larger 
Ea. For arrays with A0/Ec < 2, the activation energy is simply \Ec + A(B) 
indicating that Cooper pairs are broken up and that pairs of single electron solitons 
are created. When Ao/Ec > 2, the activation energy oscillates with B at low 
magnetic field, demonstrating that Cooper pair solitons are created. The amplitude 
of these oscillations is roughly equal to Ej and the period corresponds to one flux 
quantum (h/2e) per unit cell. 

The threshold voltage for the insulating arrays also oscillates at low magnetic field 
demonstrating that Cooper pair solitons are injected at low field. For increasing 
magnetic field the average threshold voltage increases, due to the decreasing Ej. 
In the region 250 to 450 Gauss we observe a peak in the threshold voltage which 
is interpreted as a crossover from Cooper pair soliton injection to single electron 
soliton injection. 

We have observed a frustration-tuned superconductor-insulator phase transition 
in several of the "intermediate" arrays. A small applied magnetic field of 4.4 G can 
change the zero-bias resistance of an array by more than 5 orders of magnitude. 
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We show scaling curves for both /=0 and /=l/2. The results for our four samples 
show a dynamic critical exponent of 1.05, in good agreement with the theory of the 
field-tuned S-I transition. Our data indicate a sample dependent R^. Moreover, we 
have measured the Hall resistance at fc, which is much smaller than RQ. 

For frustration values larger than the critical value the Hall resistance is sub- 
stantially larger and has a rich structure as a function of applied magnetic field. 
Reversal of the sign of the Hall resistance appears at several frustrations, which 
can be attributed to the change of sign of the "defect" vortices. We find that the 
structure in Roxy{f) is similar to the derivative dR0xx(f)/df. 
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V. TRANSPORT AND PROXIMITY  EFFECT 
IN MESOSCOPIC STRUCTURES 
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Abstract. A short introduction to the theory of matrix quasiclassical Green's func- 
tions is given and possible applications of this theory to transport properties of meso- 
scopic superconducting- normal metal (S/N) structures are considered. We discuss a 
simplified version of these equations in the diffusive regime and in the case of a weak 
proximity effect. These equations are used for the calculation of the conductance of 
different S/N structures and for analysis of kinetic phenomena in these structures. We 
discuss the subgap conductance measured in SIN tunnel junctions and the mechanism 
of a nonmonotonic dependence of the conductance of a N wire on temperature T and 
voltage V, observed in an S/N structure. 

Long-range, phase-coherent effects are studied in a 4-terminal S/N/S structure un- 
der conditions when the Josephson critical current is negligible (the distance between 
superconductors is much larger then the coherence length in the normal wire). It is 
shown that the Josephson effects may be observed in this system if  a current /, in 
addition to a current h in the S/N/S circuit, flows through the N electrode. 

1. Introduction 
The progress of nanotechnology over the last few years has made it possible to 
produce conducting nanostructures in which new physical phenomena have been 
observed. Specifically, hybrid structures consisting of superconductors (S) and nor- 
mal conductors (N) have been created using metal films [2-5] or semiconductor 
layers [1,6-8] as the normal conductors. The transport properties of these S/N 
structures have turned out to be quite unusual. First, the subgap conductance 
(zero-bias anomaly) has been observed in SIN tunnel junctions at low tempera- 
tures (T <100 mK) [l](see also [7,8]). Second, conductivity oscillations have been 
observed in these mesoscopic structures in a magnetic field H (i.e., in structures 
with dimensions less then the phase-breaking length Lv). Oscillations of the con- 
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ductivity of the N channel appeared if  the structure contained superconducting or 
normal loops [2-6]. Moreover, for an N channel in contact with superconductors a 
nonmonotonic dependence of the conductivity on the temperature T and voltage V 
has been observed at T<^.TC [5]. The main experimental facts have been explained 
in recent theoretical works (see review articles [23,24]). It was established that the 
proximity effect plays the main role in the transport properties. For example, the 
conductivity of an N channel in the structure shown in Fig.l changes as a result 
of the contribution of the condensate induced by the proximity effect. Since the 
condensate is induced by both superconductors in a nonlocal manner, interference 
appears and a term —SRcostp, which depends on the phase difference ip between 
the superconductors, arises in the resistance of the N channel [9-11]. The phase 
difference increases with the magnetic field H, and this results in oscillations of the 
conductivity of the N channel in a magnetic field. The nonmonotonic dependence 
of the resistance R of an N channel on T and V has also been explained [12-15] 
(see also the theoretical works in the Conference Proceedings in Ref. [14]). The 
nonmonotonic dependence of the resistance R(T, V) of a point contact ScN (c is a 
constriction) was first obtained theoretically in Ref. [16]. 

New effects have also been predicted in theoretical work devoted to S/N struc- 
tures. For example, in Refs. [14,17] it was shown that the critical Josephson current 
Ic in a structure of the type displayed in Fig.l depends on the voltage Vs between 
the S and N conductors, changing sign ( n - contact) if  Vs exceeds a certain value. 
In addition, it has been shown that the Josephson effect also arises in the case when 
current flows only through one S/N boundary. Several different configurations of 
S/N structures were studied in Ref. [18], determining that under certain conditions 
the current-voltage characteristics of the S/N structures have descending segments 
{dl/dV < 0). 

An important circumstance was noted in Ref. [19] (see also the works in Ref. [14]). 
It was shown that the local conductivity of an N channel changes over distances 
from the S/N boundary which can be much greater than the coherence length 

£N = JD/2nT (D is the diffusion coefficient). Important consequences follow from 
this fact. For example, phase coherence effects in the conductivity of an N channel 
remain even if  the distance 2Li between the superconductors is much greater than 
£AT. This means that the conductivity oscillations in the structure shown in Fig.lb 
will  also be observed in the case of a negligibly low critical current Ic. The oscillation 
conservation effect is due to fact that as T increases, Ic decreases exponentially 
(Ie ~ exp(-2Li/tif (T)), and SR decreases slowly (SR ~ T"1) [20,35]. 

In these lectures we discuss briefly the method of quasiclassical Green's functions 
and apply this method to the study of transport phenomena in mesoscopic S/N 
structures. We restrict ourselves to the dirty limit where the mean free path / is 
essentially less than geometric dimensions of the system and the coherence length, 
but exceeds significantly the Fermi wave length kp (quasiclassic approximation). 
We will  consider mostly a weak proximity effect, when the amplitude of the conden- 
sate induced in the normal metal is small compared to the condensate amplitude 
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in the superconductors S. This case occurs if  the S/N interface resistance is larger 
than the resistance of the normal conductor N. Results obtained for this case remain 
qualitatively valid in case when these resistances are comparable. 

In the next Section we present the main necessary equations for the Green's func- 
tions and a general expression for the current in the N channel in which a condensate 
is present due to proximity effect. In Section 3 we will  give formulas describing the 
subgap conductance of tunnel S/I/N junctions and discuss a possible physical in- 
terpretation of this conductance. In Section 4 we will  consider the conductance of 
a N channel attached to two superconductors and obtain a formula describing, in 
particular, the oscillatory behaviour of the conductance in an applied magnetic field 
H. Also a nonmonotonic dependence of the conductance on temperature T and on 
bias voltage V will  be analysed. The possibility of observing Josephson-like effects 
in a S/N/S mesoscopic structure (see Fig.lb) will  be considered in Section 5. We 
will  show that zero voltage between superconductors may exist in some interval of 
the current through the S/N interfaces and Shapiro-steps may be observed even in 
absence of the real Josephson coupling between superconductors when the distance 
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separating superconductors exceeds essentially the coherence length 

2L1MN{T) = ^DI2KT. (1) 

It is important that these effects arise only in the case when a current / flows along 
the N channel and the dissipation takes place [21,35]. 

2.Basic equations for quasiclassical Green's functions 
The Green's function technique is a powerful tool for the theoretical study of differ- 
ent phenomena in superconductors and superconducting structures. In the case of 
superconducting systems, we need to indroduce condensate Green's functions of the 
type < ip-f (1) ^4. (2) >, therefore all the Green's functions have a matrix form. For 
example, the retarded (advanced) Green's functions are defined as follows [22,23] 

GR(A) = ±e{tm _ h(i)) (£> (1> 2) _ G< (i, 2)) (2) 

Here G< and G> are 

6>ß = -i< tf„(i)V£(2)  > (-i)Q+\ 
6<0 = i<  i#(2)<«i) > (-i)a+1 (3) 

We introduced here spin indices in the Nambu-space: tpi(l) — i>t(l),  ^2(1) = 
i/>£ (1). As is well known, the functions GR  ̂describe the excitation spectrum of 
the system. In order to describe nonequilibrium processes, one needs to know the 
distribution functions which are related to the Green's function G indtroduced by 
Keldysh. It is convenient to define a supermatrix G (1,2) elements of which are the 
matrices GR  ̂= (0(1,2)) and G = (0)^. The element (Ö)n is the zero 

matrix. 
In the quasiclassical approximation all components of the Green's functions 

Gex (1,2) are integrated over the variable £p = (p — PF)VF and in the corresponding 
equation for Gex (1,2) an expansion is carried out in the parameters (PF<1)~

1
 ,(ppl)~l  

or (PF^)
_1

) where d is the thickness of the S or N films, £N is the coherence length 
in the N conductor and / is the mean free path. The quasiclassical Green's functions 
are defined by the relation [22,23] 

G{p/p,f ; tut2) = (J'/TT) / d(pGex (p, f; tut2) (4) 

The subscript "ex" means exact (nonquasiclassical) Green's functions. Therefore 
the quasiclassical Green's functions (5(1,2) depends on the angle of momentum on 
the Fermi surface, on the coordinate r, and on two times. 

In what follows we need an equation for the supermatrix G (1,2) only in the N 
conductor, having the form 

JDV (ÖVÖ) + ie [#„  Ö] = 0. (5) 
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where äz is a diagonal supermatrix elements of which are the Pauli matrix az. 
Eq.(5) may be averaged over the thickness of the N film d. Performing the averag- 
ing, we obtain 

D8X (ÖdsÖ) + it [»„  Ö] = eb0{xs) [Gs, Ö]. (6) 

where the coefficient ej is a characteristic energy which is proportional to the trans- 
mission of the S/N boundary: c& = pD/2Rbi d, #&2 is the resistance of a unit area 
of the S/N boundary; p and d are the resistivity and thickness of the N film. 

When deriving Eq. (6), the boundary condition 

D(Öd,Ö) = (ebdN)[Ö,Ös] (7) 

was used. Here the z-axis is normal to the plane of the S/N interface. The bound- 
ary conditions for the quasiclassical Green's functions G have been derived in the 
general case by Zaitsev [25] and have been reduced to the simple form (7) by 
Kupriyanov and Lukichev [26] in the dirty case. In the case of a good S/N con- 
tact, condition (7) is reduced to the continuity of the Green's functions at the S/N 
interface: G = Gs- In the case of a poor contact (et -» 0), condition (7) gives the 
same result for the current through the S/N interface as obtained with the aid of 
the tunneling Hamiltonian method. However, for a S/N contact with an arbitrary 
barrier transparency condition (7) is not applicable. The point is that when de- 
riving Eq. (7) Kupriyanov and Lukichev [26] restricted themselves to the Legendre 
polynomials of the zeroth and first orders in the expansion of the angle-dependent 
Green's function G. Meanwhile, one can easily show that all the Legendre har- 
monics are excited near the S/N (or N/N') interface. They decay to zero (except 
the Legandre polynomials of the zeroth and first order) over the mean free path 
away from the interface. In order to obtain a correction of the next order in ej to 
condition (7), one has to solve an integral equation (see Ref. [27]). In the case of 
the S/N interface with an arbitrary barrier transparency, the problem of boundary 
conditions for the quasiclassical Green's functions becomes complicate (boundary 
conditions and their applicability are discussed in detail in the Raimondi's Lecture 
Notes). 

Eq.(6) must be solved in the normal conductor for a particular geometry (see, 
for example, Fig.l) with boundary conditions at x = ±L. In the case of normal 
reservoirs the condensate functions FR  ̂(±£) are equal to zero and GR  ̂(±L) = 
±CTZ. In the case of superconducting reservoirs the boundary conditions for the 
retarded (advanced) Green's functions are 

GR(A) (±i) = GR(A)&2 + pR(A) (8) 

where GRW = e/£fW FJ&A) = A/gW {±ia xsin<t>+ia ycos<t>) ,£f^> = 

J(e ± ir)2 — A2, T is a damping in the excitation spectrum in superconductor, 
2<f) is the phase difference between superconductors.  Eq.(8) is valid if  the voltage 
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between superconductors 2V is much less than A/e. We assume that there is no 
barrier between the N conductor and reservoirs. 

The Keldysh function G describes the kinetic properties of the system and is 
related to distribution functions 

G = GRf - fGA (9) 

where / = f0\ + faz is a matrix distribution function. The function f0 enters 
an expression for the supercurrent (in a superconductor it determines the energy 
gap), and the function / determines the quasiparticle current (in a superconductor 
it describes the charge-imbalance and the electric field; see, for example [28]). In 
reservoirs the functions f0 and / are supposed to have equilibrium form 

f0[±L)  = [tanh{(e + eV)ß) + tanh((e - eV)/?)]/2, (10) 

f(±L)  = ±F N{e) = ±[tanh((e + eV)ß) - tanh{{t - eV)ß)}/2, (11) 

where ß = {2T)~1.  ̂
If  the functions GR  ̂and G are known, one can easily find a relation between 

the applied voltage 2V and the current / in the N conductor. The expression for 
the current is [22,23] 

/ = (ad/8)Traz J de(GRdxG - GdxG
A) (12) 

Eqs.(6) and (12) can be simplified significantly in the case of a weak proximity 
effect when the amplitudes of the condensate functions in the N conductor FR  ̂
are small. Then the retarded (advanced) Green's functions in the N conductor have 
the form 

QR(A) = GR(A)dz + pR(A) (13) 

where GR{A) w ±[1 + {FR^f /2] and | FRW |< 1. When obtaining the relation 
between GR  ̂and FR<-A\ we employed the normalization condition [22,23] 

(G*M)*i  + (FRW)2 = I, (14) 

where 1 is a unit matrix. 
The equation for the condensate functions FR  ̂follows from Eq.(6) and the 

expression (14) 

dxxF
RW - (kRWf FRW - -k2

hw [PRiA)8 (x - Lt) + FRlA)S(x + L,)]      (15) 

where fc6
2 = 2eb/D, (kRW)2 = (±2ie + 7)/£>, w is the width of the S/N interface in 

the x-direction and is supposed to be much less than L and £,N{T). We introduce 
here the depairing rate 7 in the N conductor which determines the phase-breaking 
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length L4, = jD/~f. Once the functions FRI-A) are known from a solution of the 
linear equation (15), we can find the conductance of the N film. 

Let us consider for example the system shown in Fig.l. Writing down Eq.(6) for 
the matrix element (12), we arrive at the equation outside the S/N interface 

Ddx [6
RdxG + GdxG

A] + it [az, G] = 0. (16) 

Multiplying Eq.(16) by az and calculating the trace, we obtain after the first inte- 
gration 

(3,/)[l-m_] = J(e). (17) 

Here J(e) is an ^-independent constant and 

m_ = (l/8)Tr (PR - FAf (IS) 

is a function which describes the condensate contribution to the N film conductance. 
The left side of Eq.(17) stems from the first term in the square brackets in Eq.(16) 
provided that the condensate functions are small. Therefore, according to Eq.(12), 
the current / is an integral from the "partial current" J 

I = {ad/2) j  deJ{e) (19) 

Solving Eq.(17) with boundary conditions (11), we can find a relationship between 
the current and voltage I{V). In the next Sections we will  analyse the conductance 
of S/N mesoscopic systems. 

3. Subgap conductance in SIN junctions 
In this Section the subgap conductance in superconductor/insulator/normal metal 
(S/I/N) tunnel junctions will  be discussed. As is well known from conventional 
theory for S/I/N junctions, the subgap conductance should exponentially decrease 
with decreasing temperature T (see, for example, Ref. [29]). However, experiments 
on Nb/n+InGaAs contacts have established that a peak in conductance appears at 
zero-bias if  the temperature becomes low enough (T < A), and the magnitude of 
this peak at low temperatures (T « 50 mK) is comparable with the conductance 
in the normal state [1]. This contact can be considered as a tunnel S/I/N junction. 
A Schottky barrier at the interface plays the role of the insulating layer I. An 
explanation for anomalous transparency of the SIN junction at low voltages and 
temperatures (T,eV < A) was suggested in Refs. [9,30-34]. According to the 
interpretation proposed in Ref. [32], the subgap conductance is due to a component 
of the current which, in the case of a SIS Josephson junction, gives the so-called 
interference current. This component can be presented in the form 

lint = - (SRh)-
1 jde-FN (e, V) (FR

 + FA) (FR
 + FA) , (20) 
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where FN(e,V) is defined in Eq. (11); F*(A) = A/ ((e ± iTf - A2)1 2 are the 
condensate, retarded (advanced) Green's functions in the superconductor. This 
formula can be obtained from the general expression for the current (12) and from 
Eq.(6) in which we have to put 0(xs) = 1. If  the energy e is small, FR = FA K, 

—i. In the case of a S/I/N junction, FRW are the condensate functions in the N 
electrode. To zero order in the barrier transmittance (i.e., in R^1), they are equal 
to zero. If  the proximity effect is taken into account, they differ from zero and in 
the case of a planar S/I/N junction they have the form (see, for example, Ref. [32]) 

\ e6/ [(e ± i*i)  - e2
b\     ,   7 < e6 

This formula can be obtained from Eq.(6) in the case of weak and strong proximity 
effect. It is seen from Eq.(21) that FR  ̂are small if  £& <C £,7, where e is deter- 
mined either by temperature T or voltage V. In the opposite limit  when £ and 7 
are small compared with £&, FR  ̂are not small, and the differential conductance 
normalized by R^1, S = Rtdl/dV, calculated from Eq.(20) for T=0 and V=0 is 
not small either. The integrand in Eq.(20) is not zero if  |e| < A because FR = FA 

at |E| < A and FR = —FA at |e| > A. This means that the current given by Eq.(l) 
is caused by the charge-transfer mechanism of the same type as Andreev reflection 
processes. The second important circumstance leading to the subgap conductance 
is related to an anomalous proximity effect when the amplitude of the condensate 
functions FR  ̂at small energies e is not small. 

The density-of-states (DOS) in the N electrode is changed drastically in the 
case of the strong proximity effect: the DOS is zero at | e |< £& and the DOS = 

c/Je2 — e2 in the interval A ~3>\ t |> £&. In a one-dimensional S/I/N junction the 
DOS has a quasigap at | e |< Q. In both cases of a planar or one-dimensional S/I/N 
junctions the zero-bias, zero-temperature conductance coincides with it's value in 
the normal state [32]. 

4- Conductance of the Andreev interferometer 
Consider the system shown in Fig.l (the Andreev interferometer). In order to 
calculate the normalized differential conductance of the N channel S — Rj^dl/vV in 
the presence of a phase difference between superconductors, we must solve Eq.(17) 
taking into account the boundary condition (11). The function m_ is small by 
assumption. Therefore the expression for J may be presented in the form 

J(e) = FN(e,V)[l-(m-)]/L (22) 

where (?n_) = (1/i)/0 dx ■ m2_ . Substituting (22) into Eq.(19), we can obtain 
an expression for S. Here we present the formula for a deviation of the nor- 
malized differential conductance from it's value in the normal state R^: 5S = 
{2L/ad) dl/dV - 1 . We obtain 
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SS =-(1/2) J de-ß-F'N(t,V)(m.), (23) 

where F'N (e, V) = [cosh-2 (e + eV) ß + cosh-2 (e - eV) ß] /2. By virtue of the def- 
inition of (m_) (see Eqs.(18)), we can write (m_) in the form 

(m.) = Tr/(FR)2 + (FA)2 - 2FRFA\ /8 (24) 

The first two terms in (24) determine a change in the DOS of the N channel due 
to the condensate (this term reduces the conductance), and the last, so-called 
anomalous, term leads to an increase of the conductance. 

As it is seen from Eq.(23), in order to find the conductance, we need to solve 
Eq.(15) for the condensate functions Ffi <A) (x). In this Section we present here the 
solution for the geometry shown in Fig.la. 

FRW (z) = iayF* {A)r [9R  ̂coshö^]"1 sinh [jfe*M  (L - \x\j\ ■ cos  ̂      (25) 

Here r = k^Lw is the ratio of the N channel resistance to the S/N resistance, 
BR(A) = kR(A)L_ Calculating (m_) we find 

(m_) = (r2/8) {Re [sinh (29) /29 -l]/(0  cosh Ö)2 - [sinh (2«i) /20j 

- sin(2Ö2) /292] / |öcothÖ|2}  (1 + cos 2<p) (26) 

where 6 = #i + i$2- The first term in (26) determines a contribution to the conduc- 
tance due to a change in the DOS, and the second term is related to the anomalous 
term (FAFR). In Fig.2 we show the dependence SSDOS (first term contribution) 
and the SSan (V) dependence (anomalous term contribution) at T = 0. It is seen 
that SSDOS (V) is negative and 5San (V) is positive. The total change in the con- 
ductance SS (V) = SSDOS (V) + SSan (V) is shown by the solid line. This quantity 
increases with increasing V from zero, reaches a maximum at Vm ~ ei/e , and 
decays to zero with further increase of V (here CL = D/L2 is the so-called Thouless 
energy). 

As follows from (23) and (26), the conductance SS oscillates with increasing the 
phase difference. In Fig.2 we also plot the temperature dependence of the zero-bias 
conductance. Both curves, SS(V) at T = 0 and SS(T) at V = 0 are similar. 
Note that nonmonotonous temperature dependence of the conductance was ob- 
tained earlier in Ref. [16] where a short ScN contact was analyzed (here c means a 
constriction). 

ö.Dissipative Josephson-like effects in S/N/S structures 
In this Section we discuss a possibility to observe Josephson-like effects in meso- 
scopic S/N/S structures (see Fig.lb) with negligible Josephson coupling between 
superconductors, i.e., when the inequality (1) is fulfilled [21,35]. Following the same 
steps as in Section 2, we obtain instead of Eq.(17) 
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(1 -m-{x))dxf ■{ 
J + Ji- Js, 

J, 

0 < x < Ii  
Li < x < L 

(27) 

In what follows the function m_ plays the most important role. 
The current on the segment (0, Lx) is determined by Eq.(19) if J is replaced 

by J + Ji. The quantity Js, the superconducting "current", is constant over the 
segment (Lly L) and (0, Li) and is equal to 

Js = (1/4) Traz (P
RdxF

R - FA8XF
A) (28) 

The integral of Js (28) over the energy is exponentially small if  the condition (1) 
is satisfied. As follows from Eq. (6), the constant Jl5 is related with the Green's 
function and distribution function in the superconductor. It can be written in the 
form [11] 

Jx = Jq + Js, Jq = (p/dNRb) [Fs (e) - f (Li)]  (29) 

Here % = Ra/w [vNvs + (1/8) Tr (PR + FA) (F|* + Pf)] * is the resistance of 
the S/N boundary per unit length in the y direction and UN, VS - are the density 
of states in the N and S conductors. It can be shown that for VAT,S which are small 
compared with T/e, the "supercurrent" Js, flowing throw the S/N boundary equals 
Js- The distribution function Fs is the equilibrium function, i.e., it is identical to 
the function in Eq. (11), if  VN is replaced by Vs (we measure voltages from the 
point 0, where the voltage is equal to zero). Using the fact that m_ is small, we 
can integrate Eq. (27) and find the relation of J and Jq with F^ and Fs (see the 
boundary condition (11)). We obtain the normal currents 

(dN/p) Ji 

(dN/p) J = 

i Jq (dN/p)  : 

?HbFN + jftx (FN - Fs) 

»iR + RiRz 
_ U2FS + fti  (Fs - FN) 

(30) 

FIGURE 2. Normalized conductance SS vs. normalized voltage eV/cL at T — 0 and vs. nor- 
malized temperature T/ei at V — 0 for the structure shown in Fig. la. 
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Here 0?6 is determined in Eq. (29); the quantity 3? = 0?i+3?2, 9*1,2 = #1,2 (1 + ("*-))  
can be termed the partial resistance. The spatial average (m-)  ̂on the segments 
(0, L\) and {L\, L) gives a decrease in the resistances on account of proximity 
effect ((m-) is negative). All  resistances in Eq. (30) depend on the difference of the 
phases <p and on the energy; they can be represented in the form SJj, = Rb — 5Rb cos tp 
and 3?i,2 = Ri,2 ~ SStijcostp. The corrections to the resistances S^ftb and 53?i,2 are 
small in the case of a weak proximity effect. The quantities Rb and #ii2, depend, 
generally speaking, on the energy e (for example, us depends on e). We assume, 
for simplicity, that these quantities do not depend on the energy. This is valid if  it 
is assumed that the superconductors are gapless (the results remain qualitatively 
the same in the case of superconductors with a gap). Then, integrating Eq. (30) 
over energies, we obtain on the left-hand side the currents / and I\ (see Eq. (19)). 
Eliminating Vjv from the two equations obtained, we find for Vs 

Vs = hdt?/2e = 

h [Rb + Ax - (SRb + SRi) cos 2<p] + I(Ri- SRX cos 2<p) (31) 

Here we employed the Josephson relation; Rb is the resistance of the S/N boundary, 
which in the case of zero-gap superconductors is approximately equal to its value in 
the normal state. The resistance Ri is also approximately equal to pLi/d  ̂(the <p 
-independent correction arising from (m_) is small and unimportant). Integrating 
Eq. (31), we obtain a relation between the average voltage Vs and the fixed currents 
/ and Ii.  

Vs = y/[(I  + h) Ri + hRif - [(I  + h) 6R1 + h6Rb]2 (32) 

The function Vs (h) is displayed in Fig.3 for different currents /. One can see that 
for / 7^ 0 this dependence is identical to the current-volt age characteristic of a 
standard Josephson contact. In this case the critical current is 

_   SRiRb-SRbRi 
C (Ä + Ä!)2 (33) 

Therefore Ic increases in proportion to the current /. We shall show below that 
the correction SRi decreases slowly with increasing temperature (SRi ~ T_1), and 
the correction SRi is small if  the condition (1) is satisfied. Therefore, for Rb >̂R1, 
we obtain Ic ~ ISRi/Rb. The maximum current / is limited by the condition that 
Joule heating be small and by the condition eVN ~ eIR<^T. In the opposite case 
SRi decreases as Vjv increases. If the condition (1) is not satisfied and a finite 
Josephson coupling exists between the superconductors, then it is easy to show 
that the critical current of the structure equals /* = Jlj+I^j,  where Icj is the 
critical Josephson current. An expression for Icj can be easily obtained with the 
aid of Eq. (28). This expression is presented in Ref. [20]. The equilibrium phase 
difference ip0 for h + IRi/(Rb + Ri) = 0 equals 2</J0 = - arcsin(/c//c*). 
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To determine 5RX and SRb it is necessary to find the condensate functions FR{A), 
For |a;| < L\ the solution of Eq.(15) has the form 

pR(A)  ̂= FR(A) [-^ cos  ̂py cosh (kx) +i&x  sin (^ Px Sinh(fca;)]fi^)       (34) 

Here Fs  ̂is the amplitude of the condensate functions in the superconductors. 
In the zero-gap case F* {A) = ±A/ (e ± ijs), where 75 is the frequency of spin-flip 
collisions with impurities. The functions PXiV equal: 
Px = bsmh02/ (sinhö + 6sinh0i sinhö2), 
Py-b sinh 02 / (cosh 0 + b cosh #i sinh fl2), 

b = pw/ {Rb2dN) k, kRW = y/^2ie/D, 0 = 0X + 03, K* = öi,2 + ^1,2 = ^1,2 Once 

the functions FR  ̂are known, the interference correction SRi to the resistance 
can be calculated: 

00 

SRi = -Äi /deß • cosh-2(e/3)(m_ (a;,<p) - m_ {X,TT/2))1 (35) 
0 

With the aid of the expressions for <m_)i and for FR  ̂(see Eq. (34)), we find 

OO 

SR1/R1 = [deß- cosh-2(eß)M(e), (36) 

where M(£) 

IP,|2 [sinh (20[) /29[ - sin (20?) /20'/]] 

(1/8) {|FS|
2 [|P,|2 [sinh (20[) /20[ + sin (20'/) /20J'] 

+ JReFj P2 (sinh (2^)720!+ 1) 

-200 i 

VM  

FIGURE 3. Vs versus the current h for the following values of the current: 1-0,2- 250//A, 3 
- 500M, 4 - 750M, 5 - 1mA. Here SRi = O.lÄi, Ä& = 5Äi, Äi = IQ. 
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— Pj (sinh (2#i) /2öi — 1)] }.  The temperature dependence of 5Ri is displayed in 

Fig.4. One can see that for T > e  ̂= D/(2Li) the quantity SRi decreases as 
T_1 with increasing temperature. As noted in Refs. [15,18], the slow decrease of 
SRi (T) is due to the so-called anomalous term FRFA in (m_)i. The special role of 
this term, which is nonanalytic both in the upper and lower planes of e, was noted 
in Ref. [36]. 

The Josephson current Is is determined by the integral of Js (28), over all 
energies, i.e., the integral of products of either advanced or retarded Green's 
functions. It can be calculated by closing the integration contour in the upper 
(lower) half plane of e and switching to summation over the Matsubara frequencies 
ojn = nT(2n + 1). For such energies the functions FR  ̂decay exponentially over 
distances k~l (ujn) < (n (T) away from the S/N boundary. Therefore the current 
Is will  be exponentially small (Is ~ exp(-2£i/fjv(T)). The function Is(T) for 
the structure shown in Fig.lb is presented in Ref. [20]. Similar arguments are also 
applicable to the calculation of SRb, since for T < 75 the functions Fg and F$ 
can be assumed to be equal and independent of the energy. At the same time, 
the function FRFA, appearing in the expression for SRi, decreases over a small 
(compared with T) energy e  ̂= D/ (2Li)2 and makes a nonzero contribution. For 
such energies the characteristic decay length of FR(A\x) is of the order L\, i.e., of 
the order of the distance between the superconductors. 

In order to observe long-range Josephson effects, the critical current Ic must 
exceed the fluctuation current Tejh: I^Te/H. On the other hand, the ordinary 
Josephson effect is negligible if  the condition e^-CT is fulfilled. Combining these 
inequalities, we obtain the condition 

TÄ6jRi/((5ü!6fiQ)<eLl<r (37 

dR/R T/zL dR/Rj 
2.0-10'2 1.210" 

1.010- 

I.510'2 

8.010" 

I.010'2 6.010' 

4.010' 

5.010'3 

  

2.010" 

-.0.0 

T/e, 
10 

FIGURE 4. Interference correction SR\ to the resistance as a function of temperature in the 
case Li = 0.5L, R/Rb = 0.4, -y/eL = 100, A/a = 30. 
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which should be satisfied for observation of the effects under consideration. Here 
RQ — h/e2 fa 3kQ, and we took into account that a maximal value of / is deter- 
mined by the relation eIR < e^. Otherwise SRi decreases with increasing I. The 
first inequality of (37) means that the zeroth Shapiro step on the Ii  (Vs) curve is 
absent at / — 0. If  the second inequality of (37) is not fulfilled, then the critical 
current is not zero at / = 0 (ordinary Josephson effect). In this case the effective 
critical current /* should first increase with increasing / and then decrease when / 
exceeds e^/eR. 

6. Conclusion 
In conclusion we note that, as one can see from Fig.4, the correction SRi to the 
resistance of the normal channel caused by the proximity effect depends on the 
temperature T in a nonmonotonic way: it is equal to zero at T — 0 (the bias 
voltage is zero as well), reaches a maximum at T fa ti l and decays to zero at higher 
T. Such behavior of SRi (T) is related, as noted in [15], to different dependencies 
of two contributions to 5R\ on the energy e. One contribution which increases 
the N channel resistance is connected with a decrease of the density-of-states in the 
normal channel, which is described by the last term in M (e) (see Eq. (36)). Another 
contribution (anomalous) which diminishes the resistance of the normal channel is 
described by the first two terms in M(e). This contribution exactly compensates a 
contribution due to a change in the density-of-states of the normal channel at e = 0 
and dominates at e ^ 0. At T > Tc it leads to the Maki-Thompson contribution 
to the paraconductivity. Mathematically, compensation of the two contributions 
at e = 0 arises because at e = 0 FR — FA and m_ in Eq. (35) tends to zero. The 
nonmonotonic behavior of SR has been observed in an experiment [5]. It would be 
interesting to observe the long-range Josephson effect experimentally. 
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Abstract. In these Lecture Notes I discuss the boundary conditions for the quasiclas- 
sical Green's functions in the theory of superconductivity. 

I INTRODUCTION 

The quasiclassical Green's functions are a powerful method for investigating equi- 
librium and nonequilibrium superconductivity [1]. They can be used when the 
length scale a over which the macroscopic physical quantities of interest vary is 
much greater than the typical atomic scale A^, the electron wavelength. In hy- 
brid structures, due to the electron reflection occurring at the boundaries between 
different metals, macroscopic quantities do not vary slowly in the quasiclassical 
sense and the set of equations for the quasiclassical Green's functions needs to be 
complemented by appropriate boundary conditions that tell how to match the qua- 
siclassical Green's functions on the different sides of a boundary once the scattering 
properties of the boundary are known. The derivation of such boundary conditions 
was done by Zaitsev [2] in a general form, valid both in the clean and dirty lim- 
its. Successively, Kupriyanov and Lukichev [3] obtained in the dirty limit  simpler 
boundary conditions which are strictly valid in the case of small transparency of the 
boundary. This dirty limit  form of the boundary conditions has played a consider- 
able role in recent years in the analysis of electrical transport properties in hybrid 
superconducting structures [4]. Recently, new effective boundary conditions, valid 
in the dirty limit, have been derived by means of a perturbative expansion in the 
boundary transparency [5]. 

These Lecture Notes are organized as follows. In the next Section, in order to 
illustrate the general ideas, I consider the normal case when no superconductivity 
is present. In this case the derivation of the boundary conditions necessary for 
example to evaluate the conductance of a normal disordered wire are derived. In 
Section III,  I introduce the formalism to be used in the general case when super- 
conductivity is present and derive the set of quasiclassical Green's functions needed 
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in the presence of interface boundaries. In Section IV, the derivation of the bound- 
ary conditions for the quasiclassical Green's functions is given. Section V deals 
with the important limit  of dirty systems where the boundary conditions acquire a 
particularly simple expression. A few examples are then shown for the purpose of 
illustration. In Section VI, finally, I address new recent developments aiming to go 
beyond the small transparency limit  of the boundary conditions for dirty systems 
along with some physical consequences. 

II  THE NORMAL CASE 

As anticipated in the Introduction, it is useful to start by considering the sim- 
ple situation of a disordered normal metallic wire of length L and cross section 
S, attached to two normal macroscopic electrodes. The two electrodes must be 
thought of as large electronic reservoirs in statistical equilibrium. The dimensions 
of the wire are in the mesoscopic domain, i.e., the typical length scales are less than 
the phase coherence breaking length. To compute the physical properties of the 
wire, like, for example, the electrical conductance, one can use the quasiclassical 
approximation which is valid when the length scale over which the macroscopic 
quantities vary is much greater than the typical atomic length scale. This is done 
by solving the Boltzmann kinetic equation for the electron distribution function. 
In the electrodes the distribution function is the equilibrium Fermi function which 
provides the appropriate boundary conditions at the two ends of the wire. Let 
/(r, k, t) be the distribution function in the wire. In the case of weak s-wave impu- 
rity scattering, in the absence of external fields and in time independent situations, 
the Boltzmann equation for the distribution function integrated over the modulus 
of the momentum, /(r,/j) = N0 J d Ef(r,k), E = H2k2/2m, reads [6] 

lfidzf{z,fi) =<  f{z,n) > -f(z,fx) (1) 

where N0 is the non-interacting single-particle density of states per spin and / = Vpr 
is the mean free path with r the scattering time, yu = cos(6) = kz/kp is the 
component of the momentum parallel to the wire. The symbol < ... > indi- 
cates the solid angle average / dfi/(47r)(...) = f^ d$/{2n) /„*  (d9/2)sin(6)(...) = 
(1/2) /ij  dfi(...). In writing eq.(l), we have made the assumption that / depends 
only on the longitudinal coordinate z (-L/2 < z < L/2), perpendicular to the 
boundary plane, as suggested by the one-dimensional character of the problem. It 
is customary to divide / in symmetric and antisymmetric components with respect 
to the reversal of the direction of the momentum 

/.(*,**)  = (/(*,/*)+  /(z,-Ai))/2,    fa{z,ri = (f(z,ri-f(z,-n))/2.        (2) 

The current is then written solely in terms of the antisymmetric part 

j = 2eNovFS<fifa(0,n)> (3) 
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ans has been evaluated at z = 0 for the sake of definiteness. Eq.(l) can then be 
written for both fs and fa to read 

lpdxf, = -fa (4) 

Wa = <f s> -fs (5) 

and the boundary conditions at the wire ends are 

/.(±I/2,/i) = /Ä,Z/> (6) 

where fRtL = f dE (exp(£ - eVR,L) + I)" 1, and fj,RiL = eVR,L, VR - VL is the 
applied bias. The solution of eqs.(4-5) is fs = (fR - fL)(z/L) + (fR + fL)/2, 
fa = —/i(/fi— /L)(//X)  and one obtains the standard Drude formulafor the electrical 
conductance of the wire 

r       aS t»\ GD = T (0 

where a = 2e2N0vFl/3. 
Consider now the situation when a boundary separating two metals is present. 

This can be modelled, for example, as a potential barrier, say, at z = 0, with given 
reflection and transmission coefficients, R and T. To solve the Boltzmann equation 
in this case, one needs to specify the boundary conditions for fs and fa at the 
interface separating the two regions of the wire. By means of counting arguments, 
it is almost evident that 

f(z = 0-,/u) = Rf(z = 0-, -fi) + Tf{z = O+.p), (8) 

which in terms of fs and /„ can be rewritten as 

/.(* = 0-) = fa(z = 0+) = fa(z = 0) (9) 

fs{z = 0+) - f.(z = 0-) =  ™fa(z = 0). (10) 

As expected physically, the function fa is continuous across the boundary, meaning 
the conservation of the current, while the symmetric part undergoes a jump. The 
eqs.(4-5) together with the boundary conditions (6,9-10) can then be solved to 
get the current in the system. As a simple illustration of the boundary condition 
(10), consider the case when a tunnel junction is between the two electrodes. This 
corresponds to the case when the left and right regions of the wire are at equilibrium. 
The tunnel junction conductance is then easily obtained by inserting eq.(10) into 
eq. (3) for the current 

GT = e2N0vF < ^- > . (11) 
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Ill  EQUATIONS OF MOTION 

A systematic way to deal with nonequilibrium problems in quantum field theory is 
provided by the Keldysh technique [7], which introduces a matrix Green's function 

where the diagonal and off-diagonal blocks contain information about the spectrum 
of the elementary excitations and their distribution function, respectively. The var- 
ious elements of the "check" Green's function, G, are themselves "hat" matrices 
in the Nambu space to take into account the normal and the anomalous Green's 
functions [1]. The quasiclassical approxima tion is usually carried out by elimi- 
nating the small scale information contained in Ö, and deriving an equation for 
the quasiclassical Green's function g, which is the Green's function integrated over 
the energy. In the presence of a boundary between contiguous metals, the passage 
from G to g requires some care, as we now show. To be specific, I consider, as m 
Section II, a boundary at z = 0 and with the regions z < 0 and z > 0, labelled by 
the index i = 1,2, respectively. The position vector is r = {z,p), with p the two- 
dimensional vector lying in the boundary plane (x-y plane). The Green's function 
depends both on space and time arguments, G{z,p,t;z',p',t'). The quasiclassical 
approximation does not involve the time variables and in the following, to keep the 
notation simple, I will  not explicitly show the time dependence. To further simplify 
the treatment, it is useful to assume that all variations parallel to the boundary 
plane will  be slow in the quasiclassical sense, so that the Green's function will  feel 
the presence of the boundary only through the longitudinal coordinates z,z'. It 
is then convenient to go to the quasiclassical description for the transverse coordi- 
nates, p,p' in the standard way. This amounts to Fourier transform with respect 
to the relative coordinate p - p' and consider the variation of G as function of the 
center-of-mass coordinate pc = {p + p')/2 and transverse momentum kN. We are 
then left with G(z,z';pc,k||) = G(z,z'), and the Dyson equation of motion for the 
Green's function can be written as 

(H + 2  ̂+ ?,- U)G(z, z') = lS(z - z') (13) 

where pz — k*/2m = p - k\j2m and 

Ä = (if,^ + iv,r|--$ + Ä-E). (14) 

Here £ indicates the self-energy as usual. Ä is the self-consistent pairing field and $ 
is the electrical potential. The symbol U indicates the potential due to the boundary 
and may be considered to be appreciably different from zero near the boundary on 
a length scale S. More precisely, the conditions 5 » \F and 8 w XF describe smooth 
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and sharp boundaries. The "check" identity symbol includes a delta function in 
the time variables, 1 = I8(i — t'). Finally, fz is block diagonal in the "check" space 
with elements the Pauli matrix tz. In the spirit of the quasiclassical approximation, 
we write the Green's function, for example for z, z' < 0 (i = 1), in the form 

G = Ö\x exp [ik t,i(z - z')] + G\2 exp [-ik x>1{z - z')} + 

G\2 exp [**,,!(z  + z')) + Ö\x exp [-ik Xtl{z + z')] (15) 

where the rapidly oscillating parts have been explicitely separated. The length 
scale over which Gl

nk varies is of the order of /,£, where / is the mean free path 

and £ is the correlation length, which is equal to vp/l and jD/c in the clean and 
dirty cases, respectively. Here I is max{E, T, A, V} where E is the energy, T the 
temperature, A the energy gap, and V the voltage across the system. The above 
form of the Green 's function is valid not too close to the boundary for z < — 5 
or z > 8 where the potential U vanishes. By inserting the Green's function in the 
form (15) in the equation of motion (13), it is easy to see that, for z ^ z', 

(ä + i(-l)»+1vZti2-)& nk(z,z') = (i. (16) 

The point z — z' must be handled with care. From the Dyson equation (13) one 
has that 

^G{z + G+,z)-^G{z-0+,z) = l2m (17) 

which translated in terms of G'nk becomes 

GUz + Q+,z)-Gi
nk(z-0+,z) = itS^6nk (18) 

lVz,i 

i.e., the functions G'nk with equal indices are discontinuous. By making the identi- 
fication 

h.tr J I.   N_  2K,-|»'Öi1-«0n(z-z')   K}i>Q 
9,(z,z,KXll)-   2\vxj\i& 32 + sign{z-z')   kz>i < 0 l    ' 

one sees that, when z = z\ en is the usual quasiclassical Green's function [2]. 
In fact, from eq.(16) and its conjugate, it is direct to show that & obeys the 
usual quasiclassical equation. Note that the sign functions have been appositely 
introduced to make the gt's continuous at z = z'. The effect of the electron reflection 
and transmission occurring at the boundary is described by the Green's function 
Qi 

Q.I-   J   h.   .\ -    2l^,i|?'öi2      h,i > 0 .      . 

363 



In general one can derive an equation of motion for Qi to be used together with the 
equation for &. This can be done easily by using again eq.(16) and its conjugate. 
However, in practice, one is interested to evaluate physical quantities far away 
from the interface, where the contribution made by Qi is vanishingly small. For this 
reason, we do not derive such an equation explicitly, as it is never used and conclude 
the present section by illustrating some useful consequences of the equation of 
motion (16) to be used in the next Section. If  one defines the function V'nk [2], [8] 

V'nk{z,zuz3) = & nn(z1,z)Öi
nk(z,z3) (21) 

it is direct to show that 

ivz,-PUz,z1,z2) = 0. (22) 
a z 

Furthermore for \z - zh2\ ->• oo, all Gl
nk vanish, so that, by keeping in mind that 

V'nk does not depend on z, one concludes that for z < Z\, z2 or z > Zi, z2, V'nk must 
be identically zero. In going to the quasiclassical description, one sets z\ = z2: so 
that z is always outside the interval (zu z2). Finally, by setting z = zu one obtains 

Si(ki)Öi(ki) = (-lysgnikitfiih), (23) 

and the usual normalization condition1 

Mi = 1. (24) 

IV  THE BOUNDARY CONDITIONS  

In this Section, I address the problem of deriving the boundary conditions for 
the quasiclassical Green's function #,-. This involves essentially two steps. First, 
by means of the scattering theory, I derive the boundary conditions for the full  
quantum mechanical Green's function. Secondly, by going to the quasiclassical 
description and by eliminating Qi I will  derive effective boundary conditions for <?;. 
The problem to be solved is that of connecting the Green's function in the region 
j to the Green's function in the region i, where i,j = 1,2. Near the boundary, 
the most important terms in the equation of motion are the kinetic energy and 
the scattering potential U and one may write the Green's function in terms of the 
scattering states 

G{r_i,iLj)= L 4^'(P>P»£)—/      ,F,        tm   » (2ö) 

x' It is worth to note that the argument given here has allowed to give a more mathematically 
sound and physically transparent base to the normalization condition g1 — 1 commonly used in 
the quasiclassical theory. A more extended discussion can be found in the paper by Shelankov [8]. 
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where E is equal to the sign of (z{ — Zj). Here p labels all transverse quantum 
numbers, a = +1 for a right-going (or right-decaying) wave and a - -1 for a 
left-going (or left-decaying wave). The quantities A â,{p,p', E) do not depend on 
Zi,Zj, though in general depend on p., p., with ri(i) = (pt-(j),z;(j))- The potential 
barrier may be represented by a transfer matrix T satisfying 

?)=r(o)' <26> 
where 0 (I) refer to vectors of outgoing (incoming) plane-wave amplitudes on the 
left and 0', (I') to corresponding amplitudes on the right, each plane-wave being 
divided by the square root of its longitudinal group velocity to ensure unitarity of 
the scattering matrix s. Whereas T connects plane wave amplitudes in the left lead 
to amplitudes in the right lead, the scattering matrix s-matrix connects incoming 
amplitudes to outgoing amplitudes and satisfies (cf. Lambert's Lecture Notes in 
these Proceedings) 

°)-.{' r) 
Once T is known, the s-matrix can be constructed. Indeed we have 

For r_{ ^ r_j and a fixed value of E, the matrix A%la, with matrix elements 
Ä£a,(p,p',Y,) satisfy relations of the form of equation (26). First consider the 
form of the Green's function when Zj < Z{ and j — 1. When viewed as a function 
of Zi, one has 

T(E,H)(^ ;t)  = (;t I!) (29) 

On the other hand, when viewed as a function of Zj, using the conjugate equation for 
the Green's function (which involves the time reversed Hamiltonian), one obtains 
for i = 2, 

422      422 \ / 421      421 \ 

Hence after eliminating the off-diagonal terms, A +̂, etc., we obtain the general 
boundary condition relating the Green's functions on the left of the scatterer, to 
the Green's functions on the right: 

/ 411      411  \       / 422      422 \ 

T(E,H)(*tf £f) = ug AKr{E'Hrl - (31) 

Equation (31) is a generalisation of Zaitsev's boundary condition to the case of a 
non-planar barrier [4], which in general may contain impurities and break time- 
reversal symmetry. 2 If  time reversal symmetry holds one can show that 

2)  A similar argument with Zj > z,- yields an identical result and therefore the boundary condition 
is independent of the choice of S. 
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T-^,^)=(_° 1  ;)r(*,/o(!   V)' (32) 

and eq.(31) becomes 

Wio(:t $) = (:$ t)T(£'f f)       (33) 

By multiplying eq.(33) by T"1 and exploiting the cyclic permutation of the trace, 
one obtains a first boundary condition 

Tr(AiV  - A?_) = Tv(Al\ - A22_). (34) 

All  other boundary conditions can be expressed as traces over the matrices A'J^,. 
Indeed multiplying both sides of (33) by each of the matrices 

(o  r 2-20' ( o1   o)' Ui 1  o)' (o    o ) (35) 

and taking the trace of the resulting four equations yields 

Tt[A]} + - Al\]  = -Tr[T^T21A +̂ + T12T^A22_] = Tr[rA^+ - r'A2_2_]      (36) 

Tr[^_ - A22_] = -TriT^TnAl1. + T2lT^A22
+] = Tr^Al 1. - r*Ä»+]      (37) 

Tr[Al\  + A22_] = Tvi-T^TnAW + T22T^A22
+] = Tr^"1^ + r'"1 A22

+]  (38) 

TT[A^_ + A22
+] = Trl-TjTnA1!. + TuTjA--] = Tty-Ml 1. + r't_1 A22_]  (39) 

Subtracting (36) from (37) yields, in view of (34), 

TrlrAW - rÜ1}.) = Tr[r'A 2_2_ - r'U2
+
2
+) (40) 

and subtracting (38) from (39) yields 

Tvir^AW - r-'Al 1.] = Tr[r't_1Ai 2_ - r'- lA22
+] (41) 

Adding (36) to (37) and (38) to (39) yields 

Ti[A?_ + A]} +] - Ti[A2
+
2_ + A22

+] = TrMiV  + rU]}_]  - Tr[r'A 22_ + r*A 22
+) (42) 

and 

Tr[^_ + A]} +] + Tr[A2
+
2_ + A22

+] = Trfr^1^ + r^A1^} (43) 
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+Tr[r'-1A2
+

2
++r't"1A2_2_]. 

If  there is translational invariance in the boundary plane, writing, for each value of 
the transverse momentum ky, t — t' = |i|exp?# r = |r|expi^>, r' = — |?'|exp?(20 - 
<j>),  and by making the identification, valid close to the boundary, A"a = (/,> and 
A*J_a = <ji„,  one obtains from either of equations (40) and (41) 

/la — y2a &., (44) 

from (42) and (43), 

and from (34) 

where 

and 

flis - fos = \r\(Gu + 02s), (45) 

gis+fcs = TliGu -&2s), (46) 
\r\ 

9la = 92a, (47) 

&,,« = [0i+  exp icf> ± äi- exp -i4>]/2, (48) 

'hs,a = [02+ exp i{<j>  - 20) ± &_ exp i{26 - <f>)]/2 (49) 

9is,a = [9i+  ± <7»-]/2- (5°) 

The antisymmetric functions ga = gu = g2a and Qa = Qia — Q2a are continuous 
across the boundary, while the symmetric ones </,s and C/,s experience a jump de- 
termined by the transparency of the barrier. The size of the jump vanishes for 
perfectly transmitting interfaces. As noted at the end of Section III,  in practice, 
one would like to obtain boundary conditions involving only the Green's functions 
<ji. The boundary conditions for the antisymmetric components are already de- 
coupled with respect to the ga and Qa. To decouple the symmetric components, 
we express the generalized normalization conditions of eqs.(23-24) in terms of the 
symmetric and antisymmetric parts to yield 

gisGis + gapa - ( — lyOa ;jjj  

and 

9is9is + gaga - 1,   gisäa + &&»  = 0. (52) 
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By manipulating equation (51) one obtains 

gisQls + 92sÖ2s = 9a{9lsGu ~ 92sG2s) (53) 

which is the extra condition to be used together with equations (45-46). By means 
of equations (45-46) one expresses Q2s and Qis in terms of g\s and g2s and substitute 
in equation (53) so that the final boundary condition reads [2] 

9a [R(l - gaga) + (T/4)(gu - g2sf]  = (T/4)(g2s9ls - glsg2s) (54) 

where R — \r\2, T — 1 — R are the reflection and transmission coefficient of the 
barrier. To conclude this Section, I consider the normal case, when the Green's 
function reduces to a two-by-two matrix 

i -i ) <»' 
with g = 2/, / being the usual distribution function entering the Boltzman kinetic 
equation. By observing that 

&;,&.]  = 4 (g  /lsö/2s);  (9is-92sf = ö;  gl = Ö (56) 

the boundary condition (54) assumes the form (10) of Section II. 

V THE DIRTY LIMIT  

In this Section, I show how the effective boundary conditions, derived in the 
previous Section can be considerably simplified in the dirty limit. For the sake of 
completeness I first briefly recall how one goes from the general case to the dirty 
limit. One starts form the quasiclassical equation for g [1]  

dT{fz,g} + vFk ■ dRg - it [f z,g] + i [S, gj = 0, (57) 

where the square and curly brakets indicate the commutator and the anticommu- 
tator, respectively. In eq.(57), R = (r + r')/2, T = (t + t')/2 and e is the Fourier 
transformed variable with respect to t — t'. In the presence of an isotropic scattering 
impurity potential, the self-energy in the self-consistent Born approximation reads 

£ = -^<g>, (58) 

and one expands g in spherical harmonics keeping only the s- and p-wave terms 

git*) =9o + P9i (59) 
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with go and <fr not depending on fi and /igx < go- By inserting equation (59) in 
equation (57), g\ is expressed in terms of g0 

<7i = -Igo&Rgo (60) 

and for g0 one obtains a diffusion-like equation 

DdRgodRgo + ie [f z,g0] - dT{f z,go) = 0 (61) 

with D — VFIT/Z the diffusion coefficient and / = vpr the mean free path. 
Kupriyanov and Lukichev [3] have shown that by assuming 

T(gu-g2s)<(gu+g2s),    T(gls- g2sf C R, (62) 

in the dirty limit, the boundary condition (54) reduces to 

g* = (T/4R){gls,g2s}. (63) 

In the next Section, I will  show that eq.(63) is strictly valid in the low trans- 
parency limit, T <£. 1 (in which limit  the conditions (62) are clearly satisfied), and 
modified boundary conditions result by a perturbative expansion in the boundary 
transparency. In the dirty limit, ga = —nlgsdRgs and equation (47) yields 

IgisdRgis = lg2SdRg2s, (64) 

which after multiplying equation (63) by fi and taking the angular average yields 

3 
lgudRgu = - < fiT/R > [g2s,gu]. (65) 

By defining a conserved "super" current / one finally arrives at the following bound- 
ary condition 

1 = -g2sdRg2s = Tr[92s,9u]- (66) 
e le 

Equation (66) is the desired boundary condition to be used together with the 
diffusion equation (61) in the presence of boundaries [3]. 

I now consider two simple applications of the formula (66), i.e., the case of a 
S-I-S and S-I-N structures, where I indicates an insulating thin layer or a tunnel 
junction. The physical current is obtained from the Keldysh component of equation 
(66) 

\92,9i]k = g29i + mi - g*g2 - g\g2 

where we have dropped the subscript "s" (the "a" component has now dispperead). 
The normalization condition, gg = 1, allows us to choose 

51,2 = ffl,2/l,2 - /l,251,2 

369 



where the matrix / can be taken to be diagonal 

ha - fi,2?o + fi,2^- 

As a result, multiplying by f2 and taking the trace, yields 

GT i = TTr dzT^fVh + flh + III  + ffh)) (67) 
ibe J-oo 

where 

I = [gM ~ 9i) ~ (fff  - #)#] ,h = ~ [g?(9? ~ 9?) - (9? ~ 9?)tf] 

Ic = [g?(9?Tz - rzg
A) - (sff, - Tzg

A)gA] , 

h = - [gR{gRTz - fzg
A) - (gRrz - rzg

A)gA] ■ 

Due to the normalization condition gR(A)gR(A) = 1, we have 

gH(A)=gR(A).T^j :gR(A)Tt 

t'=l  

where gR{A) = (iFR(-Ahin{<f>),  iFR(Akos(4>),GRW) and <f> is the phase of the super- 
conducting order parameter. Hence 

j = ^r de(Ij + hi) (68) 

where 

Ij  = isinfa - <h) [f° 2(F2
R - FA)(FR + FA) + f°(FR + FA)(FR - FA)} 

and 

hi = [(GR - GA)(GR - GA) + cosifr - 4>2){F
R + FA)(FR + FA)] (/* - fi). 

In equation (68), Ij  is the Josephson current, while hi is sometimes referred to 
as quasi-particle (first term) and interference or Andreev (second term) currents. 
To see this, consider first the case of a superconducting-insulating-superconducting 
(S-I-S) junction, with no applied bias. In this case, /? = 0 (i = 1,2), and f° = 
f° = tanh(e/2T) by assuming that the two superconductors are at equilibrium. By 
recalling that for a bulk superconductor 

FRW = 
A 

yj{e ± i0+)2 - A2 
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one obtains for the current 

which coincides with the standard result of the tunneling theory. As a second 
illustration of the formula (68), consider the case of a normal metal-insulating- 
superconducting (N-I-S) junction. In this case there is no Josephson current (Si = 
62), though the anomalous Green's function F may be different from zero even in 
the normal region due to the proximity effect. If the distribution functions f 2̂ 

have their equilibrium form, 

Zu = \(tanh((e + eVu)/2T) - tanh((c - eVi,3)/2T)) 

the current through the junction becomes 

GT 

where 

i = "2i7-l d<fi~^)Mi2 (70) 

Mn = \((G* - G*)(G* - Gi) + (if  + Ff)(F*  + F*)). 

At T — 0, this reduces to 

I = GTM12l=0(Vl-V2). (71) 

Equation (71) shows that conductance of the tunnel junction is renormalized by 
a term M\2 which depends on the amount of superconducting pairing on the two 
sides of the junction. In the limit  of normal systems, Mi,2 = 1, and one recovers 
the conductance of the normal state (cf. eq(ll)). It is worth to note that the 
above equation has been extensively used during the last five years to analyze the 
transport properties of hybrid superconducting structures (cf. Ref. [4] for more 
details). 

VI BEYOND THE SMALL BARRIER 
TRANSPARENCY LIMIT  

One of the key features allowing a substantial simplification of the boundary 
conditions in the dirty limit is that the angular dependence of the quasiclassical 
Green's function g can be taken into account by keeping only the first two terms 
in an expansion in Legendre polynomials P„(/u) (cf. eqs.(59-60)). In the presence 
of a boundary, due to the fact that the scattering coefficients, R and T, depend 
on //, one should, in principle, keep all the terms in the expansion in Legendre 
polynomials. However, all terms n > 2 in the expansion of g decay exponentially 
over a distance /, and it would be desirable to obtain a matching condition at the 
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boundary involving only the lowest term (n = 0) in the expansion. In this Section 
we show how to obtain this beyond the small barrier transparency limit, by using 
an expansion in the small parameter r_1 = T/2R [5]. By assuming that r » 1, 
eq.(54) can be cast in the form 

6(0,/i) « ^- [hs,9n] [l  ~ ^ (92s - gu^ <™ 
2rg L^S'J1SJ V       2r 

where we introduced the function b = gajg,. Eq.(72) is valid up to terms of the 
order r~2. We proceed by writing gs and b as the sum of a fast decaying and an 
asymptotic part 

gs= gsco + tgs,    b^b  ̂+ Sb (73) 

where we assume 8g$ < gsoo. By multiplying eq.(72) by g2 and using the represen- 
tation (73), we perform the angle average of eq.(72) to obtain 

TJ>OO = [fi l2soo,fl,lsoo] ( < 2~ > - < J-J > (ff2»oo — 9u<x>)' 

+ < ^~ (fesoo,^!,] + [&72s, 51*00]) > • ("4) 

In obtaining eq.(74)it has been used the fact that the quantity < g?b > does not 
depend on the spatial coordinate (see the equation of motion below) and one can 
perform the angular average in the asymptotic region. Here 5g2s,u = ^s.ufO*). 
The problem is then reduced to the calculation of the functions 5g2s,is- We start by 
writing the equation for g in the space interval 0 < |z| <C £N,S- It is then sufficient 
to retain only the gradient term and the collision integral in the self-consistent Born 
approximation for the impurity scattering. As a result the equation for g reads [1] 

2gg' = g<g> - <g>g (75) 

where for brevity g' = ldz. By rewriting eq.(75) in terms of b and g, we get 

2;u26' = gs <gs> - <gs> gs (76) 

2g's = b<gs> - < gs >b (77) 

together with the conditions deriving from the normalization condition gg = 1, 

gsgs = 1,     gsb + bgs = 0. (78) 

Using the expansion (73) we obtain the equations for the deviations 5b and 8gs in 
the form 

g2Sb' = -gsoo (5gs- < Sgs >) (79) 
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&§', = -äsooSb   g'soo = -«koodoo- (80) 

where we have used the relations 

S'bgsco +gsooSb = d,    gsx,6gs + 5gsgsoo = 0 (81) 

&oo<7soo = 1 (82) 

which follow from (78). From eqs.(79-80) we finally get the equation for Sb 

H28b" -Sb=-<Sb> +B05{z/l). (83) 

One can easily check that the matrix Bo is connected to the Fourier component 
8bqo (where q0 = 0) by 

Bo =< 5bqo > -6bqo. (84) 

From eq.(83) we find the Fourier components 

Sbq = m„ [ < mgii
2Bo > -B0) (85) 

\1- < m, > / 

and the value of 8b(0, fi) at z = 0 reads 

Sb{0,n)=b{0,n)-boo = 

/OO        (IQ                     (                 (P" " v        \ 
o     m«   1—Z. C < my5K > ~5K   ■ (86) -oo  z7T \1— < mq > j 

To close the above equation, we need to connect b(0,/j,) and b^. To lowest order in 
r_1, the boundary condition (74) yields 

6(0,^) « (2r/j,)~1 [^oo^isoo], 

6oo « 3 < fJ,/2r > \g2,oo, 9uoo] • (87) 

which when substituted into (86) yields the equation 

1 -1] = 

(88) 

^3fir < njr > 

/oo   dq (        cP - 

-oo  Y,   m* \l-<mq> < m^5K > ~5h' 

If  we seek the solution in the form 
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Sbm = -xMboo (89) 

then the function x satisfies the integral equation 

X(AO 1 = -- 
Z(ir < p/r > 2(i 

where 

+ f1 d(iM^Hi)x{»i) (90) 
Jo 

< mq> 

Details concerning the numerical solution of the above integral equation may be 
found in Ref. [5]. In the following I will  confine the discussion to the qualitative 
consequences of the modified boundary conditions and the actual numerical solution 
will  not be needed. The Fourier component 8bgo is related to 5gis<2s by integrating 
eq.(80) from —oo to 0 and from 0 to oo, to yield 

Sg2s-g2sooShqo/2,    Sgu = -<?iSoo<ft>90/2. (91) 

Substituting eqs.(91), (89), and (87) into eq.(74) we finally obtain 

&CO r. . ,   (^      V     ^ ,      M       .       /. . N2 
-Z- — [92soo,9lsc<,\ 1 < Ö- > — < J-J > \g2sco — gisoo) 

+3 <"—>< — > [gUoo,92soo9Uoo923<x,] ■ (92) 
2r 2?- 

The above equation is the effective boundary condition for the matrix g in the dirty 
limit. The first term in (92) coincides with the boundary condition obtained in Ref. 
[3]. As a simple application of the above boundary condition, we now derive an 
expression for the Josephson current. To this end we rewrite eq.(92) in the following 
way 

\b = A[g2,gx] + B[g2,gi]{92,gi} (93) 

where we have identified the symmetric part gs with the Green's function g and 
dropped the oo suffix. The constants A and B can be read off from eq.(92) 

A =<  (i/r  > -2 < (i/4r2 >,   B -< fi/4r2 > -3 < (ix/2r ><  (i/2r > . 

In deriving eq.(93) we have made use of the normalization condition gg — 1. The 
current through the junction is determined by the formula 

7 = -77T7 r  d^Tr(rJb) (94) 16e/ J-oo 

where b is the appropriate Keldysh component of the "check" matrix b. In the 
absence of a voltage across the junction, the Keldysh component of the supermatrix 
g reduces to 
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9 = M9R-9A) (95) 

where /0 = tanh(e/2T) is the equilibrium distribution function.   The Keldysh 
component of the product of the commutator and the anticommutator reads 

([92,9i]{92,gi})k = [92,9i}{92,9i}k + \g2,§i]k{gf,tf} (96) 

with the Keldysh component of the commutator 

\92,9i]k = f0(\g?,g?]-fö,9?]) (97) 

and of the anticommutator 

{ft,M*  = /o({M}-{#,#}) ■ (98) 

The current in eq.(94) can be written then as the sum of three terms 

IA = -*/<>>*»(&  - <h) /    deMFfF» - F,AF2
A), (99) 

J—oo 

Iß   - -Ho,B^sin((f>i - 4>2) 

<kf0(F?F?G?G? - F*FAGAGA), (100) r 
and 

f 
PB  - -iI 0,Bsin{2((f>i - fa)) 

defoUFfFff - (FfFfn (101) 

In the above formulae I0,A — {^N0VF/2)A, IQ,B = {eN0VF/2)B. By using the 
expression for GR  ̂and FR  ̂at equilibrium and assuming that the gap A is 
equal on both sides of the junction, we obtain, at T = 0, the following result for 
the current 

/ = eN°vrAlT [(2A + B)sin(<f>) - Bsin(2<f>)} (102) 

where <f> = (j>2 — 4>i- Note that by confining ourselves to the lowest order in r-1, we 
would obtain for the Josephson current the standard result of tunneling theory (cf. 
eq.(69)). Allowance for higher order terms in the barrier transparency leads then 
to higher harmonics in the current phase relation. This result has a simple physical 
interpretation. We know that in the case of a superconductor - normal metal - 
superconductor structure, the Josephson effect manifests itself with a triangular 
shape of the current - phase relation. For this case the Fourier decomposition has 
an infinite number of harmonics. Hence it is clear that higher order terms in the 
r~l expansion must possess harmonics of higher order. 
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School of Physics and Chemistry, Lancaster University, Lancaster LAI 4YB, U.K. 

August 26, 1997 

Abstract. These lectures provide an overview of the multiple scattering ap- 
proach to quasi-particle transport in phase-coherent superconducting nanostruc- 
tures, with particular emphasis on dc electrical conduction. Several paradigms of 
phase-coherent transport are discussed, including zero-bias anomalies, reentrant 
and long range proximity effects, Andreev interferometers and superconductivity- 
induced conductance suppression. 

I    INTRODUCTION 

These lectures will  review the multiple scattering approach to phase- 
coherent quasi-particle transport in hybrid superconducting nanostructures. 
In a phase-coherent normal-superconducting (N-S) structure, the phase of 
quasi-particles as well as Cooper pairs is preserved and transport properties 
depend in detail on the quasi-particle states produced by elastic scattering 
from inhomogeneities and boundaries. A key physical phenomenon, which 
arises in the presence of superconductivity is the possibility that an electron 
can coherently evolve into a hole and vice versa. This phenomenon, known 
as Andreev scattering [Andreev 1964], occurs without phase breaking and is 
describable by a variety of theoretical techniques. The effect of supercon- 
ductivity on transport across a N-S interface is of course an old subject. In 
lowest order, the classical tunneling Hamiltonian approach ignores Andreev 
scattering and predicts that the dc conductance G is proportional to the den- 
sity of states. Later [Shelankov 1980, Blonder, Tinkham and Klapwijk (BTK) 
1982, Blonder and Tinkham 1983, Shelankov 1984] it was pointed out that the 
contribution to the sub-gap conductance from Andreev scattering can be sig- 
nificant and a theory of a clean N-I-S interface was developed, which showed 
that for a delta-function barrier, there is indeed a marked deviation from tun- 
neling theory, but as the barrier strength is increased, the result of classical 
tunneling theory is recovered. BTK theory applies to a one-dimensional N-I-S 
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system or, by summing over all transverse wavevectors, to 2 or 3 dimensional 
systems with translatiqnal invariance in the plane of the barrier and yields for 
the current / through the contact 

/ = (2e/A)fi I"  dE U(E ~ eV) ~ fWX1 + AW ~ B^ (1) 
J—oo 

where A(E) and B(E) are Andreev and normal reflection coefficients listed in 
table II of [Blonder et al 1982], f(E) the Fermi function and ft a measure of 
the area of the junction. In the presence of disorder or other inhomogeneities, 
this must be replaced by the more general expressions outlined in sections II  
and IV below. 

Prior to 1991, experiments on N-I-S point contacts had been in broad agree- 
ment with BTK theory, exhibiting a conductance minimum at zero voltage 
V = 0 and a peak at eV « A, where A is the superconducting energy gap. 
However in the experiment of Kastalskii et al. [1991], the dc current through 
a Nb-InGaAs contact is measured as function of the applied voltage. At the 
interface, depending on the semiconductor doping level, a Schottky barrier 
naturally forms so that the system behaves like a superconductor-insulator- 
normal (S-I-N) structure. (An exception to this is InAs, which does not form a 
Schottky barrier at an N-S interface.) According to BTK theory, as the barrier 
strength increases the sub-gap conductance should vanish. In contrast, the ex- 
periment revealed an excess sub-gap conductance at low bias, whose value was 
comparable with the conductance arising when the superconducting electrode 
is in the normal state. This zero bias anomaly (ZBA) was later observed by 
Nguyen et al. [1992] in an experiment involving InAs-AlSb quantum wells 
attached to superconducting Nb contacts and by using high transmittance 
Nb-Ag (or Al) contacts of varying geometry, Xiong et al. [1993] were able 
to observe the evolution from BTK to ZBA behaviour. In an experiment by 
Bakker et al. [1994] involving a silicon-based two-dimensional electron gas 
(2DEG) contacted to two superconducting electrodes, a gate voltage was also 
used to control the strength of the ZBA and in [Magnee et al 1994] an exten- 
sive study of the ZBA in Nb/Si structures was performed. Since these early 
experiments, a great deal of effort has been aimed at observing Andreev scat- 
tering in ballistic 2DEGs, including [van Wees et al 1994, Dimoulas et al 1995, 
Marsh et al 1994, Takayanagi and Akazaki 1995(a), Takayanagi, Toyoda and 
Akazaki 1996(a)] 

Kastalskii et al [1991] attributed the excess conductance to a non- 
equilibrium proximity effect, in which superconductivity is induced in the nor- 
mal electrode, giving rise to an excess pair current. Initially  this phenomenon 
was seen as separate from Andreev reflection, but subsequent theoretical de- 
velopments have shown that the distinction between the proximity effect and 
Andreev reflection is artificial. As will  become clear later, the ZBA arises from 
an interplay between Andreev scattering and disorder-induced scattering in 
the normal electrode. Andreev scattering is sensitive to the breaking of time 
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reversal symmetry and as a consequence the conductance peak is destroyed 
by the introduction of a magnetic field. 

Zero bias anomalies constitute the first of a small number of paradigms of 
phase-coherent transport in hybrid N-S structures. A second paradigm is the 
observation of re-entrant [van Wees et al 1994, Charlat et al 1996] and long- 
range [Courtois et al 1996 ] behaviour signalled by the appearance of finite- 
bias anomalies (FBAs) in the conductance of high-quality N-S interfaces. At 
high temperatures T > T* and bias-voltages V > V*, where for a N-metal 
of length L and diffusion coefficient D, kBT* = eV* = <J(D/L2), both the 

ZBA and FBA conductance peaks decay as 1/VT and 1/y/V. For a clean 
interface there also exists a conductance maximum at V*, T* and therefore 
at low-temperature and voltage a re-entrance to the low-conductance state 
occurs. An interesting feature of this phenomenon is the long-range nature 
of the effect, which typically decays as a power-law in L*/L, where L* = 

\RpjeV). This behaviour is in sharp contrast with the exponential decay of 
the Josephson effect and has been observed in a number of experiments. In a 
T-shaped Ag sample with Al islands at different distances from the current- 
voltage probes [Petrashov et al 1993(b)], a long-range proximity effect was 
observed, in which the influence of the island extended over length scales 
greater than the thermal coherence length L*. Similar behaviour was also 
observed [Petrashov et al 1994] in ferromagetic-superconductor hybrids made 
from Ni-Sn and Ni-Pb. In an experiment involving a square Cu loop in contact 
with 2 Al  electrodes Courtois et al [1996] clearly identified both the short- and 
long-range contributions to phase-coherent transport. In this interferometer 
experiment, they observed a phase-periodic conductance decaying as a power- 
law in 1/T, in parallel with a Josephson current which decays exponentially 
with L/LT- 

The above re-entrance phenomenon is also observed in a third paradigm 
of phase-coherent transport, which arises when a normal metal is in contact 
with two superconductors, with order parameters phases <j>i  and fa, whose 
difference <j> = (j>\ — (h can be varied by some external means. Prior to the 
experimental realisation of these structures, the electrical conductance of such 
Andreev interferometers was predicted to be an oscillatory function of 4>. Spi- 
vak and Khmel'nitskii [1982] and APtshuler and Spivak [1987] identified a high 
temperature (T >> T*), weak localisation contribution to the conductance 
of a disordered sample, whose amplitude of oscillation was less than or of or- 
der 2e2/h. For an individual sample, the period of oscillation was found to 
be 27T, but for the ensemble average a period of TT was predicted. Nakano 
and Takayanagi [1991] and Takagi [1992] examined a clean interferometer in 
one-dimension and again predicted a 27r-periodic conductance with an ampli- 
tude of oscillation less than or of order 2e2/h. Lambert [1993] examined a 
disordered conductor in the low-temperature limit (T <<T*)  and identified 
a new contribution to the ensemble averaged conductance with a periodicity 
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of 27T. This 27T periodicity is a consequence of particle-hole symmetry, which 
also guarantees that at zero temperature and voltage, the conductance should 
possess a zero phase extremum [Lambert 1994]. Prior to experiments on such 
devices, the generic nature of this prediction was confirmed in numerical sim- 
ulations [Hui and Lambert 1993(a)] encompassing the ballistic, diffusive and 
almost localised regimes and in a tunnelling calculation of the ensemble aver- 
aged conductance by Hekking and Nazarov [1993]. 

The first experimental realisations of Andreev interferometers came almost 
simultaneously from three separate groups. In March of 1994, de Vegvar et 
al [1994] showed results for a structure formed from two Nb electrodes in 
contact with an Al wire. They found a small oscillation 10_3(2e2//i) with a 
sample specific phase in the 2ir periodic component, suggesting that the en- 
semble averaged conductance should have a periodicity of jr, in agreement with 
Spivak and Khmel'nitskii [1982]. However in contrast with all subsequent ex- 
periments, no zero phase extremum was observed. In April/May of that year, 
Pothier et al [1994] produced an interferometer involving two tunnel junctions, 
which showed a 27r-periodic conductance, with a zero phase maximum and a 
low-bias, low-temperature amplitude of oscillation of order lCT2(2e2//i), which 
decayed with increasing temperature. In May 1994, van Wees et al [1994], [see 
also Dimoulas et al 1995] produced the first quasi-ballistic InAs 2DEG inter- 
ferometer, with high transparency N-S interfaces. This experiment showed 
the first re-entrant behaviour in which the amplitude of oscillation 5G varied 
from SG « -0.08(2e2//i) at zero voltage,( where a minus sign indicates a zero 
phase minimum and a + sign a zero-phase maximum) passes through zero at 
a bias of order O.lmV, reaches a maximum at a bias of order V* and then 
decays to zero at higher voltages. (For a detailed study see [den Hartog et al, 
1996]). Unlike the Josephson current which decays exponentially with T/T*, 
these conductance oscillations decayed only as a power-law. 

The first experiment showing an amplitude of oscillation greater than 2e2/h 
was carried out by Petrashov et al [1995]. Here, silver or antimony wires 
in the shape of a cross, make two separate contacts with superconducting 
Al and the phase difference between the contacts is varied using either an 
external field applied to a superconducting loop or by passing a supercurrent 
throught the Al. The amplitude was found to be 5G « 100(2e2//i) for Ag and 
3.1(T2(2e2//i) for Sb, and exhibited a periodicity of 2ir. In this experiment, 
the phase difference <j> was varied both by passing a magnetic flux through 
an external superconducitng loop and by passing a supercurrent through a 
straight section of the superconductor, thereby emphasising that precise the 
manner in which the order parameter phase is controlled is not important. 
These experiments were crucial in demonstrating that in metallic samples, 
the ensemble averaged conductance is the relevant quantity and therefore a 
quasi-classical description is relevant. It is perhaps worth mentioning that 
with hindsight, an earlier experiment reporting large-scale oscillations in a 
sample with two superconducting islands [Petrashov et al 1993(a)] can be 
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regarded a precursor to these interferometer experiments. However the phase 
of the islands was not explicitly controlled, making an interpretation of the 
1993 experiments more difficult. 

A fourth and more recent paradigm of phase-coherent transport is the ap- 
pearance of negative multi-probe conductances in structures where Andreev 
transmission of quasi-particles is a dominant process [Allsopp et al 1994]. The 
first experiments reporting this behaviour were carried out by Hartog et al 
[1996], using a diffusive InAs 2DEG. These probe individual coefficients in the 
current-voltage relations and demonstrate fundamental reciprocity relations 
arising from time-reversal and particle-hole symmetry. 

Finally a fifth paradigm is the suppression of electrical conductance by 
superconductivity in metallic systems without tunnel barriers. Experimen- 
tally this phenomenon has been observed in several structures, involving both 
non-magnetic (ie Silver) and magnetic (ie Nickel) N-components in contact 
a superconductor via clean interfaces. In the experiment of Petrashov and 
Antonov [1991] the conductance of a Ag wire on which several Pb islands are 
deposited, decreases by 3% when the islands become superconducting, this 
corresponding to a conductance decrease of 5G « 100 (2e2//i). These experi- 
ments reveal two regimes: as the field decreases below Hc2, an initial resistance 
increase occurs. The resistance remains field insensistive until a lower field is 
reached (corresponding to the order of a flux quantum through the sample), at 
which point a further conductance suppression occurs. In the experiment by 
Petrashov et al [1993b] involving a T-shaped Ag sample with Al  islands at dif- 
ferent distances from the current-voltage probes, a superconductivity induced 
change in the resistance by up to 30% was observed, but it was found that for 
different samples, the resistance could either increase or decrease. Although 
superconductivity-induced conductance suppression in metallic samples was 
predicted a number of years ago [Hui and Lambert, 1993(b)] these experi- 
ments at first sight appeared to conflict with quasi-classical theories, which 
universally predict that the normal-state, zero-temperature, zero-bias conduc- 
tance GN is identical the conductance GNS in the superconducting state. This 
effect is addressed in [Hui and Lambert 1993b, Claughton et al 1995, Wilhelm 
et al 1997, Seviour et al 1997]. 

The main aim of these lectures is to review the multiple scattering theory 
of dc electrical conductance of phase-coherent hybrid N-S structures. For this 
reason we shall not discuss thermodynamic phenomena such as the Joseph- 
son effect in any detail, despite the fact that ground-breaking experiments 
using clean [Takayanagi and Akazaki, 1995(b,c,d)] superconducting quantum 
S-2DEG-S point contacts show quantization of the critical current as pre- 
dicted by Furasaki et al [1991] and for shorter junctions by Beenaker and van 
Houten [1991]. There are several notable theoretical papers addressing An- 
dreev scattering in such structures, including [van Wees et al 1991, Bagwell 
1992, Furasaki et al 1994, Gusenheimer and Zaikin 1994, Zyuzin 1994, Hurd 
and Wendin 1994 and 1995, Bratus et al 1995, Chang et al 1995, Koyama, 
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Takane and Ebisawa 1995 and 1996, Levy Yeyati et al 1996, Martin-Rodero 
1996, Wendin and Shumeiko 1996, Reidel et al 1996, Volkov and Takayanagi 
1996(b)]. Similarly to restrict the length of these lectures, recent theories of 
thermoelectric coefficients [ Bagwell and Alam 1992, Claughton and Lambert 
1996] and shot noise will  not be discussed, nor will  we discuss work on coulomb 
effects in superconducting islands [Eiles et al 1993, Lafarge et al 1993, Tuomi- 
nen et al 1992 and 1993, Hergenrother et al 1994, Black et al 1996, Hekking 
et al 1993]. 

While Andreev interference effects are generic phenomena, their manifesta- 
tion in a given experiment is sensitive to many parameters. For the purpose of 
these lectures, it is therefore convenient to adopt a simple classification of ex- 
perimental arrangements sketched in figure 1. The generic structure shown in 
figure la represents our first class of N-S-N hybrids and has many realisations. 
For convenience, we distinguish these from a second class of N-S hybrids of 
the kind shown in figure lb and lc, in which the superconductor effectively 
forms part of an external reservoir and is not simply part of the scattering 
region. Figure Id indicates a third class of N-SS'-N structures, involving two 
(or more) separate superconductors S and S', with respective order parameter 
phases <j>, </>'. As noted above, transport properties of such Andreev interfer- 
ometers are periodic functions of the phase difference <j>-<j>'.  Figure le shows a 
fourth class of S-N-S' structures, in which two superconducting reservoirs are 
connected to a normal scattering region. In this case, the structure forms a 
Josephson junction and in contrast with all other structures shown in figure 1, 
in the linear response limit, the dc conductance measured between the super- 
conducting reservoirs is identically zero. In this case, the relevant dc quantity 
is the current-phase relation and the associated critical current. Clearly one 
could also measure the Josephson current between the two superconductors 
in the N-SS'-N structure of figure lc and therefore the above classification is 
intended to label the measurement being made, rather than the device being 
measured. Structures of the form le will  not be discussed. 

For the most part, the theoretical descriptions discussed below have finessed 
problems of self-consistency, by computing measured quantities as a function 
of the superconducting order parameter pairing field faa>{r)  = (ipa(r)rpa'(r)) 
induced by making contact with a piece of superconductor. As an example, 
figure la shows a normal mesoscopic scattering region in contact with a super- 
conducting island which plays the role of an externally controllable source of 
fao' (L), in much the same way that the coils of a magnet are an external source 
of magnetic field. The coils are not of primary interest and in many cases, nei- 
ther is the superconductor. It is assumed that parameters characterizing the 
superconductor are given and the key question is how does superconductivity 
influence transport through the scattering region. Of course once the influ- 
ence of superconductivity is understood, transport properties can be used to 
probe the symmetry and spatial stucture of the order parameter, as suggested 
by Cook et al.  [1996]. Furthermore, in the presence of large currents which 
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modify the order parameter, a complete self-consistent treatment is necessary, 
as described for example in [Bruder 1990, Hara et al 1993, Barash et al 1995, 
Canizäres and Sols 1995, Chang et al 1995, Martin and Lambert 1995 and 
1996, Riedel et al 1996]. 

II     THE MULTIPLE SCATTERING APPROACH TO 
DC TRANSPORT IN SUPERCONDUCTING 

HYBRIDS. 

A    Fundamental current-voltage relations. 

In this section I review the multi-channel current-voltage relations for a 
disordered phase-coherent scatterer connected to normal reservoirs, obtained 
for two normal probes by [Lambert 1991] and extended to multi-probes by 
[Lambert Hui and Robinson, 1993]. To avoid time-dependent order param- 
eter phases varying at the Josephson frequency, which would render a time- 
independent scattering approach invalid, these are derived under the condi- 
tion that all superconductors share a common condensate chemical potential 
ß. The derivation of the fundamental current-voltage relation presented in 
[Lambert 1991] follows closely the multi-channel scattering theory developed 
during the 1980s for non-superconducting mesoscopic structures [Buettiker 
1986, Buot 1993]. In the normal state, this approach yields, for example, the 
multi-channel Landauer formula [Landauer 1970] for the electrical conduc- 
tance 

G = (2e2/h)T0, (2) 

where T0 is the transmission coefficient of the structure. Historically the 
above formula was not accepted without a great deal of debate and contradicts 
the corresponding expression used by practitioners of quasi-classical theories, 
where the alternative expression 

G=(2e2/h)(T0/R,) (3) 

is employed, with (in one-dimension) RQ the reflection coefficient. In fact the 
above two expressions refer to different measurements and the crucial lesson 
from the debate surrounding these equations is that transport coefficients such 
as the electrical conductance are secondary quantities. More fundamental are 
the current-voltage relations describing a given mesoscopic structure. 

Equations (2) and (3) are not valid in the presence of Andreev scattering, 
because charge transport and quasi-particle diffusion are no longer equivalent. 
For example when a quasi-particle Andreev reflects at an N-S interface, the 
energy and probability density of the excitation are reflected back into the 
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normal conductor, whereas a charge of 2e is injected into the superconductor. 
Thus charge flows into the superconductor, even though the excitation does 
not and as a consequence, a current-voltage relation should be used, which 
takes into account this charge-energy separation. For a scattering region con- 
nected to L normal reservoirs, labelled i = 1,2,... L, it is convenient to write 
this in the form 

/i = £4». (4) 

where h is the current flowing from reservoir i and the coefficients A  ̂will  
be discussed in detail below. In the linear-response limit, this reduces to 

L 
Ii  = 52aij(Vj-v), (5) 

j=i  

The above expressions describe reservoirs at voltages Vi, i = 1,2,..., L, con- 
nected to a scattering region containing one or more superconductors with a 
common condensate chemical ß and relates the current I { from reservoir i to 
the voltage differences (VJ - v), where v = ß/e. The L = 2 formula describes 
a wide variety of experimental measurements and underpins many subsequent 
theoretical descriptions of disordered N-S interfaces and inhomogeneous struc- 
tures. For this reason, after discussing the relationship between the coefficients 
Aij, atj and the scattering matrix, we shall examine the two-probe formula in 
some detail and illustrate its application to some generic experimental mea- 
surements. 

B    Relationship between the generalised conductance 
matrix and the s-matrix. 

The L = 2 analysis of [Lambert 1991] is based on the observation that in 
the absence of inelastic scattering, dc transport is determined by the quantum 
mechanical scattering matrix s(E,H), which yields scattering properties at 
energy E, of a phase-coherent structure described by a Hamiltonian H. If  
the structure is connected to external reservoirs by open scattering channels 
labelled by quantum numbers n, then this has matrix elements of the form 
sn>n> (E, H). The squared modulus of sn>n>(E, H) is the outgoing flux of quasi- 
particles along channel n, arising from a unit incident flux along channel n'. 
Adopting the notation of [Lambert, Hui and Robinson 1993], we consider 
channels belonging to current-carrying leads, with quasi-particles labelled by 
a discrete quantum number a (a = +1 for particles, -1 for holes) and therefore 
write n — {I, a), where / labels all other quantum numbers associated with 
the leads. With this notation, the scattering matrix elements sntn>(E,H) = 
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sff(E,H) satisfy the unitarity condition s^(E,H) = s~1(E,H), the time- 
reversibility condition st(E,H) = s(E,H*) and if  E is measured relative to 
the condensate chemical potential \L = ev, the particle-hole symmetry relation 
sff(E, H) — aß[s^°'~^(—E, H)]*.  (For convenience we adopt the convention 
of including appropriate ratios of channel group velocities in the definition of 
s to yield a unitary scattering matrix.) 

For a scatterer connected to external reservoirs by L crystalline, normal 
leads, labelled i — 1,2,..., L, it is convenient to write I = (i, a), V = (j, b), 
where a(b) is a channel belonging to lead i(j). With this notation, the quan- 
tities entering the current-voltage relation are of the form 

Ptf{E,H) = Y,\*fö),udE>H)\2 = Ta*e [sf(E,H){sf(E,H)}%    (6) 
a,b 

which is an expression for the coefficient for reflection (i = j) or transmission 
(i ^ j) of a quasi-particle of type ß in lead j to a quasi-particle of type a in 
lead i. For a ± ß, P?/(E,H) is an Andreev scattering coefficient, while for 
a - ß, it is a normal scattering coefficient. Since unitarity yields 

E i«K).W)(*. H)\2 = E K&  w*.  m2 = i, (7) 

where i and j sum over all leads containing open channels of energy E, this 
satisfies 

Y,Pf(E,H)=N?(E), md   J2Pf(E,H) = N?(E), (8) 
ßj ai 

where N?(E) is the number of open channels for a-type quasi-particles of 
energy E in lead i, satisfying N?(E) = N^(-E). Similarly particle-hole 
symmetry yields 

Pf(E,H) = Pp-ß(-E,H) (9) 

and time reversal symmetry 

Pf(E,H) = P?i:
a(E,H*). (10) 

Having introduced the scattering coefficients P£'ß(E,H), the coefficients 
Aij of the fundamental formula (4) are given by 

Ay = (2e/h) J» r dE {<%iVf  (£)/?(£) - £ Ptf(E, H)f?(E)},   (11) 
Q J0 ß 

with /? (Ü7) = {exp[(E - a(evj - ß))/kbT] +l} -1 the distribution of incoming 
a-type quasi-particles from lead j. l 

x> It is perhaps worth noting that in [Lambert 1991], the following notation is employed 
NP(E) = N+, RPP = P++(E,H)/NP(E), Rhp = P{i+(E,H)/NP(E) etc. 
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Equation (4) yields the current-voltage characteristics of a given structure at 
finite voltages, provided all scattering coefficients are computed in the presence 
of a self-consistently determined order parameter and self-consistent values of 
all other scattering potentials. At finite temperature, but zero voltage, where 
Vi — v —>• 0, it reduces to equation (5), with ay given by 

atj = (2e2A) /_~ dE [-^l][Nt(E)6 ij - P$+{E, H) + P?(E, B)], (12) 

where f(E) is the Fermi function and equation (9) has been used. At finite 
voltages, but zero-temperature, it reduces to 

An = (2e/h) /^^ dE [öijNfiE) + P^+(E, H) - P*+(E, H)}.       (13) 

Finally at finite voltages, the differential of equation (4) with respect to Vj 
(with fi and all other potentials held constant) yields 

dli/dvj = aih (14) 

where at finite temperature, 

aij = (2e
2A)EWr  dE{6«mQ[-°2^]-Ztf&,H)[-ß?tfp-]}. 

(15) 

and at zero temperature, 

aij = [2e2A][%^(^)  + P^+(Ej;  H) - P$+{Ej, H)}. (16) 

where where Ei — evi — fi. 
It is worth noting that replacing E by -E and utilizing the particle-hole 

symmetry relation (9) allows equation (12) to be rewritten in the form 

oy = (2e2/h) /_~ dE [-^l][Nr(E)6 ij - P^(E, H) + P$'(E, H)}, (17) 

which demonstrates that particles and hole are treated on an equal footing in 
equations (12) and (17). Furthermore in view of the symmetries (9), (10) the 
reciprocity relation dij(H) = aß(H*) is satisfied. 

C    Two probe formulae in more detail. 

While the above notation is convenient for arbitrary L, it perhaps obscures 
the simplicity of the final result and therefore in the literature, several alter- 
native notations have been employed. For the case of L = 2 normal probes, 
where the scattering matrix has the structure 

386 



S(E,H)-{m    r,{E)) (18) 

it is convenient to write s*?{E,H) = raß(E), s2i{E,H) = r'aß{E), 
stf{E,H) = taß(E) and s°${E,H) = t'aß(E). With this notation, the sub- 
matrices r, t, r', t' have the form 

r(E>-[r_ +(E)    r__(£)J' etc., (19) 

The matrix raß (r'aß) is a matrix of amplitudes describing the reflection of 
/?-type quasi-particles from reservoir 1 (2) into a-type quasi-particles travel- 
ling back into reservoir 1 (2). Similarly taß (t'aß) is a matrix of amplitudes 
describing the transmission of /?-type quasi-particles from reservoir 1 (2) into 
a-type quasi-particles of reservoir 2 (1). 

Using these sub-matrices, the L = 2 current-voltage relation can be written 

(Ji\ = (
an   a12\(v1-v\ (20) 

where 

(an    au\ _ f° 
\a2i     a22)      J-c 

dE(- 
df(E) 

dE > {        Ta(E) - T0(E) N2
+(E) - R'0(E) + R'a(E) )■ 

(21) 

with 

and 

{ME)\ 
T0(E) 
Ra(E) 

\Ta(E)J 

{%>(E)\ 
n(E) 
K(E) 

\K(E)J 

fP^+(E,H)\ 
P£+(E,H) 
Pn+(E,H) 

\P2l
+(E,H)J 

fP++(E,H)\ 
P£+(E,H) 
P22+{E,H) 

\Pü+(E,H)J 

/Trace {r ++ (E)rU(E)}\ 
Trace {t++ (E)tU(E)} 
Trace {r_+(£)rl+(£0} 

\ Trace {t_+(E)tl+(E)} ) 

/Trace {r' ++(E)r'l+(E)}\ 

(22) 

Trace {t++ (E%+(E)} 
Trace {r'_+(E)r'l+{E)} 

\ Trace {tf_+{E)t'!_+  (E)} ) 

(23) 

Similarly the zero temperature differential conductance (16) becomes 

aij = [2e2/h][5 i5Nt{Ei) + Ra(Ej) - ^{Ej)]. (24) 
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D    Applications of the two-probe conductance matrix. 

As noted in [Lambert 1991], the two-probe current-voltage relation (20) can 
be used to derive generalisations of both (2) and (3). To further illustrate the 
versatility of the two-probe theory, we now apply it to some typical experi- 
mental measurements. For convenience in what follows, we set 2e2/h equal to 
unity. 

Example 1. The normal limit.  
Consider the structure of figure la, where a scattering region containing 

superconducting inclusions is connected to normal reservoirs at potentials ui, 
v2. In the normal limit, the condensate potential v must disappear from 
the fundamental current-voltage relation (4). As shown below, this occurs, 
because in the absence of Andreev scattering, unitarity of the scattering matrix 
implies that on = -ai2 = -a2J = a22 = T0. Hence equation (20) reduces to 

/1 = -/2 = r0(«i-«2), (25) 

which is simply the Landauer formula (2). 

Example 2. Experiments where /x2 = M- 
Figure lb shows an experiment in which the superconductor and reservoir 

2 are held at the same potential. In this case, equation (20) yields 

—?±— = an = r dE- ^W(£) - ME) + Ra{E)\. (26) 

This experimental configuration is of the type used in tunneling experiments, 
aimed at probing the proximity effect in the vicinity of an N-S boundary 
[Gueron et al 1996]. This result describes any of the structures shown in 
figure 1, provided fi2 — H and is a generalization to disordered and inhomoge- 
neous structures of the boundary conductance formula derived by [ Blonder, 
Tinkham, Klapwijk 1982]. 

Example 3. Experiments where a12 = a2i = 0. 
An example of such an experiment is shown in figure lc, where under sub- 

gap conditions, the presence of a long superconductor (of length greater than 
the superconducting coherence length) prevents the transmission of quasi- 
particles from reservoir 1 to reservoir 2 and vice versa. In this case, combining 
the unitarity condition N?(E) = Ro(E) + Ra(E) with equation (20) yields 

h "WI d*(-^H^         (27) 
(«1 

In common with the current-voltage relation from which it derives, equation 
(27) is valid in the presence of disorder and inhomogeneities and in the presence 
of an arbitrary number of superconducting inclusions of arbitrary geometry. 
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Example 4. Experiments where Ix = -I 2 = I.  
Such a situation is illustrated in figure la. In this case, inverting equation 

(20) yields 

(:;::H(-t  -::)(',) ■        ™ 
where d = ana22 - «12021- Hence the two-probe conductance G — I/(vi — v2) 
takes the form 

G = . (29) 
On + a22 + ai2 + ^21 

As an example of this formula, we note that in the zero-temperature limit, 
where all quantities are evaluated at zero energy, equation (29) can be written 
[Lambert 1993, Lambert, Hui and Robinson 1993] 

G = T° + T- + ^rfA ' <30) 

For a symmetric scatterer, where primed quantities equal unprimed quantities, 
this reduces to G = T0 + Ra, whereas in the absence of transmission between 
the reservoirs, the resistance G_1 reduces to a sum of two resistances G~l = 
{l/2Ra) + (l/2R'a). It should be noted that a combination of particle-hole 
symmetry and unitarity yield at E = 0, T0 + Ta = TQ + T'a and therefore 
equation (30) is symmetric under an interchange of primed and unprimed 
coefficients. 

Example 5. Experiments where I2 = 0. 
As a final example, consider the experiment sketched in figure Id where 

reservoir 2 acts as a voltage probe, with J2 = 0. In this case equation (20) 
yields for the ratio of the voltages 

(V2 - v) _ _£21 
(vi - v) O22 ' 

(31) 

where from equation (21), the coefficient a22 is positive. In contrast, the co- 
efficient a2i is necessarily negative for a normal system, but in the presence 
of Andreev scattering can have arbitrary sign. Hence superconductivity can 
induce voltage sign-reversals which are not present in the normal limit. This 
feature was first predicted within the context of negative four-probe conduc- 
tances [Allsopp et al 1994] and has been confirmed in recent experiments by 
the Groningen group [Hartog et al 1996]. 
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E    The Bogoliubov - de Gennes equation. 

The above formulae relate measurable quantities to scattering matrix ele- 
ments and therefore to end this section we briefly introduce the Bogoliubov - 
de Gennes equation [de Gennes 1989], which forms a basis for computing the 
scattering matrix s. The Bogoliubov - de Gennes equation arises during the 
diagonalization of the mean-field BCS Hamiltonian, which for a non-magnetic, 
spin-singlet superconductor takes the form 

V>t(r') 
i H.„  = Eo + Jdzj dr! (tfffcMto)  H(L,r!) (Jffj j , (32) 

where E0 is a constant, ipa(r) and ipl(r) are field operators, destroying and 
creating electrons of spin o at position r and 

„,      ,,      (5(r-r')H 0(r) A(r,r')        \ ,„, 

I'u (L)\ 
To each positive eigenvalue En of H, with eigenvector *„(r)  =  ( v")~( J 

satisfying 

/*'*<«'>  (:£)>)=*-(:§)■       <M > 
there exists a corresponding negative eigenvalue -En with eigenvector 

*-n(zi) = ( ~V*n( \ )■ Consequently Hejj  is diagonalized by the transfor- 

mation 

ML)\ _x  ̂f un (r)    -v* n (r) \( 7nt \ (g~) 

where to avoid overcounting, only one of *„(r)  or *_n(r) is included in the 
sum over n. 

It should be noted that whereas the Bogoliubov - de Gennes equation (34) 
refers to a model in which the variable r varies continuously, in a tight-binding 
model, the corresponding Bogoliubov - de Gennes equation is 

Eipi =     efipi - 7 Eä i>i+s  + Ajcfo /„„>.  

E4*=   -eih + rZsti+s + AWi K   ' 

where tpi (fa) indicates the particle (hole) wavefunction on site i and i + 5 
labels a neighbour of i. 

As discussed in [Hui and Lambert 1990] and [Lambert, Hui and Robinson 
1993], for a scattering region connected to two crystalline normal leads, the 
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Bogoliubov-de Gennes equation may be solved by means of a transfer matrix 
method, which yields a transfer matrix T satisfying 

(?)-*(£)• <37> 
where O (I) refer to vectors of outgoing (incoming) plane-wave amplitudes on 
the left and O', (I') to corresponding amplitudes on the right, each plane-wave 
being divided by the square root of its longitudinal group velocity to ensure 
unitarity of s. Whereas T connects plane wave amplitudes in the left lead to 
amplitudes in the right lead, the s-matrix connects incoming amplitudes to 
outgoing amplitudes and satisfies 

(S)«(J) <38> 
Once T is known, the s-matrix can be constructed. Indeed if  s is written as 

(39) -a t) 
then T has the form 

T_(Tu    Ta\_(   (ft)" 1      r'it')- 1) m T
-{T21    Tj-y-{t')-lr     (If)-1)   ' (40) 

from which the following inverse relation is obtained, 

i- (~T¥ T?1      T™ 1 ^ (41) \ m-1 TaT£) ■ [U)  

An alternative method of evaluating coefficients in the above current-voltage 
relations is provided by the recursive Green's function method, which uses 
Gaussian elimination to compute the Green's function on sites located at 
the surface of the interface between external normal leads and the scatterer. 
Given the surface Green's function, scattering coefficients can be obtained 
from generalised Fisher-Lee relations [Fisher and Lee 1982], derived by [Takane 
and Ebisawa 1992(a)] and later rederived in [Lambert 1993, Lambert, Hui 
and Robinson 1993]. This recursive technique is identical to the "decimation" 
method employed by [Lambert and Hui 1990] and is essentially an efficient 
implementation of Gaussian elimination. 

A third method of evaluating the coefficient Ra was derived by [Beenakker 
1992] for the case where there is perfect Andreev reflection at the boundary of 
the superconductor. The resulting formula expresses Ra in terms of scattering 
properties of the normal state and facilitates the application of random matrix 
theory to N-S structures [Beenakker 1997]. 
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FIGURE 1. Various generic experimental arrangements used in measuring dc transport in 
superconducting hybrids. The grey area indicates a phase-coherent normal region, whereas 
superconductive parts are marked by a S. The widening open parts at the ends represent 
the reservoirs. 
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Experiments on Proximity Effect 
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Abstract. Long-range correlations are induced in a "non-interacting" metal by the 
presence of a superconducting interface. We review in this lecture recent experiments 
on proximity effect in metallic structures at mesocopic length scale. Transport measure- 
ments in Aharonov-Bohm loop geometry clearly demonstrate that interference effects 
on low energy electrons persist far beyond the normal metal coherence length. We also 
discuss finite bias conductance measurements. It is shown that the conductance of a 
Normal metal - Superconductor hybrid structure is strongly dependent on the energy- 
distribution in the electron reservoirs. For simplicity we focus on high transparency 
S-N interfaces (no tunnel junction) and diffusive metallic wires. 

INTRODUCTION 

The study of proximity effects in normal metal - superconductor structures has 
attracted a considerable interest in the last years [1-3]. The rapid developement 
in nanofabrication is certainly one of the main driving forces. At the same time 
new theoretical concepts from mesoscopic physics have lead to major progresses in 
the understanding of this subject. The renewal of interest on proximity effect in 
the nineties comes after two important periods: the first one, in the "sixties" [4] 
follows the discovery of the BCS theory. Due to the limitation in the technology, 
however, the experimental studies were restricted to the investigation of metallic 
thin film configurations. A second interesting period, in the seventies, was dealing 
with non-equilibrium effects in superconductors [5] where charge imbalance and 
non equilibrium distribution functions were investigated. These ideas are fully  
relevant in the most recent results. The proximity effect also appears as an essential 
elementary constituant of Josephson SNS Junction arrays. 

Pionieer works on proximity effect go back to 1932 when Holm and Meissner 
reported observation of zero resistance between pressed contacts in a SNS geometry 
[6]. It was realized that a supercurrent can flow in a normal metal of thickness 
much larger that a tunneling distance. Later J. Clarke [7] measured a large critical 
current in a Pb-Cu-Pb sandwich with a copper layer thickness of 0.55/um. Magnetic 
measurements revealed the existence of a Meissner current in thick CuNb wires, 
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demonstrating that a supercurrent persists up to 50pm at millikelvin temperatures 
[8] in pure metallic copper. Theoretical studies of this effect started in 1961 with the 
work of Cooper [9]. The so-called Cooper limit  refers to the limit  of a good electrical 
contact between a N film and a S film that are thin and pure enough. In this limit, 
an effective interaction constant was derived from their relative thicknesses. More 
detailed theories were developped later by Werthamer [10], de Gennes [11] and 
MacMillan [12] who introduced the important length and energy scales. Detailed 
reviews on both experimental and theoretical works have been given by Deutscher 
and de Gennes [4] and A. Gilabert [13]. During this period, the main experimental 
concern was the superconducting transition temperature of thin N-S layers and their 
excitation spectra. Critical temperature measurements and tunneling spectras were 
extensively studied in evaporated thin films, in particular by the Orsay Group on 
Superconductivity [14]. The occurrence of a finite gap in the N layer was observed 
although not fully conclusive [15]. Later convincing evidences for the existence of 
an energy gap in the excitation spectrum of a normal metal in proximity with a 
superconductor were given by electronic specific heat experiments of a set of Ag-Pb- 
Ag sandwiches [16]. A very nice activation behaviour was obtained. The magnitude 
of the gap was found to decrease with increasing the thickness of the silver film. 
Ultrasonic attenuation experiments in Cu-Pb sandwiches [17] also revealed the 
existence of a gap. However the characteristic energy scale in the N metal was not 
recognized. 

With the developement of modern techniques such as nano-lithography or scan- 
ning tunnel microscopy more precise studies of length or shape dependence has 
become accessible. The present approach of the physics of proximity circuits fol- 
lows the point of view of mesoscopic physics with strong emphasis on phase-sensitive 
effects. This point of view will  be taken in this lecture. We will  stress the char- 
acteristic lengths and energy scales in a diffusive metal. The fundamental cut-off 
length scale is the phase memory length Lj,. It determines the practical coherence 
length of single electron states. On the other hand the important energy scale is 
given by the correlation energy or Thouless energy Ec = HD/L2 (Here D is the 
diffusion coefficient and L is the length of the sample). Ec is a characteristic energy 
scale for single electron effects. The time needed by an electron to diffuse to the 
boundary of the sample is H/Ec. It is interesting to note that it is this energy 
scale which determine both the energy gap and the critical current in the N metal 
as will  be discussed in this lecture. The term "induced superconductivity in the 
normal metal" could be misleading: there is no interaction and no condensed state 
in the normal metal. A superconductor-like behaviour is observed only because 
correlations are induced far into the N metal by the coherent reflexion at the N-S 
boundary. The energy level separation is much smaller than Ec and only plays a 
role in nanoscopic grains [18]. 

In this lecture we will  discuss simple experimental situations: submicron metallic 
wires (Cu) where electron-electron interaction can be neglected. We will  consider 
the diffusive regime and restrict to "mesoscopic" samples, i.e. samples with size 
smaller than the phase memory length. On the other hand we assume perfect in- 
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terface (no tunnel junction). We will  see that this simplified situations leads to very 
subtle phenomena. Because of long-range coherence of the electronic wavefunction, 
non-local effects are highly important. In the so-called "4-probes" experimental 
configuration for conductance measurements, scattering processes occuring into 
the leads may be significant, even far away from the mesoscopic structure. 

We will  first recall the main relevant features of the Andreev reflexion at the N-S 
interface. We then discuss the conductance measurement with introduction of the 
important notion of spectral conductance. We then discuss briefly a few practical 
experimental points and present experiments which illustrate important features 
of the proximity effect: non monotoneous conductance and magnetoconductance 
periodic oscillations in Aharonov-Bohm geometry. The paper ends with a short 
discussion on supercurrent and density of states. 

BASIC PHENOMENON: ANDREEV REFLEXION 

The basic process in proximity effect is the Andreev reflexion [19] which describes 
the boundary conditions for electron states at the normal-superconductor interface. 

Due to the non-zero superconducting energy gap A, pure electron and hole states 
are forbidden in the S electrode: only pair or quasiparticle states exist in S (Figl). 
Therefore the S interface behaves as a particular "mirror" that reflects low energy 
(e < A) electronic states with special rules. These rules follow from the famous 
Bogoliubov-de Gennes equations [20] for an inhomogeneous BCS superconductor: 

ihdt 

Here H0 is the kinetic hamiltonian describing independent electron states in the 
disordered metal, /i is the chemical potential of the superconductor, cf)e and 6  ̂
are the electron and hole components of the electronic wavefunction and A is the 
space dependent pair potential. This equation is valid in both limit: homogeneous 
BCS superconducting state (uniform A) and normal state (A = 0). If the N-S 
interface is defined as a discontinuous jump of the pair potential from 0 to A, 

<j>e H0- n A 4>e 
4>h A*  -m+n j  . ^h  . 

N 

electrons 
holes 

pairs 
quasiparticles 

FIGURE 1. Andreev reflexion: Electrons and holes are eigenstates in N. The origin of proximity 
effect is e-h correlations induced in N by the pair potential which only exists in S. 
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the continuity conditions of the wavefunction leads to the boundary conditions at 
the N-S interface. An excellent introduction to the physics of Andreev reflexion is 
given in the famous Blonder, Tinkham, Klapwijk (BTK) paper [21]. Let us simply 
summarize the significant features of this process: 

retroreflected hole: The reflexion is not specular. Rather, an incoming elec- 
tron incident from the N side is retroreflected as a hole. As results a pair is trans- 
ferred into S. The reverse process also takes place. For ideal contact (no tunnel 
barrier between N and S) the reflexion of low energy electrons e < A is total. Fol- 
low barrier transparency, this process becomes negligible since the simultaneous 
transfer of two electrons is a process of higher order [22] in the tunneling matrix 
elements. 

electron-hole phase coherence: One of the most important consequences 
of the Andreev process is the phase correlation between the incident electron and 
the reflected hole. The phases are correlated as results of the pairing interaction 
in S where the electron and hole wavefunctions are evanescent. The phase shift 
received by the hole writes e«arc°WAe-i0_ The first contribution reduces to in/2 
at low energy. The second contribution comes from the macroscopic phase q> of 
the superconducting order parameter. Aways from the interface, an additional 
phase shift appears because the electron and hole (energy i counted from the Fermi 
energy) have slightly different wavenumbers. In the diffusive limit, the q-difference 

q Fa e/hvp leads to a phase shift 7r at a distance Lc — JhD/e from the N-S interface. 

Thouless energy. When the normal metal has a finite thickness L, one can 
introduce a characteristic energy beyond which electrons and holes loose their phase 
coherence. The energy at which Lc = L is actually by definition the Thouless 
energy Ec = HD/L2 in the diffusive limit. Here D is the diffusion coefficient 
in the normal metal. For energies below Ec, the phases of electrons and holes 
are correlated in the whole sample length L. When the energy scale is fixed by 
a reservoir's temperature T, this condition defines the thermal diffusion length 
LT = JhD/2nkßT: correlations are suppress when L > Lj. This situation is 
similar to the case of universal conductance fluctuation [23]. 

Pair amplitude: The elementary reflexion process can be equivalently de- 
scribed as an exchange of electron pairs between N and S. An incident electron 
with wavenumber kp + q/2 combines with an electron of wavenumber kp — q/2 to 
form a pair in S leaving a retroreflected hole on the N side. This pair injection has a 
reverse process: A pair (kp + q/2, —kp + q/2) penetrates from the superconducting 
side into the N-conductor. The electron-hole correlation in N is suitably described 
by a non-zero pair amplitude F [24]. At the N-S boundary, the pair amplitude 
is fixed by the above phase relation condition. At large distance, F decays with 
the energy dependent characteristic length given by Le, which is very long at low 
energy. It is worth noticing that there is a finite pair amplitude in the N metal, 
although the interaction constant is assumed to be zero. This is one of the remark- 
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able features of the proximity effect: long-range electron correlations exist in the N 
metal in the absence of interaction. The quasiclassical approach used in this paper 
relies upon the spatial and energy dependence of the pair amplitude function. 

Charge transfer: The conservation of normal current at the N-S interface 
requires full  self-consistent treatment of the gap in S. As the normal current decays 
over a length scale given by £,, a supercurrent carried by the superconducting 
condensed state (which must have a phase gradient) increases over the same length 
scale. 

Supercurrent : In S-N-S circuit, Andreev reflexion gives rise to the so-called 
Andreev bound states [25,26] which carry a current without voltage at equilibrium. 
This current which depends on the phase of the order parameters is at the origin 
of the Josephson coupling through a N conductor. It is of same nature as the 
persistent current [27] which takes place in mesoscopic rings. 

Disorder : The role of disorder is crucial in the description of interference effects 
in the normal metal. In Ref [28], Van Wees et al. gave a very clear semiclassical 
description the constructive quantum interferences induced by multiple reflexion 
at the interface. This effect also discussed quantitatively in Ref [29] is the origin 
of zero bias conductance enhancement in high conductance N-I-S tunnel junctions 
[30,31]. 

CONDUCTANCE IN MESOSCOPIC N-S 
STRUCTURES 

Unlike the Josephson effect or the magnetic susceptibility, the electrical conduc- 
tance is a non-equilibrium effect which requires imbalance of electron distribution 
functions. The mesoscopic conductance is defined from the chemical potential of 
electron reservoirs. 

The prototype of proximity circuit is a N wire in perfect electrical contact with 
both a massive N electrode and a massive S electrode (see inset of Fig 2). The 
N electrode is considered as a perfect "reservoir" characterised by an equilibrium 
electron distribution function with temperature T and chemical potentials /.i^ = 
eV. Strong electron interaction is assumed in order to ensure a "black-body" 
distribution. Also inelastic processes must be frequent enough to destroy phase 
coherence. The S electrode, fis — 0, only provides a perfect boundary conditions 
given by the Andreev reflexion (perfect "Andreev mirror"). Because of the chemical 
potentials difference eV, electrons flow through the N-wire giving a net current 

In the simplest approximation, we assume no inelastic collision. The total current 
is the sum of currents carried independently by the different energy states: 

= - r gWfWe e J-oo 
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with Sf(e) = \[fe{() - fh(e-)] being the charge imbalance induced by the voltage 
bias of the reservoir. 

g{t) is called the spectral conductance of the wire. In absence of superconductiv- 
ity and quantum interferences effects, g(e) = G0 is energy independent and reduces 
to the ohmic conductance of the wire. On the other hand, the integral over energy 
of 6f(e) is simply eV and Eq 2 reduces to the Ohm's law. 

Differential conductance: The temperature and voltage in a finite bias mea- 
surement are properties of the electron reservoir. The peculiar effects of microscopic 
parameters such as geometry, tunnel transparency, gap, enter in the spectral con- 
ductance g(e). Using Eq 2, the I-V differential conductance is readily derived from 
the spectral conductance and the chemical potential of the N reservoir. G{T, V) 
measures the contribution of the energy window (eV, eV + e5V): 

rlf        r°° 
G(T, V) =  ̂= J_x 9(c)dv5f(e, T, V)de (3) 

At zero temperature, the derivative dvf becomes a delta function centered at the 
chemical potential of the reservoir. The zero-temperature differential conductance 
is a direct measurement of the spectral conductance G(eV). At zero bias (V - 0) 
and non zero temperature, the conductance G(T) is the result of the convolution 
of the spectral conductance by a thermal kernel [4fcsTcosh2 e/2fcßT]_1. Here kg is 
the Boltzmann constant. 

spectral conductance from quasiclassical model: In general the calcu- 
lation of g(e) is delicate and requires specific models [32]. It is a characteristic 
quantity of the mesoscopic circuit. Here we will  see that the strong energy de- 
pendence of g(e) leads to spectacular temperature dependence of zero bias conduc- 
tance as well as strong non-linearities in the finite bias conductance. The different 
modern approaches have in common the boundary condition at the N-S interface 
which is governed by the Andreev reflexion. The scattering matrix theory has 
been extensively used to compute g(t) in various circuits. Although less "physi- 
cally transparent", the quasiclassical Green function method (referred to as Usadel 
equation when considering the diffusive limit) has proved to be very useful and 
predictive [32,33,36]. In the non-interacting case this theory provides two sets of 
equations that we write here in the one-dimensional and zero magnetic field limit. 
In contrast to the Ginzburg-Laudau equations which describe the tail of the order 
parameter near the superconducting phase transition, the Usadel equations deal 
with the energy-dependent pair amplitude and are valid at any temperatures down 
to T=0. 

1. A first equation for the pair amplitude F(c,x) describes electron-hole cor- 
relations induced by the Andreev reflexion. Using the complexe variable 
0 = 9\ + i$2 defined by F — i sin 9, the simplest formulation is [33]: 

„ ,„     \2ic      cos 9]   .   „ 
dx

2e+   FFT--J1-  sin0 = O 4) 
nD       Li 
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with boundary conditions 6 = 0 at the N contact (a; = L) and 0 — n/2 + 
j'tanh_1(e/A) (->■ 7r/2 at e < A) at the S contact (x = 0). It is worth 
noticing that the energy gap only appears in this boundary condition: it is 
of no significance in the low energy case. As can be seen this equation is 
independent of the distribution functions. In the limit  of small pair amplitude, 
it can be linearized (sin0 ra 0, cos# « 1) giving a diffusion-like equation for 
F(e,x) with a cut-off length given by the phase memory length L^.   The 

characteristic diffusion length, given by Lc - yj^f- describes how the pair 
amplitude decays in the normal metal. Equilibrium properties such as density 
of states or Josephson current can be derived from the function 0(e) [33,35]. 

2. A second equation gives the local normal current: 

1 
7/v(e, #) = -OTvcosh 92(t,x)\78fe e 

(5) 

This equation is nothing else that a (local) diffusion law for the excess charges. 
It involves the gradient of the charge imbalance, in contrast to Eq 2. The 
prefactor describes the renormalized diffusion coefficient which is a function 
of the pair amplitude F(e,x) through the imaginary term 62- 

Let us emphasize that both equations are local equations: each segment dx of 
the wire can be viewed as having its "local conductivity" enhanced by the factor 
cosh2#2 > 1- As already stressed the origin of this enhancement is the (non-local) 
e — h correlations which originate in the superconducting electrode. The spectral 
conductance of a circuit can be determined from a very simple rule: a) Solve Eq 4 at 
each point x of the circuit using the appropriate boundary conditions: this provides 
9(e, x) and the local conductivity, b) use classical circuit equations to determine 
the total spectral conductance. 

From simple algebra, it can be shown that for infinite L^, 02 is a simple non 
monotonic function of x/Lc with a maximum at x = jl e. It is zero at both S 
(x — 0) and N (a: = L) contacts.   The spectral conductance #(e) is obtained 

1.1 - 

1 

- / 

N—S 
0 5.2 e/E„ 25. 

FIGURE 2. Spectral conductance of a N wire in contact with a S electrode, as calculated using 
Usadel equations with e«A. Here Ec <g A. Dotted line: linear approximation. Inset: schematic 
of the circuit. 
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from integrating over spatial coordinate x In Fig 2 we have plotted the spectral 
conductance as function of energy in units of the Thouless energy. Here L^ is 
infinite. Also shown in Fig 2 is the solution of the linearized Eq 4. It differs by 
less than 5% from the exact solution, which means that in many cases, the main 
physical features can be obtained from linearized solutions. The conductance shows 
a maximum about 15% above the normal state conductance at e w 5.2EC. The 
most remarkable feature is the suppresion of proximity correction at zero energy: 
g(e = 0) = gN- This statement which was first noticed by Lambert and Beenakker 
[37,3,38] means that the zero temperature conductance of a N-S device should be 
unchanged when S is replaced by N. 
G{T) has a peak at temperature T fa 5Ec/kß and returns quadratically to GN at 

vanishing temperature. The high temperature behaviour shows algebraic temper- 
ature dependence G(T) fa GN^Ec/kBT fa GNLTjL. This result is consistent with 
the intuitive view of the proximity effect where one just "remove" a length Ly from 
the normal conductor. The T-1/2 law was first explained by Zhou and Spivak [33]. 
The suppression of proximity effect at zero temperature is far less intuitive. We 
will  see that the experiments show this effect also called "re-entrance effect". 

The above discussion can be readily extended to more complexe circuits such as 
multiterminal devices. A matrix spectral conductance must be introduced. The 
angle 6(x, e) defined in Eq.4 is a very useful parameter for the proximity effect in 
N-S structures [39]. 

EXPERIMENTAL CONSIDERATIONS 

Choice of the geometry: Various geometries have been used experi- 
mentally in order to identify the role played by the different elements of the circuit. 
Many crucial experiments have been published in the regime where the measured 
conductance is limited by that of the N-S tunnel junctions [30,31].   They have 

1 -El       H^o—H  
c 

5" 

b d 
FIGURE 3. Example of measured circuits: a) T-shaped circuit, b) Phase-sensitive circuit: the 
conductance between Nl and N2 is measured vs the phase difference between Si and 52, c) 
Aharonov-Bohm loop circuit: here the proximity effect is induced by a single S contact. Phase 
sensitivity is measured by flux dependence of the conductance; d) Separate current (I) and voltage 
(V) contacts as modelized as a single reservoir. 
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revealed in particular that the tunnel conductance is strongly modified by the co- 
herent electron scattering in the diffusive conductor. 

We focus here on circuits without tunnel junctions and where the transport is 
dominated by the conductance of the metallic conductor. For example, in the T- 
shaped circuit shown in Fig.3a the conductance is measured between N\ and N2, 
away from the N-S interface. We will  discuss experimental results on this circuit. 

-Phase-sensitive circuits: In order to test for sensitivity of the conductance 
to the superconducting phase, circuits such as that shown in Fig. 3b have been 
studied both experimentally [40-42] and theoretically [37,36]. Here the 2-leads 
conductance in the N\ — n — N2 horizontal part of the circuit are measured vs the 
phase difference between Si and S2. An alternative way of investigating phase- 
sensitivity uses an Aharonov-Bohm loop (circuit shown in Fig.3c). Here the phase 
is tuned by the magnetic flux in the loop. 

-Non ideal reservoirs, 2-probes vs 4 probes: Since in proximity struc- 
tures the spectral conductance is strongly energy-dependent, the transport prop- 
erties are expected to be highly sensitive to the energy distribution of the electron 
sources, i.e. the reservoirs. As discussed above, the standard "mesoscopic" config- 
uration for transport is a conductance measurement between two reservoirs. The 
practical realisation of ideal reservoirs is an easy task when the reservoir is weakly 
coupled to the circuit, for example with a low transparency tunnel junction, or 
when the circuit is a semiconductor with metallic contacts. For strong-coupling 
metallic circuits however (see picture in Fig.4) the reservoirs are made of broad 
two-dimensional electrodes. We will  see that the experiment may show strong de- 
viations with respect to ideal behavoir of the reservoirs: Firstly, Joule effect takes 
place in the leads and change the effective temperatures of "injected" electrons. 
Secondly, the inelastic processes are two slow in the metallic electrode to guarantee 
a "blackbody" distribution funtion. Both effects result in a broadening and shifting 
of the energy distibution function of injected electrons. In a geometry such as that 
shown in Fig.6 a four-probe experimental configuration is used. For analysis as a 
two probe systems, this configuration can be approximated by the circuit shown in 
Fig 3c: the pairs of leads (I+,V+) and (I~, V") being modelized as independant 
reservoirs as shown in Fig 3d. This assumption is perfectly valid for zero bias ex- 
periments. It breaks down at very low temperature in finite bias experiments. In 
that regime subtle multiterminal effects [47] takes place. 

Practical realizations: The main criteria for sample fabrication are the 
following (we restrict here to metallic proximity circuits): 

• The circuit is "mesoscopic", or coherent: Accordingly, the length must be 
smaller that the phase memory length L$. L4 is temperature dependent and 
saturates at very low temperatures [43] to a value ranging from about lOOnm 
for very disordered metallic alloys to several micrometers for pure metals such 
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as Cu, Ag,   The suppression of proximity corrections has been recently 
discussed for a semiconducting proximity circuit [44]. 

• The length must be of order of the thermal length LT. This condition is 
identical to the condition that the thermal energy kT must be comparable to 
the Thouless energy Ec. With typical diffusion coefficient D « I50cm2/s, Lj 
is of order of 130nm at IK and 0.6pm at 40mK. 

• A third constraint is the quality of the S-N interface. For optimum metallic, 
contact, this means that residual oxides must be avoided between N and S. A 
practical characterization of barrier transparency is the equivalent length Lt 

of the barrier, i.e. the length of normal metal having the same conductance as 
the barrier. Good metallic contact means Lt much less than the sample length 
[33]. 

Two alternate methods are used for sample fabrication.  In both case, the sub- 
micron size constraint imposes high resolution e-beam direct writing: 

• The shadow evaporation technique [45] with bilayer or trilayer lift-off  resist 
masks allows self- alignment of submicron wires. Using a two-axis rotating 
sample holder it is possible to deposit selectively and subsequently different 
materials in a ultra-high-vacuum environment [56]. This method uses one 
single lithographic process, does not require sophisticated nanofabrication e- 
beam machine and has shown particularly effective for single-electonic device 
fabrication. Unfortunately it is restricted to simple circuits. A possible dis- 
advantage is the risk of contamination or material re-deposition between the 
stencil mask and the substrate [46]. 

• A more powerful technique uses sequential e-beam lithography steps with high- 
accuracy repositionning (better than lOOnm). Since the sample has to be 
removed from the evaporation chamber between each step, it is necessary to 
perform in-situ cleaning of the metallic surface before deposition of the upper 
layer. The samples shown in Fig.4 and 6 were fabricated using 500 eV Ar+ 

ions to remove a few atomic layers of copper before Al evaporation. 

Measurements are performed in a fi -metal shielded dilution refrigerator. Particular 
care must be taken in filtering all electrical circuits against radiofrequency noise 
at the input of the cryostat. Simple L-R-C filters in hermetically sealled boxes 
are suitable. Most experiments on proximity effect have been performed on single 
mesoscopic circuits. This was considered esssential in order to test sample depen- 
dent vs ensemble averaged contributions. In the investigation of ensemble average 
effects such as some manifestations of the electron-hole coherence, experiments on 
arrays could greatly enhance the signal to noise ratio. 
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ILLUSTRATIVE EXPERIMENTS 

Here we present a selection of experimental results which illustrate some impor- 
tant aspects of proximity-enhanced conductance in mesoscopic structures. 

-T-dependent excess conductance: The sample shown in Fig.4 
were designed in order to reveal "re-entrance" effect, i.e. the suppression of prox- 
imity conductance at very low temperatures [47]. This T-shaped configuration 
allows measurements "without interface". The only physical interface is between 
the vertical Cu arm and the superconducting electrode. For the measured sam- 
ples Lt is of order of one tenth of the sample length. This geometry also allows 
multi-terminal measurements. The Cu diffusion coefficient is D = 30cm2/s and 
the (elastic) electron mean free path is 6nm. The Thouless energy (referred to the 
length L) is Ec s=s 12/iV which corresponds to a "Thouless temperature" of 140 mK 
easily accessible in a dilution refrigerator. Ec is much smaller than the energy gap 
of the Al electrode (A = 190pV). 

-zero bias: Fig.4 shows the zero bias differential conductance measured between 
Ni and N2 as function of temperature. As the temperature decreases one first 
observes a jump in conductance near the critical temperature of aluminum (Tc = 

600 
T(mK)  

FIGURE 4.  Top:   Electron micrograph of the T-shape sample.   The nominal length of the 
Cu wire between the two N-reservoirs is L = 400nm.  The three arms of the T-shaped copper 
have same nominal length £/2.   The cross-section is (width x thickness) 80 x 50nro2.   The 
normal resistance is RN — lO.lfi  (GJV = 0.0995) at l.SK.   The interface resistance is about 
Id.  Bottom: Zero-bias conductance vs temperature.   In comparison Usadel theory with finite 
temperature-independant gap. Above: micrograph of the sample in the two-probe geometry. The 
measurement current is 200nA. 
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1.25K). The conductance then increases to a maximum near 400mK and finally 
decreases at very low temperature. This non-monotonous behaviour is somehow 
paradoxical since this is precisely the temperature where the thermal length exceeds 
the sample length, or equivalently when the proximity region invades the whole 
sample. 

This re-entrance effect is the consequence of the peak shape of the spectral con- 
ductance. The theoretical curve in Fig.4 has been obtained from Usadel equations 
with optimized parameters in order to fit  simultaneously the conductance between 
Ni and JV2 and the conductance between Ni and S (not shown). The best fit pa- 
rameter is Ec = Ib.bfiV. As can be seen both the peak position and the peak 
amplitude are well accounted for. This measurement is a clear illustration of the 
"thermal effect" discussed by Nazarov [39]. The large amplitude of this quantum 
contribution to conductance is quite remarkable: It exceeds the usual unit of quan- 
tum corrections (weak localization or conductance fluctuations), the conductance 
quantum e2/h, by about 2 orders of magnitude. However the physics - quantum 
interference of electron trajectories - is the same. Since the N-S contact is separated 
from the measurement circuit, the behaviour near the superconducting transition 
is well identified: the conductance step at Tc is not due to a short-circuit by a pair 
current, rather it is due to the change in spectral conductance as the energy gap 
appears in the superconducting electrode. The theoretical curve does not describe 
the details of the transition region: the closure of the gap at Tc was not taken into 
account in the calculation. More important is the discrepancy between theory and 
experiment at very low temperature. The observed conductance does not return 
to the normal state conductance at T ->■ 0 in contrast to the prediction of the non 
interacting theory. A simple explanation in terms of incomplete thermalization of 
the electrons, i.e. temperature shift between the electrons and the thermometer, 
does not seem sufficient to explain the low temperature [47] behaviour. Whether or 
not it is related to electron-electron interactions [36] still remains to be elucidated. 

-Non-linear conductance: Following Eq 3, the zero-temperature finite bias 
conductance is a direct measurement of the spectral conductance. Fig 5 shows the 

0.102 - 

G,2(S)    0.101   - 

0.099 
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V(jiV)  
FIGURE 5. Same sample as in Fig.4: Finite bias conductance at 50 mK. Continuous line: exper- 
iment, dashed line: theory with ideal reservoirs, dotted line: theory with hot electron distribution 
in the N-reservoirs. 
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experimental differential conductance measured at 50mA' as function of the bias 
voltage. As expected, a peak is observed at finite bias V « 40/iV which is of order 
of the Thouless energy. In fact the observed peak position is shifted as compared 
to the expected value. The dashed line in Fig 5 is the theoretical conductance as 
calculated assuming ideal reservoirs. It is believed that the discrepancy is due to the 
non-ideal electron distribution in the normal reservoirs. A hot electron distribution 
function with effective temperature Tej;  oc V provides a much better agreement ( 
Fig 5 dotted lines). 

The high sensitivity of the conductance to the electron distribution functions 
gives rise to spectacular effects when electrons are injected from other terminals. 
For example the above measurements have been carried out with an additional bias 
current injected from the S electrode. P. Charlat [47] has completed a consistent 
analysis of the different combination of three terminal transport measurements: 
the whole data can be consistently understood by a model in which the T-shape 
sample is characterized by the spectral conductances <7i,<72 and g% of the 3 branches. 
The temperature or bias dependence are derived from the reservoirs distribution 
functions. The data shown in Fig4 and Fig5 show how well the simple model 
accounts for the experiments. 

Phase-Sensitive conductance: We have seen that the theoretical 
models describes the temperature dependence of the excess conductance. Extensive 
studies of phase sensitive configurations has been carried out in the last years in 
order to demonstrate that this is an interference effect [40,41,50]. Presently there 
is a general agreement between the different phase sensitive experiments on both 
the amplitude and the main period (2n) of the magnetoconductance oscillations. 
Both h/e and h/2e periods in magnetic flux have been observed. The possible 
occurence of intrinsic h/4e periodicity seems less clear: the experimental observa- 
tion in Ref. [40] has be explained in terms of 27r-periodic proximity effect for the 
peculiar geometry of the circuit [48]. 

1000, 
750, 

500, 
250, 

dI/dV(S)°. 

FIGURE 6. 3D view of the magnetoconductance as function of temperature. The increase of 
conductance takes place in the (H,T) domain where the Aluminum bar is superconducting. The 
critical field is close to 60raT. Note the periodic oscillations with period 8.3mT which corresponds 
to a flux period h/2e in the normal loop. Inset: micrograph of a a = O.bfim Cu Aharonov-Bohm 
square loop with a single superconducting contact. The Cu cross section is 25x50nm. 
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We present some experimental results on an Aharonov-Bohm geometry [49]. 

-Magnetoconductance: Fig6 insert shows a micrograph of a sample with a 
square loop of side a = 0.5/tzm and cross section 25x50nm. The superconducting 
contact is provided by an aluminum bar superposed onto the Cu wire. The magne- 
toconductance of this sample is shown in Fig 6 on a 3D plot vs temperature. The 
(H,T) region where the proximity effect enhances the conductance is bounded by 
the superconducting critical line (H,T) of the aluminum bar and forms a plateau in 
the figure. The zero temperature critical field of about 60mT is that expected for 
an evaporated Al strip of width « lOOnra. From the geometry and the diffusion 
coefficient in this sample we estimate Ec < 0.5fiV which is about 30 times smaller 
than in the above T-shape sample and much less than kßT. No conductance peak 
is observed. 

The interesting feature is the presence of periodic oscillations up to the critical 
temperature. The period 8.3raT corresponds to a superconducting flux quantum 
h/2e in the loop area 0.25/im2. These oscillations persist as far a the Al island is 
superconducting. They suddenly disappear when the magnetic field exceeds the 
critical field. Then only conductance fluctuations are observed. These fluctuations 
(not shown in Fig6) have a characteristic amplitude of order of the conductance 
quantum e2/h and periodicity h/e. The presence of sample-dependent conduc- 
tance fluctuations confirms that single electron trajectories are coherent over the 
perimeter of the loop [23]. _ > 

-    0.1 
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FIGURE 7. Left: Measured temperature dependence of the conductance at different values 
of the magnetic flux in units of the flux quantum: <j>l<j>o  = 0; 1/2; 3/2; 2; 3.8; 5.6; 7.4. Right: 
Calculated conductance for the same flux values. The sample is modelized as shown in the inset. 
The arrow shows the location (K) where half flux quantum enforces a zero pair amplitude. The 
zero-magnetic phase breaking length is taken to be infinite. 
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Fig 7 shows detailed results on a sample with similar geometry but larger cross 
section Cu wires where the Thouless energy is larger [49]. Here Ec « l.l^V. The 
temperature dependence of the conductance is shown for several values of the mag- 
netic field in the loop. On this scale the conductance peak is hardly distinguishable 
around 60 mK (see upper trace). At half flux quantum the conductance maximum 
is shifted to 500mK. At one flux quantum, the conductance curve is close to the zero 
flux value. At higher magnetic flux, the conductance peak is displaced to higher 
temperatures and the periodic modulation is progressively suppressed. Hence, the 
magnetic field has two effects: (i) a periodic oscillation of the conductance and of 
the peak position; (ii) a monotonous shieft of the peak to higher temperature. 

These observations can be explained from a very simple application of the above 
Usadel equations. We first modelize the sample as shown in the inset of Fig7b. 
The most important contribution coming from the part on the right hand side of 
the loop (SKN). At zero magnetic flux the loop is ignored. At half flux quantum, 
destructive interference in the two arms of the loop suppresses the pair amplitude 
at point K. 

An additional effect of the magnetic field is the renormalization of the phase 
breaking length due to the finite width of the Cu wire: 

L-/(H) = Lf(0) + ^-^f (6) 
rf  'o 

When smaller than the sample length L, the phase memory length L^{H) plays 
the role of an effective length of the sample. As results, the maximum is shifted 
to higher temperatures as the magnetic filed is increased. Fig 7 right shows the 
calculated conductance using this simple model. Indeed the main features of the 
experimental data are qualitatively reproduced. A detailed theoretical analysis of 
circuit with similar loop geometry has been worked out recently by Golubov et al 
[51]. 

- Power law 1/T oscillation amplitude: The difference between traces 
at zero and half flux quantum provides the amplitude of the magnetoconductance 
oscillations. A clear 1/T power law is found in various samples [50,49] (see Fig 8 be- 
low. Actually the relative amplitude is of order of Ec/kT at IK. The observed 1/T 
behaviour is an important result which can be obtained from the Usadel Equations 
in the loop geometry. It illustrates the fact that in the high temperature regime 
(kT ^> Ec), the fraction Ec/kT of the electron distribution contributes to the in- 
terference effect. This ratio which also writes Ly/Z/2 can be seen as the fraction of 
electron pairs that maintain phase coherence over the N-metal after diffusion from 
the S-electrode. 

-Pair current: Josephson effect is irrelevant in a sample with a single su- 
perconducting electrode. To compare the contributions of supercurrent with the 
previously discussed conductance, we present some features of the data obtained 
on a sample with 2 superconducting electrodes [50]. 
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Fig 8 inset shows the micrograph of a Cu loop with two symetric superconducting 
Al bars. As previously described two pairs of normal I and V reservoirs are used to 
measure the conductance. The high temperature behaviour of the sample resistance 
is similar to that of the previous sample. A striking difference appears in the low 
temperature regime kT < Ec: the observed conductance suddenly increases as 
a Josephson current appears between the two superconducting electrodes. The 
corresponding critical current Ic is shown in Fig 8 as function of temperature. As 
expected, Ic is suppressed at high temperatures. The critical current data reveal 
specific features of the "long SNS junctions". Here long junctions refers to the 
condition L > £s* or equivalently A » Ec. The ruh product is not limited by 
the superconducting energy gap but instead by the Thouless energy [50,56] which 
is much less than A. Here r^ = 51ft and rjql c « 7.5/uV. This behaviour, together 
with an unusual temperature dependence can be explained using the quasiclassical 
theory [57]. 

On the other hand, Ic is 100% modulated by the magnetic flux. This behaviour 
is reminiscent of a superconducting quantum interference device (SQUID) although 
the present mesoscopic geometry strongly differs from the classical design. 

DISCUSSION AND CONCLUSION 

In this lecture we have presented a few experiments which show how transport 
phenomena are modified in a diffusive metal by the proximity effect. In the the- 
oretical description we have emphasized the role of quantum interferences in the 
"mesoscopic" normal metal. The role of the superconductor being simply that of 
a "mirror" which gives rise to very particular boundary conditions known as the 
Andreev reflexion. From the experimental point of view, it is crucial to have a well 
defined electron distribution, in particular in finite bias experiments. This is the 
role of electron reservoirs. 

It appears that in conductance measurements, the "normal metal coherence 

800 1200 
T (mK) 

FIGURE 8. Coexistence of Josephson current and excess conductance. Left scale:temperature 
dependence of the critical current. The dashed line is a guide to the eyes. Right scale: Tempera- 
ture dependence of the amplitude of the hjlt magnetoresistance oscillations. The dashed line is 
a 1/T fit. Inset: micrograph of a sample of similar characteristics. The whole sample is copper, 
except the two superconducting Al islands 
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length Ly" is not a cut-off length as it is the case in either in persistent current 
experiments [27] or in equilibrium Josephson pair current [11,25,26]. The excess 
conductance has a large amplitude that is of same order as the normal conduc- 
tance itself. As a result, it hides the weaker contributions due to weak localization 
effects [58]. The so-called re-entrance effect, namely the suppression of the excess 
conductance at zero temperature is now well established experimentally (see Fig4). 
This effect is well accounted for by the different theoretical models. It still calls for 
a simple physical explanation. One could be tempted to invoke the suppression of 
superconductivity by the tight contact with the normal metal reservoirs. In fact 
tunneling experiments [59] as well as the theoretical models shows that the density 
of states is strongly affected at low energy. One may ask the question: does the 
loop shown in Fig 6 sustain a supercurrent? That experiment has not been done. 

There is another situation where a re-entrance effect has been observed. The 
magnetic susceptibility of a normal metal cylinder with a superconducting core 
[65] shows a suppression of the Meissner effect at very low temperature. Experi- 
ments have been carried out at ultralow temperatures (microKelvin) on clean bulk 
NS cylinders. A typical sample is an Ag cylinder in good electrical contact with 
a superconducting Nb core. The external diameter is of order of 10 to 20 mi- 
crometers. The combination of large mean free path (ballistic regime) and very 
low temperatures results in huge thermal length Lj. These systems exhibit "meso- 
scopic" effect at unusually large length scales. This re-entrance effect appears under 
conditions similar to the that discussed here, namely when LT exceeds the sample 
size. Let us note that the magnetization is an equilibrium property. It is likely 
of a different nature from that discussed here on a conductance experiment i.e. in 
a non-equilibrium situation. The observed features which are beyond the present 
understanding of proximity effect, calls for new theoretical developments and also 
for new experiments. 

We have briefly discussed an experiment involving coexistence of a Josephson 
current with dissipative transport from normal reservoirs. This situation differs 
from the classical SNS junctions where N is a short bridge coupling two supercon- 
ducting banks. The classical SNS junction is the basis of Josephson devices [11,52] 
and arrays of overdamped Josephson junctions [53,54]. Those devices are very use- 
ful since they are easier to control than tunnel devices. The Josephson coupling in 
a short SNS junction is usually modelized as a phase dependent inductance with 
shunt resistance given by the normal state resistance r^. The mesoscopic point of 
view of SNS junctions is more subtle when dissipation effects and non-equilibrium 
situations are considered. We have seen that the Thouless energy Ec controls both 
the excess conductance and the Josephson current. In also controls the density 
of states in the normal metal: Recent tunneling experiments on a mesoscopic N-S 
wire demonstrated strong depression of the density of states in the N region [59]. 
In the structure studied in ref [59] the N metal is an "open" system where electrons 
(holes) are not confined. A true energy gap is not expected. In a "closed system", 
detailed calculations [60,61] predict the existence of a true minigap given by the 
Thouless energy and independent of the superconducting energy gap. This could be 
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surprising since Ec is typically a single particle property in the normal conductor. 
In fact "induced superconductivity" in a normal metal is a boundary effect. A non 
local interaction exists via the tail of electron wavefunctions in the superconductor. 
The Thouless energy precisely fixes the energy range where boundary effects are 
important. 

The experimental study of pair current in SNS structures need clearly more at- 
tention. For example interesting predictions of negative pair current(7r — junction) 
have been made by Volkov [62] for a SINIS junction when the states in N are driven 
out of equilibrium by a normal current. There is also a set of theoretical prediction 
in the case when N is a ballistic billard [64,63]. The subject of SNS calls for new 
experimental developments. 
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