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We study the dynamics of current-biased Josephson-junction arrays with a magnetic penetration
depth λ⊥ smaller than the lattice spacing. We compare the dynamics imaged by low-temperature
scanning electron microscopy to the vortex dynamics obtained from model calculations based on
the resistively-shunted junction model, in combination with Maxwell’s equations. We find three
bias current regions with fundamentally different array dynamics. The first region is the subcritical
region, i.e. below the array critical current Ic. The second, for currents I above Ic, is a “vortex
region”, in which the response is determined by the vortex degrees of freedom. In this region, the
dynamics is characterized by spatial domains where vortices and antivortices move across the array
in opposite directions in adjacent rows and by transverse voltage fluctuations. In the third, for
still higher currents, the dynamics is dominated by coherent-phase motion, and the current-voltage
characteristics are linear.

PACs.: 74.50.+r, 74.60.Ge

I. INTRODUCTION

Studies of Josephson-junction arrays are of interest to
model vortex dynamics as well as for their application in
superconducting electronics [1]. Most experimental re-
sults dealing with (vortex) dynamics in 2D arrays were
obtained by measuring the current-voltage (I-V) charac-
teristics. Such measurements do not give the spatially re-
solved information needed for an unambiguous determi-
nation of the detailed microscopic dynamics underlying
the measured response. By contrast the low-temperature
scanning electron microscopy (LTSEM) is a technique
that allows for spatially resolved investigation of the dy-
namical states in superconducting systems. As such it
offers the possibility to determine the microscopic nature
of the dynamics, if one correlates the experimental in-
formation with the microscopic dynamics obtained from
model calculations.
Here we present both experimental images and the-

oretical vortex dynamics results in dc-biased 2D classi-
cal arrays (i.e. with a Josephson coupling energy EJ

much larger than the charging energy Ec) with high
damping and a small magnetic penetration depth, and
in zero applied magnetic field. We gain detailed in-
sight in the spatially resolved vortex dynamics by supple-
menting and comparing the LTSEM results to those ob-
tained from model calculations employing the resistively-

shunted junction equations together with Maxwell’s
equations. Due to the small magnetic penetration depth
of our samples, the applied dc current gives rise to
strong induced magnetic fields at the edges of the arrays.
These fields in turn facilitate the penetration of (current-
induced) vortices at the edges. In this respect there is
some correspondence between inductive overdamped ar-
rays and continuous superconducting thin films. Both
systems show a current-induced resistive state due to the
nucleation of vortices of opposite vorticity at opposite
ends of the sample and subsequent vortex motion into
the sample, as is described for superconducting bridges
in References [2,3].

We include the mutual inductances between array cells
in order to take into account the self-induced fields in
the model simulation. We use an algorithm developed
recently in Ref. [4], that takes into account an approx-
imate full-range inductance matrix. A particularly in-
teresting region of array dynamics is the current region
slightly above the array critical current. There we find
an intricate structure in the I-V curves [5–8]. Recent re-
sults of LTSEM experiments in this current region were
interpreted in terms of the collective motion of current-
induced vortices [5]. Subsequently the detailed form of
this motion was found to be in close agreement with
preliminary results of numerical investigations, that take
into account inductive effects [9].
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The aim of this work is to provide insight into the ar-
ray dynamics underlying the structures found in the I-V
curves over the whole current range. To achieve this goal
we compare the experimental imaging results to graphical
animations of the time-evolution of the spatially resolved
vortex pattern distributions obtained from our model cal-
culations. In addition, we define and calculate a number
of order-parameter-like quantities that characterize the
nature of the microscopic dynamics. The main conclu-
sion is that we can distinguish three different regions in
the array dynamics: the subcritical region (I), the vortex
region (II), and the region of constant differential resis-
tance (III). In region (I) the array is in a zero-voltage
state. Region (II) is dominated by (collective) vortex
dynamics, contributing to the structure of the I-V char-
acteristics. In contrast, in (III) the array dynamics is
characterized by a ‘nearly coherent’ behavior of the junc-
tion phases. In Section II we describe the samples and
the imaging technique. In Section III we introduce the
model equations and the quantities calculated. In Section
IV the experimental measurements and the model calcu-
lation are discussed and compared. Our conclusions are
presented in Section V.

II. EXPERIMENTAL TECHNIQUES

A. Samples

The samples used for the present studies consist of
two-dimensional arrays of Nb/AlOx/Nb junctions with
square elementary cells. The junctions are square with
an area of about 18 µm2. We used 6×6, 10×10, and
20×20 arrays without a ground plane and 10×10 and
20×10 arrays with a superconducting PbIn ground plane
placed at a distance to the array of about 1 µm. Here
an N × M array denotes an array that has N columns
of M junctions. The lattice spacing a is 16.7 µm. Each
of the junctions is externally shunted by an ohmic re-
sistor Rs ≈ 1.5 Ω to decrease the McCumber parame-
ter βc = 2πicR

2
sC/Φ0 ≈ 0.7 [10] (overdamped regime),

where Φ0 = h/(2e) denotes the flux quantum. The criti-
cal current of each junction is ic ≈ 150 µA. The spread
of ic over one array is typically less than 3% (one stan-
dard deviation from the mean value) [10]. The magnetic
penetration depth λ⊥ = h̄/(2eµ0ic) of the arrays [11] is
smaller than a, where µ0 is the permeability of free space
and e is the elementary charge. In Ref. [10] the sample
geometry, layout, and fabrication is described in more
detail.

B. Experimental Imaging of Arrays

Low-temperature scanning electron microscopy offers
the possibility to image various properties of supercon-
ducting samples during their operation at liquid helium

temperatures. The basic LTSEM principles together
with some results are described in Refs. [12,13]. The
top surface of the sample is scanned with the electron
beam, while the sample is thermally coupled to a liquid
helium bath. For the present studies, the sample is dc
current biased and the electron beam induces a change
∆V in the array voltage that is recorded as a function of
the focus coordinates (x0, y0) of the e-beam. In order to
increase the sensitivity, the e-beam is chopped with a 20
kHz frequency and ∆V is phase-sensitively detected with
a lock-in amplifier. Typical values for ∆V are in the the
range 100 nV – 5 µV, whereas the array voltage, V , is of
the order of mV. Hence, the perturbation due to the e-
beam irradiation is small. The sample temperature is es-
timated to be about 4.5 K for a Helium-bath temperature
of 4.2 K. The dominant effect of the e-beam irradiation is
local heating. We estimate from the e-beam parameters
(electron energy: 25 keV, beam current: 100 pA) that
there is a local temperature increment at the beam focus
of about 0.4 K. The lateral extension of the thermally
perturbed area is about 1 µm < a (representing the limit
of the spatial resolution of this imaging technique).
The sample is shielded from external magnetic fields by

four µ-metal shields at both room and liquid helium tem-
peratures. A perpendicular magnetic field can be applied
using a circular copper coil placed in the liquid helium
just below the sample substrate. In zero applied mag-
netic field, the residual external dc field perpendicular to
the array, corresponds to a frustration f <

∼ 0.1, with f
the average external flux in one unit cell divided by Φ0.
This residual magnetic field B ≈ 700 nT, was obtained
by measuring the dependence of the array critical cur-
rent Ic on an applied perpendicular magnetic field for an
array without a superconducting ground plane.
The experimental data shown in this paper is obtained

in zero applied perpendicular magnetic field, i.e. in the
residual magnetic field mentioned above. For applied
fields corresponding to approximately integer values of
f the experimental results remain qualitatively the same
up to f ≈ 5.
To interpret our imaging results, it is important to

identify the different time scales involved. The junction
oscillation period is of the order of 10 ps, whereas the
decay time of the beam’s thermal perturbation is about
100 ns [12]. During step-wise scanning, the electron beam
typically stays 3 ms at each position. The time needed to
take one complete LTSEM image of the array dynamics is
of the order of minutes, hence, the beam-induced voltage
signal ∆V (x0, y0) represents a time-averaged quantity on
the time scales of Josephson dynamics.
The local temperature increment at the e-beam focus

is most effective at the positions of the Josephson junc-
tions. For an e-beam current of 100 pA, the heating of
an individual junction at (x0, y0) results in a reduction
∆ic of the critical current of this junction ∆ic/ic ≈ 8%.
The resulting voltage change ∆V (x0, y0) depends on the
nature of the dynamics at and around the junction at
(x0, y0). Hence, a spatially inhomogeneous steady-state
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dynamics gives rise to an inhomogeneous image. Spa-
tially resolved images have been interpreted in Ref. [5] in
terms of vortex motion or, in the case of underdamped
samples, in terms of row-switched dynamical states.

III. MODEL EQUATIONS FOR THE DYNAMICS

OF INDUCTIVE JOSEPHSON-JUNCTION

ARRAYS

In this section we briefly discuss the model we use to
describe the array dynamics including the self-induced
magnetic fields. In the model, the array is driven by a
uniform applied dc current I along the vertical direction.
In the classical regime, EJ ≫ Ec, (EJ = Φ0ic/2π and
Ec = e2/2C), the phases θ(r) of the superconducting
order parameter on an island r, are the only variables.
The array dynamics is then determined by the resistively
and capacitively shunted junction (RCSJ) model for each
junction, Kirchhoff’s current conservation condition on
the superconducting islands, plus Faraday’s law for the
magnetic field dynamics.
Using the approximation introduced in Ref. [4]

(“Model C”) for the full-range inductance matrix, and
using the temporal gauge, one obtains a closed set of
dynamical equations for the gauge-invariant phase dif-
ferences Ψ(r, r′) ≡ θ(r)−θ(r′)−2πA(r, r′). Here A(r, r′)
is defined by the line integral of the vector potential A,

A(r, r′) = (1/Φ0)
∫

r
′

r
A · dl. The derivation and imple-

mentation of these model equations is discussed in more
detail in Refs. [4,14]. In the model calculations we can
explicitly tune the dimensionless parameters βc and λ⊥,
introduced in Section II.A.
In our simulations we obtain Ψ(r, r+ a) (a = ex, ey) as
a function of time. The magnetic flux is then given by

2πΦ(R, t)

Φ0
=

∑

P(R)

Ψ(r, r′, t). (1)

Here P(R) is the anti-clockwise sum over the four bonds
(r, r′) around the plaquette with coordinate R. The vor-
ticity n(R) is given by

2π(n(R)− Φ(R)/Φ0) = −
∑

P(R)

Ψ̃(r, r′), (2)

with

Ψ̃(r, r′) = Ψ(r, r′)− 2πN

(

Ψ(r, r′)

2π

)

,

or, equivalently, by

n(R, t) = −
∑

P(R)

N

(

Ψ(r, r′)

2π

)

. (3)

Here the function N yields the integer nearest to the ar-
gument. The voltage response for a current applied in
the y-direction is obtained from

V =
1

NMNt

∑

r

Nt
∑

t=1

dΨ(r, r − ey, t)

dt
. (4)

Here Nt is the number of time-integration steps,
∑

r
is

the sum over the N × M junctions in the current di-
rection. V is expressed in units of icRs, time is ex-
pressed in units of the dimensionless characteristic time
tc = 1/ωc = h̄/(2eRsic).

IV. EXPERIMENTAL AND THEORETICAL

RESULTS

A. Current-Voltage Characteristics

Figure 1 shows a representative experimental current-
voltage (I-V) characteristic together with its differential
resistance dV/dI obtained from a 10×10 array. The rich
structure of dV/dI above Ic is typical for all arrays stud-
ied. In Fig. 1 we indicate three regions. The subcritical
region (I) defined for I < Ic, an intermediate current
region (II) ending at Ilin, and region (III), where the
differential resistance becomes constant, for I > Ilin.

FIG. 1. I-V characteristic of a 10×10 array together with

the differential resistance (dV/dI)(I) measured at a temper-

ature T ≈ 4.5 K.

In Fig. 2 we show an I-V curve obtained from numerical
simulation of a 20× 20 array with βc = 2πicR

2
sC/Φ0 = 0

and λ⊥ = 0.6a. Also shown is dV/dI (thin line). The
critical current is Ic/N = 0.87ic. This I-V curve is
qualitatively similar to the one measured in the exper-
iments: for intermediate currents, the differential resis-
tance shows a jagged structure, and for currents I >

∼
1.5Nic the I-V curve is linear, just as is the case for
large currents in the experimental I-V curve. As our
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prime goal is to obtain a qualitative modeling of the ex-
perimental systems, the choice of simulation parameters
is motivated partly by numerical convenience. In par-
ticular, we simulate a λ⊥ = 0.6a, although in experi-
ment this ratio is about 0.1. The latter value would lead
to considerably stiffer differential equations that require
much longer computation times. Due to their smaller
λ⊥/a ratio, the samples studied experimentally have even
stronger self-induced magnetic fields than the simulated
ones, and thus smaller critical currents. Furthermore,
in experiment, region (II) extends up to Ilin ≈ 2.9Nic,
whereas the simulations indicate that the border between
regions (II) and (III) is at I ≈ 1.5Nic.

0.5 1.0 1.5 2.0
0.0

1.0

2.0

 V
/(

M
i cR

n)

0.5 1.0 1.5 2.0

 I/(Nic)

0.0

0.5

1.0

dV
/dI

FIG. 2. Theoretical zero temperature I−V -characteristics

(fat line) and the differential resistance (dV/dI)(I) (for se-

lected data points we also show the error bars) of a 20×20

array with βc = 0, and λ⊥ = 0.6a. V is the time-averaged

voltage across the array in the current direction.

B. Imaging of Array Dynamics

In this section we present images of the array dynam-
ics for the three different regions in the I-V characteristic
in Fig. 1. We first discuss the subcritical region, then
the region of vortex dynamics, and finally the region of
constant differential resistance. Typical LTSEM imaging
results are shown in Fig. 3 and model simulation results
in Fig. 4.

1. Subcritical region (I < Ic)

For a bias current I < Ic and in the absence of LTSEM
heating, the array is in the zero-voltage state. Never-
theless we obtain useful information from the dynamical
imaging experiments. In particular, we will see below

that the LTSEM images obtained in this region confirm
the importance of inductive effects in our small-λ⊥ sam-
ples.
In Figure 3 (a) we show a typical LTSEM imaging re-

sult below but close to the array critical current Ic, for
relatively high beam power. From this result we see that
junctions at or near the edges parallel to the bias current
give a voltage response to the local heating. This can
be understood in the following way. For currents in this
subcritical region, but close to the array critical current
Ic, the LTSEM is acting as an active probe, inducing
vortex motion. When the ic of a junction at the array
edge is lowered due to the e-beam irradiation, vortices
can overcome the energy barrier for entry at this junc-
tion and subsequently travel across the array. As a result,
a voltage signal ∆V > 0 is observed. The corresponding
process for junctions not at the edges is the creation of a
vortex-antivortex pair. From Fig. 3(a) we see that this
latter process does not occur for junctions that are not
close to the edges. This means that such junctions carry
less current, which corresponds to larger energy barriers
for vortex-antivortex creation. Such an inhomogeneous
distribution of the bias current is in agreement to the
small magnetic penetration depth λ of the array. The
correspondingly strong inductive effects lead to a spatial
distribution of the dc bias current that is strongly peaked
at the two array edges parallel to the current flow [15,16].
The current-induced flux is also maximal at these edges.
It is oriented in opposite direction at opposite edges. This
is illustrated in Fig. 5, where we plot the numerically
calculated current and magnetic field distributions for a
20× 20 array at I = 0.86Nic and with λ⊥ = 0.6a. Simi-
lar simulation results in this subcritical region have been
reported in Refs. [14,15].

2. Vortex dynamics region (Ic < I < Ilin)

Above Ic the current through the edge junctions ex-
ceeds the junction critical current. As a result, vortices
enter the array at one edge and antivortices at the oppo-
site edge. These vortices are depinned from the edges by
the Lorentz force and move across the array, generating
the observed voltage.
LTSEM results for bias currents slightly above Ic are

presented and discussed in Refs. [5–8]. In the LTSEM
images obtained in this current region it is seen (see,
e.g., Ref. [5]) that the sign of the voltage signal near the
sample edges tends to alternate along the current direc-
tion. These images indicate an alternating or staggered
crossing vortex motion where vortices and antivortices
are nucleated at opposite array edges and subsequently
move across the whole array. At the array edge opposite
to the nucleation site they leave the array or, equivalently,
annihilate with an image vortex of opposite sign.
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(a) (b)

FIG. 3. Grey value representations of the experimental voltage image ∆V (x0, y0) for a 10×10 array at T ≈ 4.5 K. The

array is current biased at I = 0.9Ic (a) and I = 4.25Ic (b), respectively. The dc bias current flows vertically through the

array. The array boundaries lie between 0 µm and 150 µm in both directions. A positive (negative) e-beam induced voltage

signal ∆V (x0, y0) is indicated by the dark (bright) areas, whereas zero signal is shown by the area surrounding the array. The

individual rows of junctions are indicated by the small arrows numbered 1–10 from top to bottom. In (a), the ∆V < 0 voltage

response at the top and bottom of the array columns (marked by arrows from the left) arises from the current feeding resistors

made from InAu thin films.

(a) (b) (c)

FIG. 4. Vortex configurations for simulations of a 20×20 array, for three different values of the bias current (a-c). For each

current value, we show four consecutive frames (0-3). The dc bias current flows vertically through the array. The black (white)

squares denote plaquettes with vortex number n(R) = +1(−1). Vortices with positive sign move to the right, vortices with

negative sign to the left, as can be deduced by comparing consecutive frames. (a) I = 0.95Nic. Frame 0 is at t = 3000tc.

Between consecutive frames there is a time interval of 3tc. Adjacent rows tend to be crossed by vortices of opposite sign. The

alternating structure is disrupted between the third and fourth row from above and between the sixth and seventh row from

below. (b) I = 1.20Nic. Frame 0 is at t = 9025tc. Between consecutive frames there is a time interval of 2tc. (c) I = 2.0Nic.

Frame 0 is at t = 500.75tc. Between consecutive frames there is a time interval of 0.9tc.
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We will see below that this interpretation is confirmed
by the general behavior found in simulation images for
a bias current slightly above the array critical current.
This kind of alternating crossing vortex motion has no
observed analog in continuous superconducting samples.

To analyze the dynamics of the vortices in full detail,
we have studied graphical animations of the time evolu-
tion of the vortex distributions in the array. First we dis-
cuss the ones obtained in a simulation for I = 0.95Nic of
a 20×20 array with βc = 0 and λ⊥ = 0.6a. When we start
the simulation with random initial phases we observe, af-
ter a transient of about t/tc = 800 time units, the type
of vortex motion depicted in Fig. 4 (a). The snapshots
in Fig. 4 (a) show the same type of vortex motion as the
one deduced from the LTSEM measurements: vortices
of opposite sign cross the array in opposite directions
in adjacent rows. We observe that the staggered struc-
ture is broken at two places, where two adjacent rows
are crossed by vortices of equal sign. One might view
these places as domain wall defects between two differ-
ent polarities of the staggered pattern (for experimental
results see also Ref. [5]). We have verified that this type
of dynamics is stable for very long simulation times. The
position and number of domain walls depends sensitively
on the initial conditions. For all currents in the range
Ic/(Nic) = 0.87 ≤ I/(Nic) <

∼ 1.15 the long-time stable
vortex dynamics is of the same staggered type.

0 5 10 15 20

Rx

−0.5

0.0

0.5

1.0

iy(rx,ry=10)/ic

Φ(Rx,Ry=10)

FIG. 5. Simulated field and current distribution in the cen-

tral row of a 20× 20 array with. λ⊥ = 0.6a and I = 0.86Nic,

just below the array critical current. iy is the current through

a longitudinal junction.

The dynamical patterns observed experimentally as
well as numerically for I >

∼ Ic are strongly influenced
by vortex-vortex interaction. These interactions lead to
the almost regular patterns in which the vortices tend to
move. Towards the high current end of region (II), the
dynamics is different. Imaging the dynamical state by
LTSEM now yields larger two-dimensional domain pat-
terns spreading over several unit cells in both the x and
y-directions. A typical example for this kind of voltage

response is given in Fig. 3 (b). From our experimental
observations, we can deduce the following: (1) The dy-
namical state, which gives rise to the voltage image is
stable in time. If the parameters of the sample (I, T )
are not changed a subsequent image will give the same
result. (2) The imaging results depend sensitivily on the
history. If, for example, the bias current or tempera-
ture is changed significantly, and then returned to the
same parameter values, the imaging results change. (3)
When I or T is changed smoothly, we observe a smooth
variation of the detected patterns. (4) A magnetic field
(noninteger f or |f | > 5) changes the regular pattern, ob-
served for small bias currents discussed above, to a com-
plex response similar to that shown in Fig. 3 (b). Based
on these observations, we conclude that the voltage re-
sponse is caused by a complex multi-vortex dynamics,
and not by e.g. sample inhomogeneities, trapped flux, or
temperature fluctuations.
In our simulations, the staggered vortex dynamics is

the relevant dynamics up to approximately I = 1.15Nic.
The region 1.15 <

∼ I/(Nic) <
∼ 1.5 is a transition region

between the regime of staggered vortex dynamics and the
regime of constant differential resistance. In this current
interval, in some parts of the array vortices move inde-
pendently, and in others we observe vortices that tend
to move coherently in adjacent rows. A representative
example of this type of dynamics is given in Fig. 4 (b).

3. Linear branch (I > Ilin)

In region (III), where the I-V curve is linear (con-
stant differential resistance), each junction in the array
columns (longitudinal junction) yields approximately the
same voltage signal ∆V (x0, y0) and the LTSEM image is
rather uniform over the whole array. For example, at
I = 5Ic for a 10 × 10 array the voltage signal at each
junction was the same within 5% (see Fig. 7 of [8]).
The absence of any structure in the beam-induced volt-

age signal suggests that there are no isolated vortices en-
tering or leaving the array. This is indeed what we find
in the simulations in the region of constant differential
resistance. In fact, the dynamics in this current region is
not due to vortex motion but to a state in which the lon-
gitudinal junctions belonging to the same column oscil-
late almost in phase. This phase coherence reveals itself
in a wave-like dynamics of the magnetic field distribu-
tion. When looking at the discrete vortex configurations
shown in Fig. 4 (c), we observe fronts of vortices that
move inward from the boundaries. In the middle the
vortices annihilate. The discrete vortex configurations in
Fig. 4 (c) show a high degree of symmetry, which reflects
the coherence in the motion of the longitudinal junctions
in different rows. We have also explicitly simulated a
scanning-induced 8% critical-current reduction of subse-
quent individual junctions for I = 2.0Nic, and indeed
find a spatially uniform voltage change.
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P,

I

I

Ps

FIG. 6. Crossover from vortex-dominated to coherent-phase dynamics as a function of applied current I , probed by (a) V

(full line), V/nv (dot-dashed) and the variance σH of the Hall voltage (inset, in arbitrary units); (b) P (full line) and Ps

(dot-dashed) and nv (inset). All results are obtained in an upward current sweep of a 20× 20 array for κ = 0.6 and T = 0. For

each current value we used a warm-up time of 1000tc and an averaging time of 2000tc.

C. Crossover from vortex-dominated to

coherent-phase dynamics

In the above we have focused on comparing the LTSEM
images with snapshots of vortex configurations from nu-
merical simulations. We found three regions in the I−V
characteristics as well as in the experimental and numer-
ically obtained images. We related these regions to dif-
ferent types of dynamics. The crossover from a vortex-
dominated to a coherent-phase dynamics can be explored
in more detail in the model simulations. To this end, we
can consider a number of quantities that probe the degree
of vortex organisation or the degree of phase coherence.
In particular, we find that the following order-parameter-
like quantities P and Ps can be used to distinguish the
different current ranges,

P ≡

〈

∑M

Y=1 |nc(Y, t)|

NV (t)

〉

, (5)

Ps ≡

〈

∑M

Y =1(−1)Y nc(Y, t)

NV (t)

〉

, (6)

where

nc(Y, t) ≡
N−1
∑

X=1

n(R, t), NV (t) ≡
∑

R

|n(R, t)|.

X and Y denote the x and y component of the plaquette
coordinate R, respectively: R = Xex + Y ey. The phys-
ical meaning of P and Ps can be inferred from the fact

that a vortex that enters at one side of the array, either
leaves the array on the other side, or is annihilated by an
antivortex moving in the opposite direction. The quan-
tity nc(Y, t) for row Y distinguishes between these two
possibilities. In the former case nc is nonzero, whereas in
the latter case it is, on average, zero. A value of P = 1
thus implies that all the vortices cross the whole array
unobstructed, while P = 0 implies that the vortices are
annihilated in the middle of the array. The staggered or-
der parameter Ps measures whether the spatially resolved
vortex dynamics consists of alternating rows of vortices
and antivortices crossing the array. The presence of do-
main walls, i.e. two adjacent rows in which vortices cross
the array in the same direction, reduces Ps.

On the basis of this interpretation we expect that Fig.
4(a) (low current region (II)) corresponds to P ≈ 1,
Ps ≈ 1; and Fig. 4(c) (region (III)) to P ≈ 0, and Ps ≈ 0.
In Fig. 6 we plot P , and Ps versus the applied current. In-
deed, directly after depinning, I > Ic ≈ 0.87Nic, P and
Ps attain values close to one. As the current increases
this value slowly decreases (low current region (II)). At
I ≈ 1.2Nic the value of both order parameters exhibits a
sharp drop to a much smaller (but nonzero) value. In this
region the order parameters slowly decrease to the values
near zero in (III). Thus, using P and Ps one can readily
establish the type of vortex dynamics without having to
study vortex animations for each value of the bias cur-
rent. In particular, long-time-stable values P ≈ 1, Ps ≈ 1
correspond to a staggered crossing vortex motion.

We will now correlate the different regions, mapped out
using P and Ps, with the behavior of other quantities. In
Fig. 6(a) we show both the voltage and the average ve-
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locity per vortex Vv = V/nv (the voltage normalized by
the number of vortices) versus current. In the inset of
Fig. 6(b) we plot the vortex density. We observe that
the vortex density displays a pronounced maximum in
region (II), accompanied by a smaller slope of the Vv(I)
curve as compared to the other regions. The dynamical
properties of the vortices in this region are thus different
from the other regions.

Vortex jumps across a junction do not only give rise to
a contribution to the longitudinal voltage across the ar-
ray, but also induce a fluctuation of the transverse (Hall)
voltage around zero. For the nearly antisymmetric dy-
namical patterns of vortices in the phase-coherence re-
gion (III), like the ones shown in Fig. 4(c), the Hall volt-
age contributions of the left and right half of the array
tend to cancel by symmetry. In the region with stag-
gered crossing vortex motion however, the vortex jumps
in the left half of the array do not occur in unison with
antivortex jumps in the right half, leading to larger fluc-
tuations in the Hall voltage. Therefore the Hall voltage
fluctuations may be viewed as a measure of the degree of
(anti)symmetry in the dynamics. Indeed, as seen in the
inset of Fig. 6(a), the magnitude of these fluctuations is
reduced dramatically between the vortex-dominated and
the coherent-phase regime.

Figure 6(a) is obtained in an upward current sweep.
We have also performed a downward current sweep from
region (III), starting with a uniform phase configura-
tion. We find that region (III) is exactly characterized
by P = Ps = 0, whereas in the upward sweep there are
still some asymmetries in the vortex configuration that
yield small but nonzero values for the order parameters.
Entering the high current end of (II), P and Ps attain
nonzero values. There is a slight hysteresis in the cur-
rent value at which P and Ps attain values close to one.

0.0 2.5 5.0 7.5 10.0 12.5

ν

−15

−5

5

15

lo
g(

S(
ν)

)

I=2.0Nic

I=1.2Nic
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FIG. 7. Calculated power spectrum of the array voltage for

three different bias currents. Subsequent curves are offset by

5.5 units.

The power spectrum of the voltage,

S(ν) =

∣

∣

∣

∣

∫

dt V (t)ei2πνt
∣

∣

∣

∣

2

(7)

is another useful probe for the vortex dynamics. A non-
zero voltage can be viewed as either created by a vor-
tex jump, or by a junction phase slip. When the lon-
gitudinal junctions oscillate coherently, S(ν) consists of
sharp peaks at multiples of ν = V/(2πtc). If the dynam-
ics, however, is dominated by incoherent vortex jumps,
the peaks in the spectrum are much broader. In Fig. 7
we show S(ν) for 3 different currents. From ib = 0.95,
within the “vortex” region, to i = 2.0 (region (III)) the
spectrum changes from a noisy to sharply peaked one.
These results again illustrate the crossover from a vortex-
dominated dynamics to a coherent-phase dynamics for
higher currents.

V. CONCLUSIONS AND DISCUSSION

In summary, we have shown that the comparison of LT-
SEM images and results of model calculations can signifi-
cantly increase our insight in the dynamics of Josephson-
junction arrays. On the one hand, the comparison of the
experimental images with the results of model simula-
tions corroborates the interpretation of images for cur-
rents not too far from the array critical current, and con-
tributes to our understanding of the dynamics underly-
ing the images outside this current region. It shows that
the dynamics we found exists even in the absence of the
disturbance produced by the measuring device. On the
other hand, the agreement with the experimental results
supports the relevance of the model equations employed.
In the context of the samples studied here, an essential
ingredient of these model equations is the inclusion of
(strong) self-induced magnetic fields.
The successful comparison between experimental and

theoretical results has enabled us to map out three re-
gions with different types of dynamics for dc biased arrays
with λ⊥ < a in zero applied magnetic field. For bias cur-
rents above the array critical current we found current-
induced vortex nucleation at the array edges parallel to
the bias current. We identified an alternating pattern of
crossing vortices and antivortices as the typical vortex
dynamics existing for bias currents slightly above the ar-
ray critical current. We conclude that at least part of
the rich structure found in the experimental I-V ’s is due
to the dynamics of vortices [17,18]. For larger currents,
the I − V characteristic becomes linear, and the under-
lying dynamics is characterized by a growing tendency
of longitudinal junctions to oscillate in phase. We have
further illustrated the crossover from vortex-dominated
to coherent-phase like dynamics by numerically studying
the spectral function, the Hall-voltage fluctuations and
order-parameter-like quantities.
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Recently Oppenländer and coworkers [19] have also cal-
culated I-V characteristics similar to the experimental
ones, however without taking into account the dynamics
of the self-induced magnetic fields that are essential for
a successful theoretical description of the experimentally
observed microscopic dynamics. In their work the struc-
ture in the differential resistance is due to the inclusion
of strong (magnetic) disorder [20].

In this paper, we have discussed the numerical results
for zero McCumber parameter. In the experiments, the
McCumber parameter was estimated to be βc = 0.7. In
our model simulations, the microscopic dynamics for cur-
rents above but close to the array critical current remains
qualitatively the same for this value of the McCumber
parameter. For higher currents the dynamics is again
characterized by a large degree of spatial coherence. The
region of genuine vortex dynamics shrinks with increasing
βc. For βc ≥ 2.5 the system enters a row-switched state
immediately above the critical current (for λ⊥ = 0.6a),
and therefore no vortex-flow regime is found. For non-
zero applied magnetic field, row-switched states in induc-
tive arrays were studied in Ref. [21].

For the arrays used in the present studies, the
Kosterlitz-Thouless-Berezinskii phase transition temper-
ature TKTB is close to the superconducting transition
temperature Tc of the Nb thin films. The experiments are
performed at temperatures well below TKTB,

2ekBT
h̄ic

∼

1 · 10−3. For these temperatures the effect of thermally
induced vortices on the array dynamics is negligible [22].
We have also performed calculations for λ⊥

>
∼ a (outside

the region of the present experiments) up to λ⊥ = 10a
[23]. In this regime we have found a staggered vortex
dynamics similar to the one observed for λ⊥

<
∼ a, again

occuring for currents slightly above the array critical cur-
rent. This indicates that the staggered vortex dynamics
is the generic dynamics for such currents.

In the LTSEM experiments, the images correspond-
ing to the staggered vortex dynamics were found for
some range of magnetic frustrations around zero. We
have simulated the dynamics in the lower part of re-
gion (II) (where the alternating crossing vortex motion
is observed) in a magnetic frustration of f = 0.01. For
currents slightly above Ic, we find that the array evolves
towards a similar state as found for f = 0, but now there
are on average more vortices with positive vorticity than
with negative vorticity.
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