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Spontaneous creation of Kibble–Zurek solitons in

a Bose–Einstein condensate

Giacomo Lamporesi, Simone Donadello, Simone Serafini, Franco Dalfovo and Gabriele Ferrari*

When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the
development of domains with independent order parameters, which then grow and approach each other creating boundary
defects. This is known as the Kibble–Zurek mechanism. Originally introduced in cosmology, it applies to both classical and
quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in
Bose–Einstein condensates through the Kibble–Zurek mechanism. We measure the power-law dependence of defect number
on the quench time, and show that lower atomic densities enhance defect formation. These results provide a promising test
bed for the determination of critical exponents in Bose–Einstein condensates.

T
he Kibble–Zurek mechanism (KZM) describes the
spontaneous formation of defects in systems that cross
a second-order phase transition at a finite rate1–5. The

mechanism was first proposed in the context of cosmology to
explain how, during the expansion of the early Universe, the rapid
cooling below a critical temperature induced a cosmological phase
transition resulting in the creation of domain structures. In fact,
the KZM is widespread in nature and applies to both classical
and quantum phase transitions6,7. Experimental evidence has been
observed in superfluid 3He (refs 8,9), in superconducting films10

and rings11–14 and in ion chains15–17. Bose–Einstein condensation in
trapped cold gases has been considered as an ideal platform for the
KZM (refs 18–22); the system is extremely clean and controllable
and particularly suitable for the investigation of interesting
effects arising from the spatial inhomogeneities induced by the
confinement. Quantized vortices produced in a pancake-shaped
condensate by a fast quench across the transition temperature have
already been observed23, but their limited statistics prevented a
test of the KZM scaling. The KZM has been studied across the
quantum superfluid to Mott insulator transition with atomic gases
trapped in optical lattices24,25. Here we report on the observation
of solitons resulting from phase defects of the order parameter,
spontaneously created in an elongated Bose–Einstein condensate
(BEC) of sodium atoms. We show that the number of solitons in
the final condensate grows according to a power law as a function
of the rate at which the transition is crossed, consistent with the
expectations of the KZM, and provide the first indication of the
KZM scaling with the sonic horizon. We support our observations
by comparing the estimated speed of the transition front in the gas
to the speed of the sonic causal horizon, showing that solitons are
produced in a regime of inhomogeneous KZM (refs 5,20,26). Our
measurements can open the way to the determination of the critical
exponents of the BEC transition in trapped gases, for which so far
little information is available27.

The KZM predicts the formation of independent condensates
when the system crosses the BEC transition at a sufficiently
fast rate. Further cooling and thermalization below the critical
temperature cause the independent condensates to grow. In axially
elongated trapping potentials, as in our experimentwhere the aspect
ratio is about 10, neighbouring condensates with different phases
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will approach, forming planar non-topological solitonic defects18

(Fig. 1a (i–iii) for a pictorial view). We characterize this process
by counting the solitons as a function of the quench time and
the atom number at the transition by means of direct imaging
after a ballistic expansion of the sample (Fig. 1a (iv–v)). Figure 1b
shows a typical density distribution of a condensate with a negligible
thermal component after a long time-of-flight (TOF) integrated
along one radial direction. In Figure 1c, a clear density depletion
is visible and we interpret it as a soliton. More solitons are shown
in the other panels, including cases where the solitonic planes are
bent and/or collide as in Fig. 1f,g. We never observe structures
that could be identified as topological defects such as vortices and
vortex rings, which would be favoured in less elongated traps or
pancake-shaped condensates23. As opposed to artificially created
solitons through phase imprinting techniques28–30 or by exciting the
superfluid with laser pulses or through collisions31,32, our solitons
spontaneously form when the BEC is created by crossing the
transition temperature.

The identification of these defects as solitons is based on
several arguments: they are simultaneously observed as lines from
two orthogonal directions in the radial plane, demonstrating
their planar structure, mostly perpendicular to the weak axis of
confinement; sometimes they exhibit a bent shape as we expect
for snake oscillations33 of soliton planes; when two of these defects
overlap, they appear as solitons in a collision34, whose individual
structure is preserved except in the crossing region. Finally their size
after TOF is of the right order of magnitude. This can be deduced
by considering that the width of a soliton is of the order of the
healing length ξ = (8πan)−1/2, where a is the scattering length and
n is the spatial density. One can then assume that, during the initial
fast expansion of the gas in the radial direction, the healing length
increases by adiabatically following the density reduction, similarly
to what happens to the cores of quantized vortices in a disc-shaped
condensate subject to a rapid expansion in the axial direction35.
As a consequence, a long TOF allows for a better visibility and
counting resolution. The expansion times we chose for imaging
are indeed much longer than standard ones, thanks to an external
magnetic field gradient used for levitating the gas against gravity;
this is essential to reduce the optical density well below saturation
and for solitons to become large enough to be clearly detected.
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Figure 1 | Solitons in an elongated BEC. a, Formation after a quenched cooling of a thermal gas ((i), red) across the BEC transition; BEC is locally achieved

forming several isles (ii) each with its own phase (grey). Further cooling makes the isles grow towards each other (iii) forming solitons. The elongated

sample is released from the trap and allowed to expand for 180 ms in a levitating field, acquiring a pancake shape (iv, v). b–g, Sample pictures of the BEC

after expansion containing 0, 1, 2 and 3 solitons (b–e) or even more complex structures with bendings and crossings (f,g). For each picture, the integrated

profiles of the central region are shown in black and compared to the parabolic Thomas–Fermi fit in red.

A key point of our analysis is that the number of defects that we
observe is larger when the quench is faster (Fig. 2). This is a clear
indication that our solitons are produced through the KZM. To
provide a quantitative support to this scenario we need to check
whether, for a given quench time, the transition front propagates
faster than the causal horizon hence activating the KZM (ref. 18).
To this end, the details of the trapping potential and the evaporation
procedure are relevant. Sodium atoms are trapped in an elongated
magnetic potential, whose profile is sketched in Fig. 3a (Methods).
The evaporation threshold is set by a radiofrequency, of frequency
νRF, tuned to flip the atomic spin, from the trapped to the untrapped
state, at a given potential energy from the bottom of the trap. The
effective evaporation threshold is governed by the radial motion of
the atoms and depends on z , being fixed by the difference between
the evaporation threshold at the trap bottom (r = z = 0) and the
local axial potential U (r = 0,z). Moreover, the elastic collisional
rate can be large enough to ensure local thermal equilibrium
(collisional regime) but with a temperature gradient along the axial
direction. (The axial collisional regime follows from a collisional
rate typically larger than the axial trapping frequency. For instance,
at the trap centre the collisional time is about 7ms, to be compared
with the axial oscillation period of 83ms.) For these reasons, we
define an axial temperature T (z) as:

T (z)=
hνRF −U (r = 0,z)

η kB

with the truncation parameter η of the order of 5 in our
case36. Calculated temperature profiles for three values of evap-
oration radiofrequency are shown in the top panel of Fig. 3b
(red dashed lines).

The cooling process starts with a ramp of radiofrequency-forced
evaporation down to a temperature 10% higher than the largest
critical value for observing a condensate fraction in our sample
(Fig. 3c). At this stage the gas is non-condensed and in thermal
equilibrium. We can estimate the profile of the critical temperature
Tc(z) by inserting the above-Tc equilibrium density distribution of
the cloud in the expression ofTc for non-interacting particles:

Tc(z)=
2πh̄2

mkB

(

n(r = 0,z)

ζ (3/2)

)2/3

where m is the atom mass and ζ (···) the Riemann ζ -function.
A typical result is shown in the top panel of Fig. 3b (solid blue
line) for a sample of 25×106 atoms. Then the system is thermally

quenched by linearly reducing the evaporation threshold down to
a value that ensures T (z)<Tc(z) everywhere. During this process,
the local temperature profile crosses the local critical temperature
profile at some values of z , which define the positions of the BEC
planar transition fronts propagating along z as the temperature
lowers. The speed of the transition fronts depends on z and on
the quench time τQ. The latter can be varied by keeping the initial
and final radiofrequencies fixed, but changing the duration of
the evaporation process (Fig. 3c and Methods). The evaporation
ends with a final slow ramp followed by an equilibration time
(both lasting 100ms).

The speed of a transition front can be estimated from the curves
of T (z) and Tc(z), as those plotted in the top panel of Fig. 3b. For
the speed of the causal horizon, that is, the fastest speed at which
the information about the choice of a local macroscopic phase of a
BEC can travel across the gas, we take the speed of sound vs (sonic
horizon). A precise determination of this quantity in the vicinity
of the transition and for a non-uniform gas is highly non-trivial.
As a reasonable estimate we can use the expression for the sound
speed derived in ref. 37 within a two-fluid model; near Tc, it gives
v2s (T ) = (5ζ (5/2)/3ζ (3/2))kBT + 2gn, where g is the interaction
parameter related to the s-wave scattering length a by g =4πh̄2a/m.
The bottom panel in Fig. 3b shows the comparison between the
speed of the transition front for different quench times (dashed
lines) and the local sound speed in the gas vs(z) ∝

√
Tc(z) when

neglecting interactions, which is a good approximation in our case
and, more generally, for weakly interacting gases (solid line). The
figure shows that indeed there are regions where the transition
front moves faster than the sonic causal horizon and that the spatial
extension of those regions depends on the quench time.

For given experimental conditions the number of defects we ob-
serve varies from shot to shot, as expected from the stochastic nature
of the KZM. We do a quantitative characterization by counting the
number of solitons observed over a large number of realizations
Nmeas (Methods). The normalized statistical probability of detecting
a given number of solitons, which we report in Fig. 2a for 0–5
counts and four different quench times, follows the Poissonian
distribution. Figure 2b,c shows lin–lin and log–log plots of the
average number of detected solitons over more than one decade in
τQ. Results are shown for two sets ofmeasurements donewith a high
(25×106) and low (4×106) number of atoms at the transition. For
each set, the vertical arrow in Fig. 2b indicates the experimentally
determined quench time threshold for the observation of solitons;
for larger values of τQ, solitons are never observed in our sample.
For lower values of τQ, the average number of solitons exhibits
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Figure 2 | Soliton number versus quench time. a, Counting statistics of the number of solitons observed in each shot for four different quench times τQ

and for the data set with 25 million atoms at Tc. b,c, Lin–lin (b) and log–log (c) plots of the average soliton number observed as a function of τQ. Red circles

and blue squares correspond to series of data taken with different atom numbers Nat at Tc, respectively 25±5 and 4±1 million. Arrows in b indicate the

threshold in τQ above which solitons were never observed. The black dashed line in c shows the power-law dependence with exponent −1.38±0.06

resulting from the best fit with the data points, excluding the point at the fastest quench. The dot–dashed line with the same slope, but shifted on the

second data set, serves as a guide to the eye to compare the two data sets. Reported error bars include the standard deviation of the average counts, and

the resolution limit 1/Nmeas added in quadrature.
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Figure 3 |Quenched evaporation in an inhomogeneous trapped gases. a, Sketch of the trapping potential showing the elongated weakly confined

direction, z, and the radial tightly confined one, r, and the evaporation threshold set by the radiofrequency (RF) field (horizontal plane). This is reduced

quickly in time so that, during the quench, atoms thermalize only radially, according to the local potential depth (see different vertical planes), giving rise to

a local temperature T(z). The inhomogeneous density distribution also causes a local critical temperature Tc(z). b, The top graph shows Tc(z) (solid blue

line) and three different temperature profiles (dashed red) corresponding to different evaporation thresholds. During quenched evaporation condensation

is first reached at the trap centre (A); then the critical point shifts towards outer regions (B and C). The inset shows the critical frequency along z. The

lower graph shows the local sound velocity (solid orange), the local speed of the transition front for two values of τQ (dashed blue: 700 ms, dashed pink:

200 ms), and the front speed in the case of a uniform temperature profile (dashed grey). The comparison between these curves is meaningful where the

atomic density is large (grey-shaded region). c, Experimental sequence. The first part of evaporation is always the same from a hot sample to a cold one

above Tc; then a ramp with variable quench time brings the system from above to below Tc (light blue regions); a short final cooling ramp allows one to

increase the condensate atom number and 100 ms are left to equilibrate the system in the trap. The yellow frequency band corresponds to the extended

region in which Tc is crossed in the system (Methods). Atoms are then imaged after 180 ms of TOF.

a power-law dependence on τQ as expected for the KZM. For all
points in Fig. 2 the atom loss at the end of the evaporation ramp is
sufficiently small, so that the axial size of the system is the same
in the whole range of τQ and the number of solitons and their
density differ only by a constant factor. For the data set with a higher
atom number and for τQ shorter than 140ms, the generation of
solitons is accompanied by a marked loss of atoms, hence resulting
in a significant reduction of the radius of the final condensate. For
smaller condensates this constraint in τQ is stronger, reducing the
accessible range for testing the KZM. The capability of producing
large condensates is thus crucial for this type of experiment.

The dashed line in Fig. 2c is the power law τ−α
Q with

α = 1.38±0.06 obtained by fitting the experimental data with
higher Nat. This result can be compared to the prediction α = 7/6
given in ref. 18 for the formation of grey solitons in a cigar-
shaped condensate, obtained by using the critical exponent of
the correlation length measured in ref. 27 and assuming the BEC
transition to be in the same universality class as the superfluid
transition in 4He (mean-field theory would instead give α = 1).
The order of magnitude is the same, but the comparison should be

considered with care. The calculation in ref. 18 assumed a uniform
temperature in the gas, whereas in our experimental conditions
T (z) is non-uniform. The difference can be appreciated by looking
at the lower panel of Fig. 3b, where the speed of the transition front
for the case of a uniform temperature is shown as the lower grey
dashed line and compared with the local speed of sound. As one can
see, the front speed is larger than the sound speed only in a narrow
region near the centre of the atomic distribution, where the defects
can nucleate at the transition (in the outer part of the cloud, the
front is also faster than sound, but the density is vanishingly small).
Conversely, with a non-uniform temperature profile, solitons can
form in awider regionwhose extension increases as the quench time
is reduced; this may favour the observation of a larger number of
solitons andmay also affect the value of α.

Further arguments supporting the interpretation of our obser-
vations in terms of the KZM come from the comparison between
the two data sets with a higher and a lower atom number in Fig. 2,
which leads to three main observations: the points at smaller τQ in
the second series seem to follow the same power-law scaling of the
first; the threshold for the detection of solitons is shifted towards

658 NATURE PHYSICS | VOL 9 | OCTOBER 2013 | www.nature.com/naturephysics

© 2013 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys2734
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2734 ARTICLES

0 1 2 3 4 5

 = 1.2 s

100¬200 nK
500¬600 nK

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v

e
ra

g
e

 n
u

m
b

e
r 

o
f 

so
li

to
n

s

Wait time (s)

 = 0.9 s

τ

τ

Figure 4 | Soliton number decay. Blue circles correspond to a very cold

sample, with a barely visible thermal fraction (T≃ 100–200,nK), whereas

red squares were acquired for a hotter sample, close to

Tc(T≃ 500–600 nK). The solid lines show the exponential fit to the decay.

τQ = 467 ms and Tc ≃ 800 nK for both data sets. The temperature is

independent of the wait time. Error bars are the standard deviation of a

statistical sample of 20 experimental runs.

larger τQ in the case of a lower atom number; for a given τQ, the
average number of solitons is larger in the case of a smaller atom
number. The first observation suggests a universal behaviour, but
some caution must be used here, because the smallest condensate
does not allow for a reliable fit owing to the limited range of τQ
available, as well as to the occurrence of a rather abrupt change
of slope at large τQ (we note that change of slope and threshold
phenomena in KZM were also discussed in refs 25,26,38,39 for
other systems). The second observation is consistent with the fact
that a smaller atom number at Tc implies a lower sound speed
and hence defects can be created for slower quenches (larger τQ),
as we indeed observe. Using the expression from ref. 37 for the
sound speed, near Tc one gets approximately vs ∝

√
Tc ∝ N

1/6
at .

Thus, in the case of a lower atom number the sound speed at Tc

is smaller by a factor 0.74±0.06. The positions of the two arrows
indicating the thresholds in Fig. 2b differ by a factor 0.84±0.08 in
the right direction and in reasonable agreementwith expectations. A
quantitative comparison between the two data sets, however, would
require a better theoretical understanding of threshold phenomena
in finite inhomogeneous systems. The third observation is again
consistent with the KZM in the sense that a slower sonic horizon,
at fixed quench time, increases both the size of the region where the
transition front is supersonic and the soliton density, yielding a shift
of the scaling law upwards in the log–log plot.

We finally discuss the possible spurious effects that may alter
the counting of solitons, hence modifying the data in Fig. 2. We
already mentioned that, in the limit of very fast quenches, the
efficiency of the evaporative cooling drops causing additional atom
losses at the transition and in the final condensate. The point at
τQ = 140ms lies in a range where these effects may start being
relevant. On the other hand, when a slow quench is applied, one
may wonder whether solitons decay before being observed. To
address this question, in Fig. 4 we report the average number of
solitons observed in the condensate as a function of the time spent
in-trap after an intermediate evaporation quench time. Two sets
of data are collected for different values of the temperature after
the evaporation. In both sets, the number of solitons shows a
decay with a tendency to saturate to a finite value for long times.
The decay is faster when the temperature is larger, consistent with
the idea that, at finite T , grey solitons are accelerated towards
the edges of the cloud where they can dissipate their energy
into thermal excitations (this decay mechanism has recently been
observed in a superfluid Fermi gas40). If T ≪ Tc, in the worst
case of a wait time of 2 s, the counts drop only by about 30%,
which is a reasonably small loss when compared with the error
bars of Fig. 2. The tendency to saturate at a finite value suggests
that a sizable fraction of solitons has a much longer lifetime.
This can be explained in terms of the generation of solitons

near the centre of the trap with a small initial velocity. These
solitons can oscillate back and forth for very long times before
dissipating their energy.

In combination with the observations of ref. 23, our results
should stimulate the study of the interplay between the inhomoge-
neous andhomogeneousKZM(ref. 20). In addition, an extension of
the theory of ref. 18 to the case of non-uniform temperature profiles
could allow one to extract from our observations the values of the
critical exponents for BEC in dilute gases.

Methods
Sample preparation. A high-flux beam of cold sodium atoms is produced in
a compact system based on a short Zeeman slowing stage and on a coplanar
two-dimensional magneto-optical trap41. The bright atomic beam fills a
three-dimensional dark-spot magneto-optical trap in 8 s. A few-millisecond
dark-spot molasses phase helps to increase the phase space density to 3×10−6

and improve the transfer efficiency into the magnetic trap. Our magnetic trap has
a Ioffe–Pritchard42 geometry with final axial and radial trapping frequencies of
ωz = 2π×12Hz and ωr = 2π×119Hz. Starting with 109 atoms in the magnetic
trap we cool them by means of a Zeeman-forced evaporation with a two-step
ramp, first reducing the radiofrequency at 1.2MHz s−1 for 30 s, then the trap is
decompressed by a factor

√
2 to the final trapping frequencies and evaporation

continues at 190 kHz s−1 for 8 s. At the end of the preparation stage the atomic
sample contains 25×106 atoms just above Tc. The trapping potential has a cigar
shape horizontally oriented along z .

Temperature quench. As illustrated in Fig. 3c we explore the KZM by crossing the
BEC transition point with different evaporation quench rates. The starting point is
always 1.39MHz, 190 kHz above the trap bottom. The BEC transition frequency is
not unique. To make sure that the BEC transition is always crossed throughout the
whole sample during the quench we need to take several effects into account: the
density inhomogeneity across the sample introduces a transition frequency interval;
changing the quench rate slightly shifts the transition point because of the different
amount of removed atoms; technical shot-to-shot atom number fluctuation also
shifts the transition point. For all of these reasons we set a fixed frequency band
from 1.39MHz to 1.25MHz, within which the whole sample crosses the BEC
transition for any given experimental quench rate. The quench time τQ reported
in the text is defined as the time interval employed to perform this linear quench
ramp of 140 kHz. The quench is followed by a 100-ms-long further evaporation at
300 kHz s−2 down to 1.22MHz, to maximize the condensate fraction, and a final
100ms during which the radiofrequency is kept fixed at 1.24MHz allowing for
solitons stabilization and evolution.

Levitation. On switching off the elongated magnetic trapping potential the
chemical potential is suddenly transferred into kinetic energy and atoms mainly
expand along the tightly confined radial direction assuming a spherical shape after
about 15ms; then the atomic distribution becomes pancake-like. In the meantime,
the sample would naturally fall under gravity and reach the glass vacuum cell within
50ms time. To avoid this and allow for longer expansion times to observe atoms
without optical density saturation, we levitate the sample by switching on just one
of the two quadrupole coils producing a vertical gradient of the magnetic field
modulus, able to compensate the gravitational force for atoms in |F = 1,mF = −1〉.
The residual magnetic field curvature in the horizontal plane gives rise to a
negligible trapping effect.

Imaging. The least energetic and most stable orientation for solitons in an
elongated BEC is the one orthogonal to the trap symmetry axis. Density depletion
can be therefore observed by looking along any radial direction. We image the
condensates along two orthogonal directions in the radial plane to minimize
underestimating soliton counts owing to any possible residual tilt of the solitonic
plane. Absorption imaging is performed after a levitation time of 180ms. In
this way, the optical density of the condensate is of the order of 1 or smaller,
no saturation is present and density variations in the sample are clearly visible.
Atoms are imaged using light resonant with the |F = 2〉 → |F ′ = 3〉 transition. As
atoms are magnetically trapped in |F = 1,mF = −1〉, repumping light tuned on the
|F = 1〉→ |F ′ = 2〉 transition is needed to pump them in |F = 2〉. A thin light-sheet
(waist of 600 µm) propagating along the vertical direction is used to repump only
a central region of the expanded condensate (Thomas–Fermi radius of 2.5mm) to
further reduce optical density and increase the soliton contrast.

Data analysis. For each set of experimental parameters, such as temperature,
quench time and atom number at the transition, the experiment was repeated
20–40 times (depending on the resulting average number of solitons observed) to
minimize the error bars in Fig. 2. The number of solitons visible in each image
was counted (Fig. 1b–e) and the average number was plotted for any given set of
parameters. Error bars include the standard deviation of the average counts, and
the resolution limit 1/Nmeas added in quadrature.
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