
Dissertation zur Erlangung
des akademischen Grades des

Doktors der Naturwissenschaften (Dr. rer. nat.)
an der Universität Konstanz

Fachbereich Physik

vorgelegt von

Luca Chirolli

Quantum Control and Quantum Measurement in

Solid State Qubits

Referenten:

Prof. Dr. Guido Burkard

Prof. Dr. Rosario Fazio

Tag der mündlichen Prüfung: 
                12.01.2010

Konstanzer Online-Publikations-System (KOPS) 

URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-12510 

URL: http://kops.ub.uni-konstanz.de/volltexte/2010/12510/

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-12510
http://kops.ub.uni-konstanz.de/volltexte/2010/12510/




Abstract

In the past two decades significant theoretical and experimental efforts have been de-
voted to the study and development of mesoscopic devices, that exploit quantum coherence
at the nanoscale. Quantum computing represents an emerging promising field of science
and technology and is currently subject of extensive investigation. One of the fundamental
issues, that still represents a major obstacle to the realization of a quantum computer, is
certainly decoherence. The interaction of a quantum system with the external environment
is what ultimately limits the efficiency of a quantum device. On the other hand, in order
to perform precise tasks and implement quantum algorithms, it is necessary to address the
quantum devices from the lab. It is therefore desirable to achieve full control and to mini-
mize the detrimental residual interaction. Control protocols and read out schemes are still
performed on a basic level and many aspects of the communication between the quantum
systems and the external environment need still to be investigated from a fundamental
point of view.

In this thesis we address two fundamental topics: the control and the measurement of
quantum bits. We mostly focus our attention on a particular type of superconducting
two-level systems (qubits), the flux qubit, that may represent the fundamental building
block of a scalable architecture for quantum computing based on superconducting solid
state devices.

We begin with an Introduction (Ch. 1). Then in the chapter 2 we study a voltage-
controlled version of the superconducting flux qubit and show that full control of qubit
rotations on the entire Bloch sphere can be achieved. Circuit graph theory is used to study
a setup where voltage sources are attached to the two superconducting islands formed
between the three Josephson junctions in the flux qubit. Applying a voltage allows qubit
rotations about the y axis, in addition to pure x and z rotations obtained in the absence of
applied voltages. The orientation and magnitude of the rotation axis on the Bloch sphere
can be tuned by the gate voltages, the external magnetic flux, and the ratio α between
the Josephson energies via a flux-tunable junction. We compare the single-qubit control
in the known regime α < 1 with the previously unexplored range α > 1 and estimate the
decoherence due to voltage fluctuations.

In chapter 3 we theoretically describe the weak measurement of a qubit and quantify the
degree to which such a qubit measurement has a quantum non-demolition (QND) character.
The qubit is coupled to a harmonic oscillator which undergoes a projective measurement.
Information on the qubit state is extracted from the oscillator measurement outcomes,
and the QND character of the measurement is inferred from the result of subsequent
measurements of the oscillator. We use the positive operator valued measure (POVM)
formalism to describe the qubit measurement. Two mechanisms lead to deviations from a
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perfect QND measurement: (i) the quantum fluctuations of the oscillator, and (ii) quantum
tunneling between the qubit states |0〉 and |1〉 during measurements. Our theory can be
applied to QND measurements performed on superconducting qubits coupled to a circuit
oscillator.

In chapter 4 we depart from qubit systems and consider the electronic transport through
coherent and partially coherent systems. Based on novel and prototypical electronic inter-
ferometric setups, we show that it is possible to realize interaction free measurements in
solid state nanodevices. We discuss three different implementations. The first one is very
close to the optical proposal and it is based on a series of concatenated Mach-Zehnder inter-
ferometers. We also discuss the case in which the interaction free measurement is realized
by means of an asymmetric Aharonov-Bohm ring and the case in which coherent single-
electron sources are used. For all the three cases we show how to detect the effect through
a measurement of the current passing through the device. Beside the interest in realizing
a fundamental interferometric effect with electrons known from measurements measured
with photons, interaction free measurements in nanoelectronics may play a fundamental
role as very accurate measuring devices. We show this by discussing how to reveal the
presence of a dephasing source. In addition to the accuracy the new key ingredient here
is that a flux of electrons may measure noise without any degradation of its coherence
properties.

In chapter 5 we theoretically propose to directly observe the chiral nature of charge car-
riers in graphene mono- and bilayers within a controlled scattering experiment. The charge
located on a capacitively coupled scanning probe microscope (SPM) tip acts as a scattering
center with controllable position on the graphene sheet. Unambiguous features from the
chirality of the particles in single and bilayer graphene arise in the ballistic transport in
the presence of such a scattering center. To theoretically model the scattering from the
smooth potential created by the SPM tip, we derive the space-dependent electron Green
function in graphene and solve the scattering problem within first-order Born approxima-
tion. We calculate the current through a device with an SPM tip between two constrictions
(quantum point contacts) as a function of the tip position.

In chapter 6 we consider a system of two superconducting transmission line resonators
coupled by an externally driven SQUID. In the low temperature regime, each of the two
resonators can be described by its lowest frequency bosonic degree of freedom. The SQUID
dynamics can be effectively described by an externally controllable inductance that medi-
ates a quadratic interaction between the two transmission line resonators. Such a system
is suitable for the implementation of a qubit in which one photon is shared between the
two superconducting transmission line resonators. In the direction of linear optics quan-
tum computation, we consider a beam splitting operation in this system. An equal weight
superposition of the states |1〉1|0〉2 and |0〉1|1〉2 is obtained by applying a driving to the
initial state |1〉1|0〉2. We study the quality of rotating wave approximation by computing
the fidelity of the beam splitting operation with the exact solution of the time dependent
problem and compare it to the fidelity in the rotating wave approximation.



Zusammenfassung

In den letzen zwei Jahrzehnten sind erhebliche theoretische und experimentelle Anstren-
gungen zur Erforschung und Entwicklung von mesoskopischen Bauteile, die Quantenkohärenz
auf der Nanometerskala nutzen, unternommen worden. Das Quantenrechnen stellt ein
neues und vielversprechendes Gebiet der Wissenschaft und Technik dar und ist derzeit
Gegenstand von umfassenden Untersuchungen. Ein fundamentales Hindernis bei der Real-
isierung eines Quantencomputers ist sicherlich Dekohärenz. Es ist die Interaktion mit der
Aussenwelt, die letztendlich die Effizienz eines quantenmechanischen Bauteils begrenzt.
Um aber effektive Quantenalgorithmen implementieren zu können, ist es notwendig, dass
die Bausteine mit der Umgebung kommunizieren. Es ist daher notwendig, volle Kon-
trolle über die ablaufenden Prozesse zu erlangen und die unerwünschten Wechselwirkungen
auf ein Minimum zu reduzieren. Die Entwicklung von Kontroll- und Auslesealgorithmen
befindet sich derzeit noch immer auf einer elementaren Ebene. Viele Aspekte der Kom-
munikation zwischen Quantensystemen untereinander sowie mit ihrer Umgebung bedürfen
auch weiterhin grundlegender Untersuchungen.

In dieser Arbeit befassen wir uns im wesentlichen mit zwei grundlegenden Themen:
Dem Kontrollieren und Auslesen von Quantenbits. Wir wenden unser Hauptaugenmerk
auf einen speziellen Typus supraleitender Zwei-Zustandssysteme (d.h. Qubits), dem soge-
nannten Flussqubit (flux qubit). Dieses ist prädestiniert als fundamentaler Baustein für
die Realisierung von skalierbaren, auf supraleitender Technologie basierenden Quanten-
computern.

Nach einer Einleitung in Kapitel 1, untersuchen wir in Kapitel 2 die spannungskon-
trollierte Version des supraleitenden Flussqubits und demonstrieren, dass die volle Kon-
trolle über Rotationen auf der Blochkugel möglich ist. Mit Hilfe der Schaltungsgraphen-
theorie untersuchen wir eine Anordnung bei der zwei Spannungsquellen an die beiden
supraleitenden Inseln, die sich zwischen den drei Josephsonkontakten im Flussqubit bilden,
angeschlossen sind. Das Anlegen einer Spannung erlaubt die Rotation des Qubits um die
y-Achse, zusätzlich zu den reinen Rotationen um die x- und die z-Achse, die auch in Abwe-
senheit einer externen Spannung auftreten. Die Größe und Orientierung der Drehung auf
der Blochkugel lässt sich steuern durch Elektrodenspannung, dem externen magnetischen
Fluss, sowie dem Verhältnis α der Josephsonenergien. Wir vergleichen die Kontrolle eines
einzelnen Qubits in dem bekannten Regime α < 1 mit dem bisher unerforschtem Regime
α > 1 und geben Abschätzungen der Dekohärenz aufgrund von Spannungsschwankungen.

In Kapitel 3 widmen wir uns der theoretischen Beschreibung der schwachen Messung
eines Qubits und quantifizieren in welchem Grad eine solche Messung einen nichtzerstören-
den (quantum nondemolition, QND) Charakter besitzt. Das Qubit ist an einen harmonis-
chen Oszillator gekoppelt, an welchem eine projektive Messung durchgeführt wird. Über
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Messungen des Oszilators lassen sich Informationen über den Zustand des Qubits erhal-
ten, sowie Aussagen über den QND Charakter der Messungen ableiten. Wir verwenden
den POVM Formalismus um die Messung am Qubit zu beschreiben. Zwei Mechanismen
führen zu Abweichungen von einer idealen QND Messung: (i) die Quantenfluktuationen
des Oszilators, sowie (ii) das Quantentunneln zwischen den Qubitzuständen |0〉 und |1〉
während des Messvorgangs. Unsere Theorie lässt sich auf nichtzerstörende Messungen an
Oszilatoren in der Schaltung gekoppelte supraleitenden Qubits anwenden.

In Kapitel 4 verlassen wir das Gebiet der supraleitenden Qubits und wenden uns dem
elektronischen Transport in kohärenten und semikohärenten Systeme zu. Wir zeigen, dass
es möglich ist, mit Hilfe von neuartigen und prototypischen elektronischen Interferome-
tern, wechselwirkungsfreie Messungen in Nanostrukturen durchzuführen. Wir diskutieren
drei verschiedene Implementierungen. Die erste ist an Vorschläge aus der Optik angelehnt
und basiert auf einer Reihe von verketteten Mach-Zehnder Interferometern. Ferner betra-
chten wir den Fall in dem wechselwirkungsfreie Messungen mit Hilfe eines asymmetrischen
Aharanov-Bohm Rings möglich sind, sowie den einer kohärenten Elektronenquelle. Für
alle drei Fälle zeigen wir wie sich der Effekt durch die Messung von Strömen durch die
Strukturen nachweisen lässt. Neben der Möglichkeit der Realisierung von fundamentalen
interferometrischen Effekten mit durch Photonen gemessenen Elektronen, bildet die QND
Messung die Grundlage für ultrapräzise neuartige Messmethoden. Wir demonstrieren dies,
in dem wir zeigen, wie sich die Anwesenheit von Dekohärenz induzierenden Quellen nach-
weisen lässt. Zusätzlich zu der hohen Genauigkeit ist ein wesentlicher Bestandteil, dass mit
Hilfe des Elektronenflusses Rauschen gemessen werden kann, ohne Verlust der Kohärenz.

In Kapitel 5 zeigen wir, wie es theoretisch möglich ist die chirale Natur der Ladungsträger
in ein- und zweilagigem Graphen mit Hilfe eines kontrollierten Streuexperiments direkt
zu beobachten. Die Ladung auf der Spitze eines Rastersondenmikroskops (SPM) agiert
dabei als frei positionierbares Streuzentrum auf der Graphenoberfläche. Die besonderen
Merkmale der chiralen Teilchen treten in solchen ballistischen Transportexperimenten in
Anwesenheit von Streuzentren in Erscheinung. Um die Streuprozesse an dem, von der
SPM-Spitze verursachtem, glatten Potential theoretisch zu modellieren, leiten wir die
ortsabhängige elektronische Green-Funktion her und lösen das Streuproblem in der Born-
schen Näherung. Wir berechnen den Strom durch die Nanostruktur mit einer SPM-Spitze
zwischen den beiden seitlichen Begrenzungen (Quantenpunktkontakte) als Funktion der
Position der Spitze.

In Kapitel 6 betrachten wir das Problem zweier supraleitender Transmission Line Res-
onatoren, welche durch ein extern gesteuertes SQUID gekoppelt sind. Bei niedrigen Tem-
peraturen kann jeder der Resonatoren durch seinen tiefsten bosonischen Freiheitsgrad
beschrieben werden. Die Dynamik des SQUIDs lässt sich kann durch eine extern kontrol-
lierte Induktivität, welche eine quadratische Wechselwirkung zwischen den beiden Trans-
mission Line Resonatoren vermittelt. Ein solches System eignet sich für die Implemen-
tierung eines Qubits, in welchem ein Photon in beiden Resonatoren lebt. Mit Hinblick auf
Quantenrechnen mit linearer Optik untersuchen wir einen Strahlteiler in diesem System.
vollständige Superposition der Zustände |1〉1|0〉2 und |0〉1|1〉2 wird durch anlegen eines
Wechselfeldes aus dem Zustand |1〉1|0〉2 erzeugt. Wir untersuchen die Anwendbarkeit der



v

Rotating Wave Approximation, indem wir die Güte der Strahlteilungsoperation mit Hilfe
der exakten Lösung des zeitabhängigen Problems berechnen und das Ergebnis mit der, in
der Rotating Wave Approximation, berechnete Güte vergleichen.
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1. Introduction

The world that we experience in our every day life is governed by the classical laws of
physics. The description of the physics of macroscopic objects hinges upon few simple and
elegant concepts about the motion of objects and their mutual interaction. Our under-
standing of physics as the rules of the game, our conscious and unconscious awareness of
what happens and why, our physical intuition are truly based on these principles.

At the beginning of the 20th century a scientific revolution took place with the discovery
of a new world, that was unaccessible before, and was not describable with the knowledge
at that time available and referable to the classical laws of motion. The advances in the
technology made it possible to experimentally address objects whose microscopic scale
had always confined their cognizance solely to a speculative level. A new point of view
started to be shared among physicists, according to which concepts of wavefunction and
quantized levels were more suitable to describe the physics of a particle, rather than exact
position and exact momentum, that in turn became no longer simultaneously accessible.
A more complex mathematical approach made it possible to understand an innumerable
quantity of phenomena, like the quantization of the atomic spectra, based on the energy
level quantization, the photoelectric effect, that associates a particle-like nature to light,
until the very atomic structure itself. The scientific observation and speculation, guided
by the application of the principle of cause and effect, gave birth in 1900 to the theory of
quantum mechanics, that describes the physics of the microscopic world.

After decades of theoretical clarifications and predictions and experimental confirmations
and achievements had consolidated the theory of quantum mechanics, physicists began to
wonder about the possibilities that the knowledge acquired about the quantum world
could provide them in terms of applications. The idea of using the quantum laws as a new
playground for solving very hard problems, together with the technological advances in the
realization and control of systems at the microscopic scale, gave birth to a new perspective,
in which the quantum world is a resource.

The idea of a quantum computer, in which objects that work according to the laws
of quantum mechanics may perform very difficult tasks and provide a new tool in the
future for our every day life, broke through at the end of the 20th century and is currently
subject of extensive study. The very concepts on which a quantum computer is based
are fundamental issues of the quantum world, with no classical analogue. The state of a
quantum system may be a superposition of fundamental states, that individually may have
a classical counterpart, but represent, once superimposed, a completely new manifestation
of a system. Such a property goes under the name of superposition principle. More
systems can share non-local correlations between their constituting parts, that cannot be
understood classically. Such states contain a resource of paramount importance for the
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2 Chapter 1. Introduction

new applications of a quantum computer, known as quantum entanglement.

1.1 Quantum computation

Coherence, as a property of quantum mechanical phenomena, disappears in the classical
world. Our experience of the quantum world is filtered by the environment that surrounds
the quantum objects. It is never completely possible to isolate a quantum system from the
surrounding world. The system and its surrounding interact and, as a result, a random-
ization of the phase of the quantum system takes place, resulting in a loss of information.
This process is known as decoherence.

Only in recent years, thanks to the advances in technology, it has become possible to
study quantum effects involving single quantum objects, like single photons, ions, electron
spins, etc... Particular attention has been devoted to see coherence, from an experimental
point of view, and to understand its limitation. In fact, though remarkable improvements
have been achieved, even nowadays, a lot of effort must be spent to understand how to
preserve coherence. In quantum information theory, which deals with the possibilities that
quantum rules offer to information processing, coherence is a fundamental requirement.
The physical implementation of quantum information processing represents a challenge
because one has to deal with the competition between fast and reliable quantum control,
that requires interaction with the outside world, and good isolation of the quantum devices
in order to ensure long coherence times.

1.1.1 The qubit

Classical information is based on binary logic, in which information is encoded in a se-
ries of bits (binary digits) that can assume only two values, 0 or 1. A typical example is a
switch, with its two possible states “on” and “off”, which are separated by a potential bar-
rier sufficiently large to avoid spontaneous switching. In classical information, dissipation
typically stabilizes the classical bits. All classical logical operations can be implemented
as algorithms based on one- and two-bit operations, the so-called logic gates.

The building block of quantum information is the quantum bit, or qubit. Using the Dirac
notation, the two fundamental states that characterize the qubit are |0〉 and |1〉 and they
represent the quantum counterpart of the classical 0 and 1. A fundamental law of quantum
mechanics is the superposition principle, which according to R. P. Feynman “contains the
essence of quantum mechanics” [1]. A general pure state of a qubit can be written as a
coherent superposition of the two fundamental qubit states

|ψ〉 = α|0〉 + β|1〉, (1.1)

with α and β complex numbers, characterized by a relative phase and by |α|2 + |β|2 = 1.
According to “Born’s rule”, |α|2 represents the probability for the qubit to be in the state
|0〉, whereas |β|2 represents the probability to be in |1〉. This means that if we prepare
many copies of the same system in the state |ψ〉, a measurement of the state of the qubit
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Figure 1.1: Schematic illustration of a Bloch sphere. The north pole corresponds
to the qubit state |0〉 and the south pole to the state |1〉. A generic pure state of
the qubit can be represented by a unit vector pointing along a direction specified
by the azimuth φ and the zenith θ.

will produce the outcome 0 with probability |α|2, and the outcome 1 with probability |β|2.
The two states |0〉 and |1〉 form a basis of the Hilbert space H = span{|0〉, |1〉} of the qubit.

It is important to notice that the state described in Eq. (1.1) is a pure state and it
represents a coherent superposition of the two fundamental qubit states, rather than an
incoherent mixture of “0” and “1”. The essential point is that a pure state points along
a precise direction in the space that has a zenith θ and an azimuth ϕ with respect to the
quantization axis,

|ψ(θ, φ)〉 = cos(θ/2)|0〉 + e−iφ sin(θ/2)|1〉, (1.2)

as schematically depicted in the Bloch representation of a qubit in Fig. 1.1. Conversely, a
completely mixed state has no information about the azimuthal angle, that represents the
coherence of the superposition and it is given by the relative phase between the complex
numbers α and β. A good example of a qubit is a spin 1/2, for which the two logical
states are the spin up |↑〉 and the spin down |↓〉. In order to show the coherent character
of a superposition of states, we describe an interference procedure for a spin 1/2 particle.
Suppose we prepare the spin in the state |ψ0〉 = | ↑〉, that is with probability 1 to find it
parallel with respect to a certain direction z in the space, that we choose as quantization
axis. We then rotate the spin by an angle π/2 about an axis perpendicular to z, i.e. the y
axis. The result is the state

|ψ1〉 = e−i
π
4
σy |↑〉 =

1√
2
(|↑〉 + |↓〉). (1.3)
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We then let the spin cross a region in which there is a magnetic field that points in the
positive z direction, B = (0, 0, B). Due to the presence of the magnetic field, the two
states | ↑〉 and | ↓〉 accumulate a relative phase 2ϕ, that depends on the magnitude of the
magnetic field and the time t spent in the region with the B field, and that for simplicity
we leave unspecified. Up to an overall phase, the state of the system that comes out from
the region with a magnetic field is given by

|ψ2〉 =
1√
2

(

|↑〉 + e2iϕ|↓〉
)

, (1.4)

with the phase ϕ = gµBBt/2. Now, we again rotate the spin of π/2 about the y direction,
and obtain

|ψ3〉 = e−i
π
4
σy |ψ2〉 = eiϕ [cos(ϕ)|↑〉 + i sin(ϕ)|↓〉] . (1.5)

If we now measure the state of the spin, we obtain | ↑〉 with probability cos2(ϕ) and | ↓〉
with probability sin2(ϕ). We clearly see, now, that the relative phase can really affect the
state of a quantum system. This procedure is known as Ramsey interference [2] and it is
used in experiments to detect coherent oscillations in the transverse spin component. In a
typical experiment the oscillation displays a damping that is due to interaction of the spin
with the surrounding environment. Such a damping, known as decoherence, represents a
major obstacle in a quantum computation scheme.

1.1.2 Quantum logic gates

The qubits represent the quantum analog of the classical bits and are the fundamental
constituents of a quantum computer. Quantum logical gates provide a quantum analog
for the classical logical gates. The way a quantum computer works is via operations on
the qubits. Each qubit is represented by a physical system, that can be described by
a Hamiltonian, and the qubits may interact and process the information in a controlled
manner. A system of qubits can be initialized in a precise state and by means of a global
unitary evolution, governed by a controllable global Hamiltonian, a desired quantum algo-
rithm can be performed. Any however complicated many-qubit unitary evolution can be
implemented as a sequence of single-qubit and two-qubit gates and, upon final read out of
the final state of the system, the processed quantum information can be extracted. Any
physical system can be considered as a candidate for quantum computing as long as it
fulfills five requirements, known as the DiVincenzo criteria [3, 4]:

• Well defined two-state quantum systems (qubits), well separated from, often present,
higher excited states.

• Initial state state preparation with high accuracy.

• Long coherence time, sufficient to allow for a large number of coherent manipulations.

• Sufficient control over a universal set of quantum gates, in particular single-qubit and
two-qubit operations to perform the necessary unitary operations.
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• The ability to perform quantum measurement to read out the quantum information,
either at the end of the process or during the computation.

Any physical system whose dynamics can be effectively modeled by a two-state system
can be described in a pseudo-spin 1/2 formalism. By external parameters, like magnetic
fields, bias currents or voltages, the qubit Hamiltonian H = −B · σ/2 in an effective
magnetic field B, with σ = (σX , σY , σZ) the vector of Pauli matrices, can be engineered.
Any arbitrary single-qubit gate can be obtained if two of the field components can be
controlled, i. e. a qubit Hamiltonian that can be written as

Hqubit(t) = −1

2
BX(t)σX − 1

2
BZ(t)σZ . (1.6)

Time-dependent control on two component of the effective B field, with the possibility to
switch the field on and off and apply pulses allow to perform any single-qubit gate. If we
want to generate the pure state |ψ(θ, φ)〉 Eq. (1.2) starting from the state |0〉, we can rotate
the qubit about the x axis and generate the desired zenith θ and perform a subsequent
rotation about the z axis to generate the desired φ. In order to perform two-qubit gates,
one needs to address the coupling energies between the qubits, with the possibility to
switch on and off the interactions and perform the desired operation. A general two-qubit
Hamiltonian has the form of a spin exchange term,

Hint(t) =
∑

ij

Jij(t)σ
(1)
i σ

(2)
j , (1.7)

that can have some particular form, like an Ising ZZ coupling, an XY coupling or an
isotropic Heisenberg coupling.

A general quantum gate arises from controlled unitary evolution of a given many-qubit
Hamiltonian H(t)

Ugate = T exp

(

− i

~

∫ t

dτH(τ)

)

, (1.8)

with T the time ordering operator. In a way that is completely independent from the
particular physical realization, quantum information theory studies quantum algorithms
that are able to perform certain tasks by suitable concatenations of qubit gates. In par-
ticular, it is often convenient to construct quantum algorithms out of specific, standard
single-qubit and two-qubit gates. Two fundamental gates allow to perform any kind of
quantum algorithms: single-qubit rotation

Ui(φ) = exp(iφSi), (1.9)

where S = σ/2 and the quantum XOR, that allows for a controlled NOT (CNOT) opera-
tion,

UCNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (1.10)
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In particular, the quantum XOR can be obtained by the combination of single-qubit rota-
tions and the square root of a SWAP gate, that arises from an Heisenberg coupling, and a
part from an overall phase factor is given by [5]

U√
SWAP = exp

(

i
π

2
S(1) · S(2)

)

. (1.11)

These basic gates represent a universal set of operations that allow for any quantum compu-
tation. However, it is important to notice that almost any two-qubit gate forms a universal
set, when combined to single-qubit operations.

1.1.3 Decoherence and Bloch equations

In condensed phases, the coupling to the environment can be relatively strong. However,
often a rather complex physical situation can be modelled by a system that consists of few
dynamical variables in contact with a huge environment, constituted by a very large or
even infinite number of degrees of freedom. In this case the small relevant system alone has
to be described as an open system. In many cases it is useful to model the dynamics of an
open system by means of an appropriate equation of motion for its density matrix ρ, the
so called quantum master equation. The evolution in time of the total density matrix ρSE
that describes the system and the environment is governed by the well known Liouville-von
Neuman equation of motion [6]

ρ̇SE(t) = −i[H(t), ρSE(t)] ≡ L(t)ρSE(t), (1.12)

where H(t) is the Hamiltonian that governs the global dynamics of the system and the
environment, and the second equality defines the Liouville operator L(t).

The density operator of a two state system is a two dimensional positive Hermitian
operator with trace one. It can thus be expressed in terms of a basis of Hermitian operators
given by the three Pauli operators σ = (σx, σy, σz) and the 2 × 2 identity,

ρ =
1

2
(1 + p · σ), p = Tr[ρσ] =





ρ01 + ρ10

i(ρ01 − ρ10)
ρ00 − ρ11



 . (1.13)

The vector p is known as the Bloch vector, and for a spin-1/2 object it represents the
expectation values of the spin components p/2 ≡ 〈S〉 = Tr[Sρ], where S = σ/2, with σz
diagonal in the |0〉 |1〉 basis, σz|0〉 = |0〉 and σz|1〉 = −|1〉.

If the coupling between the system and environment is weak, it can be taken into account
at lowest order in the Born approximation. Assuming that the temporal correlations in the
environment are short lived and typically lead to exponential decay of the coherence and
populations, the master equation within the Born-Markov approximation for the density
matrix of a two level system can be expressed as a first order time differential equation for
the expectation value of the spin component 〈S〉 = (〈Sx〉, 〈Sy〉, 〈Sz〉) [7–9],

〈Ṡ〉 = ω × 〈S〉 −R〈S〉 + 〈S0〉, (1.14)
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with ω = (0, 0, ω01). In case of a spin 1/2 particle in a magnetic field defining the z direc-
tion, ω01 represents the Zeeman splitting. The relaxation matrix R and the inhomogeneous
term 〈S0〉 depend on the golden rule transition rates between the qubit levels due to cou-
pling to the environment. If ω01 ≫ Rij, it is possible to make a secular approximation
yielding the diagonal form

R ≈





T−1
2 0 0
0 T−1

2 0
0 0 T−1

1



 , (1.15)

with T1 the relaxation time and T2 the decoherence time related by the Korringa relation
[10]

1

T2

=
1

2T1

+
1

Tφ
, (1.16)

with Tφ the pure dephasing time. For a system-environment coupling given by a simple
bilinear form HI = OS ⊗XE, with OS an operator acting in the system space HS, and XE

an operator acting in the environment space HE, the relaxation and dephasing times T1

and Tφ can be written as

1

T1

= 4|〈0|OS|1〉|2J(ω01) coth
ω01

2kBT
, (1.17)

1

Tφ
= |〈0|OS|0〉 − 〈1|OS|1〉|2

J(ω)

ω

∣

∣

∣

∣

ω→0

2kBT, (1.18)

where the spectral density J(ω) is the Fourier transform of the environment time correlator

J(ω) =

∫ ∞

−∞
dtTrE [XEXE(t)ρE] e−iωt. (1.19)

The first term in Eq. (1.14) produces a rotation of the Bloch vector along the z direction.
If R = 0 we have the classical picture of a magnetic moment precessing about the exter-
nally applied magnetic field. The second term proportional to R describes an exponential
damping of the components of the Bloch vector. T1 describes the decay of the longitudinal
component of the Bloch vector, while T2 describes the decay of the transverse components.

1.1.4 Superconducting qubits

Superconducting qubits represent a category of promising candidates for the implemen-
tation of artificial two-level systems as qubits. The key ingredient in building supercon-
ducting qubits is the strong nonlinearity of the current-voltage relation of a Josephson
junction. The ability to isolate few charge states on a superconducting island, together
with the possibility to let them interact through the coherent tunneling of Cooper pairs
through the junction, represent a promising way to control a operate a purely quantum
system (charge qubits). The flux quantization together with the strong nonlinear potential,
arising from the current-voltage relation, provide a way to isolate few current states and
coherently superimpose them (flux qubit).
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Superconducting qubits can be included in a more general framework of quantum circuits,
that are electrical circuits showing, in the low temperature regime, quantum behavior,
including quantum fluctuations [11]. In this context, as LC-circuits provide electrical
realizations of quantum harmonic oscillators, Josephson junctions provide an anharmonic
counterpart, showing a rich spectrum, with groups of few energy levels well separated from
higher bands of the spectrum.

Several types of superconducting qubits based on Josephson junctions have been so far
theoretically proposed and experimentally realized [12]. Apart from the particular design of
each device, superconducting qubits can be classified according of the working regime of the
Josephson elements that constitutes the circuit. Every Josephson junction is characterized
by two features: i) a critical current Ic, that is the maximal supercurrent that can flow
through the junction; and ii) an effective capacitance that the two superconducting faces
have to accumulate charge. Together the Josephson energy associated with the critical
current EJ = IcΦ0/2π and the charging energy of the associated capacitance EC = e2/2C
are the two most important parameters that determine the qubit working regime. For
EC ≫ EJ the charge degrees of freedom are well defined and the number of Cooper pairs
in a superconducting island is a well defined quantum number. Qubits that work in this
regime are called charge qubits [13, 14]. To the contrary, for EC ≪ EJ flux degrees of
freedom have well defined values, and current states are well defined. Qubits that operate
in this regime are called flux qubits [15–17]. Other realizations of superconducting qubits,
for different values of the ratio EJ/EC , and many kinds of possible accessible parameter
regimes have been explored. The so called phase qubit [18] operates in the flux regime,
but is completely represented by the superconducting phase, and it has no magnetic flux
or circulating current associated.

Experimental observation of Rabi oscillations in driven quantum circuits have shown
several periods of coherent oscillations, confirming, to some extent, the validity of the
two-level approximation and possibility of coherently superimpose the computational two
states of the system. Nevertheless, the unavoidable coupling to a dissipative environment
surrounding the circuit represents a source of relaxation and decoherence that limit the
performances of the qubit for quantum computation tasks. Therefore, for the implemen-
tation of superconducting circuits as quantum bits, it is necessary to understand the way
the system interacts with the environmental degrees of freedom, and to reduce their effect,
if possible.

The superconducting flux qubit

In the working regime EJ ≫ EC , three types of circuit designs have been proposed, the
Delft flux qubit [15–17], the IBM flux qubit [19], and its gradiometer variety [20].

The flux qubit realized at Delft [17] consists of a superconducting loop interrupted by
three Josephson junctions, each characterized by the phase difference ϕ of the supercon-
ducting order parameter. The strong flux regime EJ ≫ EC allows flux quantization of the
flux through the loop, ϕ1+ϕ2+ϕ3+ϕL = 2πn, where ϕL = 2πΦLΦ0 is the phase associated
with the inductive degree of freedom of the loop. For sufficiently low temperatures and for
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small loop inductance, ϕL can be considered as frozen. Therefore, only two of the three
phases of the junctions play the role of dynamical variables and the effective potential U(ϕ)
is periodic and shows a double well shape, where ϕ = (ϕ1, ϕ2, ϕ3)

T . The charging energy
of the system here plays the role of the kinetic energy, and the Hamiltonian is written as

H = −2e2∇T
ϕ
C−1∇ϕ +

(

Φ0

2π

)2

U(ϕ), (1.20)

where −2ie∇ϕ = Q is the charge operator.
The lowest energy states are two flux states localized in the two well minima ϕL and

ϕR, and they correspond to clockwise and counter clockwise circulating currents in the
loop, |L〉 and |R〉, encoding the logical |0〉 and |1〉 states of the qubit. Tunneling through
the potential barrier between the wells lifts the degeneracy between the two current states,
giving rise to a splitting ∆ = 〈L|H|R〉 between the lowest states of the system, that are
the symmetric and symmetric superpositions of the current states. An external bias flux
can create asymmetry in the double well, ǫ = 〈L|H|L〉− 〈R|H|R〉. The qubit Hamiltonian
written in the {|L〉, |R〉} basis takes the form

H =
∆

2
σx +

ǫ

2
σz. (1.21)

Markovian dynamics due to dissipative circuitry

The working regime of the flux qubits, in which the charging energy is much smaller
than the Josephson energy, EC ≪ EJ , makes the flux qubits insensitive to a large extent
to background charge fluctuations. Still, however, other mechanisms can affect their phase
coherence and in order to implement them as building blocks for quantum computation
schemes, it is necessary to understand which sources of decoherence affect the short time
dynamics of flux qubits and to reduce their effect as much as possible.

Several sources of dissipation for flux qubits have been discussed throughout the litera-
ture [21], background charge fluctuations (τϕ ≈ 0.1 s), as well as quasiparticle tunneling in
the superconductor with a non-vanishing subgap conductance (τϕ ≈ 1 ms). Nuclear spins
in the substrate have also been considered as a possible source of dissipation. A static ran-
dom magnetic field produced by the nuclear spins may induce shifts in qubit frequencies,
but no dephasing is expected until a typical nuclear relaxation time, which can be very
long, up to minutes, due to the slow dynamics of nuclear spins [21].

However, the most efficient source of dissipation for flux qubits is represented by fluc-
tuations in the external circuit that produce fluctuating magnetic fluxes through a loop
in the circuit. The coupling of flux degrees of freedom of the qubit to the dissipative en-
vironmental elements is well described in the graph formalism [19]. In the Born-Markov
approximation, the relaxation and pure dephasing rates, T−1

1 and T−1
φ respectively, are

given by Eqs. (1.17,1.18) with the operator OS given by m · ϕ [19]. Here m · ϕ appears
in the Hamiltonian for the system-bath coupling and m is related to the topology of the
dissipative circuitry. Typically, Tφ can be made to diverge for an appropriate choice of
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external fluxes such that 〈0|m · ϕ|0〉 = 〈1|m · ϕ|1〉. However, this divergence is expected
to be cut off by other mechanisms.

The two eigenstates of the Hamiltonian Eq. (1.21) are given by

|0〉 =
1√
2

(√

1 +
ǫ

ω01

|L〉 +

√

1 − ǫ

ω01

|R〉
)

, (1.22)

|1〉 =
1√
2

(√

1 − ǫ

ω01

|L〉 −
√

1 +
ǫ

ω01

|R〉
)

, (1.23)

where ω01 =
√
ǫ2 + ∆2. Approximating the localized flux states |L〉 and |R〉 as Gaussians

centered at the minima of the double well, the relaxation rate T−1
1 and the pure dephasing

rate T−1
φ are given by

1

T1

≈
(

∆

ω01

)2

|m · ∆ϕ|2
(

1 +
S2

2

)2

J(ω01) coth
ω01

2kBT
, (1.24)

1

Tφ
≈

(

ǫ

ω01

)2

|m · ∆ϕ|2
(

1 +
S2

2

)2
J(ω)

ω

∣

∣

∣

∣

ω→0

2kBT, (1.25)

where S = 〈L|R〉 is the overlap between the two Gaussians. The vector ∆ϕ connects the
two minima of the double well. These relations are valid in the Markov limit and in the
Born approximation where the system-bath interaction is considered only at first order.
By inspection of the previous formula it is clear that a symmetric double well potential,
for which ǫ = 0, lets the dephasing time diverge. This is realized for a value of the external
applied magnetic flux Φext = Φ0/2, because ǫ ∝ (Φext/Φ0 − 1/2). Moreover for m ·∆ϕ = 0
the environment is decoupled from the system, and both the relaxation and dephasing time
diverge.

Conclusion

This introduction to superconducting qubits is a preparation for the material presented
in Ch. 2. There, we study a three Josephson junction superconducting flux qubit in which
the two superconducting islands between the three Josephson junctions are gated by ex-
ternal voltages. We study how the gate voltages allow to control the qubit Hamiltonian
and explore a range of fabrication parameters that give rise to a σy term in the qubit
Hamiltonian. The ground state and the excited state of the qubit can be made to point
along any direction of the Bloch’s sphere, allowing for a full control of the system.

1.2 The measurement process

The connection between the microscopic world, in which quantum objects live, and the
macroscopic world, in which we live and perform measurements, is a rather complicated and
not yet fully understood problem. The so-called correspondence principle, that states that
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the quantum mechanical description of a quantum system should reproduce the classical
physics in the limit of large quantum numbers, represents mostly a guide and a posteriori
confirmation of the theory, rather than a precise mapping between the quantum and the
classical worlds. Nevertheless, an experiment essentially is a measurement that produces
outcomes. We interpret these outcomes in the light of quantum theory, that may confirm or
refuse a theoretical prediction, so it is important to understand how a microscopic system
interfaces the macroscopic world.

A fundamental difference between a classical and a quantum measurement is that the
former, at least in an ideal case, has no influence on the system under measurement,
whereas the latter needs to drastically change the state of the quantum system. The action
of a macroscopic measurement apparatus cannot be seen as a small perturbation on the
measured system. One of the fundamental concepts in the description of an ideal quantum
measurement is the postulate of reduction of the quantum state of the measured object,
due to John von Neumann. The essence of the fundamental postulate of the quantum
theory of measurement can be summarized in the following three statements [22]:

• The probability to obtain a certain outcome in a measurement is given by the square
of the modulus of the wave function, expressed in the basis of measured observable.

• The measurement action leaves the measured quantity unperturbed. A change occurs
in the probability distribution, from an a priori wider one, to an a posteriori narrower
one.

• The quantum measurement induces in the quantity that is canonically conjugate to
the measured one a perturbation whose minimum magnitude is given by the Heisen-
berg uncertainty relation.

Although the validity of the picture according to which the wave function collapses
during the measurement can be questioned from a fundamental point of view, it nonetheless
contains the main idea behind a quantum measurement, that every measurement represents
a rather strong perturbation of the system measured and that the state is inferred after a
probabilistic interpretation of the outcomes of the measurements.

In a typical solid state experiments it is necessary to couple the system under study to
a detector and to measure a suitable experimentally accessible observable of the detector,
that will contain footprints of the state of the system that we want to measure. In order
to theoretically describe the measurement procedure it is customary to provide a Hamilto-
nian for the system under study, a Hamiltonian for the detector, that can as well behave
quantum mechanically, and a coupling between the system and the detector. Moreover,
the surrounding environment plays a fundamental role in the measurement action, and it
is important to understand how the information can be acquired and how the measured
system is affected by the measurement back action.
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1.2.1 The theory of quantum measurements

The first rigorous description of the action of a quantum measurement is due to John
von Neumann, who provided it in the form of a postulate. Consider a general quantum
mechanical observable A defined on a Hilbert space H has a spectral decomposition that
allows to write it as

A =
∑

i

ai|i〉〈i|, (1.26)

with ai a set of eigenvalues and corresponding orthogonal eigenstates {|i〉}. We assume
them for simplicity to be discrete and non degenerate. Von Neumann’s potulate of reduc-
tion states that:

• The measurement of the observable A on a state described by the density operator
ρ produces as outcome one of the eigenvalues ai, each of them with a probability

Pi = 〈i|ρ|i〉. (1.27)

• The system after the measurement will be in the state |i〉, that corresponds to the
outcome ai.

Due to the orthogonality of the basis {|i〉} it follows that if two subsequent measurements
of A are performed, one after the other, the second measurement will produce the same
outcome ai as the first with certainty. Such a measurement goes under the name of or-
thogonal (or projective) measurement and it refers only to an ideal measurement. In a real
measurement the final state of the system can substantially differ from |i〉 of the idealized
one. Orthogonal measurements represent only asymptotic limiting cases and in order to
describe real, approximate measurements one has to relax the orthogonality requirement
and consider more generalized non-orthogonal measurements.

The generalized theory of quantum measurements has been developed on the basis of
few concepts that may bring up a direct generalization of the von Neumann projection pos-
tulate of quantum mechanics. They naturally arise from orthogonal measurements defined
on larger Hilbert space and provide the theoretical framework to describe any quantum
measurement. Let us consider a quantum system described by the density operator ρ and
a general measurement scheme that produces a set M of possible outcomes m ∈ M. A
generalized non-orthogonal measurement states that [6, 22]

• The measurement outcome m represents a classical random number with probability
distribution

Pm = Tr[Fmρ], (1.28)

with Fm positive operators that form a decomposition of the unity,

∑

m∈M
Fm = I, (1.29)
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that guarantees the probability conservation
∑

m∈M Pm = 1. The operators Fm are
a positive operator-valued measure (POVM) and represent the most general quantum
measurement. They can provide a description of realistic approximate measurements,
from which orthogonal ones represent only a particular asymptotic case, the key
difference being the absence of an orthogonality condition.

• After the measurement, the state ρ′m conditional to an outcome m is described by a
density operator

ρ′m = P−1
m Φm(ρ), (1.30)

where Φm is a positive, hermitian and trace preserving superoperator, that maps a
density operators to another density operator and that obeys the condition

Tr Φm(ρ) = Tr[Fmρ], (1.31)

which ensures the normalization of the density operator ρ′.

• In the case on a non-selective measurement, the state of the system after the mea-
surement is given by

ρ′ =
∑

m

Pmρ
′
m =

∑

m

Φm(ρ), (1.32)

which thanks to Eqs. (1.29) and (1.31) is normalized, Tr ρ′ = 1.

The superoperator Φm is required to be a convex, linear, completely positive map that sat-
isfies 0 ≤ Tr Φm ≤ 1 and admits an explicit representation, that follows from an important
theorem due to Kraus, which states that there exists a countable set of operators Ωmk that
allow to write

Φm(ρ) =
∑

k

ΩmkρΩ
†
mk, (1.33)

with the operatos Ωmk satisfying

Fm =
∑

k

ΩmkΩ
†
mk ≤ I. (1.34)

1.2.2 Indirect measurements

The quantum description provided by the Schrödinger equation gives rise to a determinis-
tic and reversible evolution of the wave function. This is incompatible with the description
of a quantum measurement in terms of reduction of the wave function, since the acquisi-
tion of information from the measurement is an irreversible and nondeterministic process.
After a measurement is performed it is not possible to return back to the pre-measurement
state and, at the same time, the post-measurement state cannot be predicted before the
measurement is performed. The ultimate reason why the framework of standard quan-
tum mechanics based on the Schrödinger equation is inadequate to describe a quantum
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measurement can be traced to the macroscopic size of the receiver of the measurement
information.

Quantum measurements can be divided into two categories [22]. In the case the mea-
sured quantum object interacts directly with a classical measuring device, one speaks of
“direct measurements”. In such measurements, typically, there is a substantial amount
of randomness in the interaction between the quantum object and the macroscopically
large number of degrees of freedom that characterizes the classical measuring device. A
direct measurement results in a strong perturbation of the measured object, far beyond
the minimum perturbation referable to the uncertainty relation.

A second types of measurement can be thought, that includes am intermediate step: an
“indirect measurement”. It consists in introducing a quantum probe that is coupled to the
quantum object we want to measure. In a first step, the probe and the object undergo a
deterministic and reversible evolution, governed by the Schrödinger equation, and no state
reduction takes place. In a second step, a particular observable of the probe is addressed
by a direct measurement. The state of the probe undergoes a reduction that induces a
further reduction in the state of the object, as a result of the correlations arose in the
previous unitary evolution. In an indirect measurement, the second step should not start
before the first step is completed and the second step should not contribute to the error of
the measurement in a significant way.

Formally an indirect measurement can be described in the following way [22, 23]. The
quantum probe is initialized in a precise initial state ρP , before the measurement starts, and
the quantum object in the general initial state ρO. In the first step of the measurement,
the interaction between the quantum probe and the quantum object results in a global
state ρ′OP

ρ′OP = UρOρPU
†, (1.35)

with U the unitary operator that describes the quantum evolution and induces correlations
between the quantum probe and the quantum object. The state of the probe after the
interaction is

ρ′P = TrO[UρOρPU
†]. (1.36)

In the second step of the measurement a direct measurement of a suitable observable P of
the probed is performed. For simplicity one can approximate the direct measurement with
an orthogonal measurement, that consists in projecting the probe on a state |p〉, eigenstate
of P corresponding to the eigenvalue p. The probability distribution for the results of the
measurement is

Prob(p) = TrP [|p〉〈p|ρ′P ]. (1.37)

By defining the POVM operator Fp as

Fp = TrP [U †|p〉〈p|UρP ], (1.38)

it is possible to express the outcome probability distribution as

Prob(p) = TrO[FpρO]. (1.39)
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The density operator of the quantum object, conditional to the outcome p of the measure-
ment, is

ρ̃(p) =
1

Prob(p)
〈p|ρ′OP |p〉. (1.40)

It is now possible to express the initial state of the probe in a spectral decomposition, with
the probability wj associated to the eigenstates |ψj〉. The action of the measurement on the
state of quantum object, conditional to the outcome p, can be expressed as superoperator
in a Kraus representation

ρ̃(p) =
1

Prob(p)

∑

j

wjΩjpρOΩ†
jp, (1.41)

where the operators Ωjp defined by

Ωjp = 〈p|U |ψj〉. (1.42)

It is straightforward to see that they satisfy the relation
∑

j ΩjpΩ
†
jp = I. From this deriva-

tion it becomes clear how a nonorthogonal measurement arises as a restriction to the Hilbert
space of the quantum object of an orthogonal measurement performed on the larger Hilbert
space of the probe and the object.

Indirect measurements play a fundamental role in the study of quantum measurement, as
they can accurately describe strong measurement as well as weak measurement. Further-
more, besides taking into account a detailed microscopic model for the interaction between
the object and the probe, indirect measurements are suitable for taking into account the
interaction with the environment and achieve a deeper understanding of the measurement
process.

1.2.3 Quantum nondemolition measurements

The Heisenberg uncertainty relation is one of the cornerstones of the theory of quantum
mechanics. It states that for every quantum object any pair of conjugate variables cannot
have a simultaneous precise values. It also represents a fundamental property of a mea-
surement process, according to which it is not possible to obtain a simultaneous arbitrarily
high precise knowledge of two conjugate variables. Consider the position x and momentum
p of a free particle of mass m. The Heisenberg uncertainty relation states that

∆x∆p ≥ ~

2
. (1.43)

This means that the higher the precision in the determination of, say, the momentum p,
and consequently the smaller ∆p, the larger ∆x needs to be. Which is now the limit that
quantum mechanics allows for a precise measurement? In order to answer this question
we consider two measurements of the position of a free particle of mass m [22, 23]. The
first measurement is characterized by an error ∆x1 in the value of the position x. After a
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time τ we perform a second measurement of the position x, that would yield an error ∆x2.
Between the two measurements, the spread in the momentum due to the error in the first
measurement generates a further error δx in the position given by

δx = ∆p1τ/m = ~τ/2m∆x1. (1.44)

From the result x1 and x2 of the two position measurements we can infer the value of the
momentum p as

p = m
x1 − x2

τ
, (1.45)

that will be affected by a total error given my the root mean square (rms)

∆p =
m

τ

√

∆x2
1 + ∆x2

2 + δx2. (1.46)

By minimization of this expression we find that the optimal solution to obtain that most
precise measurement of the momentum is to choose ∆x1 =

√

~τ/2m, from which follows

∆p ≥ ∆pSQL =

√

~m

2τ
, (1.47)

and analogously follows that ∆xSQL =
√

2τ/~m. These represent the standard quantum
limit (SQL) for a quantum measurement [22, 23].

A natural question is whether it is possible or not to overcome the standard quantum
limit. Let us consider a measurement of the energy of an electromagnetic resonator. Ac-
cording to quantization of the harmonic oscillator, the energy comes in discrete quanta of
energy E = ~ω, with ω the frequency of oscillation of the resonator, and it is proportional
to the number n of excited quanta that is in turn accessible by sending the resonator sig-
nal through an amplifier and by measuring the amplitude of the oscillation. Along with
the amplitude, the phase φ of the oscillation can be extracted from the amplifier’s output
[22]. The energy and the phase are canonically conjugate variables and the Heisenberg
uncertainty relation holds

∆E∆φ ≥ ~ω

2
. (1.48)

In order to overcome the standard quantum limit in the measurement of the energy of the
resonator, a measuring device should respond only to energy and should not acquire any
information about the phase. An example of such a device is a photon counter, but such
a device performs a strong direct measurement of the oscillator, ultimately absorbing all
its energy. We now couple the resonator, whose energy we want to measure, to another
resonator that acts as a quantum probe, and perform a strong direct measurement of
the photon number of the probe resonator with a photon counter. If the energy of the
first resonator does not change during the measurement of the probe we can perform a
measurement that “deceives” the quantum limit. Such a measurement goes under the
name of quantum nondemolition measurement (QND).
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As a general recipe, we consider a quantum system on which we want to measure a
suitable observable Â. A measurement procedure is based on coupling the system under
consideration to a probe. The global evolution entangles the probe and the system, and
a measurement of an observable B̂ of the probe provides information on the system. In
general, a strong projective measurement on the probe translates into a weak non-projective
measurement on the system (see Sec. 1.2.2). This is because the eigenstates of the coupled
system differ in general from the product of the eigenstates of the measured observable on
the system and those of the probe.

Three criteria that a measurement should satisfy in order to be QND are [24]: i) agree-
ment between the input state and the measurement result; ii) the action of measurement
should not alter the observable being measured; iii) repeated measurement should give the
same result. These three criteria can be cast in a more precise way: the measured observable
Â must be an integral of motion for the coupled probe and system [22]. Formally this means
that the observable Â that we want to measure must commute with the Hamiltonian H,
that describes the interacting system and probe,

[H, Â] = 0. (1.49)

Such a requirement represents a sufficient condition such that an eigenstate of the ob-
servable Â, determined by the measurement, does not change under the global evolution
of the coupled system and probe. As a consequence, a subsequent measurement of the
same observable Â provides the same outcome as the previous one with certainty. As a
counterexample for a case in which a quantum nondemolition measurement is not possible,
one can consider the measurement of the position of a free particle, for which the system
observable is Â = x̂ and the Hamiltonian of the system is H = p̂2/2m. Clearly one has
[H, x̂] 6= 0 and a QND scheme does not work.

Finally, in order to obtain information on the system observable Â by the measurement of
the probe observable B̂, it is necessary that the interaction Hamiltonian does not commute
with B̂,

[Hint, B̂] 6= 0, (1.50)

where Hint describes the interaction between the probe and the system,

H = HS + Hprobe + Hint. (1.51)

Altogether, these criteria provide an immediate way to determine whether a given mea-
surement protocol can give rise to a QND measurement.

Conclusion

The ideas of quantum measurement and the formalism introduced in this section find an
application in Ch. 3 where we study the quantum nondemolition measurement of a qubit
coupled to a harmonic oscillator. In particular, the concept of indirect measurement, with
a system represented by a qubit and a probe represented by a harmonic oscillator, and
the POVM formalism for weak measurements provide us with the mathematical tools that
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allows us to model a sequence of two qubit measurements and to study the correlations in
the conditional probability for the measurement outcomes.

1.3 Quantum transport

The advances in technology made it possible in the last three decades to construct elec-
tronic structures whose dimensions are much smaller than the coherence length of electrons.
These small electronic conductors are much larger than their microscopic constituents, like
atoms, and too small to show an ohmic behavior and be considered macroscopic. They
“live” in an intermediate world and they are called mesoscopic systems [26].

The “size” of a conductor, and consequently its behavior, can be inferred by an analysis of
three length scales that characterize the electron transport: i) the de Broglie wavelength,
determined by the kinetic energy of electrons in the material, ii) the mean free path,
that is the average distance an electron travels before two scattering events, and iii) the
phase-relaxation length, that is the distance beyond which its initial phase is destroyed.
Macroscopic objects have sizes much larger than all of these length scales and typically
manifest an ohmic behavior. Microscopic objects have a size on the order of the de Broglie
wave length, that in metals is on the order of the inter atomic distances (∼Å), whereas
in semiconductor is on order of 40 nm. Mesoscopic systems usually have a size smaller
than al least one of these three length scales. The realm of measoscopic systems can vary
widely depending on the particular material, the temperature and the magnetic field, and
can range between few nanometers to hundreds of microns.

Recent work on mesoscopic structures has been extensively based on semiconductor
material systems. These devices are fabricated from heterostructures of GaAs and AlGaAs
grown by molecular beam epitaxy. The energy potential along the growth direction of such
a structure has a minimum at the interface of the two layers, which is also asymmetric with
respect to the growth direction. Free electrons are introduced by doping the AlGaAs layer
with Si, which accumulate at the GaAs/AlGaAs interface, deep down in the minimum of
the vertical potential, that provides strong confinement of the electrons along the growth
direction. At the same time, the electrons are free to move along the interface, where they
form a two dimensional electron gas (2DEG), that can have a high mobility and a relatively
low electron density (typically 105 − 107 cm2/Vs and ≈ 1015 m−2). The low density results
in a relatively long Fermi wavelength (≈ 40 nm) and a large screening length. Via the
application of an electric field, obtained through negatively charged metal gate electrodes,
placed on top of the heterostructure, the 2DEG can be locally depleted and by suitable
designing the gate structure it is possible to create electron wires and isolate small islands
of the 2DEG. When the lateral size of the conductor is compared to the Fermi wavelength,
the energy level structure may become discretized, and at temperatures down to tens of
mK, the energy separation of the levels becomes much higher than the temperature, such
that quantum phenomena start to play a significant role.

The conductance G of a mesoscopic system, defined as the current response function
to an applied bias voltage, manifests a behavior that cannot be understood within the
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framework of a classical theory. The conductance of a two-dimensional large macroscopic
sample of width W and length L obeys an ohmic scaling law: G = σW/L, with σ a
material dependent conductivity. For mesoscopic systems there is an interface resistance
that depends on the contacts to the leads and is independent on the length L of the
sample, and the conductance does not show a linear dependence on the widthW . Quantum
phenomena start to be significant and a dependence of the conductance on the discrete
number of transverse mode manifests itself in step like behavior. The current through a
mesoscopic sample can be expressed as the rate for an electron to be transmitted through
it and the linear response conductance can be related to the transmission probability via
the Landauer formula [27–29].

1.3.1 Scattering theory

If the size of a mesoscopic conductor is much smaller than the electron phase-relaxation
length, the dynamics can be considered to be coherent and it is possible to obtain the trans-
port properties starting from the Schrödinger equation. The scattering matrix formalism
[26–29] is a powerful tool that allows to describe the coherent transport through a particu-
lar region of the conductor whose size is smaller than the coherence length. The scattering
matrix S connects semi-infinite, non-interacting leads, from which electrons may come and
towards which electrons may travel, having being transmitted or reflected through the co-
herent scattering region. It is often convenient to formally divide a mesoscopic conductor
into several sections, whose dimensions allow for a coherent treatment, and to describe their
effect by means of their individual scattering matrices. The composition of the individ-
ual S-matrices allows to combine successive sections of the conductor assuming coherence,
partially coherence or complete incoherence among the individually coherent parts of the
conductor.

Dealing with a 2DEG one usually considers a two-dimensional problem. In the external
leads the electrons are considered as free propagating waves, eigenstates of the momentum,
and all the energy levels up to the Fermi energy are occupied, according to the Pauli
principle. As the coupling between the leads and the conductor increases, these electron
eigenstates become scattering states that are connected via the S-matrix to scattering
states of other leads. Inside the conductor the dynamics is described by the Schrödinger
equation

1

2m∗ (i~∇ + eA(r))2 ψ(r) + V (r)ψ(r) = Eψ(r), (1.52)

where m∗ is the effective mass, V (r) is a potential, A(r) is the vector potential, and the
boundary conditions are chosen in such a way that the wave function vanishes outside the
conductor and the leads. All the magnetic fields and the potential V (r) are assumed to
vanish inside the leads. The solution of the Schrödinger equation is a linear combination
of plane waves moving to and from the leads. Inside the leads, the solution can be written
as a linear combination of incoming and outgoing propagating waves, that have been
transmitted or reflected by the conductor, and the transmission and reflection amplitudes
constitute the elements of the scattering matrix. Assuming for simplicity that we have only
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Figure 1.2: Schematic illustration of the transmission through the double barrier
structure Eq. (1.58) obtained as a sum of all the paths in which an electron is
reflected one time, two times etc. between the two barriers [26].

two leads, we can write the modes in the left (right) lead by ψinL (ψinR) and ψonL (ψonR),
where the index i (o) stands for incoming (outgoing) mode, and the quantum number
n = 1, . . . , N labels the N transverse propagating modes, also referred as ”channels”. We
further assume that the left and right leads have the same number of channels N . Solving
the Schrödinger equation for initial waves incoming from the left and the right leads, one
can write the wave function in the left and right lead as

ψL =
N
∑

n=1

cinLψ
i
nL + conLψ

o
nL, (1.53)

ψR =
N
∑

n=1

cinRψ
i
nR + conRψ

o
nR, (1.54)

(1.55)

with the coefficients cinL, c
o
nL, c

i
nR, c

o
nR linearly connected by the energy dependent scattering

matrix
(

conL
conR

)

= S(E)

(

cinL
cinR

)

. (1.56)

Here the n index has been absorbed in the coefficients c
i/o
L/R, that now have the structure

of a N -dimensional vector. The matrix S(E) is the 2N × 2N scattering matrix, that can
be grouped in N -dimensional transmission and reflection matrices, r, r̄, t, and t̄,

S =

(

r t̄
t r̄

)

. (1.57)

From the Schrödinger equation and from current conservation, it follows that the scattering
matrix is unitary, S†S = I.
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In the case one has the scattering matrices of two successive sections of a conductor,
it is possible to obtain the total scattering matrix the describes the combined effect of
the two sections by composing the scattering matrices. One can imaging that the total
transmission amplitude can arise by a sum of all paths in which a particle bounces zero,
one, two, three, etc. times between the two sections and eventually is totally transmitted,
as schematically depicted in Fig. 1.2. The resulting transmission amplitude is given by

t = t(2)t(1) + t(2)[r̄(1)r(2)]t(1) + t(2)[r̄(1)r(2)][r̄(1)r(2)]t(1) + . . .

= t(2)[I − r̄(1)r(2)]−1t(1), (1.58)

where t(1), t(2), r̄(1), r(2) are the the transmission and reflection amplitude of the first and
second scattering matrix. In an analogue way it is possible to reconstruct the entire total
scattering matrix.

1.3.2 The Landauer formula

In order to derive the Landauer formula for the linear response conductance, we consider
a mesoscopic conductor at zero temperature, that is attached to two leads on the left and
on the right side respectively. The two leads are kept at chemical potential µL and µR by
an applied bias voltage V , such that µL − µR = eV . The leads are assumed to be ballistic
conductors, each having N transverse modes. We further assume that no reflection takes
place at the contacts. The current flow takes place only in the energy window µL−µR = eV .
An incoming flux of electrons from the left lead is partially reflected to the left lead, at
chemical potential µL, and partially transmitted to the right lead, that has a lower chemical
potential. Therefore, the current flow will involve only those electrons that are transmitted
and it is given by

I =
2e

h
NT (µL − µR), (1.59)

where the factor 2 takes into account the spin degree of freedom. The linear response
conductance G = I/V is then given by the Landauer formula

G =
2e2

h
NT. (1.60)

The conductance shows a quantized behavior for T = 0, 1, arising from the number of
channels N involved in the transport, and the fundamental quantity e2/h called quantum
of conductance.

Conclusion

The scattering theory introduced in this section provides us with the framework for
studying a particular transport setup in Ch. 4. There, we consider several electronic
implementation of interaction free measurements that were originally proposed in optics.
We study complicated electronic interferometric setups in which electrons are split and
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reunited many times. A region of the interferometer may be affected by external classical
noise, that induces random phase shift of the wave function that travels through it and
ultimately dephases the electrons, resulting in a reduction of the visibility of the interference
fringes. By sending many times a tiny fraction of the electronic wave packet through the
region affected by dephasing, we test the region affected by dephasing and learn about the
presence or absence of the dephasing source in a way that preserves the electron coherence.

1.4 Graphene

One of the major scientific achievements of the past few years is represented without
any doubt by the isolation of graphene, a single layer of carbon atoms arranged in a honey
comb lattice structure [30]. The great advance in the discovery of graphene is represented
by the fact that it is the first time a material (solid) was made in the lab that was only
one atom thick. No one actually expected graphene to exist in a free state. Graphite, a
3D allotrope of carbon, has been known and used for centuries since the invention of the
pencil. It is composed by stacks of many layers of graphene that are weakly bound by van
der Waals forces. Therefore, producing graphene is relatively easy. Every time we write
with a pencil we unfold stacks composed by few layers of graphene. What turns out to
be difficult is to find a single layer, that has to be eventually localized with help of an an
ordinary optical microscope.

Graphene is the mother of graphite, carbon nanotubes and fullerenes. The carbon atoms
in graphene do not form a Bravais lattice. Rather they are arranged in a honey comb
structure that can be described as a triangular Bravais lattice with two atoms per unit
cell. The electronic structure of carbon atoms leads to the sp2 hybridization between one
s orbital and two p orbitals. A planar trigonal structure arises with the formation of
σ bonding between carbon atoms that have a filled shell due to the Pauli principle and
are responsible for the structural robustness of the lattice. Perpendicularly to the planar
structure, the unaffected p orbital forms a half filled π band by binding covalently with
neighboring carbon atoms.

The electronic properties of graphene are determined by the strong tight-binding char-
acter of the half filled π bond. In a picture in which free electrons can hop from one
carbon atom to the three nearest neighboring carbon atoms, the electronic properties of
graphene are described by a dispersion relation that shows a semimetallic behavior. The
conduction and the valence bands touch in six points in the Brillouin zone that form a
hexagonal lattice. Two of them, K and K ′, are not equivalent whereas the other points are
obtained from these by a Bravais vector displacement. Around the K and the K ′ points
the dispersion relation is linear. It follows that the low energy physics can be described
quantum mechanically by the massless Dirac equation.

The possibility to study in a solid state lab a material whose characteristic properties
share common features with relativistic particles opens the possibility to experimentally
test many theoretical predictions that concern relativistic effects. The massless character of
particle in graphene and the consequent chiral behavior allow to a peculiar effect known as
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Klein tunneling to take place. In few words, when chiral electrons of positive energy impinge
against a step-like barrier of higher energy they find free hole states inside the barrier
and therefore tunnel through without being reflected. This strictly speaking happens for
propagation orthogonal to an infinite barrier. For a comprehensive review on graphene see
[31].

1.4.1 Tight-binding approach

In order to obtain the energy dispersion relation that characterizes the electronic prop-
erties of a single layer of graphene, we divide the honey comb structure in two triangular
Bravais sublattices, A and B, and associate to every sublattice site-dependent fermionic
field operators ai,σ and bi,σ, with spin σ =↑, ↓. The tight-binding Hamiltonian obtained by
retaining solely nearest-neighbor hopping terms can be written as

H = −t
∑

〈i,j〉,σ
(a†i,σbj,σ + b†j,σai,σ), (1.61)

where t ≈ 2.8 eV is the nearest-neighbor hopping energy. It is important to notice that
every time that an electron hops from one carbon atom to a nearest neighbor it changes
sublattice. The electronic dispersion relation in the k-space that follows from Eq. (1.61)
can be written as [32]

E±(k) = ±t
√

3 + 2 cos(
√

3kya) + 4 cos(
√

3kya/2) cos(3kxa/2), (1.62)

with a ≈ 1.2 Å the carbon-carbon distance. The plus sign refers to the upper (π∗) band
and the minus sign refers to the lower (π) band and the spectrum is symmetric around zero
energy. The low energy physics is well captured by studying the band structure around
the Dirac point K and K ′. Close to the K (or K′) vector, we write k = K + q and for
|q| ≪ |K| can linearize the dispersion relation [32]

E±(q) ≈ ±vF |q|, (1.63)

where q is the momentum close to the Dirac point and vF is the Fermi velocity given by
vF = 3ta/2 ≈ 1 × 106 m/s. In Fig. 1.3 we depict the linear dispersion relation around the
K point.

1.4.2 Massless Dirac fermions

We start from the Hamiltonian Eq. (1.61). Close to the Dirac point K we can build a
pseudo-spin wave function ψ(r) in which the first component refers to the sublattice A and
the second component to the sublattice B. The equation of motion can be described by
the massless Dirac equation

−ivF∇ · σψ(r) = Eψ(r), (1.64)
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Figure 1.3: Schematic illustration of the Dirac cone. The conduction band and the
valence band touch at the Dirac point K. Electrons have positive helicity, with the
pseudo-spin along the direction of p, whereas holes have negative helicity, with the
pseudo-spin against the direction of p.

where σ = (σx, σy) is the vector of Pauli matrices in the plane. The operator ∇ · σ has
only non-zero off-diagonal components, reflecting the fact that each time that an electron
hops from one carbon atom to a nearest-neighbor it changes sublattice. In the momentum
space the Hamiltonian is HK = vFk · σ and the eigenstates are

ψ±,K(k) =
1√
2

(

e−iθk/2

±eiθk/2
)

, (1.65)

where the ± signs refer to the eigenenergies ±vFk for the π∗ and π bands, respectively,
and θk = arctan(kx/ky) is the angle in momentum space. The Hamiltonian around the K′

Dirac point is given by

−ivF∇ · σ∗ψ(r) = Eψ(r), (1.66)

and in the momentum space is given by HK = vFk · σ∗, with σ∗ = (σx,−σy). The eigen-
states around the K′ are related to those around the K point by time-reversal symmetry,

ψ±,K′(k) =
1√
2

(

eiθk/2

±e−iθk/2
)

. (1.67)

If the the phase θ is rotated by 2π the wave function changes sign, revealing the spinorial
character of the wave function. Such a π shift is known in the literature as Berry’s phase.

The eigenstates of the massless Dirac equation can be characterized by the helicity that
is defined as the projection of the momentum operator along the pseudo-spin direction,

ĥ =
1

2
σ · p

|p| . (1.68)
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From the definition of the helicity operator it is clear that the states ψ±,K(r) and ψ±,K′(r)

are also eigenstates of ĥ,

ĥψ±,K(r) = ±1

2
ψ±,K(r), (1.69)

ĥψ±,K′(r) = ∓1

2
ψ±,K′(r). (1.70)

This is a consequence of the fact that particle in graphene are massless. It then follows
that electron (holes) have a positive (negative) helicity and that the pseudo-spin σ points
along or against the direction of p. Such a property is known as chirality and helicity is a
good quantum number only close to the Dirac points K and K ′. In Fig. 1.3 we represent
the Dirac cone, with the positive and negative energy bands that touch at the Dirac point.
In the conduction band the pseudo-spin points along the direction of p and has positive
helicilty, whereas in the valence band the pseudo-spin points against the direction of motion
and has negative helicity.
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[29] M. Büttiker, Four-Terminal Phase-Coherent Conductance, Phys. Rev. Lett. 57, 1761
(1986).

[30] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.
V. Gregorieva, A. A. Firsov, Science 306, 666 (2004).

[31] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev.
Mod. Phys. 81, 109 (2009).

[32] P. R. Wallace, Phys. Rev. 71, 622 (1947).



2. Voltage Controlled Flux Qubit

We study a voltage-controlled version of the superconducting flux qubit [Chiorescu et
al., Science 299, 1869 (2003)] and show that full control of qubit rotations on the entire
Bloch sphere can be achieved. Circuit graph theory is used to study a setup where voltage
sources are attached to the two superconducting islands formed between the three Joseph-
son junctions in the flux qubit. Applying a voltage allows qubit rotations about the y axis,
in addition to pure x and z rotations obtained in the absence of applied voltages. The
orientation and magnitude of the rotation axis on the Bloch sphere can be tuned by the
gate voltages, the external magnetic flux, and the ratio α between the Josephson energies
of the junctions via a flux-tunable junction. We compare the single-qubit control in the
known regime α < 1 with the unexplored range α > 1 and estimate the decoherence due
to voltage fluctuations. 1

2.1 Introduction

Superconducting (SC) circuits can exhibit a great variety of quantum mechanical phe-
nomena and are studied for their potential as devices for quantum information processing.
Several different circuit implementations of a SC quantum bit (qubit) have been investi-
gated both theoretically and experimentally [1, 2].

A prototype of a SC flux qubit, characterized by a working regime in which the Josephson
energy dominates over the charging energy, EJ ≫ EC , has been theoretically designed
and experimentally realized [3–7, 14, 29], showing quantum superposition and coherent
evolution of two macroscopic states carrying opposite persistent currents that represent the
qubit states. The flux qubit state is related to a magnetic moment, and is thus typically
controlled via the application of external magnetic fields which create magnetic flux through
the loop(s) in the circuit. An advantage of flux qubits is their relative insensitivity to
charge fluctuations that can lead to fast decoherence [10–12], while magnetic fluctuations
are typically more benign.

A second type of SC qubits, the so called charge qubits [13–17], operates in the limit in
which the charge energy dominates, EC ≫ EJ , thus being relatively insensitive to magnetic
fluctuations, while having a well defined value of the charge on a SC island, in which
the presence or absence of an extra Cooper pair determines the state of the qubit. The
intermediate regime in which the Josephson and charge energies are comparable, EJ ≈ EC ,
has been investigated and realized in the “quantronium” [18]. Another type of qubit is the
Josephson, or phase, qubit, consisting of a single junction [19].

1This chapter has been published in Physical Review B 74, 174510 (2006).
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Figure 2.1: The voltage-biased SC flux qubit (schematic). The circuit consists of
a SC ring (blue) with three Josephson junctions J1, J2, and J3, threaded by an
external magnetic flux Φx. The Josephson energy of the middle junction J3 differs
from the other two by a factor of α. A voltage bias Vi is applied to each of the two
islands formed by the three junctions via a capacitor Ci.

In this paper, we investigate the possibility of enhancing the control of a SC flux qubit
via the application of electrostatic gates [3, 20, 21]. We study the flux qubit proposed by
Orlando et al. [3]. While in [3], the effect of any applied voltages was kept low in order
to avoid charge noise, we explore the possibility of making use of the off-set gate charge as
an additional control variable. We define two device parameters. Assuming for simplicity
two Josephson junctions to have equal Josephson energies (EJ1 = EJ2 = EJ), the first
parameter is given by the ratio α = EJ3/EJ between the Josephson energy of the third
junction and the remaining two junctions. The regime of interest here is 0.5 < α . 1.5
although in principle larger values are possible. The second parameter is the ratio between
the Josephson energy and the charging energy, EJ/EC which for flux qubits is typically
about 10 or larger. We analyze the role of these parameters in detail and, in addition to
the well-studied regime α < 1, also explore the opposite regime α > 1. Particular effort
is spent looking for a single-qubit Hamiltonian in which an effective pseudo-magnetic field
couples to all three components of the pseudo-spin represented by the circuit. A charge
qubit in which a σy term in the single-qubit Hamiltonian has been proposed in [22]. The
possibility of changing the relative phase of the qubit states, together with the capability
to flip them, allows full control over the qubit. Full control on the Bloch sphere is thought
to be very useful in the field of adiabatic quantum computation [23–25].

Circuit theory provides us with a systematic and universal method for analyzing any
electrical circuit that can be represented by lumped elements [6, 27–29]. Through the
language of a graph theoretic formalism, Kirchhoff’s laws and the Hamiltonian of the
circuit are written in terms of a set of independent canonical coordinates that can easily be
quantized. The formalism of [6, 27, 28] is particularly suited for studying circuits containing
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Figure 2.2: a) Circuit of a voltage-biased flux qubit (Fig. 2.1). The main loop con-
tains three Josephson junctions and a (chord) inductance (K). An external magnetic
flux Φx threads the SC loop. The junctions J1 and J2 are biased by two electrostatic
gates, representing the main new feature of the circuit. Solid lines represent the
tree of the circuit graph, while dotted lines are the chords. b) Each thick solid line
represents a Josephson junction shunted by a capacitance CJ .

superconducting elements, like Josephson junctions, that are treated as nonlinear inductors.
Here, we make use of the extended circuit theory that accounts for charging effects and
can be applied both for charge and flux qubits [27].

Our main result is the identification of the parameter range for α and EJ/EC in the
voltage-controlled flux qubit in which the single qubit Hamiltonian acquires a σy term in
addition to the σx and σz terms, thus allowing full control of the qubit rotations on the
Bloch sphere. In this regime, we compute the dependence of the single-qubit Hamiltonian
on the applied voltages V1 and V2. For the quantitative analysis of the qubit dynamics we
calculate the tunneling amplitudes appearing in the Hamiltonian as functions of the device
parameters.

The paper is structured as follows. In Section 2.2 we briefly review circuit theory [6, 27–
29] and apply it to the circuit of Fig. 2.2 to find its Hamiltonian. Section 2.3 contains the
derivation of the effective periodic potential in the Born-Oppenheimer approximation. In
Section 2.4, we address the quantum dynamics of the circuit and find localized solutions in
the periodic potential. In Section 2.5 we apply Bloch’s theory in a tight-binding approx-
imation to find general solutions in the presence of a voltage bias. Sec. 2.6 describes the
calculation of the tunneling matrix elements appearing in the qubit Hamiltonian and their
dependence on the device parameters α and EJ/EC . In Sec. 2.7, we explore the regime
(α > 1) and show that a full control on the qubit Hamiltonian is feasible. In Section 2.8,
we study the decoherence of the qubit due to the attached voltage sources. Finally, Sec. 2.9
contains a summary of our results and conclusions.

2.2 The circuit

Here we study a version of the Delft flux qubit [3, 7] with an additional voltage control
(Fig. 2.1). Typically, such a qubit circuit also comprises a readout SQUID which can be
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surrounding or attached to the qubit. We concentrate on the qubit itself here and do not
include the SQUID in our analysis because the presence of a readout circuit does not alter
the analysis and results for single-qubit control presented here. A circuit representation of
the studied device is shown in Fig. 2.2. The main loop contains three Josephson junctions
and the loop self-inductance (K), and is threaded by an external magnetic flux Φx. The
junctions form two SC islands to which electrostatic gates with capacitance C1 and C2

are attached and voltages V1 and V2 are applied. The voltage sources represent the new
elements in the circuit. As long as the junctions are built in such a way that the Josephson
energy dominates, EJ ≫ EC , the qubit is encoded in the orientation of the circulating
persistent current, as in Refs. [3, 7].

We represent the circuit as the oriented graph G shown in Fig. 2.2a, consisting of N = 8
nodes (black dots) ni (i = 1, . . . , 8) and B = 13 branches (thin lines) bi (i = 1, . . . , 13),
in which each branch bi represents one of the following lumped circuit elements: a (bare)
Josephson junction J , capacitance C, inductance K, voltage source V , and impedance
Z. The impedances Z1 and Z2 model the imperfect voltage sources attached from outside
to the quantum circuit. Every Josephson junction (thick line) consists of 2 branches: a
bare Josephson junction (J) and the junction capacitance (CJ) as indicated in Fig. 2.2b.
In addition to these two elements, a Josephson junction can also be combined with a
shunt resistance [6]. However, these resistances are typically very large and can often be
neglected; they are not be of interest here. The circuit graph G is divided in two parts. The
tree is a loop-free subgraph which connects all nodes of the circuit and it is represented
by solid lines in Fig. 2.2. All the branches fi (i = 1, . . . , F ) that do not belong to the
tree are called chords and are represented by dotted lines in Fig. 2.2. In the present case,
the number of chords, not counting the junction capacitances CJ , is F = 3. There can in
principle be inductances contained both in the tree and in the chords which considerably
complicate the analysis [6]. However, in our case there are no inductances in the tree (no
L inductances), so that our analysis is much simpler than the general one. From now on,
we make use of the fact that the circuit graph Fig. 2.2 has no inductances in its tree.
When a chord is added to the tree, it gives rise to a unique loop, a fundamental loop.
In other words, the set of fundamental loops Fi of the graph consists of all loops which
contain exactly one chord fi. The topological information about the graph is encoded in
the fundamental loop matrix F(L) of the circuit (i = 1, . . . , F ; j = 1, . . . , B),

F
(L)
ij =







1, if bj ∈ Fi (same direction),
−1, if bj ∈ Fi (opposite direction),
0, if bj /∈ Fi,

(2.1)

where the direction of the fundamental loop Fi is given by the direction of its defining
chord fi. The currents I = (I1, . . . , IB) and the voltages V = (V1, . . . , VB) associated with
the branches of the graph are divided in into tree and chord currents and voltages,

I = (Itr, Ich), V = (Vtr,Vch). (2.2)

With the division into three and chord branches, the fundamental loop matrix assumes the
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block form
F(L) = ( −FT | I ). (2.3)

We further split up the current and voltage vectors according to the type of branch [27],

Itr = (IJ , IV , IZ), Ich = (ICJ
, IC , IK),

Vtr = (VJ ,VV ,VZ), Vch = (VCJ
,VC ,VK),

(2.4)

such that the matrix F acquires the sub-block form,

F =





1 FJC FJK

0 FV C FV K

0 FZC FZK



 . (2.5)

By inspection of Fig. 2.2, one finds the loop sub-matrices of the circuit according to the
rule Eq. (2.1),

FJC =





1 0
0 1
0 0



 , FJK =





−1
1
1



 ,

FV C = FZC =

(

1 0
0 1

)

, FV K = FZK =

(

0
0

)

.

(2.6)

With Eq. (2.3), Kirchhoff’s laws have the compact form

FIch = −Itr, (2.7)

FTVtr = Vch − Φ̇x, (2.8)

where Φx = (Φ1, . . . ,ΦF ) is the vector of externally applied fluxes. Only loops with a
non-zero inductance are susceptible to an external magnetic flux, thus only one external
flux needs to be considered here, Φx = (0, 0,Φx).

The SC phase differences across the junctions φ = (ϕ1, ϕ2, ϕ3) are related to the canon-
ical variables, the fluxes Φ, through the relation

φ = 2π
Φ

Φ0

, (2.9)

while the canonically conjugate momenta are the charges Q = (Q1, Q2) on the junction
capacitance. Using circuit theory [27] and ignoring the dissipative circuit elements Z1 and
Z2 for the moment, we find the following Hamiltonian of the circuit Fig. 2.2,

HS =
1

2
(Q − CVVV )T C−1 (Q − CVVV ) + U(Φ),

(2.10)

U(Φ) = −EJcos2π
Φ

Φ0

+
1

2
ΦTM0Φ + ΦTNΦx, (2.11)
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Figure 2.3: Plot of the potential U(φ) for ϕx = π along the line ϕ1 + ϕ2 = 0 as a
function of ϕ‖ = 1√

2
(ϕ1 − ϕ2) for several values of α. In the curve for α = 0.5 the

two minima are degenerate, while for α > 0.5 they split showing the double well.
The inset is a density plot of the potential for α = 0.8, showing the two minima
and the line ϕ1 + ϕ2 = 0.

where we have defined cosφ = (cosϕ1, cosϕ2, cosϕ3). The Josephson energy matrix is
given as

EJ =

(

Φ0

2π

)2

L−1
J = diag(EJ , EJ , αEJ), (2.12)

where Φ0 = h/2e is the SC quantum of magnetic flux. We assume that the Josephson
energies and capacitances of the junctions J1 and J2 are equal, EJ1 = EJ2 ≡ EJ and
CJ1 = CJ2 ≡ CJ , and we define the ratio α = EJ3/EJ . The capacitance matrices of the
circuit are

CJ = diag(CJ , CJ , CJ3), C = diag(C1, C2). (2.13)

The source voltage vector is defined as VV = (V1, V2). The derived capacitance matrices C
and CV and the derived (inverse) inductance matrices M0 and N of Eq. (2.10) are given
in the Appendix A.

2.3 Born-Oppenheimer approximation

We consider now the limit in which the chord inductance K is small compared to the
Josephson inductances, K ≪ LJ . By means of the Born-Oppenheimer approximation,
we derive an effective two-dimensional potential as a function of two “slow” degrees of
freedom. Our analysis follows closely that of [29]. For K ≪ LJ , the potential Eq. (2.11)
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gives rise to a hard constraint for the variables φ, in the form of the linear equation

M0φ + Nϕx = 0, (2.14)

where the external magnetic flux is written as ϕx = 2πΦx/Φ0. The general solution of the
Eq. (2.14),

φ =





ϕ1

ϕ2

ϕ1 − ϕ2 + ϕx



 , (2.15)

depends on the two variables ϕ1 and ϕ2 only. Thus, in the limit of small K, the dynamics
is restricted to a plane in three-dimensional φ space. The potential, restricted to the plane,
is then a function of ϕ1 and ϕ2 only [3],

U(φ) = EJ

[

− cos(ϕ1) − cos(ϕ2) − α cos(ϕ1 − ϕ2 + ϕx)
]

. (2.16)

A density plot of U for α = 0.8 as a function of ϕ1 and ϕ2 is shown in the inset of Fig. 2.3.
The minima of the potential are found by solving the equation gradU = 0, which yields
[3]

sinϕ1 = − sinϕ2 = − sinϕ∗, (2.17)

where ϕ∗ is the solution of the self-consistent equation

sinϕ∗ = α sin(2ϕ∗ + ϕx). (2.18)

The potential forms two wells whose relative depth is determined by the value of the
externally applied flux ϕx. In order to have a symmetric double well we choose ϕx = π
which yields two minima at the points φR = (ϕ∗,−ϕ∗) and φL = (−ϕ∗, ϕ∗) with ϕ∗ =
arccos(1/2α) > 0. If α > 0.5, then there are two distinct minima. Taking into account the
periodicity of the potential, a complete set of solutions of Eq. (2.18) is φ = ±(ϕ∗,−ϕ∗)T +
2π(n,m), with integer n,m. We plot the double well potential between the two minima in
Fig. 2.3 for different values of α in the symmetric case ϕx = π.

2.4 Quantum dynamics

In this section, we look for localized solutions of the Schrödinger equation HΨ = EΨ,
with the Hamiltonian of Eq. (2.10). We expand the potential around the two minimum
configurations, keeping contributions up to the second order in φ, and solve the Schrödinger
equation in these two different points (denoting them L and R for left and right). We obtain
the quadratic Hamiltonian

HL,R =
1

2

[

QTC−1Q + ΦTL−1
lin; L,RΦ

]

, (2.19)

where the linearized inductance Llin;L,R is defined as

L−1
lin; L,R = M0 + L−1

J cosφL,R. (2.20)
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To simplify the kinetic part in Eq. (2.19), we perform a canonical transformation on the
variable Φ and its conjugate momentum Q [29],

Φ =
√
c
(√

C−1
)T

Φ̃,

Q =
√
CQ̃/

√
c, (2.21)

where c is an arbitrary unit capacitance (e.g., c = CJ). We define the diagonal matrix
Ω2
L,R such that it satisfies

(
√
C−1

)TL−1
lin;L,R

√
C−1

= OTΩ2
L,RO, (2.22)

where O is an orthogonal matrix that diagonalizes the left hand side (lhs) of Eq. (2.22).
This allows us to further simplify the Hamiltonian by making the following canonical
transformation, preserving the Poisson brackets,

Φ′ = OΦ̃, Q′ = OQ̃, (2.23)

that leads us to the Hamiltonian,

HL,R =
1

2

(

c−1Q′2 + Φ′TΩ2
L,RΦ′

)

. (2.24)

In the case of a symmetric potential (when ϕx = π), the matrices Llin;L,R of the linearized
problem are equal,

Llin;L = Llin;R, and ΩL = ΩR, (2.25)

hence we drop the subscript L and R for simplicity.
We quantize the Hamiltonian by imposing the canonical commutation relations,

[Φi, Qj] = i~δij, (2.26)

where Φi and Qj are the components of the vectors Φ and Q respectively. The ground-state
wave function is the Gaussian,

Ψα(ϕ) =

(

detM
π2

)1/4

exp

[

−1

2
(ϕ − ϕα)

TM(ϕ − ϕα)

]

, (2.27)

where α = L,R and

M =
1

~

(

Φ0

2π

)2 √
COTΩO

√
C. (2.28)

For the wave function overlap integral between the left and right state, S = 〈ΨL|ΨR〉, we
find

S = exp

{

−1

4
∆ϕTM∆ϕ

}

, (2.29)

where ∆φ = φR − φL = 2 arccos(1/2α)(1,−1) is the distance between the right (R) and
left (L) potential minima (Fig. 2.4).
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Figure 2.4: Density plot of the double well potential U(ϕ1, ϕ2) in units of EJ for
α = 0.8 on a logarithmic scale. The periodicity of the potential is evident; each
unit cell contains two minima (black). The primitive vectors of the Bravais lattice
are denoted a1 and a2 while t1 and t2 are the tunneling matrix elements between
the nearest-neighbor minima.

2.5 Bloch theory

Given the periodicity of the problem Eq. (2.10) with the potential Eq. (2.16) in the Born-
Oppenheimer approximation, an important question concerns the boundary conditions of
the problem, i.e., the choice of the appropriate Hilbert space. The question is whether the
domain of φ should be the infinite plane or the square T = [−π, π)2 with periodic boundary
conditions. This question has been discussed extensively in the literature [30–32]. Since in
our case, a shift of ϕ1 or ϕ2 by 2π creates a state which is physically indistinguishable from
the one before the shift, we choose the compact domain T and impose periodic boundary
conditions on the wavefunction. However, we are going to extend the domain to the infinite
domain in order to facilitate the calculation.

2.5.1 The periodic problem

The approximate solutions constructed in Sec. 2.4 are a good starting point, but they
are insensitive to the boundary conditions. However, the boundary conditions are essential
if finite bias voltages VV are to be taken into account. The problem at hand is defined
on the square with side 2π (see inset of Fig. 2.3) with periodic boundary conditions; i.e.,
the phases ϕ = (ϕ1, ϕ2)

T are in the compact domain T = [−π, π)2 and the wavefunction
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at opposite edges needs to be identical, Ψ(−π, ϕ2) = Ψ(π, ϕ2) and Ψ(ϕ1,−π) = Ψ(ϕ1, π),
such that T acquires the topology of a torus. If the boundary conditions are ignored, e.g.,
in the case where the wavefunction is known to be vanishingly small at the boundary, then
the bias voltages VV in the Hamiltonian Eq. (2.10) can be removed completely with a
gauge transformation and the solutions will be independent of VV .

We proceed as follows: We first solve the problem Eq. (2.10) in the infinite two-dimensional
plane and then choose those solutions that satisfy the periodic boundary conditions and
then restrict them to the compact domain T . We choose this approach because the prob-
lem on the infinite domain is well known: the solutions ψαk are given by Bloch’s theorem
for the motion of a particle in a crystal and satisfy

ψαk(ϕ + 2πm) = e2πim·k ψαk(ϕ), (2.30)

for m = (m1,m2) with integer m1 and m2. The minima of our potential, Eq. (2.16),
define a two-dimensional square Bravais lattice with a two-point basis, which looks like a
sheared hexagonal lattice (although it is a square lattice). The lattice and its primitive
vectors a1 = (2π, 0) and a2 = (0, 2π) are shown in Fig. 2.4. The lattice basis is given by
the vectors bL = (0, 0) and bR = 2(ϕ∗,−ϕ∗). Each lattice point can be identified by the
Bravais lattice vector n and the basis index α = L,R. As indicated above, not all the
Bloch functions satisfying the Schrödinger equation on the infinite domain have a physical
meaning, but only those that are also 2π-periodic. In the case of zero applied voltage bias,
the only value of k yielding to a periodic wave function is k = 0.

2.5.2 Tight-binding approximation

In order to construct approximate Bloch states, we first form localized Wannier orbitals
φα by orthonormalizing the localized solutions Ψα (α = L,R) from Eq. (2.27). These
Wannier orbitals are centered at arbitrary lattice points, φαn(φ) = φα(φ − 2πn) and
satisfy the orthonormality relations

〈φαn|φβm〉 = δαβδnm. (2.31)

The Bloch states are then related to the Wannier orbitals via a Fourier transform,

ψαk(ϕ) =
∑

n∈Z2

e2πik·n φαn(ϕ), (2.32)

φαn(ϕ) =

∫

FBZ

dk e−2πik·n ψαk(ϕ), (2.33)

where the integration in Eq. (2.33) is over the first Brillouin zone (FBZ), i.e., ki ∈
[−1/2, 1/2). The label α plays the role of the energy band label in Bloch theory. The Bloch
states ψαk form a complete set of orthonormal states in k-space, where ki ∈ [−1/2, 1/2),

〈ψαk|ψβq〉 = δαβδ(k − q), (2.34)
∑

α

∫

dk|ψαk〉〈ψαk| = I. (2.35)
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For the completeness relation Eq. (2.35) to hold, we must sum over all bands α, corre-
sponding to a complete set of Wannier functions. Here, in order to describe the low-energy
physics of the system, we restrict ourselves to the two lowest bands α = L,R, related to the
left and right potential minimum in the unit cell, and neglect higher excited states of the
double wells. This restriction is justified if the energy gap between the lowest two states
is much smaller than the gap between the two lowest and all higher states (see Table 3.1).
We normalize the Bloch functions on the unit cell T ,

∫

T

dφ|ψkα(ϕ)|2 = 1. (2.36)

Now we can expand the Hamiltonian in the Bloch function basis with Eq. (2.35), and
then apply Eq. (2.32),

H ≃
∑

αβ

∫

dkdq|ψαk〉〈ψαk|H|ψβq〉〈ψβq|

=
∑

αβ

∫

dkdqHαβ
kq |ψαk〉〈ψβq|, (2.37)

where the approximation in the first line consists in omitting bands that are energetically
higher than α = L,R (see above). The matrix elements of the Hamiltonian in the Bloch
basis are

Hαβ
kq =

∑

n,m∈Z2

e−2πi(k·n−q·m)〈φαn|H|φβm〉. (2.38)

For fixed k and q, Eq. (2.38) is reduced to a 2×2 hermitian matrix. The main contributions
to Eq. (2.38) stem from either tunneling between the two sites in the same unit cell (intra-
cell) or between site L in one cell and site R in an adjacent cell (inter-cell), see Fig. 2.4.
For the off-diagonal element we can write

HLR
kq ≃

∑

n∈Z2

e−2πi(k−q)·n
[

〈φLn|H|φRn〉 + e−2πiq1〈φLn|H|φRn−e1
〉 + e2πiq2〈φLn|H|φRn+e2

〉
]

.

(2.39)
where e1 = (1, 0) and e2 = (0, 1). Due to the lattice periodicity, the quantities (see Fig. 2.4)

ǫ0 = 〈φL(R)n|H|φL(R)n〉, (2.40)

t1 = 〈φL(R)n|H|φR(L)n〉, (2.41)

t2 = 〈φL(R)n|H|φR(L)n−e1
〉 (2.42)

= 〈φL(R)n|H|φR(L)n+e2
〉, (2.43)

are independent of the lattice site n, and thus from Eq. (2.38), we find Hαβ
kq ≃ δ(k−q)Hαβ

k .
We can now write the 2 × 2 Hamiltonian as

Hk = ǫ0I +
1

2

(

0 ∆(k)∗

∆(k) 0

)

, (2.44)

∆(k) = 2
[

t1 + t2(e
2πik1 + e−2πik2)

]

. (2.45)
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The equality in Eq. (2.43) is due to the invariance of the potential under the transformation
(ϕ1, ϕ2) → −(ϕ2, ϕ1) and it is valid also in the ϕx 6= π case. The eigenvalues of the problem
are

ǫ±(k) = ǫ0 ±
1

2
|∆(k)|, (2.46)

and represent a typical two-band dispersion relation. In the case of zero external applied
voltage only the k = 0 Bloch functions satisfy the correct boundary conditions, i.e., are
periodic. For k = 0 we recognize the qubit Hamiltonian that, in the symmetric double well
case, is given by a σx term [3],

H = ǫ0 + (t1 + 2t2)σx. (2.47)

2.5.3 Effect of a voltage bias

Now, we study the case with an (nonzero) external bias voltage. Given the Bloch function
ψαk that satisfies the Schrödinger equation for the Hamiltonian Eq. (2.10) for zero applied
voltages, VV = 0, we find for the solution wave function for finite voltages VV 6= 0,

uαk(ϕ) = e−iϕ·Qg/2e ψαk(ϕ), (2.48)

where we have defined the gate charge vector as Qg = CVVV . The above statement can
be directly verified by substituting uαk from Eq. (2.48) into the Schrödinger equation with
Eq. (2.10) while using that ψαk solves the problem for VV = 0. The solutions in the
presence of an applied voltage bias satisfy

uαk(ϕ + 2πn) = e2πin·(k−Qg/2e) uαk(ϕ). (2.49)

For the periodicity of the wave function on the compact domain, we have to choose k =
Qg/2e. This means that uαk is the periodic part of the Bloch function for k = Qg/2e. By
substituting this into Eqs. (2.44) and (2.45), we obtain the qubit Hamiltonian

H =
1

2
[Re(∆)σx + Im(∆)σy + ǫσz] =

1

2
B · σ, (2.50)

where we have also included the effect of a (small) bias flux that tilts the double well,
ǫ ≃ 2α

√

1 − 1/4α2EJ(ϕx − π), where σ = (σx, σy, σz) are the Pauli matrices, and

Re(∆) = 2 [t1 + 2t2 cos(πk+) cos(πk−)] , (2.51)

Im(∆) = 4t2 cos(πk+) sin(πk−), (2.52)

with k± = (C1V1 ± C2V2)/2e. The eigenstates for ǫ = 0 are

|0〉 =
1√
2

(

− e−iθ |L〉 + |R〉
)

, (2.53)

|1〉 =
1√
2

(

e−iθ |L〉 + |R〉
)

, (2.54)

where tan θ = Im(∆)/Re(∆). In Eq. (2.50), we have introduced the pseudo-field B =
(Re(∆), Im(∆), ǫ).
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2.6 Calculation of t1 and t2

For a quantitative analysis of the single-qubit Hamiltonian Eq. (2.50), we have to cal-
culate the tunneling matrix elements t1 and t2. In order to do so, we require a set of
orthonormal Wannier functions on the infinite two-dimensional lattice defined by the po-
tential U , Eq. (2.11). We start from the non-orthogonal set of Gaussian orbitals |Ψαn〉
consisting of the solution Eq. (2.27), shifted by a lattice vector n,

Ψαn(φ) = Ψα(φ − 2πn). (2.55)

The orthonormalized Wannier functions can be written as a linear combination of these
Gaussians,

|φαn〉 =
∑

µ=L,R,l∈Z2

Gµl,αn|Ψµl〉. (2.56)

To form a complete set of orthonormal functions the following relation must be satisfied,

〈φαn|φβm〉 =
(

G†SG
)

αn,βm
= δαβδnm, (2.57)

where S is the (real and symmetric) overlap matrix,

Sαn,βm =

∫

dϕΨαn(ϕ)Ψβm(ϕ). (2.58)

We solve Eq. (2.57) with

GT = G =
√
S−1. (2.59)

The inverse of S exists due to its positive definiteness. The entries of the overlap matrix
S are equal to 1 on the diagonal, whereas the off-diagonal elements are positive and ≪ 1
because the orbitals Ψαn are well localized. We define the matrix S(1) with all matrix
elements ≪ 1 via

S = I + S(1) = I +

(

SLL SLR

STLR SRR

)

, (2.60)

and find, keeping only first order terms in S(1),

G ≃
√
S−1 ≃ I − 1

2
S(1). (2.61)

Note that SLL and SRR have zeros on the diagonal.

In our tight-binding approximation, we consider five unit cells, a center cell with its
four nearest neighbors, corresponding to the lattice vectors {(0, 0), (±1, 0), (0,±1)}. This
means that S and G are 10 × 10 matrices, which can also be expressed as 2 × 2 block
matrices, each block of dimension 5 × 5. The two largest values are given by s1 = SLn,Rn

and s2 = SLn,Rn−e1 = SLn,Rn+e2 with the nearest neighbor cell. Taking only these two
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Figure 2.5: The ratio t2/t1 between the tunneling matrix elements, plotted as a function
of α ≤ 1 for several values of EJ/EC .

largest overlaps into account, we obtain SLL = SRR ≃ 0 and

SLR ≃













s1 s2 s2 0 0
0 s1 0 0 0
0 0 s1 0 0
s2 0 0 s1 0
s2 0 0 0 s1













. (2.62)

Having the matrix G and S we can calculate the tunneling matrix

Tαn,βm = 〈φαn|H|φβm〉 = (G†TG)αn,βm, (2.63)

where the entries of the matrix T are given as

Tαn,βm = 〈Ψαn|H|Ψβm〉. (2.64)

Since both the |Ψαn〉 and the |φαn〉 states are localized at the lattice position n, the matrices
T and T both have the same non-zero entries as S. The tunneling matrix T has the same
block form as S with TLL = TRR = ǫ0I and TLR having the same structure as SLR with s1

and s2 replaced by t1 and t2, given as t1 = TLn,Rn and t2 = TLn,Rn−e1 = TLn,Rn+e2 . The
overlaps s1 and s2, together with the transition amplitudes t1 and t2, depend exponentially
on the two parameters α and EJ/EC . A detailed analysis is given below; here, we anticipate
the approximate relations t1/t2 > 1 if α < 1, t1/t2 < 1 if α > 1, and t1/t2 ≈ 1 if α = 1,
and t1/t2 = 1 if C1 = C2 = 0.

Now, we numerically determine the tunneling matrix elements t1 and t2 from Eqs. (2.63)
and (2.64) and analyze their dependence on the external parameters. This dependence
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Figure 2.6: The ratio t2/t1 between the tunneling matrix elements, plotted as a function
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can then be used to control the qubit Hamiltonian. The external parameters fall into two
categories, those that can be varied freely, like magnetic fields and bias voltages, and the
device parameters, that are fixed for a specific device. Two main types of device parameters
characterize the Hamiltonian: (i) the junction capacitance CJ that determines the charging
energy EC = e2/2CJ and (ii) the Josephson inductance LJ which determines the Josephson
energy EJ = (Φ0/2π)2/LJ . In addition, we have the ratio α = EJ3/EJ .

The potential U(φ) can be modified in two ways. The external magnetic flux Φx =
Φ0ϕx/2π is responsible for the symmetry of the double well within a unit cell and can give
rise to a σz term in the single qubit Hamiltonian while α determines the height of the barrier
between the wells in a cell and between two nearest neighbor unit cells. Thus α affects
the values of the tunneling amplitudes between different sites in the lattice. Although α is
a fixed device parameter for the set-up shown in Fig. 2.1, a modified set-up in which the
middle junction is made flux-tunable has been proposed [1, 3]; a flux tunable junction is
achieved by “shunting” the third junction with a further junction and using an external
magnetic field to tune it.

In the tight-binding picture, the off-diagonal element ∆ of the qubit Hamiltonian is a
complex quantity that depends on the two tunneling amplitudes t1 and t2, whose relative
strength can be set by α and the ratio EJ/EC . The latter enters as a common factor into
the frequencies of the Gaussian localized orbitals, determining the size of their overlaps
and affecting only the energy gap |∆|. An increase of the value of α implies a decrease
of the tunneling amplitudes t1 and t2, caused by an increase of the height of the barriers.
Thus a careful choice of the two parameters is crucial in determining the behavior of the
system. From Eq. (2.45), we find that if t2/t1 ≪ 1 then ∆ will be (almost) real. In order to
obtain a sizable imaginary part of ∆, t2/t1 must be sufficiently large. In Fig. 2.5, we plot
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the ratio t2/t1 versus α, for several values of the EJ/EC . Although all the curves approach
the value t2/t1 ≈ 1 for α → 1, as soon as α < 1, a strong variation in t2/t1 is observed for
large EJ/EC . In Fig. 2.6, we plot t2/t1 versus EJ/EC for different values of α. For α = 1,
the curve is almost a constant. In Table 3.1, we report a set of quantities calculated by
varying both α and EJ/EC , such as to keep the energy gap ∆0 at zero applied voltage of
the order of ≈ 0.1EC .

The parameters of an experimentally realized flux qubit (Delft qubit) [7] are α = 0.8
and EJ/EC = 35 and are given in the first row of Table 3.1. In this case, the ratio t2/t1 is
very small and the contribution of t2 is negligible. This choice of parameters of the Delft

α EJ/EC t2/t1 t1/EJ t2/EJ
|∆|0
EJ

|∆|min

|∆|0
E12

|∆|0
×10−3 ×10−5

0.80 35 0.0062 -2.9 -1.8 0.0059 0.98 82
0.85 30 0.030 -1.9 -5.8 0.0040 0.88 126
0.90 25 0.12 -1.5 -18 0.0037 0.61 149
0.95 20 0.39 -1.5 -59 0.0054 0.12 116
1.00 15 0.97 -2.05 -198 0.012 0 61
1.05 10 1.77 -4.2 -740 0.038 0 24

Table 2.1: Values of t1, t2, their ratio t2/t1, the energy gap |∆|0 at zero applied
voltage, and the minimum of the gap |∆|min for a series of values of α and EJ/EC .
In the last column we report the ratio of the energy difference E12 between the
second and first excited state and the qubit gap |∆|0.
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qubit therefore does not allow the manifestation of a significant σy term in the single-qubit
Hamiltonian, for any value of the bias voltage.

In Fig. 2.7, we plot the real and imaginary part of ∆ as a function of the applied voltage
V1, expressed in the gate charge Q1 = C1V1, while keeping the other gate voltage fixed such
that Q2/2e = C2V2/2e = 0.5. If the real part of ∆ can be tuned from a finite value to zero
while the imaginary part of ∆ remains finite (as in Fig. 2.7c), then the pseudo-field B can
point along arbitrary angles in the equator plane of the Bloch sphere. The magnitude of the
pseudo-field can be controlled in principle by changing α, e.g., with a flux-tunable junction.
In Fig. 2.8, we plot the real and imaginary part of ∆ in the case where both voltages are
varied simultaneously such that V1 = −V2 as a function of δQ/2e = C(V1 − V2)/2e. In
Fig. 2.9 we plot the gap |∆| as a function of δQ/2e = C(V1 − V2)/2e (solid line) and of
(Q1 +Q2)/2e = C(V1 + V2)/2e (dashed line) for this set of parameters.

2.7 Full control for α > 1

The flux qubit realized at Delft [7] operates with a ratio α = 0.8 < 1 between the
Josephson energies of its junctions. As shown in Table 3.1, the ratio of tunneling matrix
elements for this parameter choice is t2/t1 = 0.0062, thus the effect of the applied voltages
is negligible. Two other regimes for α are interesting, namely α ≈ 1 and α > 1.

In the former, t1 and t2 are approximately equal. In this case, φ can tunnel from a left
minimum (L) to a right one (R) via both an intra-cell or an inter-cell tunneling process
with almost equal probability. However, while inter-cell tunneling can be controlled via
the applied voltages V1 and V2, allowing superposition with non-zero relative phase of the
qubit states, the intra-cell transition amplitude remains constant, once the parameters α
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and EJ/EC are fixed, thus leading only to qubit flips. In Table 3.1, for each value of α < 1,
the minimum of the gap is a finite quantity and can be calculated by minimization of
equation Eq. (2.46) with respect to k. However, for α ≥ 1 there is a value of the external
applied voltage for which the gap goes to zero (Fig. 2.9).

We are particularly interested in the regime α > 1. In this case t1 < t2, i.e., the intra-
cell tunneling between two minima is inhibited and, with a suitable choice of α, can be
completely suppressed (Figs. 2.10 and 2.11). In this situation, the system can be described
by a one-dimensional chain in which every even (odd) site is labeled as a “left” minimum
L while the remaining sites are labeled “right” minima R, see Fig. 2.12. The tunneling
matrix element between the sites is t2 (t1 = 0). Note that, due to the periodicity of the
system, all L (R) sites have to be identified with each other, since they describe the same
configuration.

From Eqs. (2.51) and (2.52), we immediately find that, for t1/t2 → 0, we gain full control
of the direction of the effective pseudo-field B in the equatorial plane of the Bloch sphere,
since

∆(k+, k−) = 4t2 cos(πk+)eiπk− , (2.65)

where k± = (C1V1 ± C2V2)/2e. The sum and difference of the gate charges therefore
independently control the qubit energy gap and the angle θ of the pseudo-field,

|∆| = 4|t2 cos(πk+)|, θ = πk−. (2.66)



2.8 Charge decoherence 45

1 1.5 2

!

0

1

t 1
/t
2

EJ/EC=1

EJ/EC=5

EJ/EC=10

EJ/EC=15

EJ/EC=25

EJ/EC=35

0.5

0.75

0.25

1.25 1.75

Figure 2.10: The ratio t1/t2 between the tunneling matrix elements, plotted as a function
of α ≥ 1 for several values of EJ/EC .

2.8 Charge decoherence

Voltage fluctuations from imperfect voltage sources or other fluctuating charges in the
environment lead to charge fluctuations on the two islands in the circuit and thus to deco-
herence of the qubit. Moreover, we are considering here a situation where the sensitivity
to external voltages has been deliberately enhanced and therefore it can be expected that
charge fluctuations cannot be ignored. An estimate of the decoherence time for the same
circuit has been developed in [10], where it is found to be 0.1 s.

In order to model bias voltage fluctuations, we include the two impedances Z1 and Z2

(Fig. 2.2) in our analysis. From circuit theory [27], we can then obtain a Caldeira-Leggett
model for the system coupled to its charge environment,

H = HS + HB + HSB, (2.67)

where HS from Eq. (2.10) describes the dissipationless elements of the circuit, and

HB =
∑

j=1,2

∑

ν

(

p2
jν

2mjν

+
1

2
mjνω

2
jνx

2
jν

)

, (2.68)

is the Hamiltonian of the degrees of freedom of two independent baths of harmonic oscil-
lators that are used to model the two impedances, and finally

HSB =
∑

j=1,2

mj · Q
∑

ν

cjνxjν , (2.69)

describes the system-bath coupling, where m1 = C−1(C1, 0)T and m2 = C−1(0, C2)
T . The
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coupling constants cjν are related to Zj via the spectral densities

Jj(ω) = −ωReZj(ω) =
π

2

∑

ν

c2jν
mjνωjν

δ(ω − ωjν). (2.70)

The decoherence rates in the Born-Markov approximation are given by [27]

1

T1

=
4

~2

∑

j=1,2

|mj · 〈0|Q|1〉|2 ∆ReZj(∆) coth
∆

2kBT
,

(2.71)
1

Tφ
=

1

~2

∑

j=1,2

|mj · (〈0|Q|0〉−〈1|Q|1〉)|2 ReZj(0)2kBT.

(2.72)

Now we compute the matrix elements of the charge operator Q = −2ie∇ in the |0〉, |1〉
basis. Following the derivation of the Hamiltonian in Sec. 2.5.2, we start from

〈uαk|Q|uβk〉 = −2ekδαβ − 2ie〈ψαk|∇|ψβk〉. (2.73)

The matrix elements of Q between the Bloch states

〈ψαk|Q|ψβk〉 =
∑

n,m∈Z2

e2πik·(n−m) Qαm,βn, (2.74)

are given in terms of the matrix elements of ∇ between the Wannier functions

Qαn,βm = −2ei〈φαn|∇|φβm〉
= −2ei

(

GTPG
)

α,n,βm
, (2.75)
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Figure 2.12: Density plot of the double well potential U(ϕ1, ϕ2) for α = 1.4, on
a logarithmic scale. Two equivalent one-dimensional chains with nearest neighbor
interaction are highlighted in the figure.

and, in turn, through the G-matrix, they are expressed in terms of the Gaussian states,

Pαn,βm = 〈Ψαn|∇|Ψβm〉 =
1

2
M∆φαn,βmSαn,βm, (2.76)

where the matrix M is defined in Eq. (2.28), ∆φαn,βm = φβ − φα + 2π(m − n), and the
S-matrix is defined in Eq. (2.58).

We only keep the leading matrix elements s1 and s2 in the overlap matrix S when
calculating the G and P matrices (see Sec. 2.6). Since the largest contributions of P are
proportional to s1 and s2, we can use G ≈ I, and thus Qαn,βm ≃ Pαn,βm ∝ Sαn,βm. We
consider the diagonal term and the off-diagonal term separately and obtain,

〈uαk|Q|uαk〉 = −Qg, (2.77)

〈uLk|Q|uRk〉 = −eiM
[

s1∆φ + s2(∆φ − 2πe1) e2πik1

+s2(∆φ + 2πe2) e−2πik2
]

, (2.78)

where s1, s2, ∆φ = φR − φL, and the matrix M depend on α = EJ3/EJ and EJ/EC . In
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the qubit basis we find,

〈0|Q|0〉 − 〈1|Q|1〉 = −eM
[

s1 sin(θ)∆φ

+ s2 sin(θ + 2πk1)(∆φ − 2πe1)

+ s2 sin(θ − 2πk2)(∆φ + 2πe2)
]

, (2.79)

〈0|Q|1〉 = ieM
[

s1 cos(θ)∆φ

+ s2 cos(θ + 2πk1)(∆φ − 2πe1)

+ s2 cos(θ − 2πk2)(∆φ + 2πe2)
]

, (2.80)

where tan θ = Im∆/Re∆ is a function of k1,2 = C1,2V1,2/2e. Using Eqs. (2.71), (2.72),
(2.79), and (2.80) we can express the decoherence rates in a more explicit way,

1

T1

= 2π
EJ
~

ReZ

RQ

(

C

CJ

)2

s2
2 F1(V1, V2), (2.81)

1

Tφ
= 2π

2kBT

~

ReZ

RQ

(

C

CJ

)2

s2
2 Fφ(V1, V2), (2.82)

where s2, F1, and Fφ are given in the Appendix B. F1 and Fφ are periodic functions of
the applied voltages V1 and V2 that depend on the parameters α, EJ/EC , and on s1/s2.
They can be estimated to be at most of order one, depending on the choice of parameters
and the applied voltages. In Eqs. (2.81) and (2.82) we chose Z ≈ Z1 ≈ Z2, and RQ = h/e2

is the quantum of resistance.
In the regime α > 1 we have s2 ≫ s1. For α = 1.4, EJ/EC = 15 and C/CJ = 0.02

we find that s2 = 8 · 10−4. An estimate for T ≈ 100 mK, ReZ ≈ 1 kΩ and EJ = 250 GHz
produces decoherence times in the millisecond range,

1

T1

≃ F1(V1, V2)

F1,max

1

6 ms
, (2.83)

1

Tφ
≃ Fφ(V1, V2)

Fφ,max

1

12 ms
. (2.84)

For some particular values of V1 and V2 the functions F1 or Fφ vanish, implying that
1/T1 → 0 or 1/Tφ → 0. In particular, F1 = 0 for (C1V1, C2V2)/2e = ±(1/2, 0), ±(0, 1/2),
±(1/4, 1/4), ±(1/8,−1/8), ±(3/8,−3/8) in the FBZ, and Fφ = 0 for (C1V1, C2V2)/2e =
(n/2,m/2), ±(1/4,−1/4) + (n,m), with n,m ∈ Z. The two functions have a common set
of zeros, namely ±(n/2, 0),±(0,m/2), with n,m ∈ Z. In these cases, both 1/T1, 1/Tφ → 0.

For the regime α < 1 we have that s1 ≫ s2 and we can neglect terms containing s2.
Choosing α = 0.8 and EJ/EC = 35 we find s1 = 1.3 · 10−5. It follows that the decoherence
rates are strongly suppressed and an estimate shows that they are below 1 Hz. This means
that in this case the main process that causes decoherence is not due to the charge degrees
of freedom. In fact for the Delft qubit [7], that operates in this regime, the dephasing
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and the relaxation times caused by other mechanisms are much smaller, Tφ = 20 ns and
T1 = 900 ns.

The physical reason for the small decoherence and relaxation rates found here is that,
despite the voltage bias, we are still dealing with a flux qubit whose states are indistin-
guishable from their charge distribution, as seen from Eq. (2.77).

2.9 Results and conclusions

By means of circuit theory and a tight-binding approximation, we have analyzed a
voltage-controlled SC flux qubit circuit that allows full control of the single-qubit Hamilto-
nian Eq. (2.50), with σx, σy and σz terms, in order to allow arbitrary single qubit operations.

One of the main results of this work is the computation of the tunneling matrix elements
appearing in the single qubit Hamiltonian as a function of the device parameters α and
EJ/EC . This allowed us to explore new possible working regimes of the system, looking for
a range of parameters for which a full control on qubit rotations is feasible. Substantially,
the qubit can work in two different regimes, α < 1 and α > 1, showing different features.
In particular, for α > 1, the pseudo magnetic field B that couples to the qubit in the
Hamiltonian has a non-zero y-component. This allows full control of qubit rotations on
the Bloch sphere through the applied voltages V1 and V2. In fact, in the Hamiltonian,
Eq. (2.50), the off-diagonal term ∆, given in Eq. (2.45), contains the voltages V1,2 and
the sensitivity to V1,2 is determined by the tunneling parameters t1 and t2 in Eqs. (2.41),
(2.43).

For α ≤ 1, we find t1 & t2. The effect of t2, and thus of the applied voltages, for the value
of parameters of the Delft qubit [7], is negligible as shown in Table 3.1, but can be greatly
enhanced for a suitable choice of α and EJ/EC (see Figs. 2.5 and 2.6), thus allowing good
control in the real and imaginary parts of ∆, as shown in Eqs. (2.51) and (2.52) and in
Figs. 2.7 and 2.8.

In the case α > 1, the roles of t1 and t2 are interchanged, as shown in Figs. 2.10, 2.11,
and a new regime in which a full control of the single-qubit Hamiltonian becomes possible.
For a suitable choice of α and EJ/EC , the tunneling parameter t1 become vanishingly
small, giving rise to a simple dependence of ∆ on the voltages, as found in Eqs. (2.65) and
(2.66).

Our analysis is based on the two-level approximation, i.e., we assume that we can neglect
all high levels besides the two lowest ones. This approximation is justified if the energy gap
E12 between the two lowest levels and any higher level is sufficiently large, in particular,
larger than the qubit gap E01 = |∆|. The gap E12 can be roughly estimated as the plasma
frequency, i.e., the smallest of the frequencies of the (anisotropic) harmonic oscillator arising
from the linearization of the equation of motion around the minimum configurations of
the potential. This frequency is given by (also see Appendix A) ωLC = 1/

√
CJLJ =√

8EJEC/~. In Table 3.1, we report the ratio of E12 and the qubit gap |∆0| at zero applied
voltage. For all parameter values studied, E12 exceeds 2|∆0| by more than a factor of
20, in many relevant cases even by two orders of magnitude, thus justifying the two-level
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approximation.

Finally, we have studied the decoherence due to charge fluctuations of the voltage sources.
Our result for the T−1

1 and T−1
φ rates is given in Eqs. (2.81) and (2.82), an estimate of

which yields a coherence time longer than ≈ 1 ms, leading to the conclusion that charge
fluctuations are not the main source of decoherence, even in the regime in which the
sensitivity to external voltages is enhanced. The coherence of the system is well preserved,
since the qubit is still essentially a SC flux qubit, i.e., the |0〉 and |1〉 states have nearly
identical charge configurations.

In conclusion, based on our analysis we find that full control of single-qubit operations in
a SC flux qubit should be feasible, provided that the right choice of the device parameters
is made.
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3. Quantum non-demolition

measurements of a qubit coupled to

a harmonic oscillator

We theoretically describe the weak measurement of a two-level system (qubit) and quan-
tify the degree to which such a qubit measurement has a quantum non-demolition (QND)
character. The qubit is coupled to a harmonic oscillator which undergoes a projective
measurement. Information on the qubit state is extracted from the oscillator measurement
outcomes, and the QND character of the measurement is inferred from the result of sub-
sequent measurements of the oscillator. We use the positive operator value measurement
(POVM) formalism to describe the qubit measurement. Two mechanisms lead to devi-
ations from a perfect QND measurement: (i) the quantum fluctuations of the oscillator,
and (ii) quantum tunneling between the qubit states |0〉 and |1〉 during measurements.
Our theory can be applied to QND measurements performed on superconducting qubits
coupled to a circuit oscillator. 1

3.1 Introduction

The possibility to perform repeated quantum measurements on a system with the least
possible disturbance was first envisioned in the context of measuring gravitational waves[1].
In quantum optics the optical Kerr effect provided an early playground for studying QND
measurements[2–4], that were extended to the framework of cavity quantum electrodynam-
ics (cavity-QED) and mesoscopic mechanical oscillators. [5–9]

The application of such a scheme to quantum information has stimulated great inter-
est, in particular in the field of quantum computation, where fast and efficient readout
is necessary, and error correction plays an important role[10]. Schemes for qubit QND
measurements have been theoretically proposed and experimentally realized with a su-
perconducting qubit coupled to harmonic oscillators, either represented by an external
tank LC-circuit [11–17], or by a superconducting resonator that behaves as a one mode
quantum harmonic oscillator in circuit-QED. [18–24] A measurement scheme based on the
Josephson bifurcation amplifier (JBA) [25, 26] has been adopted with the aim to perform
QND measurements of superconducting qubit [27, 28]. In these experiments a deviation
of ∼ 10% from perfect QND behavior has been found.

1This chapter has been accepted for publication in Physical Review B.

53



54 Chapter 3. QND measurement of a qubit coupled to a harmonic oscillator

P(0|0)

SQUID

QUBIT

C

a)

2

0

1

1

2

0

0 1

P(0|0)

  
 τ

  
 (

n
s)

2

   τ   (ns)1

2

1

0

0 1 2

1

0

c) d)

~
V

f

0

0 1

t (ns)

b1)

b2)

   τ   (ns)1

  
 τ

  
 (

n
s)

2

   τ  
1

   τ  2

Figure 3.1: (Color online) a) Schematics of the 4-Josephson junction supercon-
ducting flux qubit surrounded by a SQUID. b) Measurement scheme: b1) two short
pulses at frequency

√
ǫ2 + ∆2, before and between two measurements prepare the

qubit in a generic state. Here, ǫ and ∆ represent the energy difference and the
tunneling amplitude between the two qubit states. b2) Two pulses of amplitude f
and duration τ1 = τ2 = 0.1 ns drive the harmonic oscillator to a qubit-dependent
state. c) Perfect QND: conditional probability P (0|0) for ∆ = 0 to detect the qubit
in the state ”0” vs driving time τ1 and τ2, at Rabi frequency of 1 GHz. The os-
cillator driving amplitude is chosen to be f/2π = 50 GHz and the damping rate
κ/2π = 1 GHz. d) Conditional probability P (0|0) for ∆/ǫ = 0.1, f/2π = 20 GHz,
κ/2π = 1.5 GHz. A phenomenological qubit relaxation time T1 = 10 ns is assumed.

Motivated by those recent experimental achievements, we analyze a measurement tech-
nique based on the coupling of the qubit to a driven harmonic oscillator. A quadrature
of the harmonic oscillator is addressed via a projective measurement. The qubit that is
coupled to the oscillator affects the outcomes of the measurement of the oscillator and
information on the qubit state can be extracted from the results of the projective mea-
surement of the oscillator. We aim to shed some light on the possibilities to perform qubit
QND measurements with such a setup, and to understand whether deviations from the
expected behavior could arise from quantum tunneling between the qubit states. Such a
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tunneling process, although made small compared to the qubit energy splitting, violates
the QND conditions.

One of the possible implementations of the system under consideration is the four-
junction persistent current qubit [14, 27, 29] (flux qubit) depicted in Fig 4.1a). It consists of
a superconducting loop with four Josephson junctions and its low temperature dynamics
is confined to the two lowest-energy states. For an external magnetic flux close to a
half-integer multiple of Φ0 = h/2e, the superconducting flux quantum, the two lowest-
energy eigenstates are combinations of clockwise and counter clockwise circulating current
states. These two states represent the qubit. The measurement apparatus consists of
a superconducting quantum interference device (SQUID), composed by two Josephson
junctions, inductively coupled to the qubit loop. The SQUID behaves as a non-linear
inductance and, together with a shunt capacitance, forms a non-linear LC-oscillator, which
is externally driven. The two qubit states produce opposite magnetic field that translate
into a qubit dependent effective Josephson inductance of the SQUID. The response of the
driven SQUID is therefore qubit-dependent.

In order to treat the problem in a fully quantum mechanical way, we linearize the SQUID
equation of motion, such that the effective coupling between the driven LC-oscillator and
the the qubit turns out to be quadratic. The qubit Hamiltonian is HS = ǫσZ/2 + ∆σX/2.
In the experiment [27], the tunneling amplitude ∆ between the two qubit current states is
made small compared to the qubit gap E =

√
ǫ2 + ∆2, therefore also ∆ ≪ ǫ, such that it

can be considered as a small perturbation. The absence of the tunneling term would yield
a perfect QND Hamiltonian (see below). From the experimental parameters ∆ = 5 GHz
and E = 14.2 GHz [27, 33], it follows that ∆/ǫ ≈ 0.38, yielding a reduction of the visibility
in Fig. 4.1 d) on the order of 10%.

The QND character of the qubit measurement is studied by repeating the measurement.
A perfect QND setup guarantees identical outcomes for the two repeated measurements
with certainty. In order to fully characterize the properties of the measurement, we can
initialize the qubit in the state |0〉, then rotate the qubit by applying a pulse of duration
τ1 before the first measurement and a second pulse of duration τ2 between the first and the
second measurement. The conditional probability to detect the qubit in the states s and
s′ is expected to be independent of the first pulse, and to show sinusoidal oscillation with
amplitude 1 in τ2. Deviations from this expectation witness a deviation from a perfect
QND measurement. The sequence of qubit pulses and oscillator driving is depicted in
Fig. 4.1b). The conditional probability P (0|0) to detect the qubit in the state “0” twice in
sequence is plotted versus τ1 and τ2 in Fig. 4.1c) for ∆ = 0, and in Fig. 4.1d) for ∆/ǫ = 0.1.
We anticipate here that a dependence on τ1 is visible when the qubit undergoes a flip in
the first rotation. Such a dependence is due to the imperfections of the mapping between
the qubit state and the oscillator state, and is present also in the case ∆ = 0. The effect
of the non-QND term ∆σX results in an overall reduction of P (0|0).

In this paper we study the effect of the tunneling term on the quality of a QND mea-
surement. Many attempts to understand the possible origin of the deviations from perfect
QND behavior appearing in the experiments have been concerned with the interaction with
the environment[22–24, 30–33]. The form of the Josephson non-linearity dictates the form
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of the coupling between the qubit and the oscillator, with the qubit coupled to the photon
number operator of the driven harmonic oscillator, σZa

†a, rather than to one quadrature,
σX(a + a†), and the effect of the tunneling term σX present in the qubit Hamiltonian is
considered as a small perturbation.

The work we present is not strictly confined to the analysis of superconducting flux qubit
measurements. Rather, it is applicable to a generic system of coupled qubit and harmonic
oscillator that can find an application in many contexts. Moreover, the analysis we present
is based on the general formalism of the positive operator valued measure (POVM), that
represents the most general tool in the study of quantum measurements.

The paper is structured as follows: in Sec. 3.2 we derive the quadratic coupling between
the qubit and the oscillator and the Hamiltonian of the total coupled system. In Sec. 3.3
we construct the qubit single measurement with the POVM formalism and in Sec. 3.4
we consider the effect of the non-QND term in the POVM that describes the single mea-
surement. In Sec. 3.5 we construct the two- measurement formalism, by extending the
formalism of POVM to the two subsequent measurement case. In Sec. 3.6 we consider the
single measurement in the case ∆ = 0 and study the condition for having a good QND
measurement. In Sec. 3.7 we calculate the contribution at first order and second order
in ∆/ǫ to the POVM and to the outcome probability for the qubit single measurement.
In Sec. 3.8 we calculate the contribution at first and second order in ∆/ǫ to the POVM
and to the outcome probability for the two subsequent qubit measurement. In Sec. 3.9 we
study the QND character of the measurement by looking at the conditional probability for
the outcomes of two subsequent measurements when we rotate the qubit before the first
measurement and between the first and the second measurement.

3.2 Model: quadratic coupling

As far as the application of our model to the measurement of a persistent current qubit
with a SQUID is concerned, we provide here a derivation of the quadratic coupling men-
tioned in the introduction.

We identify the system with a flux qubit that will be described by the Hamiltonian HS.
The meter is represented by a SQUID and it is inductively coupled to a flux qubit via a
mutual inductance, in such a way that the qubit affects the magnetic flux through the loop
of the SQUID. The Hamiltonian that describes the SQUID and the interaction with the
qubit can be written as

Hmeter + Hint =
Q̂2

2C
− Φ2

0

LJ
cos
(

2πΦ̂/Φ0

)

cos ϕ̂ (3.1)

where ϕ̂ = ϕ̂1− ϕ̂2 is the difference of the phases of the two Josephson junctions ϕ̂1 and ϕ̂2

that interrupt the SQUID loop, LJ the Josephson inductance of the junctions (nominally
equal), and Q̂ is the difference of the charges accumulated on the capacitances C that shunt
the junctions. Up to a constant factor, ϕ̂ and Q̂ are canonically conjugate variables that
satisfy [ϕ̂, Q̂] = 2ei. We split the external flux into a constant term and a qubit dependent
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term, such that cos(2πΦ̂/Φ0) = cos(2πΦext/Φ0 + 2πMIqσZ/Φ0) ≡ λ0 + λ1σZ , with Iq the
current in the qubit loop and M the mutual inductance between qubit and SQUID loop.
Expanding the potential up to second order in ϕ̂, one obtains

Hmeter + Hint ≈
Q̂2

2C
+ (λ0 + λ1σZ)

(

Φ0

2π

)2
ϕ̂2

2LJ
. (3.2)

with λ0 = cos(2πΦext/Φ0) cos(2πMIq/Φ0) and λ1 = − sin(2πΦext/Φ0) sin(2πMIq/Φ0). We
introduce the zero point fluctuation amplitude σ = (LJ/λ0C)1/4, the bare harmonic oscil-
lator frequency ωho =

√

λ0/LJC, and the in-phase and in-quadrature components of the
field

Φ0

2π
ϕ̂ ≡ X̂ = σ

√

~

2
(a+ a†), (3.3)

Q̂ ≡ P̂ = − i

σ

√

~

2
(a− a†), (3.4)

with a and a† harmonic oscillator annihilation and creation operators satisfying [a, a†] = 1.
Apart from a renormalization of the qubit splitting, the Hamiltonian of the coupled qubit
and linearized SQUID turns out to be

Hmeter + Hint = ~ωho(1 + g̃σZ)a†a

+ ~ωhog̃σZ(a2 + a†2), (3.5)

with g̃ = λ1/2λ0 = tan(2πΦext/Φ0) tan(2πMIq/Φ0)/2. The frequency of the harmonic
oscillator describing the linearized SQUID is then effectively split by the qubit.

The Hamiltonian can now be written as (from here on we set ~ = 1)

H(t) = HS + Hmeter + Hint + Hdrive(t). (3.6)

The qubit Hamiltonian written by means of the Pauli matrices σi (we denote 2x2 matrices
in qubit space with bold symbols) in the basis of the current states {|0〉, |1〉} is

HS =
ǫ

2
σZ +

∆

2
σX , (3.7)

where ǫ = 2Iq(Φext −Φ0/2) represents an energy difference between the qubit states and ∆
the tunneling term between these states. The Hamiltonian of the oscillator (or SQUID) is

Hmeter = ωhoa
†a. (3.8)

The Hamiltonian that describes the coupling between the qubit and the harmonic oscillator
in the rotating wave approximation (RWA), where we neglected the terms like a2 and a†2,
is given by

Hint = gσZa
†a, (3.9)
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with g = ωhog̃ [34], and the external driving of the harmonic oscillator is described by

Hdrive(t) = f(t)(a+ a†). (3.10)

and throughout this work, we choose a harmonic driving force f(t) = 2f cos(ωdt). Ne-
glecting the fast rotating terms ae−iωdt and a†eiωdt, after moving in the frame rotating with
frequency ωd, the Hamiltonian becomes time independent,

H = HS + ∆ωZa
†a+ f(a+ a†), (3.11)

with ∆ωZ = ωZ − ωd, and the qubit-dependent frequency given by ωZ = ωho(1 + g̃σZ).
The qubit observable that we want to measure is Â ≡ σZ and, due to the presence of the

term ∆σX/2, it does not represent an integral of the motion for the qubit, [HS,σZ ] 6= 0.
Therefore the measurement is not supposed to be QND, Eq. (1.49) not being satisfied.
However, for ∆ ≪ ǫ the variation in time of σZ becomes slow on the time scale determined
by 1/ǫ and one expects small deviations from an ideal QND case. The presence of the
non-QND term σX in HS inhibits an exact solution and a perturbative approach will be
carried out in the small parameter ∆/ǫ≪ 1.

3.3 Single measurement

The weak measurement of the qubit is constructed as follows. We choose the initial
density matrix (t = 0) of the total coupled system to be the product state ρ(0) = ρ0⊗|0̂〉〈0̂|,
with the qubit in the unknown initial state ρ0 and the oscillator in the vacuum state |0̂〉,
and we let the qubit and the oscillator become entangled during the global time evolution.
We then assume that at time t we perform a strong measurement of the flux quadrature
X̂ = σ(a + a†)/

√
2, by projecting the oscillator on to the state |x〉〈x|. Such a state of

the oscillator is quite unphysical, it has infinite energy and infinite indeterminacy of the
P̂ = (a − a†)/

√
2i quadrature. More realistically, what would happen in an experiment

is that the oscillator is projected on to a small set of quadrature states centered around
x. This can be described as a convolution of the projector |x〉〈x| with a distribution
characteristic of the measurement apparatus, that can be included in the definition of the
qubit weak measurement. However, we choose to keep the model simple and to work with
an idealized projection.

In the interaction picture, the projection on the state |x〉〈x| corresponds to the choice
to measure the quadrature X̂(t) = σ(ae−iωhot + a†eiωhot)/

√
2 ,

x(t) = Tr[X̂ρ(t)] = Tr
[

X̂(t)ρR(t)
]

, (3.12)

ρR(t) = UR(t) ρ(0) U †
R(t). (3.13)

where an expression of UR(t) and its derivation is given by Eq. (C.5) in Appendix C. The
operator UR(t) describes the time-evolution of ρ in the rotating frame. The probability to
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detect the outcome x can then be written as

Prob(x, t) = Tr [〈x|ρR(t)|x〉]
= Tr

[

〈x|UR(t)|0̂〉 ρ0 〈0̂|U †
R(t)|x〉

]

, (3.14)

where the trace is over the qubit space, and {|x〉} is a basis of eigenstates of X̂(t). We
define the operators

N(x, t) = 〈x|UR(t)|0̂〉, (3.15)

F(x, t) = N†(x, t)N(x, t), (3.16)

acting on the qubit and, using the property of invariance of the trace under cyclic permu-
tation, we write

Prob(x, t) = Tr F(x, t)ρ(0). (3.17)

The state of the system after the measurement is ρ(x, t) ⊗ |x〉〈x|, with the qubit in the
state

ρ(x, t) =
N(x, t)ρ(0)N†(x, t)

Prob(x, t)
. (3.18)

The operators F(x, t) are positive, trace- and hermiticity-preserving superoperators (i.e.
they map density operators into density operators) acting on the qubit Hilbert space.
Moreover, they satisfy the normalization condition

∫ ∞

−∞
dxF(x, t) = I, (3.19)

from which the conservation of probability follows. Therefore, they form a positive operator
valued measure (POVM), and we will call the operators F(x, t) a continuous POVM.
We point out here that modeling a more realistic scenario, by including a convolution
of the projector |x〉〈x| with a distribution characteristic of the measurement apparatus,
corresponds to the construction of a more general POVM of the harmonic oscillator, that
would not alter qualitatively the description of the qubit measurement in terms of POVM.

The probability distribution Prob(x, t) depends strongly on the initial qubit state ρ0.
In general Prob(x, t) is expected to have a two-peak shape, arising from the two possible
states of the qubit, whose relative populations determine the relative heights of the two
peaks, one peak corresponding to |0〉 and the other to |1〉.

We now define an indirect qubit measurement that has two possible outcomes, corre-
sponding to the states “0” and “1”. As a protocol for a single-shot qubit measurement,
one can measure the quadrature X̂ and assign the state “0” or “1” to the qubit, according
to the two possibilities of the outcome x to be greater or smaller than a certain thresh-
old value xth, x > xth → |0〉 or x < xth → |1〉, as depicted in Fig. 4.2. Alternatively,
we can infer the qubit state by repeating the procedure many times and constructing the
statistical distribution of the outcome x. We then assign the relative populations of the
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qubit states |0〉 and |1〉 by respectively integrating the outcome distribution in the regions
η(1) = (xth,∞), η(−1) = (−∞, xth).

We formally condensate the two procedures and define a two-outcome POVM, that
describes the two possible qubit outcomes, by writing

F(s, t) =

∫

η(s)

dxF(x, t), (3.20)

Prob(s, t) = Tr[F(s, t)ρ(0)], (3.21)

with s = ±1. We will call F(s, t) a discrete POVM, in contrast to the continuous POVM
F(x, t) defined above. Here, we introduce a convention that assigns s = +1 to the “0”
qubit state and s = −1 to the “1” qubit state. The probabilities Prob(s, t) are therefore
obtained by integration of Prob(x, t) on the subsets η(s), Prob(s, t) =

∫

η(s)
dxProb(x, t).

On the other hand, the probability distribution Prob(x, t) is normalized on the whole space
of outcomes which leads to P (0, t) + P (1, t) = 1 at all times. Typically, it is not possible
to have a perfect mapping of the qubit state.

3.4 Effects of the tunneling σX term

Deviations from an ideal QND measurement can arise due to the presence of a non-zero
σX term in the qubit Hamiltonian. In SC flux qubits, such a term is usually present; it
represents the amplitude for tunneling through the barrier that separates the two wells of
minimum potential, where the lowest energy qubit current states are located. This term
cannot be switched off easily.

We can expand the full evolution operator UR(t) in powers of ∆t, as in Eq. (C.11), and
obtain a formally exact expansion of F(x, t),

F(x, t) =
∞
∑

n=0

F(n)(x, t). (3.22)

Due to the transverse (X ⊥ Z) character of the perturbation it follows that the even terms
in this series (corresponding to even powers of ∆t) have zero off-diagonal entries, whereas
the odd terms have zero diagonal entries. Due to the normalization condition Eq. (3.19),
valid at all orders in ∆t, it can be shown that

∫

dxF(n)(x, t) = δn,0I, (3.23)

and consequently,
∑

s=±1

F(n)(s, t) = δn,0I. (3.24)

As a result, the probability Prob(s, t) is given as a power expansion in the perturbation

Prob(s, t) =
∞
∑

n=0

Prob(n)(s, t), (3.25)
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where
∑

s=±1 Prob(n)(s, t) = δn,0.
The expansion of the evolution operator and consequently of the continuous and discrete

POVMs is in the parameter ∆t. The requirement that the deviations introduced by the
tunneling σX term in the time-evolution behave as perturbative corrections sets a time
scale for the validity of the approximation, namely t≪ 1/∆, for which we will truncate the
expansion up to second order. The tunneling non-QND term is considered as a perturbation
in that experimentally one has ∆/ǫ≪ 1. It turns out to be convenient to choose as a time
scale for the qubit measurement t ∼ 1/ǫ, for which follows ∆t ∼ ∆/ǫ≪ 1.

3.5 Two subsequent measurements

A QND measurement implies that repeated measurements give the same result with
certainty. In order to verify such a property of the measurement, we construct here the
formalism that will allow us to study the correlations between subsequent measurements.

After the oscillator quadrature is measured in the first step at time t and the quadrature
value x is detected, the total system composed of the qubit and the oscillator is left in the
state ρ(x, t)⊗|x〉〈x|. The fact that we can split the total state after the measurement into
a product state is a consequence of the assumption that the measurement of the harmonic
oscillator is a projection. Had a more general POVM of the harmonic oscillator be involved,
then such a conclusion would not hold. After the first measurement is performed, the total
system is left alone under the effects of dissipation affecting the oscillator. A harmonic
oscillator which is initially prepared in a coherent state evolves, under weak coupling to a
bath of harmonic oscillators in thermal equilibrium, to a mixture of coherent states with
a Gaussian distribution centered around the vacuum state (zero amplitude coherent state)
with variance nth = (exp(~ω/kBT )−1)−1, ω being the frequency of the harmonic oscillator,
T the temperature, and kB the Boltzmann constant, whereas in the case T = 0 it evolves
coherently to the vacuum |0̂〉 [36].

We now assume that the state of the total system (qubit and oscillator) before the second
measurement is

ρ(x, t) ⊗ |0̂〉〈0̂|. (3.26)

Following the previously described procedure for the qubit single- measurement, a second
measurement of the quadrature X̂ with outcome y performed at time t′, having detected
x at time t, would yield the conditional probability distribution

Prob(y, t′|x, t) = Tr [F(y, t′)ρ(x, t)] . (3.27)

Defining the continuous POVM qubit operators for two measurements as

F(y, t′;x, t) = N†(x, t)F(y, t′ − t)N(x, t), (3.28)

the joint probability distributions for two subsequent measurements is

Prob(y, t′;x, t) = Prob(y, t′|x, t)Prob(x, t) (3.29)

= Tr [F(y, t′;x, t)ρ0] . (3.30)
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Figure 3.2: (Color online) Schematic description of the single measurement pro-
cedure. In the bottom panel the coherent states |α0〉 and |α1〉, associated with
the qubit states |0〉 and |1〉, are represented for illustrative purposes by a con-
tour line in the phase space at HWHM of their Wigner distributions, defined[36]
as W (α, α∗) = (2/π2) exp(2|α|2)

∫

dβ〈−β|ρ|β〉 exp(βα∗ − β∗α). The corresponding
Gaussian probability distributions of width σ centered about the qubit-dependent
”position” xs are shown in the top panel.

The operators F(y, t′;x, t) satisfy the normalization condition
∫

dx
∫

dyF(y, t′;x, t) = I,
ensuring the normalization of the probability distribution

∫

dx
∫

dyProb(y, t′;x, t) = 1. By
inspection of Eqs. (3.19) and (3.28), it follows that

∫

dy F(y, t′;x, t) = F(x, t), (3.31)

and the marginal distribution for the first measurement is

ProbM(x, t) ≡
∫

dy Prob(y, t′;x, t) = Tr[F(x, t)ρ0], (3.32)

stating that the probability to detect x in the first measurement is independent on whatever
could be detected in the second measurement. On the other hand, the marginal probability
distribution for the second measurement turns out to be

ProbM(y, t′) ≡
∫

dxProb(y, t′;x, t) = Tr[F(y, t′ − t)ρ(t)], (3.33)
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where ρ(t) = TrS[UR(t)ρ0 ⊗ |0̂〉〈0̂|U †
R(t)] is the qubit reduced density matrix at time t. We

define the discrete POVM for the correlated outcome measurements as

F(s′, t′; s, t) =

∫

η(s)

dx

∫

η(s′)

dy F(y, t′;x, t). (3.34)

Analogously to Eq. (3.31) it follows that F(s, t) =
∑

s′ F(s′, t′; s, t), and the probability
distribution for the outcomes of the two subsequent measurement is simply given by

Prob(s′, t′; s, t) = Tr[F(s′, t′; s, t)ρ0], (3.35)

and it follows that
∑

s′ Prob(s′, t′; s, t) = Prob(s, t) = Tr[F(s, t)ρ0]. The conditional prob-
ability to obtain a certain outcome s′ at time t′, having obtained s at time t, is given
by

Prob(s′, t′|s, t) =
Tr[F(s′, t′; s, t)ρ0]

Tr[F(s, t)ρ0]
. (3.36)

The discrete POVM for the double measurement can be in general written as

F(s′, t′; s, t) ≡ 1

2
[F(s′, t′)F(s, t) + h.c.] + C(s′, t′; s, t), (3.37)

where we have symmetrized the product of the two single-measurement discrete POVM
operators F(s′, t′) and F(s, t) in order to preserve the hermiticity of each of the two terms
of Eq. (3.37).

Proceeding as for the case of a single qubit measurement, we expand F(y, t′;x, t) in
powers of ∆/ǫ. Equating all the equal powers of ∆/ǫ in the expansion it follows that

F(n)(s, t) =
∑

s′

F(n)(s′, t′; s, t), (3.38)

with
∑

ss′ F
(n)(s′t′; s, t) = δn,0I.

3.6 Ideal single measurement

The dynamics governed by U (0)
R (t) produces a coherent state of the oscillator, whose

amplitude depends on the qubit state, see Fig. 4.2. In this case the continuous POVM
operators have the simple form F(0)(x, t) = 〈αZ(t)|x〉〈x|αZ(t)〉, defined through Eq. (C.9)
in the Appendix C. In the σZ-diagonal basis {|i〉}, with i = 0, 1, it is given by

F(0)(x, t)ij = δijG (x− xi(t)) , (3.39)

where xi(t) =
√

2σRe[αi(t)] and G(x) = exp(−x2/σ2)/σ
√
π is a Gaussian of width σ

schematically depicted in Fig. 4.2. Introducing a rate κ that describes the Markovian
damping of the harmonic oscillator by a zero-temperature bath of harmonic oscillators,
the coherent state qubit-dependent amplitude αi(t) is found to be [37]

αi(t) = Aie
iφi
[

1 − e−i∆ωit−κt/2] , (3.40)
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with ∆ωi = ωi − ωd and the qubit-dependent amplitudes and phases given by

Ai =
f

√

(∆ωi)2 + κ2/4
(3.41)

φi = arctan

(

∆ωi
κ/2

)

− π

2
. (3.42)

The probability distribution for the X̂ quadrature outcomes is then given by the sum of
the two qubit-dependent Gaussians, weighted by the initial state state occupancy, and the
discrete POVM for the qubit measurement as given by Eq. (3.20) becomes

F(0)(s, t) =
1

2

[

1 + s erf

(

δx(t)

σ

)

σZ

]

, (3.43)

where s = ±1 labels the two possible measurement outcomes, and δx(t) = σRe δα(t)/
√

2,
where δα(t) = α0(t)−α1(t). The indirect qubit measurement gives the outcome probability

Prob(s, t) =
1

2

[

1 + s erf

(

δx(t)

σ

)

〈σZ〉0
]

, (3.44)

with 〈σZ〉0 = Tr[σZρ0]. Supposing that the qubit is prepared in the |0〉 state, one expects
to find Prob(0) = 1 and Prob(1) = 0. From Eq. (3.44), we see that even for ∆ = 0 this is
not always the case.

3.6.1 Short time

We choose a time t ≈ 1/ǫ and a driving frequency close to the bare harmonic oscillator
frequency. We can then expand the qubit dependent signal and obtain the short time
behavior of the signal difference,

δα(t) ≈
√

2 t A, (3.45)

with A = f(e2iφ0 − e2iφ1)/
√

2. The first non-zero contribution is linear in t, because
the signal is due to the time-dependent driving[6]. We measure a rotated quadrature
X̂ϕ = σ(ae−iϕ+a†eiϕ)/

√
2, and choose the phase of the local oscillator such that ϕ = arg A.

With this choice we have δx(t) = σ|A| t, and the probabilities for the two measurement
outcomes

Prob(s, t) =
1

2
[1 + s〈σZ〉0erf (|A| t)] . (3.46)

In Fig. 4.3 we plot the probability of measuring the 0 state Prob(0, t = 0.1 ns) as a function
of the detuning ∆ω = ωho − ωd and the driving amplitude f , given that the initial state is
0, ρ0 = |0〉〈0|. It is possible to identify a region of values of f and ∆ω where erf(|A|t) ≈ 1.
It then follows that

Prob(s) ≈ 1

2
[1 + s〈σZ〉0] . (3.47)
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Figure 3.3: (Color online) Prob(0, t = 0.1 ns) for the initial state |0〉〈0|, as given
by Eq. (3.46), plotted as a function of the detuning ∆ω/2π. The values of the
parameters used are listed in Tab. 3.1.

This case corresponds to a strong projective measurement, for which the outcome proba-
bilities are either 0 ore 1, thus realizing a good qubit single measurement.

For driving at resonance with the bare harmonic oscillator frequency ωho, the state of
the qubit is encoded in the phase of the signal, with φ1 = −φ0, and the amplitude of the
signal is actually reduced, as also shown in Fig. 4.3 for ∆ω = 0. When matching one of the
two frequencies ωi the qubit state is encoded in the amplitude of the signal, as also clearly
shown in Fig. 4.3 for ∆ω = ±g. Driving away from resonance can give rise to significant
deviation from 0 and 1 to the outcome probability, therefore resulting in an imprecise
mapping between qubit state and measurement outcomes and a weak qubit measurement.

3.7 Corrections due to tunneling

In order to compute the correction at first order in the tunneling term proportional to
∆ we expand the evolution operator UR(t) up to first order in ∆t. By making use of
the expression Eq. (C.12) for the perturbation in the interaction picture, the off-diagonal
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Figure 3.4: (Color online) Probability to detect the outcome s = 1, corrected by
a) the real part of F (1), for the initial state |+〉X〈+|, and b) the imaginary part of
F (1), for the initial state |+〉Y 〈+|, plotted versus the detuning ∆ω/2π for several
values of the amplitude f . The values of the parameters used are listed in Tab. 3.1.

element of the first order correction to F(x, t) is given by

F (1)(x, t)01 = −i∆
2

∫ t

0

dt′ [G (x− x0(t) + δz(t′))

− G (x− x1(t) − δz(t′)∗)] eiǫt
′

Γ(t′), (3.48)

with the complex displacement δz(t) = σδα(t)/
√

2 and the overlap Γ(t) = 〈α0(t)|α1(t)〉,
where

Γ(t) = exp

(

−1

2
|δα(t)|2 − iIm[α∗

0(t)α1(t)]

)

. (3.49)

Here the state “0” is labeled by its σZ-eigenvalue s = 1, whereas the state “1” by its σZ-
eigenvalue s = −1. Analogously to the unperturbed case, the first order contribution to
the discrete POVM is obtained by integrating the continuous POVM in x over the subsets
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η(s). Defining the function

F (1)(t) = i
∆

2

∫ t

0

dt′eiǫt
′

Γ(t′)erf

(

δx(t) − δz(t′)

σ

)

, (3.50)

we can write the first order contribution to the discrete POVM as

F(1)(s, t) = s
(

Re F (1)(t) σX − Im F (1)(t) σY

)

, (3.51)

and the resulting first order correction to the probability follows directly from Eq. (3.17).
This correction is valid only for short time, t ≪ 1/∆. For times comparable with 1/∆
a perturbative expansion of the time evolution operator is not valid. Choosing t ≈ 1/ǫ,
we can effectively approximate the phase associated with two different coherent states
as Im[α0(t)α1(t)

∗] ≈ ψt2, with ψ = f 2 sin(2φ0 − 2φ1), the expression for F (1)(t) further
simplifies,

F (1)(t) = i
∆

2

∫ t

0

dt′eiǫt
′− 1

2
|A|2t′2−iψt′2erf (|A|(t− t′)) . (3.52)

We study the behavior of F (1)(t) as a correction to a qubit projective measurement, that
is in the range of driving amplitudes and frequencies that ensure erf(|A| t) ≈ 1.

The real and imaginary part of F (1)(t) represent the first order correction to the outcome
probability of the measurement for two particular initial states, respectively |+〉X〈+| and
|+〉Y 〈+|, with |±〉X = (|0〉± |1〉)/

√
2 and |±〉Y = (|0〉± i|1〉)/

√
2. In the first case we have

Prob(s, t) =
1

2
+ s ReF (1)(t), (3.53)

and analogously for the second case, with the imaginary part instead of the real one. We
see that the probability to obtain ”0” is increased by ReF (1)(t) and the probability to
obtain ”1” is decreased by the same amount. Since the contribution to first order in ∆t
only affects the off-diagonal elements of ρ0, there is no effect at first order for the qubit
basis states |0〉 and |1〉.

In Fig. 4.4 a) we plot the probability to detect the state 0, corresponding to the outcome
s = 1, corrected up to first order in the perturbation for ∆t = ∆/ǫ = 0.1, for the initial
state ρ0 = |+〉X〈+|, that involves Re F (1)(t). We see that the effect of the tunneling is
largest when driving at resonance with the two qubit-shifted frequencies, ∆ω ≈ ±g. For
weak driving amplitude f , the phase ψ in Eq. (3.52) is small and the response is of order
of ∼ 1%, close to the qubit-split frequency. By increasing the strength of the driving we
see that the structure acquires two local minima in proximity of the resonance ∆ω ≈ ±g
and a maximum exactly at resonance ∆ω = ±g. The strong oscillatory behavior of the
probability is due to a rapid change of sign of the phase ψ in proximity of the qubit-split
frequencies, that is enhanced when the driving strength f increases. In Fig. 4.4 b) we plot
the probability to detect the outcome state ”0”, corresponding to the outcome s = 1 for
the initial state ρ0 = |+〉Y 〈+|, that involves Im F (1)(t). In comparison to Fig. 4.4 a) we
find twice as many oscillations in the structure, typical for the imaginary part of a response
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function, when compared to the real part, and an overall scale factor of order 0.1. Besides,
the sign of the response is not unique. The scale factor and the sign are understood from
the Hamiltonian of the qubit, H = (ǫσZ + ∆σX)/2, with the condition ∆ ≪ ǫ. Under free
evolution for a time t ∼ 1/ǫ, the initial state |+〉X〈+| acquires a larger component in the
Z-direction than the initial state |+〉Y 〈+|. Deviation from this naive picture due to the
coupling with the measurement apparatus translates in fluctuations that may determine a
change of sign in the response for the case ρ0 = |+〉Y 〈+|. Away from the resonances we
see no significant contribution to the outcome probability.

First order effects in the tunneling cannot be responsible for qubit flip during the mea-
surement. In order to estimate the deviation from a perfect QND measurement for the
eigenstates of σZ , we have to consider the effect of the perturbation at second order. We
define F (2)(t) in Eq. (D.5) and the contribution at second order in ∆t to the discrete POVM
is then

F(2)(s, t) = −sF (2)(t) σZ . (3.54)

The dependence on s factorizes, as expected from the symmetry between the states |0〉 and
|1〉, in the picture we consider with no relaxation mechanism. The correction at second
order in ∆/ǫ to the outcomes probability is given by

Prob(2)(s, t) = −sF (2)(t)〈σZ〉0. (3.55)

In Fig. 4.5 we plot the second order correction to the probability to obtain ”1” having
prepared the qubit in the initial state ρ0 = |0〉〈0|, corresponding to F (2)(t), for ∆t =
∆/ǫ = 0.1. We choose to plot only the deviation from the unperturbed probability because
we want to highlight the contribution to spin-flip purely due to tunneling in the qubit
Hamiltonian. In fact most of the contribution to spin-flip arises from the unperturbed
probability, as it is clear from Fig. 4.3. Around the two qubit-shifted frequencies, the
probability has a two-peak structure whose characteristics come entirely from the behavior
of the phase ψ around the resonances ∆ω ≈ ±g. We note that the tunneling term can be
responsible for a probability correction up to ∼ 4% around the qubit-shifted frequency.

From the analysis of the qubit single measurement in Fig. 4.3 we conclude that a weak
POVM qubit measurement, that yields a large error in the determination of the qubit
state, can arise when weakly driving the harmonic oscillator. Therefore, only a strong
qubit projective measurement, obtained for strong driving of the oscillator, can produce a

Quantity Symbol Value for plots

Qubit detuning ǫ 2π × 10 GHz
Damping rate κ 2π × 0.1 GHz

Coupling strength g 2π × 0.3 GHz
Qubit tunneling ∆/ǫ 0.1

Table 3.1: Values of the parameters used in the plots.
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Figure 3.5: (Color online) Plot of the second order correction Prob(2)(s = 1) to
detect ”1” for the initial state |0〉〈0|, for ∆t = ∆/ǫ , as a function of the detuning
∆ω/2π, for several values of the driving amplitude f . The values of the parameters
for the evaluation used are listed in Tab. 3.1.

confident mapping of the qubit state at the level of a single measurement. In this case, a
deviation on the order of a few percent in the state assignment can be ascribable to the
tunneling term.

3.8 QND character of the qubit measurement

As explained in Sec. 3.5, repeated measurements should give the same result if the
measurement is QND. Such a requirement means that if a measurement projects the system
onto an eigenstate of the measured observable, then a subsequent measurement should
give the same result with certainty. The presence of a term that does not satisfy the
QND condition may affect the character of the measurement essentially in two ways: i) by
introducing deviations from the projection character of the single measurement, and ii) by
generating non-zero commutators in the two-measurement POVM. These may affect the
two-outcome probabilities.

3.8.1 Ideal QND measurement

The case ∆ = 0 satisfies the requirement for a QND measurement of the qubit observable
σZ . The discrete POVM factorizes in this particular case, by virtue of the fact that
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[N(0)(y, t′ − t),N(0)(x, t)] = 0,

F(0)(s′, t′; s, t) = F(0)(s′, t′ − t)F(0)(s, t). (3.56)

Choosing, e.g., t′ = 2t and using Eq. (3.35), the joint probability for the two measurements
reads

Prob(s′; s) =
1

4

[

1 + s′s erf

(

δx(t)

σ

)2

+ (s′ + s)erf

(

δx(t)

σ

)

〈σZ〉0
]

. (3.57)

In the region of driving frequency and amplitude that ensure erf(δx/σ) ≈ 1, we find

Prob(s′|s) =
1 + s′s+ (s+ s′)〈σZ〉0

2(1 + s〈σZ〉0)
, (3.58)

with Prob(s; s) = Prob(s), and Prob(−s; s) = 0, and the conditional probability is
Prob(s|s) = 1, and Prob(−s|s) = 0, regardless of 〈σZ〉0. However, it has to be noticed that
in the case the condition erf(δx/σ) ≈ 1 does not perfectly hold, the conditional probability
for the two measurements to give the same outcome becomes

Prob(s|s) =
1 + erf(δx/σ)2 + 2s erf(δx/σ)〈σZ〉0

2(1 + s erf(δx/σ)〈σZ〉0)
, (3.59)

and this does depend on the initial state 〈σZ〉0.

3.8.2 First order contribution

We now apply the perturbative approach in ∆t to estimate the effect of the non-QND
term for the joint and the conditional probabilities. Due to the transverse nature of the
perturbation, it is possible to show that all the odd terms have off-diagonal entries, whereas
even ones are diagonal. At first order in ∆t the off-diagonal term of the discrete POVM is
given by

F (1)(s′, t′; s, t) =
s

2
F (1)(t) +

s′

2
F (1)(t′ − t) + s′C(1)(t′; t), (3.60)

with the quantity C(1)(t′; t) given by Eq. (D.6) in Appendix D. For the particular choice t′ =
2t, for which the two measurement procedures are exactly the same, the joint probability
for the initial state ρ0 = |+〉X〈+| is given at first order in ∆t by

Prob(s′, s) =
1

4

(

1 + s′s erf

(

δx(t)

σ

)2
)

+
1

2
(s+ s′)Re F (1)(t) + s′ Re C(1)(2t; t)

(3.61)
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We immediately observe that the probability is not symmetric with respect to s and s′.
Although the driving times are the same, something is different between the first and the
second measurement, and the probability to obtain different outcomes s′ = −s is different
from zero. An analogous result holds for the initial state ρ0 = |+〉Y 〈+|, with the imaginary
part instead of the real one. Now, no matter the sign of C(1), the product −s C(1) is negative
in one case (s = ±1). In order to ensure that probabilities are non-negative one has to
choose ∆t small enough such that the first order negative correction due to C(1) remains
smaller than the unperturbed probability. If ∆t is too large, one needs to take higher
orders into account which should then ensure an overall non- negative probability. The
behavior of C(1) as a function of the detuning ∆ω and the driving amplitude f is very
similar to that of F (1) and we choose not to display it. The only main difference arises in
the magnitude, for which we have |C(1)| ≪ |F (1)|. It is the clear that the main deviations
in the two measurement probabilities are mainly due to the errors in the first or second
measurement.

3.8.3 Second order contribution

The contribution to the discrete POVM at second order in ∆t can be divided into a
term that factorizes the contributions of the first and the second measurements, as well as
a term that contains all the non-zero commutators produced in the rearrangement,

F(2)(s′, t′; s, t) = F(0)(s, t)F(2)(s′, t′ − t)

+ F(2)(s, t)F(0)(s′, t′ − t)

+
1

2

[

F(1)(s, t)F(1)(s′, t′ − t) + h.c.
]

+ C(2)(s′, t′; s, t). (3.62)

The full expression of the C(2) at second order is rather involved. Choosing t′ = 2t we then
obtain

C(2)(p′, 2t; p, t)ss = p′ps C(2)(t) − p′p
∣

∣F (1)(t)
∣

∣

2
, (3.63)

with C(2)(t) given by Eq. (D.7) in Appendix D. The probability to obtain identical out-
comes does depend on the outcome s itself, and this reflects the fact that the joint prob-
ability still depends on the initial states of the qubit. At the same time, the probability
for obtaining different outcomes does not depend on s, as expected. However, direct eval-
uation of the function C(2)(p′, 2t; p, t) shows that its contribution to the probability is of
order 0.1% and can be neglected.

3.9 Rabi oscillations between measurements

In order to gain a full insight in the QND character of the measurement, we analyze the
behavior of the conditional probability to detect the outcomes s and s′ in two subsequent
measurements when we perform a rotation of the qubit between the two measurements.
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Figure 3.6: (Color online) Conditional probability to obtain a) s′ = s = 1, b)
s′ = −s = 1, c) s′ = −s = −1, and d) s′ = s = −1 for the case ∆t = ∆/ǫ = 0.1 and
T1 = 10 ns, when rotating the qubit around the y axis before the first measurement
for a time τ1 and between the first and the second measurement for a time τ2,
starting with the qubit in the state |0〉〈0|. Correction in ∆t are up to second order.
The harmonic oscillator is driven at resonance with the bare harmonic frequency
and a strong driving together with a strong damping of the oscillator are assumed,
with f/2π = 20 GHz and κ/2π = 1.5 GHz.

Such a procedure has been experimentally adopted in the work of Lupaşcu et al. [27].
When changing the qubit state between the two measurements, only partial QND behavior
is expected. In addition to this, we apply an initial rotation to the qubit, such that a wide
spectrum of initial states is tested. Ideally, the complete response of this procedure is
supposed to be independent on the time τ1, during which we rotate the qubit before the
first measurement, and to depend only on the time τ2, during which we rotate the qubit
between the first and the second measurements, with probabilities ranging from zero to
one as a function of τ2. Such a prediction, once confirmed, would guarantee a full QND
character of the measurement.

In Fig. 4.1 c) we plot the conditional probability P (0|0) for the case ∆ = 0, when
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strongly driving the harmonic oscillator at resonance with the bare harmonic frequency,
∆ω = 0. The initial qubit state is chosen to be |0〉〈0|. No dependence on τ1 appears and
the outcomes s and s′ play a symmetric role. This is indeed what we expect from a perfect
QND measurement. In Fig. 4.6 we plot the four combinations of conditional probability
P (s′|s) up to second order corrections in ∆t = ∆/ǫ = 0.1 and with a phenomenological
qubit relaxation time T1 = 10 ns. We choose ∆ω = 0, that is at resonance with the
bare harmonic frequency. The initial qubit state is |0〉〈0|. Three features appear: i) a
global reduction of the visibility of the oscillations, ii) a strong dependence on τ1 when
the qubit is completely flipped in the first rotation and iii) an asymmetry under change of
the outcomes of the first measurement, with an enhanced reduction of the visibility when
the first measurement produces a result that is opposite with respect to the initial qubit
preparation |0〉〈0|. Furthermore, we find a weak dependence of the visibility on τ1.

We now investigate whether it is possible to identify the contributions of different mech-
anisms that generate deviations from a perfect QND measurement. In Fig. 4.7 we study
separately the effect of qubit relaxation and qubit tunneling on the conditional probability
P (0|0). In Fig. 4.7 a) we set ∆ = 0 and T1 = ∞. The main feature appearing is a sudden
change of the conditional probability P → 1 − P when the qubit is flipped in the first
rotation. This is due to imperfection in the mapping between the qubit state and the state
of the harmonic oscillator, already at the level of a single measurement. The inclusion of a
phenomenological qubit relaxation time T1 = 2 ns, intentionally chosen very short, yields
a strong damping of the oscillation along τ2 and washes out the response change when the
qubit is flipped during the first rotation. This is shown in Fig. 4.7 b). The manifestation
of the non-QND term comes as a global reduction of the visibility of the oscillations, as
clearly shown in Fig. 4.7 c).

At this level it is clearly possible to associate the observed features to different originating
mechanisms: i) qubit tunneling yields an overall reduction of the visibility of the oscillations
and an asymmetry under exchange of the outcomes of the first measurement, ii) qubit
relaxation results in damping along τ2 and weak dependence of the oscillations on τ1, and
iii) deviations from projective measurement show up mostly when the qubit is flipped
during the first rotation.

The combined effect of the quantum fluctuations of the oscillator, together with the
tunneling between the qubit states, is therefore responsible for deviation from a perfect
QND behavior, although a major role is played, as expected, by the non-QND tunneling
term. Such a conclusion pertains to a model in which the qubit QND measurement is
studied in the regime of strong projective qubit measurement and qubit relaxation is taken
into account only phenomenologically. We compared the conditional probabilities plotted
in Fig. 4.6 and Fig. 4.7 directly to Fig. 4 in Ref. [27], where the data are corrected by
taking into account qubit relaxation, and find good qualitative agreement.

Our findings can also be compared to the experiment [28], in which the QND character
of the measurement is addressed by studying a series of two subsequent measurements, but
no qubit rotation is performed between the two measurements. The data in Ref. [28] are
affected by strong qubit relaxation. However, from the analysis of the joint probabilities of
the outcomes of the two measurements provided in Ref. [28], one can extract the conditional
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Figure 3.7: (Color online) Comparison of the deviations from QND behavior orig-
inating from different mechanisms. Conditional probability P (0|0) versus qubit
driving time τ1 and τ2 starting with the qubit in the state |0〉〈0|, for a) ∆ = 0 and
T1 = ∞, b) ∆ = 0 and T1 = 2 ns, and c) ∆ = 0.1 ǫ and T1 = ∞. The oscilla-
tor driving amplitude is f/2π = 20 GHz and a damping rate κ/2π = 1.5 GHz is
assumed.

probabilities P (0|0) ∼ 83% (when starting with the qubit initially in the ground state and
comparable to Fig. 4.6 a) at τ1 = τ2 = 0), and P (0|0) ∼ 77% (after a π-pulse is applied to
the qubit initially in the ground state, that is comparable to Fig. 4.6 a) at τ1 = 0.5 ns and
τ2 = 0). In these cases one would expect a conditional probability of order 1 and a weak
dependence on qubit relaxation. A deviation of order ∼ 20% can be understood within
the framework of our model as arising from the non-QND term and from a weak qubit
measurement. Besides, from the data provided in Ref. [28], one can extract a probability
of ∼ 17% to obtain the excited state, when starting with the qubit in the ground state,
already at the level of the single measurement. Such a behavior cannot be understood as
a result of qubit relaxation and it can be ascribed to deviations from a projective qubit
measurement.
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3.10 Conclusion

In this paper we have analyzed the QND character of a qubit measurement based on
coupling to a harmonic oscillator that works as a pointer to the qubit states. The Hamilto-
nian that describes the interaction between the qubit and the oscillator does not commute
with the qubit Hamiltonian. This would in principle inhibit a QND measurement of the
qubit. The term in the qubit Hamiltonian that gives rise to the non-zero commutator is
small compared with the qubit energy gap, and in the short time qubit dynamics it can
be viewed as a small perturbation. The perturbative analysis carried out for fast measure-
ments leads us to the conclusion that the effect of the non-QND term can manifest itself as
a non negligible correction. A perfect QND measurement guarantees perfect correlations
in the outcomes of two subsequent measurements, therefore QND character of the mea-
surement is understood in terms of deviations from the expected behavior. Corrections to
the outcome probabilities have been calculated up to second order in the perturbing term.

The ground and excited states of the qubit are affected only at second order by the
perturbation, but a general measurement protocol should prescind from the state being
measured. Therefore, in the spirit of the experiment of Lupaşcu et al. [27], we have studied
the conditional probability for the outcomes of two subsequent measurements when rotating
the qubit before the first measurement and between the first and the second measurement.
In the case where the QND condition is perfectly satisfied, that is when the perturbation
is switched off, no dependence of the conditional probability on the duration of the first
rotation appears and the Rabi oscillations between the two measurement range from zero
to one. This behavior shows perfect QND character of the qubit measurement. On the
other hand, the main effect of the non-QND term manifests itself as an overall reduction
of the visibility of the oscillations and as an asymmetry between the outcomes of the
measurements. An additional dependence on the duration of the first qubit rotation may
appear if a projective measurement of the qubit is not achieved already in absence of
the perturbing non-QND term. Experimentally the measurement is not projective and
relaxation processes inhibit a perfect flip of the qubit before the first measurement.

We point out that our analysis is valid only when the non-QND term ∆σX can be viewed
as a perturbation, that is for short time ∆t≪ 1 and when the qubit dynamics is dominated
by the term ǫσZ , for ∆/ǫ≪ 1. Our analysis is not valid for the case ǫ = 0. In the present
study we have neglected the non-linear character of the SQUID, which is not relevant to
the fundamental issue described here, but plays an important role in some measurement
procedures[25–28].

A way to improve the QND efficiency would be simply to switch the tunneling off. In
the case of superconducting flux qubit, a possibility toward smaller ∆ could be to gate the
superconducting islands between the junctions of the qubit loop [39]. As an operational
scheme one could think of working at finite ∆ for logical operations and then at ∆ = 0 for
the measurement.
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4. Electronic implementations of

Interaction-Free Measurements

Based on novel and prototypical electronic interferometric setups we show that it is
possible to realize interaction free measurements in solid state nanodevices. We discuss
three different implementations. The first one is very close to the optical proposal and it
is based on a series of concatenated Mach-Zehnder interferometers. We also discuss the
case in which the interaction free measurement is realized by means of an asymmetric
Aharonov-Bohm ring and the case in which coherent single-electron sources are used. For
all the three cases we show how to detect the effect through a measurement of the current
passing through the device. Beside the interest in realizing with electrons a fundamental
interferometric effect already measured with photons, interaction free measurements in
nanoelectronics may play a fundamental role as very accurate measuring devices. We show
this by discussing how to reveal the presence of a dephasing source. In addition to the
accuracy the new key ingredient here is that a flux of electrons may measure noise without
any degradation of its coherence properties. 1

4.1 Introduction

Interaction-free measurements (IFMs) were first introduced by Elitzur and Vaidman
[1], who showed that he laws of quantum mechanics allow to reveal the presence of an
object without disturbing it. The original proposal exploited the coherent splitting and
the subsequent recombination of the wave-function of a photon entering a Mach-Zehnder
(MZ) interferometer. The disturbance induced by the object once placed in one of the two
arms of the interferometer (an absorber in the original proposal) appears in the properties
of outgoing flux of photons. Upon proper setting of the parameters of the interferometer it
has been shown that, even without the absorption taking place, the mere possibility of this
to happen deeply modifies the state of the particle emerging from the interferometer. As a
result an external observer will be able to gather information about the presence or absence
of the absorber, without the photon being absorbed. The maximal success probability
was bound to be 50% in the original proposal. A way to improve the efficiency of the
scheme was put forward by P. Kwiat et al. [2], who suggested to use coherently repeated
interrogations. In their scheme a photon was repeatedly sent into a MZ interferometer,
with an absorber placed in one of the two arms. By properly tuning the MZ phase it is

1This chapter is a manuscript under preparation by L. Chirolli, E. Strambini, V. Giovannetti, F. Taddei,
V. Piazza, R. Fazio, F. Beltram, G. Burkard.
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possible to enhance the efficiency of the setup arbitrarily close to 1. Such a scheme can
be thought as an application of a discrete form of the quantum Zeno effect, since every
step can be considered as a measurement accompanied by state reduction. IFMs were
experimentally realized using single-photon sources [2–5] and in neutron interferometry [6].
The enhanced efficiency based on concatenated MZ interferometers was tested in [7] with
an improvement up to 73%. Its application was extended to the case of semitransparent
objects with classical light [8–11]. An important consequence of these works that IFM
could be interpreted in terms of deterioration of a resonance condition [8] which, at least
for optical realizations, does not necessarily need a quantum description (“classical” optical
coherent is sufficient).

There are numerous reasons to look for an electronic version of interaction free measure-
ments. In recent years advances in fabrication made possible the observation of interference
phenomena in electronic transport experiments, opening the way to a variety of applica-
tions. Of particular interest for what follows are the achievements obtained in the context
of two-dimensional electron gas in the integer quantum Hall effect regime [12]. Here, vari-
ous experimental realizations of the MZ [13–17] and Hanbury-Brown-Twiss interferometers
[18, 19] have been successfully implemented In addition quantized electron emitters have
been recently realized [20–23]. The possibility to extend IFM to electronic systems seems
therefore now at reach, paving the way to the development of novel non-invasive measure-
ment schemes in mesoscopic systems, with possible important implications for quantum
information processing. In any case, regardless of possible applications, the implementa-
tion of IFM in electronic devices deserves in our opinion a careful scrutiny as a test for
quantum control and quantum mechanics in mesoscopic systems. It is worth nothing that,
differently from the optical case, for electronic systems there is no classical corresponding
model to realize an IFM.

A first application of IFM strategies to electronic systems was proposed in Ref. [24]
to detect the presence of a current pulse in a circuit by monitoring the state of a super-
conducting qubit coupled to the circuit, without any energy exchange between the two.
Subsequently, in the very same spirit of the original works [1, 2], it was shown how to
employ IFM to detect with unitary efficiency a localized source of noise acting on one arm
of an Aharonov-Bohm (AB) chiral ring without affecting the transmitted and reflected cur-
rents [25]. In view of its (unavoidable) presence in nanoelectronics, the proposal focused on
the detection of external random fluctuating electric or magnetic fields, which represents
the most common source of noise in nanoscale quantum devices [26–29]. Therefore, in
Ref. [25] a classical fluctuating electrical field, that randomizes the phase of the electron
traveling through it, plays the role of the absorber of the optical schemes [1–11]. The
resulting apparatus operates as a sort of quantum fuse which, depending on the presence
or on the absence of the dephasing source, opens or closes a contact. The results presented
in Ref. [25] show that the mechanism underlying the IFM do not depend, to a large extent,
on the type of disturbance which is induced in the interferometer.

In the present paper we extend our work on the electronic version of the IFM in several
ways. First of all we introduce two alternative IFM implementations based on the integer
quantum Hall effect. The first scheme closely resembles the optical setup of Ref. [7] and
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uses a recent proposal [30] for realizing concatenated MZ interferometers. The second
scheme instead is based on the standard quantum Hall interferometric architecture [13–19]
and assumes the presence of a quantized electron emitters [20–23]. As in Ref. [25], both the
setups are shown to be capable of detecting the presence of a localized dephasing sources
without affecting the coherence of the probing signals. Finally we also give a detailed
derivation of the results of Ref. [25].

The paper is organized as follows. In Sec. 4.2 we present a noise-sensitive coherent
electron channel, based on the concatenation of several MZ interferometers. We show
that we can detect the presence of a dephasing source affecting the propagation in one
of the interfering electronic path via measuring the output currents. We then study the
coherence of the outgoing signal by computing the fraction of coherent signal and show
that an IFM measurement of the dephasing source is achievable. In Sec. 4.3 we embed
the device described in Sec. 4.2 in a larger Mach-Zehnder interferometer and study the
visibility of the output currents, showing how the coherence of the outgoing signal can be
experimentally addressed. In Sec. 4.4 we suggest to implement an IFM in a unique Mach-
Zehnder interferometer that makes use of a quantized electron source and concatenation in
the time domain. In Sec. 4.5 we present a double ring structure in which a small chiral AB
ring is embedded in one arm of a larger AB ring. We study the current the flows through
the whole device as a measure of the coherent character of the detection.

4.2 Coherent detection of noise with IFMs

A straightforward implementation of IFM along the lines developed originally in optics
can be realized exploiting the edge-channel interferometric architecture suggested in [30]
based on systems at filling factor ν = 2. The feature of this architecture which is relevant
for our pourposes is that it allows for successive concatenation of different interferometers
as depicted in Fig. 4.1. In this scheme a beam splitter (BS) is realized by introducing a
sharp potential barrier which mixes the two edges. Populating initially only one channel,
after the BS we find the electrons in a superposition state. Additional phase shifters (PSs)
can be easily realize by spatially separating the two channels (it is sufficient to apply a top
gate that can locally change the filling factor to ν = 1). This way, only one channel can
traverse this region and the other is guided along the edges of the local region with ν = 1.
This is schematically shown in Fig. 4.1, where a phase difference φ is introduced between
the channels by changing the path of the incoming channel.

Exploiting this approach we can now build a long sequence of concatenated interferome-
ters, which, analogously to the original optical implementation proposed by Kwiat Ref. [7],
implements our IFM scheme. The proposed setup is illustrated in Fig. 4.1. It consists in
a sequence of N concatenated interferometers, in which the outputs edges emerging from
the n-th interferometer are directly fed into the inputs of the (n+ 1)-th one. By means of
this setup it is possible to detect the presence of a fluctuating electromagnetic field in the
vicinity of the Hall bar (depicted as a shaded area in Fig. 4.1). By applying external top
gates that deviate the path of the i channel, we steer the electron propagation inside the
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Figure 4.1: Schematic illustration of a noise-senitive coherent electron channel
consisting of N = 2 representative blocks, implemented in a quantum Hall bar at
integer filling ν = 2. Incoming electrons in contact 1 and 2 are represented by
their annihilation operators a and outgoing electrons in contact 3 and 4 by their
annihilation operators b. Each block is constituted by a beam splitter (BS) and a
phase shifter (PS). Each BS is characterized by a degree of admixture γ and mixes
the incoming electron in the i and o edge states. The PS is constituted by an
applied top gate (yellow area with filling factor ν = 1) that spatially separates the
edge channels and introduces a phase difference φ. An external fluctuating field of
strength ǫ (shaded area) introduces dephasing by randomly shifting the phase of
the electron traveling in the o edge state.

Hall bar, where the fluctuating field is supposed to be absent. Allowing only a small frac-
tion of the electronic wavefunction to propagate through the region exposed to dephasing,
it is possible to reveal the presence of the fluctuating field. If the dephasing field is absent,
the electron coherently propagates towards the next step, that is nominally equal to the
previous one. By properly tuning the degree of admixture of the channel populations, it
is possible to gradually transfer the electron from the i (inner) channel to the o (outer)
channel at the end of a chain of N interferometers. In case a dephasing field is present,
that part of the wavefunction that propagates in the o channel, as a result of random phase
shift, does not coherently add to the one propagating in the i channel, and the gradual
transfer of electronic amplitude from the i channel to the o channel does not take place. At
the same time the electron that propagates into the channel not exposed to the fluctuating
field preserves its coherence. This way the presence or absence of noise is witnessed by the
electron coming out in the lead 3 or 4 respectively and, as will be clear in the following,
the setup manages to preserve the coherence of the emerging electronic signals.
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Figure 4.2: Current in contact 3 for different number N of blocks. (Left panel)
I3 versus the phase shift φ in the coherent case ǫ = 0. By increasing N a narrow
dip arises in the coherent case for φ = 0, and all the current goes out in contact 4.
(Right panel) I3 versus the strength ǫ of the dephasing field, at the working point
φ = 0. As ǫ increases, the current tends to go out all from contact 3, thus witnessing
the presence of the dephasing field.

4.2.1 Detection of a dephasing noise source

Electron propagation will be described in the formulation of Landauer and Büttiker of
quantum transport [34, 35] and write the scattering matrix that describes the transport in
each block as

S(δ) =

(

eiφ cos(γ/2) ieiφ sin(γ/2)
ieiδ sin(γ/2) eiδ cos(γ/2)

)

. (4.1)

For the sake of simplicity it is possible to assume that the presence of a dephasing source
is described by a random phase shift exp(iδ). By using the above scattering matrix it is
possible to relate electrons going out of a chain of N blocks to the incoming electrons at
the beginning of the chain by

b =
N
∏

i=1

S(δi) a, (4.2)

with a = (ai, ao)
T fermionic annihilation operator describing incoming electrons in the leads

1 and 2 connected respectively to channels i and o, and b = (bi, bo)
T fermionic annihilation

operator describing outgoing electrons in the leads 3 and 4 connected. The contact 1 is
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biased at a chemical potential eV above the other reservoirs 2, 3, and 4 which are kept
grounded. Setting the temperature to zero the current in contact 3 is

I3,N =
e2V

h
|[SN ]11|2 , (4.3)

with SN =
∏N

i=1 S(δi). Here we do not take into consideration the electron spin degree of
freedom.

The effect of the fluctuating field can be taken into account by averaging the phase over
a generic distribution of width 2πǫ and zero mean. For simplicity we assume a uniform
distribution. The outgoing currents depend now entirely on the degree γ of mixing of the
edge states in the BS and on the phase shift φ. The average current in contact 3 is given
by

〈I3〉δ ≡
1

(2πǫ)N

∫ πǫ

−πǫ
dδ I3,N , (4.4)

with dδ = dδ1 . . . dδN . We define the two component vectors e+ = (1, 0)T , e− = (0, 1)T ,
that allow us to express

|[SN ]11|2 = eT+S
†
Ne+eT+SNe+, (4.5)

|[SN ]21|2 = eT+S
†
Ne−eT−SNe+. (4.6)

We introduce a representation of 2 × 2 matrices in terms of Pauli operators, concisely
written in a Pauli vector defined as σ = (σ0, σ1, σ2, σ3)

T , with σ0 = I. We can then write
e±eT± = (I ± σZ)/2 ≡ p± · σ, with (p±)i = Tr(e±eT±σi)/2. This allows us to calculate the
average over the phases δi as a matrix product. Defining the matrix

Qij =
1

2

∫ πǫ

−πǫ

dδ

2πǫ
Tr
[

S†(δ)σiS(δ)σj
]

, (4.7)

we can write the zero temperature dephased current in the output 3 and 4 after N blocks
as

〈I3,4;N〉δ =
e2V

h
p± · QN ·

(

eT+ σ e+

)

. (4.8)

We point out here that, due to the unitarity of S(δ), Qij defined in Eq. (4.24) preserves
the trace. One can reduce the dimensionality of the problem and work with the Bloch
representation of 2 × 2 density matrices.

The behavior of the output currents in the limit of large N is obtained by studying the
eigenvalues of the 4×4 matrix Q. Choosing the working point φ = 0, the matrix Q assumes
a diagonal block form, that allows for a direct solution, Q = U−1diag(1, sin(πǫ)/πǫ, λ−, λ+)U ,
with U and λ± given by Eqs. (E.2,E.3) in Appendix E. The currents in the terminal 3 and
4 can be then written as

〈I3,4;N〉δ =
e2V

h

1

2

(

1 ± λN+u+ − λN−u−
u+ − u−

)

, (4.9)
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Figure 4.3: Fraction of coherent signal F versus the strength ǫ of the fluctuating
field. Choosing the degree of admixture of the BSs to be γ = π/N , with most of the
electron amplitude injected in the coherent i channel, the outgoing signal initially
partially dephases for small ǫ, reaches a minimum, and then recovers its coherence
as ǫ approaches one. To the contrary, injecting most of the electron amplitude in
the channel affected by random phase shift by setting γ = π/N + π, the coherence
of the outgoing signal is totally lost.

with u± given in Eq. (E.1) in Appendix E.
For the case of no dephasing ǫ = 0, the outgoing currents at the working point φ = 0

are given by I3 = 0 and I4 = e2V/h. In Fig. 4.2 left panel we plot the current in terminal
3 versus the phase shift φ. We see that the current is approximately e2V/h for almost
all the range of values of the phase φ, and that only at the working point φ = 0 it drops
very rapidly to zero. Such a behavior corresponds to a very narrow resonance condition
for which interference gives rise to a gradual transfer of the electron wavefunction to the o
channel and all the current goes out from contact 4. Such a resonance is very sensitive to
small deviations of the phase φ from the working point that imply a large variation of the
current response. Increasing N further shrinks the dip at φ = 0, as it is shown in Fig. 4.2
left panel for different N .

In the opposite case of strong dephasing case ǫ = 1 the current behaves as I3,4;N =
1
2
(1± cosN(γ))e2V/h. If the asymmetry of the BS is properly tuned at the value γ = π/N ,

the outgoing current are

〈I3,4;N〉δ =
e2V

h

1

2

(

1 ± cosN
( π

N

))

. (4.10)

In the limit of large N it follows that I3 = e2V/h and I4 = 0. The behavior of the current
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Figure 4.4: Fraction of coherent signal when the dephasing field affects both chan-
nels, respectively o with strength ǫ1 and i with strength ǫ2. The degree of admixture
is set to γ = π/N , with N = 50, and most of the electron amplitude is injected in
channel i. By increasing ǫ2 the coherence is rapidly lost.

in contact 3 versus the dephasing strength ǫ is shown in Fig. 4.2, right panel. It is evident
that the presence of a strong dephasing source changes the interference response, such
that the electrons asymptotically exit the device all from the terminal 3, whereas in the
coherent case they would exit all from the terminal 4. By inspecting Eq. (4.10), we notice
that the current remains unchanged even in the highly asymmetric case when the electronic
amplitude is diverted in the noisy channel o, γ → γ+π for N even. The system composed
by the interferometer and the dephasing source behaves like a ”which-path” interferometer.

4.2.2 Coherence of the outgoing signal

A key feature of the IFM detection of noise is that the the coherence of the outgoing signal
is preserved, which in turn can open the way to novel application in quantum coherent
electronics. Depending on whether the electron is mostly injected into the secure i channel
by setting γ = π/N or into the o channel subject to dephasing, by setting γ = π/N + π,
the coherence of the outgoing signal can be asymptotically preserved or totally lost.

A convenient way to quantify the coherence of the outgoing signal by the fraction of
coherent signal is

F ≡ |〈[SN ]11〉δ|2 + |〈[SN ]21〉δ|2. (4.11)

In the case ǫ = 0, one has |[SN ]11|2 + |[SN ]21|2 ≡ 1, and the function F is identically one.
In Fig. 4.3 we plot F for different choices ofN and γ. For the particular choice γ = π/50+π,
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the F drops rapidly to zero, as a result of the strong dephasing experienced by the electron.
On the other hand, one can see that by choosing γ = π/N , the fraction of coherent signal
initially decreases, as a result of a small disturbance induced by the fluctuating field, but
then saturates to one, witnessing the coherence of the outgoing signal. This behavior is
sharpened for higher N .

Until now we have considered an ideal situation in which dephasing takes place only
in one channel. In Fig. 4.4 we plot the behavior of the F versus the strength ǫ1 of the
dephasing field acting on channel o, when a fluctuating field of strength ǫ2 affects the
propagation in the i channel. We see that a strong response corresponds to a slight increase
of ǫ2, with the coherence of the outgoing signal significantly degraded.

In order to convey a small fraction of the electron wavefunction towards the dephasing
region and realize the particular conditions for an IFM to be possible, it is necessary to set
the degree of admixture in the BS to the precise value γ = π/N . This might represent a
technical obstacle to an experimental realization, in that the BSs are very difficult to tune
all at the same precise degree of admixture, and a high efficiency IFM is obtained in the
limit of large N . We then study the behavior of the fraction of coherent signal when the
condition γ = π/N is not perfectly matched. This is done by averaging Eq. (4.24) over γ,
obtained by convolution with a distribution of mean γ = π/N and width 2η. The result
is shown in Fig. 4.5 for the case γ = π/100. We notice that, as an overall behavior, the
magnitude of F is decreased by an increase of η. Interestingly, the behavior of F versus ǫ is
not qualitatively changed. As a result of the average over γ, the fraction of coherent signal
is no longer equal to one in absence of dephasing. As ǫ is increased, F initially decreases
and then asymptotically reaches the value it has in the case of no dephasing. Data not
shown confirm that for a π-shift of the mean, γ = π/N + π, the fraction of coherent signal
rapidly goes to zero. We therefore conclude that the phenomenon of IFM is quite robust
against small deviation from the condition γ = π/N and can in principle be addressed
experimentally.

4.3 Detection of the coherent signal

The fraction of coherent signal quantified by the function F defined in Eq. (4.11), al-
though containing all the information concerning the coherence of the signals coming out
from the device, does not represent an experimentally measurable quantity. In order to
test the coherent behavior of the device one has to compare the outgoing signal with a
known phase. This could be done, for instance, by embedding the N concatenated blocks
in a Mach-Zehnder interferometer, as schematically illustrated in Fig. 4.6. We apply a
voltage V to contact 1 and ground all the other contacts. A beam splitter BST separates
the signal coming from contact 1 into two amplitudes in such a way that one enters the
N -block system from channel i, and the other follows a path whose length (and phase ϕ)
can be arbitrarily adjusted. The amplitude coming out from the N -block system in the
channel i is then mixed with the signal of known phase in BSB, and the two outgoing
signals collected in contacts 3 and 3’. The amplitude coming out from the N -block system
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Figure 4.5: Fraction of coherent signal F versus the strength ǫ of the dephasing
field, studied when the condition on the degree of admixture γ = π/N is not matched
exactly. The function F is convoluted with a distribution of the width 2η and mean
γ = π/100, with most of the electron amplitude injected in channel i. By increasing
η the magnitude of F rapidly decreases but the behavior with respect to ǫ persists,
signature of a partial preservation of coherence.

in channel o is drained separately in contact 4.

By denoting with t = [SN ]11 the amplitude coming out from the N concatenated in-
terferometers in channel i, and r = [SN ]21 the amplitude coming out from the device in
channel o the transmission probability in contact 3 is given by

T3(ϕ) =
1

2

〈

∣

∣t+ eiϕ
∣

∣

2
〉

δ
(4.12)

=
1

2
(〈T 〉δ + 1) + | 〈t〉δ | cos (arg(〈t〉δ) − ϕ) , (4.13)

with T = |t|2. The visibility of T3(ϕ) can be quantified by the maximal normalized ampli-
tude of the ϕ-oscillation,

V3 =
2| 〈t〉δ |
〈T 〉δ + 1

. (4.14)

In Fig. 4.7 we plot the function V3 versus ǫ for different number N of interferometers,
keeping the degree of admixture γ = π/N . For ǫ = 0 the destructive interference for φ = π
produces a zero amplitude signal t, from which follows a zero visibility. Switching on the
dephasing field we see that the visibility rapidly increases to saturate to one, therefore
revealing the coherence of the amplitude t with respect to the phase ϕ.
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In order to measure the function F defined in the previous section we need an more
complex setup. Indeed, two signals come out of the N -block system and we have to
measure current and visibility of both signals. This mean that one has to modify the setup
of Fig. 4.6 such that the amplitude that goes out from the N -block system in the channel
o interferes with a signal of known phase ϕ′ before going out from the whole device from
contact 4. By measuring the transmission amplitudes T3(ϕ) and

T4(ϕ
′) =

1

2
(〈R〉δ + 1) + | 〈r〉δ | cos (arg(〈r〉δ) − ϕ′) , (4.15)

with R = |r|2, and their visibilities V3 and V4 in contact 3 and 4 we can reconstruct the
function F . Denoting T̄3 and T̄4 the mean values of the transmission probabilities in 3 and
4, we can write

F = V2
3 T̄ 2

3 + V2
4 T̄ 2

4 . (4.16)

This relation allows us to understand the behavior of the F as a function of ǫ. The visibility
V3 necessarily starts from zero, as T = 0 for ǫ = 0, as shown in Fig. 4.7. To the contrary,
the visibility V4 necessarily starts from one, as T = 0 for ǫ = 0 and R = 1−T . At small but
non-zero ǫ one has a reduction of the F due to the non linear dependence on the currents
and visibilities in Eq. (4.16). Hence the minimum in the visibility, as shown in Figs. 4.3
and 4.4. As ǫ → 1, in the case of IFM one of the two addenda in Eq. (4.16) survives, and
F → 1 asymptotically, otherwise it monotonically decreases to zero.

4.4 Multiple interference in the time domain

It is possible to realize an IFM scheme based on the Mach-Zehnder (MZ) interferometer
in the integer quantum Hall architecture at filling factor ν = 1, experimentally realized
in Ref. [13–19]. To this end one needs to employ a quantized electron emitter [20–23], as
illustrated in Fig. 4.8.

The periodic time-dependent potential V (t) applied to a small circular cavity produces,
on a linear extended channel connected to contact 1, an ac current composed by a very well
time-resolved electron and hole pair [20–23]. A quantum point contact (QPC1), driven by
a time-dependent external potential U1(t), connects the linear edge to the MZ and lets
only electrons to be transmitted in the interferometer, while reflecting holes in the lead
1. Suppose that after an electron has been injected into the MZ, the QPC1 closes and
completely detaches the MZ from lead 1. The transmitted electron travels with a precise
velocity vF along the edge ebl in the MZ until it encounters the first beam splitter BSL.
There it is split into two packets that follow two different edges etr and ebr of equal length L
and will collide at BSR after a time L/vF . The two packets then mix together at BSR and
then follow the edges ebl and etl of length L. The sequence repeats itself many times, with
the electronic wavepacket being split and reunited many times at the beam splitters BSL
and BSR. Due to the fact that the drift velocity on the edge is constant and by engineering
the arms of the MZ to have all equal lengths, we can map the time propagation in the MZ
into a spatial concatenation of BSs and phase shifters PSs. Via properly tuning the degree
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Figure 4.6: Schematic representation of the proposal for an experimental realiza-
tion of an N -block noise-sensitive electron channel embedded in a Mach-Zehnder
interferometer. Electrons entering the a Hall bar from contact 1 split at the beam
splitter BST. The electrons transmitted will traverse the N -block system and even-
tually go out from contact 4 or impinge onto BSB. The latter mix with those initially
reflected at BST and interfere. The result of the interference can be collected in
contact 3 or 3’. In the yellow areas the filling factor is ν = 1 and in the rest of the
Hall bar the filling factor is ν = 2. The coherence of the outgoing signal can be
directly addressed by measurement of the visibility of current in contact 3 versus
the tunable phase ϕ acquired during the propagation by the electron reflected at
BST. Inset: Schematics of the main picture.

of channel admixture at the BSs, we make the electron appear after N rounds entirely in
front of QPC2, that can be opened in a time-resolved way, such that the electron can be
collected into lead 2.

A dephasing source affecting the propagation of the electron in the edge etr can be simply
described by randomly shifting the phase of the corresponding wavepacket. The electron
will have very high probability to be in front of QPC1. By opening the latter one can collect
a coherent electron in contact 1, thus performing an IFM of the dephasing source. This
protocol should operate in a cyclic way. The periodic potential V (t) produces an electron
at time t+ and a hole at time t− in front of the QPC1 every cycle, with 0 ≤ t+ ≤ T /2
and T /2 ≤ t− ≤ T , and with T the period of the cycle. The QPC1 will be open during
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Figure 4.7: Visibility VT of the current in contact 3 versus the strength of the
dephasing field, for several number of blocks N . In the coherent case ǫ = 0 the
current in contact 3 is zero, for which also VT . Increasing ǫ the visibility approaches
one. We set γ = π/N .

first half cycle, to let the electron in, and closed for the second half cycle. The two QPCs
open and close simultaneously. An electron emitted in front of the QPC1 at time t+ will
appear in front of one of the two QPCs after a time t+ +N∆t, with ∆t ≡ 2L/vF , having
performed N rounds. With the choice t+ = (1/2 − 1/M)T and ∆t = (m + 1/M)T , with
m,M = 1, 2, 3 . . ., an electron makes Nmax = M/2 rounds inside the MZ before finding the
QPCs open. Depending on the interference conditions the electron will be found either in
front of QPC1, in case of no dephasing, or in front of QPC2, in presence of a dephasing
source.

In the case for which no dephasing field is present, ǫ = 0, it is possible to tune the MZ
such that after Nmax rounds the electron is exactly in front QPC2 and can be collected in
contact 2. The current in contact 1 will be given by a train of holes, whereas the current
in contact 2 by a train of electrons. In the case of maximal dephasing, ǫ = 1, no current is
expected in contact 2, and a train of coherent electron-hole pairs per cycle is expected in
contact 1.

The energy level spacing inside the MZ can be estimated as ∆E ∼ h/∆t = h
(m+1/M)T .

For large M it is determined by the size of m, that can be chosen to be large enough
for a continuum approximation of the level spacing to be valid. This picture allows us to
describe the physics in the Landauer-Büttiker formulation of quantum transport[34, 35],
with no needs of the Floquet treatment of the time-dependent problem. We introduce
the electron annihilation operators {êtr, êbr, êbl, êtl} that annihilate an electron on the edge
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Figure 4.8: Mapping of concatenation in space to the time domain in a Mach-
Zehnder interferometer. A time-dependent voltage generates a current of well sep-
arated electron and holes. The QPC1 let the electrons enter the Mach-Zehnder,
perform N rounds in the interferometer and then collect them back into contact 1
in the case a dephasing field of strength ǫ affects the dynamics of the channel etr.
In the coherent case ǫ = 0 the electrons are collected in contact 2.

states {etr, ebr, ebl, etl}. In order to obtain the transport regime described in the previous
section we have to tune the beam splitters BSL and BSR such that

SBSL = SBSR =

(

cos(γ/2) i sin(γ/2)
i sin(γ/2) cos(γ/2)

)

, (4.17)

with (êtr, êbr)
T = SBSL(êbl, êtl)

T and (êbl, êtl)
T = SBSR(êtr, êbr)

T , with the particular choice
γ = π/Nmax. Concerning with the dynamical phase acquired by propagating along the
edge channels, arms of equal length L give rise to no phase shift between the arms, and the
condition for the working point φ = 0 depends only upon proper tuning of the magnetic
field.
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Figure 4.9: a) Schematic representation of a time-dependent electron-hole switch.
The cavity driven by the potential V (t) is connected via QPCV to a linear edge
and produces a well separated pair of electron and hole per cycle. The potential
U(t) drives the QPCU that connects contacts 1 and 2 to contacts 3 and 4 and
periodically transmits the electron to contact 3 and reflects the hole to contact 4.
b) Time-resolved electron-hole current produced by the driven cavity in front of
QPCV , as given by Eq. (G.5).

4.5 IFM with an Aharonov-Bohm ring

In this section we review the idea of implementing an IFM with an asymmetric Aharonov-
Bohm ring, as suggested in [25], and we corroborate the discussion presenting an operative
scheme that allows to directly measure the visibility of the outgoing signal. As shown in
[25], the difference in performing an IFM and a “which-path” detection consists in the
possibility to preserve the coherence of the outgoing signal with respect to a signal of
known phase. We suggest to embed the asymmetric AB ring in a further larger symmetric
AB ring, with the smaller ring to be placed in the upper arm of the larger one, as shown
in Fig. 4.10. This way, the phase that an electron accumulates while traveling in the lower
arm of the large ring represents a reference for studying the coherence of the electron
that traverses the asymmetric ring exposed to dephasing. By tuning the magnetic field
that pierces the large ring, we can control the current flowing in the device and study the
visibility of the current as a figure of merit in the study of coherence.
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As the small asymmetric AB ring, we consider a one channel measoscopic ring and
characterize its dynamics in the Landauer-Büttiker formalism of quantum transport[34, 35].
We assume an asymmetric electron injection, with higher probability to send the electron
in the lower (upper) arm of the ring. Following [25], we parametrize the unitary scattering
matrix connecting the incoming to the outgoing modes in the node A as

SA =

(

rA t̄A
tA r̄A

)

=





a b cos(π
2
γ) b sin(π

2
γ)

b sin(π
2
γ) a b cos(π

2
γ)

b cos(π
2
γ) b sin(π

2
γ) a





with rA = a, tA the 2 × 1 bottom left block, t̄A the 1 × 2 top right block and r̄A the
remaining 2 × 2 bottom right block, with a = − sin(πγ)/(2 + sin(πγ)) and b =

√
1 − a2.

For the node B we analogously define

SB =

(

r̄B tB
t̄B rB

)

. (4.18)

We further assume invariance of the injection under exchange of the nodes. Such a con-
figuration has been theoretically studied and experimentally realized at low magnetic
fields [31–33], and can be understood as the effect of the Lorentz force. We denote
the annihilation operators for the incoming (L) and the outgoing (u, d) modes in the
node A as aL ≡ (aL, au, ad)

T and bL ≡ (bL, bu, bd)
T respectively. We then assume that

bL = SAaL. Analogously we denote the incoming and the outgoing modes in the node
B as aR ≡ (aR, a

′
u, a

′
d)
T and bR ≡ (bR, b

′
u, b

′
d)
T respectively, with bB = SBaR. Symmetry

under cyclic exchange of the nodes A and B implies that





bR
b′d
b′u



 = SA





aR
a′d
a′u



 . (4.19)

By rearranging the order of the vector components we obtain SB = STA. The parameter
γ controls the asymmetry of the nodes A and B, such that for γ = 0 or 1 a complete
asymmetry is achieved, with the electron entering from the left lead being injected totally
in the lower or upper arm respectively, whereas for γ = 1/2 the injection is symmetric.
An external magnetic field is applied perpendicularly to the plane and it is responsible
for the magnetic Aharonov-Bohm (AB) phase acquired in the ring. At the same time
it determines the amplitude of the electron going in the upper branch and in the lower
branch via the Lorenz force. Electron propagation in the two arms is described by the
matrices Sp(δ) = eikF ℓ diag(eiφ/2+iδ, e−iφ/2), for the transmission from left to right, and
S̄p(δ) = eikF ℓ diag(e−iφ/2+iδ, eiφ/2), for the transmission from right to left. Here φ is the
ratio of the magnetic field flux through the asymmetric ring to the flux quantum, kF is the
Fermi wavenumber, ℓ is the length of the arms and δ is an additional random phase. In
the following we shall set kF ℓ = π/2 and anticipate that a different choice does not change
qualitatively our findings.
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Figure 4.10: Schematic representation of a double ring setup that allow to quantify
via a current measurement the degree of coherence of the signal going out from the
small ring. The large ring is pierced by a magnetic flux Ψ and the small ring by
a flux Φ. The nodes L and R of large ring split the electron amplitude impinging
on them in the two arms of the large ring in a symmetric way, whereas The nodes
A and B of small ring split the electron amplitude impinging on them in the two
arms of the small ring in a non symmetric way according to the parameter γ. A
dephasing field of strength ǫ affects the dynamics of electrons traveling in the upper
arm of the small ring by randomly shifting their phase.

We embed the asymmetric AB ring in a larger symmetric AB ring. We describe the
scattering at the node L and R of the large ring by a scattering matrix

SL =

(

rL t̄L
tL r̄L

)

=





c
√
g

√
g√

g d e√
g e d



 , (4.20)

with rL = c, tL the 2×1 bottom left block, t̄L the 1×2 top right block and r̄L the remaining
2 × 2 bottom right block. The scattering matrix depends only on one parameter, g that
controls the strength of the coupling of the leads to the ring, 0 < g < 1/2, via c =

√
1 − 2g,

d = −(1 + c)/2, e = (1 − c)/2. On the right node we have SR = S†
L. The free propagation

in the large ring can be taken into account by a 2× 2 diagonal matrix, with the dynamical
and geometric phases acquired in the propagation in the upper and lower arm of the large
ring. We assume the arms of the ring to be of equal length L, and split the arms into two
nominally equal branches, before and after the smaller asymmetric ring. We further assume
the propagation in the different branches to be described by P = eikFL/2diag(eiϕ/4, e−iϕ/4),
for the motion from the left toward the right, and P̄ = eikFL/2diag(e−iϕ/4, eiϕ/4), with ϕ is
the ratio of the magnetic field flux through the large symmetric ring to the flux quantum.

The amplitude for transmission from the left lead to the right lead can be thought as a
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interference process between possible paths that the electron can take to go from the left
to the right. A useful way to calculate the transmission amplitude from the left lead to the
right lead is to separately consider the propagation in the large ring from the node L to the
node A, and from the node B to the node R. This way we can concisely include the effect
of the large ring into multichannel effective transmission and reflection amplitudes in node
A and B, τA, ρA, τ̄A, and ρ̄A, and similarly in node B. This procedure is particularly
useful in that we want to consider the presence of a dephasing field acting on one of the
two arms of the small asymmetric AB ring that joins the nodes A and B. In the coherent
case, the total transmission amplitude is then given by the coherent sum of all paths in
which an electron winds one time, two times, etc. in the small ring, and it is given by

t = τB(I − Γ)−1S ′
pτA, (4.21)

with Γ = S ′
pρ̄AS̄

′
pρB. The matrix S ′

p and the effective transmission and reflection ampli-
tudes in node A and B are given in Appendix F.

4.5.1 Transmission in the presence of a dephasing field

We now assume a fluctuating external field (dephasing source) to be placed in the upper
arm of the small asymmetric ring. To account for it we define the partial transmission
amplitude of order N as

tN = τB

N
∑

n=0

n
∏

j=0

Γ(n−j)S
′
p,0τA (4.22)

where Γ(j) ≡ Γ(δj, δ
′
j) = S ′

p(δj)ρ̄AS̄
′
p(δ

′
j)ρB depends on two random phases δj and δ′j, and

S ′
p,0 ≡ S ′

p(δ0). We then choose the random phases from a distribution gε(δ) of zero mean
and width 2πε and compute the averaged partial transmission probability as 〈t∗N tN〉δ, where
〈. . .〉δ =

∫

dδgε(δ) . . ., and gε(δ) = gε(δ0) . . . gε(δ2N). In what follows we choose a uniform
distribution of width 2πǫ, centered around δ = 0. It can be shown that the following
recursive relation holds:

〈t∗N tN〉δ = 〈t∗N−1tN−1〉δ + ΞN . (4.23)

By iterating the procedure, the averaged transmission probability 〈T 〉δ = limN→∞〈t∗N tN〉δ
can be written as 〈T 〉δ =

∑∞
N=0 ΞN . To compute such limit we introduce the Gell-Mann

matrix vector Σ = (Σ0,Σ1, . . . ,Σ8)
T , with Σ0 =

√

2/3 × I, write τ
†
BτB = pB · Σ, with

(pB)i = 1
2
Tr(τ †

BτBΣi), and define the following decoherence matrix

Qij =
1

2

∫

dδ gε(δ)Tr
[

Γ†(δ)ΣiΓ(δ)Σj

]

, (4.24)

which allows us to perform the average over the random phase as a matrix product. Simi-
larly we define Γav =

∫

dδ gε(δ)Γ(δ), and the decoherence map P with entries

Pij =
1

2

∫

dδgε(δ)Tr
[

S†
p(δ)ΣiSp(δ)Σj

]

, (4.25)
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that describes the average over the random phase in S ′
p,0. This way ΞN can be concisely

written as

ΞN =

(

pB · QN +
N
∑

k=1

pk · QN−k

)

· P · τ
†
A Σ τA, (4.26)

with the vector (pk)i = 1
2

[

Tr(τ †
BτBΓkavΣi) + c.c

]

. By writing pk = Re[λk1Λ1 + λk2Λ2 +

λk3Λ3] · pB, with λi the eigenvalues of Γav, U the matrix of the eigenvectors of Γav, and
(Λi)jk = (UΣjΣkU

−1)ii, that satisfy (Λ1 + Λ2 + Λ3)/2 = I, we can perform the sum on N
obtaining

〈T 〉δ = pB · (T − I) · (I −Q)−1 · P · τ
†
A Σ τA, (4.27)

with T being a 9 × 9 matrix defined by T =
∑3

i=1 Re[(1 − λi)
−1ΛT

i ]. The averaged trans-
mission probability 〈T 〉δ is now function of the AB phase ϕ.

4.5.2 Current as a measure of coherence

We are interested in measuring the coherence of the signal going out from the small
asymmetric AB ring. An electron entering the large symmetric ring from the node L will
partially go towards the small ring and partially toward the node R via the lower arm of
the large ring. If we set to zero the phase difference ϕ accumulated between the upper
and the lower arm of the large ring, ϕ = 0, it follows that for g . 1/2 the amplitude for
entering and for going out from the large ring are close to one. An electron will then test
only few times the coherent behavior of the small asymmetric ring (asymptotically only
once for g = 1/2). On the other hand for g ≪ 1/2 the electron has small amplitude to
enter the large ring and, once entered, small amplitude to go out from the large ring, and
the electron will be reflected many times between the nodes L and R and will test many
times the small asymmetric AB ring. This picture is reversed if ϕ = π. The coherent
behavior of the device is better studied in the case g . 1/2, for which the transmission
probability of the large ring is the result of the constructive interference of only two paths
and recalls the behavior of the Mach-Zehnder interferometer analyzed in Sec. 4.2.1. We
then choose g = 0.49. As an optimal working point for the study of the coherence of
the outgoing signal, and for an entire manifestation of the IFM effect, we also adjust the
external magnetic field and the length of the arms such that φ = π, ϕ = 0, kF ℓ = π and
kFL = π.

The zero-temperature current through the whole device is

I =
e2V

h
〈T 〉δ (4.28)

and it is shown in Fig. 4.11 for an applied bias voltage µL− µR = eV , with µL and µR the
chemical potential of the leads attached respectively to the node L and R of the large ring.
In the coherent case ǫ = 0, the current is zero, independently on the degree of asymmetry
γ of the small ring. This is because the small ring totally reflects electrons incoming from
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Figure 4.11: Plot of the current in units of e2V/h, flowing from the left lead
to the right lead of the double ring structure represented in Fig. 4.10, versus the
strength ǫ of the dephasing field, at several degree of asymmetry γ. For γ → 1 we
divert the electrons mostly toward the dephasing source and consequently we have
a reduction of the current flowing in the device. For γ → 0 we divert the electron
mostly toward the dephasing-free region and the coherent propagation gives rise to
a maximal current flowing in the device.

the node L that, consequently, gain a phase difference of π with respect to those that
flow in the lower arm of the large ring and totally destructive interference occurs. As
the strength ǫ of the dephasing is increased, the current increases with a behavior that
strongly depends on the degree of asymmetry of the small ring. When γ ∼ 0, 1 the small
ring transmits completely and the total current that comes out from the large ring depends
on the interference between the upper and lower branch of the large ring. For γ = 0.98
most of the electron amplitude that impinges from the left into the small ring will go
into the upper arm of the small ring, where a random fluctuating field is present, and
undergoes a strong dephasing. It then follows that the interference between the upper and
lower arms of the large ring is totally washed out by dephasing and the current is given by
the incoherent sum of the contributions of the upper and lower arms of the large ring and
it asymptotically saturates to 1/2 (in units of e2V/h). For γ = 0.02 the electron amplitude
that comes out from the small ring is still coherent and constructive interference with the
amplitude that travels in the lower arm of the large ring can take place. The current
saturates to the maximum value e2V/h already for small ǫ, reflecting the strong sensibility
of the small ring to the presence of a dephasing field. We interpret this behavior as an IFM
of the dephasing field. The current that comes out of the large ring has clear signatures of
the coherence of the signal going out from the small asymmetric ring.



4.6 Conclusion 99

4.6 Conclusion

In this work we have considered the possibilities to implement interaction free measure-
ments in electronic systems. By further developing the idea first suggested in Ref. [25]
and directly inspired to the original proposal of A. Eliztur and L. Vaidman [1], we focus
on studying and detecting the presence of a classical external random fluctuating electric
or magnetic fields, which represent a common source of dephasing for quantum devices.
The noise source, that randomizes the phase of electron traveling through, plays the role
of absorption in the optical schemes, while the lost of coherence of the outgoing electrons
mimics the photon absorption. The fraction of coherent signal going out from the device, or
alternatively the visibility of the outgoing signal, represent the figures of merit that qualify
the character of IFM. The study of this quantities allow to point out the difference between
a ”which-path” detection and an IFM, the former allowing only to detect the presence of
a dephasing source, at the expense of a degradation of the visibility of the outgoing signal,
whereas the latter allows a coherent detection of a dephasing source.

We have discussed three possible implementations of an IFM scheme. The first system
is a concatenation of interferometers based on the integer quantum Hall interferometric
architecture proposed in Ref. [30]. The dynamics of electrons traveling on the edge channels
is exposed to the action of an external fluctuating field. We suggest to steer the propagation
of one channel in the inner part of the Hall bar, where dephasing is minor or absent, and
by separating and recombining many times the two channels we reproduce an electronic
analogue of the high efficiency scheme proposed in optics by P. Kwiat et al. in Ref. [2].
Our device can represent a noise-sensitive coherent electron channel, that is able to detect
the presence of an external fluctuating field and at the same time preserve the coherence
of electrons traveling through the system. We have shown that, for a strong dephasing
source, we manage to lose only an asymptotically negligible amount of coherent signal, by
proper tuning the degree of admixture of the channels at the beam splitters. Moreover, the
effect is very robust against small fluctuation about the exact value of adimixture required.
Indeed, although the fraction of coherent signal is reduced in magnitude by the average
process, its qualitative behavior is not affected.

The second system we have considered is based on a standard quantum Hall electronic
Mach-Zehnder interferometer and assumes the presence of a quantized electron emitter. A
very well time-resolved electronic wave packet is sent into a Mach-Zehnder interferometer
in which an arm is affected by external classical noise. The packet travels at a precise speed
and tests the region affected by noise many times, being split and recombined until it is
allowed to escape the interferometer and recollected. The entire sequence can be mapped
in the concatenation in the space domain that characterizes the noise-sensitive coherent
electron channel previously described, and the same results and conclusions apply to this
system. It has the advantage that it is experimentally much easier to realize, since it is
based on a system already available.

The last system we have considered is a double ring structure based on the proposal
suggested in Ref. [25]. There, the authors consider an Aharonov-Bohm chiral ring in which
a localized source of noise affect one arm of the ring and studied the fraction of coherent
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signal that goes out from the device. However, such a quantity is not measurable in that
setup. We suggest to embed the chiral AB ring in one arm of a larger AB ring and measure
the total current flowing through the device as a figure of merit of the coherence of the
signal that goes out from the small chiral AB ring. Such a setup has the advantage to
overcome the difficulties arising from concatenating many interrogation steps, necessary in
order to achieve a high efficiency IFM in the noise-sensitive coherent electron channel, or
from dealing with very precise time-resolved electronics, on which our second proposal is
based.

We point out here that the IFM can be designed also in case an absorption mechanism
takes place and the same results obtained with a dephasing source apply. All the different
implementations described can find useful applications in quantum coherent electronics
and quantum computations, where the coherence of the signals is always threatened by the
presence of fluctuating external fields.
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5. Scanning probe imaging of chiral

charge flow in graphene

We theoretically propose to directly observe the chiral nature of charge carriers in
graphene mono- and bilayers within a controlled scattering experiment. The charge lo-
cated on a capacitively coupled scanning probe microscope (SPM) tip acts as a scattering
center with controllable position on the graphene sheet. Unambiguous features from the
chirality of the particles in single and bilayer graphene arise in the ballistic transport in
the presence of such a scattering center. To theoretically model the scattering from the
smooth potential created by the SPM tip, we derive the space-dependent electron Green
function in graphene and solve the scattering problem within first-order Born approxima-
tion. We calculate the current through a device with an SPM tip between two constrictions
(quantum point contacts) as a function of the tip position. 1

5.1 Introduction

The isolation of few and single layer graphene [1–3], the two-dimensional carbon al-
lotrope, triggered tremendous research activities (for a review, see [4]). Graphene is tech-
nologically of high interest [5–7], as it exhibits large mean-free paths and is chemically
stable. The material is also very appealing for fundamental scientific research; since the
conduction electrons in graphene behave like chiral massles Dirac particles [2, 3, 8], many
concepts of solid-state physics are now being reconsidered for pseudo-relativistic carriers
while at the same time, effects known from relativistic quantum mechanics can be found in
solid state physics. Examples for this are the unusual energies of the Landau levels and the
Klein paradox [8]. Moreover, long spin relaxation lengths [9] make graphene an interesting
system for spintronics [10] and spin-based quantum information processing [11].

The high carrier mobility of graphene has lead to an active discussion of impurity scat-
tering. Currently, it is assumed that scattering from Coulomb potentials [12–21] limits the
conduction electron mobility, while short-ranged defects are less relevant [22].

In the following, we discuss the possibility for a controlled experiment to test whether
the charge carriers in graphene behave like chiral particles in a scattering event. We
propose to use the method of mapping electron flow by scanning probe microscopy (SPM)
as developed and applied to two-dimensional electron gases (2DEGs) in semiconductors
by the Westervelt group [23]. Topinka et al. [24, 25] demonstrated that coherent electron

1This chapter has been published in Physical Review B 77, 115433 (2008).
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Figure 5.1: The proposed setup. An applied bias voltage V between the source
S and the middle region M injects a current into the graphene sheet. The injected
electrons scatter from an artificial scatterer created by a SPM tip above the surface.
The flux of electrons that are coherently scattered into the drain D can be detected
in the drain current I.

flow in a 2DEG formed in a GaAs/GaAlAs heterostructure can be imaged directly by
placing a charged SPM tip on top of the sample. The tip, being capacitively coupled to
the sample, repels the conduction electrons beneath, forming a circular scatterer with a
precisely controllable position. By scanning the tip over the conductor, the conductance
of the sample is modified depending on the current density beneath. By putting the SPM
tip directly behind a constriction (quantum point contact, QPC) [24, 25], the dominant
mechanism of the conductance change is direct backscattering through the QPC next to
the source, see Fig. 5.1. In single layer graphene, this backscattering is forbidden [8],
and therefor one can not expect any resistance change between the respective contacts
S and M in such a setting. To actually use forward scattering from the tip, one might
consider putting the tip in front of the constriction. Such a setup, however, suffers from
the uncontrolled direction of propagation of the incoming particles. To control the direction
of propagation of in- and outgoing particles, i.e., the scattering angle, we propose to use two
constrictions (QPCs), as in Ref. [26]. By applying a voltage V between the regions S and
M a current is injected into the middle region (M). The coherent scattering from one QPC
to the other gives rise to a measurable current I in the drain D (or, alternatively, a voltage
between M and D [27]). The middle region M is supposed to be large, acting as a reservoir,
absorbing all electrons that are not scattered into the drain D. Such an experiment could
directly probe the differential scattering cross section for pseudo-relativistic chiral particles,
and thus demonstrates the chiral nature of the particles.
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5.2 Green’s function in graphene

For the microscopic description of scattering, and in the closely related Coulomb impurity
problem [28], the method of partial-wave expansion was adapted [21, 22, 29, 30]. This
method is primarily suitable for strong short-ranged potentials such as impurities. To
describe the scattering from the weak potential created by a SPM tip, we apply the method
of first-order Born approximation by deriving the Green functions for single and bilayer
graphene, in real space representation [29].

For single layer graphene, the free Dirac Hamiltonian for the envelope wave function at
the K-point is given by H = −i~vF (σx∂x + σy∂y) and in cylindrical coordinates r = (r, φ)
by

H = −i~vF
[

0 e−iφ(∂r − i
r
∂φ)

e+iφ(∂r + i
r
∂φ) 0

]

. (5.1)

The scattering solution of the Dirac equation [H + U(r)]ψ = Ekψ, with Ek = ~vFk, can
be constructed using the Green function

G(ρ) = − i

4

k2

Ek

[

H0(kρ) −iH−1(kρ)e
−iθ

iH1(kρ)e
iθ H0(kρ)

]

, (5.2)

where ρ = r − r′ = (ρ, θ). The Green function is a solution of (H − E)G = −δ(ρ),
satisfying the outgoing radiation condition; thus the use of the n-th order Hankel function
Hn(z) ≡ H

(1)
n . The functional form of the Green function is consistent with Ref. [31]. Since

the Dirac Hamiltonian is formally closely related to the Rashba spin-orbit interaction, the
derivation of the Green function in Eq. (5.2) is analogous to Ref. [32, 33].

The idealized scattering experiment is depicted in Fig. 5.2. A chiral plane wave ψ0(r) =
eikx[1,1]T propagating along the (so chosen) x-axis hits the scattering potential. After
the interaction with the potential, a detector measures the flux of the scattered wave
as function of the deflection angle φ. Within first-order Born approximation, the total
wave function ψ(r) of an electron which scatters at a potential U(r) is given by ψ(r) =
ψ0(r)+

∫

d2r′G(r− r′)U(r′)ψ0(r
′). Far away from the scattering center the wave function

has the asymptotic form ψ(r) = ψ0(r)+f(φ) eikr [1, eiφ]T/
√

r. The scattered wave describes
a chiral circular outgoing wave. The scattering amplitude is given by

f(φ) = −e−iφ
2

√

ik3

2π
cos

φ

2

U(q)

Ek
, (5.3)

with the Fourier transform U(q) =
∫

d2r′ U(r′) eiqr′ . The orientation of the vector q =
k(ek − er) of the momentum transfer during the scattering process is determined by the
unit vectors er and ek in r and k direction, while its magnitude is given by q = 2k sin(φ/2).
The functional form of the scattering amplitude is in close analogy to non-relativistic 2-
dimensional scattering [35]. Two main differences appear: First, the prefactor e−iφ/2 cos φ

2

[29] leads to the absence of any backscattering at potentials, irrespective of the potential
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Figure 5.2: Formulation of the scattering problem: An incoming plane wave
propagating along the x-direction hits the scattering potential. A detector measures
the outgoing flux of the scattered wave as function of the deflection angle φ.

shape. Second, the forward scattering is enhanced by a factor of two compared to classical
electrons. In gapped 2DEGs, scattering at potentials smaller than the Fermi wave length is
dominated by s-wave scattering. For chiral particles in graphene, the free angular momen-
tum eigenstates bear half-integer angular momentum related to the appearance of a Berry
phase of π [12]. Therefore, the scattering amplitude is dominated by states with orbital an-
gular momentum +1/2 and −1/2. In backward direction, the interference of the two states
is destructive, leading to a suppression of scattering. In forward direction the interference
is constructive, enhancing the scattering amplitude by a factor of 2. For scatterers larger
than the Fermi wave length (beyond the range of validity of the Born approximation) one
can expect that the enhancement of forward scattering becomes non-universal, depending
on the details of the potential.

5.3 Stepwise cylindrical potential

By comparison with the exactly solvable problem of a stepwise constant potential, the
range of validity for the Born approximation can be estimated as (kR)2 . Ek/U0, where R
and U0 denote the characteristic potential size and strength. As an interesting side note,
for the physically relevant Coulomb potential, the first-oder Born approximation generates
accidentally good results, in three as well as in two dimensions [35].

When we restrict the calculation to circularly symmetric potentials, the scattering am-
plitude Eq. (5.3) can be further simplified using

U(q) = 2π

∫

dr′ r′ J0(qr
′)U(r′) . (5.4)

The integral in Eq. (5.4) can be solved analytically for a variety of different scattering
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Figure 5.3: Differential cross section normalized by 2π(kR)4(U0/E)2 in units of
1/k for a circular scatterer of Gaussian shape. For single layer graphene, the Berry
phase of π prohibits backscattering while for bilayer graphene, it the Berry phase of
2π prohibits rectangular deflection. The radius of the scatterer is chosen kR = 0.5
for this plot.

potentials, including an unscreened and the exponentially screened Coulomb potential, the
stepwise constant potential, potentials of Lorentzian and Gaussian forms, and the potential
of a point charge above the graphene sheet.

In graphene bilayers the charge carriers behave like massive gapless Dirac fermions. To
compute the Green function, one can directly make an ansatz motivated by the observation
that the operators a = −ie−iφ(∂r− i

r
∂φ) and a† = −ieiφ(∂r+ i

r
∂φ) in Eq. (5.1) act as a type

of ladder operators on the Hankel functions, i.e., a†Hn(kρ)e
inθ = +ikHn+1(kρ)e

i(n+1)θ and
aHn(kρ)e

inθ = −ikHn−1(kρ)e
i(n−1)θ [36]. Note the relative minus sign for a† and a. With

this representation, the Hamiltonian for the bilayer as derived in Ref. [37] is

H = − ~
2

2m

[

0 aa
a†a† 0

]

, (5.5)

and the basic functional structure of the Greens function for particle energy Ek = ~
2k2/2m

directly follows as

G(ρ) = − i

4

k2

Ek

[

H0(kρ) H−2(kρ)e
−2iθ

H2(kρ)e
2iθ H0(kρ)

]

. (5.6)

The overall prefactor can be deduced using [38] that i/4(k2 +∇2)H0(kρ) = −δ(ρ) and the
fact that aa† = a†a = −∇2. Using the Green function Eq. (5.6), we now construct the
scattering wave function. Within first order Born approximation, the wave function takes

the asymptotic form ψ(r) = ψ0(r) + f(φ)eikr
[

1,−e2iφ
]T
/
√
r. The scattering amplitude

f(φ) is then given by Eq. (5.3) with the substitution φ → 2φ.
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Figure 5.4: Relative change ∆I/I0 of the drain (D) current as a function of the
tip position (x, y) in units of λF . The existence of two possible trajectories, one
directly from source (S) to drain, the other via the scatterer at (x, y), generates
an interference pattern. Since scattering under an angle of π/2 is forbidden for a
bilayer, a circle without signal (dashed white line) appears. The scattering potential
radius and strength was chosen to be Rk = 1, and U0/E = 0.3 respectively.

For a circularly symmetric potential, the scattering amplitude can again be simplified
further by using Eq. (5.4). The cases of non-relativistic particles in a 2DEG (j = 0), and
of single layer (j = 1) and bilayer (j = 2) graphene are distinguished by their respective
factors e−ijφ/2 cos(jφ/2) which are due to the Berry phase jπ acquired during the adiabatic
propagation along a closed orbit. For a Gaussian potential U(r) = U0e

−r2/2R2

, the
resulting cross section dσ/dφ = |f(φ)|2 becomes

dσ

dφ
∝ e−[2Rk sin(φ/2)]2 cos2 jφ

2
. (5.7)

We plot this result in Fig. 5.3. While the Berry phase prohibits backscattering in single
layer graphene, backscattering is allowed in bilayer graphene, while scattering by an angle
of ±π/2 is forbidden in bilayers.

These results are equivalent to the calculation of the scattering cross section via the
k-dependent Greens function as done in the group of Fal’ko [29, 34].

5.4 Imaging chiral charge flow

To describe the SPM experiment as shown in Fig. 5.1, we model the potential of the
charged tip as a Gaussian. Moreover, we consider the QPC at the source S as point source
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Figure 5.5: Alternative setup: Instead of QPCs, one can also inject and extract
the current by 2 additional SPM-tips.

of chiral electrons (as determined by the Green function) at position (x, y) = (0, 0). In
the proximity of the scatterer, we approximate the incoming spherical wave ψ (centered
around the QPC) as plane wave, and derive the scattered outgoing spherical wave (centered
around the SPM-tip). The drain current I is calculated as the current at the location of
the drain QPC at (x, y) = (d, 0), where d is the distance between the source and drain
QPCs. The normal component of the current is given by Jx = vFψ

†σxψ for single layer,
and by Jx = − ~

m
Im[ψ†(σx∂x + σy∂y)ψ] for bilayer graphene. Here ψ labels the sum of the

incoming and outgoing spherical wave. In Fig. 5.4, we plot the relative change of the drain
current ∆I/I0 due to the presence of the tip as a function of the tip position (x, y). Here,
∆I = I − I0 where I0 is the current in the absence of the SPM tip.

In the presence of the scatterer, two ballistic trajectories lead from source to drain:
either the electrons travel directly form the source (S) to the drain (D), or they scatter
at the SPM tip potential and from there into the drain (D). The spatial pattern due
to the interference between these two trajectories reveals the Fermi electron wave length
λF = 2π/k = hvF/EF , the degree of coherence, as well as the scattering phase [39].

The required scattering angle to pass from source to drain is a function of the tip position
relative to source and drain. Therefore this experiment realizes to some extent an angle-
resolved measurement of dσ/dφ. We assume the middle region (M) of the graphene sample
to be large (but not larger than the coherence length lφ), i.e., R ≪ d ≪ lφ, so that
scattering events with other angles will not significantly contribute to the drain current.
For single layer graphene one can expect a rapid loss of signal if φ > π/2, as scattering by
larger angles is strongly suppressed. For bilayer graphene, one can expect forward as well as
backscattering. However, a scattering angle of φ = π/2 is forbidden. Therefore, a circular
line appears (according to Thales’ theorem), indicating a total absence of scattering. In
contrast, for a conventional semiconductor-based 2DEG, the intensity distribution is much
more homogeneous.

As shown in recent experiments [40], the minimal tip-induced potential with is about 300
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nm at a potential height of 1 meV. At a Fermi energy of 10 meV in the graphene sheet, the
range ov validity of the first order Born approximation (kR)2 . Ek/U0 is violated by about
one order of mangitude. This violation leads to deviations mainly for forward scattering.
Since in the proposed experiment the large angle scattering is of primary interest, first
order Born approximation is still expected to deliver qualitatively correct results.

Furthermore, sample roughness and disorder will also significantly modify this idealized
experimental result, as already observed in 2DEGs [23–25]. Even so, if one assumes that
small-angle disorder scattering is dominant, then disorder will be of most importance, when
the tip is directly in between the source and the drain. With increasing scattering angle, the
experimental result will be more and more robust against weak disorder. The assumption of
small-angle disorder scattering is consistent with the observations in semiconductor 2DEGs
and is expected from the measurements of large mean free paths (it is also predicted in the
large scatterer limit of our calculation).

Our calculation was done for one of the two degenerate valleys (the Dirac point at
momentum K). For the other valley (K ′), only the sign of φ must be reversed in Eq. (5.1).
Therefore, the results for the scattering cross section Eq. (5.7) and the current (Fig. 5.4)
remain unchanged forK ′, as they are even functions of φ. Therefore, we expect these results
to persist for arbitrary incoherent mixtures of K and K ′ without any loss of interference
visibility.

5.5 Conclusion

To test the ballistc curent through a graphene sheet, it would be aslo possible to use a
multi-tip setup, as were developed recently [41], see Fig. 5.5. Thereby one contacted SPM-
tip injects the current in the graphene, and another contacted tip extract the current.
The third tip, ehich is coupled only capacitively creates the scattering center. The small
crossections of the contacts on the graphene ensure the angular resolution of the scattering
experiment.

In conclusion, we propose to test the chirality of electrons in graphene mono- and bilayers
in potential scattering, probed by an SPM tip in a transport setting with two QPCs. We
describe the scattering within first-order Born approximation, which requires the derivation
of the electron Green function in real space.
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[33] J. Cserti, A. Csordas, and U. Zülicke, Phys. Rev. B 70, 233307 (2004); A. Csordás, J.
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6. Photon beam splitting with

superconducting resonators

We consider a system of two superconducting transmission line resonators coupled by
an externally driven SQUID. In the low temperature regime, each of the two resonators
can be described by its lowest frequency bosonic degree of freedom and it can formally
quantized as a harmonic oscillator. The SQUID dynamics can be effectively described by
an externally controllable inductance that mediates a quadratic interaction between the
two transmission line resonator. Such a system is suitable for the implementation of a
qubit in which one photon is shared between the two superconducting transmission line
resonators. In the direction of linear optics quantum computation we consider a beam
splitting operation in this system. An equal weight superposition of the states |1〉1|0〉2 and
|0〉1|1〉2 is obtained by applying a driving to the initial state |1〉1|0〉2. We study the quality
of the rotating wave approximation by comparing it with the exact solution of the time
dependent problem. 1

6.1 Introduction

One of the earliest schemes for quantum computing is based on the implementation of
a quantum bit with two optical modes that share one photon [1]. The two orthogonal
polarization states of light, horizontal and vertical polarization, represent two indepen-
dent optical modes that can constitute two quantum logical states of one photon. Optical
systems are particularly suited for long-distance quantum communication and photon in-
terference can be easily observed. Among the appealing quantum computing schemes that
have been proposed, linear optics quantum computation [2] plays a fundamental role. Ef-
ficient quantum information processing can be obtained by means of solely single photon
sources, beam splitters, phase shifters and photodetectors, with no need of direct non-linear
coupling between the two optical modes. The computational schemes exploit feedback from
photodetectors and are particularly robust against errors detector inefficiency and photon
loss.

The achievement of strong coupling between a single photon and a superconducting
qubit [3] and the realization of arbitrary photon states in superconducting transmission
line resonators (STL resonators)[4] open the possibility to investigate quantum information
processing in circuit quantum electrodynamics, a field in which quantum optics and solid

1This chapter is part of a manuscript in preparation by L. C., S. Kumar, G. Burkard and D. P. DiVincenzo.
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state physics merge together and provide a playground to study quantum phenomena. In
particular, STL resonators can constitute independent bosonic modes that can be used
to implement linear optics quantum computing schemes. One can consider a system of
two STL resonators, 1 and 2, and assign the logical qubit state |0̂〉 to the state |1〉1|0〉2,
with one photon in the first resonator, and the logical qubit state |1̂〉 to the state |0〉11〉2,
with one photon in the second resonator. A generic qubit state is then given by a linear
combination of these two fundamental states,

|ψ〉 = α|1〉1|0〉2 + β|0〉11〉2. (6.1)

One of the fundamental operations necessary for quantum processing with linear optics is
the beam splitting operation. In the language of optics, it consists of a linear map between
incoming modes and outgoing modes of the field. By identification of the incoming modes
with the field operators of the two resonators at time t = 0, a†1 and a†2, and the outgoing
modes with the field operators at time t = τ , a†1(τ) and a†2(τ), with a†i (τ) = U †(τ)a†iU(τ),
the beam splitting operation can be written as

(

a†1(τ)

a†2(τ)

)

=

(

cos θ(τ) ie−iϕ(τ) sin θ(τ)
−ieiϕ(τ) sin θ(τ) cos θ(τ)

)(

a†1
a†2

)

, (6.2)

for a given θ(τ) and ϕ(τ). In a Bloch representation of the qubit, the state |0〉 is given by
the north pole of a sphere and the state |1〉 by the south pole. A beam splitting operation
consists in generating a state on the equatorial line θ = π/4 of the sphere for a given
azimuth ϕ, when starting, i.e., from the north pole.

In this work we consider a system of two STL resonators coupled by two superconduct-
ing quantum interference devices (SQUIDs) introduced in Ref. [5] and study a regime in
which the SQUIDs behave as tunable linear inductances that provide a quadratic coupling
between the two resonators. Such a scheme is suitable for the implementation of a beam
splitting gate between the two qubit states. We study the regime in which the resonators
constitute bosonic single modes and can be represented by two quantum harmonic oscil-
lators quadratically coupled by an effective inductance that can be made time-dependent
by an external driving.

6.2 Effective model

We start from the effective circuit depicted in Fig. 6.1, containing two LC series and
a harmonically driven inductance K(l), all shunted in parallel. Representing the circuit
as a graph [6], we apply circuit theory to derive the classical Hamiltonian of the circuit.
We define a tree constituted by the two capacitors C1 and C2 and the driven inductance
K(t), and consider the inductances L1 and L2 as chords (branches not belonging to the
tree). We choose as independent conjugate dynamical variables the fluxes Φ = (Φ1,Φ2)

T

and the charges Q = (Q1, Q2)
T associated with the tree capacitances. The capacitance

matrix C = diag(C1, C2) and the time independent inductance matrix L = diag(L1, L2)
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L 2

Φx
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Φx
2

SQUID1

SQUID2

Figure 6.1: Schematics of the effective circuit representing two superconducting
microwave resonators coupled by a time-dependent inductance. Each resonator is
effectively described by a series of an inductance and a capacitance, with L1 and
L2 the effective inductances and C1 and C2 the effective capacitances of the two
resonators respectively. The coupling is mediated by a time-dependent effective
inductance K(t) that shunts the parallel of the two resonators.

are diagonal, whereas the term associated with the harmonically driven inductance K(t)
provides a time dependent coupling of the two fluxes. Assuming that K(t) ≪ L1, L2, we
define M ≡ M0 + M(t), with M0 = L−1diag(1/L1, 1/L2) and

M(t) = −K(t)

L1L2

( L2

L1
1

1 L1

L2

)

. (6.3)

See Appendix H for a derivation of the matrix M. The classical time-dependent Hamilto-
nian can then be written as [6]

H =
1

2
QTC−1Q +

1

2
ΦTM0Φ +

1

2
ΦTM(t)Φ, (6.4)

=
∑

i=1,2

(

Q2
i

2Ci
+

Φ2
i

2Li

)

− K(t)

2

(

Φ1

L1

+
Φ2

L2

)2

. (6.5)

We assume that the harmonically driven inductance K(t) is composed by a constant plus
an oscillating term, K(t) = K0 + δK cos(ωdt), and that both K0 and δK can be separately
addressed by means of external control and that each can be switched off independently.
This provides complete freedom to dynamically couple and decouple the two resonators
and perform the desired quantum gate operations.
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6.2.1 Quantum Hamiltonian

Under the assumption that the time dependent driving is the smallest energy scale in
the problem, we quantize the time independent problem in the usual way, by imposing
commutation rules between canonically conjugate variables, [Φi, Qj] = i~δij. We go a step
further and directly second quantize the problem, by introducing annihilation and creation
operators for the two modes of the field (i = 1, 2),

Φi = σi

√

~

2
(ai + a†i ), (6.6)

Qi =
−i
σi

√

~

2
(ai − a†i ), (6.7)

with σi = (Li/Ci)
1/4. We then define the two resonant harmonic frequencies ωi = 1/

√
LiCi

and split the Hamiltonian in a time-independent term H0, that describes the two harmonic
modes separately,

H0 =
∑

i=1,2

~ωi

(

a†iai +
1

2

)

, (6.8)

and a time-dependent term V (t), quadratic with respect to the components of the fields,
ai and a†i , with i = 1, 2, that describes the interaction between the modes mediated by the
externally driven inductance K(t),

V (t) = ~f(t)

(

λ(a1 + a†1) +
1

λ
(a2 + a†2)

)2

, (6.9)

with f(t) = −σ2K(t)/4L2 and λ = (L2ω1/L1ω2)
1/4 where C =

√
C1C2 is a reference

capacitance and L =
√
L1L2 a reference inductance. The total Hamiltonian can then be

written as

H(t) = H0 + V (t). (6.10)

By properly choosing the capacitances C1 and C2 and the inductances L1 and L2 we can
set λ = 1, from which follows that

L1

L2

=
ω1

ω2

. (6.11)

6.3 Rotating wave approximation

The beam splitting problem is exactly solvable in the rotating wave approximation
(RWA). Roughly speaking, it consists in neglecting the effect of terms that do not conserve
the number of photons, like a2

i and (a†i )
2. In order to perform a good approximation, we

move to an interaction picture with respect to H0 and study the effective dynamics induced



6.3 Rotating wave approximation 117

by the interaction term VI(t) = eiH0t/~V (t)e−iH0t/~, that is given by

VI(t) = f(t)λ2
(

a2
1e

−2iωit + (a†1)
2e2iωit + 2a†1a1

)

+
f(t)

λ2

(

a2
2e

−2iωit + (a†2)
2e2iωit + 2a†2a2

)

+ 2f(t)
(

a1a2e
−iω̄t + a†1a

†
2e
iω̄t + a1a

†
2e

−i∆ωt + a†1a2e
i∆ωt

)

. (6.12)

We can get a deeper insight in the physics of the problem by studying the Fourier transform
VI(ω) of the potential VI(t), defined as

VI(t) =

∫ ∞

−∞

dω

2π
e−iωtVI(ω), (6.13)

VI(ω) =

∫ ∞

−∞
dteiωtVI(t). (6.14)

We assume f(t) = f̄ + δf cos(ωdt), with ωd = ∆ω = ω1−ω2, and study the limit ∆ω ≪ ωi.
By retaining only terms that produce an exchange of energy quanta of order ∆ω and 2∆ω
we obtain a potential ṼI(ω) that depends only on terms like a†2a1 and a†1a2. Back to the
time domain we can cast the effective potential ṼI(t) in the form

ṼI(t) = ~g0(t)

(

λ2a†1a1 +
1

λ2
a†2a2

)

+ ~g1(t)a1a
†
2 + ~g∗1(t)a

†
1a2, (6.15)

with the time-dependent interaction parameters g0(t) and g1(t) given by

g0(t) = 2(f̄ + δf cos(∆ωt)), (6.16)

g1(t) = 2f̄ e−i∆ωt + δf(1 + e−2i∆ωt). (6.17)

We then move to the interaction picture with respect to
(

λ2a†1a1 + 1/λ2a†2a2

)

and obtain

ṼII(t) = g(t)a1a
†
2 + g∗(t)a†1a2, (6.18)

with g(t) = g1(t)e
−iG0(t)(λ2−1/λ2) and G0(t) ≡

∫ t

0
dt′g0(t

′).
Now many different approximation can be made. One can set f̄ = 0 and λ = 1, from

which follows
ṼII(t) = δf

[

a1a
†
2(1 + e−2i∆ωt) + a†1a2(1 + e2i∆ωt)

]

, (6.19)

The terms oscillating at frequency 2∆ω produce Bloch-Siegert oscillations [7, 8]. If we
neglect the terms oscillating at frequency 2∆ω, the potential W becomes time-independent
and the evolution operator is easily obtained and the beam-splitting operation is given by

URWA
I (t) = exp

(

i
2δf

∆ω
sin(∆ωt)(a†1a1 + a†2a2)

)

exp
(

−iδft(a1a
†
2 + a†1a2)

)

. (6.20)
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This result is valid only in the case δf/∆ω ≪ 1, since for a higher value of the ratio
δf/∆ω the effect of the terms that oscillate at frequency 2∆ω cannot be neglected. We
can make a crude rotating wave approximation, which correspond to considering only the
term proportional to δ(ω) in the potential VI(ω) Eq. (6.14).

URWA(t) ≈ exp
(

−iδft(a1a
†
2 + a†1a2)

)

. (6.21)

This expression does not depend on ∆ω and holds as long as ∆ω ≪ ω1, ω2. It provides an
approximation for the envelope of the oscillations induced by the driving.

6.3.1 Beam splitting fidelity in the RWA

We suppose to switch on the quadratic coupling between the two resonators at time
t = 0 and that initially one of the two modes contains exactly one photon, resulting in the
initial state

|ψi〉 = a†1|0〉12, (6.22)

with |0〉12 = |0〉1|0〉2. We then apply a pulse of duration τ to the initial state that propa-
gates the state to U(τ)|ψi〉. The final state we aim is, in the rotating frame,

|ψf〉 =
1√
2
(a†1 + e−iϕa†2)|0〉12, (6.23)

for a generic phase ϕ. We then define the fidelity to be F(τ) = |〈ψf |U(τ)|ψi〉|2. Both
the evolution operators Eq. (6.20) and Eq. (6.21) produce the same result for the fidelity,
because the number of photon is the same in the initial and final states. For the particular
case ϕ = π/2 by direct evaluation the fidelity is found to be

F(τ) =
1

2
(1 + sin(2δfτ)) . (6.24)

For 2δfτ = π/2, we obtain F(τ) = 1, that is applying a driving for a time τ = π/4δf we
obtain the state 1√

2
(|1〉1|0〉2 − i|0〉1|1〉2), therefore obtaining the beam splitting operation.

The Rabi frequency ΩR = 2δf can be expressed as

ΩR =
δK

2L
ω. (6.25)

6.4 Equations of motion

In order to determine the quality of the rotating wave approximation, we calculate the
fidelity of the beam splitting operation by numerically integrating the equation of mo-
tion. We start from the full time dependent Hamiltonian Eq. (6.10) and then move to
the Heisenberg picture. We introduce a representation in terms of canonically conju-
gate quadratures ξ = (q̂1, q̂2, p̂1, p̂2)

T , that are related the original fluxes and charges by
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(Φ̂1, Φ̂2, Q̂1, Q̂2)
T =

√
~Dσξ, with the diagonal matrix Dσ = diag(σ1, σ2, 1/σ1, 1/σ2). We

then introduce the vector of field operators a = (a1, a2, a
†
1, a

†
2)
T and relate the quadratures

ξ to the creation and annihilation operators a by ξ = Σa, with

Σ =
1√
2









1 0 1 0
0 1 0 1
−i 0 i 0
0 −i 0 i









, (6.26)

and write the equations of motion for the field operators ai and a†i in a compact form

d

dt
a(t) =

i

~
[H(t), a(t)], (6.27)

with the time-dependent field operator given by a(t) = U †(t)aU(t) and the time evolution

operator given by U(t) = T exp
(

− i
~

∫ t
dt′H(t′)

)

. The equations of motion are explicitly

given by,
d

dt
a(t) = iA(t)a(t), (6.28)

with the 4 × 4 real matrix A(t) given by

A(t) =

(

−Ω 0
0 Ω

)

+ 2f(t)

(

−Λ −Λ
Λ Λ

)

(6.29)

and the matrices Ω = diag(ω1, ω2) and

Λ =

(

λ2 1
1 1/λ2

)

. (6.30)

The equations of motion (6.28) can be formally integrated,

a(t) = S(c)(t)a(0), (6.31)

with the complex 4×4 matrix S(c)(t) = T exp
(

i
∫ t
dτA(τ)

)

that provides a linear mapping

between the Schrödinger and the Heisenberg field operators. The complex matrix S(c)(t)
can be related to a real symplectic matrix S(t) that describes the time evolution of the real
quadratures ξ, S(c)(t) = Σ†S(t)Σ, with ST (t)JS(t) = J and J the antisymmetric matrix

J =

(

0 1
−1 0

)

. (6.32)

The matrix S(t) is the solution of the Heisenberg equations of motion ξ̇ = Ξ(t)ξ for the
quadratures ξ, with Ξ(t) = iΣA(t)Σ† and the matrix Ξ(t) that has a simple block form,

Ξ(t) =

(

0 Ω
−Ω − 4f(t)Λ 0

)

, (6.33)
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that admits the general solution S(t) = T exp
(

∫ t
dτΞ(τ)

)

.

In the case our initial state is a Gaussian state, the problem simplifies greatly. We
introduce the Wigner distribution W (ξ̄), with ξ̄ the coordinates in the phase space, that
relates a given density matrix ρ to a quasi-probability distribution in the phase space,

W (ξ̄) =

∫

dζ̄

4π2
Tr
[

ρ exp(iζ̄T · J · ξ)
]

exp(iζ̄T · J · ξ̄). (6.34)

The Wigner distribution of a Gaussian state has the form

W (ξ̄) =
1

π2
exp

(

−(ξ̄ − ξ̄0)
TV −1(ξ̄ − ξ̄0)

)

, (6.35)

with V the real symmetric variance matrix defined by

Vij = Vji =
1

2
〈{ξ̂i, ξ̂j}〉 =

∫

dξ̄ ξ̄iξ̄jW (ξ̄), (6.36)

and {A,B} = AB + BA the anticommutator. Under the unitary transformation U(S)
associated with the symplectic transformation S, the density matrix changes as ρ′ =
U(S)ρU−1(S), and the variance matrix V of the Wigner distribution changes as V ′ = SV ST

[9–11]. The symplectic matrix S admits a unique polar decomposition that satisfies [11]

S = S(X, Y )P (6.37)

with P, S(X, Y ) ∈ Sp(4,R) both real symplectic matrices, P ∈ Π and U = X − iY ∈ U(2)
, with Π = {S ∈ Sp(4,R) | ST = S, S positive definite} and

S(X, Y ) =

(

X Y
−Y X

)

. (6.38)

From the unitarity of U follows that S(X, Y )TS(X, Y ) = I and consequently that STS =
P 2. From the polar decomposition it follows that U(S) = U(P )U(S(X, Y )) [11]. The
transformation U(S(X, Y )) conserves the photon number and for this reason it is called
”passive”, whereas the transformation U(P ) does not conserve the number of photons and
it is called active. When starting from a non-squeezed state only the U(P ) transformation
can produce squeezing. For this reason we can study all the departures from a perfect
beam splitting transformation as arising uniquely from the presence of an active term P .

6.5 Beam splitting fidelity

We consider the initial state ρi = |ψi〉〈ψi| and as a final state ρf = |ψf〉〈ψf |, with |ψi〉
and |ψf〉 given by Eqs. (6.22,6.23). The fidelity of the gate can be written as F(t) =
|〈ψf |U(t)|ψi〉|2 = Tr[ρfρ(t)], with ρ(t) = U(t)ρiU

†(t). The state ρ(t) can be written as

ρ(t) = U(t)a†1|0〉〈0|a1U
†(t) (6.39)

=
(

U(t)a†1U
†(t)
)

(

U(t)|0〉〈0|U †(t)
) (

U(t)a1U
†(t)
)

(6.40)

= a†1(−t)
(

U(t)|0〉〈0|U †(t)
)

a1(−t). (6.41)
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By cycling the operators inside the trace sign, the fidelity then becomes

F(t) = Tr[ρ̃f (−t)ρ0(t)], (6.42)

with the backward-in-time evolved non-normalized state ρ̃f (−t) = a1(−t)ρfa†1(−t) and the
forward-in-time evolved vacuum ρ0(t) = U(t)|0〉〈0|U †(t). By writing

a1(−t) =
∑

i=1,2

(S(c)(t)
−1)1,iai + (S(c)(t)

−1)1,i+2a
†
i , (6.43)

a†1(−t) =
∑

i=1,2

(S(c)(t)
−1)3,iai + (S(c)(t)

−1)3,i+2a
†
i , (6.44)

the state ρ̃f (−t) can be written as ρ̃f (−t) = |ψ̃(−t)〉〈ψ̃(−t)|, with

|ψ̃(−t)〉 = c00(t)|0〉 + c11(t)|1, 1〉 + c20(t)|2, 0〉 + c02(t)|0, 2〉, (6.45)

with the coefficient ci(t) linear combinations of the entries of the matrix S−1
(c) (t),

c00(t) = ([S−1
(c) (t)]11 + e−iϕ[S−1

(c) (t)]12)/
√

2, (6.46)

c11(t) = ([S−1
(c) (t)]14 + e−iϕ[S−1

(c) (t)]13)/
√

2, (6.47)

c02(t) = e−iϕ[S−1
(c) (t)]14, (6.48)

c20(t) = [S−1
(c) (t)]13. (6.49)

In the Fock basis ρ̃f (−t) is a 4 × 4 matrix. We can choose to normalize the state ρ̃f (−t)
and write

F(t) = Tr[ρ̃f (−t)]Tr[ρf (−t)ρ0(t)], (6.50)

with

ρf (−t) =
ρ̃f (−t)

Tr[ρ̃f (−t)]
. (6.51)

The time-evolved vacuum ρ0(t) is initially a pure Gaussian state and its time evolution
is easily calculated its Wigner distribution. By expressing the Wigner distribution of ρ0(t)
in the Fock basis, we have an operative way to calculate the fidelity of the beam splitter,

F(t) = Tr[ρ̃f (−t)]
∑

{n},{m}
ρf (−t){n},{m}ρ0(t){m},{n}, (6.52)

with {n} = n1, n2 and ρ{n},{m} = 〈n1n2|ρ̂|m1m2〉.
We now express the Wigner function defined in Eq. (6.34) as a function of the complex

amplitudes of the fields, ᾱ = (α1, α2, α
∗
1, α

∗
2)
T . The Wigner function of the squeezed vacuum

ρ0(t) is given by

W0,t(ᾱ) =
4

π2
e−ᾱ

†V −1
(c)

(t)ᾱ (6.53)
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Figure 6.2: Fidelity of the beam splitting gate. Parameters: ω1/2π = 7 GHz,
ω2/2π = 7.2 GHz, λ = 1, δf/2π = 0.1 GHz, and ϕ = π/2. The black solid curve
represents the result of the exact calculation provided by Eq. (6.42), whereas the
blue dashed curve shows the result of the rotating wave approximation as given by
Eq. (6.24).

with the matrix V(c)(t) = S(c)(t)V(c)(0)S(c)(t)
†, the matrix V −1

(c) (0) = I4×4, with V(c) = Σ†V Σ.
The matrix elements of a density operator in the Fock space can be obtained from the
Wigner function by

ρ{n},{m} =

∫

dᾱ

π2
χW (ᾱ)Dn1,m1(α1)Dn2,m2(α2) (6.54)

where χW (~α, ~α∗) is the characteristic function, that is defined by χW (ᾱ) ≡ Tr[ρD(ᾱ)],
with D(ᾱ) = exp(−α† · ΣZ · a) the two-mode displacement operator and the matrix ΣZ =
diag(I,−I). The characteristic function is related to the Wigner function by a Fourier
transfom,

χW (ᾱ) =

∫

dβ̄ exp
(

β̄† · ΣZ · ᾱ
)

W (β̄) (6.55)

The coefficients Dn,m(α) that appear in Eq. (6.54) are defined by

Dn,m(α) ≡ 〈n|D(α)|m〉 =

√

m!

n!
αn−me−|α|2/2L(n−m)

m (|α|2), (6.56)

with L
(n−m)
m (r) the Laguerre polynomials and D(α) = exp(αa† − α∗a) the single-mode
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displacement operator. The characteristic function of the squeezed vacuum Eq. (6.53) is

χW0,t(ᾱ) = exp

(

−1

4
ᾱ† · ΣZV(c)(t)ΣZ · ᾱ

)

. (6.57)

In Fig. 6.2 we plot the fidelity of the beam splitting gate obtained by exact integration
of the equation of motion and compare it to the result of the rotating wave approximation,
Eq. (6.24). We chose the two resonant frequencies to be ω1/2π = 7 GHz ω2/2π = 7.2 GHz,
respectively. The interaction potential has been chosen to couple the two modes in a
symmetrical way, that is λ = 1. The amplitude of the driving is δf/2π = 0.1 GHz.
The dashed blue curve represents the result of the RWA and clear Rabi oscillations at a
frequency ΩR = 2δf appear. The exact solution is given by the black solid curve. The
beam splitting is obtained when the fidelity reaches one. We see that there is only partial
agreement between the exact solution and the rotating wave approximation. In particular
the crude RWA provides a good approximation for the Rabi period, and the error in fidelity
of the beam splitting gate is on order of 5%. A better result can be obtained by taking
into consideration one- and two-photon processes, that result in Bloch-Siegert oscillations
superimposed to the crude RWA envelope.

6.6 Conclusion

In this work we have provided an exact derivation of the fidelity of a beam splitting
gate in a system of two superconducting line resonators, coupled by an externally driven
SQUID. We have used an effective equivalent circuit for the two coupled resonators and
studied its quantum dynamics. In the linear response of the SQUID dynamics, the two
resonators turn out to be quadratically coupled and in the rotating wave approximation
we find analytically that the fidelity of the beam splitting reaches unity. We have then
studied the accuracy of the rotating wave approximation by providing an exact derivation
of the fidelity of the beam splitting gate and by making comparison with rotating wave
result. We find that the exact solution beam splitting fidelity can reach more than 95% in
a time τ = π/4δf .
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A. Matrices C, CV , M0, and N

The definitions of the derived matrices C, CV , M0 and N that enters the Hamiltonian
are given in [6, 27] for the general case. Here we apply the theory and derive the matrices
for the particular case of the circuit of Fig. 2.2. The derived capacitance matrices are

C ≡ CJ +

(

C 0
0 0

)

, (A.1)

CV ≡ (C,0)T . (A.2)

The inductance matrices that enter the potential are

M0 =
1

K
FJKFT

JK , (A.3)

N = − 1

K
FJK , (A.4)

and MT
0 = M0. For the circuit studied here, we obtain

M0 =
1

K





1 −1 −1
−1 1 1
−1 1 1



 , N =
1

K





1
−1
−1



. (A.5)

Projected matrices

The three-dimensional problem is mapped into a two-dimensional one in Sec. 2.3 with
the matrix

P =





1 0
0 1
1 −1



 , (A.6)

via the relation (ϕ1, ϕ2, ϕ3)
T = P(ϕ1, ϕ2)

T . In the case of symmetric double well potential,
the inductance linearized matrix L−1

lin;L,R is given by

L−1
lin;L,R = M0 + L−1

J cosφL,R;i. (A.7)

Because of the symmetry of the potential, we drop the subscripts R and L. Applying the
matrix P we obtain L−1

lin,P = PTL−1
linP ,

L−1
lin,P =

1

LJ

(

α 1
2α

− α
1
2α

− α α

)

. (A.8)
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In order to simplify the calculation we assume the two capacitance C1 and C2 to be equal,
C1 = C2 ≡ C and define γ = C/CJ . The projected capacitance matrix CP = PTCP is then
found to be

CP = CJ

(

1 + γ + α −α
−α 1 + γ + α

)

. (A.9)

In this case, the orthogonal matrices that diagonalize the capacitance matrix CP the lin-
earized inductance matrix L−1

lin,P are identical, CP = OTCdO and L−1
lin,P = OTΛO. The

frequency matrix Ω = diag(ω⊥, ω‖) is given by

Ω2 = ω2
LC

(

1
4α2(1+γ)2

0

0 1−4α2

4α2(1+2α+γ)2

)

, (A.10)

where ω2
LC = 1/LJCJ . The matrix M is then diagonalized by the same orthogonal matrix

O and, in the basis where it is diagonal, can be written as

M =

√

EJ
8EC





√

1+γ
2α

0

0
√

(4α2−1)(1+2α+γ)
2α



 . (A.11)



B. The functions F1 and Fφ
We give here an explicit formula for the intra-cell and inter-cell overlaps s1 and s2 as

functions of α, EJ/EC and C/CJ ,

s1 = exp

{

− EJ

4
√

2αEC
arccos2

(

1

2α

)

√

(4α2 − 1)(1 + 2α+ C/CJ)

}

, (B.1)

s2 = exp

{

− EJ
16EC

[

(

π − 2 arccos

(

1

2α

))2
√

(4α2 − 1)(1 + 2α+ C/CJ)

2α

+ π2

√

1 + C/CJ
2α

]}

. (B.2)

Through these quantities we can express F1 and Fφ as functions of k1 and k2, with ki =
CiVi/2e,

F1(k1, k2) =
|∆(k1, k2)|

EJ
coth

( |∆(k1, k2)|
2kBT

)

F̃φ(k1, k2), (B.3)

Fφ(k1, k2) =
4

det2(C)

∑

i=1,2

[π(C1iM22 sin(2πk2 − θ) − C2iM11 sin(2πk1 + θ))

+ (C2iM11 + C1iM22) arccos

(

1

2α

)

×
(

s1

s2

sin(θ) + sin(2πk1 + θ) − sin(2k2 − θ)

)]2

, (B.4)

where F̃φ is given by Fφ, once the sin are replaced by cos. Cij and Mij are the entries of
the matrices C and M defined in Appendix A. The gap |∆| and the relative phase between
the states |0〉 and |1〉 are given by

1

4
|∆(k1, k2)|2 = (t1 + 2t2 cos[π(k1 − k2)] cos[π(k1 + k2)])

2

+ 4t22 cos[π(k1 + k2)] sin[π(k1 − k2)], (B.5)

tan θ =
2t2 cos[π(k1 + k2)] sin[π(k1 − k2)]

t1 + 2t2 cos[π(k1 − k2)] cos[π(k1 + k2)]
. (B.6)
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C. Perturbation theory in ∆

In order to determine the evolution governed by the Hamiltonian Eq. (3.11) we single
out the term H0 diagonal in the {|s, n〉} basis, with |s〉 the eigenstates of σZ and |n〉 the
oscillator Fock states,

H = H0 + f(a+ a†) +
∆

2
σX , (C.1)

with H0 = ǫσZ/2 + ∆ωZa
†a. We then work in the interaction picture with respect to H0.

The Heisenberg equation for the density operator reads ρ̇I = −i [HI ,ρI ], with

HI = H(0)
I + VI , (C.2)

H(0)
I = f(ae−i∆ωZt + a†ei∆ωZt), (C.3)

VI =
∆

2

(

eiΩ̂ntσ+ + e−iΩ̂ntσ−

)

, (C.4)

where we define Ω̂n = ǫ+ 2ga†a, and σ± = (σX ± iσY )/2. We will call UI(t) the evolution
operator generated by HI .

The evolution operator is given by U(t) = exp(−iωdta†a − iH0t)UI(t). For the mea-
surement procedure so far defined we are interested in the evolution operator in the frame
rotation at the bare harmonic oscillator frequency. Therefore

UR(t) = exp(−iǫtσZ/2 − iHintt)UI(t). (C.5)

For the case ∆ = 0 the model is exactly solvable and U (0)
I (t) can be computed via a

generalization of the Baker-Hausdorff formula [35],

U (0)
I (t) = D(γZ(t)), (C.6)

with the qubit-dependet amplitude γZ(t) = −if
∫ t

0
dsei∆ωZs. The operator D(α) =

exp(a†α − aα∗) is a displacement operator [36], and it generates a coherent state when
applied to the vacuum |α〉 ≡ D(α)|0〉 = e−|α|2/2∑

n(α
n/
√
n!)|n〉. In the frame rotating at

the bare harmonic oscillator frequency, the state of the oscillator is a coherent state whose
amplitude depends on the qubit state. A general initial state

ρtot(0) =
∑

ij=0,1

ρij|i〉〈j| ⊗ |0̂〉〈0̂|, (C.7)

where |0̂〉 is the harmonic oscillator vacuum state, evolves to

ρR(t) =
∑

ij=0,1

ρij|i〉〈j| ⊗ |αi(t)〉〈αj(t)|, (C.8)
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where we define the qubit operators αZ(t) ≡ γZ(t)e−igtσZ , and the object

|αZ(t)〉 ≡ D(αZ)|0̂〉, (C.9)

that gives a qubit-dependent coherent state of the harmonic oscillator, once the expectation
value on a qubit state is taken, |αi(t)〉 = 〈i|αZ(t)|i〉, for i = 0, 1.

For non-zero ∆, a formally exact solution can be written as

UI(t) = U (0)
I (t)T exp

(

−i ∆

∫ t

0

dt′VI(t′)
)

, (C.10)

with VI(t) = U (0)
I

†(t)VI(t)U (0)
I (t) and T the time order operator. For a time scale t≪ 1/∆

we expand the evolution operator in powers of ∆t≪ 1 ,

UI(t) ≈ U (0)
I (t)

(

I − i∆t

∫ 1

0

dsVI(s t) − (∆t)2

∫ 1

0

ds

∫ s

0

ds′VI(s t)VI(s′ t)
)

. (C.11)

The interaction picture potential can be written as

VI(t) =
1

2

[

D(t)σ+ + D†(t)σ−] , (C.12)

with the oscillator operators D(t) defined as

D(t) = D†(γ0(t))e
iΩntD(γ1(t)) (C.13)

= exp (iǫt− iIm[α0(t)α1(t)
∗])D(−δα(t)eigt)e2igta

†a. (C.14)

Here δα(t) = α0(t) − α1(t) is the difference between the amplitudes of the coherent states
associated with the two possible qubit states.



D. First and Second order contribution

to the two-measurement POVM

In this Appendix we provide the full expression for the quantities C(1), F (2) and C(2) that
enter in the expression of the two-measurement POVM. For time t ≈ 1/ǫ, we expand the
evolution operator in ∆t and collect the contributions that arise at second power in (∆/ǫ).
By making use of the expression Eq. (C.12) for the perturbation in the interaction picture
we can compute the qubit components of the second order contribution to the continuous
POVM. We define

Os(t
′, t′′) = exp

(

isǫ(t′ − t′′) − isψ(t′2 − t′′2)
)

× 〈δα(t′)eisgt
′|δα(t′′)eisgt

′′〉, (D.1)

and 〈α|β〉 is the overlap between coherent states, and

ξ(2)
s (t′, t′′) = δx(1)

s (t′)∗ + δx(1)
s (t′′), (D.2)

ζ(2)
s (t′, t′′) = −δx(1)

s (t′) + δx(1)
s (t′′). (D.3)

The first term ξ
(2)
s (t′, t′′) represents the complex displacement of the oscillator position

due to the perturbation acting one time at t′′ < t (forward in time), and one time at

−t′ > −t (backward in time). The second term ζ
(2)
s (t′, t′′) represents the displacement of

the oscillator due to the perturbation acting two times at t′′ < t′ < t. Between the two
perturbations the system evolves freely for the time t′′ − t′ and accumulates a phase that
depends on the difference of the effective qubit-dependent frequencies. In the short time
approximation t ≈ 1/ǫ such a phase can be neglected. Integrating the position degree of
freedom over the subsets η(s′), we obtain

F (2)(s′, t)ss = −s′sǫ
2

4

∫ t

0

dt′
∫ t′

0

dt′′Re {Os(t
′, t′′)

×
[

erf

(

δx(t) + ξ
(2)
s̄ (t′, t′′)

σ

)

+ erf

(

δx(t) + ζ
(2)
s (t′, t′′)

σ

)]}

,

(D.4)

where s̄ = −s. This expression has meaning only in the short time approximation. By
setting t ≈ 1/ǫ, the correction F (2)(t) at second order to the discrete POVM is evaluated
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to be

F (2)(t) =
ǫ2

4

∫ t

0

dτ1

∫ t′

0

dt′′ cos
(

ǫ(t′ − t′′) − ψ
(

t′2 − t′′2
))

e−
1
2
|A|2(t′−t′′)2

× (erf(|A|(t+ t′ + t′′)) + erf(|A|(t− t′ + t′′))) . (D.5)

In an analogue way we calculate the elements of the first and second order contributions
to the double measurement operator C. The off-diagonal matrix element of the first order
contribution C(1) is

C(1)(t′; t) =
1

2
(Γ(t) − 1)F (1)(t′ − t) +

i∆

4
erf

(

δx(t′ − t)

σ

)∫ t

0

dt′′eiǫt
′′

Γ(t′′), (D.6)

and the full expression of the diagonal matrix element of the second order contribution
C(2) is

C(2)(t) =
ǫ2

8

∫ t

0

dt′
∫ t

0

dt′′ei(ǫ(t
′−t′′)−ψ(t′2−t′′2))e−

|A|2

2
(t′−t′′)2erf(|A|(t+ t′ + t′′))

− Im

[

F (1)(t)ǫ

∫ t

0

dt′e−iǫt
′

Γ(t)Γ(t′)∗e−
1
2
|At′|2+|A|2t′terf

(

δx
(1)
− (t′)/σ

)

]

. (D.7)



E. Eigenvalue problem

Defining

u± =
1

2 tan(γ)

(

1 − sinc(ǫ) ±
√

(1 + sinc(ǫ))2 − 4
sinc(ǫ)

cos2(γ)

)

(E.1)

The matrix U assumes the simple form

U =









1 0 0 0
0 1 0 0
0 0 u+ u−
0 0 1 1









, (E.2)

with sinc(ǫ) = sin(πǫ)/πǫ, that allows for a simple solution of the eigenvalue problem in
terms of a Jordan decomposition, Q = U−1diag(1, sin(πǫ)/πǫ, λ−, λ+)U , with

λ± =
1

2
cos(φ)(1 + sinc(ǫ))

± 1

2

√

cos2(φ)(1 + sinc(ǫ))2 − sinc2(ǫ). (E.3)
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F. Double ring transmission and

reflection amplitudes

The transmission amplitude for electrons coming from the left lead L and going to the
right lead R can be calculated as

t = τB(I − Γ)−1S ′
pτA, (F.1)

with Γ = S ′
pρ̄AS̄

′
pρB, and S ′

p =

(

Sp 0
0 1

)

. We define the following transmission matrices

in node A and B that take into account the lower arm of the large ring,

t′A =

(

tA 0
0 1

)

, t′B =

(

tB 0
0 1

)

, (F.2)

t̄′A =

(

t̄A 0
0 1

)

, t̄′B =

(

t̄B 0
0 1

)

, (F.3)

with t′A and t̄′B of dimension 3 × 2, and t̄′A and t′B of dimension 2 × 3. Analogously we
define the reflection matrices

r′A =

(

rA 0
0 0

)

, r̄′B =

(

r̄B 0
0 0

)

, (F.4)

r̄′A =

(

r̄A 0
0 0

)

, r′B =

(

rB 0
0 0

)

, (F.5)

with r′A and r̄′B of dimension 2 × 2, and r̄′A and r′B of dimension 3 × 3. The effective
transmission amplitudes τA and τB are given by the matrices

τA = t′A
(

I − P r̄LP̄r′A
)−1

P tL, (F.6)

τB = tL
(

I − P r̄′BP̄rR
)−1

P t′B, (F.7)

with dimension respectively 3 × 1 and 1 × 3. The effective reflection amplitudes ρ̄A and
ρB are given by the matrices

ρ̄A = r̄′A + t′AP
(

I − r̄LP̄r′AP
)−1

r̄LP̄ t̄′A, (F.8)

ρB = r′B + t̄′BP̄
(

I − rRP r̄′BP̄
)−1

rRP t′B. (F.9)
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G. Electron-hole switch

Let us consider in details the mechanism suggested to inject and collect electron from the
MZ. The system, depicted in Fig. 4.9 a), is composed by a cavity, formed by a circular edge
state, that is coupled to a linear edge channel by a QPCV of transmission t̃ and reflection r̃.
It has been experimentally demonstrated [20, 21] that such a device, if periodically driven
by a time dependent potential V (t), produces a periodic current composed by an electron
in one half-period and a hole in the other half-period, shown in Fig. 4.9 b). We wish to
separate the electron and the hole by transmitting the electron through a barrier towards
contact 3, and reflecting the hole into the contact 4. A time-dependent QPCU driven by
an external potential U(t) behaves like a beam splitter that mixes the incoming channels,
from the contact 1 and 2, into the outgoing channels 3 and 4. If properly driven, it works
as a switch that separates the electrons and holes generated by the cavity into different
edge channels. Following [22, 23] we describe the effect of the time-dependent potential
QPCU by a scattering matrix

SU(t) =

(

S31(t) S32(t)
S41(t) S42(t)

)

. (G.1)

In the symmetric case one has S31(t) = S42(t) and S32(t) = S41(t). From the unitarity of
SU(t) follows that

1 =
∑

j

|Sjk(t)|2, (G.2)

0 = S∗
32(t)S31(t) + S∗

42(t)S41(t). (G.3)

The dynamics of the cavity can be described by a time-dependent scattering amplitude
Sc(t, E), that describes the amplitude to be reflected at QPCV towards QPCU , and satisfies
|Sc(t, E)|2 = 1. In the adiabatic regime, keeping all the reservoirs at the same chemical
potential µ, the zero-temperature current in the contacts 3 and 4 can be written as

Ij(t) = |Sj1(t)|2Ic(t) +
e

2πi

∑

k=1,2

Sjk(t)
∂

∂t
S∗
jk(t), (G.4)

with j = 3, 4. Here Ic(t) is the current produced by the cavity, that can be written as[22, 23]

Ic(t) =
e

2πi
Sc(t, µ)

∂

∂t
S∗
c (t, µ), (G.5)

with µ the chemical potential of all the leads. The current Ic(t) is plotted in Fig. 4.9 b)
for a harmonic driving V (t) = V0 cos(Ωt), for the choice Ω/2π = 1 GHz and |t̃|2 = 0.1. We
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choose the QPCU such that we can write S31(t) =
√

T (t) and S41(t) = i
√

1 − T (t). It then
follows that I3(t) = T (t)Ic(t) and I4(t) = (1 − T (t))Ic(t), with T (t) related to the applied
external potential U(t). By choosing a proper modulation of QPC, it is then possible to
separate the electrons from the holes.



H. Inductance Matrices

We can write M = FCLL̃
−1
L L̄L−1

LLFCL, and given that LLK = 0, LK = K, with

FCL =

(

1 0
0 1

)

, (H.1)

and FKL = (1, 1), we obtain
LLL = L + K̃ (H.2)

with the definition

K̃ = FT
LKLKFLK = K

(

1 1
1 1

)

. (H.3)

We then have M = (L + K̃)−1. M ≈ L−1 − L−1K̃L−1.
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