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Abstract

We have studied the possibility of a single-shot non-demolition measurement of a
superconducting qubit using a microstrip SQUID amplifier (MSA). The Johnson noise generated
by all resistors in the MSA is taken into consideration. We show that a single-shot non-
demolition measurement is possible with six photons in the measurement resonator. For a phase
qubit inductively coupled to a measurement resonator we have obtained the expression for the
mutual inductance required for measurement of the qubit state.

1. Introduction
A superconducting circuit containing Josephson junctions (JJ) has attracted enormous attention

of researchers developing quantum computers [1-6]. This circuit can be considered as an
artificial micrometer-size atom, which can be easily integrated into sophisticated electronic
architectures. One of the main problems for any implementation of quantum computing is
achieving a high fidelity measurement of the qubit computational states. To do this one needs a
non-demolition quantum measurement [7]. A non-demolition measurement does not disturb the
computational state. It allows one to integrate the signal and increase thetsigoiak ratio

(SNR) to that required for a high fidelity measurement.

Various schemes for non-demolition measurements of a superconducting qubit have been
discussed in literature [8,9], but the only scheme implemented experimentally is the dispersive
measurement designed in ref. [10]. In this method a qubit loop (QL) is coupled to a measurement
resonator (MR) with a small number of photons. Due to the small number of photons and
relatively large detuning between the MR and the QL, the computational quantum state of the
QL remains undisturbed while the frequency of the MR becomes dependent on the qubit state.
Experimental implementation of this scheme requires amplification of the MR signal. The



inevitable noise generated by an amplifier became the main obstacle for a single-shot non-
demolition measurement [7]. To the best of our knowledge, currently all experiments with a non-
demolition dispersive measurement require multiple-shot averaging, which is unacceptable for
guantum computation with many qubits.

To reduce the amplifier-generated noise one could use a low-noise microstrip SQUID
amplifier (MSA) [11]. At frequencies belodGHz MSAs have demonstrated 26dB power

gain with an almost quantum limited noise temperature2ioff/k, [12]. However, for a

dispersive measurement one has to use an MSA in the GHz frequency region. This requires
reduction of the size of the MSA input coil, which diminishes its coupling with the SQUID [11].
One could raise the input voltage of the MSA increasing the number of photons in MR but this
causes a back reaction of the MR on the QL, and the dispersive measurement becomes a
demolition measurement [13-15].

In the first part of our work we try to find a delicate balance between the reasonable MSA
parameters and the number of photons in the MR. Applying the simple model of an MSA
suggested in [16] and experimental data from the non-demolition dispersive measurement with a
transmon qubit [17], we show that a single-shot non-demolition dispersive measurement is
possible with six photons in the MR.

A phase qubit occupies a special place in the superconducting qubit zoo: it is especially
adjusted for integration into the complicated quantum computer architecture [18]. To the best of
our knowledge, the non-demolition dispersive measurement has not been implemented for the
phase qubit. In the second part of this work, we consider a phase qubit inductively coupled to the
MR and derive an expression for the QL-MR interaction constant. Based on this expression we
formulate a condition on the mutual QL-MR inductance required for a single-shot non-
demolition measurement of a phase qubit.

2. Dispersive measurement of a super conducting qubit with an M SA

We consider a measurement scheme similar to that used in [17], but containing an MSA. (See
Fig. 1.) A driving electromagnetic field (measurement tone) of frequeficyis applied to the

MR, which is coupled to the QL. The frequency of the MIR, equals the driving frequency,
f..» when the qubit is in its excited staf#,. If the qubit is in its ground statf)), thenf, = f .

The output MR voltage is amplified by the MSA, which is tuned to the driving frequencyt

is clear that the output MR voltage, which is equal to the MSA input voltage, depends on the
gubit state: for the qubit excited state it is expected to be much greater than for the qubit ground
state.

After amplification, the output MSA voltage is mixed with the reference signal whose

frequency is slightly different from the driving frequenc{,,, (heterodyne detection). The
mixed signal whose frequency is much lower than the driving frequency is finally detected.
Depending on the phase of the reference signal, the amplitude of the mixed signal can represent
either in-phase or the quadrature signal.



QL l MR

Fig. 1. Schematic of a dispersive measurement with an MSA and a heterodyne deteasion. G
the generator of the driving electromagnetic field j$<2he generator of the reference signal
(local generator)® indicates the mixer.

The non-demolition measurement of the qubit state is described by the Cavity-Bloch equations in
the rotating frame [17]:

d,(a)=—iA,,(a)~iz(ac*)-is,— (x/2)(a),
d, <O'Z> =-y, (1+ <GZ>) , 1)
d, <a0'Z> =—iA, <a0'2>— iy(a)-ie, <GZ>—}/1<a> —(r+ K/2)<aaz>.

Here a is the annihilation operator which describes the electromagnetic field in the MR;
A,,=o —a,, is the difference between the unperturbed MR frequency and the driving

frequency,o, =27 f, for any index “k”; y is the MR frequency shift* is the Pauli operator
describing the qubit state;, is the amplitude of the driving field in frequency uniks;is the

MR decay constant, which is connected to the MR quality fa@Qomy the relationx =w, /Q;

and y, is the decay constant for the QL, which is a reciprocal of the qubit relaxation time:

7, =1/T,. In these equationéaz> =1 for the excited qubit state. Below we pat =— . The

average number of photons in the resongtioy= <a*a>, is given by the equation:

d, (n)=-2¢, Im{a)—x(n). 2



The value,s,, =« /2, corresponds to one photon in the MR in the stationary resonance regime
with no qubit relaxation(<02>=1, dt<a>:dt<aaz>=yl= 0). We will consider a rectangular

driving pulse:¢,, =0 for t <0, and¢,, = x/2 for O<t <z . With initial conditions:

(c*)=+1, (a)=0, (ac*)= 0 3)

the Cavity-Bloch equations can be easily solved analytically. In particular, the stationary
solutions with no qubit relaxation are given by the simple equations,

(a)=-2ie, I« for (c*)=1,

(a) =—2is,, /(x—4iz) for (6*)=-1 4)

Note that for<oz> =1 the stationary solution is imaginary, i.e. at the output of the MR we have
only the quadrature voltag¥,, which is proportional tdm(a):
V =(hf,x2)"*Im(a). (5)

Here Z is the characteristic impedance of the transmission line. Below we consider only the
guadrature signals.
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Fig. 2. The negative of the quadrature voltade at the output of MR foff, = cc.



In Figs 2 and 3 we show the negative of the non-stationary quadrature vOidgefor
parameters that are close to the experimental parameters in [17]:

f,=6.19GHz,x /2Zr= 1. MHz y /2= O0NHz
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Fig. 3. The same as in Fig. R #¥®00ns

Next, we consider amplification of the quadrature signal with the MSA. In the MSA an
input coil has one end open, so the parasitic capacitances become active components of the input
circuit. As a result, the theoretical description of the input circuit is not straightforward, and the
suitable equivalent circuit for the MSA is unknown. Various theoretical approaches to describe
the MSA have been suggested in the literature. (See, for example, [16, 19-23].) We will use here
a semi-empirical model [16], which provides a reliable estimate for the MSA gain. In this model,
one considers a relatively simple MSA scheme consisting of the input circuit and the SQUID.
(See Fig. 4.) The trick is that the effective parameters of the scheme are to be found from
experiment assuming that the back reaction of the SQUID on the input circuit can be ignored.

With a harmonic input voltage/, (t) =V exp(at ), the current in the input coil is given
by I.(t) =1. expfat ). The complex amplitude of the curreht, can be expressed in terms of the
impedancesi;, =VZ, ./ Z,Z, where

L=R+Z.,+Z .

_ 1 g (6)
Zin=(Z+Z+R Y



Thetime-dependent input flux from the coil to the SQUIDNHE, (t) . For a dispersive
measurement, the MSA input frequency equals the MR driving frequenray;, .
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Fig. 4. The MSA equivalent circuit.

In order to compute the output MSA voltagé,, (t), we have solved numerically the
standard system of equations for a dc SQUID [24]:

¢OCJ51+%5'1:|§— J—1,sind,

J

. ) I )
¢OCJ52+%:’52:§+J—IOsm52 @
Pp(0,—0,) =@y +L;J+ MI,

Vou () = %(51 + 52)



Here the dot above, andds, indicates time differentiationp, =7/ 2e is the reduced flux
quantum;s, andds, are the phase differences acrosslJJs the JJ critical current; | is the bias
current; J is the circulating current; aribl,. is the dc bias flux.

Solving Egs (7), we compute the output MSA voltage,(V), and then find its Fourier
component at the input frequency, ®. Below we use the symbol, V, for the Fourier component
of the output MSA voltage. (The rati¥,,/MI,, represents the dynamical transfer function of

the SQUID.) In Fig. 5 we show the power gain G w{V/|? (in dB) as a function of the input
frequency, f = w/2x, for the following values of parameters:

R =500, C,= 0.12pHL = 0.69nH,
C=0.85pFR= 10 M = 0.22nH, (®)
I, =8uA, R, =209, L, =0.129nH, C, = 52.71F.
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Fig. 5. The MSA power gaidlogG.

For the chosen parameters, the maximum power gain, which we denGfg,accurs at the
frequency, f = f,,,, =6.19GHz. The value of the maximum gain i$4.9dE. The MSA
bandwidth, B,,, = 340MHz (from 6.02 to 6.36 MHz, where gain decreases by 3dB).

Next, we have computed the power spectral density of the MSA noise at the temperature,

T =15mK, taking into consideration the Johnson noise generated by all the resistors in Fig. 4. In
the input circuit in Fig. 4 we s&t, =0, and added the two independent sources of voltage noise
in series with the resistordy and R. In the SQUID circuit in Fig. 4 we have added the two

independent sources of current noise in parallel to the resi&pr¢The voltage noise source in



series is equivalent to the current noise source in parallel.) For every realization of the Johnson

noise we have solved the system of equations for the input circuit and SQUID and found the
corresponding realization of the output noise voltagk(t). The voltage noise produced by a
resistor with resistancelR , was approximated as white noise with the power spectral density

(see, for example, [25]):

hf
= 2R hf, ., coth —M2 | 9
S, = 2Ry [szT] ©)

The corresponding power spectral density for the current noi& IR >. In order to simulate

the white noise we have used a standard continuous chain of the short rectangular pulses with the
random amplitude and zero average value. (See, for example, [24].) The power spectral density

of the MSA noise at the input frequendly, was computed using the expressions:
§(f)=lim = <\v > )= [V, (1) expaift it (10)

The spectral density was computed, averaging 80@ realizations o¥/. (t). The maximum of

out
the spectral density3,(f), which we denote as5,,, was found at the same frequency,

f = fus, a@s the maximum of the gain. For our parameters we have obtained the value:

Syea =5x10%° V?/Hz. The MSA noise temperaturg,, was found from equation [26]:

hf,,

ZRithSA Cot}‘{m

j (fisa )= Suea - (11)

We have obtained the valug, ~ 440mK~ 1.%f,, K. Assuming that after amplification the
measured signal is passing through a filter with bandwiBtk,2MHz, we obtain the voltage
noise power.S,,B=10"V?.

Next, we estimate the SNR for a single-shot dispersive measurement with the MSA. Fig.
6 shows the differencel, between the MSA output voltageg,,, corresponding to the two

qubit states fofl, =900ns. The values oW,

out

were obtained from the voltages shown in Fig. 3



using the computed MSA gaifz,,.,, from Fig. 5. The functiorD(t), has the maximum value,

D, =120nV, at timet = 0.46s. The maximum value of the SNR can be estimated as,
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Fig. 6. The difference between the voltages corresponding to the two qubit states.

SNR= - Pmax_ _ 0 495 (12)

VSus:B

The MSA gain can be raised by increasing the resistargcein the MSA SQUID. However,

our simulations show that the MSA noise grows faster than the gain, so the SNR drops. In order
to obtain SNR>1, we have to increase the input voltage in the MSA by a factdf sf2.35.

This means that the average number of photons in the resonator mirgt=bié* > 5.5. Our

computations show that the corresponding maximum input voltage in the MSA (about 108 nV)
remains in the linear range of the MSA, which extends to aB@uy .

3. Single-shot non-demolition measurement of the phase qubit

In this section we find the expression for the MR-QL coupling constant for the phase qubit.
Then, we formulate a condition on the MR-QL mutual inductance that allows a single-shot non-
demolition dispersive measurement of the phase qubit with the MSA. We will consider a
coplanar waveguide MR inductively coupled to the QL. Fig.7 shows the MR and the QL and
their equivalent circuits.



Fig. 7. The MR and the QL and their equivalent circuits. Arrows in the MR show the electric

field for the first harmonicd, is the MR length; symbol “x” denotes the JJ.

The current, j(x,t), for the first (half wavelength) harmonic in the MR can be described in

terms of the creation and annihilation operators [10]:
j(xt)=i(he, /L )" cosex [, )a"-a), (13)

where L, is the MR inductance, and, is its length. (See Fig. 7). We assume that the QL is

placed near the center of the MR, so we canxpuaD. The Hamiltonian of the phase qubit is
described by the expression [27]:

Hq: p2/2m+U(5,t), (14)



where

p=-ihol o0,
m=g;C,,
U(8)=E, {[6-9p,- 0]/ 24,~cos5} ,
e =L/ Ly, (15)
Lo = §90/ I 0
¢ =,/ p,,
?,=D /¢,
Hereo is the phase difference across the, JJ, Cand  are the QL inductangmeitanca; E; i
the Josephson energy,  is the permanent bias flux on thé,QM,, ] = the flux produced
bythe MR on the QLM is the MR-QL mutual inductani¢e, is therifidal current.

A UG)

|0}

Fig. 8. A double well potential energy of the QL. The phase qubit is spanned over two lowest

levels in the shallow well.

The function,U (6), in (15) describes a double well potential with a shallow well and a deep

well. (See Fig. 8.)
We have taken the values of the QL parameters from experiment [28]:
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C, =700fF , L = 72QH = 1.ZA (16)

With no MR (@, =0) we have adjusted numerically the bias permanent fiyx, to obtain five

levels in the shallow well. (See Fig. 8.) The corresponding qubit frequency is,
f,=a,/ 2r=8.665Hz. From Egs (14) and (15) we obtain the Hamiltonian of the QL-MR

interaction:
=—(E, //1q)(p15. a7)

The truncated Hamiltonian of the phase qubit can be written in the form:
H., H
ee eg
: (18)
(ng HQGJ

where, |e) and | g), are the qubit excited and ground states. In matrix notation:

|e>=@, |g>=@- (19)

The truncated Hamiltonian of the QL-MR interaction can be written in terms of the Pauli
operators:

H,+H H,—H

_ ] ge H e ge

e (20
Assuming thatH , is real, and taking into consideration Egs. (17), (15), and (13), we can write
the truncated interaction Hamiltonian in the form:

M_E
H, =-—3— ha, —(e|5|g) @ —-a)o,. (21)
/Iq¢0 Lr
Ignoring rapidly oscillating terms, we obtain:
M,E,
Hy =i 1% 1015 1g) (0a’ —o7a)=ihg (o a’ —o"a),
ﬂ’q(po Lr
m, (22)
hao,
hg=——22 el
g=-—— [T (eldlg).

q r
In this approximation, the total qubit-resonator Hamiltonian is the Jaynes-Cummings
Hamiltonian (see, for example,[10]):

H =ha, (a'a+1/2)+ (heo, | 20° +ihg "' —o*a). (23)

The dispersive approximation of the Jaynes-Cummings Hamiltonian is:

12



H =n(w, + yo*)a'a+ (il 2)(@,+ x)o’,

2=09"1A,, (24)
Ay =0, —@,.

This approximation is valid if4g?((n)+1) <A, ?. The ratio, (A, /2g)° =(n,), defines the

critical number of photons in the dispersive approximation [10].

The dispersive Hamiltonian (24) describes the dispersive frequency shift in the MR. For
our parametersy/2z =0.7MHz, f, =8.66GHz, andf, ~ f,,, =6.19GHz the qubit-resonator

coupling should beg/ 27z = 41.6MHz. The critical number of photons for these parameters is,
approximately:(nc>=880. Using Eq. (22) and approximating the phase qubit states with the

eigenfunctions of the harmonic oscillator, we obtajn: (Mqr / Lq)( f, /2ququ)ﬂ2. For a given

value of g, the required value of the mutual QL-MR inductance can be found from the
expression:

2f,CL,

Mg = 9L, f

o (25)

If the MR inductance/L, , takes values betweelmH and 1@H then the required value of the

mutual inductanceM , ranges from8.3pH to 26pt-.

ar’

Conclusion

In this work we studied the possibility of a single-shot non-demolition measurement of a
superconducting qubit using an MSA. We have shown that, for reasonable values of parameters,
this measurement is possible with about six photons in the MR. For a phase qubit inductively
coupled to the MR we estimated the required value of the QL-MR mutual inductance. Our results
can be useful for experimental implementation of a single-shot non-demolition measurement of
the superconducting qubit.
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