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Abstract 
 

We have studied the possibility of a single-shot non-demolition measurement of a 
superconducting qubit using a microstrip SQUID amplifier (MSA). The Johnson noise generated 
by all resistors in the MSA is taken into consideration. We show that a single-shot non-
demolition measurement is possible with six photons in the measurement resonator.  For a phase 
qubit inductively coupled to a measurement resonator we have obtained the expression for the 
mutual inductance required for measurement of the qubit state. 

   
1. Introduction 
A superconducting circuit containing Josephson junctions (JJ) has attracted enormous attention 
of researchers developing quantum computers [1-6]. This circuit can be considered as an 
artificial micrometer-size atom, which can be easily integrated into sophisticated electronic 
architectures. One of the main problems for any implementation of quantum computing is 
achieving a high fidelity measurement of the qubit computational states. To do this one needs a 
non-demolition quantum measurement [7]. A non-demolition measurement does not disturb the 
computational state. It allows one to integrate the signal and increase the signal-to-noise ratio 
(SNR) to that required for a high fidelity measurement. 

Various schemes for non-demolition measurements of a superconducting qubit have been 
discussed in literature [8,9], but the only scheme implemented experimentally is the dispersive 
measurement designed in ref. [10]. In this method a qubit loop (QL) is coupled to a measurement 
resonator (MR) with a small number of photons. Due to the small number of photons and 
relatively large detuning between the MR and the QL, the computational quantum state of the 
QL remains undisturbed while the frequency of the MR becomes dependent on the qubit state. 
Experimental implementation of this scheme requires amplification of the MR signal. The 
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inevitable noise generated by an amplifier became the main obstacle for a single-shot non-
demolition measurement [7]. To the best of our knowledge, currently all experiments with a non-
demolition dispersive measurement require multiple-shot averaging, which is unacceptable for 
quantum computation with many qubits.  
    To reduce the amplifier-generated noise one could use a low-noise microstrip SQUID 
amplifier (MSA) [11]. At frequencies below 1GHz MSAs have demonstrated a 25dB power 

gain with an almost quantum limited noise temperature of 2 Bhf k  [12]. However, for a 

dispersive measurement one has to use an MSA in the GHz frequency region. This requires 
reduction of the size of the MSA input coil, which diminishes its coupling with the SQUID [11]. 
One could raise the input voltage of the MSA increasing the number of photons in MR but this 
causes a back reaction of the MR on the QL, and the dispersive measurement becomes a 
demolition measurement [13-15].  
    In the first part of our work we try to find a delicate balance between the reasonable MSA 
parameters and the number of photons in the MR. Applying the simple model of an MSA 
suggested in [16] and experimental data from the non-demolition dispersive measurement with a 
transmon qubit [17], we show that a single-shot non-demolition dispersive measurement is 
possible with six photons in the MR. 
    A phase qubit occupies a special place in the superconducting qubit zoo: it is especially 
adjusted for integration into the complicated quantum computer architecture [18]. To the best of 
our knowledge, the non-demolition dispersive measurement has not been implemented for the 
phase qubit. In the second part of this work, we consider a phase qubit inductively coupled to the 
MR  and derive an expression for the QL-MR interaction constant. Based on this expression we  
formulate a condition on the mutual QL-MR inductance required for a single-shot non-
demolition measurement of a phase qubit. 
 
2. Dispersive measurement of a superconducting qubit with an MSA 

 
We consider a measurement scheme similar to that used in [17], but containing an MSA. (See 
Fig. 1.) A driving electromagnetic field (measurement tone) of frequency, mf , is applied to the 

MR, which is coupled to the QL. The frequency of the MR, rf , equals the driving frequency, 

,mf  when the qubit is in its excited state, 1 . If the qubit is in its ground state, 0 ,  then r mf f . 

The output MR voltage is amplified by the MSA, which is tuned to the driving frequency, mf . It 

is clear that the output MR voltage, which is equal to the MSA input voltage, depends on the 
qubit state: for the qubit excited state it is expected to be much greater than for the qubit ground 
state.  
    After amplification, the output MSA voltage is mixed with the reference signal whose 

frequency is slightly different from the driving frequency, ,mf  (heterodyne detection). The 

mixed signal whose frequency is much lower than the driving frequency is finally detected. 
Depending on the phase of the reference signal, the amplitude of the mixed signal can represent 
either in-phase or the quadrature signal. 
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Fig. 1. Schematic of a dispersive measurement with an MSA and a heterodyne detection. G1 is 
the generator of the driving electromagnetic field, G2 is the generator of the reference signal 
(local generator),   indicates the mixer.   

The non-demolition measurement of the qubit state is described by the Cavity-Bloch equations in 
the rotating frame [17]: 
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Here a  is the annihilation operator which describes the electromagnetic field in the MR; 

rm r m    , is the difference between the unperturbed MR frequency and the driving 

frequency, 2k kf   for any index “ k ”;   is the MR frequency shift; z  is the Pauli operator 

describing the qubit state; m  is the amplitude of the driving field in frequency units;   is the 

MR decay constant, which is connected to the MR quality factor, Q , by the relation: /r Q  ; 

and 1  is the decay constant for the QL, which is a reciprocal of the qubit relaxation time: 

1 11/T  .  In these equations 1z   for the excited qubit state. Below we put rm    . The 

average number of photons in the resonator, † ,n a a  is given by the equation: 

    

2 Imt md n a n    .                                                     (2) 
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The value, / 2,m   corresponds to one photon in the MR in the stationary resonance regime 

with no qubit relaxation  11,  0 .z z
t td a d a       We will consider a rectangular 

driving pulse: 0m   for 0t  , and / 2m   for 0 t   . With initial conditions: 

 

1,    0,    0,z za a          (3) 

the Cavity-Bloch equations can be easily solved analytically. In particular, the stationary 
solutions with no qubit relaxation are given by the simple equations,  
 

  
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Note that for 1z   the stationary solution is imaginary, i.e. at the output of the MR we have 

only the quadrature voltage, V , which is proportional to Im a : 

 

 1/2
Im .rV hf Z a                                                        (5) 

Here Z  is the characteristic impedance of the transmission line. Below we consider only the 
quadrature signals.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    Fig. 2. The negative of the quadrature voltage  V  at the output of MR for 1 .T     
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In Figs 2 and 3 we show the negative of the non-stationary quadrature voltage  V  for 

parameters that are close to the experimental parameters in [17]: 
 

6.19 ,  /2 1.7 ,  /2 0.7 .rf GHz MHz MHz       

 

 

 

 

 

 

 

 

                       

 

                                                   

                                               Fig. 3. The same as in Fig. 2 for 1 900ns.T   

Next, we consider amplification of the quadrature signal with the MSA. In the MSA an 
input coil has one end open, so the parasitic capacitances become active components of the input 
circuit. As a result, the theoretical description of the input circuit is not straightforward, and the 
suitable equivalent circuit for the MSA is unknown. Various theoretical approaches to describe 
the MSA have been suggested in the literature. (See, for example, [16, 19-23].) We will use here 
a semi-empirical model [16], which provides a reliable estimate for the MSA gain. In this model, 
one considers a relatively simple MSA scheme consisting of the input circuit and the SQUID. 
(See Fig. 4.) The trick is that the effective parameters of the scheme are to be found from 
experiment assuming that the back reaction of the SQUID on the input circuit can be ignored.  

With a harmonic input voltage, ( ) exp( ),inV t V i t  the current in the input coil is given 

by ( ) exp( )i iI t I i t . The complex amplitude of the current, ,iI  can be expressed in terms of the 

impedances: /i LCR LI VZ Z Z , where  

 
1 1

1 1 1 1

,

( ) .

C LCR

LCR L C

Z R Z Z

Z Z Z R   
  

    (6) 
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The time-dependent input flux from the coil to the SQUID is ( )iMI t . For a dispersive 

measurement, the MSA input frequency equals the MR driving frequency:m  .   

                                    
                                                  Fig. 4. The MSA equivalent circuit. 
 

 

In order to compute the output MSA voltage, ( ),outV t  we have solved numerically the 

standard system of equations for a dc SQUID [24]: 
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 (7) 
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 Here the dot above 1 2 and    indicates time differentiation; 0 / 2e   is the reduced flux 

quantum; 1 2 and    are the phase differences across JJ; 0I  is the JJ critical current; I is the bias 

current; J is the circulating current; and  dc  is the dc bias flux.  

Solving Eqs (7), we compute the output MSA voltage, Vout(t), and then find its Fourier 
component at the input frequency, ω. Below we use the symbol, Vout, for the Fourier component 

of the output MSA voltage. (The ratio, ,out iV MI  represents the dynamical transfer function of 

the SQUID.)  In Fig. 5 we show the power gain G = |Vout/V|2 (in dB) as a function of the input 

frequency, 2 ,f    for the following values of parameters: 

 

1 1

0

50 ,  0.12pH, 0.69nH,

0.85pF, 1k ,  0.22nH,

8μA, 20 ,  0.129nH, 52.7fF.J J J

R C L

C R M

I R L C

   
   
    

      (8) 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                      
                                        
 
                                   Fig. 5. The MSA power gain, 10logG . 

 

For the chosen parameters, the maximum power gain, which we denote as MSAG , occurs at the 

frequency, 6.19GHzMSAf f  . The value of the maximum gain is 14.9dB. The MSA 

bandwidth, 340MHzMSAB   (from 6.02 to 6.36 MHz, where gain decreases by 3dB). 

Next, we have computed the power spectral density of the MSA noise at the temperature, 

15mK,T   taking into consideration the Johnson noise generated by all the resistors in Fig. 4. In 

the input circuit in Fig. 4 we set 0,inV   and added the two independent sources of voltage noise 

in series with the resistors, 1R  and R . In the SQUID circuit in Fig. 4 we have added the two 

independent sources of current noise in parallel to the resistors, JR . (The voltage noise source in 
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series is equivalent to the current noise source in parallel.) For every realization of the Johnson 

noise we have solved the system of equations for the input circuit and SQUID and found the 

corresponding realization of the output noise voltage, ( )n
outV t . The voltage noise produced by a 

resistor with resistance, ,kR  was approximated as white noise with the power spectral density 

(see, for example, [25]): 

2 coth .
2

MSA
V k MSA

B

hf
S R hf

k T

                 (9) 

 

The corresponding power spectral density for the current noise is, 2/V kS R . In order to simulate 

the white noise we have used a standard continuous chain of the short rectangular pulses with the 

random amplitude and zero average value. (See, for example, [24].) The power spectral density 

of  the MSA noise at the input frequency, ,f  was computed using the expressions:  

     2

0

2
( ) lim ,    exp(2 ) .

i

i

t n
V out

t
i

S f V f V f V t ift dt
t

     (10) 

The spectral density was computed, averaging over 300 realizations of ( )n
outV t . The maximum of 

the spectral density, ( )VS f , which we denote as MSAS , was found at the same frequency, 

,MSAf f  as the maximum of the gain. For our parameters we have obtained the value: 

20 25 10 V /HzMSAS   . The MSA noise temperature, nT , was found from equation [26]:  

 

12 coth ( ) .
2 ( )

MSA
MSA MSA MSA

B n

hf
R hf G f S

k T T

                                       (11)  

 

We have obtained the value, nT  440mK 1.5 /MSA Bhf k . Assuming that after amplification the 

measured signal is passing through a filter with bandwidth, 2MHz,B   we obtain the voltage 

noise power, 13 210 VMSAS B  . 

Next, we estimate the  SNR for a single-shot dispersive measurement with the MSA. Fig. 

6 shows the difference, D , between the MSA output voltages, ,outV  corresponding to the two  

qubit states for 1 900nsT  . The values of outV were obtained from the voltages shown in Fig. 3 



 9 

using the computed MSA gain, MSAG , from Fig. 5. The function, ( ),D t  has the maximum value, 

max 120nV,D   at time 0.46μst  . The maximum value of the SNR can be estimated as, 

  

 

 

 

 

 

 

 

 

 

Fig. 6. The difference between the voltages corresponding to the two qubit states. 

 

max 0.425.
MSA

D
SNR

S B
                 (12) 

The MSA gain can be raised by increasing the resistance, ,JR  in the MSA SQUID. However, 

our simulations show that the MSA noise grows faster than the gain, so the SNR drops. In order 
to obtain 1,SNR   we have to increase the input voltage in the MSA by a factor of 2.35.K   

This means that the average number of photons in the resonator must be 2 5.5n K  . Our 

computations show that the corresponding maximum input voltage in the MSA (about 108 nV) 
remains in the linear range of the MSA, which extends to about 30μV .  

 
3. Single-shot non-demolition measurement of the phase qubit   
 
In this section we find the expression for the MR-QL coupling constant for the phase qubit. 
Then, we formulate a condition on the MR-QL mutual inductance that allows a single-shot non-
demolition dispersive measurement of the phase qubit with the MSA. We will consider a 
coplanar waveguide MR inductively coupled to the QL. Fig.7 shows the MR and the QL and 
their equivalent circuits.  
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Fig. 7. The MR and the QL and their equivalent circuits. Arrows in the MR show the electric 

field for the first harmonic; rd  is the MR length; symbol “ ” denotes  the JJ.   

 

The current,  , ,j x t  for the first (half wavelength) harmonic in the MR can be described in 

terms of the creation and annihilation operators [10]: 

 

1/ 2 †( , ) ( / ) cos( / )( ),r r rj x t i L x d a a       (13) 

 

where rL  is the MR inductance, and rd  is its length. (See Fig. 7). We assume that the QL is 

placed near the center of  the MR, so we can put 0x  . The Hamiltonian of the phase qubit is 

described by the expression [27]: 

 

2 / 2 ( , ,qH p m U t        (14) 
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where   
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Fig. 8. A double well potential energy of the QL. The phase qubit is spanned over two lowest 

levels in the shallow well. 

 

The function, ( ),U   in (15) describes a double well potential with a shallow well and a deep 

well. (See Fig. 8.)  

We have taken the values of the QL parameters from experiment [28]: 
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0700 ,  720 ,  1.7 .q qC fF L pH I A                                      (16) 

With no MR ( 1 0  ) we have adjusted numerically the bias permanent flux, ,p
 
to obtain five 

levels in the shallow well. (See Fig. 8.) The corresponding qubit frequency is, 

/ 2 8.66q qf GHz   . From Eqs (14) and (15) we obtain the Hamiltonian of the QL-MR 

interaction:

 

 

int 1( / ) .J qH E                                                     (17) 

The truncated Hamiltonian of the phase qubit can be written in the form: 

,ee eg

ge gg

H H

H H

                                                                  (18) 

where, e and ,g are the qubit excited and ground states. In matrix notation: 

1 0
, .

0 1
e g

                           (19) 

The truncated Hamiltonian of the QL-MR interaction can be written in terms of the Pauli 
operators:  

int .
2 2

eg ge eg ge
x y

H H H H
H i                    (20) 

Assuming that egH  is real, and taking into consideration Eqs. (17), (15), and (13), we can write 

the truncated interaction Hamiltonian in the form: 

†
int

0

| | ( ) .qr J r
x

q r

M E
H i e g a a

L

                                      (21) 

Ignoring rapidly oscillating terms, we obtain:  

† †
int

0

0

| | ( ) ( ),

| | .

qr J r

q r

qr r

q r

M E
H i e g a a i g a a

L

M I
g e g

L

      
 

       

 
             (22) 

In this approximation, the total qubit-resonator Hamiltonian is the Jaynes-Cummings 
Hamiltonian (see, for example,[10]): 

  † †1/ 2 ( / 2) ( ).z
r qH a a i g a a                                  (23) 

The dispersive approximation of the Jaynes-Cummings Hamiltonian is: 
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†

2

( ) ( / 2)( ) ,

/ ,

.

z z
r q

qr

qr q r

H a a

g

    


 

   
 

  
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This approximation is valid if,  2 24 1 qrg n   . The ratio, 2( / 2 ) ,qr cg n 
 
defines the 

critical number of photons in the dispersive approximation [10].   
 

The dispersive Hamiltonian (24) describes the dispersive frequency shift in the MR. For 

our parameters, / 2 0.7MHz   , 8.66GHzqf  , and 6.19GHz,r MSAf f   the qubit-resonator 

coupling should be / 2 41.6MHzg   . The critical number of photons for these parameters is, 

approximately: 880.cn   Using Eq. (22) and approximating the phase qubit states with the  

eigenfunctions of the harmonic oscillator, we obtain:   1/2
/ / 2qr q r q r qg M L f f L C . For a given 

value of g , the required value of the mutual QL-MR inductance can be found from the 

expression: 
 

2
.q q r

qr q
r

f C L
M gL

f


     (25) 

If the MR inductance, ,rL takes values between 1  and 10 ,nH nH  then the required value of the 

mutual inductance, ,qrM
 
ranges from 8.3  to 26pHpH .  

 
 
Conclusion 
 
In this work we studied the possibility of a single-shot non-demolition measurement of a 
superconducting qubit using an MSA. We have shown that, for reasonable values of parameters, 
this measurement is possible with about six photons in the MR. For a phase qubit inductively 
coupled to the MR we estimated the required value of the QL-MR mutual inductance. Our results 
can be useful for experimental implementation of a single-shot non-demolition measurement of 
the superconducting qubit. 
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