
ar
X

iv
:1

00
2.

39
69

v3
  [

qu
an

t-
ph

]  
31

 M
ay

 2
01

0
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We show that a mesoscopic driven Duffing oscillator exhibitsdynamic quantum tunneling between two at-
tractors. In addition to an induced quantum shift of the bifurcation point, themesoscopicnature also results in a
new scaling exponent with the driving distance.
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In the light of nanomechanics [1] and as a qubit readout
device for superconducting qubits (i.e., the Josephson bifur-
cation amplifier) [2–5], the quantum properties of the driven
Duffing oscillator (DDO) gained renewed interest in the past
years [6–11]. For instance, the quantum signature in the
bistable region of a DDO was analyzed, based on simulating
a Lindblad-type master equation and comparing the Wigner
function with classical probability distribution in phasespace
[6]. In terms of amplitude and phase responses to the driv-
ing frequency, quantum behaviors of DDO such as resonant
tunneling and photon-assisted tunneling were also discussed
[7]. Moreover, in Ref. [8–10], the switching rate between
the bistable states near the bifurcation point, due to quantum
and/or thermal fluctuations, was estimated by means of the
WKB theory or semiclassical methods such as the mean-first-
passage-time approach.

In this work we consider amesoscopicDDO, which in-
volves more than ten levels in the nonlinear dynamics, being
interestingly between the quantum few-level and the classi-
cal dense-level (or continuum) limit. In this regime, quantum
effect is crucially important. We will focus on the dynamic
quantum tunneling between two attractors in the bistable re-
gion, in particular account for a quantum shift of the bifurca-
tion point associated with themesoscopicnature, and extract
a new scaling exponent with the driving distance.

Model and Qualitative Considerations.— The Duffing os-
cillator in the presence of driving is described by

HS(t) = p2/2m+mΩ2x2/2− γx4
+ F(t)x. (1)

Related to the Josephson bifurcation amplifier (JBA),F(t) =
2F0 cos(νt) describes the microwave driving; and noticeably,
the driving frequency should satisfyν < Ω. Other parame-
ters associated with the JBA circuit read:m= (~/2e)2C, Ω =√

2eIc/(~C), F0 = ~I/(2e), andγ = mΩ2/24; with C the ca-
pacitance of the Josephson junction,Ic the critical current, and
I the driving current. In this context,x denotes the phase dif-
ference across the Josephson junction. In addition, the Duff-
ing oscillator is affected by environment, which together with
the coupling can be modelled asHE =

∑

i(miω
2
i x2

i /2+p2
i /2mi)

and HI = −x
∑

i λi xi Typically, the spectral density of the
bath,J(ω) = π

∑

i λ
2
i δ(ω − ωi)/(2miωi), in Ohmic case reads

J(ω) = mκωexp(−ω/ωc), with κ the friction coefficient, and
ωc the high frequency cutoff. For later use, we also introduce
b =

∑

i λibi/
√

2, with bi = (miωi xi + ipi)/
√

2mi~ωi .
Notice that the Duffing oscillator described by Eq. (1) has

only finite number of bound states. In the absence of ex-
ternal driving, this becomes clear from the potential profile,
V(x) = mΩ2

2 x2 − γx4, which defines a single well with iden-

tical barrier heightV0 = m2
Ω

4/(16γ) at x = ±
√

mΩ2/(4γ).
As a rough estimate, the number of bound states is the ra-
tio of V0 and~Ω, which givesN = m2

Ω
4

16γ~Ω =
mΩ

16~γ̃ =
ℵ

16γ̃ .

We will see later thatℵ ≡ mΩ/~ defined here is a useful
characteristic quantity. We also introduced a reduced nonlin-
ear coefficient, ˜γ = γ/(mΩ2). In our model,γ = mΩ2/24,
so approximately the number of bound states is 3ℵ/2. In
the experiment of Ref. [2],ℵ ≃ 366, which implies a clas-
sical DDO. In the present work, however, we are interested
in a mesoscopicregime, thus assuming possible parameters
Ic = 39nA, C = 0.91pF, κ = 0.01Ω, andωc = 10Ω. Accord-
ingly, ℵ ≃ 12. Also, we assume an experimentally accessible
temperature of 5 mK.

Now we present a qualitative understanding to the driving
dynamics of DDO, respectively, in the laboratory frame and
in a rotating frame. In Fig. 1(a) we show the energy level
diagram of the Duffing oscillator in the absence of driving.
To the second-order perturbation of the quartic potential,the
energy level reads

En =

[

n+
1
2
− 3γ̃(2n2

+ 2n+ 1)
4ℵ

]

~Ω. (2)

Accordingly, the adjacent level spacing,∆En = En − En−1 =

(1−3γ̃n/ℵ)~Ω, decreases withn. This property, together with
a negative frequency detuning (e.g.δ = 1 − ν/Ω = 0.065
in later simulation), would result in the bistability behavior.
Qualitatively speaking, for weak driving, the oscillator will
largely remain in the initial ground state; for stronger driving,
however, it will be increasingly excited to high energy states
aroundn∗, roughly determined by~ν = ∆En∗ , leading ton∗ =
ℵδ/(3γ̃).

We notice that an alternative (a better) way to inspect the
quantum dynamics is in a rotating frame with the driving fre-
quencyν, where the driving field becomes time independent.
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FIG. 1: Energy diagram of the non-driven Duffing oscillator in (a)
the laboratory frame, and (b) the rotating frame.

This can be implemented by applying a rotating transforma-
tion U(t) = exp{−iνta†a}, wherea (a†) is the annihilation (cre-
ation) operator of the DDO. Dropping fast rotating terms, i.e.,
under the rotating wave approximation (RWA), we obtain

H̃S = δ

(

p2

2m
+

1
2

mΩ2x2

)

− 6γ
4m2Ω4

(

p2

2m
+

1
2

mΩ2x2

)2

+ F0x.

(3)

In the absence of driving, this rotated Hamiltonian is naturally
diagonal, with the eigenstates of harmonic oscillatorψn, and
eigenvalues

Ẽn =















n+
1
2
− 3γ̃

2ℵδ

(

n+
1
2

)2












~δΩ, (4)

as schematically shown in Fig. 1(b). Interestingly, we find
here that then∗th level is the highest one (noting thatn∗ la-
bels the resonance level-pair in the laboratory frame). Also,
the level spacing in the rotating frame is much smaller than
its counterpart in the laboratory frame. Then, it is clear that
the DDO’s dynamics in this rotating frame is governed by the
interplay ofF0x-induced transition and environmental dissi-
pation. More interestingly, in the presence ofF0x, we can
diagonalize the transformed HamiltoniañHS of Eq. (3) and
denote the eigenstates byψ̃n. It is found that a one-to-one
correspondence exists betweenψn andψ̃n, which can be un-
derstood in the spirit of adiabatic switching. Then,ψ̃n∗ andψ̃0

can be analogously regarded as twoattractors, which direct
the evolution, determine the final state, and are responsible
to a bistability behavior. In the remained part of this work,
the two attractors will be termed also as small amplitude state
(SAS) and large amplitude state (LAS).

Master Equation in Rotating Frame.— Following Ref. [12],
in laboratory frame as usual, a weakly damped DDO can be
well described by the master equation for its reduced density
matrix:

ρ̇(t) = −i~−1LSρ(t)−~−2
∫ t

0
dτ〈LI (t)G(t, τ)LI (τ)G†(t, τ)〉ρ(t).

(5)

Here LS(· · ·) = [HS, (· · ·)] is associated with the DDO
Hamiltonian in laboratory frame, whileG(t, τ)(· · ·) =

G(t, τ)(· · ·)G†(t, τ) is the relevant propagator in Liouvillian
space, withG(t, τ) the usual Green’s function given byHS.
The interaction Liouvillian superoperatorLI is defined by
LI (· · ·) = [HI , (· · ·)], whereHI = −x

∑

j λ j x j ≡ −xXE de-
scribes the coupling of DDO to environment. The average
in Eq. (5) means〈(· · ·)〉 = trE[(· · ·)ρE], with ρE the thermal
equilibrium density operator of the environment. In labora-
tory frame, the driving inHS is time-dependent, which would
complicate the dissipation terms in Eq. (5) and make the nu-
merical simulation difficult. To overcome this difficulty, we
transform Eq. (5) into the rotating frame

˙̃ρ(t) = −i~−1L̃Sρ̃(t)−~−2
∫ t

0
dτ〈L̃I (t)G̃(t, τ)L̃I (τ)G̃†(t, τ)〉ρ̃(t).

(6)
The various transformed quantities are defined here as: ˜ρ(t) =
U†ρ(t)U, L̃S(· · ·) = [U†HSU + i~U̇†U, (· · ·)] = [H̃S, (· · ·)],
L̃I (· · ·) = [U†HI U, (· · ·)] = [H̃I , (· · ·)], and G̃(t, τ) is the
propagator associated with̃HS. Note that in the rotating
frame the coupling Hamiltonian becomes time dependent, i.e.,
H̃I = −U†xUXE = −

√
~/2mΩ(a†eiνt

+ ae−iνt)XE. Inserting
this result into Eq. (6) yields

˙̃ρ(t) = −i~−1L̃Sρ̃(t) − 1
4ℵ{[a

†, (C(−L̃S + ν)a)ρ̃]

+ [a, (C(−L̃S − ν)a†)ρ̃] + ei2νt[a†, (C(−L̃S − ν)a†)ρ̃]

+ e−i2νt[a, (C(−L̃S + ν)a)ρ̃] + H.c.}. (7)

In deriving this result, the established Markov-Redfield ap-
proximation has been applied. Accordingly, the spectral
function, C(L̃S), is a Fourier transform of the environ-
ment correlator:C(L̃S) =

∫

+∞
−∞ dtC(t)ei~−1L̃St, and C(t) =

TrE[XE(t)XE(0)ρE].
Eq. (7) is the desired equation we obtain in the rotating

frame, on which our numerical simulation will be based. To
relate it with other work, we first drop the fast oscillating
terms in Eq. (7) under the rotating wave approximation. Then,
we assume further aharmonicapproximation:L̃Sa ≈ −~δΩa,
andL̃Sa† ≈ ~δΩa†. As a result, the well-known Lindblad-
type master equation is obtained:

˙̃ρ(t) = −i~−1L̃Sρ̃(t) + κ
{

[1 + n(Ω)]D[a]ρ̃+ n(Ω)D[a†]ρ̃
}

,

(8)

where the Lindblad superoperator is defined throughD[A]ρ̃ ≡
Aρ̃A†− 1

2{A†A, ρ̃}. In obtaining Eq. (8), the explicit form of the
spectral function has been used, i.e.,C(ω) = 2[1+ n(ω)]J(ω),
wheren(ω) is the Bose function. We notice that in Ref. [9] the
study of quantum activation in this same system was based on
Eq. (8), together also with a few techniques and approxima-
tions in later analysis.

Quantum Shift of Bifurcation Point.— For comparative
purpose, we first outline the result from a classical anal-
ysis. It is well known that the classical DDO obeys [4]:
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mẍ + mΩ2x + mκẋ − 4γx3
= −F(t). Define dimension-

less variablesτ = Ωt, w = ν/Ω, f =
√

4γ/(m3Ω6)2F0,
Q = Ω/κ, and∆ = −2Qδ; and introduce rotating transforma-
tion x(τ) = [ x̃(τ)eiwτ/2+ c.c.]/

√

4γ/(mΩ2). Then the slowly
varying amplitude ˜x(τ) of the DDO in the rotating frame sat-
isfies the following equation of motion (EOM) [4]

2i
dx̃
dτ
=

[

∆ − i
Q
+

3
4
|x̃|2

]

x̃− f . (9)

Stationary solution of this equation yields a bistability dia-
gram as shown in Fig. 2(a). Moreover, two critical driv-
ing strengths,fB(∆) and fB̄(∆), can be obtained in the limit
Q≫ 1:

fB,B̄(∆) =
∆

3/2

2∆3/2
c















1+ 3
∆

2
c

∆2
±

(

1−
∆

2
c

∆2

)3/2












1/2

fc, (10)

where∆c = −
√

3, and fc = 25/2/(35/4
√
∆3). Accordingly, af-

ter restoring dimensional units, the critical driving strengths
readFB,B̄ =

√

m3Ω6/(16γ) fB,B̄. In what follows, we will fo-
cus on the most important upper pointFB, which is to be re-
denoted asFc and taken as the unit of the driving force.

Unfortunately, inmesoscopicregime, as we will see later,
the critical driving strengthFc determined above does not
match the result from numerical simulation. It would thus
be desirable to develop aquantumversion of Eq. (9), in or-
der to reach consensus with the direct numerical simulation.
Following Ref. [13], given that the reduced density matrix sat-
isfies the Lindblad master equation (8), in Heisenberg picture
the operatora should obey an equation of motion as follows

ȧ(t) = −i~−1[a, H̃S] + κD̄[a]a = −i~−1[a, H̃S] − κ
2

a, (11)

where thedual-Lindblad superoperator is defined through
D̄[A]a ≡ A†aA− 1

2{A
†A, a}. Here we assumed the low temper-

ature limitn(Ω) ≪ 1. Moreover, belowFc and starting with
a small-amplitude state, the subsequent evolution will largely
remain in a coherent state. Then, in coherent state representa-
tion and relating the coherence numberα(τ) with a complex
amplitudex̃(τ) =

√

8γ/(mΩ2)α∗(τ)/
√

n, from Eq. (11) we ob-
tain the same EOM as Eq. (9) for ˜x(τ), but with a quantum
mechanically shifted detuning

∆̃ = −2Q(δ − 3γ̃/ℵ), (12)

instead of theclassicalresult∆ = −2Qδ. In classical case,ℵ
is large, e.g.,ℵ ≃ 366 as we estimated from the experimental
circuit parameters, which makes the quantum shift negligibly
small. Nevertheless, in mesoscopic regime, e.g.,ℵ ≃ 12 in
our case, this quantum shift is remarkably large, as shown in
Fig. 2(b) and (c), where the critical driving strength movesto
0.77Fc, Below we illustrate the quantum shift in phase space
in terms of the Wigner function representation.

The Wigner function is defined as: W(x, p, t) =

1/(π~)
∫

+∞
−∞ 〈x + x′|ρ(t)|x− x′〉 exp(−i2px′/~)dx′. In Fig. 3(a)

FIG. 2: (a) and (b): Bifurcation diagram of the DDO based on
Eq. (9), (a) without and (b) with accounting for the quantum shift
of the effective detuning [see Eq. (12)]. The dashed vertical lines in-
dicate the respective bifurcation points. (c): Results from numerical
simulation ofx̄(t) =Tr[xρ̃(t)] based on Eq. (7). We choose the ¯x(t) at
t = 160∗ (2π/Ω) to represent the steady state amplitude ¯x. The cir-
cles and squares stand for results from different initial conditions (i.e.
the SAS and LAS), from which we observe the hysteresis behavior.
Here, again, the dashed vertical line indicates the bifurcation point
in (b), say, 0.77Fc which agrees well with the numerical simulation.
Parameters:κ = 0.01,T=5mK, δ = 0.065,ℵ = 12.

and (b), for comparative purpose, we plot the Wigner function
simply using ˜ρs ≡ |α〉〈α|, where the coherence numberα is
determined from ˜x, based on the steady-state solution of the
amplitude EOM without and with accounting for the quan-
tum shift, while in Fig. 3(c) and (d) we show the results from
direct simulation. We see that in mesoscopic regime it is es-
sential to account for the quantum shift, in order to make the
amplitude EOM agree with numerical simulation, as indicated
by the dashed vertical lines in Fig. 3. (The vertical line in each
sub-figure indicates the valid “x” center of Wigner function of
the SAS.) It is then observed that the classical result in Fig.
3(a) has considerable deviation. Moreover, from Fig. 3(d) we
get an insight that starting on from certain transient stage, the
oscillator evolves into a mixed state, which can be formally
expressed as

W(x, p, t) = PS(t)WS(x, p) + PL(t)WL(x, p, t). (13)

Here,WS(x, p) andWL(x, p, t) are the Wigner functions of the
intrinsic SAS and LAS, say, the two attractors, whilePS(t)
andPL(t) are the respective occupation probabilities.

Tunneling Rate and Scaling Exponent.— Based on the state
structure of Eq. (13), we formulate a way to determine the
dynamic tunneling rate from SAS to LAS as follows. Orig-
inally, in laboratory frame, this rate can be extracted from
the occupation probability of the SAS viaΓt = −dPS(t)/dt,
while PS(t) = 〈αeiνt|ρ(t)|αeiνt〉. Note that here we use the
fact that the SAS in laboratory frame is arotating coherent
state. More conveniently, transformed to the rotating frame,
PS(t) = Tr[ρ̃sρ̃(t)], where ρ̃s ≡ U†(t)ρs(t)U(t) = |α〉〈α| is

https://www.researchgate.net/publication/229678562_Quantum_Theory_and_the_Appearance_of_a_Classical_World?el=1_x_8&enrichId=rgreq-13e8a0e9-be1b-4fdf-ae57-165c2ba98452&enrichSource=Y292ZXJQYWdlOzUxNTk1MzkyO0FTOjEwMjE4NTE0MDQ5MDI0OEAxNDAxMzc0MjQ0NzA4
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FIG. 3: (a) and (b): Wigner function of the coherent state deter-
mined from the steady-state solution of Eq. (9), (a) withoutand (b)
with accounting for the quantum shift. (c) and (d): Wigner func-
tion from numerical simulation based on Eq. (7), att = 40∗ (2π/Ω)
and 160∗ (2π/Ω), respectively. The dashed vertical line in each sub-
figure indicates the valid “x” center of Wigner function of the SAS.
Parameters:κ = 0.01,T=5mK, δ = 0.065,ℵ = 12, andF0 = 0.7Fc.

FIG. 4: Scaling behavior of the dynamic quantum tunneling rate
with the driving distance to the shifted bifurcation point,say,η =
(0.77Fc)2−F2

0. Here, the circles are result from numerical simulation,
while the linear fit givesα = 1.015 for the tunneling actionR ∝ ηα.
Inset: an illustrative example of exponential fitting for the occupation
probability of the SAS, under drivingF0 = 0.76Fc. Parameters:
κ = 0.01,T=5mK, δ = 0.065, andℵ = 12.

static, and ˜ρ(t) = U†(t)ρ(t)U(t) is the DDO state in the rotat-
ing frame described by Eq. (7).

In the inset of Fig. 4 we show a representativePS(t), ob-
tained from numerical simulation using Eq. (7) and the for-
malism outlined above, from which we see that a single expo-
nential fit can well characterizePS(t). This indicates nothing

but a rate process from SAS to LAS. Moreover, the success of
a single exponential fit indicates a dominant forward process
from SAS to LAS. That is, at the early escape stage, the back-
ward process from LAS to SAS is largely not happening. This
is similar to the situation in determining the tunneling rate in
double-well problem, where the backward tunneling process
is negligibly small at certain early time stage.

Therefore, using this numerical approach we can extract the
dynamic tunneling rate (Γt) from SAS to LAS. Further, fol-
lowing Ref. [9], we assumeΓt = Ce−R/λ. In this proposed
formula, C is an irrelevant prefactor, while the exponential
factore−R/λ originates from aneffectiveactivation process. In
limiting cases, such as for classical thermal activation,R is
the activation energy andλ the temperature; while for quan-
tum tunneling through a barrier,R is the tunneling action and
λ the Plank constant. In our present case, it is a generalization,
i.e., dynamic-quantum-tunneling dominated but also thermal-
activation involved. So, we may viewRas an effective activa-
tion energy andλ an effective Planck constant or temperature.

Very interestingly, it was found in Ref. [9] that the dynamic
tunneling actionR displays a perfect scaling behavior with
the driving distance to the critical point, which is defined as
η = F2

c−F2
0. Quantitatively, it was foundR∝ ηα andα = 3/2.

Now, for the mesoscopic DDO under consideration, owing to
the quantum shift of the critical point, which moves to 0.77Fc

under the assumed parameter condition as shown in Fig. 2, we
thus define the driving distance byη = (0.77Fc)2 − F2

0. Re-
markably, for the mesoscopic DDO, in Fig. 4 we demonstrate
by the present precise numerical simulation that the scaling
behavior ofR∝ ηα still exists, yet with an alternative scaling
exponent ofα ≃ 1, in stead ofα = 3/2 as found by Dykman
[9].

We noticed that in Ref. [14], scaling behavior of the tran-
sition rate with the drivingfrequency(but not the driving
strength) was analyzed to giveα ≃ 1.3 ∼ 1.4, by a rough
fitting from a few experimental data. Meanwhile, in the ex-
periments by Siddiqiet al. [15], an effective potential with

a barrier height scaled as∆U0
dyn ∝

[

1− (F0/Fc)2
]3/2

, was
employed to analyze their measured data by means of the
thermal-activation rate∝ exp

(

−∆U0
dyn/kBT

)

. This would re-
sult in a scaling exponent ofα = 3/2. However, based on this
same effective potential, a rough WKB estimate is seemingly
to give a smaller scaling exponent. That is, from the quantum

tunneling rate∝ exp
(

−
√

∆U0
dyna/~

)

, wherea is an effective

width of the barrier, one then obtainsα = 3/4.
Very recently, we performed a real time simulation for the

quantum dynamics of the mesoscopic DDO directly in labo-
ratory frame [16], where the driving field was not taken into
account in the dissipation terms. In that study, similar scaling
behavior with almost the same scaling exponent (i.e.α ≃ 1)
was found. In the present study, more rigorous treatment for
the driving field was carried out through the rotating transfor-
mation, which enables to fully account for the driving in the
dissipation terms. Moreover, we also highlighted the quantum
shift of the critical driving strength in the mesoscopic regime,
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in Ref. [16] which was accidentally canceled (in numerical
simulation) owing to the extra term “x2 ∑

i λ
2
i /(2miω

2
i )” in the

so called Caldeira-Legget model. Quite desirably, however,
both studies of Ref. [16] and the present one give consistent
result. This strongly implies that the scaling exponentα = 3/2
is non-universal, andα = 1 is an alternate scaling exponent in
the mesoscoic regime. Further investigation for the dynamic
quantum tunneling behavior of DDO from a mesoscopic to
the usual classical regime is extremely important, despitethe
greatly increasing complexity in real time simulation. This
will be the task of our forthcoming research.

To summarize, in a mesoscopic regime we investigated the
dynamic quantum tunneling of the driven Duffing oscillator.
Owing to the mesoscopic nature, we found that the critical
driving strength has a quantum shift, and the tunneling ac-
tion (exponentially extracted from the tunneling rate) exhibits
a perfect linear scaling behavior with the driving distanceto
the quantum shifted critical point.
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