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We show that a mesoscopic driven Duffing oscillator exhibiteamic quantum tunneling between two at-
tractors. In addition to an induced quantum shift of the faiftion point, thenesoscopioature also results in a
new scaling exponent with the driving distance.

PACS numbers: 05.45.-a, 85.25.Cp, 03.65.Yz, 74.50.+r

In the light of nanomechanic! [1] and as a qubit readoutl(w) = Mkwexpw/wc), with « the friction coefficient, and
device for superconducting qubits (i.e., the Josephsam-bif w. the high frequency cutoff. For later use, we also introduce
cation amplifier)mZElS], the quantum properties of the dnive b = 3 Aibi/ V2, with b = (mwi X + ipi)/ V2mihw;.

Duffing oscillator (DDO) gained renewed interest in the past Notice that the Duffing oscillator described by Hg. (1) has
years [6-11]. For instance, the quantum signature in thenly finite number of bound states. In the absence of ex-
bistable region of a DDO was analyzed, based on simulatingernal driving, this becomes clear from the potential pegfil
a Lindblad-type master equation and comparing the Wignev(x) = m‘%xz — yx*, which defines a single well with iden-

function with classical probability distribution in phasgace tical barrier heightvy = NM?Q4/(16y) atx = =+/mQZ/(4y).
[6]. In terms of amplitude and phase responses to the drivas a rough estimate, the number of bound states is the ra-
ing frequency, quantum behaviors of DDO such as resonanfy of \/, and hQ, which givesN = 2. - me _ X

tunneling and photon-assisted tunneling were also discuss \we will see later thatk = mQ/h de%‘%%% ﬁeﬁghfs ; J?éfu|

[7]. Moreover, in Ref.[[B=10], the switching rate between characteristic quantity. We also introduced a reducedinonl
the bistable states near the bifurcation point, due to quant ey coefficienty™= y/(mQ2). In our model,y = mQ2/24,
and/or thermal fluctuations, was estimated by means of thgg approximately the number of bound states %23 In
WKB theory or semiclassical methods such as the mean-firsthe experiment of Refl [2]8 ~ 366, which implies a clas-
passage-time approach. _ o sical DDO. In the present work, however, we are interested
In this work we consider anesoscopi®DO, which in- i a mesoscopicegime, thus assuming possible parameters
volves more than ten levels in the nonlinear dynamics, being, = 39nA C = 0.91pF, « = 0.01Q, andw, = 10Q. Accord-

interestingly between the quantum few-level and the classiingly, 8 ~ 12. Also, we assume an experimentally accessible
cal dense-level (or continuum) limit. In this regime, quant  temperature of 5 mK.
effect is crucially important. We will focus on the dynamic  Now we present a qualitative understanding to the driving
quantum tunneling between two attractors in the bistable regynamics of DDO, respectively, in the laboratory frame and
gion, in particular account for a quantum shift of the bifiwc i  rotating frame. In Fig. 1(a) we show the energy level
tion point associated with theesoscopioature, and extract diagram of the Duffing oscillator in the absence of driving.
a new scaling exponent with the driving distance. To the second-order perturbation of the quartic potertti,
Model and Qualitative Considerations- The Duffing os-  energy level reads
cillator in the presence of driving is described by 1 a4 2ne 1)
y(2n° + 2n +
Hs(t) = p?/2m+ mQ*x®/2 - yx* + F(t)x. (1) En=|nt 3o 48 2. @

Related to the Josephson bifurcation amplifier (JBA}) =  Accordingly, the adjacent level spacinjEn = En — Eq-1 =
2Fq cosft) describes the microwave driving; and noticeably, (1-3yn/N)hQ, decreases with. This property, together with
the driving frequency should satisfy < Q. Other parame- a negative frequency detuning (e.§.= 1 — v/Q = 0.065
ters associated with the JBA circuit read:= (7/2€)°C, Q =  in later simulation), would result in the bistability befaw
V2el./(ihC), Fo = hl/(2€),andy = mQ?/24; with C the ca-  Qualitatively speaking, for weak driving, the oscillatoillw
pacitance of the Josephson junctitythe critical current,and largely remain in the initial ground state; for strongewarg,

I the driving current. In this contexx,denotes the phase dif- however, it will be increasingly excited to high energy stat
ference across the Josephson junction. In addition, thé Dufaroundn®, roughly determined bjiv = AE,, leading ton* =

ing oscillator is affected by environment, which togethéhw  N6/(3Y).

the coupling can be modelled Big = Zi(ma)ile?/2+ pi2/2m) We notice that an alternative (a better) way to inspect the
andH, = —x}; 4ix Typically, the spectral density of the quantum dynamics is in a rotating frame with the driving fre-
bath, J(w) = 7 ¥ 2%6(w — wi)/(2Mmwi), in Ohmic case reads quencyy, where the driving field becomes time independent.
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Here Ls(---) = [Hs,(---)] is associated with the DDO
Hamiltonian in laboratory frame, whileg(t,7)(---) =
G(t,7)(---)G'(t,7) is the relevant propagator in Liouvillian
space, withG(t, ) the usual Green’s function given bys.
The interaction Liouvillian superoperatdf; is defined by
Li(--) = [Hi, (-], whereH, = —x¥j1jx; = —xXe de-
scribes the coupling of DDO to environment. The average
in Eq.[3) meang(---)) = treg[(- - -)pe], with pg the thermal
equilibrium density operator of the environment. In labora
tory frame, the driving irHs is time-dependent, which would
complicate the dissipation terms in Hg. (5) and make the nu-

merical simulation difficult. To overcome this difficulty,ew
transform Eq[{b) into the rotating frame

FIG. 1: Energy diagram of the non-driven Duffing oscillator(a)
the laboratory frame, and (b) the rotating frame.

t
) = -inZsp-172 [ drti 06 0E (G ¢ D50

’ (6)
This can be implemented by applying a rotating transformaThe various transformed quantities are defined herp(fs="
tionU(t) = exp(—ivta'a}, wherea (a") is the annihilation (cre- Ufp(tu, js(...) = [UTHsU + inutuy, (-] = [HS,(...)],
ation) operator of the DDO. Dropping fast rotating terms, i. £, (- = [UHU,(-)] = [H.(-9)], and é(t, 7) is the
under the rotating wave approximation (RWA), we obtain  propagator associated witHs. Note that in the rotating
frame the coupling Hamiltonian becomes time dependent, i.e

2 2 2 ~ A i - )
Hs = 5(2i + %mzxz) - rT?Z)/ - (zp_ + %mzxz) + Fox. Hi = -U'XUXe = - Vi/2mQ(a'e™ + ae™)Xe. Inserting
m A4mrQ* \ 2m this result into Eq[{6) yields

®)

In the absence of driving, this rotated Hamiltonian is naityr
diagonal, with the eigenstates of harmonic oscillatgrand

eigenvalues
. 1 3 1\?
En = [n MR (n + _) }MQ’ (4} In deriving this result, the established Markov-Redfield ap
) o ) _proximation has been applied. Accordingly, the spectral
as schematically shown in Fig. 1(b). Interestingly, we findfynction, C(£s), is a Fourier transform of the environ-
here that the'th level is the highest one (noting that la-  ment correlator: C(Ls) = f+°° dtc(t)e" " Lst, and C(t) =

bels the resonance level-pair in the laboratory frame)0Als Tr.[ X (t)Xe(0)pe].

the level spacing in the rotating frame is much smaller than g [7) is the desired equation we obtain in the rotating

its counterpart in the laboratory frame. Then, itis cle@tth frame, on which our numerical simulation will be based. To

the DDO’s dynamics in this rotating frame is governed by therejate it with other work, we first drop the fast oscillating

interplay of Fox-induced transition and environmental dissi- terms in Eq.[{7) under the rotating wave approximation. Then

pation. More interestingly, in the presencef@jx, we can e assume furthertearmonicapproximation:£sa ~ —hsQa,

diagonalize the transformed Hamiltoniats of Eq.(3) and  and fsa’ ~ hsQa'. As a result, the well-known Lindblad-

denote the eigenstates By. It is found that a one-to-one ype master equation is obtained:

correspondence exists betwegnandy,, which can be un-

derstood in the spirit of adiabatic switching. Thég, andyo  j(t) = —ii 1 Lsp(t) + « {[1 +n(Q)]D[alp + n(Q)Z)[aT]lb},

can be analogously regarded as tattractors which direct 8)

the evolution, determine the final state, and are respansibl

to a bistability behavior. In the remained part of this work, \yhere the Lindblad superoperator is defined throp]p =

the two attractors will be termed also as small amplitudeesta a5t — L{ATA, p}. In obtaining Eq[(B), the explicit form of the

(SAS) and large amplitude state (LAS). spectral function has been used, i®&w) = 2[1+ n(w)]J(w),
Master Equation in Rotating Frame- Following Ref. EZ], wheren(w) is the Bose function. We notice that in Ref. [9] the

in laboratory frame as usual, a weakly damped DDO can bstudy of quantum activation in this same system was based on

well described by the master equation for its reduced densitEq. (8), together also with a few techniques and approxima-

matrix: tions in later analysis.

‘ . . . . .
Con 1 D) ; Quantum Shift of Bifurcation Poirt- For comparative
p(t) = —ih=Lsp(O)- j; dr( Li(G(L 1)L (NG (T 1)p(D). purpose, we first outline the result from a classical anal-
(5) ysis. Itis well known that the classical DDO obe‘ﬂ; [4]:

0 = i £55(0) - i@’ - Ls +v)ap]
+[a, (C(-Ls - v)a")p] + €2"'[a", (C(-Ls - v)a")7]
+e2a, (C(-Ls + v)a)p] + H.c). (7



mX + mQ2x + mkx — 4yx® = —F(t). Define dimension- 12 ' T Fe T 2
less variablexr = Qt, w = v/Q, f = +/4y/(m3Q8)2F,, | i
Q = Q/k, andA = -2Q¢; and introduce rotating transforma- 10 - . L '
tion x(r) = [X(1)€"7/2 + c.c.]/ \/4y/(mQ2). Then the slowly r i 108
. . . . 0.8 B o |
varying amplitudex(r) of the DDO in the rotating frame sat- ~ L b Jo6 —
isfies the following equation of motion (EOM) [4] X 0.6 j 04
L o 0.
j o H
dx [A-i 3 _,]. 0.4 i N b o
2|—=[—+—|x|2 %— f. 9) ; | 5 02
dr Q 4 0.2 5 L 4% i 1%
Stationary solution of this equation yields a bistabilifya-d 0.0 Ir °oo° 1-0.2
gram as shown in Fig. 2(a). Moreover, two critical driv- N N P
ing strengthsfg(A) and fz(A), can be obtained in the limit 00 05 1.0 00 05 10 00 05 1.0
Q> 1. F/F, F/F,
A3/2 A2 A2\32M? FIG. 2: (a) and (b): Bifurcation diagram of the DDO based on
feg(A) = — [1 + 3—3 + (1 - —Z) } fe, (10)  Eq.[@), (a) without and (b) with accounting for the quantuinifts
2A¢ A A of the effective detuning [see Ef.{12)]. The dashed véftiices in-

dicate the respective bifurcation points. (c): Resultmﬂrmmerigal
whereA¢ = — V3, andf, = 25/2/(3%4VA3). Accordingly, af-  simulation ofx(t) =Tr{x5(t)] based on Eq[{7). We choose th¢) at
ter restoring dimensional units, the critical driving sigghs ~ t = 160= (27/Q) to represent the steady state amplitud&he cir-
readFgg = MO0/ (16))fs 5. In what follows, we will fo- cles and squares stand for results from different initiattons (i.e.

. L the SAS and LAS), from which we observe the hysteresis behavi
cus on the most important upper po, which is to be re- Here, again, the dashed vertical line indicates the bifiongoint

denoted a$ and taken as the unit of the driving force. in (b), say, 077F. which agrees well with the numerical simulation.
Unfortunately, inmesoscopicegime, as we will see later, Parametersc = 0.01, T=5mK, § = 0.065,8 = 12.

the critical driving strength=. determined above does not

match the result from numerical simulation. It would thus

be desirable to develop guantumversion of Eq.[(P), in or- and (b), for comparative purpose, we plot the Wigner furmctio
der to reach consensus with the direct numerical simulatiorsimply usingos = |a){al, where the coherence numbeis
Following Ref. [13], given that the reduced density mateks determined fronx,”based on the steady-state solution of the
isfies the Lindblad master equatid (8), in Heisenberg péctu amplitude EOM without and with accounting for the quan-

the operatoa should obey an equation of motion as follows tum shift, while in Fig. 3(c) and (d) we show the results from
direct simulation. We see that in mesoscopic regime it is es-

alt) = —in Ya, Hs] + KZ_)[a]a = -ih Ya, |-”|S] - f& (11) sential to account for the quantum shift, in order to make the
2 amplitude EOM agree with numerical simulation, as indidate

where theduakLindblad superoperator is defined through PY the dashed verticallines in Fig. 3. (The vertical lineacke
D[AJa = ATaA-L{ATA a}. Here we assumed the low temper- sub-figure indicates the valid* center of Wigner function of
ature limitn(Q) i< 1. Moreover, belowF. and starting with  the SAS.) Itis then observed that the classical result in Fig
a small-amplitude state, the subsequent evolution wigdlr ~ 3(&) has considerable deviation. Moreover, from Fig. 3(el) w
remain in a coherent state. Then, in coherent state regigesend€t an insight that starting on from certain transient stege
tion and relating the coherence numiagt) with a complex oscillator evolves into a mixed state, which can be formally
amplitudex(z) = v/8y/(MQ2a" (z)/ Vi, from Eq.[I1) we ob-  €XPressed as
tain the same EOM as E@I(9) fof7), but with a quantum
mechanically shifted detur%jn(g) “ ! WO p.D) = Ps(OWs(x p) + PLOWL(x p. 1) (13)

o ~ Here,Ws(x, p) andW_(x, p,t) are the Wigner functions of the
A =-2Q(5 - 3y/R), 12) mUS
A ¥IN) (12) intrinsic SAS and LAS, say, the two attractors, whitg(t)

instead of theslassicalresultA = —2Qs. In classical casey ~ andPL(t) are the respective occupation probabilities.
is large, e.g.8 ~ 366 as we estimated from the experimental Tunneling Rate and Scaling ExponertBased on the state
circuit parameters, which makes the quantum shift nedligib structure of Eq[{13), we formulate a way to determine the
small. Nevertheless, in mesoscopic regime, &g~ 12 in  dynamic tunneling rate from SAS to LAS as follows. Orig-
our case, this quantum shift is remarkably large, as shown imally, in laboratory frame, this rate can be extracted from
Fig. 2(b) and (c), where the critical driving strength mot@s the occupation probability of the SAS via = —dPs(t)/dt,
0.77F¢, Below we illustrate the quantum shift in phase spacewhile Ps(t) = (a€"p(t)la€""). Note that here we use the
in terms of the Wigner function representation. fact that the SAS in laboratory frame isretating coherent
The Wigner function is defined as: W(x,p,t) =  state. More conveniently, transformed to the rotating #am
1/(7h) f::(x+ Xp(t)|x — Xy expEi2pxX /h)dxX. In Fig. 3(a)  Ps(t) = Tr[psp(t)], wheregs = UT(Hps(U() = |a)al is
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but a rate process from SAS to LAS. Moreover, the success of
a single exponential fit indicates a dominant forward preces
from SAS to LAS. That s, at the early escape stage, the back-
ward process from LAS to SAS is largely not happening. This
is similar to the situation in determining the tunnelingerat
double-well problem, where the backward tunneling process
is negligibly small at certain early time stage.

Therefore, using this numerical approach we can extract the
dynamic tunneling ratel’t) from SAS to LAS. Further, fol-
lowing Ref. [9], we assum&; = Ce /. In this proposed
formula, C is an irrelevant prefactor, while the exponential
factore™™/ originates from arffectiveactivation process. In
limiting cases, such as for classical thermal activatiens
the activation energy andl the temperature; while for quan-
tum tunneling through a barrieR is the tunneling action and
Athe Plank constant. In our present case, itis a generaligati
i.e., dynamic-quantum-tunneling dominated but also ttaérm
activation involved. So, we may vieRas an effective activa-

tion energy and an effective Planck constant or temperature.
Very interestingly, it was found in Reﬂ[Q] that the dynamic
tunneling actionR displays a perfect scaling behavior with
the driving distance to the critical point, which is definedd a
n = F¢—F3. Quantitatively, it was foun& oc * ande = 3/2.
Now, for the mesoscopic DDO under consideration, owing to

FIG. 3: (a) and (b): Wigner function of the coherent stateedet
mined from the steady-state solution of Ed. (9), (a) withand (b)
with accounting for the quantum shift. (c) and (d): Wignendu
tion from numerical simulation based on Hd. (7)f at 40 = (27/Q)
and 160« (27/Q), respectively. The dashed vertical line in each sub-
figure indicates the validx” center of Wigner function of the SAS.

Parameterst = 0.01, T=5mK, § = 0.065,N = 12, andF, = 0.7F..

the quantum shift of the critical point, which moves tG T
under the assumed parameter condition as shown in Fig. 2, we

0 :El:prg::ncgl resul thus define the driving distance by= (O._77FC)2 - F2. Re-
.54 \g=1 057erp0 0147”70.3 markably, for the mesoscopic DDO, in Fig. 4 we demonstrate
Y A by the present precise numerical simulation that the sgalin
20 behavior ofR oc n“ still exists, yet with an alternative scaling
[(lagxponent ofx ~ 1, in stead ofr = 3/2 as found by Dykman
_ I
InR" 2.5 : We noticed that in ReflIi4], scaling behavior of the tran-
10 INR=1.015Inm+2. 146 sition rate with the drivingfrequency(but not the driving
-3.0 o e strength was analyzed to give ~ 1.3 ~ 1.4, by a rough
. fitting from a few experimental data. Meanwhile, in the ex-
-3.5 - periments by Siddiget al. [@], an effective potential with
. . 3/2
7 a barrier height scaled asugyn o [1— (FO/FC)Z] , was
-4.0 T . T . T employed to analyze their measured data by means of the

FIG. 4: Scaling behavior of the dynamic quantum tunnelirtg ra

with the driving distance to the shifted bifurcation poisgy,n =

(0.77F )%~ Fg. Here, the circles are result from numerical simulation, tunneling ratex exp(—

while the linear fit givesr = 1.015 for the tunneling actioR o n".

Inset: an illustrative example of exponential fitting foe thccupation
probability of the SAS, under drivingro = 0.76F;. Parameters:

k =0.01,T=5mK, s = 0.065, andX = 12.

thermal-activation rate exp(—Aug n/kBT). This would re-
sult in a scaling exponent af = 3/2. However, based on this
same effective potential, a rough WKB estimate is seemingly
to give a smaller scaling exponent. That is, from the quantum

JAU? a/h), wherea is an effective

dyn
width of the barrier, one then obtains= 3/4.

Very recently, we performed a real time simulation for the
guantum dynamics of the mesoscopic DDO directly in labo-
ratory frame ], where the driving field was not taken into
account in the dissipation terms. In that study, similatisga

static, ang(t) = UT(t)o()U(t) is the DDO state in the rotat- behavior with almost the same scaling exponent (.ex 1)
ing frame described by Eq.(7).

In the inset of Fig. 4 we show a representatit), ob-

was found. In the present study, more rigorous treatment for
the driving field was carried out through the rotating transf

tained from numerical simulation using Egl. (7) and the for-mation, which enables to fully account for the driving in the
malism outlined above, from which we see that a single expodissipation terms. Moreover, we also highlighted the quiant
nential fit can well characteriZes(t). This indicates nothing shift of the critical driving strength in the mesoscopicineg,



5

in Ref. @] which was accidentally canceled (in numerical [2] I. Siddigi et al, Phys. Rev. Lett84, 207002 (2004); |. Siddiqi
simulation) owing to the extra termé ¥; 27/(2mw?)” in the etal, Phys. Rev. Lettd4, 027005 (2005).
so called Caldeira-Legget model. Quite desirably, however [3] |- Siddiqi et al, Phys. Rev. B3, 054510 (2006).

; ; ; 4] V. E. Manucharyaret al,, Phys. Rev. B'6, 014524 (2007).
both studies of Ref|Ii6] and the present one give consisten 5] A. Lupascuet al, Nat. Phys3, 119 (2007).

.result. Th_is strongly impligs thatthe scaling e?(p0|1em3/2 . [6] I. Katz, A. Retzker, R. Straub, and R. Lifshitz Phys. Riestt.
is non-universal, and = 1 is an alternate scaling exponentin 99, 040404 (2007).

the mesoscoic regime. Further investigation for the dygami [7] v. Peano and M. Thorwart, Chem. Ph22, 135 (2006).
guantum tunneling behavior of DDO from a mesoscopic to [8] M. Marthaler and M. |. Dykman, Phys. Rev. &3, 042108
the usual classical regime is extremely important, despée (2006).

greatly increasing complexity in real time simulation. hi _[9] M. I. Dykman, Phys. Rev. &5, 011101 (2007)
will be the task of our forthcoming research. [10] I(.2080e7r)ban and F. K. Wilhelm, Phys. Rev. Left9, 137001
To summarize, in a mesoscopic regime we investigated the ;1 1 °” Armen and H. Mabuchi, Phys. Rev.78, 063801 (2006).

dynamic quantum tunneling of the driven Duffing oscillator. 115] viging van, Phys. Rev. &8, 2721 (1998).

Owing to the mesoscopic nature, we found that the criticaj13] E. Jooset al, Decoherence and the Appearance of a Classical
driving strength has a quantum shift, and the tunneling ac-  World in Quantum Theor{Springer-Verlag, 2nd Ed., 2003), p.
tion (exponentially extracted from the tunneling rate)ibith 332.

a perfect linear scaling behavior with the driving distatme [14] C. Stambaugh and H.B. Chan, Phys. Rev.3172302 (2006).
the quantum shifted critical point. [15] I. Siddiqgi, R. Vijay, F. Pierre, C.M. Wilson, M. Metcaf

C. Rigetti, L. Frunzio, and M.H. Devoret, arXiv:condmat/

0312623; |. Siddigi, R. Vijay, F. Pierre, C.M. Wilson,

L. Frunzio, M. Metcalfe, C. Rigetti, and M.H. Devoret,
Acknowledgements.Fhis work was supported by the Na- arxiv.cond-mat/0507248. ,

tional Natural Science Foundation of China (No. 1087417616 Lz.g.l(()Suo, Z.G. Zheng, and X.Q. Li, Europhys. Le30, 10011

10875011 and 10575010), the Major State Basic Research (2010

Project (No. 2006CB921201), and the Foundation of Doctoral

Training (No. 20060027009).

[1] I. Kozinsky, H. Postma, O. Kogan, A. Husain, and M. Roykes
Phys. Rev. Lett99, 207201(2007).


http://arxiv.org/abs/cond-mat/0507248

