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Depinning of kinks in a Josephson-junction ratchet array
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We have measured the depinning of trapped kinks in a ratchet potential using a fabricated circular
array of Josephson junctions. Our ratchet system consists of a parallel array of junctions with
alternating cell inductances and junctions areas. We have compared this ratchet array with other
circular arrays. We find experimentally and numerically that the depinning current depends on the
direction of the applied current in our ratchet ring. We also find other properties of the depinning
current versus applied field, such as a long period and a lack of reflection symmetry, which we can
explain analytically.

PACS numbers: 74.50.+r, 05.40.-a, 85.25.Na

I. INTRODUCTION

Disorder and noise are not always undesirable in phys-
ical systems. Inhomogeneity has been shown to control
certain types of spatiotemporal chaos [1], while noise can
lead to an enhancement of the signal-to-noise ratio be-
cause of stochastic resonance [2]. Another more recent
counterintuitive result is that of transport of a Brown-
ian particle in a ratchet potential [3]. Though initially
proposed as a model for molecular motors in biological
organisms [4], ratchets can also serve as a model to study
dissipative and stochastic processes in nanoscale devices.

A ratchet potential is a periodic potential which lacks
reflection symmetry (in 1D V (x) 6= V (−x), see Figure 1).
A consequence of this symmetry breaking is the possibil-
ity of rectifying non-thermal, or time correlated, fluctua-
tions [5]. This can be understood intuitively. In Fig. 1, it
takes a smaller dc driving force to move a particle from
a well to the right than to the left. In other words, the
spatial symmetry of the dc force is broken. Under an
ac drive (so-called “rocking ratchets”) or time-correlated
noise, particles show net directional motion in the small-
est slope direction. This effect can be used in devices in
which selection of particle motion is desired.

Because of this effect, ratchet engines have been pro-
posed as devices for phase separation [6], and very re-
cently as a method of flux cleaning in superconducting
thin films [7]. A ratchet mechanism has also been pro-
posed as a method to prevent mound formation in epi-
taxial film growth [8].

Josephson junctions are solid state realizations of a
simple pendulum. By coupling them, it is possible to
make a physical realization of model systems such as the
Frenkel-Kontorova model for dislocations [9,10] or the 2-
D X-Y model [11] for phase transitions. In particular, a
parallel Josephson array (see Fig. 2) is a discrete version
of the sine-Gordon equation and it has been used to ex-
perimentally study soliton (usually referred to as kinks,
vortices or fluxons) dynamics on a discrete lattice [10].

In parallel arrays, kinks behave as particles in which
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FIG. 1. Example of a ratchet potential. The particle sitting
on the well requires less force to move through the first peak
to the right than to move to the left. Therefore, there is a
preferred direction of motion.

the idea of Brownian rectification can apply. The applied
current is the driving force. If the kink experiences a
ratchet potential, then the current needed to move the
kink in one direction is different than the current to move
it in the opposite direction.

In this paper, we will show that we can design almost
any type of 1D pinning potential in a parallel Josephson
array by choosing an appropriate combination of junction
critical currents and plaquette areas. Indeed, it has been
shown [12] that two alternating critical currents and pla-
quettes areas are enough to provide a ratchet potential
for fluxons. As we will show below, this is not the only
possible design for a ratchet potential.

With only an ac driving current these arrays show dc
voltage steps of stability at multiples of the external ac
drive amplitude. This occurs when the equivalent ac
driving force becomes commensurate with the period of
the ratchet potential. This behavior could open the pos-
sibility of using these arrays for a voltage standard device
or a microwave detector without a dc bias current. More-
over, the same ideas of flux cleaning underlying reference
[7] could be applied to 2D arrays using the designs de-
scribed here.
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The paper is organized into 5 sections. Section II in-
troduces the theoretical framework for the study of an
inhomogeneous parallel Josephson arrays. We find that
inhomogeneous arrays present a long periodicity with re-
spect to the number of kinks in the array. To test the
theory, we have designed four different Josephson junc-
tion rings and measured the depinning current of the ar-
ray versus the applied magnetic field. The experimental
results are shown in section III. In section IV we discuss
some of the properties of the model and show that they
agree well the experimental results. We also show that a
combination of three different critical current junctions
is sufficient to design a ratchet potential. In section V
we present the conclusions of our work and propose a
number of new experiments.

II. THEORETICAL FRAMEWORK

A. Circuit model

Figure 2 shows the circuit diagram for an array of
Josephson junctions. Each junction is marked by an
“×” and we will connect N junctions in parallel with
short wires as shown. Coupling of the junctions occurs
through the geometrical inductances of the cells. We
will neglect all mutual inductances and consider only the
self-inductance of each cell Lj. The induced flux in each
cell is then Lj times the mesh current of the cell which
in this simple geometry can be easily seen to equal the
current through the top horizontal link Ij

b . We will use
Iext for the uniformly applied external bias current per
junction as shown in Fig. 2. We then define the mesh
current as the current passing through this top horizon-
tal wire. With this definition we can place the loop self-
inductance Lj on the top horizontal link. We emphasize
that this inductance is not the wire inductance, but the
self-inductance of the cell so that only one such element
is needed per cell.

The junctions will be modeled by the parallel com-
bination of an ideal Josephson junction with a critical
current of Ij

c , a capacitor Cj , and a resistance Rj . The
ideal Josephson junction has a constitutive relation of

. . .

. . .

Iext

Ij−1
c

Lj−1

Ij
c

Lj

Ij+1
c

Lj+1

Ij+2
c

. . .

. . .

FIG. 2. Circuit diagram for an inhomogeneous parallel
Josephson array. Each junction has a critical current Ij

c and
each cell has an inductance of Lj .

Ij = Ij
c sinϕj where ϕj is the gauge-invariant phase dif-

ference of the junction. When there is a voltage across
the junction, vj , then vj = (Φ0/2π)dϕj/dt. Since we will
have N parallel junctions, in our array j = 1 to N .

The circuit equations result from applying current con-
servation and flux quantization [13]. Current conserva-
tion at the top node of junction j yields

Cj v̇j +
vj

Rj
+ Ij

c sinϕj = Iext + Ij
b − Ij−1

b (1)

Flux quantization of cell j yields

Φ0

2π
(ϕj+1 − ϕj) = Φj , (2)

where Φj is the total flux in cell j.
Due to the linearity of Maxwell’s equations, Φj can be

decomposed into two parts: the induced flux Φj
ind, and

the external flux Φj
ext which is the applied fieldBext times

the cell area Aj . The induced flux is simply Lj times the
mesh current of the cell, which has been defined to equal
Ij
b . Then,

Cj v̇j +
vj

Rj
+ Ij

c sinϕj = Iext + Fj

+
Φ0

2π

[

1

Lj
(ϕj+1 − ϕj) +

1

Lj−1

(ϕj−1 − ϕj)

]

(3)

with Fj = (Φj−1

ext /Lj−1 − Φj
ext/Lj).

This circuit is realizable by varying cell and junc-
tion areas. The cell area Aj will determine the self-
inductance. If W is the width of the cell and ∆xj is
its length then Lj ≈ µ0∆xj as long as W ∼ ∆xj . Since

Φj
ext = W∆xjBext, we see that Φj

ext/Lj ≈ WBext/µ0

and is approximately constant for all j. The junction
area determines Ij

c , Cj , and Rj but they are not inde-
pendent since the capacitance and critical current are
linearly proportional to the junction area and the resis-
tance is inversely proportional to the junction area. The
Ij
cRj product and the Ij

c/Cj ratio of each junction are
constant for every junction.

We will normalize all the currents by I⋆
c = max(Ij

c )

and time by τ =
√

Φ0C⋆/2πI⋆
c where C⋆ = max(Cj).

Then,

hjN (ϕj) = iext + fj

+λj(ϕj+1 − ϕj) + λj−1(ϕj−1 − ϕj) (4)

where N (ϕj) = ϕ̈j + Γϕ̇j + sinϕj [14]. The ratio
of critical currents is hj = Ij

c/I
⋆
c and the inductances

are normalized as λj = Φ0/2πI
⋆
cLj . Finally, fj =

2πf(λj−1Aj−1/A⋆ − λjAj/A⋆), where f is the frustra-
tion BextA⋆/Φ0. We have used A⋆ = max(Aj).

To complete the system we need to specify the bound-
ary conditions. There are two types: open, if the junc-
tions form a linear row; and periodic, if the junctions
form a closed ring.
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For the open boundary condition we set λ0 = A0 = 0
in Eq. 4 for junction j = 1. At the other end of the array,
j = N , we set λN = AN = 0.

For the periodic boundary conditions we let λ0 = λN

and A0 = AN . Furthermore, a circular system poses a
topological constraint on ϕj since they are angular vari-
ables and have 2π periodicity: ϕj+N = ϕj + 2πM . In
particular ϕ0 = ϕN −2πM and ϕN+1 = ϕ1 +2πM . Here
M is referred to as the winding number and represents
the number of kinks in the system.

In this paper we will discuss systems with periodic
boundary conditions. Since the product λjAj is roughly
constant throughout the array we consider fj = 0 in the
simulations of the rings we present [15]. We have checked
numerically that for the experiments reported here, these
terms do not significantly alter our results.

B. Symmetries

The system of equations (4) presents an odd inver-
sion symmetry under the change M → −M , ϕi → −ϕi,
and iext → −iext as is expected from Maxwell’s equa-
tions. The response of the array to an external current
will reflect this symmetry. In particular, Idep(−M) =
−Idep(M). Here, Idep is the maximum value of the ap-
plied current for which a solution ϕ̇j = 0 can not be sus-
tained in the presence of a positive or negative external
current. To refer to this odd inversion symmetry we will
use the notation Idep−(−M) = Idep+(M) where Idep±

refers to the absolute value of the depinning current as
the external current is increased or decreased from zero.

Another symmetry of the equations refers to the peri-
odicity of the system when varying the number of kinks
in the array. In the case of a regular ring (all the cells and
junctions are equal) this period T is equal to the number
of junctions, N [16].

A method of calculating the periodicity in M for the
general case studied here is to use the simple transforma-
tion

ψj = ϕj + 2πmj (5)

where mj are integers. The equations of motion in the
new variables are the following

hjN (ψj − 2πmj) = λj(ψj+1 − ψj) + λj−1(ψj−1 − ψj)

−2πλj(mj+1 −mj) − 2πλj−1(mj−1 −mj) + iext + fj (6)

where N (ψj − 2πmj) = N (ψj). The new boundary con-
ditions are

ψj+N = ψj + 2π(M + T ) (7)

where T = mj+N − mj. Thus after the transformation
(5) we recover the same equations as (4) but with the
number of kinks equal to M + T so that the equations
are periodic in the number of kinks in the array with a
period T .

To calculate T we take out the mj dependence on
the right hand side of Eq. 6 by choosing mj such that
λj(mj+1−mj)+λj−1(mj−1−mj) = 0. Remarkably, the
resulting period is independent of hj and only depends on
the ratio between the consecutive λ′s. In the appendix
we find a formula for the periodicity in the number of
kinks for the general system.

Here we are going to develop the case of a ring that
was measured: a ring with an even number of junctions
and with alternating cell areas. In this case there are
only two λ′s involved. Let λj = λ1(λ2) for j odd(even)
and λ1/λ2 = p/q. If we let (mj−1 − mj) = −q and
(mj+1 −mj) = p (for even j for instance), we satisfy the
above condition.

The period is calculated from the new boundary con-
ditions:

T = mN+1 −m1 = (p+ q)N/2. (8)

For the regular array p = q = 1 and we recover the
expected result of T = N . Also, we note that in order
to have a finite period we need the ratios between λ′s to
be rational numbers. This condition will almost never be
satisfied in a real experiment. Thus we see that a simple
design of alternating cell areas can result in an arbitrarily
long period (that could be equal to ∞) when varying the
number of kinks in the array.

A similar calculation can be made for the case of an
open array. As no topological constraint for the phases
can be imposed, the number of kinks in the array does
not appear in our equations. We consider instead the
periodicity of the system with the external field. In this
case, the periodicity depends on the ratio between the
cell areas instead of the ratio between the inductances.
It can be shown that the period in f = BextA⋆/Φ0 is
equal to q, where A2/A1 = p/q and A1 = A⋆.

III. EXPERIMENTAL RESULTS

We have designed and fabricated the four different
rings (a), (b), (c) and (d) schematically shown in Fig. 3.
The rings are fabricated with a Nb-Al2Ox-Nb tri-layer
technology with a junction critical current density of
1 kA/cm2. The current is injected through bias resis-
tors in order to be distributed as uniformly as possible.
We measure the dc voltage across a single junction [17]
and each ring consists of N = 8 junctions.

Fig. 3(a) is a regular ring with equal critical currents
and plaquette areas. Fig. 3(b) has alternating critical
currents with a ratio of 0.43. Fig. 3(c) has alternat-
ing plaquette areas with a ratio of λ′s of 1.8. Finally,
Fig. 3(d) has both alternating critical currents and alter-
nating plaquette areas. It will be shown experimentally
that only (d) has a ratchet pinning potential.

The outer diameter of each ring is 36µm with an area
∼ 4070µm2. The inner diameter is 18µm and it con-
sists of an island of niobium that is used to extract the
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(c) (d)

(a) (b)

FIG. 3. The four different measured arrays: (a) regular
ring, hj = 1 and λj = 0.11 (b) ring with alternating critical
currents, hj = 1 and hj+1 = 0.43, λj = 0.043, (c) ring with
with alternating cell area, hj = 1, λj = 0.08 and λj+1 = 0.15
(d) ratchet ring with alternating critical currents and cell ar-
eas, hj = 1, hj+1 = 0.43, λj = 0.035, and λj+1 = 0.06. These
parameters are calculated at T = 0K.

applied current. The rings also have either small junc-
tions (3×3µm2) or alternating small and large junctions
(4.25 × 4.25µm2). The designed Ic ratio is 0.5, but in
practice the junction areas have rounded corners and ex-
perimentally we find the Ic ratio to be 0.43. We vary the
cell inductance by alternating the cell area. In this case,
the angles of the cells are 60◦ and 30◦.

Both Γ and λ are mostly determined from material
properties of the samples and the junction Ic. Since Ic
varies with temperature, both parameters can be exper-
imentally controlled to some extent. In general Γ and
λ can be made larger by up to a factor of 10 by rais-
ing the sample temperature. As the temperature reaches
Tc, however, most of the measured features become too
smeared to be distinguished.

The temperature dependence of Ic is modeled well
by the standard Ambegaokar-Baratoff relation with
Ic(0)Rn = 1.9 mV [18]. We find that Ic(0) = 95µA for
the small junctions and Ic(0) = 224µA for the larger
junctions. We will normalize all our parameters with
the largest Ic of a given ring. From the above values,
we can estimate Γ(0) = 0.17 which, due to the constant
IcRn product, is independent of junction area. The in-
ductances are estimated from a numerical package that
extracts inductances from complex 3-D geometries of
conductors [19]. In this sample the loop inductance is
L = 23.5 pH for the small cells and L = 42.6 pH for the
large ones [arrays (c) and (d)]. For the cells in rings (a)
and (b) L = 33.5 pH. To calculate dimensionless pen-
etration depth λ(0) = Φ0/2πLIc(0) we use Ic = 95µA
if the ring only has small junctions [(a) and (c)] and for
those rings that also have large junction [(b) and (d)] we
use 224µA.

The current-voltage, IV, curves are measured by ap-
plying a perpendicular magnetic field of 0 to 300 mG
through a magnetic coil that is mounted on the radiation
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0.2

(d)

V (mV)

I (
m

A
)

FIG. 4. Sample IV curves for the four rings considered in
Fig. 3 ((a) corresponds to Fig. 3(a) and so on). Rings (a),
(b), and (c) have symmetric IV’s as the current is swept in
the positive and negative direction. The measurements corre-
spond to M = 1. Ring (d) is the ratchet ring as can be seen
from the difference in the depinning current in the positive
and negative direction.

shield of our probe. We heat the sample above Tc = 9.2 K
and cool down to a temperature T < Tc. We cool our
ring in the presence of a flux that corresponds to approx-
imately M flux quanta. Flux quantization will cause the
expulsion of extra flux so that the ring contains exactly
M flux quanta after undergoing a superconducting tran-
sition.

Figure 4 shows typical IV’s for the different rings
shown in Fig. 3. Fig. (a) is for a regular ring when
M = 1. The IV is symmetric with respect to applied
current direction. As the current is increased from the
superconducting state the voltage remains at zero. We
define the depinning current when the array has a voltage
greater than a threshold of 1.5µV. Our computer con-
trolled equipment also corrects for any voltage drift of our
amplifiers. As the current increases beyond the depin-
ning value, there is a sequence of voltage steps where as
the current increases the voltage remains relatively con-
stant. There are at least two mechanisms that can cause
these steps: resonances between the circulating kink and
radiated linear waves, and instabilities of the whirling
branch [10]. We have verified that the voltage positions
correspond to these two mechanisms.

Figure 4(b) is a ring with alternating critical currents
when M = 1. We again see that the IV is symmet-
ric with respect to current direction and that there are
voltage steps. These steps are of the same origin as in
the regular ring. However, in this ring the linear disper-
sion relation that determines the resonance condition is
split into two branches. This splitting is analogous to
the optical and acoustic branches of a crystal with a two
atom basis. Fig. (c) is a ring with alternating areas. The
characteristics are similar to that of ring (b) including a
splitting of the linear dispersion relation. Since for these
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FIG. 5. Measured critical currents vs. applied flux for
a regular ring. To calculate applied flux, we multiply the
applied field by the ring area. A constant offset has also
been subtracted to account for the ambient magnetic field.
The measurement was done at T = 8.8 K with Γ ≈ 0.5 and
λ ≈ 0.9.

three rings Idep+ = Idep−, we can infer that the kink is
traveling in a symmetric pinning potential as theoreti-
cally expected.

Figure 4(d) shows an IV for the ring with both alter-
nating critical currents and areas. The IV of this ring
is qualitatively different from the other rings due to the
ratchet nature of the pinning potential. We see that Idep

in the positive direction is ∼ 65% of the depinning cur-
rent in the negative direction. We also note that there
are different voltage steps excited in the up and down
direction. The steps are of the same nature as the ex-
plained resonances above and there is also a splitting of
the dispersion relation. In the rest of the article we will
focus on Idep measurements as a signature for ratchet
behavior in our arrays.

Figure 5 shows a measurement of the depinning current
vs. applied flux for the regular ring shown in Fig. 3(a).
The temperature is 8.8 K, Γ = 0.5 while λ = 0.9. Each
plateau represents a different number of kinks trapped in
the ring. This is a direct result of flux quantization: The
ring only allows integer number of flux quanta even if we
have applied slightly more or less flux. Since N = 8 and
this ring has a symmetric pinning potential, we expect
Idep+ = Idep− (no ratchet effect), and a period of 8 as
can be seen in the measurements. We also see that Idep

has a reflection symmetry about M = T/2.
When we alternate the critical currents in our ring we

expect the same qualitative features of Idep as in the
regular ring. Figure 6 shows a measurement of the de-
pinning current vs. applied flux for the ring shown in
Fig. 3(b) which has alternating critical currents. There
are plateaus corresponding to different values of M just
as in the regular ring and there is up-down symmetry
and periodicity with M = 8 as expected, and a reflection
symmetry about M = 4.

If we make all the critical currents constant and vary

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

Φ
app

/Φ
0

I de
p/N

I c 

FIG. 6. Measured critical currents vs. applied flux for a
ring with alternating critical currents. The applied flux was
calculated as described in Fig. 5. The measurement was done
at T = 9K with Γ ≈ 0.7 and λ ≈ 0.9.
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Φ
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/Φ
0

I de
p/N

I c 

FIG. 7. Measured critical currents vs. applied flux for a
ring with alternating cell areas. The applied flux was calcu-
lated as described in Fig. 5. The measurement was done at
T = 9K with Γ ≈ 0.7 and λl ≈ 0.7 and λs ≈ 1.3.

only the cell area as in Fig. 3(c), then we alternate the
values of λ but the pinning potential remains symmetric.
At T = 9 K, λl for the large cell is ≈ 0.7 and λs for the
small cell is ≈ 1.3. The result of measuring Idep is shown
in Fig. 7. As expected the data is symmetric with respect
to current direction so kinks are not traveling in a ratchet
pinning potential. However, unlike in the previous rings,
Idep is no longer periodic with M = 8. As shown in
section II B, the period will depend on the ratio of the
inductances. For our geometry L1/L2 ≈ 1.8 or 9/5 which
implies a period of 56. However, in any physical array
the inductance ratio is rarely going to be exactly a ratio
of small numbers. Just on physical grounds we expect a
very large period, if any, in the experiments. In Fig. 7 we
have measured the depinning current from M = −15 to
M = 15 and though there is some apparent self-similarity
in the data, it is not periodic. Though there is no period,
we can still prepare our ring systematically with M = 1,
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FIG. 8. Measured critical currents vs. applied flux for a
ratchet ring. The applied flux was calculated as described in
Fig. 5. The measurement was done at T = 8.8 K with Γ ≈ 0.5
and λl ≈ 0.3 and λs ≈ 0.6. The line varying about Idep = 0
is the difference between Idep+ and Idep−.

2, 3, etc. by counting the plateaus. But instead of M = 1
and M = 1 +N yielding the same dynamical system as
in the regular ring, they are now distinguishable.

When we alternate both the critical current and the
cell inductances as in Fig. 3(d), it is possible to form a
ratchet pinning potential (see Figure 1). Fig. 8 shows
an experiment on such a ring. Since the period depends
on the inductance ratio, we experimentally expect a very
long period. This is borne out by the data as there is no
sign of a period in the range from M = −15 to 15. We
also expect that Idep+ 6= Idep− since the kink is travel-
ing in a ratchet pinning potential. The line shown in the
center of the figure varying about Idep = 0 is the differ-
ence between the Idep+ and Idep−. Clearly, the force to
move kinks in one direction is different than the force to
move it in the opposite direction. The magnitude and
direction of this ratchet effect depends on the number of
kinks in the system.

As a further test of the symmetries and periods of the
experiments, we have numerically integrated Eq. 4 us-
ing a variable step size explicit 4th order Runge-Kutta
method. The kink numberM is set in the boundary junc-
tions. The initial conditions are ϕj = 2πMj/N . That
is, we stretch the kinks across the full array at the start
of the simulation. We then sweep the applied current in
the positive direction until a voltage develops in the ar-
ray and calculate Idep+. We repeat the procedure while
sweeping the current in the negative direction to calcu-
late Idep−.

Figure 9 shows the simulations with parameters similar
to those of the experiments. Both Fig. 9(a) and Fig. 9(b)
have alternating λ′s with λj = 0.3 and λj+1 = 0.54
for j odd. The inductance ratio is 0.54/0.3 = 9/5 so
using Eq. 8 the expected period is T = 56. We find
this period in the simulations. Fig. 9(a) has hj = 1 so
we expect the depinning current to be up-down sym-

−1

0

1 (a)

0 10 20 30 40 50
−1

0

1 (b)

M

I de
p/N

I c

FIG. 9. (a) Simulation for N = 8 ring with only alternating
λ’s of λl = 0.3 and λs = 0.54, and hj = 1. (b) Simulation for
N = 8 ratchet ring with both alternating λ’s of λj = 0.3 and
λj+1 = 0.54 and critical currents of hj = 1 and hj+1 = 0.43.
Line shown about Idep = 0 is the difference between Idep+

and Idep−.

metric, i.e. no ratchet effect, as can be seen in the
data. Since we always have an odd inversion symme-
try [Idep+(M) = Idep−(−M) = Idep−(T − M)], Idep is
symmetric about M = 56/2 = 28. This reflection sym-
metry of Idep about T/2 is generic for any array that is
not ratchet since it is a direct consequence of the up-down
symmetry of the currents. We also find this symmetry in
the experiments of non-ratchet arrays.

Fig. 9(b) has junctions with two alternating critical
currents (hj = 1 and hj+1 = 0.43 for j odd) as well
as two alternating λ’s (λj = 0.3 and λj+1 = 0.54 for j
odd). We now expect the kinks to travel in a ratchet pin-
ning potential so that Idep+ does not equal Idep−, though
Idep still has an odd inversion symmetry. Just as in the
experiments we see that the effect of the ratchet, and
rectification direction, depends on the number of kinks.
Also, Idep does not have the expected reflection symme-
try about T/2. In summary, the simulations show the
same features as the experiments and also agree quanti-
tatively with our predictions.

IV. DISCUSSION

The equations developed in section II describe kink
propagation through a discrete inhomogeneous medium.
In this section we will try to get a better understanding
of the system by briefly analyzing the continuous limit
of our discrete equations. We will then go back to our
discrete equations and approximate the pinning potential
for a single kink. With the analysis, it will become appar-
ent how it is possible to construct many types of pinning
potentials, including ratchet ones, in the inhomogeneous
array.

To derive the continuous limit of the equations, let
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2λ̄j = λj + λj−1 and δλj = λj − λj−1. Substituting in
Eq. 4, we get

hjN (ϕj) = λ̄j∂xxϕj + δλj∂xϕj + fj + iext (9)

where ∂xxϕj = ϕj+1 − 2ϕj + ϕj−1 represents a discrete
Laplacian while ∂xϕj = (ϕj+1−ϕj−1)/2 is just the center
difference of the first order derivative. To arrive at a
continuous limit we expand our variables as Taylor series
in ∆xj . The cell area is W∆xj while the cell inductance
Lj = G∆xj as ∆xj → 0 where G is a geometric constant.
Therefore fj = 0 as ∆xj → 0 and the discrete operators
are replaced by their continuous derivatives

h(x)N (ϕ) = λ(x)∂xxϕ+ ∂xλ(x)∂xϕ+ iext

= ∂x (λ(x)∂xϕ) + iext (10)

If λ and h are constant then we have the usual sine-
Gordon equation. In this case the equations have a re-
flection symmetry and it is not possible to have a ratchet
pinning potential. If λ is dependent on position, the spa-
tial coupling is analogous to inhomogeneous diffusion,
anisotropic heat conduction, or waves traveling in an
anisotropic medium. We also note that fj in the discrete
equations is essentially a perturbation to the continu-
ous model that is dependent on the exact discretization
employed and is usually small. Thus, in order to get a
ratchet pinning potential, there are three ways to break
the reflection symmetry of the equations: with an appro-
priate h(x), λ(x), or a combination of both.

To calculate how the parameters hj and λj determine
the pinning potential, we will use a perturbative ap-
proach. In the limit where all λj → 0 the kink will
approach a step function [20]. A stable kink configu-
ration will have the kink sitting in a potential well in the
middle of a plaquette. Let the kink lie between junction
j and j + 1. The nearest phases to j and j + 1 will be
small in this limit. As an approximation we let ϕj = α
and ϕj+1 = 2π − β and set all the other phases to 0 or
2π. We can solve for α and β by minimizing the static
energy of the system,

H =
∑

j

[

λj

2
(ϕj+1 − ϕj)

2 + hj(1 − cosϕj)

]

. (11)

Here we have ignored the kinetic energy since we are only
concerned with kink depinning [21].

Substituting we are left with

H =
1

2
(λj + λj+1)β

2 +
1

2
(λj−1 + λj)α

2

−2πλj(α+ β) + λjαβ + 2π2λj

+hj(1 − cosα) + hj+1(1 − cosβ). (12)

To solve for α and β we minimize the energy: ∂H/∂α =
0 and ∂H/∂β = 0. The resulting equation is transcen-
dental because it depends on the sine of α and β and
would in general have to be solved numerically. However,

for the systems of small λ′s studied here, the corrections
are small and we can linearize the sine terms (sin(x) ≈ x)
to solve for α and β. We have found that for the param-
eters used in this paper the linear approximation is suf-
ficiently accurate to describe the numerically calculated
pinning potentials.

After linearizing the sine term we are left with

α = 2λjπ(hj+1 + λj+1)/D

β = 2λjπ(hj + λj−1)/D, (13)

where D = (hj + λj + λj−1)(hj+1 + λj+1 + λj) − λ2
j .

To get an idea of how the energy depends on the pa-
rameters, we can substitute back into Eq. 11 and expand
the energy as a series with respect to λj . The result is

H = 2π2λj +O(λ2
j ) (14)

For small λj , the height of the pinning potential when
the kink is the middle of a plaquette is determined by λj .
The second order term has corrections due to hj−1, hj

and λj−1 and λj+1.
As the kink moves through the pinning potential it

will reach a point of maximum energy which in the limit
where all λj → 0 occurs when the kink is on the top
of a junction. In this limit the nearest phases can have
small corrections. We let ϕj−1 = α, ϕj = π − β, and
ϕj+1 = 2π − γ. Again we substitute the corrections and
set all the other phases to 0 or 2π. Minimizing the en-
ergy with respect to α, β, and γ and linearizing the sine
terms yields: α = λj−1(π − β)/(hj−1 + λj−2 + λj−1),
γ = λj(π + β)/(hj+1 + λj + λj+1), and β that can be
calculated from λj−1(π−β−α)−λj(π−γ+β)+hjβ = 0.
If we let every λj be of O(λ) and O(λ) ≪ O(hj), then
we can expand the energy as a series

H = 2hj +O(λ). (15)

For small λ, hj determines the pinning potential height
when the kink is on top of a junction.

The above calculation gives some intuition on the dif-
ferent ways of designing a ratchet pinning potential. For
instance, alternating critical currents in the array will
not produce a ratchet pinning potential since the poten-
tial will still have reflection symmetry. In this paper we
have experimentally studied one possible way of break-
ing this reflection symmetry by using alternate critical
currents and plaquette areas. However, another possi-
bility corresponds to having three critical currents while
maintaining equal areas for all the cells.

To test theses ideas, we have numerically integrated
Eq. 4 for the case of a 9 junctions array. We let hj−1 =
1, hj = 0.5, and hj+1 = 0.25 (with hj+3 = hj) and use
the experimentally realizable value of λj = 0.25 for all j.
We set the kink number M and the initial conditions as
described in the previous section. We then sweep the ap-
plied current in both the positive and negative direction
to calculate the depinning current. Fig. 10(a) shows the
result of the simulation.
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FIG. 10. (a) Simulated depinning currents for N = 9 ring
with λj = 0.25 and hj−1 = 1, hj = 0.5, and hj+1 = 0.25.
Solid lines are the depinning current as current is increased or
decreased while the dashed line is the difference of the up and
down depinning current. (b) Numerically calculated pinning
potential. Symbols are analytical calculation of the energy
when a kink is in a plaquette (squares) and on a junction
(circles). The actual kink position is calculated using Eq. (16).
Dashed line is a guide to the eye.

There are three features in the depinning current vs.
M graph. First, the kink is traveling in a ratchet pin-
ning potential. For M = 1, as the current is swept in the
positive direction the depinning current is different than
when it is swept in the negative direction. Second, the
depinning current has the expected odd inversion sym-
metry; that is Idep+(M) = Idep−(T −M). Thirdly, the
depinning current is periodic with period T = 9. All
these features were predicted by the theory developed
above.

The observation that the kink is traveling in a ratchet
pinning potential can be directly verified by calculating
the pinning potential. We will use both the analysis de-
scribed above and the numerical method used in [12],
which allows us to compute the energy of the kink as it
moves from a maximum to a minimum. The position of
the kink in the array is calculated with

Xcm =
1

2
+

1

2π

N
∑

j=1

j(ϕj+1 − ϕj). (16)

In Fig. 10(b) we have plotted the numerically calculated
pinning potential. We place the kink on the energy max-
imum and perturb it along the unstable direction and
calculate the energy using Eq. (11) and the kink position
using Eq. (16). We have also superimposed the values
of the kink pinning potential calculated from the above
analysis. We have used the linearized results to calculate
the phases and Eq. (11) to calculate the energy. The cir-
cles represent the energy when the kink is approximately
on a junction while the squares are the energy when the
kink is approximately in a plaquette center. We see that

the pinning potential is indeed asymmetric and that the
analysis agrees well with the numerical result.

V. SUMMARY

We have shown that an inhomogeneous parallel
Josephson-junction array provides an ideal experimental
system to study kink motion in different potentials. In
particular, we have designed a ratchet potential in an ar-
ray with a ring geometry. One way of designing a ratchet
potential is by varying cell inductances and junction ar-
eas. We have verified experimentally and numerically
that a kink, and even a train of kinks, requires a dif-
ferent amount of force to depin in positive and negative
directions. One interesting result for the inhomogeneous
rings is that the periodicity in M of the system will de-
pend only on the inductance ratios of consecutive cells.
As a consequence, it is possible to design a small ring, e.g.
N = 8, such that one can distinguish between hundreds
of states with different number of trapped kinks.

We have also shown that a ratchet kink potential can
be obtained by using junctions with three different crit-
ical currents. In this case, the inductances of all cells
are equal and the array has a period in M equal to the
number of junctions.

We expect to investigate a kink in our ratchet potential
with an ac bias to show that there is a rectifying effect:
the ac force leads to kink drift in a preferred direction.
This Brownian rectifier has the added technical benefit
that the dc voltage response is quantized [12]. This opens
up the possibility of designing electronic detectors that
can directly measure the amplitude (instead of just the
frequency) of an applied signal very accurately.

The ideas studied in this paper can be extended to the
study of vortex depinning, vortex motion and flux flow
in ratchet 2D Josephson-junction arrays. We just need
to design a 2D array with an appropriate combination of
critical currents and cell areas in the direction of vortex
motion, which is perpendicular to the current injection
direction.

Another way of designing a ratchet effect is by con-
trolling the critical current of the individual junctions of
a regular homogeneous array with the application of an
external magnetic field. In this way, we can make a phys-
ical realization of a “flashing ratchet”. The mechanics of
motion is well understood [3,5]. The pinning potential is
removed periodically. In the interval in which the poten-
tial is off, particles can diffuse freely. After restoration of
the pinning potential, most of the particles localize again
in the minimum of the next lattice site giving a net mo-
tion (in the opposite direction of the “rocking ratchet”).
However, as we have seen temperature (i.e., diffusion)
does not play an important role in the motion of the
kink. Nevertheless, one can devise a new mechanism for
the kink motion in this context. After the removal of the
pinning potential, kinks delocalize in an asymmetric way
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and localize again (when the pinning potential appears)
in the next plaquette. Preliminary numerical simulations
[22] confirm this scenario.

The study of inhomogeneous 1D arrays of Josephson
junctions can also help to elucidate pinning mechanism
in both 2D Josephson-junction arrays and superconduct-
ing thin films. Also, systems in which critical currents
are modulated [23] can show complex and interesting dy-
namical behavior. In these systems and mainly in the
presence of ac driving, we expect the appearance of new
collective coherent vortex motion which can give a mode-
locking response. Thus, these ratchet arrays may be used
as inspiration for devices that take advantage of the prop-
erties of directional transport, rectification, and quan-
tized response to ac driving.

An interesting application of directional motion of vor-
tices has already been proposed in [7]. An appropriate
ratchet potential (via the modulation of the thickness of
the superconductor) is used to eliminate vortices from
the thin film. This “cleaning” is also convenient in 1D
and 2D Josephson-junction arrays in which the presence
of trapped flux breaks the phase coherence of, for in-
stance, arrays used as radiation sources or complex rapid
single flux quantum (RSFQ) circuits. It appears that our
ratchet pinning potential could be used to “clean” this
trapped flux.

In summary, we have shown that inhomogeneous par-
allel arrays of Josephson arrays are ideal model systems
for the study of flux pinning. We have also shown that
there are different ways to build a ratchet pinning po-
tential, and have found an excellent agreement between
experiments and theory.
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L.M. Floŕıa and P.J. Mart́ınez for insightful discussions.
This work was supported by NSF grant DMR-9610042
and DGES (PB95-0797 and PB98-1592). JJM thanks
the Fulbright Commission and the MEC (Spain) for fi-
nancial support.

APPENDIX

In this appendix we calculate the periodicity in the
number of kinks, M , of Eq. (4) for a general inhomoge-
neous ring array. Importantly, this period depends only
on the ratio between consecutive λ′s and it is indepen-
dent of the order of such ratios and the values of the
critical currents.

As in the main text, we will use the following transfor-
mation for the phases:

ψj = ϕj + 2πmj , (17)

where mj is an integer. Eq. (6) is the new equation of
motion in the new variables. The new boundary con-
dition for the transformed variables becomes ψj+N =
ψj + 2π(M + T ) with T = mj+N − mj. The strat-
egy to calculate the period T will be to find a set of
integers that eliminate the mj dependence in the right
hand side of Eq. (6). We will look for solutions where
mj − mj−1 + (mj − mj+1)λj/λj−1 = 0. Clearly, this
condition is independent of hj and only depends on the
ratios λj/λj−1.

First we let λj/λj−1 = pj/qj with pj and qj coprime.
Since only differences of mj are needed, we let m1 = 0
without loss of generality. Then we solve for m3 in terms
of m2,

m3 =
p2 + q2
p2

m2. (18)

Similarly, m4 in terms of m3 is

m4 =
q2q3 + p3(p2 + q2)

p3(p2 + q2)
m3. (19)

After some algebra we find the following recursive for-
mula for mj+1/mj:

mj+1/mj = ξj+1/pjξj , (20)

with

ξj =

j−1
∏

k=2

qk + pj−1ξj−1. (21)

Here ξ2 = 1 and j = 3 to N + 1. We have now derived
that the ratio of mj+1/mj is a ratio of integers. So in
principle, we can find an integer for every mj .

To find a set of integers for mj we start at the most
complex ratio: mN+1/mN . We take mN+1 = ξN+1 and
mN = pNξN . By back substituting, we find

mj = ξj

N
∏

k=j

pk (22)

for j = 2 to N and with m1 = 0.
It is straight forward to find the period. Since we have

taken m1 = 0 the period can be most easily expressed as
T = mN+1,

T =
N
∏

k=2

qk + pNξN . (23)

For consistency we also check that the equations at j = 1
are satisfied: m0 + m2λ1/λN = 0. It is relatively easy

to find that m0 = −
∏N

k=2
qk. The period calculated us-

ing T = mN −m0 also yields Eq. (23). This completes
the existence prove that an inhomogeneous parallel ar-
ray with consecutive λ′s that are rational numbers has a
period in M .
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This procedure, however, will not necessarily yield the
minimum period. To calculate the minimum period we
need to find the smallest mN+1. For each ratio of mj, we
can make the numerator and denominator of ξj+1/pjξj
relatively prime by dividing by their common multiples.
We start with the last ratio mN+1/mN = ξN+1/pNξN .
If we let y = gcd(ξN+1, pNξN ) then mN+1 = ξN+1/y
and mN = pjξN/y. However, we also need to be able to
consistently change mN . That is, the ratio mN/mN−1 =
pNξN/pNpN−1ξN−1 should still be valid. This implies
that y has to be a multiple of mN−1 as well. By iter-
ating, we see that y has to be a multiple of all the mj .
Therefore, let x = gcd(mN+1,mN , . . . ,m2). The mini-
mum integer period is then

T = (

N
∏

k=2

qk + pNξN )/x. (24)

As an example, let us consider the regular ring with
λj = λ. Here ξN+1 = N, gcd(N,N − 1, N − 2, . . . , 1) = 1
and T = N as expected from the homogeneous sine-
Gordon equation. This explains the observation in
Fig. 10 that T=9.

As another example, we consider the ring with al-
ternating areas. Let λj/λj−1 = p/q for j even and
λj/λj−1 = q/p for j odd. Then ξ3 = p+ q, ξ4 = 2pq+ q2,
and

ξN =
N

2
pN/2−1qN/2−1 + (

N

2
− 1)pN/2−2qN/2 (25)

for N even. Also

N
∏

k=2

qk = pN/2−1qN/2. (26)

Then, x = gcd(mN+1,mN , . . . ,m2) = pN/2−1qN/2−1 and

T = (N/2)p+ (N/2 − 1)q + q

= (p+ q)N/2. (27)

We have recovered the same result derived in the main
text.
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