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In this Letter we revisited the well known Khosrofian and Garetz’s inversion

algorithm, developed to analyze data obtained by the application of traveling

knife-edge technique. We have analyzed their approximated fitting function,

used for adjusting the experimental data, and found that it is not optimized

to work with the full range of the experimentally measured data. We have

numerically calculated a new set of coefficients, which turn the approximated

function suitable for the full experimental range, considerably improving the

accuracy in the measurement of the radius of a focused Gaussian laser beam.
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1. Introduction

The accurate measurement of the waist of a laser beam near the focus of a lens is very impor-

tant in many applications [1], for instance in the Z-scan [2] and thermal lens spectrometry

[3]. Many techniques were developed with this purpose, such as the slit scan technique [4, 5],

the pinhole technique [6], but among the most used is the knife-edge technique [7–9]. The

knife-edge technique is a beam profiling method that allows for quick, inexpensive, and accu-

rate determination of the beam parameters. The knife-edge technique is being widely used

for decades and is considered a standard technique for Gaussian laser beam characterization

[10]. In this technique a knife edge moves perpendicular to the direction of propagation of

the laser beam and the total transmitted power is measured as a function of the knife edge

position. A typical experimental setup is shown in Fig.1. The knife-edge technique requires

a sharp edge (typically a razor blade), a translation stage with a micrometer and a power

meter or an energy meter when working with pulses.

In our discussion we will consider a radially symmetric Gaussian laser beam with intensity

described by

I(x, y) = I0 exp

[

−(x − x0)
2 + (y − y0)

2

w2

]

, (1)

where I0 is the peak intensity at the center of the beam, located at (x0, y0), x and y are the

transverse Cartesian coordinates of any point with respect to an origin conveniently chosen

at the beginning of an experiment, and w is the beam radius, measured at a position where

the intensity decreases to 1/e times its maximum value I0. Eq. (1) is not the only way

to express the intensity of a Gaussian laser beam. Some authors prefer to define the beam

radius at a position where the electric field amplitude drops to 1/e, while the intensity drops

to 1/e2 times the maximum value. Our choice in the definition of the intensity follows the

choice made by Khosrofian and Garetz [9].

With the knife-edge initially blocking the laser beam, the micrometer can be adjusted in

appropriate increments, and the normalized transmitted power is obtained by the integral:

PN =

∫

x

−∞

∫ ∞

−∞
I(x′, y)dydx′

∫ ∞

−∞

∫ ∞

−∞
I(x′, y)dydx′

, (2)

which gives,

PN(x) =
1

2

[

1 + erf

(

x − x0

w

)]

, (3)
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where erf is the error function.

The area of the photodiode is considered to be larger than the laser beam cross-section

area at the detection position, so that diffraction effects may be neglected. The large area

photodiode may be substituted by an small area photodiode coupled to an integrating sphere

[8].

2. The data analysis

The error function in Eq. (3) is not an analytical function and its use in fitting experimental

data is not a practical procedure. One approach in data analysis is to work with the

derivative of Eq. (3) [7, 11, 12], that is analytical and is given by

dPN(x)

dx
=

1√
πw

exp

[

−(x − x0)
2

w2

]

. (4)

But the process of taking derivatives of experimental data with fluctuations result in

amplification of the fluctuations, and consequently an increase on the errors. In order to

overcome this problem, Khosrofian and Garetz [9] suggested a substitution of PN(x) by an

analytical function, that approximately represents PN(x), to fit the experimental data. This

fitting function is given by

f(s) =
1

1 + exp [p (s)]
, (5)

where

p(s) =
m

∑

i=0

ais
i, (6)

and

s =

√
2(x − x0)

w
. (7)

For practical reasons Khosrofian and Garetz limited the polynomial p(s) to the third

order term, so that

f(s) =
1

1 + exp (a0 + a1s + a2s2 + a3s3)
. (8)

Using data from tabulated normal distribution function and least-square analysis, the

polynomial coefficients were determined as,

a0 = −6.71387 × 10−3,

a1 = −1.55115,
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a2 = −5.13306 × 10−2,

a3 = −5.49164 × 10−2.

Although this fitting function is being used for decades, and referenced by many authors

[13, 14], we decided to compare it with the exact function, given by Eq. (3). The first step

in the comparison process was to plot the equations in the same graphics. The result is

shown in Fig. 2. We verified that the fitting function presents a very good adjustment for

f(s) > 0.5, but fails to adjust for f(s) < 0.5. This result is a consequence of the procedure

that has been employed to fit f(s) to the data points, because the parameters that define

f(s) have been determined from tabulated normal data with positive arguments only. To

extend the procedure to include negative arguments of f(s), Khosrofian and Garetz assumed

that f(−s) = 1−f(s). But since f(s) contains p(s), that is a polynomial that includes terms

of even powers of s, this assumption is not valid. Considering the symmetry of error function,

the fitting function f(s) must contains only terms of odd powers of s. In fact, a fitting of

f(s) to the exact data, given by Eq. (3), shows that a0 and a2 numerically converge to zero

and the new non null adjusted coefficients, up to the third order, are given by

a1 = −1.597106847,

a3 = −7.0924013 × 10−2.

We thus may write Eq. (8) as

f(s) =
1

1 + exp (a1s + a3s3)
. (9)

To arrive at these new coefficients we have generated a set of points, directly from Eq.

(3) with x0 = 0 and w = 1, by using Maple 10, and with the help of Origin 7.5 we fitted

the data set with the Eq. (8). The fitting procedure was to keep x0 and w fixed, letting the

coefficients to vary.

By fitting the same simulated data set with f(s) given by Eq. (8), with the old coefficients,

the obtained values for x0 and w were 0.0132 and 0.9612, respectively. This corresponds to a

difference of about 3.9% in the laser beam radius, and the error in the center position, relative

to the beam radius, of about 1.3%. These differences may represent a serious problem in high

accuracy experiments. For example, since the laser intensity is inversely proportional to the
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square of the radius, an overestimation of about 7.6% on the laser intensity will result if Eq.

(8) is used as the fitting function. On the other hand, an estimation of the error in w and x0

give values in the range 10−7 −10−8 when fitting Eq. (9) to the exact function, given by Eq.

(3). With these results we may say that Eq. (9) is not only a good approximation for our

particular problem, but it may also be useful in many numerical problems in different fields

of science involving the error function. As an example of the use of analytical expressions for

the error function in another physical problem we may refer to the work of P. Van Halen [15],

which was used to calculate the electric field and potential distribution in semiconductor

junctions with a Gaussian doping profile.

The inclusion of the fifth order term in the polynomial p(s) will further improve the

accuracy, but it is not worth doing this in the analysis of the knife-edge technique data,

where the experimental fluctuations dominates the errors in the data analysis. But since

the focus of our discussion is the improvement of the data analysis, and a possible use of

this fitting function in different kind of problems we will extend our discussion to analyze

the behavior of f(s) when the fifth order term is included. The first annotation about the

inclusion of the fifth order term a5 in the polynomial p(s) is that it will require a recalculation

of all the coefficients, so that a1 and a3 will change. So the new calculated coefficients are

given by

a1 = −1.5954086,

a3 = −7.3638857 × 10−2,

a5 = +6.4121343× 10−4.

In order to verify how close the approximated functions are from the exact function PN(x)

we have plotted the differences between f(s) and PN(x) for (x− x0)/w ranging from -4.0 to

4.0, covering the full range of interest. In Fig. 4a., f(s) given by Eq. (8), was used in two

different ways: with the parameters w = 1.0 and x0 = 0.0 (solid line), and w = 0.9612 and

x0 = 0.0132 (dashed line) obtained when one tries to fit PN(x) with f(s). In Fig. 4b. the

differences are calculated with f(s) given by Eq. 9, in a situation where only the coefficients

a1 and a3 are considered (solid line), and when the new set of coefficients that includes a5

is considered.

By analyzing the curves shown in Fig. 4 we may conclude that the approximated function
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f(s) defined by Eq. 9 is, on the average, two orders of magnitude closer to the exact function

PN(x) than that defined by Eq. 8. When the fifth order term is included in the polynomial

p(s) the approximation is even better, making the biggest difference to be about 2 × 10−5

in the full range of interest.

3. Analysis of experimental data

In order to verify how the choice of the fitting function interferes in the true experimental

data analysis we performed a simple experiment using the setup shown in Fig. 1. In our

experiment a He:Ne laser with an output power of 10 mW was focused by a 25 cm focal

length lens. A razor blade was mounted on top of a motorized translation stage made by

Newport (model M-UTM150PP.1), which resolution was 0.1 µm. The translation stage

position was controlled by a computer while the total transmitted laser power was measured

by an Ophir NOVA power meter. The analog output signal of the power meter was sent

to the computer through a National Instruments USB-6000 acquisition card. We set the

speed of the translation stage at 0.5 mm/s and the acquisition rate at 100 samples/s. The

experimental data, taken at a position near the focus of the lens, is shown in Fig. 5, where we

also show a fitting of the experimental data with Eq. (9). The same fitting was done with Eq.

(8), and although both equations give rise to curves that apparently are representative of the

experimental data, they result in different values for the laser beam radius. After analyzing

10 scans, fitting each data set with Eq. (9), we arrived at the mean value w = 36.60 ± 0.06

µm. A result 3.8% lower than this is obtained if one tries to fit the same experimental data

with Eq. (8). This confirms the necessity of using the correct fitting function to analyze the

experimental data. If we now compare the position of the beam center, given by the two

fitting functions, we find a difference, relative to the radius, of 1.2% between the results.

Since the type of errors introduced by the use of Eq. (8) is systematic, past results on laser

beam radius may be corrected by using a multiplying factor of 1.04.

If one defines the radius of the laser beam at a position where the intensity drops to 1/e2

times the maximum value, one needs to multiply w by
√

2 to arrive at the desired value.

4. Conclusions

We have shown that a modified sigmoidal function, based on the Khosrofian and Garetz‘s

function, with new coefficients are needed for correct laser beam characterization in the knife-

edge technique. We have found these new coefficients and showed that the new function fits
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very well the experimental data and improves the accuracy of the results.
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Figure 4
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Figure Captions

Fig. 1. Simplified scheme for the measurement of the laser beam radius using the knife-

edge technique. The gray color area represents the shadow caused by the knife-edge.

Fig. 2. Comparison of the data obtained from Eq. (3) with f(s) defined by Eq. (8).

Fig. 3. Fitting the data obtained from Eq. (3) with f(s) defined by Eq. (9).

Fig. 4. Differences between f(s) and PN (x). In (a) f(s) is given by Eq. (8), with the

parameters w = 1.0 and x0 = 0.0 (solid line), and w = 0.9612 and x0 = 0.0132 (dashed

line). In (b) f(s) is given by Eq. 9, when only the coefficients a1 and a3 are considered

(solid line), and when the new set of coefficients that includes a5 is considered.

Fig. 5. Fitting of the experimental data using Eq. (9). A similar curve is obtained by

using Eq. (8), but with the adjusted laser beam radius 3.8% lower.
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